Science.gov

Sample records for a2b5 neural progenitor

  1. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  2. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  3. Immunodiagnosis of tumors in vivo using radiolabeled monoclonal antibody A2B5

    SciTech Connect

    Reintgen, D.S.; Shimizu, K.; Coleman, E.

    1983-07-01

    Recently a murine monoclonal antibody (A2B5) has been described that reacts with a membrane associated GQ ganglioside common to peptide secreting normal cells and tumors. In vitro binding data demonstrated the presence of this ganglioside on neurons, adrenal medulla, and pancreatic islets, along with neuroendocrine tumors such as insulinomas, pheochromocytomas, melanomas and neuroblastomas. Negative binding has previously been shown for tissue sections from liver, kidney, colon, lung, stomach, and tumors not derived from the neural crest. Because of the specificity at A2B5 in vitro, this monoclonal antibody was labeled with /sup 131/I for in vivo tumor localization studies. Daily radionuclearmore » scans were obtained in 5 KX rats bearing the radiation induced rat insulinoma with disappearance of the label from the blood pool and concentration in the tumor so that by the fourth day, the only activity present by scan was in the insulinoma. In addition A2B5 also localized to five different human melanoma cells lines grown in nude mice with high tumor/blood levels compared to normal tissues, while no localization is seen in nudes carrying osteosarcomas, colon, bladder, and renal cell carcinomas. In addition antibody A2B5 did not concentrate in any normal tissue though the antigen is present on several. The finding that A2B5 reacts across species lines (mouse, rat, man) lends itself to obvious diagnostic and therapeutic possibilities.« less

  4. TOX3 regulates neural progenitor identity.

    PubMed

    Sahu, Sanjeeb Kumar; Fritz, Alina; Tiwari, Neha; Kovacs, Zsuzsa; Pouya, Alireza; Wüllner, Verena; Bora, Pablo; Schacht, Teresa; Baumgart, Jan; Peron, Sophie; Berninger, Benedikt; Tiwari, Vijay K; Methner, Axel

    2016-07-01

    The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromatin immunoprecipitation assays. In line with this, over-expression of Tox3 increased Nestin promoter activity, which was cooperatively enhanced by treatment with the stem cell self-renewal promoting Notch ligand Jagged and repressed by pharmacological inhibition of Notch signaling. Knockdown of Tox3 in the subventricular zone of E12.5 mouse embryos by in utero electroporation of Tox3 shRNA revealed a reduced Nestin expression and decreased proliferation at E14 and a reduced migration to the cortical plate in E16 embryos in electroporated cells. Together, these results argue for a role of Tox3 in the development of the nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Expression of Receptors for Tetanus Toxin and Monoclonal Antibody A2B5 by Pancreatic Islet Cells

    NASA Astrophysics Data System (ADS)

    Eisenbarth, G. S.; Shimizu, K.; Bowring, M. A.; Wells, S.

    1982-08-01

    Studies of the reaction of antibody A2B5 and tetanus toxin with pancreatic islet cells, islet cell tumors, and other human amine precursor uptake and decarboxylation (APUD) tumors are described. By indirect immunofluorescence, antibody A2B5 and tetanus toxin were shown to specifically bind to the plasma membrane of human, rat, chicken, and mouse islet cells. The binding of antibody A2B5 to the cell surface of living islet cells has allowed isolation of these cells from a suspension of pancreatic cells by using a fluorescence-activated cell sorter. In studies designed to determine whether tetanus toxin and antibody A2B5 bound to the same surface antigen, A2B5 and tetanus toxin did not compete for binding to normal islet cells, a human islet cell tumor, or a rat islet cell tumor. In addition to binding to islet cell tumors, antibody A2B5 reacts with frozen sections, isolated cells, and cell lines of neural, neural crest, and APUD origin.

  6. Immunocytochemical characterisation of neural stem-progenitor cells from green terror cichlid Aequidens rivulatus.

    PubMed

    Wen, C M; Chen, M M; Nan, F H; Wang, C S

    2017-01-01

    In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein. Nevertheless, astrocytes were polymorphic and were the most dominant cells in the NSPC cultures. By using Matrigel, radial glia exhibiting a long GFAP + or DARPP-32 + fibre and neurons exhibiting a significant acetyl-tubulin + process were obtained. The results confirmed that NSPCs obtained from A. rivulatus brains can proliferate and differentiate into neurons in vitro. Clonal culture can be useful for further studying the distinct NSPCs. © 2016 The Fisheries Society of the British Isles.

  7. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    PubMed Central

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  9. Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells.

    PubMed

    Jiménez-Vaca, Ana L; Benitez-King, Gloria; Ruiz, Víctor; Ramírez-Rodríguez, Gerardo B; Hernández-de la Cruz, Beatriz; Salamanca-Gómez, Fabio A; González-Márquez, Humberto; Ramírez-Sánchez, Israel; Ortíz-López, Leonardo; Vélez-Del Valle, Cristina; Ordoñez-Razo, Rosa Ma

    2018-03-01

    Neural progenitor cells (NPC) contained in the human adult olfactory neuroepithelium (ONE) possess an undifferentiated state, the capability of self-renewal, the ability to generate neural and glial cells as well as being kept as neurospheres in cell culture conditions. Recently, NPC have been isolated from human or animal models using high-risk surgical methods. Therefore, it was necessary to improve methodologies to obtain and maintain human NPC as well as to achieve better knowledge of brain disorders. In this study, we propose the establishment and characterization of NPC cultures derived from the human olfactory neuroepithelium, using non-invasive procedures. Twenty-two healthy individuals (29.7 ± 4.5 years of age) were subjected to nasal exfoliation. Cells were recovered and kept as neurospheres under serum-free conditions. The neural progenitor origin of these neurospheres was determined by immunocytochemistry and qPCR. Their ability for self-renewal and multipotency was analyzed by clonogenic and differentiation assays, respectively. In the cultures, the ONE cells preserved the phenotype of the neurospheres. The expression levels of Nestin, Musashi, Sox2, and βIII-tubulin demonstrated the neural origin of the neurospheres; 48% of the cells separated could generate neurospheres, determining that they retained their self-renewal capacity. Neurospheres were differentiated in the absence of growth factors (EGF and FGF), and their multipotency ability was maintained as well. We were also able to isolate and grow human neural progenitor cells (neurospheres) through nasal exfoliates (non-invasive method) of the ONE from healthy adults, which is an extremely important contribution for the study of brain disorders and for the development of new therapies.

  10. Requirement for Foxd3 in Maintenance of Neural Crest Progenitors

    PubMed Central

    Teng, Lu; Mundell, Nathan A.; Frist, Audrey Y.; Wang, Qiaohong; Labosky, Patricia A.

    2008-01-01

    Summary Understanding the molecular mechanisms of stem cell maintenance is critical for the ultimate goal of manipulating stem cells for treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3−/− embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue specific deletion of Foxd3 in the neural crest, we show that Foxd3flox/−; Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo. PMID:18367558

  11. Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation

    PubMed Central

    Silvestroff, Lucas; Franco, Paula Gabriela; Pasquini, Juana María

    2013-01-01

    NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs. PMID:23368675

  12. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats.

    PubMed

    Liu, Ying; Lu, Guan-Yi; Chen, Wen-Qiang; Li, Yun-Feng; Wu, Ning; Li, Jin

    2018-01-05

    Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine. Copyright © 2017. Published by Elsevier B.V.

  13. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity.

    PubMed

    Suzuki, Takumi; Sato, Makoto

    2017-11-15

    Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Isolation and characteristics of CD133‑/A2B5+ and CD133‑/A2B5‑ cells from the SHG139s cell line.

    PubMed

    Han, Yong; Wang, Hangzhou; Huang, Yulun; Cheng, Zhe; Sun, Ting; Chen, Guilin; Xie, Xueshun; Zhou, Youxin; Du, Ziwei

    2015-12-01

    In glioma tissues, there are small cell populations with the capability of sustaining tumor formation. These cells are referred to as glioma stem cells (GSCs). However, the presence of subpopulations of GSCs, and the differences between each subpopulation remain to be fully elucidated. In the present study, CD133‑/A2B5‑ and CD133‑/A2B5+ cells from the SHG139 GSC cell line (SHG139s) were isolated using magnetic‑activated cell sorting. Following xenografting into nude mice, the two isolated subpopulations generated tumors. The characteristics of the two subpopulations were investigated extensively, and it was found that the two exhibited cancer stem cell characteristics. These cells expressed stem cell markers, exhibited a neurosphere‑like appearance, and were found to exhibit self‑renewal and multipotency capabilities. Subsequently, the self‑renewal and proliferation abilities of the two subpopulations were compared. It was found that the A2B5‑ cells had a higher proliferative index and a higher self‑renewal ability, compared with the A2B5+ cells. In addition, the A2B5‑ cells exhibited increased angiogenic ability. However, the invasion ability of the A2B5+ cells was higher than that of the A2B5‑ cells. Taken together, the results of the present study suggested that there are different cell subpopulations in GSCs, and each subpopulation has its own properties.

  15. SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon.

    PubMed

    Hutton, Scott R; Pevny, Larysa H

    2011-04-01

    The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Conferring Virulence: Structure and Function of the chimeric A2B5 Typhoid Toxin

    PubMed Central

    Song, Jeongmin; Gao, Xiang; Galán, Jorge E.

    2013-01-01

    Salmonella Typhi differs from most other salmonellae in that it causes a life-threatening systemic infection known as typhoid fever1. The molecular bases for its unique clinical presentation are unknown2. Here we found that in an animal model, the systemic administration of typhoid toxin, a unique virulence factor of S. Typhi, reproduces many of the acute symptoms of typhoid fever. We identified specific carbohydrate moieties on specific surface glycoproteins that serve as receptors for typhoid toxin, which explains its broad cell target specificity. We present the atomic structure of typhoid toxin, which shows an unprecedented A2B5 organization with two covalently-linked A subunits non-covalently-associated to a pentameric B subunit. The structure provides insight into the toxin’s receptor-binding specificity and delivery mechanisms and reveals how the activities of two powerful toxins have been coopted into a single, unique toxin that can induce many of the symptoms characteristic of typhoid fever. These findings may lead to the development of potentially life-saving therapeutics against typhoid fever. PMID:23842500

  17. Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    PubMed Central

    2009-01-01

    Background Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed. Methods Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed. Results In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum. Conclusion Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP. PMID:19216795

  18. VEGF is a chemoattractant for FGF-2–stimulated neural progenitors

    PubMed Central

    Zhang, Huanxiang; Vutskits, Laszlo; Pepper, Michael S.; Kiss, Jozsef Z.

    2003-01-01

    Mmigration of undifferentiated neural progenitors is critical for the development and repair of the nervous system. However, the mechanisms and factors that regulate migration are not well understood. Here, we show that vascular endothelial growth factor (VEGF)-A, a major angiogenic factor, guides the directed migration of neural progenitors that do not display antigenic markers for neuron- or glia-restricted precursor cells. We demonstrate that progenitor cells express both VEGF receptor (VEGFR) 1 and VEGFR2, but signaling through VEGFR2 specifically mediates the chemotactic effect of VEGF. The expression of VEGFRs and the chemotaxis of progenitors in response to VEGF require the presence of fibroblast growth factor 2. These results demonstrate that VEGF is an attractive guidance cue for the migration of undifferentiated neural progenitors and offer a mechanistic link between neurogenesis and angiogenesis in the nervous system. PMID:14691144

  19. Raman spectroscopy for discrimination of neural progenitor cells and their lineages (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Ong, William; Chew, Sing Yian; Liu, Quan

    2017-02-01

    Neurological diseases are one of the leading causes of adult disability and they are estimated to cause more deaths than cancer in the elderly population by 2040. Stem cell therapy has shown great potential in treating neurological diseases. However, before cell therapy can be widely adopted in the long term, a number of challenges need to be addressed, including the fundamental research about cellular development of neural progenitor cells. To facilitate the fundamental research of neural progenitor cells, many methods have been developed to identify neural progenitor cells. Although great progress has been made, there is still lack of an effective method to achieve fast, label-free and noninvasive differentiation of neural progenitor cells and their lineages. As a fast, label-free and noninvasive technique, spontaneous Raman spectroscopy has been conducted to characterize many types of stem cells including neural stem cells. However, to our best knowledge, it has not been studied for the discrimination of neural progenitor cells from specific lineages. Here we report the differentiation of neural progenitor cell from their lineages including astrocytes, oligodendrocytes and neurons using spontaneous Raman spectroscopy. Moreover, we also evaluate the influence of system parameters during spectral acquisition on the quality of measured Raman spectra and the accuracy of classification using the spectra, which yield a set of optimal system parameters facilitating future studies.

  20. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon.

    PubMed

    Ganz, Julia; Kaslin, Jan; Hochmann, Sarah; Freudenreich, Dorian; Brand, Michael

    2010-08-15

    Adult telencephalic neurogenesis is a conserved trait of all vertebrates studied. It has been investigated in detail in rodents, but very little is known about the composition of neurogenic niches and the cellular nature of progenitors in nonmammalian vertebrates. To understand the components of the progenitor zones in the adult zebrafish telencephalon and the link between glial characteristics and progenitor state, we examined whether canonical glial markers are colocalized with proliferation markers. In the adult zebrafish telencephalon, we identify heterogeneous progenitors that reside in two distinct glial domains. We find that the glial composition of the progenitor zone is linked to its proliferative behavior. Analyzing both fast-cycling proliferating cells as well as slowly cycling progenitors, we find four distinct progenitor types characterized by differential expression of glial markers. Importantly, a significant proportion of progenitors do not display typical radial glia characteristics. By blocking or activating Fgf signaling by misexpression of a dominant negative Fgf-receptor 1 or Fgf8a, respectively, we find that ventral and dorsal progenitors in the telencephalon also differ in their requirement for Fgf signaling. Together with data on the expression of Fgf signaling components in the ventricular zone of the telencephalon, this suggests that Fgf signaling directly regulates proliferation of specific subsets of adult telencephalic progenitors in vivo. Taken together our results show that adult neural progenitor cells are heterogeneous with their respect to distribution into two distinct glial domains and their dependence upon Fgf signaling as a proliferative cue in the zebrafish telencephalon.

  1. Regulation of adult neural progenitor cell functions by purinergic signaling.

    PubMed

    Tang, Yong; Illes, Peter

    2017-02-01

    Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.

  2. Generation of neural progenitor cells by chemical cocktails and hypoxia

    PubMed Central

    Cheng, Lin; Hu, Wenxiang; Qiu, Binlong; Zhao, Jian; Yu, Yongchun; Guan, Wuqiang; Wang, Min; Yang, Wuzhou; Pei, Gang

    2014-01-01

    Neural progenitor cells (NPCs) can be induced from somatic cells by defined factors. Here we report that NPCs can be generated from mouse embryonic fibroblasts by a chemical cocktail, namely VCR (V, VPA, an inhibitor of HDACs; C, CHIR99021, an inhibitor of GSK-3 kinases and R, Repsox, an inhibitor of TGF-β pathways), under a physiological hypoxic condition. These chemical-induced NPCs (ciNPCs) resemble mouse brain-derived NPCs regarding their proliferative and self-renewing abilities, gene expression profiles, and multipotency for different neuroectodermal lineages in vitro and in vivo. Further experiments reveal that alternative cocktails with inhibitors of histone deacetylation, glycogen synthase kinase, and TGF-β pathways show similar efficacies for ciNPC induction. Moreover, ciNPCs can also be induced from mouse tail-tip fibroblasts and human urinary cells with the same chemical cocktail VCR. Thus our study demonstrates that lineage-specific conversion of somatic cells to NPCs could be achieved by chemical cocktails without introducing exogenous factors. PMID:24638034

  3. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Danker, Timm; Wagner, Silvia; Hennenlotter, Joerg; Guenther, Elke; Obermayr, Florian; Stenzl, Arnulf; Koenigsrainer, Alfred; Skutella, Thomas; Just, Lothar

    2009-12-01

    Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.

  4. Prenatal Organophosphates Exposure Alternates the Cleavage Plane Orientation of Apical Neural Progenitor in Developing Neocortex

    PubMed Central

    Chen, Xiao-Ping; Chen, Wei-Feng; Wang, Da-Wei

    2014-01-01

    Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN) and chlorpyrifos (CPF) pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP), another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors. PMID:24740262

  5. In vitro effects of Epidiferphane™ on adult human neural progenitor cells

    USDA-ARS?s Scientific Manuscript database

    Neural stem cells have the capacity to respond to their environment, migrate to the injury site and generate functional cell types, and thus they hold great promise for cell therapies. In addition to representing a source for central nervous system (CNS) repair, neural stem and progenitor cells als...

  6. WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells

    PubMed Central

    Alshawaf, Abdullah J.; Antonic, Ana; Skafidas, Efstratios

    2017-01-01

    Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker, TBR2, and also glial marker, S100β. In contrast, inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers, PAX6 and EAAT1, respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation. PMID:28690640

  7. Topological defects control collective dynamics in neural progenitor cell cultures

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki

    2017-04-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.

  8. EMMPRIN overexpression in SVZ neural progenitor cells increases their migration towards ischemic cortex.

    PubMed

    Kanemitsu, Michiko; Tsupykov, Oleg; Potter, Gaël; Boitard, Michael; Salmon, Patrick; Zgraggen, Eloisa; Gascon, Eduardo; Skibo, Galina; Dayer, Alexandre G; Kiss, Jozsef Z

    2017-11-01

    Stimulation of endogenous neurogenesis and recruitment of neural progenitors from the subventricular zone (SVZ) neurogenic site may represent a useful strategy to improve regeneration in the ischemic cortex. Here, we tested whether transgenic overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN), the regulator of matrix metalloproteinases (MMPs) expression, in endogenous neural progenitor cells (NPCs) in the subventricular zone (SVZ) could increase migration towards ischemic injury. For this purpose, we applied a lentivector-mediated gene transfer system. We found that EMMPRIN-transduced progenitors exhibited enhanced MMP-2 activity in vitro and showed improved motility in 3D collagen gel as well as in cortical slices. Using a rat model of neonatal ischemia, we showed that EMMPRIN overexpressing SVZ cells invade the injured cortical tissue more efficiently than controls. Our results suggest that EMMPRIN overexpression could be suitable approach to improve capacities of endogenous or transplanted progenitors to invade the injured cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest

    PubMed Central

    2013-01-01

    The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery. PMID:23575111

  10. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  11. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation.

    PubMed

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario; Castro, Carmen

    2015-07-29

    Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical agents to facilitate neuronal renewal. © The

  12. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development

    PubMed Central

    Mora-Bermúdez, Felipe; Badsha, Farhath; Kanton, Sabina; Camp, J Gray; Vernot, Benjamin; Köhler, Kathrin; Voigt, Birger; Okita, Keisuke; Maricic, Tomislav; He, Zhisong; Lachmann, Robert; Pääbo, Svante; Treutlein, Barbara; Huttner, Wieland B

    2016-01-01

    Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistofluorescence, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution. DOI: http://dx.doi.org/10.7554/eLife.18683.001 PMID:27669147

  13. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells

    PubMed Central

    Imbeault, Sophie; Gauvin, Lianne G; Toeg, Hadi D; Pettit, Alexandra; Sorbara, Catherine D; Migahed, Lamiaa; DesRoches, Rebecca; Menzies, A Sheila; Nishii, Kiyomasa; Paul, David L; Simon, Alexander M; Bennett, Steffany AL

    2009-01-01

    Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells. PMID:19236721

  14. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.

    PubMed

    Mellott, Dan O; Thisdelle, Jordan; Burke, Robert D

    2017-10-01

    We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell. © 2017. Published by The Company of Biologists Ltd.

  15. Smad4 is essential for directional progression from committed neural progenitor cells through neuronal differentiation in the postnatal mouse brain.

    PubMed

    Kawaguchi-Niida, Motoko; Shibata, Noriyuki; Furuta, Yasuhide

    2017-09-01

    Signaling by the TGFβ super-family, consisting of TGFβ/activin- and bone morphogenetic protein (BMP) branch pathways, is involved in the central nervous system patterning, growth, and differentiation during embryogenesis. Neural progenitor cells are implicated in various pathological conditions, such as brain injury, infarction, Parkinson's disease and Alzheimer's disease. However, the roles of TGFβ/BMP signaling in the postnatal neural progenitor cells in the brain are still poorly understood. We examined the functional contribution of Smad4, a key integrator of TGFβ/BMP signaling pathways, to the regulation of neural progenitor cells in the subventricular zone (SVZ). Conditional loss of Smad4 in neural progenitor cells caused an increase in the number of neural stem like cells in the SVZ. Smad4 conditional mutants also exhibited attenuation in neuronal lineage differentiation in the adult brain that led to a deficit in olfactory bulb neurons as well as to a reduction of brain parenchymal volume. SVZ-derived neural stem/progenitor cells from the Smad4 mutant brains yielded increased growth of neurospheres, elevated self-renewal capacity and resistance to differentiation. These results indicate that loss of Smad4 in neural progenitor cells causes defects in progression of neural progenitor cell commitment within the SVZ and subsequent neuronal differentiation in the postnatal mouse brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Characterization of Human Neural Progenitor Cell Models for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating two different human neural progenitor cell (hNPC) models for their utility in screens for...

  17. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    PubMed

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  18. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  19. Soman poisoning increases neural progenitor proliferation and induces long-term glial activation in mouse brain.

    PubMed

    Collombet, Jean-Marc; Four, Elise; Bernabé, Denis; Masqueliez, Catherine; Burckhart, Marie-France; Baille, Valérie; Baubichon, Dominique; Lallement, Guy

    2005-03-30

    To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the long-term effect of soman on glial reaction and neural progenitor division was analyzed in the present study. The effect of soman poisoning was estimated in mouse brains at various times ranging from 1 to 90 days post-poisoning. Using immunochemistry and dye staining techniques (hemalun-eosin staining), the number of degenerating neurons, the number of dividing neural progenitors, and microglial, astroglial or oligodendroglial cell activation were studied. Soman poisoning led to rapid and massive (post-soman day 1) death of mature neurons as assessed by hemalun-eosin staining. Following this acute poisoning phase, a weak toxicity effect on mature neurons was still observed for a period of 1 month after poisoning. A massive short-termed microgliosis peaked on day 3 post-poisoning. Delayed astrogliosis was observed from 3 to 90 days after soman poisoning, contributing to glial scar formation. On the other hand, oligodendroglial cells or their precursors were practically unaffected by soman poisoning. Interestingly, neural progenitors located in the subgranular zone of the dentate gyrus (SGZ) or in the subventricular zone (SVZ) of the brain survived soman poisoning. Furthermore, soman poisoning significantly increased neural progenitor proliferation in both SGZ and SVZ brain areas on post-soman day 3 or day 8, respectively. This increased proliferation rate was detected up to 1 month after poisoning.

  20. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells

    PubMed Central

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-01-01

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells. PMID:27806344

  1. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells.

    PubMed

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-12-06

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells.

  2. Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research

    PubMed Central

    Lavoie, Joëlle; Sawa, Akira; Ishizuka, Koko

    2017-01-01

    Purpose of review The goal of this review article is to introduce olfactory epithelium (OE)-derived cell/tissue models as a promising surrogate system to study the molecular mechanisms implicated in schizophrenia (SZ) and other neuropsychiatric disorders. Here we particularly focus the utility of their neural progenitors. Recent findings Recent investigations of the pathophysiology of SZ using OE-derived tissue/cell models have provided insights about SZ-associated alterations in neurodevelopment, stress response, and gene/protein expression regulatory pathways. Summary The OE retains the capacity for lifelong neurogenesis and regeneration, because of the presence of neural stem cells and progenitors. Thus, both mature neurons and neural progenitors can be obtained from the OE without the need for genetic reprogramming and related confounds. Furthermore, the OE is highly scalable resource in translational settings. Here we also demonstrate recent findings from research using OE-derived tissue/cell models in SZ and other brain disorders. In summary, we propose that the OE as a promising resource to study neural molecular and cellular signatures relevant to the pathology of SZ and other mental disorders. PMID:28333692

  3. An intermediate level of BMP signaling directly specifies cranial neural crest progenitor cells in zebrafish.

    PubMed

    Schumacher, Jennifer A; Hashiguchi, Megumi; Nguyen, Vu H; Mullins, Mary C

    2011-01-01

    The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.

  4. Prolonged Expansion Induces Spontaneous Neural Progenitor Differentiation from Human Gingiva-Derived Mesenchymal Stem Cells.

    PubMed

    Rajan, Thangavelu Soundara; Scionti, Domenico; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2017-12-01

    Neural crest-derived mesenchymal stem cells (MSCs) obtained from dental tissues received considerable interest in regenerative medicine, particularly in nerve regeneration owing to their embryonic origin and ease of harvest. Proliferation efficacy and differentiation capacity into diverse cell lineages propose dental MSCs as an in vitro tool for disease modeling. In this study, we investigated the spontaneous differentiation efficiency of dental MSCs obtained from human gingiva tissue (hGMSCs) into neural progenitor cells after extended passaging. At passage 41, the morphology of hGMSCs changed from typical fibroblast-like shape into sphere-shaped cells with extending processes. Next-generation transcriptomics sequencing showed increased expression of neural progenitor markers such as NES, MEIS2, and MEST. In addition, de novo expression of neural precursor genes, such as NRN1, PHOX2B, VANGL2, and NTRK3, was noticed in passage 41. Immunocytochemistry results showed suppression of neurogenesis repressors TP53 and p21, whereas Western blot results revealed the expression of neurotrophic factors BDNF and NT3 at passage 41. Our results showed the spontaneous efficacy of hGMSCs to differentiate into neural precursor cells over prolonged passages and that these cells may assist in producing novel in vitro disease models that are associated with neural development.

  5. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals.

    PubMed

    Bélanger, Marie-Claude; Robert, Benoit; Cayouette, Michel

    2017-01-23

    In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 6-mercaptopurine (6-MP) induces p53-mediated apoptosis of neural progenitor cells in the developing fetal rodent brain.

    PubMed

    Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H

    2009-01-01

    6-mercaptopurine (6-MP), a DNA-damaging agent, induces apoptosis of neural progenitor cells, and causes malformation in the fetal brain. The aim of the present study is to clarify the molecular pathway of 6-MP-induced apoptosis of neural progenitor cells in the fetal telencephalon of rats and mice. p53 protein is activated by DNA damage and induces apoptosis through either the intrinsic pathway involving the mitochondria or the extrinsic pathway triggered by death receptors. In this study, the expression of puma and cleaved caspase-9 proteins, which are specific intrinsic pathway factors, increased in the rat telencephalon after 6-MP treatment. 6-MP-induced apoptosis of neural progenitor cells was completely absent in p53-deficient mice. On the other hand, the expression of Fas protein, an extrinsic pathway factor, did not change throughout the experimental period in the rat telencephalon treated with 6-MP. The number of apoptotic neural progenitor cells was similar among Fas-mutated lpr/lpr and wild-type mice, suggesting that the Fas pathway does not play a significant role in 6-MP-induced apoptosis of neural progenitor cells. These results may suggest that the p53-mediated intrinsic pathway is essential for 6-MP-induced apoptosis of neural progenitor cells in the developing telencephalon of rats and mice.

  7. Generation of Oligodendrogenic Spinal Neural Progenitor Cells From Human Induced Pluripotent Stem Cells.

    PubMed

    Khazaei, Mohamad; Ahuja, Christopher S; Fehlings, Michael G

    2017-08-14

    This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  8. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  9. The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro

    SciTech Connect

    Skardelly, Marco, E-mail: Marco.Skardelly@med.uni-tuebingen.de; Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig; Glien, Anja

    In allogenic and xenogenic transplantation, adequate immunosuppression plays a major role in graft survival, especially over the long term. The effect of immunosuppressive drugs on neural stem/progenitor cell fate has not been sufficiently explored. The focus of this study is to systematically investigate the effects of the following four different immunotherapeutic strategies on human neural progenitor cell survival/death, proliferation, metabolic activity, differentiation and migration in vitro: (1) cyclosporine A (CsA), a calcineurin inhibitor; (2) everolimus (RAD001), an mTOR-inhibitor; (3) mycophenolic acid (MPA, mycophenolate), an inhibitor of inosine monophosphate dehydrogenase and (4) prednisolone, a steroid. At the minimum effective concentration (MEC),more » we found a prominent decrease in hNPCs' proliferative capacity (BrdU incorporation), especially for CsA and MPA, and an alteration of the NAD(P)H-dependent metabolic activity. Cell death rate, neurogenesis, gliogenesis and cell migration remained mostly unaffected under these conditions for all four immunosuppressants, except for apoptotic cell death, which was significantly increased by MPA treatment. - Highlights: • Four immunosuppresants (ISs) were tested in human neural progenitor cells in vitro. • Cyclosporine A and mycophenolic acid showed a prominent anti-proliferative activity • Mycophenolic acid exhibited a significant pro-apoptotic effect. • NAD(P)H-dependent metabolic activity was occasionally induced by ISs. • Neuronal differentiation and migration potential remained unaffected by ISs treatment.« less

  10. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  11. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  12. Elk3 is essential for the progression from progenitor to definitive neural crest cell

    PubMed Central

    Rogers, Crystal D.; Phillips, Jacquelyn L.; Bronner, Marianne E.

    2013-01-01

    Elk3/Net/Sap2 (here referred to as Elk3) is an Ets ternary complex transcriptional repressor known for its involvement in angiogenesis during embryonic development. Although Elk3 is expressed in various tissues, additional roles for the protein outside of vasculature development have yet to be reported. Here, we characterize the early spatiotemporal expression pattern of Elk3 in the avian embryo using whole mount in situ hybridization and quantitative RT-PCR and examine the effects of its loss of function on neural crest development. At early stages, Elk3 is expressed in the head folds, head mesenchyme, intersomitic vessels, and migratory cranial neural crest (NC) cells. Loss of the Elk3 protein results in the retention of Pax7+ precursors in the dorsal neural tube that fail to upregulate neural crest specifier genes, FoxD3, Sox10 and Snail2, resulting in embryos with severe migration defects. The results putatively place Elk3 downstream of neural plate border genes, but upstream of neural crest specifier genes in the neural crest gene regulatory network (NC-GRN), suggesting that it is critical for the progression from progenitor to definitive neural crest cell. PMID:23266330

  13. Effects of topography on the functional development of human neural progenitor cells.

    PubMed

    Wu, Ze-Zhi; Kisaalita, William S; Wang, Lina; Zachman, Angela L; Zhao, Yiping; Hasneen, Kowser; Machacek, Dave; Stice, Steven L

    2010-07-01

    We have fabricated a topographical substrate with a packed polystyrene bead array for the development of cell-based assay systems targeting voltage-gated calcium channels (VGCCs). Human neural progenitor cells (H945RB.3) cultured on both flat and topographical substrates were analyzed in terms of morphological spreading, neuronal commitment, resting membrane potential (V(m)) establishment and VGCC function development. We found, by SEM imaging, that arrayed substrates, formed with both sub-micrometer (of 0.51 microm in mean diameter) and micrometer (of 1.98 microm in mean diameter) beads, were capable of promoting the spreading of the progenitor cells as compared with the flat polystyrene surfaces. With the micrometer beads, it was found that arrayed substrates facilitated the neural progenitor cells' maintenance of less negative V(m) values upon differentiation with bFGF starvation, which favored predominant neuronal commitment. Almost all the progenitor cells were responsive to 50 mM K(+) depolarization with an increase in [Ca(2+)](i) either before or upon differentiation, suggesting the expression of functional VGCCs. Compared to the flat polystyrene surfaces, microbead arrayed substrates facilitated the development of higher VGCC responsiveness by the progenitor cells upon differentiation. The enhancement of both VGCC responsiveness and cell spreading by arrays of micrometer beads was most significant on day 14 into differentiation, which was the latest time point of measurement in this study. This study thus rationalized the possibility for future substrate topography engineering to manipulate ion channel function and to meet the challenge of low VGCC responsiveness found in early drug discovery.

  14. Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition.

    PubMed

    Nemati, Shiva; Abbasalizadeh, Saeed; Baharvand, Hossein

    2016-01-01

    Recent advances in neural differentiation technology have paved the way to generate clinical grade neural progenitor populations from human pluripotent stem cells. These cells are an excellent source for the production of neural cell-based therapeutic products to treat incurable central nervous system disorders such as Parkinson's disease and spinal cord injuries. This progress can be complemented by the development of robust bioprocessing technologies for large scale expansion of clinical grade neural progenitors under GMP conditions for promising clinical use and drug discovery applications. Here, we describe a protocol for a robust, scalable expansion of human neural progenitor cells from pluripotent stem cells as 3D aggregates in a stirred suspension bioreactor. The use of this platform has resulted in easily expansion of neural progenitor cells for several passages with a fold increase of up to 4.2 over a period of 5 days compared to a maximum 1.5-2-fold increase in the adherent static culture over a 1 week period. In the bioreactor culture, these cells maintained self-renewal, karyotype stability, and cloning efficiency capabilities. This approach can be also used for human neural progenitor cells derived from other sources such as the human fetal brain.

  15. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders.

    PubMed

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  16. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development

    PubMed Central

    Zhou, Wenwen; He, Qiuping; Zhang, Chunxia; He, Xin; Cui, Zongbin; Liu, Feng; Li, Wei

    2016-01-01

    Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2−/− mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.18108.001 PMID:27719760

  17. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal.

    PubMed

    McNeill, Brian; Mazerolle, Chantal; Bassett, Erin A; Mears, Alan J; Ringuette, Randy; Lagali, Pamela; Picketts, David J; Paes, Kim; Rice, Dennis; Wallace, Valerie A

    2013-03-01

    Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in 'Norrie Disease Protein' (Ndp), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.

  18. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice.

    PubMed

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-03-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.

  19. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice

    PubMed Central

    Boucherie, C; Boutin, C; Jossin, Y; Schakman, O; Goffinet, A M; Ris, L; Gailly, P; Tissir, F

    2018-01-01

    The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex. PMID:29257130

  20. Engraftment of enteric neural progenitor cells into the injured adult brain.

    PubMed

    Belkind-Gerson, Jaime; Hotta, Ryo; Whalen, Michael; Nayyar, Naema; Nagy, Nandor; Cheng, Lily; Zuckerman, Aaron; Goldstein, Allan M; Dietrich, Jorg

    2016-01-25

    A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery.

  1. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells.

    PubMed

    Ortinau, Stefanie; Schmich, Jürgen; Block, Stephan; Liedmann, Andrea; Jonas, Ludwig; Weiss, Dieter G; Helm, Christiane A; Rolfs, Arndt; Frech, Moritz J

    2010-11-11

    3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3

  2. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    PubMed

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  3. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF

    PubMed Central

    Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons. PMID:29590115

  4. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    PubMed

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  5. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures

    PubMed Central

    Davari, Maliheh; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Purpose Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. Methods RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2–7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid–binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Results Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum–treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. Conclusions This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases. PMID:24265548

  6. Requirement for Foxd3 in the maintenance of neural crest progenitors.

    PubMed

    Teng, Lu; Mundell, Nathan A; Frist, Audrey Y; Wang, Qiaohong; Labosky, Patricia A

    2008-05-01

    Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3(-/-) embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue-specific deletion of Foxd3 in the neural crest, we show that Foxd3(flox/-); Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo.

  7. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    SciTech Connect

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less

  8. Effects of acute hypoxia/acidosis on intracellular pH in differentiating neural progenitor cells.

    PubMed

    Nordström, Tommy; Jansson, Linda C; Louhivuori, Lauri M; Akerman, Karl E O

    2012-06-21

    The response of differentiating mouse neural progenitor cells, migrating out from neurospheres, to conditions simulating ischemia (hypoxia and extracellular or intracellular acidosis) was studied. We show here, by using BCECF and single cell imaging to monitor intracellular pH (pH(i)), that two main populations can be distinguished by exposing migrating neural progenitor cells to low extracellular pH or by performing an acidifying ammonium prepulse. The cells dominating at the periphery of the neurosphere culture, which were positive for neuron specific markers MAP-2, calbindin and NeuN had lower initial resting pH(i) and could also easily be further acidified by lowering the extracellular pH. Moreover, in this population, a more profound acidification was seen when the cells were acidified using the ammonium prepulse technique. However, when the cell population was exposed to depolarizing potassium concentrations no alterations in pH(i) took place in this population. In contrast, depolarization caused an increase in pH(i) (by 0.5 pH units) in the cell population closer to the neurosphere body, which region was positive for the radial cell marker (GLAST). This cell population, having higher resting pH(i) (pH 6.9-7.1) also responded to acute hypoxia. During hypoxic treatment the resting pH(i) decreased by 0.1 pH units and recovered rapidly after reoxygenation. Our results show that migrating neural progenitor cells are highly sensitive to extracellular acidosis and that irreversible damage becomes evident at pH 6.2. Moreover, our results show that a response to acidosis clearly distinguishes two individual cell populations probably representing neuronal and radial cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells.

    PubMed

    Okolicsanyi, Rachel K; Oikari, Lotta E; Yu, Chieh; Griffiths, Lyn R; Haupt, Larisa M

    2018-01-01

    Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.

  10. Astrocyte-Secreted Factors Selectively Alter Neural Stem and Progenitor Cell Proliferation in the Fragile X Mouse

    PubMed Central

    Sourial, Mary; Doering, Laurie C.

    2016-01-01

    An increasing body of evidence indicates that astrocytes contribute to the governance and fine tuning of stem and progenitor cell production during brain development. The effect of astrocyte function in cell production in neurodevelopmental disorders is unknown. We used the Neural Colony Forming Cell assay to determine the effect of astrocyte conditioned media (ACM) on the generation of neurospheres originating from either progenitor cells or functional stem cells in the knock out (KO) Fragile X mouse model. ACM from both normal and Fmr1-KO mice generated higher percentages of smaller neurospheres indicative of restricted proliferation of the progenitor cell population in Fmr1-KO brains. Wild type (WT) neurospheres, but not KO neurospheres, showed enhanced responses to ACM from the Fmr1-KO mice. In particular, Fmr1-KO ACM increased the percentage of large neurospheres generated, representative of spheres produced from neural stem cells. We also used 2D DIGE to initiate identification of the astrocyte-secreted proteins with differential expression between Fmr1-KO and WT cortices and hippocampi. The results further support the critical role of astrocytes in governing neural cell production in brain development and point to significant alterations in neural cell proliferation due to astrocyte secreted factors from the Fragile X brain. Highlights: • We studied the proliferation of neural stem and progenitor cells in Fragile X. • We examined the role of astrocyte-secreted factors in neural precursor cell biology. • Astrocyte-secreted factors with differential expression in Fragile X identified. PMID:27242437

  11. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    SciTech Connect

    Costa-Silva, Bruno; Programa de Pos-graduacao em Neurociencias, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88040-900, Florianopolis, S.C.; Coelho da Costa, Meline

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effectmore » was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.« less

  12. Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors.

    PubMed

    Zhang, Yue; Xu, Chi; Zheng, Hui; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine's inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3-28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.

  13. Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination

    PubMed Central

    Soundarapandian, Mangala M.; Selvaraj, Vimal; Lo, U-Ging; Golub, Mari S.; Feldman, Daniel H.; Pleasure, David E.; Deng, Wenbin

    2011-01-01

    Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury. PMID:22355521

  14. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    PubMed

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  15. Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb.

    PubMed

    Maurer, Martin H; Feldmann, Robert E; Bürgers, Heinrich F; Kuschinsky, Wolfgang

    2008-01-16

    Neural progenitor cells can be isolated from various regions of the adult mammalian brain, including the forebrain structures of the subventricular zone and the olfactory bulb. Currently it is unknown whether functional differences in these progenitor cell populations can already be found on the molecular level. Therefore, we compared protein expression profiles between progenitor cells isolated from the subventricular zone and the olfactory bulb using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry. The subventricular zone and the olfactory bulb are connected by the Rostral Migratory Stream (RMS), in which glial fibrillary acidic protein (GFAP)-positive cells guide neuroblasts. Recent literature suggested that these GFAP-positive cells possess neurogenic potential themselves. In the current study, we therefore compared the cultured neurospheres for the fraction of GFAP-positive cells and their morphology of over a prolonged period of time. We found significant differences in the protein expression patterns between subventricular zone and olfactory bulb neural progenitor cells. Of the differentially expressed protein spots, 105 were exclusively expressed in the subventricular zone, 23 showed a lower expression and 51 a higher expression in the olfactory bulb. The proteomic data showed that more proteins are differentially expressed in olfactory bulb progenitors with regard to proteins involved in differentiation and microenvironmental integration, as compared to the subventricular zone progenitors. Compared to 94% of all progenitors of the subventricular zone expressed GFAP, nearly none in the olfactory bulb cultures expressed GFAP. Both GFAP-positive subpopulations differed also in morphology, with the olfactory bulb cells showing more branching. No differences in growth characteristics such as doubling time, and passage lengths could be found over 26 consecutive passages in the two cultures. In this study, we describe

  16. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    PubMed

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  17. Soluble Factors from Human Olfactory Neural Stem/Progenitor Cells Influence the Fate Decisions of Hippocampal Neural Precursor Cells.

    PubMed

    Gómez-Virgilio, Laura; Ramírez-Rodríguez, Gerardo Bernabé; Sánchez-Torres, Carmen; Ortiz-López, Leonardo; Meraz-Ríos, Marco Antonio

    2018-03-01

    Neurogenesis plays a significant role during adulthood, and the observation that neural stem cells reside in the central nervous system and the olfactory epithelium has attracted attention due to their importance in neuronal regeneration. In addition, soluble factors (SFs) release by neural stem cells may modulate the neurogenic process. Thus, in this study, we identified the SFs released by olfactory human neural stem/progenitor cells (hNS/PCs-OE). These cells express Ki67, nestin, and βIII-tubulin, indicating their neural lineage. The hNS/PCs-OE also express PSD95 and tau proteins during proliferation, but increased levels are observed after differentiation. Thus, we evaluated the effects of SFs from hNS/PCs-OE on the viability, proliferation, and differentiation potential of adult murine hippocampal neural precursor cells (AHPCs). SFs from hNS/PCs-OE maintain cells in the precursor and proliferative stages and mainly promote the astrocytic differentiation of AHPCs. These effects involved the activation, as measured by phosphorylation, of several proteins (Erk1/2; Akt/PRAS40/GSK3β and JAK/STAT) involved in key events of the neurogenic process. Moreover, according to the results from the antibody-based microarray approach, among the soluble factors, hNS/PCs-OE produce interleukin-6 (IL-6) and neurotrophin 4 (NT4). However, residual epidermal growth factor (EGF) was also detected. These proteins partially reproduced the effects of SFs from hNS/PCs-OE on AHPCs, and the mechanism underlying these effects is mediated by Src proteins, which have been implicated in EGF-induced transactivation of TrkB receptor. The results of the present study suggest the potential use of SFs from hNS/PCs-OE in controlling the differentiation potential of AHPCs. Thus, the potential clinical relevance of hNS/PCs-OE is worth pursuing.

  18. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates.

    PubMed

    Plouhinec, Jean-Louis; Medina-Ruiz, Sofía; Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B; Harland, Richard M; Monsoro-Burq, Anne H

    2017-10-01

    During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research.

  19. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates

    PubMed Central

    Borday, Caroline; Bernard, Elsa; Vert, Jean-Philippe; Eisen, Michael B.; Harland, Richard M.

    2017-01-01

    During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. PMID:29049289

  20. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    PubMed

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  1. Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo

    PubMed Central

    Moon, Jisook; Schwarz, Sigrid C.; Lee, Hyun‐Seob; Kang, Jun Mo; Lee, Young‐Eun; Kim, Bona; Sung, Mi‐Young; Höglinger, Günter; Wegner, Florian; Kim, Jin Su; Chung, Hyung‐Min; Chang, Sung Woon; Cha, Kwang Yul; Kim, Kwang‐Soo

    2016-01-01

    Abstract We have developed a good manufacturing practice for long‐term cultivation of fetal human midbrain‐derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region‐specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum‐free conditions and standardized operating protocols under clean‐room conditions. Long‐term‐cultivated midbrain‐derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9‐specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain‐derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain‐derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long‐term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high‐content or high‐throughput screening. Stem Cells Translational Medicine 2017;6:576–588 PMID:28191758

  2. EVALUATION OF HUMAN NEURAL PROGENITOR CELLS FOR DEVELOPMENTAL NEUROTOXICITY SCREENING: TIME COURSE OF EFFECTS ON CELL PROLIFERATION AND VIABILITY.

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating human neural progenitor cells (NPCs) as a screen for DNT. ReNcell CX (ReN CX) cells are a...

  3. Excitation-neurogenesis coupling in adult neural stem/progenitor cells.

    PubMed

    Deisseroth, Karl; Singla, Sheela; Toda, Hiroki; Monje, Michelle; Palmer, Theo D; Malenka, Robert C

    2004-05-27

    A wide variety of in vivo manipulations influence neurogenesis in the adult hippocampus. It is not known, however, if adult neural stem/progenitor cells (NPCs) can intrinsically sense excitatory neural activity and thereby implement a direct coupling between excitation and neurogenesis. Moreover, the theoretical significance of activity-dependent neurogenesis in hippocampal-type memory processing networks has not been explored. Here we demonstrate that excitatory stimuli act directly on adult hippocampal NPCs to favor neuron production. The excitation is sensed via Ca(v)1.2/1.3 (L-type) Ca(2+) channels and NMDA receptors on the proliferating precursors. Excitation through this pathway acts to inhibit expression of the glial fate genes Hes1 and Id2 and increase expression of NeuroD, a positive regulator of neuronal differentiation. These activity-sensing properties of the adult NPCs, when applied as an "excitation-neurogenesis coupling rule" within a Hebbian neural network, predict significant advantages for both the temporary storage and the clearance of memories.

  4. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    PubMed Central

    Wagner, Jennifer L.; Shandas, Robin; Bjugstad, Kimberly B.

    2014-01-01

    Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA) and poly(ethylene glycol) (PEG). Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC) and adult-derived (aNPC) neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation. PMID:24141109

  5. Radmis, a Novel Mitotic Spindle Protein that Functions in Cell Division of Neural Progenitors

    PubMed Central

    Yumoto, Takahito; Nakadate, Kazuhiko; Nakamura, Yuki; Sugitani, Yoshinobu; Sugitani-Yoshida, Reiko; Ueda, Shuichi; Sakakibara, Shin-ichi

    2013-01-01

    Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs. PMID:24260314

  6. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex.

    PubMed

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B

    2016-02-15

    The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  7. S‐phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex

    PubMed Central

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko

    2016-01-01

    ABSTRACT The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper‐layer neurons are produced. Based on cumulative 5‐ethynyl‐2′‐deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S‐phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self‐renewal to those of neuron production. Hence, S‐phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. J. Comp. Neurol. 524:456–470, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:25963823

  8. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  9. Aging Neural Progenitor Cells Have Decreased Mitochondrial Content and Lower Oxidative Metabolism*

    PubMed Central

    Stoll, Elizabeth A.; Cheung, Willy; Mikheev, Andrei M.; Sweet, Ian R.; Bielas, Jason H.; Zhang, Jing; Rostomily, Robert C.; Horner, Philip J.

    2011-01-01

    Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology. PMID:21900249

  10. Angiogenesis in the Developing Spinal Cord: Blood Vessel Exclusion from Neural Progenitor Region Is Mediated by VEGF and Its Antagonists

    PubMed Central

    Takahashi, Teruaki; Takase, Yuta; Yoshino, Takashi; Saito, Daisuke; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2015-01-01

    Blood vessels in the central nervous system supply a considerable amount of oxygen via intricate vascular networks. We studied how the initial vasculature of the spinal cord is formed in avian (chicken and quail) embryos. Vascular formation in the spinal cord starts by the ingression of intra-neural vascular plexus (INVP) from the peri-neural vascular plexus (PNVP) that envelops the neural tube. At the ventral region of the PNVP, the INVP grows dorsally in the neural tube, and we observed that these vessels followed the defined path at the interface between the medially positioned and undifferentiated neural progenitor zone and the laterally positioned differentiated zone. When the interface between these two zones was experimentally displaced, INVP faithfully followed a newly formed interface, suggesting that the growth path of the INVP is determined by surrounding neural cells. The progenitor zone expressed mRNA of vascular endothelial growth factor-A whereas its receptor VEGFR2 and FLT-1 (VEGFR1), a decoy for VEGF, were expressed in INVP. By manipulating the neural tube with either VEGF or the soluble form of FLT-1, we found that INVP grew in a VEGF-dependent manner, where VEGF signals appear to be fine-tuned by counteractions with anti-angiogenic activities including FLT-1 and possibly semaphorins. These results suggest that the stereotypic patterning of early INVP is achieved by interactions between these vessels and their surrounding neural cells, where VEGF and its antagonists play important roles. PMID:25585380

  11. Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling

    PubMed Central

    Reinhardt, Peter; Glatza, Michael; Hemmer, Kathrin; Tsytsyura, Yaroslav; Thiel, Cora S.; Höing, Susanne; Moritz, Sören; Parga, Juan A.; Wagner, Lydia; Bruder, Jan M.; Wu, Guangming; Schmid, Benjamin; Röpke, Albrecht; Klingauf, Jürgen; Schwamborn, Jens C.; Gasser, Thomas; Schöler, Hans R.; Sterneckert, Jared

    2013-01-01

    Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development. PMID:23533608

  12. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells.

    PubMed

    Vincent, Per Henrik; Benedikz, Eirikur; Uhlén, Per; Hovatta, Outi; Sundström, Erik

    2017-06-15

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem cells (CD133 + /CD24 lo ), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology, as did the nonexpressing cells. Depletion experiments showed that after the complete removal of the subpopulations of NANOG- and REX1-expressing NPCs, the expression of these genes appeared in other NPCs within a few days. The percentage of NANOG- and REX1-expressing cells returned to that observed before depletion. Our results are best explained by a model in which there is stochastic transient expression of pluripotency-associated genes in proliferating NPCs.

  13. Signals that regulate the oncogenic fate of neural stem cells and progenitors

    PubMed Central

    Swartling, Fredrik J.; Bolin, Sara; Phillips, Joanna J.; Persson, Anders I.

    2013-01-01

    Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors. PMID:23376224

  14. Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors

    PubMed Central

    García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto

    2012-01-01

    During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53–p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293

  15. Human induced pluripotent stem cell-derived glial cells and neural progenitors display divergent responses to Zika and dengue infections.

    PubMed

    Muffat, Julien; Li, Yun; Omer, Attya; Durbin, Ann; Bosch, Irene; Bakiasi, Grisilda; Richards, Edward; Meyer, Aaron; Gehrke, Lee; Jaenisch, Rudolf

    2018-06-18

    Maternal Zika virus (ZIKV) infection during pregnancy is recognized as the cause of an epidemic of microcephaly and other neurological anomalies in human fetuses. It remains unclear how ZIKV accesses the highly vulnerable population of neural progenitors of the fetal central nervous system (CNS), and which cell types of the CNS may be viral reservoirs. In contrast, the related dengue virus (DENV) does not elicit teratogenicity. To model viral interaction with cells of the fetal CNS in vitro, we investigated the tropism of ZIKV and DENV for different induced pluripotent stem cell-derived human cells, with a particular focus on microglia-like cells. We show that ZIKV infected isogenic neural progenitors, astrocytes, and microglia-like cells (pMGLs), but was only cytotoxic to neural progenitors. Infected glial cells propagated ZIKV and maintained ZIKV load over time, leading to viral spread to susceptible cells. DENV triggered stronger immune responses and could be cleared by neural and glial cells more efficiently. pMGLs, when cocultured with neural spheroids, invaded the tissue and, when infected with ZIKV, initiated neural infection. Since microglia derive from primitive macrophages originating in proximity to the maternal vasculature, they may act as a viral reservoir for ZIKV and establish infection of the fetal brain. Infection of immature neural stem cells by invading microglia may occur in the early stages of pregnancy, before angiogenesis in the brain rudiments. Our data are also consistent with ZIKV and DENV affecting the integrity of the blood-brain barrier, thus allowing infection of the brain later in life.

  16. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    PubMed

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  18. Mir-17-3p Controls Spinal Neural Progenitor Patterning by Regulating Olig2/Irx3 Cross-repressive Loop

    PubMed Central

    Chen, Jun-An; Huang, Yuan-Ping; Mazzoni, Esteban O.; Tan, G. Christopher; Zavadil, Jiri; Wichterle, Hynek

    2011-01-01

    SUMMARY Neural patterning relies on transcriptional cross-repressive interactions that ensure unequivocal assignment of neural progenitor identity to proliferating cells. Progenitors of spinal motor neurons (pMN) and V2 interneurons (p2) are specified by a pair of cross-repressive transcription factors Olig2 and Irx3. Lineage tracing revealed that many p2 progenitors transiently express the pMN marker Olig2 during spinal cord development. Here we demonstrate that the repression of Olig2 in p2 domain is controlled by mir-17-3p microRNA-mediated silencing of Olig2 mRNA. Mice lacking all microRNAs or just the mir-17~92 cluster manifest a dorsal shift in pMN/p2 boundary and impairment in the production of V2 interneurons. Our findings suggest that microRNA-mediated repression of Olig2 mRNA plays a critical role during the patterning of ventral spinal progenitor domains by shifting the balance of cross-repressive interactions between Olig2 and Irx3 transcription factors. PMID:21338882

  19. Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural ReNcell VM Progenitor Cells In Vitro.

    PubMed

    Jaeger, Alexandra; Fröhlich, Michael; Klum, Susanne; Lantow, Margareta; Viergutz, Torsten; Weiss, Dieter G; Kriehuber, Ralf

    2015-11-01

    Apoptosis is an essential physiological process accompanying the development of the central nervous system and human neurogenesis. However, the time scale and the underlying molecular mechanisms are yet poorly understood. Due to this fact, we investigated the functionality and general inducibility of apoptosis in the human neural ReNcell VM progenitor cell line during differentiation and also after exposure to staurosporine (STS) and ultraviolet B (UVB) irradiation. Transmission light microscopy, flow cytometry, and Western-/Immunoblot analysis were performed to compare proliferating and differentiating, in addition to STS- and UVB-treated cells. In particular, from 24 to 72 h post-initiation of differentiation, G0/G1 cell cycle arrest, increased loss of apoptotic cells, activation of pro-apoptotic BAX, Caspase-3, and cleavage of its substrate PARP were observed during cell differentiation and, to a higher extent, after treatment with STS and UVB. We conclude that redundant or defective cells are eliminated by apoptosis, while otherwise fully differentiated cells were less responsive to apoptosis induction by STS than proliferating cells, likely as a result of reduced APAF-1 expression, and increased levels of BCL-2. These data provide the evidence that apoptotic mechanisms in the neural ReNcell VM progenitor cell line are not only functional, but also inducible by external stimuli like growth factor withdrawal or treatment with STS and UVB, which marks this cell line as a suitable model to investigate apoptosis signaling pathways in respect to the differentiation processes of human neural progenitor cells in vitro.

  20. The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors

    PubMed Central

    Huang, Liang; Nho, Kwangsik; Deng, Min; Chen, Qiang; Weinberger, Daniel R.; Vasquez, Alejandro Arias; Rijpkema, Mark; Mattay, Venkata S.; Saykin, Andrew J.; Shen, Li; Fernández, Guillén; Franke, Barbara; Chen, Jing-chun; Chen, Xiang-ning; Wang, Jin-kai; Xiao, Xiao; Qi, Xue-bin; Xiang, Kun; Peng, Ying-Mei; Cao, Xiang-yu; Li, Yi; Shi, Xiao-dong; Gan, Lin; Su, Bing

    2012-01-01

    One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development. PMID:23226269

  1. Co-evolution of breast-to-brain metastasis and neural progenitor cells.

    PubMed

    Neman, Josh; Choy, Cecilia; Kowolik, Claudia M; Anderson, Athena; Duenas, Vincent J; Waliany, Sarah; Chen, Bihong T; Chen, Mike Y; Jandial, Rahul

    2013-08-01

    Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain metastatic) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest

  2. Co-evolution of breast-to-brain metastasis and neural progenitor cells

    PubMed Central

    Neman, Josh; Choy, Cecilia; Kowolik, Claudia M.; Anderson, Athena; Duenas, Vincent J.; Waliany, Sarah; Chen, Bihong T.; Chen, Mike Y.

    2013-01-01

    Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain meta-static) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest

  3. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia

    PubMed Central

    Ferland, Russell J.; Batiz, Luis Federico; Neal, Jason; Lian, Gewei; Bundock, Elizabeth; Lu, Jie; Hsiao, Yi-Chun; Diamond, Rachel; Mei, Davide; Banham, Alison H.; Brown, Philip J.; Vanderburg, Charles R.; Joseph, Jeffrey; Hecht, Jonathan L.; Folkerth, Rebecca; Guerrini, Renzo; Walsh, Christopher A.; Rodriguez, Esteban M.; Sheen, Volney L.

    2009-01-01

    Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in ‘Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315–1325, 1998; Sheen et al. in ‘Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69–76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in ‘MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789–801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (α-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventicular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell

  4. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF

    PubMed Central

    Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.

    2009-01-01

    The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202

  5. Maintenance of Neural Progenitor Cell Stemness in 3D Hydrogels Requires Matrix Remodeling

    PubMed Central

    Madl, Christopher M.; LeSavage, Bauer L.; Dewi, Ruby E.; Dinh, Cong B.; Stowers, Ryan S.; Khariton, Margarita; Lampe, Kyle J.; Nguyen, Duong; Chaudhuri, Ovijit; Enejder, Annika; Heilshorn, Sarah C.

    2017-01-01

    Neural progenitor cell (NPC) culture within 3D hydrogels is an attractive strategy for expanding a therapeutically-relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically-relevant range of stiffness from ~0.5–50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodeling to facilitate cadherin-mediated cell-cell contact and promote β-catenin signaling. In two additional hydrogel systems, permitting NPC-mediated matrix remodeling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodeling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D. PMID:29115291

  6. 3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2013-01-01

    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.

  7. Oxytocin alters cell fate selection of rat neural progenitor cells in vitro

    PubMed Central

    Kannappan, Ramaswamy; Xu, Zhiqiang; Martino, Audrey; Friese, Matthew B.; Boyd, Justin D.; Crosby, Gregory; Culley, Deborah J.

    2018-01-01

    Synthetic oxytocin (sOT) is widely used during labor, yet little is known about its effects on fetal brain development despite evidence that it reaches the fetal circulation. Here, we tested the hypothesis that sOT would affect early neurodevelopment by investigating its effects on neural progenitor cells (NPC) from embryonic day 14 rat pups. NPCs expressed the oxytocin receptor (OXTR), which was downregulated by 45% upon prolonged treatment with sOT. Next, we examined the effects of sOT on NPC death, apoptosis, proliferation, and differentiation using antibodies to NeuN (neurons), Olig2 (oligodendrocytes), and GFAP (astrocytes). Treated NPCs were analysed with unbiased high-throughput immunocytochemistry. Neither 6 nor 24 h exposure to 100 pM or 100 nM sOT had an effect on viability as assessed by PI or CC-3 immunocytochemistry. Similarly, sOT had negligible effect on NPC proliferation, except that the overall rate of NPC proliferation was higher in the 24 h compared to the 6 h group regardless of sOT exposure. The most significant finding was that sOT exposure caused NPCs to select a predominantly neuronal lineage, along with a concomitant decrease in glial cells. Collectively, our data suggest that perinatal exposure to sOT can have neurodevelopmental consequences for the fetus, and support the need for in vivo anatomical and behavioral studies in offspring exposed to sOT in utero. PMID:29346405

  8. Oxytocin alters cell fate selection of rat neural progenitor cells in vitro.

    PubMed

    Palanisamy, Arvind; Kannappan, Ramaswamy; Xu, Zhiqiang; Martino, Audrey; Friese, Matthew B; Boyd, Justin D; Crosby, Gregory; Culley, Deborah J

    2018-01-01

    Synthetic oxytocin (sOT) is widely used during labor, yet little is known about its effects on fetal brain development despite evidence that it reaches the fetal circulation. Here, we tested the hypothesis that sOT would affect early neurodevelopment by investigating its effects on neural progenitor cells (NPC) from embryonic day 14 rat pups. NPCs expressed the oxytocin receptor (OXTR), which was downregulated by 45% upon prolonged treatment with sOT. Next, we examined the effects of sOT on NPC death, apoptosis, proliferation, and differentiation using antibodies to NeuN (neurons), Olig2 (oligodendrocytes), and GFAP (astrocytes). Treated NPCs were analysed with unbiased high-throughput immunocytochemistry. Neither 6 nor 24 h exposure to 100 pM or 100 nM sOT had an effect on viability as assessed by PI or CC-3 immunocytochemistry. Similarly, sOT had negligible effect on NPC proliferation, except that the overall rate of NPC proliferation was higher in the 24 h compared to the 6 h group regardless of sOT exposure. The most significant finding was that sOT exposure caused NPCs to select a predominantly neuronal lineage, along with a concomitant decrease in glial cells. Collectively, our data suggest that perinatal exposure to sOT can have neurodevelopmental consequences for the fetus, and support the need for in vivo anatomical and behavioral studies in offspring exposed to sOT in utero.

  9. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling

    NASA Astrophysics Data System (ADS)

    Madl, Christopher M.; Lesavage, Bauer L.; Dewi, Ruby E.; Dinh, Cong B.; Stowers, Ryan S.; Khariton, Margarita; Lampe, Kyle J.; Nguyen, Duong; Chaudhuri, Ovijit; Enejder, Annika; Heilshorn, Sarah C.

    2017-12-01

    Neural progenitor cell (NPC) culture within three-dimensional (3D) hydrogels is an attractive strategy for expanding a therapeutically relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically relevant range of stiffness from ~0.5 to 50 kPa, stemness maintenance did not correlate with initial hydrogel stiffness. In contrast, hydrogel degradation was both correlated with, and necessary for, maintenance of NPC stemness. This requirement for degradation was independent of cytoskeletal tension generation and presentation of engineered adhesive ligands, instead relying on matrix remodelling to facilitate cadherin-mediated cell-cell contact and promote β-catenin signalling. In two additional hydrogel systems, permitting NPC-mediated matrix remodelling proved to be a generalizable strategy for stemness maintenance in 3D. Our findings have identified matrix remodelling, in the absence of cytoskeletal tension generation, as a previously unknown strategy to maintain stemness in 3D.

  10. Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development

    PubMed Central

    Hou, Yan; Ouyang, Xin; Wan, Ruiqian; Cheng, Heping; Mattson, Mark P.; Cheng, Aiwu

    2012-01-01

    Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex. PMID:22949407

  11. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors

    PubMed Central

    Xie, Yonggang; Li, Xiaosu; Zhang, Xian; Mei, Shaolin; Li, Hongyu; Urso, Andreacarola; Zhu, Sijun

    2014-01-01

    Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. In this study, we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that the loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit of Drosophila INPs. DOI: http://dx.doi.org/10.7554/eLife.03596.001 PMID:25285448

  12. A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation

    PubMed Central

    Mao, Jianxin; Huang, Shichao; Liu, Shangfeng; Feng, Xiao-Lin; Yu, Miao; Liu, Junjun; Sun, Yi Eve; Chen, Guoliang; Yu, Yang; Zhao, Jian; Pei, Gang

    2015-01-01

    Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer’s disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study, we found that the extract of Rhizoma Acori tatarinowii (AT) and its active constituents, asarones, promote NPC proliferation. Oral administration of AT enhanced NPC proliferation and neurogenesis in the hippocampi of adult and aged mice as well as that of transgenic AD model mice. AT and its fractions also enhanced the proliferation of NPCs cultured in vitro. Further analysis identified α-asarone and β-asarone as the two active constituents of AT in promoting neurogenesis. Our mechanistic study revealed that AT and asarones activated extracellular signal-regulated kinase (ERK) but not Akt, two critical kinase cascades for neurogenesis. Consistently, the inhibition of ERK activities effectively blocked the enhancement of NPC proliferation by AT or asarones. Our findings suggest that AT and asarones, which can be orally administrated, could serve as preventive and regenerative therapeutic agents to promote neurogenesis against age-related neurodegeneration and neurodegenerative disorders. PMID:26010330

  13. A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation.

    PubMed

    Mao, Jianxin; Huang, Shichao; Liu, Shangfeng; Feng, Xiao-Lin; Yu, Miao; Liu, Junjun; Sun, Yi Eve; Chen, Guoliang; Yu, Yang; Zhao, Jian; Pei, Gang

    2015-10-01

    Aberrant neural progenitor cell (NPC) proliferation and self-renewal have been linked to age-related neurodegeneration and neurodegenerative disorders including Alzheimer's disease (AD). Rhizoma Acori tatarinowii is a traditional Chinese herbal medicine against cognitive decline. In this study, we found that the extract of Rhizoma Acori tatarinowii (AT) and its active constituents, asarones, promote NPC proliferation. Oral administration of AT enhanced NPC proliferation and neurogenesis in the hippocampi of adult and aged mice as well as that of transgenic AD model mice. AT and its fractions also enhanced the proliferation of NPCs cultured in vitro. Further analysis identified α-asarone and β-asarone as the two active constituents of AT in promoting neurogenesis. Our mechanistic study revealed that AT and asarones activated extracellular signal-regulated kinase (ERK) but not Akt, two critical kinase cascades for neurogenesis. Consistently, the inhibition of ERK activities effectively blocked the enhancement of NPC proliferation by AT or asarones. Our findings suggest that AT and asarones, which can be orally administrated, could serve as preventive and regenerative therapeutic agents to promote neurogenesis against age-related neurodegeneration and neurodegenerative disorders. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. CCL11 promotes migration and proliferation of mouse neural progenitor cells.

    PubMed

    Wang, Feifei; Baba, Nobuyasu; Shen, Yuan; Yamashita, Tatsuyuki; Tsuru, Emi; Tsuda, Masayuki; Maeda, Nagamasa; Sagara, Yusuke

    2017-02-07

    Neonatal hypoxia-ischemia induces massive brain damage during the perinatal period, resulting in long-term consequences to central nervous system structural and functional maturation. Although neural progenitor cells (NPCs) migrate through the parenchyma and home in to injury sites in the rodent brain, the molecular mechanisms are unknown. We examined the role of chemokines in mediating NPC migration after neonatal hypoxic-ischemic brain injury. Nine-day-old mice were exposed to a 120-minute hypoxia following unilateral carotid occlusion. Chemokine levels were quantified in mouse brain extract. Migration and proliferation assays were performed using embryonic and infant mouse NPCs. The neonatal hypoxic-ischemic brain injury resulted in an ipsilateral lesion, which was extended to the cortical and striatal areas. NPCs migrated toward an injured area, where a marked increase of CC chemokines was detected. In vitro studies showed that incubation of NPCs with recombinant mouse CCL11 promoted migration and proliferation. These effects were partly inhibited by a CCR3 antagonist, SB297006. Our data implicate an important effect of CCL11 for mouse NPCs. The effective activation of NPCs may offer a promising strategy for neuroregeneration in neonatal hypoxic-ischemic brain injury.

  15. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy.

    PubMed

    Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N

    2007-07-30

    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.

  16. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation.

    PubMed

    Seidlits, Stephanie K; Khaing, Zin Z; Petersen, Rebecca R; Nickels, Jonathan D; Vanscoy, Jennifer E; Shear, Jason B; Schmidt, Christine E

    2010-05-01

    We report the ability to direct the differentiation pathway of neural progenitor cells (NPCs) within hydrogels having tunable mechanical properties. By modifying the polymeric sugar hyaluronic acid (HA), a major extracellular matrix component in the fetal mammalian brain, with varying numbers of photocrosslinkable methacrylate groups, hydrogels could be prepared with bulk compressive moduli spanning the threefold range measured for neonatal brain and adult spinal cord. Ventral midbrain-derived NPCs were photoencapsulated into HA hydrogels and remained viable after encapsulation. After three weeks, the majority of NPCs cultured in hydrogels with mechanical properties comparable to those of neonatal brain had differentiated into neurons (ss-III tubulin-positive), many of which had extended long, branched processes, indicative of a relatively mature phenotype. In contrast, NPCs within stiffer hydrogels, with mechanical properties comparable to those of adult brain, had differentiated into mostly astrocytes (glial fibrillary acidic protein (GFAP)-positive). Primary spinal astrocytes cultured in the hydrogel variants for two weeks acquired a spread and elongated morphology only in the stiffest hydrogels evaluated, with mechanical properties similar to adult tissue. Results demonstrate that the mechanical properties of these scaffolds can assert a defining influence on the differentiation of ventral midbrain-derived NPCs, which have strong clinical relevance because of their ability to mature into dopaminergic neurons of the substantia nigra, cells that idiopathically degenerate in individuals suffering from Parkinson's disease. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo

    PubMed Central

    Hjelm, BE; Grunseich, C; Gowing, G; Avalos, P; Tian, J; Shelley, BC; Mooney, M; Narwani, K; Shi, Y; Svendsen, CN; Wolfe, JH; Fischbeck, KH; Pierson, TM

    2016-01-01

    Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone’s ability to cross the blood–brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders. PMID:26863047

  18. Simple SPION Incubation as an Efficient Intracellular Labeling Method for Tracking Neural Progenitor Cells Using MRI

    PubMed Central

    D. M., Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen

    2013-01-01

    Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs. PMID:23468856

  19. Gap junction-mediated calcium waves define communication networks among murine postnatal neural progenitor cells.

    PubMed

    Lacar, Benjamin; Young, Stephanie Z; Platel, Jean-Claude; Bordey, Angélique

    2011-12-01

    In the postnatal neurogenic niche, two populations of astrocyte-like cells (B cells) persist, one acting as neural progenitor cells (NPCs, B1 cells) and one forming a structural boundary between the neurogenic niche and the striatum (B2 cells, niche astrocytes). Despite being viewed as two distinct entities, we found that B1 and B2 cells express the gap junction protein connexin 43 and display functional coupling involving 50-60 cells. Using neonatal electroporation to label slowly cycling radial glia-derived B1 cells, which send a basal process onto blood vessels, we further confirmed dye coupling between NPCs. To assess the functionality of the coupling, we used calcium imaging in a preparation preserving the three-dimensional architecture of the subventricular zone. Intercellular calcium waves were observed among B cells. These waves travelled bidirectionally between B1 and B2 cells and propagated on blood vessels. Inter-B-cell calcium waves were absent in the presence of a gap junction blocker but persisted with purinergic receptor blockers. These findings show that privileged microdomains of communication networks exist among NPCs and niche astrocytes. Such functional coupling between these two cell types suggests that niche astrocytes do not merely have a structural role, but may play an active role in shaping the behavior of NPCs. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Fate of Neural Progenitor Cells Transplanted into Jaundiced and Nonjaundiced Rat Brains

    PubMed Central

    Yang, Fu-Chen; Riordan, Sean M.; Winter, Michelle; Gan, Li; Smith, Peter G.; Vivian, Jay L.; Shapiro, Steven M.; Stanford, John A.

    2017-01-01

    High levels of bilirubin in infants can cause kernicterus, which includes basal ganglia damage and dystonia. Stem cell transplantation may be an effective treatment for this disease. In this study, we transplanted human neural progenitor cells differentiated toward propriospinal interneurons into the striatum of 20-day-old spontaneously jaundiced (jj) Gunn rats and nonjaundiced (Nj) littermates. Using immunohistochemical methods, we found that grafted cells survived and grew fibers in jj and Nj brains 3 weeks after transplantation. Grafted cells had a higher survival rate in jj than in Nj brains, suggesting that slightly elevated bilirubin may protect graft survival due to its antioxidative and immunosuppressive effects. Despite their survival, only a small portion of grafted neurons expressed GAD-6 or ChAT, which mark GABAergic and cholinergic neurons, respectively, and are the cells that we are attempting to replace in kernicterus. Thus, NPCs containing large populations of GABAergic and cholinergic neurons should be used for further study in this field. PMID:28155818

  1. Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro.

    PubMed

    Barenys, Marta; Gassmann, Kathrin; Baksmeier, Christine; Heinz, Sabrina; Reverte, Ingrid; Schmuck, Martin; Temme, Thomas; Bendt, Farina; Zschauer, Tim-Christian; Rockel, Thomas Dino; Unfried, Klaus; Wätjen, Wim; Sundaram, Sivaraj Mohana; Heuer, Heike; Colomina, Maria Teresa; Fritsche, Ellen

    2017-02-01

    Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.

  2. p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex.

    PubMed

    Belzil, Camille; Asada, Naoyuki; Ishiguro, Kei-Ichiro; Nakaya, Takeo; Parsons, Kari; Pendolino, Valentina; Neumayer, Gernot; Mapelli, Marina; Nakatani, Yoshihiro; Sanada, Kamon; Nguyen, Minh Dang

    2014-05-08

    Apical neural progenitors (aNPs) drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600) in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis. We find that p600 interacts directly with the neurogenic protein Ndel1 and that aNPs knockout for p600, depleted of p600 by shRNA or expressing a Ndel1-binding p600 fragment all display randomized spindle orientation. Depletion of p600 by shRNA or expression of the Ndel1-binding p600 fragment also results in a decreased number of Pax6-positive aNPs and an increased number of Tbr2-positive basal progenitors destined to become neurons. These Pax6-positive aNPs display a tilted mitotic spindle. In mice wherein p600 is ablated in progenitors, the production of neurons is significantly impaired and this defect is associated with microcephaly. We propose a working model in which p600 controls spindle orientation in aNPs and discuss its implication for neurogenesis. © 2014. Published by The Company of Biologists Ltd.

  3. Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System

    PubMed Central

    Hasegawa, Kouichi; Menheniott, Trevelyan; Rollo, Ben; Zhang, Dongcheng; Hough, Shelley; Alshawaf, Abdullah; Febbraro, Fabia; Ighaniyan, Samiramis; Leung, Jessie; Elliott, David A.; Newgreen, Donald F.; Pera, Martin F.

    2015-01-01

    Abstract The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named “caudal neural progenitors” (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube. Stem Cells 2015;33:1759–1770 PMID:25753817

  4. Brain injury expands the numbers of neural stem cells and progenitors in the SVZ by enhancing their responsiveness to EGF

    PubMed Central

    Alagappan, Dhivyaa; Lazzarino, Deborah A; Felling, Ryan J; Balan, Murugabaskar; Kotenko, Sergei V; Levison, Steven W

    2009-01-01

    There is an increase in the numbers of neural precursors in the SVZ (subventricular zone) after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor) receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor)-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries. PMID:19570028

  5. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination

    PubMed Central

    2011-01-01

    Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. PMID:21708025

  6. The effect of cannabichromene on adult neural stem/progenitor cells.

    PubMed

    Shinjyo, Noriko; Di Marzo, Vincenzo

    2013-11-01

    Apart from the psychotropic compound Δ(9)-tetrahydrocannabinol (THC), evidence suggests that other non-psychotropic phytocannabinoids are also of potential clinical use. This study aimed at elucidating the effect of major non-THC phytocannabinoids on the fate of adult neural stem progenitor cells (NSPCs), which are an essential component of brain function in health as well as in pathology. We tested three compounds: cannabidiol, cannabigerol, and cannabichromene (CBC), and found that CBC has a positive effect on the viability of mouse NSPCs during differentiation in vitro. The expression of NSPC and astrocyte markers nestin and Glial fibrillary acidic protein (GFAP), respectively, was up- and down-regulated, respectively. CBC stimulated ERK1/2 phosphorylation; however, this effect had a slower onset in comparison to typical MAPK stimulation. A MEK inhibitor, U0126, antagonized the up-regulation of nestin but not the down-regulation of GFAP. Based on a previous report, we studied the potential involvement of the adenosine A1 receptor in the effect of CBC on these cells and found that the selective adenosine A1 receptor antagonist, DPCPX, counteracted both ERK1/2 phosphorylation and up-regulation of nestin by CBC, indicating that also adenosine is involved in these effects of CBC, but possibly not in CBC inhibitory effect on GFAP expression. Next, we measured ATP levels as an equilibrium marker of adenosine and found higher ATP levels during differentiation of NSPCs in the presence of CBC. Taken together, our results suggest that CBC raises the viability of NSPCs while inhibiting their differentiation into astroglia, possibly through up-regulation of ATP and adenosine signalling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Monoamine Oxidases Regulate Telencephalic Neural Progenitors in Late Embryonic and Early Postnatal Development

    PubMed Central

    Cheng, Aiwu; Scott, Anna L.; Ladenheim, Bruce; Chen, Kevin; Ouyang, Xin; Lathia, Justin D.; Mughal, Mohamed; Cadet, Jean Lud; Mattson, Mark P.; Shih, Jean C.

    2010-01-01

    Monoamine neurotransmitters play major roles in regulating a range of brain functions in adults and increasing evidence suggests roles for monoamines in brain development. Here we show that mice lacking the monoamine metabolic enzymes MAO A and MAO B (MAO AB-deficient mice) exhibit diminished proliferation of neural stem cells (NSC) in the developing telencephalon beginning in late gestation [embryonic day (E) 17.5], a deficit that persists in neonatal and adult mice. These mice showed significantly increased monoamine levels and anxiety-like behaviors as adults. Assessments of markers of intermediate progenitor cells (IPC) and mitosis showed that NSC in the subventricular zone (SVZ), but not in the ventricular zone, are reduced in MAO AB-deficient mice. A developmental time course of monoamines in frontal cortical tissues revealed increased serotonin levels as early as E14.5, and a further large increase was found between E17.5 and postnatal day 2. Administration of an inhibitor of serotonin synthesis (parachlorophenylalanine) between E14.5 and E19.5 restored the IPC numbers and SVZ thickness, suggesting the role of serotonin in the suppression of IPC proliferation. Studies of neurosphere cultures prepared from the telencephalon at different embryonic and postnatal ages showed that serotonin stimulates proliferation in wild-type, but not in MAO AB-deficient, NSC. Together, these results suggest that a MAO-dependent long-lasting alteration in the proliferation capacity of NSC occurs late in embryonic development and is mediated by serotonin. Our findings reveal novel roles for MAOs and serotonin in the regulation of IPC proliferation in the developing brain. PMID:20702706

  8. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.

    PubMed

    Das, Melanie M; Avalos, Pablo; Suezaki, Patrick; Godoy, Marlesa; Garcia, Leslie; Chang, Christine D; Vit, Jean-Philippe; Shelley, Brandon; Gowing, Genevieve; Svendsen, Clive N

    2016-06-01

    Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage

    PubMed Central

    Redmond, Kristin J.; Achanta, Pragathi; Grossman, Stuart A.; Armour, Michael; Reyes, Juvenal; Kleinberg, Lawrence; Tryggestad, Erik; Quinones-Hinojosa, Alfredo

    2015-01-01

    Radiation therapy (RT) for brain tumors is associated with neurocognitive toxicity which may be a result of damage to neural progenitor cells (NPCs). We present a novel technique to limit the radiation dose to NPC without compromising tumor coverage. A study was performed in mice to examine the rationale and another was conducted in humans to determine its feasibility. C57BL/6 mice received localized radiation using a dedicated animal irradiation system with on-board CT imaging with either: (1) Radiation which spared NPC containing regions; (2) Radiation which did not spare these niches; or (3) Sham irradiation. Mice were sacrificed 24 h later and the brains were processed for immunohistochemical Ki-67 staining. For the human component of the study, 33 patients with primary brain tumors were evaluated. Two intensity modulated radiotherapy (IMRT) plans were retrospectively compared: a standard clinical plan and a plan which spares NPC regions while maintaining the same dose coverage of the tumor. The change in radiation dose to the contralateral NPC-containing regions was recorded. In the mouse model, non-NPC-sparing radiation treatment resulted in a significant decrease in the number of Ki67+ cells in dentate gyrus (DG) (P = 0.008) and subventricular zone (SVZ) (P = 0.005) compared to NPC-sparing radiation treatment. In NPC-sparing clinical plans, NPC regions received significantly lower radiation dose with no clinically relevant changes in tumor coverage. This novel radiation technique should significantly reduce radiation doses to NPC containing regions of the brain which may reduce neurocognitive deficits following RT for brain tumors. PMID:21327710

  10. Resveratrol Inhibits the Proliferation of Neural Progenitor Cells and Hippocampal Neurogenesis*

    PubMed Central

    Park, Hee Ra; Kong, Kyoung Hye; Yu, Byung Pal; Mattson, Mark P.; Lee, Jaewon

    2012-01-01

    Resveratrol is a phytoalexin and natural phenol that is present at relatively high concentrations in peanuts and red grapes and wine. Based upon studies of yeast and invertebrate models, it has been proposed that ingestion of resveratrol may also have anti-aging actions in mammals including humans. It has been suggested that resveratrol exerts its beneficial effects on health by activating the same cellular signaling pathways that are activated by dietary energy restriction (DR). Some studies have reported therapeutic actions of resveratrol in animal models of metabolic and neurodegenerative disorders. However, the effects of resveratrol on cell, tissue and organ function in healthy subjects are largely unknown. In the present study, we evaluated the potential effects of resveratrol on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of healthy young adult mice. Resveratrol reduced the proliferation of cultured mouse multi-potent NPCs, and activated AMP-activated protein kinase (AMPK), in a concentration-dependent manner. Administration of resveratrol to mice (1–10 mg/kg) resulted in activation of AMPK, and reduced the proliferation and survival of NPCs in the dentate gyrus of the hippocampus. Resveratrol down-regulated the levels of the phosphorylated form of cyclic AMP response element-binding protein (pCREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. Finally, resveratrol-treated mice exhibited deficits in hippocampus-dependent spatial learning and memory. Our findings suggest that resveratrol, unlike DR, adversely affects hippocampal neurogenesis and cognitive function by a mechanism involving activation of AMPK and suppression of CREB and BDNF signaling. PMID:23105098

  11. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors

    PubMed Central

    Sugathan, Aarathi; Biagioli, Marta; Golzio, Christelle; Erdin, Serkan; Blumenthal, Ian; Manavalan, Poornima; Ragavendran, Ashok; Brand, Harrison; Lucente, Diane; Miles, Judith; Sheridan, Steven D.; Stortchevoi, Alexei; Kellis, Manolis; Haggarty, Stephen J.; Katsanis, Nicholas; Gusella, James F.; Talkowski, Michael E.

    2014-01-01

    Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10−8) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10−10). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. PMID:25294932

  12. Neural Progenitor Cells Rptor Ablation Impairs Development but Benefits to Seizure-Induced Behavioral Abnormalities.

    PubMed

    Chen, Ling-Lin; Wu, Mei-Ling; Zhu, Feng; Kai, Jie-Jing; Dong, Jing-Yin; Wu, Xi-Mei; Zeng, Ling-Hui

    2016-12-01

    Previous study suggests that mTOR signaling pathway may play an important role in epileptogenesis. The present work was designed to explore the contribution of raptor protein to the development of epilepsy and comorbidities. Mice with conditional knockout of raptor protein were generated by cross-bred Rptor flox/flox mice with nestin-CRE mice. The expression of raptor protein was analyzed by Western blotting in brain tissue samples. Neuronal death and mossy fiber sprouting were detected by FJB staining and Timm staining, respectively. Spontaneous seizures were recorded by EEG-video system. Morris water maze, open field test, and excitability test were used to study the behaviors of Rptor CKO mice. As the consequence of deleting Rptor, downstream proteins of raptor in mTORC1 signaling were partly blocked. Rptor CKO mice exhibited decrease in body and brain weight under 7 weeks old and accordingly, cortical layer thickness. After kainic acid (KA)-induced status epilepticus, overactivation of mTORC1 signaling was markedly reversed in Rptor CKO mice. Although low frequency of spontaneous seizure and seldom neuronal cell death were observed in both Rptor CKO and control littermates, KA seizure-induced mossy fiber spouting were attenuated in Rptor CKO mice. Additionally, cognitive-deficit and anxiety-like behavior after KA-induced seizures were partly reversed in Rptor CKO mice. Loss of the Rptor gene in mice neural progenitor cells affects normal development in young age and may contribute to alleviate KA seizure-induced behavioral abnormalities, suggesting that raptor protein plays an important role in seizure comorbidities. © 2016 John Wiley & Sons Ltd.

  13. Effects of Polyamidoamine Dendrimers on a 3-D Neurosphere System Using Human Neural Progenitor Cells.

    PubMed

    Zeng, Yang; Kurokawa, Yoshika; Zeng, Qin; Win-Shwe, Tin-Tin; Nansai, Hiroko; Zhang, Zhenya; Sone, Hideko

    2016-07-01

    The practical application of engineered nanomaterials or nanoparticles like polyamidoamine (PAMAM) dendrimers has been promoted in medical devices or industrial uses. The safety of PAMAM dendrimers needs to be assessed when used as a drug carrier to treat brain disease. However, the effects of PAMAM on the human nervous system remain unknown. In this study, human neural progenitor cells cultured as a 3D neurosphere model were used to study the effects of PAMAM dendrimers on the nervous system. Neurospheres were exposed to different G4-PAMAM dendrimers for 72 h at concentrations of 0.3, 1, 3, and 10 μg/ml. The biodistribution was investigated using fluorescence-labeled PAMAM dendrimers, and gene expression was evaluated using microarray analysis followed by pathway and network analysis. Results showed that PAMAM dendrimer nanoparticles can penetrate into neurospheres via superficial cells on them. PAMAM-NH2 but not PAMAM-SC can inhibit neurosphere growth. A reduced number of MAP2-positive cells in flare regions were inhibited after 10 days of differentiation, indicating an inhibitory effect of PAMAM-NH2 on cell proliferation and neuronal migration. A microarray assay showed 32 dendrimer toxicity-related genes, with network analysis showing 3 independent networks of the selected gene targets. Inducible immediate early gene early growth response gene 1 (Egr1), insulin-like growth factor-binding protein 3 (IGFBP3), tissue factor pathway inhibitor (TFPI2), and adrenomedullin (ADM) were the key genes in each network, and the expression of these genes was significantly down regulated. These findings suggest that exposure of neurospheres to PAMAM-NH2 dendrimers affects cell proliferation and migration through pathways regulated by Egr1, IGFBP3, TFPI2, and ADM. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Ectopic Expression of Nolz-1 in Neural Progenitors Promotes Cell Cycle Exit/Premature Neuronal Differentiation Accompanying with Abnormal Apoptosis in the Developing Mouse Telencephalon

    PubMed Central

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229

  15. Ectopic expression of nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation accompanying with abnormal apoptosis in the developing mouse telencephalon.

    PubMed

    Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin

    2013-01-01

    Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.

  16. The Effects of Low-Dose Bisphenol A and Bisphenol F on Neural Differentiation of a Fetal Brain-Derived Neural Progenitor Cell Line.

    PubMed

    Fujiwara, Yuki; Miyazaki, Wataru; Koibuchi, Noriyuki; Katoh, Takahiko

    2018-01-01

    Environmental chemicals are known to disrupt the endocrine system in humans and to have adverse effects on several organs including the developing brain. Recent studies indicate that exposure to environmental chemicals during gestation can interfere with neuronal differentiation, subsequently affecting normal brain development in newborns. Xenoestrogen, bisphenol A (BPA), which is widely used in plastic products, is one such chemical. Adverse effects of exposure to BPA during pre- and postnatal periods include the disruption of brain function. However, the effect of BPA on neural differentiation remains unclear. In this study, we explored the effects of BPA or bisphenol F (BPF), an alternative compound for BPA, on neural differentiation using ReNcell, a human fetus-derived neural progenitor cell line. Maintenance in growth factor-free medium initiated the differentiation of ReNcell to neuronal cells including neurons, astrocytes, and oligodendrocytes. We exposed the cells to BPA or BPF for 3 days from the period of initiation and performed real-time PCR for neural markers such as β III-tubulin and glial fibrillary acidic protein (GFAP), and Olig2. The β III-tubulin mRNA level decreased in response to BPA, but not BPF, exposure. We also observed that the number of β III-tubulin-positive cells in the BPA-exposed group was less than that of the control group. On the other hand, there were no changes in the MAP2 mRNA level. These results indicate that BPA disrupts neural differentiation in human-derived neural progenitor cells, potentially disrupting brain development.

  17. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    PubMed

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.

  18. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity

    PubMed Central

    Mattis, Virginia B.; Tom, Colton; Akimov, Sergey; Saeedian, Jasmine; Østergaard, Michael E.; Southwell, Amber L.; Doty, Crystal N.; Ornelas, Loren; Sahabian, Anais; Lenaeus, Lindsay; Mandefro, Berhan; Sareen, Dhruv; Arjomand, Jamshid; Hayden, Michael R.; Ross, Christopher A.; Svendsen, Clive N.

    2015-01-01

    Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of ‘persistent’ neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics. PMID:25740845

  19. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity.

    PubMed

    Mattis, Virginia B; Tom, Colton; Akimov, Sergey; Saeedian, Jasmine; Østergaard, Michael E; Southwell, Amber L; Doty, Crystal N; Ornelas, Loren; Sahabian, Anais; Lenaeus, Lindsay; Mandefro, Berhan; Sareen, Dhruv; Arjomand, Jamshid; Hayden, Michael R; Ross, Christopher A; Svendsen, Clive N

    2015-06-01

    Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells.

    PubMed

    Chandrasekaran, Abinaya; Avci, Hasan X; Ochalek, Anna; Rösingh, Lone N; Molnár, Kinga; László, Lajos; Bellák, Tamás; Téglási, Annamária; Pesti, Krisztina; Mike, Arpad; Phanthong, Phetcharat; Bíró, Orsolya; Hall, Vanessa; Kitiyanant, Narisorn; Krause, Karl-Heinz; Kobolák, Julianna; Dinnyés, András

    2017-12-01

    Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6 + /NESTIN + cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    PubMed

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Interferon gamma protects neonatal neural stem/progenitor cells during measles virus infection of the brain.

    PubMed

    Fantetti, Kristen N; Gray, Erica L; Ganesan, Priya; Kulkarni, Apurva; O'Donnell, Lauren A

    2016-05-13

    In the developing brain, self-renewing neural stem/progenitor cells (NSPC) give rise to neuronal and glial lineages. NSPC survival and differentiation can be altered by neurotropic viruses and by the anti-viral immune response. Several neurotropic viruses specifically target and infect NSPCs, in addition to inducing neuronal loss, which makes it difficult to distinguish between effects on NSPCs that are due to direct viral infection or due to the anti-viral immune response. We have investigated the impact of anti-viral immunity on NSPCs in measles virus (MV)-infected neonates. A neuron-restricted viral infection model was used, where NSPCs remain uninfected. Thus, an anti-viral immune response was induced without the confounding issue of NSPC infection. Two-transgenic mouse lines were used: CD46+ mice express the human isoform of CD46, the MV entry receptor, under the control of the neuron-specific enolase promoter; CD46+/IFNγ-KO mice lack the key anti-viral cytokine IFNγ. Multi-color flow cytometry and Western Blot analysis were used to quantify effects on NSPC, neuronal, and glial cell number, and quantify effects on IFNγ-mediated signaling and cell markers, respectively. Flow cytometric analysis revealed that NSPCs were reduced in CD46+/IFNγ-KO mice at 3, 7, and 10 days post-infection (dpi), but were unaffected in CD46+ mice. Early neurons showed the greatest cell loss at 7 dpi in both genotypes, with no effect on mature neurons and glial cells. Thus, IFNγ protected against NSPC loss, but did not protect young neurons. Western Blot analyses on hippocampal explants showed reduced nestin expression in the absence of IFNγ, and reduced doublecortin and βIII-tubulin in both genotypes. Phosphorylation of STAT1 and STAT2 occurred independently of IFNγ in the hippocampus, albeit with distinct regulation of activation. This is the first study to demonstrate bystander effects of anti-viral immunity on NSPC function. Our results show IFNγ protects the NSPC

  3. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome.

    PubMed

    Achuta, Venkat Swaroop; Grym, Heli; Putkonen, Noora; Louhivuori, Verna; Kärkkäinen, Virve; Koistinaho, Jari; Roybon, Laurent; Castrén, Maija L

    2017-04-01

    Disrupted metabotropic glutamate receptor 5 (mGluR5) signaling is implicated in many neuropsychiatric disorders, including autism spectrum disorder, found in fragile X syndrome (FXS). Here we report that intracellular calcium responses to the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) are augmented, and calcium-dependent mGluR5-mediated mechanisms alter the differentiation of neural progenitors in neurospheres derived from human induced pluripotent FXS stem cells and the brains of mouse model of FXS. Treatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) prevents an abnormal clustering of DHPG-responsive cells that are responsive to activation of ionotropic receptors in mouse FXS neurospheres. MPEP also corrects morphological defects of differentiated cells and enhanced migration of neuron-like cells in mouse FXS neurospheres. Unlike in mouse neurospheres, MPEP increases the differentiation of DHPG-responsive radial glial cells as well as the subpopulation of cells responsive to both DHPG and activation of ionotropic receptors in human neurospheres. However, MPEP normalizes the FXS-specific increase in the differentiation of cells responsive only to N-methyl-d-aspartate (NMDA) present in human neurospheres. Exposure to MPEP prevents the accumulation of intermediate basal progenitors in embryonic FXS mouse brain suggesting that rescue effects of GluR5 antagonist are progenitor type-dependent and species-specific differences of basal progenitors may modify effects of MPEP on the cortical development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  4. Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation

    PubMed Central

    Dufour, Christelle; Cadusseau, Josette; Varlet, Pascale; Surena, Anne-Laure; De Faria, Giselle P; Dias-Morais, Amelie; Auger, Nathalie; Léonard, Nadine; Daudigeos, Estelle; Dantas-Barbosa, Carmela; Grill, Jacques; Lazar, Vladimir; Dessen, Philippe; Vassal, Gilles; Prevot, Vincent; Sharif, Ariane; Chneiweiss, Hervé; Junier, Marie-Pierre

    2009-01-01

    Gliomas, the most frequent primitive CNS tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. TGFα, an EGF family member, is frequently over-expressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGFα is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGFα de-differentiating effects are associated with cancerous transforming effects, we grafted intra-cerebrally de-differentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo and did not give birth to tumors. When astrocytes de-differentiated with TGFα were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGFα after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress. PMID:19544474

  5. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation

    PubMed Central

    Houlihan, Shauna L; Feng, Yuanyi

    2014-01-01

    Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders. DOI: http://dx.doi.org/10.7554/eLife.03297.001 PMID:25245017

  6. 6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing fetal rat brain.

    PubMed

    Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H

    2009-01-01

    6-Mercaptopurine (6-MP), an analogue of hypoxanthine, is used in the therapy of acute lymphoblastic leukemia and causes fetal neurotoxicity. To clarify the mechanisms of 6-MP-induced fetal neurotoxicity leading to the cell cycle arrest and apoptosis of neural progenitor cells, pregnant rats were treated with 50 mg/kg 6-MP on embryonic day (E) 13, and the fetal telencephalons were examined at 12 to 72 h (h) after treatment. Flow-cytometric analysis confirmed an accumulation of cells at G2/M, S, and sub-G1 (apoptotic cells) phases from 24 to 72 h. The number of phosphorylated histone H3-positive cells (mitotic cells) decreased from 36 to 72 h, and the phosphorylated (active) form of p53 protein, which is a mediator of apoptosis and cell cycle arrest, increased from 24 to 48 h. An executor of p53-mediated cell cycle arrest, p21, showed intense overexpression at both the mRNA and protein levels from 24 to 72 h. Cdc25A protein, which is needed for the progression of S phase, decreased at 36 and 48 h. In addition, phosphorylated cdc2 protein, which is an inactive form of cdc2 necessary for G2/M progression, increased from 24 to 48 h. These results suggest that 6-MP induced G2/M arrest, delayed S-phase progression, and finally induced apoptosis of neural progenitor cells mediated by p53 in the fetal rat telencephalon.

  7. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation

    SciTech Connect

    Gong, Xi; Zhang, Kunshan; Wang, Yanlu

    2013-10-04

    Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fatemore » specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.« less

  8. Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain.

    PubMed

    Ara, Jahan; De Montpellier, Sybille

    2013-09-01

    Perinatal hypoxia-ischemia (HI) results in brain injury, whereas mild hypoxic episodes result in preconditioning, which can significantly reduce the vulnerability of the brain to subsequent severe hypoxia-ischemia. Hypoxic-preconditioning (PC) has been shown to enhance cell survival and differentiation of progenitor cells in the central nervous system (CNS). The purpose of this study was to determine whether pretreatment with PC prior to HI stimulates subventricular zone (SVZ) proliferation and neurogenesis in newborn piglets. One-day-old piglets were subjected to PC (8% O2/92% N2) for 3h and 24h later were exposed to HI produced by combination of hypoxia (5% FiO2) for a pre-defined period of 30min and ischemia induced by a period of 10min of hypotension. Here we demonstrate that SVZ derived neural stem/progenitor cells (NSPs) from PC, HI and PC+HI piglets proliferated as neurospheres, expressed neural progenitor and neurodevelopmental markers, and that greater proportion of the spheres generated are multipotential. Neurosphere assay revealed that preconditioning pretreatment increased the number of NSP-derived neurospheres in SVZ following HI compared to normoxic and HI controls. NSPs from preconditioned SVZ generated twice as many neurons and astrocytes in vitro. Injections with 5-Bromo-2-deoxyuridine (BrdU) after PC revealed a robust proliferative response within the SVZ that continued for one week. PC also increased neurogenesis in vivo, doublecortin positive cells with migratory profiles were observed streaming from the SVZ to striatum and neocortex. These findings show that the induction of proliferation and neurogenesis by PC might be a positive adaptation for an efficient repair and plasticity in the event of a hypoxic-ischemic insult. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Disturbances in the positioning, proliferation, and apoptosis of neural progenitors contribute to subcortical band heterotopia formation

    PubMed Central

    Fitzgerald, MP; Covio, M; Lee, KS

    2011-01-01

    Cortical malformations are commonly associated with intractable epilepsy and other developmental disorders. Our studies utilize the tish rat, a spontaneously occurring genetic model of subcortical band heterotopia (SBH) associated with epilepsy, to evaluate the developmental events underlying SBH formation in the neocortex. Our results demonstrate that Pax6+ and Tbr2+ progenitors are mislocalized in tish+/− and tish−/− neocortex throughout neurogenesis. In addition, mislocalized tish−/− progenitors possess a longer cell cycle than wildtype or normally-positioned tish−/− progenitors, owing to a lengthened G2+M+G1 time. This mislocalization is not associated with adherens junction breakdown or loss of radial glial polarity in the ventricular zone, as assessed by immunohistochemistry against phalloidin (to identify F-actin), aPKC-λ, and Par3. However, vimentin immunohistochemistry indicates that the radial glial scaffold is disrupted in the region of the tish−/− heterotopia. Moreover, lineage tracing experiments using in utero electroporation in tish−/− neocortex demonstrate that mislocalized progenitors do not retain contact with the ventricular surface and that ventricular/subventricular zone progenitors produce neurons that migrate into both the heterotopia and cortical plate. Taken together, these findings define a series of developmental errors contributing to SBH formation that differs fundamentally from a primary error in neuronal migration. PMID:21145942

  10. Generation of H1 PAX6WT/EGFP reporter cells to purify PAX6 positive neural stem/progenitor cells.

    PubMed

    Wu, Wei; Liu, Juli; Su, Zhenghui; Li, Zhonghao; Ma, Ning; Huang, Ke; Zhou, Tiancheng; Wang, Linli

    2018-08-25

    Neural conversion from human pluripotent cells (hPSCs) is a potential therapy to neurological disease in the future. However, this is still limited by efficiency and stability of existed protocols used for neural induction from hPSCs. To overcome this obstacle, we developed a reporter system to screen PAX6 + neural progenitor/stem cells using transcription activator like effector nuclease (TALEN). We found that knock-in 2 A-EGFP cassette into PAX6 exon of human embryonic stem cells H1 with TALEN-based homology recombination could establish PAX6 WT/EGFP H1 reporter cell line fast and efficiently. This reporter cell line could differentiate into PAX6 and EGFP double positive neural progenitor/stem cells (NPCs/NSCs) after neural induction. Those PAX6 WT/EGFP NPCs could be purified, expanded and specified to post-mitotic neurons in vitro efficiently. With this reporter cell line, we also screened out 1 NPC-specific microRNA, hsa-miR-99a-5p, and 3 ESCs-enriched miRNAs, hsa-miR-302c-5p, hsa-miR-512-3p and hsa-miR-518 b. In conclusion, the TALEN-based neural stem cell screening system is safe and efficient and could help researcher to acquire adequate and pure neural progenitor cells for further application. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    PubMed Central

    Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.

    2008-01-01

    Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591

  12. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells.

    PubMed

    Smith, Dean O; Rosenheimer, Julie L; Kalil, Ronald E

    2008-02-13

    Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.

  13. Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis.

    PubMed

    Richards, Gemma Sian; Rentzsch, Fabian

    2014-12-01

    Bilaterian neurogenesis is characterized by the generation of diverse neural cell types from dedicated neural stem/progenitor cells (NPCs). However, the evolutionary origin of NPCs is unclear, as neurogenesis in representatives of the bilaterian sister group, the Cnidaria, occurs via interstitial stem cells that also possess broader, non-neural, developmental potential. We address this question by analysing neurogenesis in an anthozoan cnidarian, Nematostella vectensis. Using a transgenic reporter line, we show that NvSoxB(2) - an orthologue of bilaterian SoxB genes that have conserved roles in neurogenesis - is expressed in a cell population that gives rise to sensory neurons, ganglion neurons and nematocytes: the three primary neural cell types of cnidarians. EdU labelling together with in situ hybridization, and within the NvSoxB(2)::mOrange transgenic line, demonstrates that cells express NvSoxB(2) before mitosis and identifies asymmetric behaviours of sibling cells within NvSoxB(2)(+) lineages. Morpholino-mediated gene knockdown of NvSoxB(2) blocks the formation of all three neural cell types, thereby identifying NvSoxB(2) as an essential positive regulator of nervous system development. Our results demonstrate that diverse neural cell types derive from an NvSoxB(2)-expressing population of mitotic cells in Nematostella and that SoxB genes are ancient components of a neurogenic program. To our knowledge this is the first description of a lineage-restricted, multipotent cell population outside the Bilateria and we propose that neurogenesis via dedicated, SoxB-expressing NPCs predates the split between cnidarians and bilaterians. © 2014. Published by The Company of Biologists Ltd.

  14. Epigenetic Marks Define the Lineage and Differentiation Potential of Two Distinct Neural Crest-Derived Intermediate Odontogenic Progenitor Populations

    PubMed Central

    Gopinathan, Gokul; Kolokythas, Antonia

    2013-01-01

    Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell–cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages. PMID:23379639

  15. Lack of Diaph3 relaxes the spindle checkpoint causing the loss of neural progenitors

    PubMed Central

    Damiani, Devid; Goffinet, André M.; Alberts, Arthur; Tissir, Fadel

    2016-01-01

    The diaphanous homologue Diaph3 (aka mDia2) is a major regulator of actin cytoskeleton. Loss of Diaph3 has been constantly associated with cytokinesis failure ascribed to impaired accumulation of actin in the cleavage furrow. Here we report that Diaph3 is required before cell fission, to ensure the accurate segregation of chromosomes. Inactivation of the Diaph3 gene causes a massive loss of cortical progenitor cells, with subsequent depletion of intermediate progenitors and neurons, and results in microcephaly. In embryonic brain extracts, Diaph3 co-immunoprecipitates with BubR1, a key regulator of the spindle assembly checkpoint (SAC). Diaph3-deficient cortical progenitors have decreased levels of BubR1 and fail to properly activate the SAC. Hence, they bypass mitotic arrest and embark on anaphase in spite of incorrect chromosome segregation, generating aneuploidy. Our data identify Diaph3 as a major guard of cortical progenitors, unravel novel functions of Diaphanous formins and add insights into the pathobiology of microcephaly. PMID:27848932

  16. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    EPA Science Inventory

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  17. Fail-Safe Therapy by Gamma-Ray Irradiation Against Tumor Formation by Human-Induced Pluripotent Stem Cell-Derived Neural Progenitors.

    PubMed

    Katsukawa, Mitsuko; Nakajima, Yusuke; Fukumoto, Akiko; Doi, Daisuke; Takahashi, Jun

    2016-06-01

    Cell replacement therapy holds great promise for Parkinson's disease (PD), but residual undifferentiated cells and immature neural progenitors in the therapy may cause tumor formation. Although cell sorting could effectively exclude these proliferative cells, from the viewpoint of clinical application, there exists no adequate coping strategy in the case of their contamination. In this study, we analyzed a component of proliferative cells in the grafts of human-induced pluripotent stem cell-derived neural progenitors and investigated the effect of radiation therapy on tumor formation. In our differentiating protocol, analyses of neural progenitors (day 19) revealed that the proliferating cells expressed early neural markers (SOX1, PAX6) or a dopaminergic neuron progenitor marker (FOXA2). When grafted into the rat striatum, these immature neurons gradually became postmitotic in the brain, and the rosette structures disappeared at 14 weeks. However, at 4-8 weeks, the SOX1(+)PAX6(+) cells formed rosette structures in the grafts, suggesting their tumorigenic potential. Therefore, to develop a fail-safe therapy against tumor formation, we investigated the effect of radiation therapy. At 4 weeks posttransplantation, when KI67(+) cells comprised the highest ratio, radiation therapy with (137)Cs Gammacell Exactor for tumor-bearing immunodeficient rats showed a significant decrease in graft volume and percentage of SOX1(+)KI67(+) cells in the graft, thus demonstrating the preventive effect of gamma-ray irradiation against tumorigenicity. These results give us critical criteria for the safety of future cell replacement therapy for PD.

  18. Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation.

    PubMed

    Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe

    2017-01-01

    Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.

  19. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs).

    PubMed

    Cutts, Josh; Brookhouser, Nicholas; Brafman, David A

    2016-01-01

    Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.

  20. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    PubMed Central

    Winter, Mark R.; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K.; Temple, Sally; Cohen, Andrew R.

    2015-01-01

    Summary Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  1. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease.

    PubMed

    Huang, Shichao; Mao, Jianxin; Ding, Kan; Zhou, Yue; Zeng, Xianglu; Yang, Wenjuan; Wang, Peipei; Zhao, Cun; Yao, Jian; Xia, Peng; Pei, Gang

    2017-01-10

    Promoting neurogenesis is a promising strategy for the treatment of cognition impairment associated with Alzheimer's disease (AD). Ganoderma lucidum is a revered medicinal mushroom for health-promoting benefits in the Orient. Here, we found that oral administration of the polysaccharides and water extract from G. lucidum promoted neural progenitor cell (NPC) proliferation to enhance neurogenesis and alleviated cognitive deficits in transgenic AD mice. G. lucidum polysaccharides (GLP) also promoted self-renewal of NPC in cell culture. Further mechanistic study revealed that GLP potentiated activation of fibroblast growth factor receptor 1 (FGFR1) and downstream extracellular signal-regulated kinase (ERK) and AKT cascades. Consistently, inhibition of FGFR1 effectively blocked the GLP-promoted NPC proliferation and activation of the downstream cascades. Our findings suggest that GLP could serve as a regenerative therapeutic agent for the treatment of cognitive decline associated with neurodegenerative diseases. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  3. Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus.

    PubMed

    Hattiangady, Bharathi; Shuai, Bing; Cai, Jingli; Coksaygan, Turhan; Rao, Mahendra S; Shetty, Ashok K

    2007-08-01

    Neurogenesis in the dentate gyrus (DG) declines severely by middle age, potentially because of age-related changes in the DG microenvironment. We hypothesize that providing fresh glial restricted progenitors (GRPs) or neural stem cells (NSCs) to the aging hippocampus via grafting enriches the DG microenvironment and thereby stimulates the production of new granule cells from endogenous NSCs. The GRPs isolated from the spinal cords of embryonic day 13.5 transgenic F344 rats expressing human alkaline phosphatase gene and NSCs isolated from embryonic day 9 caudal neural tubes of Sox-2:EGFP transgenic mice were expanded in vitro and grafted into the hippocampi of middle-aged (12 months old) F344 rats. Both types of grafts survived well, and grafted NSCs in addition migrated to all layers of the hippocampus. Phenotypic characterization revealed that both GRPs and NSCs differentiated predominantly into astrocytes and oligodendrocytic progenitors. Neuronal differentiation of graft-derived cells was mostly absent except in the dentate subgranular zone (SGZ), where some of the migrated NSCs but not GRPs differentiated into neurons. Analyses of the numbers of newly born neurons in the DG using 5'-bromodeoxyuridine and/or doublecortin assays, however, demonstrated considerably increased dentate neurogenesis in animals receiving grafts of GRPs or NSCs in comparison with both naïve controls and animals receiving sham-grafting surgery. Thus, both GRPs and NSCs survive well, differentiate predominantly into glia, and stimulate the endogenous NSCs in the SGZ to produce more new dentate granule cells following grafting into the aging hippocampus. Grafting of GRPs or NSCs therefore provides an attractive approach for improving neurogenesis in the aging hippocampus. Disclosure of potential conflicts of interest is found at the end of this article.

  4. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

    PubMed

    Ó'Léime, Ciarán S; Kozareva, Danka A; Hoban, Alan E; Long-Smith, Caitriona M; Cryan, John F; Nolan, Yvonne M

    2018-02-01

    Hippocampal neurogenesis is a lifelong process whereby new neurons are produced and integrate into the host circuitry within the hippocampus. It is regulated by a multitude of extrinsic and intrinsic regulators and is believed to contribute to certain hippocampal-dependent cognitive tasks. Hippocampal neurogenesis and associated cognition have been demonstrated to be impaired after increases in the levels of proinflammatory cytokine IL-1β in the hippocampus, such as that which occurs in various neurodegenerative and psychiatric disorders. IL-1β also suppresses the expression of TLX (orphan nuclear receptor tailless homolog), which is an orphan nuclear receptor that functions to promote neural progenitor cell (NPC) proliferation and suppress neuronal differentiation; therefore, manipulation of TLX represents a potential strategy with which to prevent the antiproliferative effects of IL-1β. In this study, we assessed the mechanism that underlies IL-1β-induced changes in TLX expression and determined the protective capacity of TLX to mitigate the effects of IL-1β on embryonic rat hippocampal neurosphere expansion. We demonstrate that IL-1β activated the NF-κB pathway in proliferating NPCs and that this activation was responsible for IL-1β-induced changes in TLX expression. In addition, we report that enhancing TLX expression prevented the IL-1β-induced suppression of neurosphere expansion. Thus, we highlight TLX as a potential protective regulator of the antiproliferative effects of IL-1β on hippocampal neurogenesis.-Ó'Léime, C. S., Kozareva, D. A., Hoban, A. E., Long-Smith, C. M., Cryan, J. F., Nolan, Y. M. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

  5. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro☆

    PubMed Central

    Lu, Jiang; Lu, Kehuan; Li, Dongsheng

    2012-01-01

    In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789

  6. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina

    SciTech Connect

    Tokuda, Kazuhiro, E-mail: r502um@yamaguchi-u.ac.jp; Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi; Kuramitsu, Yasuhiro

    Glutamate has been shown to induce neural progenitor cells in the adult vertebrate retina. However, protein dynamics during progenitor cell induction by glutamate are not fully understood. To identify specific proteins involved in the process, we employed two-dimensional electrophoresis-based proteomics on glutamate untreated and treated retinal ex vivo sections. Rat retinal tissues were incubated with 1 mM glutamate for 1 h, followed by incubation in glutamate-free media for a total of 24 h. Consistent with prior reports, it was found that mitotic cells appeared in the outer nuclear layer without any histological damage. Immunohistological evaluations and immunoblotting confirmed the emergence of neuronal progenitor cellsmore » in the mature retina treated with glutamate. Proteomic analysis revealed the up-regulation of dihydropyrimidinase-related protein 3 (DRP-3), DRP-2 and stress-induced-phosphoprotein 1 (STIP1) during neural progenitor cell induction by glutamate. Moreover, mRNA expression of DRP-3, especially, its long isoform, robustly increased in the treated retina compared to that in the untreated retina. These results may indicate that glutamate induces neural progenitor cells in the mature rat retina by up-regulating the proteins which mediate cell mitosis and neurite growth. - Highlights: • Glutamate induced neuronal progenitor cells in the mature rat retina. • Proteomic analysis revealed the up-regulation of DRP-3, DRP-2 and STIP1. • mRNA expression of DRP-3, especially, its long isoform, robustly increased.« less

  7. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain.

    PubMed

    Sato, Tomomi; Sato, Fuminori; Kamezaki, Aosa; Sakaguchi, Kazuya; Tanigome, Ryoma; Kawakami, Koichi; Sehara-Fujisawa, Atsuko

    2015-01-01

    Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from

  8. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells.

    PubMed

    Sakai, Daisuke; Dixon, Jill; Dixon, Michael J; Trainor, Paul A

    2012-01-01

    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/-) mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.

  9. Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

    PubMed Central

    Sakai, Daisuke; Dixon, Jill; Dixon, Michael J.; Trainor, Paul A.

    2012-01-01

    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1 +/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly. PMID:22479190

  10. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Generation of Induced Pluripotent Stem Cells and Neural Stem/Progenitor Cells from Newborns with Spina Bifida Aperta.

    PubMed

    Bamba, Yohei; Nonaka, Masahiro; Sasaki, Natsu; Shofuda, Tomoko; Kanematsu, Daisuke; Suemizu, Hiroshi; Higuchi, Yuichiro; Pooh, Ritsuko K; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-12-01

    We established induced pluripotent stem cells (iPSCs) and neural stem/progenitor cells (NSPCs) from three newborns with spina bifida aperta (SBa) using clinically practical methods. We aimed to develop stem cell lines derived from newborns with SBa for future therapeutic use. SBa is a common congenital spinal cord abnormality that causes defects in neurological and urological functions. Stem cell transplantation therapies are predicted to provide beneficial effects for patients with SBa. However, the availability of appropriate cell sources is inadequate for clinical use because of their limited accessibility and expandability, as well as ethical issues. Fibroblast cultures were established from small fragments of skin obtained from newborns with SBa during SBa repair surgery. The cultured cells were transfected with episomal plasmid vectors encoding reprogramming factors necessary for generating iPSCs. These cells were then differentiated into NSPCs by chemical compound treatment, and NSPCs were expanded using neurosphere technology. We successfully generated iPSC lines from the neonatal dermal fibroblasts of three newborns with SBa. We confirmed that these lines exhibited the characteristics of human pluripotent stem cells. We successfully generated NSPCs from all SBa newborn-derived iPSCs with a combination of neural induction and neurosphere technology. We successfully generated iPSCs and iPSC-NSPCs from surgical samples obtained from newborns with SBa with the goal of future clinical use in patients with SBa.

  12. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.

    PubMed

    Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro

    2017-05-04

    Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE.

    PubMed

    Rafieemehr, Hassan; Kheyrandish, Maryam; Soleimani, Masoud

    2015-12-01

    Multiple Sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC) derived neural progenitor cell (MDNPC) in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE) was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides) in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6) as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E) staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases.

  14. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells.

    PubMed

    Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J

    2013-10-01

    Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.

  15. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1

    PubMed Central

    Cvetanovic, Marija; Hu, Yuan-Shih; Opal, Puneet

    2017-01-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (Q) repeat tract in the protein ataxin-1 (ATXN1). Beginning as a cerebellar ataxic disorder, SCA1 progresses to involve the cerebral cortex, hippocampus, and brainstem. Using SCA1 knock-in mice that mirror the complexity of the human disease, we report a significant decrease in the capacity of adult neuronal progenitor cells (NPCs) to proliferate. Remarkably, a decrease in NPCs proliferation can be observed in vitro, outside the degenerative milieu of surrounding neurons or glia, demonstrating that mutant ATXN1 acting cell autonomously within progenitor cells interferes with their ability to proliferate. Our findings suggest that compromised adult neurogenesis contributes to the progressive pathology of the disease particularly in areas such as the hippocampus and cerebral cortex where stem cells provide neurotropic factors and participate in adult neurogenesis. These findings not only shed light on the biology of the disease but also have therapeutic implications in any future stem cell- based clinical trials. PMID:27306906

  16. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1.

    PubMed

    Cvetanovic, Marija; Hu, Yuan-Shih; Opal, Puneet

    2017-04-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (Q) repeat tract in the protein ataxin-1 (ATXN1). Beginning as a cerebellar ataxic disorder, SCA1 progresses to involve the cerebral cortex, hippocampus, and brainstem. Using SCA1 knock-in mice that mirror the complexity of the human disease, we report a significant decrease in the capacity of adult neuronal progenitor cells (NPCs) to proliferate. Remarkably, a decrease in NPCs proliferation can be observed in vitro, outside the degenerative milieu of surrounding neurons or glia, demonstrating that mutant ATXN1 acting cell autonomously within progenitor cells interferes with their ability to proliferate. Our findings suggest that compromised adult neurogenesis contributes to the progressive pathology of the disease particularly in areas such as the hippocampus and cerebral cortex where stem cells provide neurotropic factors and participate in adult neurogenesis. These findings not only shed light on the biology of the disease but also have therapeutic implications in any future stem cell-based clinical trials.

  17. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions

  18. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke

    PubMed Central

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Purpose Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Methods Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Results Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Conclusions Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process

  19. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors.

    PubMed

    Hauser, Kurt F; Knapp, Pamela E

    2014-01-01

    Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions. © 2014 Elsevier Inc. All rights reserved.

  20. Differential Subcellular Localization of the Glucocorticoid Receptor in Distinct Neural Stem and Progenitor Populations of the Mouse Telencephalon In Vivo

    PubMed Central

    Tsiarli, Maria A.; Monaghan, A. Paula; DeFranco, Donald B.

    2013-01-01

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expression of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain has not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. PMID:23751362

  1. Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo.

    PubMed

    Tsiarli, Maria A; Paula Monaghan, A; Defranco, Donald B

    2013-07-26

    Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expressions of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain have not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors

    PubMed Central

    Hauser, Kurt F.; Knapp, Pamela E.

    2015-01-01

    Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome (neuroAIDS) and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain “connectome”. Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions. PMID:25175867

  3. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival

    PubMed Central

    Guo, Caiwei; Sun, Yu; Liao, Tiffany; Beattie, Ursula; López, Francisco J.; Chen, Dong Feng; Lashkari, Kameran

    2015-01-01

    We have previously characterized human neuronal progenitor cells (hNP) that can adopt a retinal ganglion cell (RGC)-like morphology within the RGC and nerve fiber layers of the retina. In an effort to determine whether hNPs could be used a candidate cells for targeted delivery of neurotrophic factors (NTFs), we evaluated whether hNPs transfected with an vector that expresses IGF-1 in the form of a fusion protein with tdTomato (TD), would increase RGC survival in vitro and confer neuroprotective effects in a mouse model of glaucoma. RGCs co-cultured with hNPIGF-TD cells displayed enhanced survival, and increased neurite extension and branching as compared to hNPTD or untransfected hNP cells. Application of various IGF-1 signaling blockers or IGF-1 receptor antagonists abrogated these effects. In vivo, using a model of glaucoma we showed that IOP elevation led to reductions in retinal RGC count. In this model, evaluation of retinal flatmounts and optic nerve cross sections indicated that only hNPIGF-TD cells effectively reduced RGC death and showed a trend to improve optic nerve axonal loss. RT-PCR analysis of retina lysates over time showed that the neurotrophic effects of IGF-1 were also attributed to down-regulation of inflammatory and to some extent, angiogenic pathways. This study shows that neuronal progenitor cells that hone into the RGC and nerve fiber layers may be used as vehicles for local production and delivery of a desired NTF. Transplantation of hNPIGF-TD cells improves RGC survival in vitro and protects against RGC loss in a rodent model of glaucoma. Our findings have provided experimental evidence and form the basis for applying cell-based strategies for local delivery of NTFs into the retina. Application of cell-based delivery may be extended to other disease conditions beyond glaucoma. PMID:25923430

  4. Organic Cation Transporter-Mediated Ergothioneine Uptake in Mouse Neural Progenitor Cells Suppresses Proliferation and Promotes Differentiation into Neurons

    PubMed Central

    Ishimoto, Takahiro; Nakamichi, Noritaka; Hosotani, Hiroshi; Masuo, Yusuke; Sugiura, Tomoko; Kato, Yukio

    2014-01-01

    The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs) of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO) as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs). These cells exhibited time-dependent [3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid) led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP), with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits cellular proliferation

  5. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells.

    PubMed

    Tsai, Yihuan; Cutts, Josh; Kimura, Azuma; Varun, Divya; Brafman, David A

    2015-07-01

    Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery. Copyright © 2015. Published by Elsevier B.V.

  6. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment.

    PubMed

    Feng, Shufang; Shi, Tianyao; Qiu, Jiangxia; Yang, Haihong; Wu, Yan; Zhou, Wenxia; Wang, Wei; Wu, Haitao

    2017-10-01

    It is well known that Notch1 signaling plays a crucial role in embryonic neural development and adult neurogenesis. The latest evidence shows that Notch1 also plays a critical role in synaptic plasticity in mature hippocampal neurons. So far, deeper insights into the function of Notch1 signaling during the different steps of adult neurogenesis are still lacking, and the mechanisms by which Notch1 dysfunction is associated with brain disorders are also poorly understood. In the current study, we found that Notch1 was highly expressed in the adult-born immature neurons in the hippocampal dentate gyrus. Using a genetic approach to selectively ablate Notch1 signaling in late immature precursors in the postnatal hippocampus by cross-breeding doublecortin (DCX) + neuron-specific proopiomelanocortin (POMC)-α Cre mice with floxed Notch1 mice, we demonstrated a previously unreported pivotal role of Notch1 signaling in survival and function of adult newborn neurons in the dentate gyrus. Moreover, behavioral and functional studies demonstrated that POMC-Notch1 -/- mutant mice showed anxiety and depressive-like behavior with impaired synaptic transmission properties in the dentate gyrus. Finally, our mechanistic study showed significantly compromised phosphorylation of cAMP response element-binding protein (CREB) in Notch1 mutants, suggesting that the dysfunction of Notch1 mutants is associated with the disrupted pCREB signaling in postnatally generated immature neurons in the dentate gyrus.-Feng, S., Shi, T., Qiu, J., Yang, H., Wu, Y., Zhou, W., Wang, W., Wu, H. Notch1 deficiency in postnatal neural progenitor cells in the dentate gyrus leads to emotional and cognitive impairment. © FASEB.

  7. Mesencephalic human neural progenitor cells transplanted into the neonatal hemiparkinsonian rat striatum differentiate into neurons and improve motor behaviour

    PubMed Central

    Hovakimyan, Marine; Haas, Stefan Jean-Pierre; Schmitt, Oliver; Gerber, Bernd; Wree, Andreas; Andressen, Christian

    2006-01-01

    Neural stem cell transplantation is a promising strategy for the treatment of neurodegenerative diseases. To evaluate the differentiation potential of human neural progenitor cells (hNPCs) as a prerequisite for clinical trials, we intracerebrally transplanted in vitro expanded fetal mesencephalic hNPCs into hemiparkinsonian rats. On postnatal day one (P1), 17 animals underwent a unilateral intraventricular 6-hydroxydopamine injection into the right lateral ventricle. At P3, animals (n = 10) received about 100 000 hNPCs (1 µL) in the right striatum. Five weeks after birth, animals underwent behaviour tests prior to fixation, followed by immunohistochemistry on brain slices for human nuclei, glial fibrillary acidic protein, S100β, neuronal nuclei antigen, neuron-specific enolase and tyrosine hydroxylase. Compared with the apomorphine-induced rotations in the lesioned-only group (7.4 ± 0.5 min−1), lesioned and successfully transplanted animals (0.3 ± 0.1 min−1) showed a significant therapeutic improvement. Additionally, in the cylinder test, the lesioned-only animals preferred to use the ipsilateral forepaw. Conversely, the lesioned and transplanted animals showed no significant side bias similar to untreated control animals. Transplanted human nuclei-immunoreactive cells were found to survive and migrate up to 2000 µm into the host parenchyma, many containing the pan-neuronal markers neuronal nuclei antigen and neuron-specific enolase. In the striatum, tyrosine hydroxylase-immunoreactive somata were also found, indicating a dopaminergic differentiation capacity of transplanted hNPCs in vivo. However, the relative number of tyrosine hydroxylase-immunoreactive neurons in vivo seemed to be lower than in corresponding in vitro differentiation. To minimize donor tissue necessary for transplantation, further investigations will aim to enhance dopaminergic differentiation of transplanted cells in vivo. PMID:17118060

  8. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway

    SciTech Connect

    Li, Mei, E-mail: limeihit@163.com; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing; Zhang, Dong-Qing

    2011-08-12

    Highlights: {yields} The NR2B component of the NMDARs is important for the NSPC proliferation. {yields} pCaMKIV and pCREB exist in NSPCs. {yields} The CaMKIV/CREB pathway mediates NSPC proliferation. -- Abstract: Accumulating evidence indicates the involvement of N-methyl-D-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Romore » 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.« less

  9. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent Varicella-Zoster Virus Infection

    PubMed Central

    Goodwin, Thomas J.; McCarthy, Maureen; Osterrieder, Nikolaus; Cohrs, Randall J.; Kaufer, Benedikt B.

    2013-01-01

    Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells. PMID:23935496

  10. Multiparametric Phenotypic Screening System for Profiling Bioactive Compounds Using Human Fetal Hippocampal Neural Stem/Progenitor Cells.

    PubMed

    Tabata, Yoshikuni; Murai, Norio; Sasaki, Takeo; Taniguchi, Sachie; Suzuki, Shuichi; Yamazaki, Kazuto; Ito, Masashi

    2015-10-01

    Stem cell research has been progressing rapidly, contributing to regenerative biology and regenerative medicine. In this field, small-molecule compounds affecting stem cell proliferation/differentiation have been explored to understand stem cell biology and support regenerative medicine. In this study, we established a multiparametric screening system to detect bioactive compounds affecting the cell fate of human neural stem/progenitor cells (NSCs/NPCs), using human fetal hippocampal NSCs/NPCs, HIP-009 cells. We examined effects of 410 compounds, which were collected based on mechanisms of action (MOAs) and chemotypes, on HIP-009's cell fate (self-renewal, neuronal and astrocytic differentiation) and morphology by automated multiparametric assays and profiled induced cellular phenotypes. We found that this screening classified compounds with the same MOAs into subgroups according to additional pharmacological effects (e.g., mammalian target of rapamycin complex 1 [mTORC1] inhibitors and mTORC1/mTORC2 dual inhibitors among mTOR inhibitors). Moreover, it identified compounds that have off-target effects under matrix analyses of MOAs and structure similarities (e.g., neurotropic effects of amitriptyline among tri- and tetracyclic compounds). Therefore, this automated, medium-throughput and multiparametric screening system is useful for finding compounds that affect the cell fate of human NSCs/NPCs for supporting regenerative medicine and to fingerprint compounds based on human stem cells' multipotency, leading to understanding of stem cell biology. © 2015 Society for Laboratory Automation and Screening.

  11. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    PubMed

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  12. Differentiated Human Midbrain-Derived Neural Progenitor Cells Express Excitatory Strychnine-Sensitive Glycine Receptors Containing α2β Subunits

    PubMed Central

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Background Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson’s disease. While glutamate and GABAA receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Methodology/Principal Findings Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na+-K+-Cl− co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. Conclusions/Significance These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro. PMID:22606311

  13. Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

    PubMed Central

    Son, Sihoon; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung; Bae, Jae-Sung

    2014-01-01

    Objective The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun NH2-terminal kinases (JNKs) and β-actin as the control group. Results Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, 1 µM) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and 1 µM, p<0.05). Conclusion Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations. PMID:25289117

  14. Excess thyroid hormone inhibits embryonic neural stem/progenitor cells proliferation and maintenance through STAT3 signalling pathway.

    PubMed

    Chen, Chunhai; Zhou, Zhou; Zhong, Min; Li, Maoquan; Yang, Xuesen; Zhang, Yanwen; Wang, Yuan; Wei, Aimin; Qu, Mingyue; Zhang, Lei; Xu, Shangcheng; Chen, Shude; Yu, Zhengping

    2011-07-01

    Hyperthyroidism is prevalent during pregnancy, but little is known about the effects of excess thyroid hormone on the development of embryonic neural stem/progenitor cells (NSCs), and the mechanisms underlying these effects. Previous studies indicate that STAT3 plays a crucial role in determining NSC fate during neurodevelopment. In this study, we investigated the effects of a supraphysiological dose of 3,5,3'-L-triiodothyronine (T3) on the proliferation and maintenance of NSCs derived from embryonic day 13.5 mouse neocortex, and the involvement of STAT3 in this process. Our results suggest that excess T3 treatment inhibits NSC proliferation and maintenance. T3 decreased tyrosine phosphorylation of JAK1, JAK2 and STAT3, and subsequently inhibited STAT3-DNA binding activity. Furthermore, proliferation and maintenance of NSCs were decreased by inhibitors of JAKs and STAT3, indicating that the STAT3 signalling pathway is involved in the process of NSC proliferation and maintenance. Taken together, these results suggest that the STAT3 signalling pathway is involved in the process of T3-induced inhibition of embryonic NSC proliferation and maintenance. These findings provide data for understanding the effects of hyperthyroidism during pregnancy on fetal brain development, and the mechanisms underlying these effects.

  15. ZDHHC16 modulates FGF/ERK dependent proliferation of neural stem/progenitor cells in the zebrafish telencephalon.

    PubMed

    Shi, Wei; Chen, Xueran; Wang, Fen; Gao, Ming; Yang, Yang; Du, Zhaoxia; Wang, Chen; Yao, Yao; He, Kun; Hao, Aijun

    2016-09-01

    In vertebrates, neural stem/progenitor cells (NSPCs) maintenance is critical for nervous system development and homeostasis. However, the molecular mechanisms underlying the maintenance of NSPCs have not been fully elucidated. Here, we demonstrated that zebrafish ZDHHC16, a DHHC encoding protein, which was related to protein palmitoylation after translation, was expressed in the developing forebrain, and especially in the telencephalon. Loss- and gain-of-function studies showed that ZDHHC16 played a crucial role in the regualtion of NSPCs proliferation during zebrafish telencephalic development, via a mechanism dependent on its palmitoyltransferase activity. Further analyses showed that the inhibition of ZDHHC16 led to inactivation of the FGF/ERK signaling pathway during telencephalic NSPCs proliferation and maintenance. Taken together, our results suggest that ZDHHC16 activity is essential for early NSPCs proliferation where it acts to activate the FGF/ERK network, allowing for the initiation of proliferation -regulated gene expression programs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1014-1028, 2016. © 2016 Wiley Periodicals, Inc.

  16. Physiological significance of multipolar cells generated from neural stem cells and progenitors for the establishment of neocortical cytoarchitecture.

    PubMed

    Mizutani, Ken-Ichi

    2018-01-01

    Neurogenesis encompasses an entire set of events that leads to the generation of newborn neurons from neural stem cells and more committed progenitor cells, including cell division, the production of migratory precursors and their progeny, differentiation and integration into circuits. In particular, the precise control of neuronal migration and morphological changes is essential for the development of the neocortex. Postmitotic cells within the intermediate zone have been found to transiently assume a characteristic "multipolar" morphology, after which a multipolar-to-bipolar transition occurs before the cells enter the cortical plate; however, the importance of this multipolar phase in the establishment of mature cortical cytoarchitecture and the precise genetic control of this phase remains largely unknown. Thus, this review article focuses on the multipolar phase in the developing neocortex. It begins by summarizing the molecular mechanism that underlies multipolar migration for the regulation of each step in multipolar phase in intermediate zone. The physiological significance of this multipolar phase in the establishment of mature cortical lamination and neurodevelopmental disorders associated with migration defects is then described. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model.

    PubMed

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-21

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.

  18. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    PubMed

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  19. A syngeneic glioma model to assess the impact of neural progenitor target cell age on tumor malignancy

    PubMed Central

    Mikheev, Andrei M; Stoll, Elizabeth A; Mikheeva, Svetlana A; Maxwell, John-Patrick; Jankowski, Pawel P; Ray, Sutapa; Uo, Takuma; Morrison, Richard S; Horner, Philip J; Rostomily, Robert C

    2010-01-01

    Summary Human glioma incidence, malignancy and treatment resistance are directly proportional to patient age. Cell intrinsic factors are reported to contribute to human age-dependent glioma malignancy but suitable animal models to examine the role of aging are lacking. Here we developed an orthotopic syngeneic glioma model to test the hypothesis that the age of neural progenitor cells (NPCs), presumed cells of glioma origin, influences glioma malignancy. Gliomas generated from transformed donor 3-, 12-, and 18-month-old NPCs in same-aged adult hosts all formed highly invasive glial tumors that phenocopied the human disease. Survival analysis indicated increased malignancy of gliomas generated from older 12- and 18-month-old transformed NPCs compared with their 3-month counterparts (median survival of 38.5 and 42.5 vs. 77 days, respectively). This study showed for the first time that age of target cells at the time of transformation can affect malignancy and demonstrated the feasibility of a syngeneic model using transformed NPCs for future examination of the relative impacts of age-related cell intrinsic and cell-extrinsic factors in glioma malignancy. PMID:19489742

  20. Perianal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells.

    PubMed

    Raghavan, Shreya; Miyasaka, Eiichi A; Gilmont, Robert R; Somara, Sita; Teitelbaum, Daniel H; Bitar, Khalil N

    2014-04-01

    The internal anal sphincter (IAS) is a major contributing factor to pressure within the anal canal and is required for maintenance of rectoanal continence. IAS damage or weakening results in fecal incontinence. We have demonstrated that bioengineered, intrinsically innervated, human IAS tissue replacements possess key aspects of IAS physiology, such as the generation of spontaneous basal tone and contraction/relaxation in response to neurotransmitters. The objective of this study is to demonstrate the feasibility of implantation of bioengineered IAS constructs in the perianal region of athymic rats. Human IAS tissue constructs were bioengineered from isolated human IAS circular smooth muscle cells and human enteric neuronal progenitor cells. After maturation of the bioengineered constructs in culture, they were implanted operatively into the perianal region of athymic rats. Platelet-derived growth factor was delivered to the implanted constructs through a microosmotic pump. Implanted constructs were retrieved from the animals 4 weeks postimplantation. Animals tolerated the implantation well, and there were no early postoperative complications. Normal stooling was observed during the implantation period. At harvest, implanted constructs were adherent to the perirectal rat tissue and appeared healthy and pink. Immunohistochemical analysis revealed neovascularization. Implanted smooth muscle cells maintained contractile phenotype. Bioengineered constructs responded in vitro in a tissue chamber to neuronally evoked relaxation in response to electrical field stimulation and vasoactive intestinal peptide, indicating the preservation of neuronal networks. Our results indicate that bioengineered innervated IAS constructs can be used to augment IAS function in an animal model. This is a regenerative medicine based therapy for fecal incontinence that would directly address the dysfunction of the IAS muscle. Copyright © 2014 Mosby, Inc. All rights reserved.

  1. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    PubMed

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  2. Differentiation and Cell-Cell Interactions of Neural Progenitor Cells Transplanted into Intact Adult Brain.

    PubMed

    Sukhinich, K K; Kosykh, A V; Aleksandrova, M A

    2015-11-01

    We studied the behavior and cell-cell interactions of embryonic brain cell from GFP-reporter mice after their transplantation into the intact adult brain. Fragments or cell suspensions of fetal neocortical cells at different stages of development were transplanted into the neocortex and striatum of adult recipients. Even in intact brain, the processes of transplanted neurons formed extensive networks in the striatum and neocortical layers I and V-VI. Processes of transplanted cells at different stages of development attained the rostral areas of the frontal cortex and some of them reached the internal capsule. However, the cells transplanted in suspension had lower process growth potency than cells from tissue fragments. Tyrosine hydroxylase fibers penetrated from the recipient brain into grafts at both early and late stages of development. Our experiments demonstrated the formation of extensive reciprocal networks between the transplanted fetal neural cells and recipient brain neurons even in intact brain.

  3. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    PubMed Central

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  4. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu

    2013-05-01

    Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of

  5. [Effects of different nuclear factor kappaB dimers on the survival of immortalized neural progenitor cells].

    PubMed

    Gui, Ling-Li; Zhang, Chuan-Han; Liu, Zhi-Heng; Chen, Zhao-Jun; Zhu, Chang

    2008-04-01

    To investigate the effects of different nuclear factor (NF)-KB dimers on the survival of immortalized neural progenitor cells (INPCs). The control vector RC/CMV, containing the promoter of cytomegalovirus (CMV), and the expression vectors, RcCMV-p50 and RcCMV-p65, containing the coding regions of NF-KB subunits p50 and p65 genes, were transfected into the INPCs by liposome respectively. Stably transfected clones were screened out following G418 selection. Subsequently, the plasmid RcCMV-p50 was transiently transfected into the INPCs which had been stably transfected with the plasmid RcCMV-p65. The expression of p50 or p65 gene was detected in each cell strain by Western blotting. And the NF-KB DNA binding activity in the cell nuclear extracts was measured by electrophoresis mobility shift assay (EMSA). The expression of IkappaBalpha in the cytoplasm was detected by Western blotting. After oxygen and glucose deprivation for 13 h, the cell survival rate was measured by MTT assay. After gene transfection, five different cell strains were obtained: INPC, INPC/CMV, INPC/p50, INPC/p65, and INPC/p50p65. p50 or p65 gene was translated correctly and efficiently in the cell strains which had been transfected with the corresponding plasmids. EMSA showed that the INPC/p50, INPC/p65, and INPC/p50p65 cells all gave rise to NF-kappaB specific bands, which were composed of p50 homodimer, p65 homodimer, and p50 p65 heterodimer and p50 homodimer respectively. The expression of IkappaBbeta was increased significantly in the cytoplasm of the INPC/p65 and INPC/p50p65 cells. Games-Howell test showed that after oxygen and glucose deprivation for 13 h, the survival rates of the NPC/p65 and INPC/p50p65 cells were (6.0 +/- 1.0)% and (4.6 +/- 0.6)% respectively, both significantly lower than those of the INPC, INPC/CMV, and INPC/p50 cells [(72.5 +/- 6.2)%, (70.1 +/- 4.3)%, and (70.4 +/- 7.3)% respectively, all P < 0.05]. Overexpression of p50 gene and p65 gene directly enhance the DNA

  6. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner.

    PubMed

    Rharass, Tareck; Lantow, Margareta; Gbankoto, Adam; Weiss, Dieter G; Panáková, Daniela; Lucas, Stéphanie

    2017-10-16

    Improving the neuronal yield from in vitro cultivated neural progenitor cells (NPCs) is an essential challenge in transplantation therapy in neurological disorders. In this regard, Ascorbic acid (AA) is widely used to expand neurogenesis from NPCs in cultures although the mechanisms of its action remain unclear. Neurogenesis from NPCs is regulated by the redox-sensitive WNT/β-catenin signaling pathway. We therefore aimed to investigate how AA interacts with this pathway and potentiates neurogenesis. Effects of 200 μM AA were compared with the pro-neurogenic reagent and WNT/β-catenin signaling agonist lithium chloride (LiCl), and molecules with antioxidant activities i.e. N-acetyl-L-cysteine (NAC) and ruthenium red (RuR), in differentiating neural progenitor ReNcell VM cells. Cells were supplemented with reagents for two periods of treatment: a full period encompassing the whole differentiation process versus an early short period that is restricted to the cell fate commitment stage. Intracellular redox balance and reactive oxygen species (ROS) metabolism were examined by flow cytometry using redox and ROS sensors. Confocal microscopy was performed to assess cell viability, neuronal yield, and levels of two proteins: Nucleoredoxin (NXN) and the WNT/β-catenin signaling component Dishevelled 2 (DVL2). TUBB3 and MYC gene responses were evaluated by quantitative real-time PCR. DVL2-NXN complex dissociation was measured by fluorescence resonance energy transfer (FRET). In contrast to NAC which predictably exhibited an antioxidant effect, AA treatment enhanced ROS metabolism with no cytotoxic induction. Both drugs altered ROS levels only at the early stage of the differentiation as no changes were held beyond the neuronal fate commitment stage. FRET studies showed that AA treatment accelerated the redox-dependent release of the initial pool of DVL2 from its sequestration by NXN, while RuR treatment hampered the dissociation of the two proteins. Accordingly, AA

  7. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants. Copyright © 2014 Wiley Periodicals, Inc.

  8. Molecular profiling of aged neural progenitors identifies Dbx2 as a candidate regulator of age-associated neurogenic decline.

    PubMed

    Lupo, Giuseppe; Nisi, Paola S; Esteve, Pilar; Paul, Yu-Lee; Novo, Clara Lopes; Sidders, Ben; Khan, Muhammad A; Biagioni, Stefano; Liu, Hai-Kun; Bovolenta, Paola; Cacci, Emanuele; Rugg-Gunn, Peter J

    2018-06-01

    Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Curcumin Increase the Expression of Neural Stem/Progenitor Cells and Improves Functional Recovery after Spinal Cord Injury

    PubMed Central

    Bang, Woo-Seok; Kim, Kyoung-Tae; Seo, Ye Jin; Cho, Dae-Chul; Sung, Joo-Kyung; Kim, Chi Heon

    2018-01-01

    Objective To investigates the effect of curcumin on proliferation of spinal cord neural stem/progenitor cells (SC-NSPCs) and functional outcome in a rat spinal cord injury (SCI) model. Methods Sixty adult male Sprague-Dawley rats were randomly and blindly allocated into three groups (sham control group; curcumin treated group after SCI; vehicle treated group after SCI). Functional recovery was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale during 6 weeks after SCI. The expression of SC-NSPC proliferation and astrogliosis were analyzed by nestin/Bromodeoxyuridine (BrdU) and Glial fibrillary acidic protein (GFAP) staining. The injured spinal cord was then examined histologically, including quantification of cavitation. Results The BBB score of the SCI-curcumin group was better than that of SCI-vehicle group up to 14 days (p<0.05). The co-immunoreactivity of nestin/BrdU in the SCI-curcumin group was much higher than that of the SCI-vehicle group 1 week after surgery (p<0.05). The GFAP immunoreactivity of the SCI-curcumin group was remarkably lower than that of the SCI-vehicle group 4 weeks after surgery (p<0.05). The lesion cavity was significantly reduced in the curcumin group as compared to the control group (p<0.05). Conclusion These results indicate that curcumin could increase the expression of SC-NSPCs, and reduce the activity of reactive astrogliosis and lesion cavity. Consequently curcumin could improve the functional recovery after SCI via SC-NSPC properties. PMID:29354231

  10. Direct exposure to mild heat promotes proliferation and neuronal differentiation of neural stem/progenitor cells in vitro

    PubMed Central

    Hossain, Md Emon; Katakura, Masanori; Sugimoto, Naotoshi; Mamun, Abdullah Al; Islam, Rafiad; Hashimoto, Michio; Shido, Osamu

    2017-01-01

    Heat acclimation in rats is associated with enhanced neurogenesis in thermoregulatory centers of the hypothalamus. To elucidate the mechanisms for heat acclimation, we investigated the effects of direct mild heat exposure on the proliferation and differentiation of neural stem/progenitor cells (NSCs/NPCs). The NSCs/NPCs isolated from forebrain cortices of 14.5-day-old rat fetuses were propagated as neurospheres at either 37.0°C (control) or 38.5°C (mild heat exposure) for four days, and the effects on proliferation were investigated by MTS cell viability assay, measurement of neurosphere diameter, and counting the total number of cells. The mRNA expressions of heat shock proteins (HSPs) and brain-derived neurotrophic factor (BDNF), cAMP response element-binding (CREB) protein and Akt phosphorylation levels, and intracellular reactive oxygen species (ROS) levels were analyzed using real time PCR, Western blotting and CM-H2DCFDA assay respectively. Heat exposure under proliferation condition increased NSC/NPC viability, neurosphere diameter, and cell count. BDNF mRNA expression, CREB phosphorylation, and ROS level were also increased by heat exposure. Heat exposure increased HSP27 mRNA expression concomitant with enhanced p-Akt level. Moreover, treatment with LY294002 (a PI3K inhibitor) abolished the effects of heat exposure on NSC/NPC proliferation. Furthermore, heat exposure under differentiation conditions increased the proportion of cells positive for Tuj1 (a neuronal marker). These findings suggest that mild heat exposure increases NSC/NPC proliferation, possibly through activation of the Akt pathway, and also enhances neuronal differentiation. Direct effects of temperature on NSCs/NPCs may be one of the mechanisms involved in hypothalamic neurogenesis in heat-acclimated rats. Such heat-induced neurogenesis could also be an effective therapeutic strategy for neurodegenerative diseases. PMID:29287093

  11. Effects of neural progenitor cells on post-stroke neurological impairment—a detailed and comprehensive analysis of behavioral tests

    PubMed Central

    Doeppner, Thorsten R.; Kaltwasser, Britta; Bähr, Mathias; Hermann, Dirk M.

    2014-01-01

    Systemic transplantation of neural progenitor cells (NPCs) in rodents reduces functional impairment after cerebral ischemia. In light of upcoming stroke trials regarding safety and feasibility of NPC transplantation, experimental studies have to successfully analyze the extent of NPC-induced neurorestoration on the functional level. However, appropriate behavioral tests for analysis of post-stroke motor coordination deficits and cognitive impairment after NPC grafting are not fully established. We therefore exposed male C57BL6 mice to either 45 min (mild) or 90 min (severe) of cerebral ischemia, using the thread occlusion model followed by intravenous injection of PBS or NPCs 6 h post-stroke with an observation period of three months. Post-stroke motor coordination was assessed by means of the rota rod, tight rope, corner turn, inclined plane, grip strength, foot fault, adhesive removal, pole test and balance beam test, whereas cognitive impairment was analyzed using the water maze, the open field and the passive avoidance test. Significant motor coordination differences after both mild and severe cerebral ischemia in favor of NPC-treated mice were observed for each motor coordination test except for the inclined plane and the grip strength test, which only showed significant differences after severe cerebral ischemia. Cognitive impairment after mild cerebral ischemia was successfully assessed using the water maze test, the open field and the passive avoidance test. On the contrary, the water maze test was not suitable in the severe cerebral ischemia paradigm, as it too much depends on motor coordination capabilities of test mice. In terms of both reliability and cost-effectiveness considerations, we thus recommend the corner turn, foot fault, balance beam, and open field test, which do not depend on durations of cerebral ischemia. PMID:25374509

  12. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Pastor, Angel M

    2013-01-01

    Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might

  13. Assessing cell cycle progression of neural stem and progenitor cells in the mouse developing brain after genotoxic stress.

    PubMed

    Etienne, Olivier; Bery, Amandine; Roque, Telma; Desmaze, Chantal; Boussin, François D

    2014-05-07

    Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues.

  14. Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE

    PubMed Central

    Donegà, Matteo; Giusto, Elena; Cossetti, Chiara; Schaeffer, Julia; Pluchino, Stefano

    2014-01-01

    Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage

  15. Inhibition of Sirt1 promotes neural progenitors toward motoneuron differentiation from human embryonic stem cells

    SciTech Connect

    Zhang, Yun; Wang, Jing; Clinical Stem Cell Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191

    2011-01-14

    Research highlights: {yields} Nicotinamide inhibit Sirt1. {yields} MASH1 and Ngn2 activation. {yields} Increase the expression of HB9. {yields} Motoneurons formation increases significantly. -- Abstract: Several protocols direct human embryonic stem cells (hESCs) toward differentiation into functional motoneurons, but the efficiency of motoneuron generation varies based on the human ESC line used. We aimed to develop a novel protocol to increase the formation of motoneurons from human ESCs. In this study, we tested a nuclear histone deacetylase protein, Sirt1, to promote neural precursor cell (NPC) development during differentiation of human ESCs into motoneurons. A specific inhibitor of Sirt1, nicotinamide, dramatically increasedmore » motoneuron formation. We found that about 60% of the cells from the total NPCs expressed HB9 and {beta}III-tubulin, commonly used motoneuronal markers found in neurons derived from ESCs following nicotinamide treatment. Motoneurons derived from ESC expressed choline acetyltransferase (ChAT), a positive marker of mature motoneuron. Moreover, we also examined the transcript levels of Mash1, Ngn2, and HB9 mRNA in the differentiated NPCs treated with the Sirt1 activator resveratrol (50 {mu}M) or inhibitor nicotinamide (100 {mu}M). The levels of Mash1, Ngn2, and HB9 mRNA were significantly increased after nicotinamide treatment compared with control groups, which used the traditional protocol. These results suggested that increasing Mash1 and Ngn2 levels by inhibiting Sirt1 could elevate HB9 expression, which promotes motoneuron differentiation. This study provides an alternative method for the production of transplantable motoneurons, a key requirement in the development of hESC-based cell therapy in motoneuron disease.« less

  16. Evaluation of the immunogenicity of human iPS cell-derived neural stem/progenitor cells in vitro.

    PubMed

    Ozaki, Masahiro; Iwanami, Akio; Nagoshi, Narihito; Kohyama, Jun; Itakura, Go; Iwai, Hiroki; Nishimura, Soraya; Nishiyama, Yuichiro; Kawabata, Soya; Sugai, Keiko; Iida, Tsuyoshi; Matsubayashi, Kohei; Isoda, Miho; Kashiwagi, Rei; Toyama, Yoshiaki; Matsumoto, Morio; Okano, Hideyuki; Nakamura, Masaya

    2017-03-01

    To achieve the goal of a first-in-human trial for human induced pluripotent stem cell (hiPSC)-based transplantation for the treatment of various diseases, allogeneic human leukocyte antigen (HLA)-matched hiPSC cell banks represent a realistic tool from the perspective of quality control and cost performance. Furthermore, considering the limited therapeutic time-window for acute injuries, including neurotraumatic injuries, an iPS cell bank is of potential interest. However, due to the relatively immunoprivileged environment of the central nervous system, it is unclear whether HLA matching is required in hiPSC-derived neural stem/progenitor cell (hiPSC-NS/PC) transplantation for the treatment of neurodegenerative diseases and neurotraumatic injuries. In this study, we evaluated the significance of HLA matching in hiPSC-NS/PC transplantation by performing modified mixed lymphocyte reaction (MLR) assays with hiPSC-NS/PCs. Compared to fetus-derived NS/PCs, the expression levels of human leukocyte antigen-antigen D related (HLA-DR) and co-stimulatory molecules on hiPSC-NS/PCs were significantly low, even with the addition of tumor necrosis factor-α (TNFα) and/or interferon-γ (IFNγ) to mimic the inflammatory environment surrounding transplanted hiPSC-NS/PCs in injured tissues. Interestingly, both the allogeneic HLA-matched and the HLA-mismatched responses were similarly low in the modified MLR assay. Furthermore, the autologous response was also similar to the allogeneic response. hiPSC-NS/PCs suppressed the proliferative responses of allogeneic HLA-mismatched peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner. Thus, the low antigen-presenting function and immunosuppressive effects of hiPSC-NS/PCs result in a depressed immune response, even in an allogeneic HLA-mismatched setting. It is crucial to verify whether these in vitro results are reproducible in a clinical setting. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights

  17. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    PubMed

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Lack of a p21waf1/cip -dependent G1/S checkpoint in neural stem and progenitor cells after DNA damage in vivo.

    PubMed

    Roque, Telma; Haton, Céline; Etienne, Olivier; Chicheportiche, Alexandra; Rousseau, Laure; Martin, Ludovic; Mouthon, Marc-André; Boussin, François D

    2012-03-01

    The cyclin-dependent kinase inhibitor p21(waf1/cip) mediates the p53-dependent G1/S checkpoint, which is generally considered to be a critical requirement to maintain genomic stability after DNA damage. We used staggered 5-ethynyl-2'deoxyuridine/5-bromo-2'-deoxyuridine double-labeling in vivo to investigate the cell cycle progression and the role of p21(waf1/cip) in the DNA damage response of neural stem and progenitor cells (NSPCs) after exposure of the developing mouse cortex to ionizing radiation. We observed a radiation-induced p21-dependent apoptotic response in migrating postmitotic cortical cells. However, neural stem and progenitor cells (NSPCs) did not initiate a p21(waf1/cip1) -dependent G1/S block and continued to enter S-phase at a similar rate to the non-irradiated controls. The G1/S checkpoint is not involved in the mechanisms underlying the faithful transmission of the NSPC genome and/or the elimination of critically damaged cells. These processes typically involve intra-S and G2/M checkpoints that are rapidly activated after irradiation. p21 is normally repressed in neural cells during brain development except at the G1 to G0 transition. Lack of activation of a G1/S checkpoint and apoptosis of postmitotic migrating cells after DNA damage appear to depend on the expression of p21 in neural cells, since substantial cell-to-cell variations are found in the irradiated cortex. This suggests that repression of p21 during brain development prevents the induction of the G1/S checkpoint after DNA damage. Copyright © 2011 AlphaMed Press.

  19. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue.

    PubMed

    Shelley, Brandon C; Gowing, Geneviève; Svendsen, Clive N

    2014-06-15

    A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.

  20. Attenuation of Mouse Melanoma by A/C Magnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells

    PubMed Central

    Rachakatla, Raja Shekar; Balivada, Sivasai; Seo, Gwi-Moon; Myers, Carl B; Wang, Hongwang; Samarakoon, Thilani N.; Dani, Raj; Pyle, Marla; Kroh, Franklin O.; Walker, Brandon; Leaym, Xiaoxuan; Koper, Olga B.; Chikan, Viktor; Bossmann, Stefan H.; Tamura, Masaaki; Troyer, Deryl L.

    2010-01-01

    Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe3O4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. PMID:21058696

  1. Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner▿

    PubMed Central

    Krampert, Monika; Chirasani, Sridhar Reddy; Wachs, Frank-Peter; Aigner, Robert; Bogdahn, Ulrich; Yingling, Jonathan M.; Heldin, Carl-Henrik; Aigner, Ludwig; Heuchel, Rainer

    2010-01-01

    Members of the transforming growth factor β (TGF-β) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-β and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-β and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-β and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-β and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-β- and BMP-independent manner. PMID:20479122

  2. β-Catenin Up-regulates Atoh1 Expression in Neural Progenitor Cells by Interaction with an Atoh1 3′ Enhancer*

    PubMed Central

    Shi, Fuxin; Cheng, Yen-fu; Wang, Xiaohui L.; Edge, Albert S. B.

    2010-01-01

    Atoh1, a basic helix-loop-helix transcription factor, plays a critical role in the differentiation of several epithelial and neural cell types. We found that β-catenin, the key mediator of the canonical Wnt pathway, increased expression of Atoh1 in mouse neuroblastoma cells and neural progenitor cells, and baseline Atoh1 expression was decreased by siRNA directed at β-catenin. The up-regulation of Atoh1 was caused by an interaction of β-catenin with the Atoh1 enhancer that could be demonstrated by chromatin immunoprecipitation. We found that two putative Tcf-Lef sites in the 3′ enhancer of the Atoh1 gene displayed an affinity for β-catenin and were critical for the activation of Atoh1 transcription because mutation of either site decreased expression of a reporter gene downstream of the enhancer. Tcf-Lef co-activators were found in the complex that bound to these sites in the DNA together with β-catenin. Inhibition of Notch signaling, which has previously been shown to induce bHLH transcription factor expression, increased β-catenin expression in progenitor cells of the nervous system. Because this could be a mechanism for up-regulation of Atoh1 after inhibition of Notch, we tested whether siRNA to β-catenin prevented the increase in Atoh1 and found that β-catenin expression was required for increased expression of Atoh1 after Notch inhibition. PMID:19864427

  3. Rho/ROCK pathway is essential to the expansion, differentiation, and morphological rearrangements of human neural stem/progenitor cells induced by lysophosphatidic acid.

    PubMed

    Frisca, Frisca; Crombie, Duncan E; Dottori, Mirella; Goldshmit, Yona; Pébay, Alice

    2013-05-01

    We previously reported that lysophosphatidic acid (LPA) inhibits the neuronal differentiation of human embryonic stem cells (hESC). We extended these studies by analyzing LPA's effects on the expansion of neural stem/progenitor cells (NS/PC) derived from hESCs and human induced pluripotent stem cells (iPSC), and we assessed whether data obtained on the neural differentiation of hESCs were relevant to iPSCs. We showed that hESCs and iPSCs exhibited comparable mRNA expression profiles of LPA receptors and producing enzymes upon neural differentiation. We demonstrated that LPA inhibited the expansion of NS/PCs of both origins, mainly by increased apoptosis in a Rho/Rho-associated kinase (ROCK)-dependent mechanism. Furthermore, LPA inhibited the neuronal differentiation of iPSCs. Lastly, LPA induced neurite retraction of NS/PC-derived early neurons through Rho/ROCK, which was accompanied by myosin light chain (MLC) phosphorylation. Our data demonstrate the consistency of LPA effects across various sources of human NS/PCs, rendering hESCs and iPSCs valuable models for studying lysophospholipid signaling in human neural cells. Our data also highlight the importance of the Rho/ROCK pathway in human NS/PCs. As LPA levels are increased in the central nervous system (CNS) following injury, LPA-mediated effects on NS/PCs and early neurons could contribute to the poor neurogenesis observed in the CNS following injury.

  4. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors.

    PubMed

    Song, Juhyun; Kumar, Bokara Kiran; Kang, Somang; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-12-01

    Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.

  5. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically

  6. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    PubMed Central

    Christie, Kimberly J.; Turnley, Ann M.

    2012-01-01

    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046

  7. Modulation of the Innate Immune Response by Human Neural Precursors Prevails over Oligodendrocyte Progenitor Remyelination to Rescue a Severe Model of Pelizaeus-Merzbacher Disease.

    PubMed

    Marteyn, Antoine; Sarrazin, Nadège; Yan, Jun; Bachelin, Corinne; Deboux, Cyrille; Santin, Mathieu D; Gressens, Pierre; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2016-04-01

    Pelizaeus-Merzbacher disease (PMD) results from an X-linked misexpression of proteolipid protein 1 (PLP1). This leukodystrophy causes severe hypomyelination with progressive inflammation, leading to neurological dysfunctions and shortened life expectancy. While no cure exists for PMD, experimental cell-based therapy in the dysmyelinated shiverer model suggested that human oligodendrocyte progenitor cells (hOPCs) or human neural precursor cells (hNPCs) are promising candidates to treat myelinopathies. However, the fate and restorative advantages of human NPCs/OPCs in a relevant model of PMD has not yet been addressed. Using a model of Plp1 overexpression, resulting in demyelination with progressive inflammation, we compared side-by-side the therapeutic benefits of intracerebrally grafted hNPCs and hOPCs. Our findings reveal equal integration of the donor cells within presumptive white matter tracks. While the onset of exogenous remyelination was earlier in hOPCs-grafted mice than in hNPC-grafted mice, extended lifespan occurred only in hNPCs-grafted animals. This improved survival was correlated with reduced neuroinflammation (microglial and astrocytosis loads) and microglia polarization toward M2-like phenotype followed by remyelination. Thus modulation of neuroinflammation combined with myelin restoration is crucial to prevent PMD pathology progression and ensure successful rescue of PMD mice. These findings should help to design novel therapeutic strategies combining immunomodulation and stem/progenitor cell-based therapy for disorders associating hypomyelination with inflammation as observed in PMD. © 2015 AlphaMed Press.

  8. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases.

    PubMed

    Sugai, Keiko; Fukuzawa, Ryuji; Shofuda, Tomoko; Fukusumi, Hayato; Kawabata, Soya; Nishiyama, Yuichiro; Higuchi, Yuichiro; Kawai, Kenji; Isoda, Miho; Kanematsu, Daisuke; Hashimoto-Tamaoki, Tomoko; Kohyama, Jun; Iwanami, Akio; Suemizu, Hiroshi; Ikeda, Eiji; Matsumoto, Morio; Kanemura, Yonehiro; Nakamura, Masaya; Okano, Hideyuki

    2016-09-19

    The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.

  9. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration.

    PubMed

    Jones, Melissa K; Lu, Bin; Saghizadeh, Mehrnoosh; Wang, Shaomei

    2016-01-01

    Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell-based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell-based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. RNA-seq data of retinas from RCS rats injected with hNPCs (RCS(hNPCs)) were compared to sham surgery in RCS (RCS(sham)) and wild-type Long Evans (LE(sham)) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCS(sham) and LE(sham) samples. Additionally, 283 genes were differentially expressed between the RCS(hNPCs) and RCS(sham) samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCS(sham). Pathway analysis of the differential expression gene sets identified three affected pathways in RCS(hNPCs), which all play roles in phagocytosis signaling. Immunofluorescent staining

  10. Highly Expandable Human iPS Cell-Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and High-Throughput Screening.

    PubMed

    Cheng, Chialin; Fass, Daniel M; Folz-Donahue, Kat; MacDonald, Marcy E; Haggarty, Stephen J

    2017-01-11

    Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Repair kinetics of DNA double-strand breaks and incidence of apoptosis in mouse neural stem/progenitor cells and their differentiated neurons exposed to ionizing radiation.

    PubMed

    Kashiwagi, Hiroki; Shiraishi, Kazunori; Sakaguchi, Kenta; Nakahama, Tomoya; Kodama, Seiji

    2018-05-01

    Neuronal loss leads to neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease. Because of their long lifespans, neurons are assumed to possess highly efficient DNA repair ability and to be able to protect themselves from deleterious DNA damage such as DNA double-strand breaks (DSBs) produced by intrinsic and extrinsic sources. However, it remains largely unknown whether the DSB repair ability of neurons is more efficient compared with that of other cells. Here, we investigated the repair kinetics of X-ray-induced DSBs in mouse neural cells by scoring the number of phosphorylated 53BP1 foci post irradiation. We found that p53-independent apoptosis was induced time dependently during differentiation from neural stem/progenitor cells (NSPCs) into neurons in culture for 48 h. DSB repair in neurons differentiated from NSPCs in culture was faster than that in mouse embryonic fibroblasts (MEFs), possibly due to the higher DNA-dependent protein kinase activity, but it was similar to that in NSPCs. Further, the incidence of p53-dependent apoptosis induced by X-irradiation in neurons was significantly higher than that in NSPCs. This difference in response of X-ray-induced apoptosis between neurons and NSPCs may reflect a difference in the fidelity of non-homologous end joining or a differential sensitivity to DNA damage other than DSBs.

  12. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field.

    PubMed

    Nishiyama, Yuichiro; Iwanami, Akio; Kohyama, Jun; Itakura, Go; Kawabata, Soya; Sugai, Keiko; Nishimura, Soraya; Kashiwagi, Rei; Yasutake, Kaori; Isoda, Miho; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2016-06-01

    Stem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Targeted Knockdown of Bone Morphogenetic Protein Signaling within Neural Progenitors Protects the Brain and Improves Motor Function following Postnatal Hypoxia-Ischemia

    PubMed Central

    Dettman, Robert W.; Birch, Derin; Fernando, Augusta; Kessler, John A.; Dizon, Maria L.V.

    2018-01-01

    Hypoxic-ischemic injury (HI) to the neonatal human brain results in myelin loss that, in some children, can manifest as cerebral palsy. Previously, we had found that neuronal overexpression of the bone morphogenic protein (BMP) inhibitor noggin during development increased oligodendroglia and improved motor function in an experimental model of HI utilizing unilateral common carotid artery ligation followed by hypoxia. As BMPs are known to negatively regulate oligodendroglial fate specification of neural stem cells and alter differentiation of committed oligodendroglia, BMP signaling is likely an important mechanism leading to myelin loss. Here, we showed that BMP signaling is upregulated within oligodendroglia of the neonatal brain. We tested the hypothesis that inhibition of BMP signaling specifically within neural progenitor cells (NPCs) is sufficient to protect oligodendroglia. We conditionally deleted the BMP receptor 2 subtype (BMPR2) in NG2-expressing cells after HI. We found that BMPR2 deletion globally protects the brain as assessed by MRI and protects motor function as assessed by digital gait analysis, and that conditional deletion of BMPR2 maintains oligodendrocyte marker expression by immunofluorescence and Western blot and prevents loss of oligodendroglia. Finally, BMPR2 deletion after HI results in an increase in noncompacted myelin. Thus, our data indicate that inhibition of BMP signaling specifically in NPCs may be a tractable strategy to protect the newborn brain from HI. PMID:29324456

  14. Caspase inhibitors increase the rate of recovery of neural stem/progenitor cells from post-mortem rat brains stored at room temperature.

    PubMed

    Hasegawa, Atsuko; Yamada, Chikako; Tani, Miho; Hirano, Shun-ichiro; Tokumoto, Yasuhito; Miyake, Jun

    2009-06-01

    To match the demand of regenerative medicine for nerve system, collection of stem cells from the post-mortem body is one of the most practical ways. In this study, the storage condition of the post-mortem body was examined. We prepared neural stem/progenitor cells (NSPCs) from post-mortem rat brains stored at different temperatures. When brains were stored at 4 degrees C, for one week, we were able to obtain neurospheres (a spheroid body containing NSPCs) by stimulation of cells with epidermal growth factor (EGF). Incremental increases in storage temperature decreased the rate of appearance of neurospheres. Within 48 h at 15 degrees C, 24 h at 25 degrees C, in both condition, we were able to recover NSPCs from post-mortem rat brains. At 15 degrees C, 90% of neurosphere-forming activity was lost within 24 h. However, even after 24 h at 25 degrees C, 2% neurosphere-forming activity remained. After 6 h of death, there was very little difference between the rates of NSPC recovery at 4 degrees C and 25 degrees C. Addition of caspase inhibitors to both the rat brain storage solution and the NSPC culture medium increased the rate of neurosphere-forming activity. In particular, an inhibitor of caspase-8 activity increased the NSPC recovery rate approximately three-fold, with no accompanying detrimental effects on neural differentiation in vitro.

  15. MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells

    PubMed Central

    Zhou, Y; Jiang, H; Gu, J; Tang, Y; Shen, N; Jin, Y

    2013-01-01

    Neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) have great potential in cell therapy, drug screening and toxicity testing of neural degenerative diseases. However, the molecular regulation of their proliferation and apoptosis, which needs to be revealed before clinical application, is largely unknown. MicroRNA miR-195 is known to be expressed in the brain and is involved in a variety of proapoptosis or antiapoptosis processes in cancer cells. Here, we defined the proapoptotic role of miR-195 in NPCs derived from two independent hESC lines (human embryonic stem cell-derived neural progenitor cells, hESC-NPCs). Overexpression of miR-195 in hESC-NPCs induced extensive apoptotic cell death. Consistently, global transcriptional microarray analyses indicated that miR-195 primarily regulated genes associated with apoptosis in hESC-NPCs. Mechanistically, a small GTP-binding protein ADP-ribosylation factor-like protein 2 (ARL2) was identified as a direct target of miR-195. Silencing ARL2 in hESC-NPCs provoked an apoptotic phenotype resembling that of miR-195 overexpression, revealing for the first time an essential role of ARL2 for the survival of human NPCs. Moreover, forced expression of ALR2 could abolish the cell number reduction caused by miR-195 overexpression. Interestingly, we found that paraquat, a neurotoxin, not only induced apoptosis but also increased miR-195 and reduced ARL2 expression in hESC-NPCs, indicating the possible involvement of miR-195 and ARL2 in neurotoxin-induced NPC apoptosis. Notably, inhibition of miR-195 family members could block neurotoxin-induced NPC apoptosis. Collectively, miR-195 regulates cell apoptosis in a context-dependent manner through directly targeting ARL2. The finding of the critical role of ARL2 for the survival of human NPCs and association of miR-195 and ARL2 with neurotoxin-induced apoptosis have important implications for understanding molecular mechanisms that control NPC survival and would

  16. Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates

    PubMed Central

    Tsunekawa, Yuji; Britto, Joanne M; Takahashi, Masanori; Polleux, Franck; Tan, Seong-Seng; Osumi, Noriko

    2012-01-01

    Asymmetric cell division plays an indispensable role during corticogenesis for producing new neurons while maintaining a self-renewing pool of apical progenitors. The cellular and molecular determinants favouring asymmetric division are not completely understood. Here, we identify a novel mechanism for generating cellular asymmetry through the active transportation and local translation of Cyclin D2 mRNA in the basal process. This process is regulated by a unique cis-regulatory sequence found in the 3′ untranslated region (3′UTR) of the mRNA. Unequal inheritance of Cyclin D2 protein to the basally positioned daughter cell with the basal process confers renewal of the apical progenitor after asymmetric division. Conversely, depletion of Cyclin D2 in the apically positioned daughter cell results in terminal neuronal differentiation. We demonstrate that Cyclin D2 is also expressed in the developing human cortex within similar domains, thus indicating that its role as a fate determinant is ancient and conserved. PMID:22395070

  17. Dopaminergic differentiation of neural progenitors derived from placental mesenchymal stem cells in the brains of Parkinson's disease model rats and alleviation of asymmetric rotational behavior.

    PubMed

    Park, Saeyoung; Kim, Eungpil; Koh, Seong-Eun; Maeng, Sungho; Lee, Won-Don; Lim, Jinho; Shim, Insop; Lee, Young-Jay

    2012-07-23

    Parkinson's disease (PD) is caused by the progressive loss of dopaminergic neurons in the mesencephalic substantia nigra and is accompanied by behavioral abnormalities. Pharmacological administration of L-dihydroxyphenylalanine (l-dopa) improves the abnormalities in the early phase of the illness, but numerous adverse effects hinder long-term administration. Transplantation of fetal mesencephalic tissues has been suggested as an alternative to l-dopa treatment; however, the use of human fetal tissues is controversial. Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation and are thus a promising substitute for fetal tissue for the replacement of diseased tissues or organs. Previously, this group isolated 17 independent MSCs from the first trimester human placenta (termed first trimester placental MSCs, or fPMSCs) and reported their successful in vitro differentiation into fPMSC-derived neural progenitors (fPMSC-NPs) (Park et al., Placenta 2011; 32:269-276). In the current study, the in vitro-generated fPMSC-NPs were transplanted into the striatum of a rat model of PD to evaluate whether they could undergo terminal differentiation and mediate behavioral recovery. As early as 2 weeks after transplantation, a minor but significant amelioration of rotational asymmetry was observed, and near-normal motor function was achieved at 24weeks. Immunohistochemical and positron emission tomography (PET) analyses provided experimental evidence for the dopaminergic differentiation of the transplanted progenitors. These results show that in vitro-generated fPMSC-NPs are capable of terminal differentiation in vivo and can attenuate motor defects associated with PD. Hence, the placenta is an auspicious source of stem cells for the therapeutic treatment of neurological disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. GSK3β, But Not GSK3α, Inhibits the Neuronal Differentiation of Neural Progenitor Cells As a Downstream Target of Mammalian Target of Rapamycin Complex1

    PubMed Central

    Ahn, Jyhyun; Jang, Jiwon; Choi, Jinyong; Lee, Junsub; Oh, Seo-Ho; Lee, Junghun; Yoon, Keejung

    2014-01-01

    Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway. PMID:24397546

  19. Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Glycogen Synthase Kinase 3 Beta

    PubMed Central

    Zhu, Zhenzhong; Kremer, Penny; Tadmori, Iman; Ren, Yi; Sun, Dongming; He, Xijing; Young, Wise

    2011-01-01

    Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer. PMID:21931595

  20. Levels of Neural Progenitors in the Hippocampus Predict Memory Impairment and Relapse to Drug Seeking as a Function of Excessive Methamphetamine Self-Administration

    PubMed Central

    Recinto, Patrick; Samant, Anjali Rose H; Chavez, Gustavo; Kim, Airee; Yuan, Clara J; Soleiman, Matthew; Grant, Yanabel; Edwards, Scott; Wee, Sunmee; Koob, George F; George, Olivier; Mandyam, Chitra D

    2012-01-01

    Methamphetamine affects the hippocampus, a brain region crucial for learning and memory, as well as relapse to drug seeking. Rats self-administered methamphetamine for 1 h twice weekly (intermittent-short-I-ShA), 1 h daily (limited-short-ShA), or 6 h daily (extended-long-LgA) for 22 sessions. After 22 sessions, rats from each access group were withdrawn from self-administration and underwent spatial memory (Y-maze) and working memory (T-maze) tests followed by extinction and reinstatement to methamphetamine seeking or received one intraperitoneal injection of 5-bromo-2′-deoxyuridine (BrdU) to label progenitors in the hippocampal subgranular zone (SGZ) during the synthesis phase. Two-hour-old and 28-day-old surviving BrdU-immunoreactive cells were quantified. I-ShA rats performed better on the Y-maze and had a greater number of 2-h-old SGZ BrdU cells than nondrug controls. LgA rats, but not ShA rats, performed worse on the Y- and T-maze and had a fewer number of 2-h-old SGZ BrdU cells than nondrug and I-ShA rats, suggesting that new hippocampal progenitors, decreased by methamphetamine, were correlated with impairment in the acquisition of new spatial cues. Analyses of addiction-related behaviors after withdrawal and extinction training revealed methamphetamine-primed reinstatement of methamphetamine-seeking behavior in all three groups (I-ShA, ShA, and LgA), and this effect was enhanced in LgA rats compared with I-ShA and ShA rats. Protracted withdrawal from self-administration enhanced the survival of SGZ BrdU cells, and methamphetamine seeking during protracted withdrawal enhanced Fos expression in the dentate gyrus and medial prefrontal cortex in LgA rats to a greater extent than in ShA and I-ShA rats. These results indicate that changes in the levels of the proliferation and survival of hippocampal neural progenitors and neuronal activation of hippocampal granule cells predict the effects of methamphetamine self-administration (limited vs extended

  1. The effect of pulsed electric fields on the electrotactic migration of human neural progenitor cells through the involvement of intracellular calcium signaling.

    PubMed

    Hayashi, Hisamitsu; Edin, Fredrik; Li, Hao; Liu, Wei; Rask-Andersen, Helge

    2016-12-01

    Endogenous electric fields (EFs) are required for the physiological control of the central nervous system development. Application of the direct current EFs to neural stem cells has been studied for the possibility of stem cell transplantation as one of the therapies for brain injury. EFs generated within the nervous system are often associated with action potentials and synaptic activity, apparently resulting in a pulsed current in nature. The aim of this study is to investigate the effect of pulsed EF, which can reduce the cytotoxicity, on the migration of human neural progenitor cells (hNPCs). We applied the mono-directional pulsed EF with a strength of 250mV/mm to hNPCs for 6h. The migration distance of the hNPCs exposed to pulsed EF was significantly greater compared with the control not exposed to the EF. Pulsed EFs, however, had less of an effect on the migration of the differentiated hNPCs. There was no significant change in the survival of hNPCs after exposure to the pulsed EF. To investigate the role of Ca 2+ signaling in electrotactic migration of hNPCs, pharmacological inhibition of Ca 2+ channels in the EF-exposed cells revealed that the electrotactic migration of hNPCs exposed to Ca 2+ channel blockers was significantly lower compared to the control group. The findings suggest that the pulsed EF induced migration of hNPCs is partly influenced by intracellular Ca 2+ signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparing neural stem/progenitor cells in PuraMatrix hydrogel for transplantation after brain injury in rats: A comparative methodological study.

    PubMed

    Aligholi, Hadi; Rezayat, Seyed Mahdi; Azari, Hassan; Ejtemaei Mehr, Shahram; Akbari, Mohammad; Modarres Mousavi, Seyed Mostafa; Attari, Fatemeh; Alipour, Fatemeh; Hassanzadeh, Gholamreza; Gorji, Ali

    2016-07-01

    Cultivation of neural stem/progenitor cells (NS/PCs) in PuraMatrix (PM) hydrogel is an option for stem cell transplantation. The efficacy of a novel method for placing adult rat NS/PCs in PM (injection method) was compared to encapsulation and surface plating approaches. In addition, the efficacy of injection method for transplantation of autologous NS/PCs was studied in a rat model of brain injury. NS/PCs were obtained from the subventricular zone (SVZ) and cultivated without (control) or with scaffold (three-dimensional cultures; 3D). The effect of different approaches on survival, proliferation, and differentiation of NS/PCs were investigated. In in vivo study, brain injury was induced 45 days after NS/PCs were harvested from the SVZ and phosphate buffered saline, PM, NS/PCs, or PM+NS/PCs were injected into the brain lesion. There was an increase in cell viability and proliferation after injection and surface plating of NS/PCs compared to encapsulation and neural differentiation markers were expressed seven days after culturing the cells. Using injection method, transplantation of NS/PCs cultured in PM resulted in significant reduction of lesion volume, improvement of neurological deficits, and enhancement of surviving cells. In addition, the transplanted cells could differentiate in to neurons, astrocytes, or oligodendrocytes. Our results indicate that the injection and surface plating methods enhanced cell survival and proliferation of NS/PCs and suggest the injection method as a promising approach for transplantation of NS/PCs in brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Estradiol-17β-Induced Human Neural Progenitor Cell Proliferation Is Mediated by an Estrogen Receptor β-Phosphorylated Extracellularly Regulated Kinase Pathway

    PubMed Central

    Wang, Jun Ming; Liu, Lifei; Brinton, Roberta Diaz

    2008-01-01

    Estradiol-17β (E2) induces rodent hippocampal neural progenitor cell (NPC) proliferation in vitro, in vivo, and after brain injury. The purpose of the present investigation was to determine whether E2-induced proliferation observed in rodent model systems generalized to cells of human neural origin and the signaling pathway by which E2 promotes mitosis of human NPCs (hNPCs). Results of these analyses indicate that E2 induced a significant increase in hNPC proliferation in a time- and dose-dependent manner. E2-induced hNPC DNA replication was paralleled by elevated cell cycle protein expression and centrosome amplification, which was associated with augmentation of total cell number. To determine whether estrogen receptor (ER) and which ER subtype were required for E2-induced hNPC proliferation, ER expression was first determined by real-time RT-PCR, followed by Western blot analysis, and subsequently verified pharmacologically using ERα or β-selective ligands. Results of these analyses indicated that ERβ expression was predominant relative to ERα, which was barely detectable in hNPCs. Activation of ERβ by the ERβ-selective ligand, diarylpropionitrile, led to an increase in phosphorylated extracellular signal-regulated kinase, and subsequent centrosome amplification and hNPC proliferation, which were blocked by the MEKK antagonist, UO126, but not its inactive analog, UO124. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2-induced hNPC proliferation in vitro. Therapeutic implications of these findings relevant to hormone therapy and prevention of neurodegenerative disease are discussed. PMID:17962344

  4. Engraftment and Differentiation of Embryonic Stem Cell–Derived Neural Progenitor Cells in the Cochlear Nerve Trunk: Growth of Processes into the Organ of Corti

    PubMed Central

    Corrales, C. Eduardo; Pan, Luying; Li, Huawei; Liberman, M. Charles; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal’s canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. PMID:17013931

  5. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    PubMed

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture

    PubMed Central

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. PMID:27821713

  7. Neural Stem Cell or Human Induced Pluripotent Stem Cell-derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy

    PubMed Central

    Upadhya, Dinesh; Hattiangady, Bharathi; Shetty, Geetha A.; Zanirati, Gabriele; Kodali, Maheedhar; Shetty, Ashok K.

    2016-01-01

    Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. PMID:27532817

  8. Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson's disease.

    PubMed

    Ebert, Allison D; Beres, Amy J; Barber, Amelia E; Svendsen, Clive N

    2008-01-01

    Growth factors such as glial cell line-derived neurotrophic factor (GDNF) have been shown to prevent neurodegeneration and promote regeneration in many animal models of Parkinson's disease (PD). Insulin-like growth factor 1 (IGF-1) is also known to have neuroprotective effects in a number of disease models but has not been extensively studied in models of PD. We produced human neural progenitor cells (hNPC) releasing either GDNF or IGF-1 and transplanted them into a rat model of PD. hNPC secreting either GDNF or IGF-1 were shown to significantly reduce amphetamine-induced rotational asymmetry and dopamine neuron loss when transplanted 7 days after a 6-hydroxydopamine (6-OHDA) lesion. Neither untransduced hNPC nor a sham transplant had this effect suggesting GDNF and IGF-1 release was required. Interestingly, GDNF, but not IGF-1, was able to protect or regenerate tyrosine hydroxylase-positive fibers in the striatum. In contrast, IGF-1, but not GDNF, significantly increased the overall survival of hNPC both in vitro and following transplantation. This suggests a dual role of IGF-1 to both increase hNPC survival after transplantation and exert trophic effects on degenerating dopamine neurons in this rat model of PD.

  9. Establishment of a Human Neuronal Network Assessment System by Using a Human Neuron/Astrocyte Co-Culture Derived from Fetal Neural Stem/Progenitor Cells.

    PubMed

    Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi

    2016-01-01

    Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.

  10. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    PubMed

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. ChIP-Chip Identifies SEC23A, CFDP1, and NSD1 as TFII-I Target Genes in Human Neural Crest Progenitor Cells.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2013-05-01

    Objectives :  GTF2I and GTF2IRD1 genes located in Williams-Beuren syndrome (WBS) critical region encode TFII-I family transcription factors. The aim of this study was to map genomic sites bound by these proteins across promoter regions of developmental regulators associated with craniofacial development. Design :  Chromatin was isolated from human neural crest progenitor cells and the DNA-binding profile was generated using the human RefSeq tiling promoter ChIP-chip arrays. Results :  TFII-I transcription factors are recruited to the promoters of SEC23A, CFDP1, and NSD1 previously defined as TFII-I target genes. Moreover, our analysis revealed additional binding elements that contain E-boxes and initiator-like motifs. Conclusions :  Genome-wide promoter binding studies revealed SEC23A, CFDP1, and NSD1 linked to craniofacial or dental development as direct TFII-I targets. Developmental regulation of these genes by TFII-I factors could contribute to the WBS-specific facial dysmorphism.

  12. Grafting of neural stem and progenitor cells to the hippocampus of young, irradiated mice causes gliosis and disrupts the granule cell layer

    PubMed Central

    Sato, Y; Shinjyo, N; Sato, M; Osato, K; Zhu, C; Pekna, M; Kuhn, H G; Blomgren, K

    2013-01-01

    Ionizing radiation persistently reduces the pool of neural stem and progenitor cells (NSPCs) in the dentate gyrus (DG) of the hippocampus, which may explain some of the learning deficits observed in patients treated with radiotherapy, particularly pediatric patients. A single dose of 8 Gy irradiation (IR) was administered to the brains of postnatal day 14 (P14) C57BL/6 mice and 1.0 × 105 bromodeoxyuridine-labeled, syngeneic NSPCs were injected into the hippocampus 1 day, 1 week or 6 weeks after IR. Cell survival and phenotype were evaluated 5 weeks after grafting. When grafted 1 day post-IR, survival and neuronal differentiation of the transplanted NSPCs were lower in irradiated brains, whereas the survival and cell fate of grafted cells were not significantly different between irradiated and control brains when transplantation was performed 1 or 6 weeks after IR. A young recipient brain favored neuronal development of grafted cells, whereas the older recipient brains displayed an increasing number of cells developing into astrocytes or unidentified cells. Injection of NSPCs, but not vehicle, induced astrogliosis and reduced thickness of the dorsal blade of the GCL after 5 months. In summary, we demonstrate that age and interval between IR and grafting can affect survival and differentiation of grafted NSPCs. The observed long-term gliosis and degeneration warrant caution in the context of NSPC grafting for therapeutical purposes. PMID:23598403

  13. Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis.

    PubMed

    Doeppner, Thorsten R; Traut, Viktorija; Heidenreich, Alexander; Kaltwasser, Britta; Bosche, Bert; Bähr, Mathias; Hermann, Dirk M

    2017-03-01

    Adult neural progenitor cells (NPCs) induce post-ischemic long-term neuroprotection and brain remodeling by releasing of survival- and plasticity-promoting mediators. To evaluate whether secreted factors may mimic neuroprotective and restorative effects of NPCs, we exposed male C57BL6 mice to focal cerebral ischemia and intravenously applied conditioned medium (CM) derived from subventricular zone NPCs. CM dose-dependently reduced infarct volume and brain leukocyte infiltration after 48 h when delivered up to 12 h after focal cerebral ischemia. Neuroprotection persisted in the post-acute stroke phase yielding enhanced neurological recovery that lasted throughout the 28-day observation period. Increased Bcl-2, phosphorylated Akt and phosphorylated STAT-3 abundance, and reduced caspase-3 activity and Bax abundance were noted in ischemic brains of CM-treated mice at 48 h post-stroke, indicative of enhanced cell survival signaling. Long-term neuroprotection was associated with increased brain glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) concentrations at 28 days resulting in increased neurogenesis and angiogenesis. The observation that NPC-derived CM induces sustained neuroprotection and neurological recovery suggests that cell transplantation may be dispensable when secreted factors are instead administered.

  14. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

    PubMed

    Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing

    2017-08-03

    Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Novel insights into the role of NF-κB p50 in astrocyte-mediated fate specification of adult neural progenitor cells

    PubMed Central

    Bortolotto, Valeria; Grilli, Mariagrazia

    2017-01-01

    Within the CNS nuclear factor-kappa B (NF-κB) transcription factors are involved in a wide range of functions both in homeostasis and in pathology. Over the years, our and other groups produced a vast array of information on the complex involvement of NF-κB proteins in different aspects of postnatal neurogenesis. In particular, several extracellular signals and membrane receptors have been identified as being able to affect neural progenitor cells (NPC) and their progeny via NF-κB activation. A crucial role in the regulation of neuronal fate specification in adult hippocampal NPC is played by the NF-κB p50 subunit. NF-κB p50KO mice display a remarkable reduction in adult hippocampal neurogenesis which correlates with a selective defect in hippocampal-dependent short-term memory. Moreover absence of NF-κB p50 can profoundly affect the in vitro proneurogenic response of adult hippocampal NPC (ahNPC) to several endogenous signals and drugs. Herein we briefly review the current knowledge on the pivotal role of NF-κB p50 in the regulation of adult hippocampal neurogenesis. In addition we discuss more recent data that further extend the relevance of NF-κB p50 to novel astroglia-derived signals which can influence neuronal specification of ahNPC and to astrocyte-NPC cross-talk. PMID:28469638

  16. Delivery of enteric neural progenitors with 5-HT4 agonist-loaded nanoparticles and thermosensitive hydrogel enhances cell proliferation and differentiation following transplantation in vivo

    PubMed Central

    Graham, Hannah K.; Nagy, Nandor; Belkind-Gerson, Jaime; Mattheolabakis, George; Amiji, Mansoor M.; Goldstein, Allan M.

    2016-01-01

    Cell therapy offers an innovative approach for treating enteric neuropathies. Postnatal gut-derived enteric neural stem/progenitor cells (ENSCs) represent a potential autologous source, but have a limited capacity for proliferation and neuronal differentiation. Since serotonin (5-HT) promotes enteric neuronal growth during embryonic development, we hypothesized that serotonin receptor agonism would augment growth of neurons from transplanted ENSCs. Postnatal ENSCs were isolated from 2-4 week-old mouse colon and cultured with 5-HT4 receptor agonist (RS67506)-loaded liposomal nanoparticles. ENSCs were co-cultured with mouse colon explants in the presence of RS67506-loaded (n=3) or empty nanoparticles (n=3). ENSCs were also transplanted into mouse rectum in vivo with RS67506-loaded (n=8) or blank nanoparticles (n=4) confined in a thermosensitive hydrogel, Pluronic F-127. Neuronal density and proliferation were analyzed immunohistochemically. Cultured ENSCs gave rise to significantly more neurons in the presence of RS67506-loaded nanoparticles. Similarly, colon explants had significantly increased neuronal density when RS67506-loaded nanoparticles were present. Finally, following in vivo cell delivery, co-transplantation of ENSCs with 5-HT4 receptor agonist-loaded nanoparticles led to significantly increased neuronal density and proliferation. We conclude that optimization of postnatal ENSCs can support their use in cell-based therapies for neurointestinal diseases. PMID:26922325

  17. Proteomic Analysis of Zika Virus Infected Primary Human Fetal Neural Progenitors Suggests a Role for Doublecortin in the Pathological Consequences of Infection in the Cortex.

    PubMed

    Jiang, Xuan; Dong, Xiao; Li, Shi-Hua; Zhou, Yue-Peng; Rayner, Simon; Xia, Hui-Min; Gao, George F; Yuan, Hui; Tang, Ya-Ping; Luo, Min-Hua

    2018-01-01

    Zika virus (ZIKV) infection is associated with severe neurological defects in fetuses and newborns, such as microcephaly. However, the underlying mechanisms remain to be elucidated. In this study, proteomic analysis on ZIKV-infected primary human fetal neural progenitor cells (NPCs) revealed that virus infection altered levels of cellular proteins involved in NPC proliferation, differentiation and migration. The transcriptional levels of some of the altered targets were also confirmed by qRT-PCR. Among the altered proteins, doublecortin (DCX) plays an important role in NPC differentiation and migration. Results showed that ZIKV infection downregulated DCX, at both mRNA and protein levels, as early as 1 day post infection (1 dpi), and lasted throughout the virus replication cycle (4 days). The downregulation of DCX was also observed in a ZIKV-infected fetal mouse brain model, which displayed decreased body weight, brain size and weight, as well as defective cortex structure. By screening the ten viral proteins of ZIKV, we found that both the expression of NS4A and NS5 were correlated with the downregulation of both mRNA and protein levels of DCX in NPCs. These data suggest that DCX is modulated following infection of the brain by ZIKV. How these observed changes of DCX expression translate in the pathological consequences of ZIKV infection and if other cellular proteins are equally involved remains to be investigated.

  18. Transient enhancement of proliferation of neural progenitors and impairment of their long-term survival in p25 transgenic mice

    PubMed Central

    Dong, Fengping; Shu, Tianzhi; Zhou, Ying; Tsai, Li-Huei; Mao, Yingwei

    2016-01-01

    Cyclin-dependent kinase 5 (CDK5) regulates important neuronal functions via p35. p35 undergoes cleavage in response to neuronal activity and neurotoxic conditions to release its subunit p25. Although p25 has been implicated in various neurodegenerative diseases, the mechanisms by which p25 mediates neurodegenerative impairment have not been fully elucidated. We aimed to determine the role of p25-mediated neurodegeneration on neurogenesis in an inducible transgenic mouse line overexpressing p25 (p25 TG) in the forebrain. Adult neuronal progenitor cells (NPCs) were labeled with BrdU in vivo, which were significantly increased in numbers in the subventricular zone, the hippocampus, and the cortex of p25 TG mice. Consistently, more mitotic cells were observed in p25 TG mice than in controls, even in the cortex and the CA1, which are not neurogenic regions. BrdU-positive cells were negative for GFAP or γ-H2AX, suggesting that they are not astrocytes or dying cells. Neurospheres derived from the dentate gyrus and the cortex were significantly increased in p25 TG mice and can be differentiated into astrocytes and neurons. However, p25 TG decreased the long-term survival of proliferating NPCs and severely impaired adult neurogenesis. A Transwell co-culture system was used to assess the influence of p25-expressing primary neurons on adult NPCs. Co-culture with p25-expressing neurons downregulated Ki67 expression and upregulated cleaved caspase-3, indicating that the paracrine signaling in cell-cell communication is essential for NPC survival and proliferation. Moreover, increased CDK5 activity impairs Wnt activation. This study demonstrates that hyperactivation of p25 may temporarily enhance NPC proliferation, but impair their long-term survival. PMID:27283769

  19. Transient enhancement of proliferation of neural progenitors and impairment of their long-term survival in p25 transgenic mice.

    PubMed

    Zou, Donghua; Zhou, Yijing; Liu, Long; Dong, Fengping; Shu, Tianzhi; Zhou, Ying; Tsai, Li-Huei; Mao, Yingwei

    2016-06-28

    Cyclin-dependent kinase 5 (CDK5) regulates important neuronal functions via p35. p35 undergoes cleavage in response to neuronal activity and neurotoxic conditions to release its subunit p25. Although p25 has been implicated in various neurodegenerative diseases, the mechanisms by which p25 mediates neurodegenerative impairment have not been fully elucidated. We aimed to determine the role of p25-mediated neurodegeneration on neurogenesis in an inducible transgenic mouse line overexpressing p25 (p25 TG) in the forebrain. Adult neuronal progenitor cells (NPCs) were labeled with BrdU in vivo, which were significantly increased in numbers in the subventricular zone, the hippocampus, and the cortex of p25 TG mice. Consistently, more mitotic cells were observed in p25 TG mice than in controls, even in the cortex and the CA1, which are not neurogenic regions. BrdU-positive cells were negative for GFAP or γ-H2AX, suggesting that they are not astrocytes or dying cells. Neurospheres derived from the dentate gyrus and the cortex were significantly increased in p25 TG mice and can be differentiated into astrocytes and neurons. However, p25 TG decreased the long-term survival of proliferating NPCs and severely impaired adult neurogenesis. A Transwell co-culture system was used to assess the influence of p25-expressing primary neurons on adult NPCs. Co-culture with p25-expressing neurons downregulated Ki67 expression and upregulated cleaved caspase-3, indicating that the paracrine signaling in cell-cell communication is essential for NPC survival and proliferation. Moreover, increased CDK5 activity impairs Wnt activation. This study demonstrates that hyperactivation of p25 may temporarily enhance NPC proliferation, but impair their long-term survival.

  20. Spatio-temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells

    PubMed Central

    Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M.

    2015-01-01

    Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the

  1. Characterization of Human Hippocampal Neural Stem/Progenitor Cells and Their Application to Physiologically Relevant Assays for Multiple Ionotropic Glutamate Receptors.

    PubMed

    Fukushima, Kazuyuki; Tabata, Yoshikuni; Imaizumi, Yoichi; Kohmura, Naohiro; Sugawara, Michiko; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi

    2014-09-01

    The hippocampus is an important brain region that is involved in neurological disorders such as Alzheimer disease, schizophrenia, and epilepsy. Ionotropic glutamate receptors-namely,N-methyl-D-aspartate (NMDA) receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs), and kainic acid (KA) receptors (KARs)-are well known to be involved in these diseases by mediating long-term potentiation, excitotoxicity, or both. To predict the therapeutic efficacy and neuronal toxicity of drug candidates acting on these receptors, physiologically relevant systems for assaying brain region-specific human neural cells are necessary. Here, we characterized the functional differentiation of human fetal hippocampus-derived neural stem/progenitor cells-namely, HIP-009 cells. Calcium rise assay demonstrated that, after a 4-week differentiation, the cells responded to NMDA (EC50= 7.5 ± 0.4 µM; n= 4), AMPA (EC50= 2.5 ± 0.1 µM; n= 3), or KA (EC50= 33.5 ± 1.1 µM; n= 3) in a concentration-dependent manner. An AMPA-evoked calcium rise was observed in the absence of the desensitization inhibitor cyclothiazide. In addition, the calcium rise induced by these agonists was inhibited by antagonists for each receptor-namely, MK-801 for NMDA stimulation (IC50= 0.6 ± 0.1 µM; n= 4) and NBQX for AMPA and KA stimulation (IC50= 0.7 ± 0.1 and 0.7 ± 0.03 µM, respectively; n= 3). The gene expression profile of differentiated HIP-009 cells was distinct from that of undifferentiated cells and closely resembled that of the human adult hippocampus. Our results show that HIP-009 cells are a unique tool for obtaining human hippocampal neural cells and are applicable to systems for assay of ionotropic glutamate receptors as a physiologically relevant in vitro model. © 2014 Society for Laboratory Automation and Screening.

  2. Revocation of European patent for neural progenitors highlights patent challenges for inventions relating to human embryonic stem cells.

    PubMed

    Rigby, Barbara

    2013-11-01

    Cells derived from human embryonic stem cells have great therapeutic potential. Patents are key to allowing companies that develop methods of generating such cells to recuperate their investment. However, in Europe, inventions relating to the use of human embryos for commercial purposes are excluded from patentability on moral grounds. The scope of this morality exclusion was recently tested before Germany's highest court and before the European Patent Office (EPO), with diverging results. The decision by the EPO's Opposition Division to revoke EP1040185 relating to neural precursors and methods for their generation has received a mixed reception. The decision has very recently been appealed, and the outcome of this Appeal should provide more definitive guidance on the scope of the morality exclusion.

  3. Toward the Development of an Artificial Brain on a Micropatterned and Material-Regulated Biochip by Guiding and Promoting the Differentiation and Neurite Outgrowth of Neural Stem/Progenitor Cells.

    PubMed

    Liu, Yung-Chiang; Lee, I-Chi; Lei, Kin Fong

    2018-02-14

    An in vitro model mimicking the in vivo environment of the brain must be developed to study neural communication and regeneration and to obtain an understanding of cellular and molecular responses. In this work, a multilayered neural network was successfully constructed on a biochip by guiding and promoting neural stem/progenitor cell differentiation and network formation. The biochip consisted of 3 × 3 arrays of cultured wells connected with channels. Neurospheroids were cultured on polyelectrolyte multilayer (PEM) films in the culture wells. Neurite outgrowth and neural differentiation were guided and promoted by the micropatterns and the PEM films. After 5 days in culture, a 3 × 3 neural network was constructed on the biochip. The function and the connections of the network were evaluated by immunocytochemistry and impedance measurements. Neurons were generated and produced functional and recyclable synaptic vesicles. Moreover, the electrical connections of the neural network were confirmed by measuring the impedance across the neurospheroids. The current work facilitates the development of an artificial brain on a chip for investigations of electrical stimulations and recordings of multilayered neural communication and regeneration.

  4. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCβ activation.

    PubMed

    Murillo-Carretero, Maribel; Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; García-Bernal, Francisco; Navarro-Quiroz, Elkin A; Carrasco, Manuel; Macías-Sánchez, Antonio J; Herrero-Foncubierta, Pilar; Delgado-Ariza, Antonio; Verástegui, Cristina; Domínguez-Riscart, Jesús; Daoubi, Mourad; Hernández-Galán, Rosario; Castro, Carmen

    2017-07-01

    Pharmacological strategies aimed to facilitate neuronal renewal in the adult brain, by promoting endogenous neurogenesis, constitute promising therapeutic options for pathological or traumatic brain lesions. We have previously shown that non-tumour-promoting PKC-activating compounds (12-deoxyphorbols) promote adult neural progenitor cell (NPC) proliferation in vitro and in vivo, enhancing the endogenous neurogenic response of the brain to a traumatic injury. Here, we show for the first time that a diterpene with a lathyrane skeleton can also activate PKC and promote NPC proliferation. We isolated four lathyranes from the latex of Euphorbia plants and tested their effect on postnatal NPC proliferation, using neurosphere cultures. The bioactive lathyrane ELAC (3,12-di-O-acetyl-8-O-tigloilingol) was also injected into the ventricles of adult mice to analyse its effect on adult NPC proliferation in vivo. The lathyrane ELAC activated PKC and significantly increased postnatal NPC proliferation in vitro, particularly in synergy with FGF2. In addition ELAC stimulated proliferation of NPC, specifically affecting undifferentiated transit amplifying cells. The proliferative effect of ELAC was reversed by either the classical/novel PKC inhibitor Gö6850 or the classical PKC inhibitor Gö6976, suggesting that NPC proliferation is promoted in response to activation of classical PKCs, particularly PKCß. ELAC slightly increased the proportion of NPC expressing Sox2. The effects of ELAC disappeared upon acetylation of its C7-hydroxyl group. We propose lathyranes like ELAC as new drug candidates to modulate adult neurogenesis through PKC activation. Functional and structural comparisons between ELAC and phorboids are included. © 2017 The British Pharmacological Society.

  5. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    PubMed

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. Copyright © 2014. Published by Elsevier B.V.

  6. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    SciTech Connect

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E,more » a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.« less

  7. Heat shock protein 70 modulates neural progenitor cells dynamics in human neuroblastoma SH-SY5Y cells exposed to high glucose content.

    PubMed

    Salimi, Leila; Rahbarghazi, Reza; Jafarian, Vahab; Biray Avci, Çıgır; Goker Bagca, Bakiye; Pinar Ozates, Neslihan; Khaksar, Majid; Nourazarian, Alireza

    2018-01-18

    In the current experiment, detrimental effects of high glucose condition were investigated on human neuroblastoma cells. Human neuroblastoma cell line SH-SY5Y were exposed to 5, 40, and 70 mM glucose over a period of 72 h. Survival rate and the proliferation of cells were analyzed by MTT and BrdU incorporation assays. Apoptosis was studied by the assays of flow cytometry and PCR array. In order to investigate the trans-differentiation capacity of the cell into mature neurons, we used immunofluorescence imaging to follow NeuN protein level. The transcription level of HSP70 was shown by real-time PCR analysis. MMP-2 and -9 activities were shown by gelatin Zymography. According to data from MTT and BrdU incorporation assay, 70 mM glucose reduced cell viability and proliferation rate as compared to control (5 mM glucose) and cells treated with 40 mM glucose (P < 0.05). Cell exposure to 70 mM glucose had potential to induced apoptosis after 72 h (P < 0.05). Our results also demonstrated the sensitivity of SH-SY5Y cells to detrimental effects of high glucose condition during trans-differentiation into mature neuron-like cells. Real-time PCR analysis confirmed the expression of HSP70 in cells under high content glucose levels, demonstrating the possible cell compensatory response to an insulting condition (p control vs 70 mM group  <0.05). Both MMP-2 and -9 activities were reduced in cells being exposed to 70 mM glucose. High glucose condition could abrogate the dynamics of neural progenitor cells. The intracellular level of HSP70 was proportional to cell damage in high glucose condition. © 2018 Wiley Periodicals, Inc.

  8. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway.

    PubMed

    Wang, Qin; Chuikov, Sergei; Taitano, Sophina; Wu, Qi; Rastogi, Arjun; Tuck, Samuel J; Corey, Joseph M; Lundy, Steven K; Mao-Draayer, Yang

    2015-06-17

    Multiple sclerosis (MS) is the most common multifocal inflammatory demyelinating disease of the central nervous system (CNS). Due to the progressive neurodegenerative nature of MS, developing treatments that exhibit direct neuroprotective effects are needed. Tecfidera™ (BG-12) is an oral formulation of the fumaric acid esters (FAE), containing the active metabolite dimethyl fumarate (DMF). Although BG-12 showed remarkable efficacy in lowering relapse rates in clinical trials, its mechanism of action in MS is not yet well understood. In this study, we reported the potential neuroprotective effects of dimethyl fumarate (DMF) on mouse and rat neural stem/progenitor cells (NPCs) and neurons. We found that DMF increased the frequency of the multipotent neurospheres and the survival of NPCs following oxidative stress with hydrogen peroxide (H2O2) treatment. In addition, utilizing the reactive oxygen species (ROS) assay, we showed that DMF reduced ROS production induced by H2O2. DMF also decreased oxidative stress-induced apoptosis. Using motor neuron survival assay, DMF significantly promoted survival of motor neurons under oxidative stress. We further analyzed the expression of oxidative stress-induced genes in the NPC cultures and showed that DMF increased the expression of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) at both levels of RNA and protein. Furthermore, we demonstrated the involvement of Nrf2-ERK1/2 MAPK pathway in DMF-mediated neuroprotection. Finally, we utilized SuperArray gene screen technology to identify additional anti-oxidative stress genes (Gstp1, Sod2, Nqo1, Srxn1, Fth1). Our data suggests that analysis of anti-oxidative stress mechanisms may yield further insights into new targets for treatment of multiple sclerosis (MS).

  9. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway

    PubMed Central

    Wang, Qin; Chuikov, Sergei; Taitano, Sophina; Wu, Qi; Rastogi, Arjun; Tuck, Samuel J.; Corey, Joseph M.; Lundy, Steven K.; Mao-Draayer, Yang

    2015-01-01

    Multiple sclerosis (MS) is the most common multifocal inflammatory demyelinating disease of the central nervous system (CNS). Due to the progressive neurodegenerative nature of MS, developing treatments that exhibit direct neuroprotective effects are needed. Tecfidera™ (BG-12) is an oral formulation of the fumaric acid esters (FAE), containing the active metabolite dimethyl fumarate (DMF). Although BG-12 showed remarkable efficacy in lowering relapse rates in clinical trials, its mechanism of action in MS is not yet well understood. In this study, we reported the potential neuroprotective effects of dimethyl fumarate (DMF) on mouse and rat neural stem/progenitor cells (NPCs) and neurons. We found that DMF increased the frequency of the multipotent neurospheres and the survival of NPCs following oxidative stress with hydrogen peroxide (H2O2) treatment. In addition, utilizing the reactive oxygen species (ROS) assay, we showed that DMF reduced ROS production induced by H2O2. DMF also decreased oxidative stress-induced apoptosis. Using motor neuron survival assay, DMF significantly promoted survival of motor neurons under oxidative stress. We further analyzed the expression of oxidative stress-induced genes in the NPC cultures and showed that DMF increased the expression of transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) at both levels of RNA and protein. Furthermore, we demonstrated the involvement of Nrf2-ERK1/2 MAPK pathway in DMF-mediated neuroprotection. Finally, we utilized SuperArray gene screen technology to identify additional anti-oxidative stress genes (Gstp1, Sod2, Nqo1, Srxn1, Fth1). Our data suggests that analysis of anti-oxidative stress mechanisms may yield further insights into new targets for treatment of multiple sclerosis (MS). PMID:26090715

  10. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis.

    PubMed

    Wesley, Umadevi V; Hatcher, James F; Ayvaci, Emine R; Klemp, Abby; Dempsey, Robert J

    2017-09-01

    Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.

  11. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    PubMed

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  12. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome‐wide expression analysis

    PubMed Central

    Sirko, Swetlana; Beckers, Johannes; Irmler, Martin

    2015-01-01

    Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self‐renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long‐term self‐renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere‐forming capacity including multipotency and long‐term self‐renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome‐wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. GLIA 2015;63:1452–1468 PMID:25965557

  13. Human Fetal Brain-Derived Neural Stem/Progenitor Cells Grafted into the Adult Epileptic Brain Restrain Seizures in Rat Models of Temporal Lobe Epilepsy

    PubMed Central

    Lee, Haejin; Yun, Seokhwan; Kim, Il-Sun; Lee, Il-Shin; Shin, Jeong Eun; Park, Soo Chul; Kim, Won-Joo; Park, Kook In

    2014-01-01

    Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal

  14. Presence of stem/progenitor cells in the rat penis.

    PubMed

    Lin, Guiting; Alwaal, Amjad; Zhang, Xiaoyu; Wang, Jianwen; Wang, Lin; Li, Huixi; Wang, Guifang; Ning, Hongxiu; Lin, Ching-Shwun; Xin, Zhongcheng; Lue, Tom F

    2015-01-15

    Tissue resident stem cells are believed to exist in every organ, and their identification is commonly done using a combination of immunostaining for putative stem cell markers and label-retaining cell (LRC) strategy. In this study, we employed these approaches to identify potential stem cells in the penis. Newborn rats were intraperitoneally injected with thymidine analog, 5-ethynyl-2-deoxyuridine (EdU), and their penis was harvested at 7 h, 3 days, 1 week, and 4 weeks. It was processed for EdU stains and immunofluorescence staining for stem cell markers A2B5, PCNA, and c-kit. EdU-positive cells were counted for each time point and co-localized with each stem cell marker, then isolated and cultured in vitro followed by their characterization using flowcytometry and immunofluorescence. At 7 h post-EdU injection, 410 ± 105.3 penile corporal cells were labeled in each cross-section (∼28%). The number of EdU-positive cells at 3 days increased to 536 ± 115.6, while their percentage dropped to 25%. Progressively fewer EdU-positive cells were present in the sacrificed rat penis at longer time points (1 and 4 weeks). They were mainly distributed in the subtunic and perisinusoidal spaces, and defined as subtunic penile progenitor cells (STPCs) and perisinusoidal penile progenitor cells (PPCs). These cells expressed c-kit, A2B5, and PCNA. After culturing in vitro, only ∼0.324% corporal cells were EdU-labeled LRCs and expressed A2B5/PCNA. Therefore, labeling of penis cells by EdU occurred randomly, and label retaining was not associated with expression of c-kit, A2B5, or PCNA. The penile LRCs are mainly distributed within the subtunic and perisinusoidal space.

  15. Progenitor Epithelium

    PubMed Central

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  16. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  17. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-03-11

    following areas: (1) neural progenitor isolation from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic...from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic neurons, motoneurons and astrocytes using defined...progenitors from mixed populations, such as induced pluripotent stem cells (iPSCs). We also developed lentiviral based methods to generate iPSCs in

  18. Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke.

    PubMed

    Jablonska, Anna; Drela, Katarzyna; Wojcik-Stanaszek, Luiza; Janowski, Miroslaw; Zalewska, Teresa; Lukomska, Barbara

    2016-11-01

    Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a

  19. Transcriptional differences between normal and glioma-derived glial progenitor cells identify a core set of dysregulated genes.

    PubMed

    Auvergne, Romane M; Sim, Fraser J; Wang, Su; Chandler-Militello, Devin; Burch, Jaclyn; Al Fanek, Yazan; Davis, Danielle; Benraiss, Abdellatif; Walter, Kevin; Achanta, Pragathi; Johnson, Mahlon; Quinones-Hinojosa, Alfredo; Natesan, Sridaran; Ford, Heide L; Goldman, Steven A

    2013-06-27

    Glial progenitor cells (GPCs) are a potential source of malignant gliomas. We used A2B5-based sorting to extract tumorigenic GPCs from human gliomas spanning World Health Organization grades II-IV. Messenger RNA profiling identified a cohort of genes that distinguished A2B5+ glioma tumor progenitor cells (TPCs) from A2B5+ GPCs isolated from normal white matter. A core set of genes and pathways was substantially dysregulated in A2B5+ TPCs, which included the transcription factor SIX1 and its principal cofactors, EYA1 and DACH2. Small hairpin RNAi silencing of SIX1 inhibited the expansion of glioma TPCs in vitro and in vivo, suggesting a critical and unrecognized role of the SIX1-EYA1-DACH2 system in glioma genesis or progression. By comparing the expression patterns of glioma TPCs with those of normal GPCs, we have identified a discrete set of pathways by which glial tumorigenesis may be better understood and more specifically targeted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Small-scale screening of anticancer drugs acting specifically on neural stem/progenitor cells derived from human-induced pluripotent stem cells using a time-course cytotoxicity test.

    PubMed

    Fukusumi, Hayato; Handa, Yukako; Shofuda, Tomoko; Kanemura, Yonehiro

    2018-01-01

    Since the development of human-induced pluripotent stem cells (hiPSCs), various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-NSPCs) have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo . Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue-derived NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.

  1. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice

    PubMed Central

    Ju, Xiang-Chun; Hou, Qiong-Qiong; Sheng, Ai-Li; Wu, Kong-Yan; Zhou, Yang; Jin, Ying; Wen, Tieqiao; Yang, Zhengang; Wang, Xiaoqun; Luo, Zhen-Ge

    2016-01-01

    Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding. DOI: http://dx.doi.org/10.7554/eLife.18197.001 PMID:27504805

  2. Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells

    PubMed Central

    Li, Hongfu; Li, Qian; Du, Xiaonan; Sun, Yanyan; Wang, Xiaoyang; Kroemer, Guido; Blomgren, Klas; Zhu, Changlian

    2011-01-01

    The aim of this study was to evaluate the long-term effects of lithium treatment on neonatal hypoxic-ischemic brain injury, inflammation, and neural stem/progenitor cell (NSPC) proliferation and survival. Nine-day-old male rats were subjected to unilateral hypoxia-ischemia (HI) and 2 mmol/kg lithium chloride was injected intraperitoneally immediately after the insult. Additional lithium injections, 1 mmol/kg, were administered at 24-hour intervals for 7 days. Animals were killed 6, 24, 72 hours, or 7 weeks after HI. Lithium reduced total tissue loss by 69%, from 89.4±14.6 mm3 in controls (n=15) to 27.6±6.2 mm3 in lithium-treated animals (n=14) 7 weeks after HI (P<0.001). Microglia activation was inhibited by lithium treatment, as judged by Iba-1 and galectin-3 immunostaining, and reduced interleukin-1β and CCL2 levels. Lithium increased progenitor, rather than stem cell, proliferation in both nonischemic and ischemic brains, as judged by 5-bromo-2-deoxyuridine labeling 24 and 72 hours as well as by phospho-histone H3 and brain lipid-binding protein labeling 7 weeks after HI. Lithium treatment also promoted survival of newborn NSPCs, without altering the relative levels of neuronal and astroglial differentiation. In summary, lithium conferred impressive, morphological long-term protection against neonatal HI, at least partly by inhibiting inflammation and promoting NSPC proliferation and survival. PMID:21587270

  3. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development.

    PubMed

    Sakai, Daisuke; Trainor, Paul A

    2016-09-01

    One-third of all congenital birth defects affect the head and face, and most craniofacial anomalies are considered to arise through defects in the development of cranial neural crest cells. Cranial neural crest cells give rise to the majority of craniofacial bones, cartilages and connective tissues. Therefore, understanding the events that control normal cranial neural crest and subsequent craniofacial development is important for elucidating the pathogenetic mechanisms of craniofacial anomalies and for the exploring potential therapeutic avenues for their prevention. Treacher Collins syndrome (TCS) is a congenital disorder characterized by severe craniofacial anomalies. An animal model of TCS, generated through mutation of Tcof1, the mouse (Mus musculus) homologue of the gene primarily mutated in association with TCS in humans, has recently revealed significant insights into the pathogenesis of TCS. Apoptotic elimination of neuroepithelial cells including neural crest cells is the primary cause of craniofacial defects in Tcof1 mutant embryos. However, our understanding of the mechanisms that induce tissue-specific apoptosis remains incomplete. In this review, we describe recent advances in our understanding of the pathogenesis TCS. Furthermore, we discuss the role of Tcof1 in normal embryonic development, the correlation between genetic and environmental factors on the severity of craniofacial abnormalities, and the prospect for prenatal prevention of craniofacial anomalies. © 2016 Japanese Society of Developmental Biologists.

  4. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development

    PubMed Central

    Sakai, Daisuke; Trainor, Paul A.

    2016-01-01

    One-third of all congenital birth defects affect the head and face, and most craniofacial anomalies are considered to arise through defects in the development of cranial neural crest cells. Cranial neural crest cells give rise to the majority of craniofacial bones, cartilages and connective tissues. Therefore understanding the events that control normal cranial neural crest and subsequent craniofacial development is important for elucidating the pathogenetic mechanisms of craniofacial anomalies and for the exploring potential therapeutic avenues for their prevention. Treacher Collins syndrome (TCS) is a congenital disorder characterized by severe craniofacial anomalies. An animal model of TCS, generated through mutation of Tcof1, the mouse (Mus musculus) homologue of the gene primarily mutated in association with TCS in humans, has recently revealed significant insights into the pathogenesis of TCS. Apoptotic elimination of neuroepithelial cells including neural crest cells is the primary cause of craniofacial defects in Tcof1 mutant embryos. However our understanding of the mechanisms that induce tissue-specific apoptosis remains incomplete. In this review, we describe recent advances in our understanding of the pathogenesis TCS. Furthermore, we discuss the role of Tcof1 in normal embryonic development, the correlation between genetic and environmental factors on the severity of craniofacial abnormalities, and the prospect for prenatal prevention of craniofacial anomalies. PMID:27481486

  5. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B

    PubMed Central

    Shen, Wei-Bin; Plachez, Celine; Chan, Amanda; Yarnell, Deborah; Puche, Adam C; Fishman, Paul S; Yarowsky, Paul

    2013-01-01

    Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy. PMID:24348036

  6. Upregulated expression of Nogo-A and NgR in an experimental model of focal microgyria regulates the migration, proliferation and self-renewal of subventricular zone neural progenitors

    SciTech Connect

    Yu, Sixun; Shu, Haifeng; Yang, Tao

    Nogo-A and its receptor (NgR) were first described as myelin-associated inhibitors of neuronal regeneration in response to injury. In recent years, knowledge about the important role of the Nogo-A protein in several neuronal pathologies has grown considerably. Here, we employed a neonatal cortex freeze-lesion (NFL) model in neonatal rats and measured the expression of Nogo-A and NgR in the resulting cerebrocortical microdysgenesis 5–75 days after freezing injury. We observed marked upregulation of Nogo-A and NgR in protein levels. Furthermore, the migration of neural precursor cells (NPCs) derived from the subventricular zone (SVZ) toward the sits of injury was perturbed bymore » treatment of NgR antagonist peptide NEP1-40. In vitro analysis showed that the knockdown of NgR by lentivirus-delivered siRNA promoted in axonal regeneration and SVZ-derived neural stem cell/progenitor cell (SVZ-NPCs) adhesion and migration, findings which were similar to the effects of NEP1-40. Taken together, our results indicate an important role for NgR in regulating the physiological processes of SVZ-NPCs. The observation of upregulated Nogo-A/NgR in lesion sites in the NFL model suggest that the effects of the perturbed Nogo-A are a key feature during the development and/or the progression of cortical malformation. - Highlights: • NFL model is an accurate experimental reproduction of focal microgyria of FCD. • The increase of the Nogo-A Levels occurs in response to freeze-induced focal lesioning. • Nogo-A/NgR may play a critical role for in the pathologic progression of FCD. • Nogo-A is associated with the migration, proliferation and self-renewal of SVZ-NPCs.« less

  7. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway

    PubMed Central

    CHEN, BIN; TAO, JING; LIN, YUKUN; LIN, RUHUI; LIU, WEILIN; CHEN, LIDIAN

    2015-01-01

    Electro-acupuncture (EA) is a novel therapy based on combining traditional acupuncture with modern electrotherapy, and it is currently being investigated as a treatment for ischemic stroke. In the present study, we aimed to investigate the mechanisms through which EA regulates the proliferation of neural progenitor cells (NPCs) in the cortical peri-infarct area after stroke. The neuroprotective effects of EA on ischemic rats were evaluated by determining the neurological deficit scores and cerebral infarct volumes. The proliferation of the NPCs and the activation of the Wnt/β-catenin signaling pathway in the cortical peri-infarct area were examined. Our results revealed that EA significantly alleviated neurological deficits, reduced the infarct volume and enhanced NPC proliferation [nestin/glial fibrillary acidic protein (GFAP)-double positive] in the cortex of rats subjected to middle cerebral artery occlusion (MCAO). Moreover, the Wnt1 and β-catenin mRNA and protein levels were increased, while glycogen synthase kinase-3 (GSK3) transcription was suppressed by EA. These results suggest that the upregulatory effects of EA on the Wnt/β-catenin signaling pathway may promote NPC proliferation in the cortical peri-infarct area after stroke, consequently providing a therapeutic effect against cerebral ischemia. PMID:26329606

  8. Inhibition of GPR158 by microRNA-449a suppresses neural lineage of glioma stem/progenitor cells and correlates with higher glioma grades.

    PubMed

    Li, Ningning; Zhang, Ying; Sidlauskas, Kastytis; Ellis, Matthew; Evans, Ian; Frankel, Paul; Lau, Joanne; El-Hassan, Tedani; Guglielmi, Loredana; Broni, Jessica; Richard-Loendt, Angela; Brandner, Sebastian

    2018-05-03

    To identify biomarkers for glioma growth, invasion and progression, we used a candidate gene approach in mouse models with two complementary brain tumour phenotypes, developing either slow-growing, diffusely infiltrating gliomas or highly proliferative, non-invasive primitive neural tumours. In a microRNA screen we first identified microRNA-449a as most significantly differentially expressed between these two tumour types. miR-449a has a target dependent effect, inhibiting cell growth and migration by downregulation of CCND1 and suppressing neural phenotypes by inhibition of G protein coupled-receptor (GPR) 158. GPR158 promotes glioma stem cell differentiation and induces apoptosis and is highest expressed in the cerebral cortex and in oligodendrogliomas, lower in IDH mutant astrocytomas and lowest in the most malignant form of glioma, IDH wild-type glioblastoma. The correlation of GPR158 expression with molecular subtypes, patient survival and therapy response suggests a possible role of GPR158 as prognostic biomarker in human gliomas.

  9. The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation.

    PubMed

    Romine, Jennifer; Gao, Xiang; Xu, Xiao-Ming; So, Kwok Fai; Chen, Jinhui

    2015-04-01

    A decrease in neurogenesis in the aged brain has been correlated with cognitive decline. The molecular signaling that regulates age-related decline in neurogenesis is still not fully understood. We found that different subtypes of neural stem cells (NSCs) in the hippocampus were differentially impaired by aging. The quiescent NSCs decreased slowly, although the active NSCs exhibited a sharp and dramatic decline from the ages of 6-9 months and became more quiescent at an early stage during the aging process. The activity of the mammalian target of rapamycin (mTOR) signal pathway is compromised in the NSCs of the aged brain. Activating the mTOR signaling pathway increased NSC proliferation and promoted neurogenesis in aged mice. In contrast, inhibiting the mTOR signaling pathway decreased NSCs proliferation. These results indicate that an age-associated decline in neurogenesis is mainly because of the reduction in proliferation of active NSCs, at least partially because of the compromise in the mTOR signaling activity. Stimulating the mTOR signaling revitalizes the NSCs, restores their proliferation, and enhances neurogenesis in the hippocampus of the aged brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus.

    PubMed

    Rozmer, Katalin; Gao, Po; Araújo, Michelle G L; Khan, Muhammad Tahir; Liu, Juan; Rong, Weifang; Tang, Yong; Franke, Heike; Krügel, Ute; Fernandes, Maria José S; Illes, Peter

    2017-07-01

    Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors.

    PubMed

    Hachem, Laureen D; Mothe, Andrea J; Tator, Charles H

    2016-08-15

    Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.

  12. Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation.

    PubMed

    Gentile, Maria Teresa; Ciniglia, Claudia; Reccia, Mafalda G; Volpicelli, Floriana; Gatti, Monica; Thellung, Stefano; Florio, Tullio; Melone, Mariarosa A B; Colucci-D'Amato, Luca

    2015-01-01

    Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.

  13. Egr-1 is a critical regulator of EGF-receptor-mediated expansion of subventricular zone neural stem cells and progenitors during recovery from hypoxia–hypoglycemia

    PubMed Central

    Alagappan, Dhivyaa; Balan, Murugabaskar; Jiang, Yuhui; Cohen, Rachel B.; Kotenko, Sergei V.; Levison, Steven W.

    2013-01-01

    We recently established that the EGF-R (epidermal growth factor receptor) (EGF-R) is an essential regulator of the reactive expansion of SVZ (subventricular zone) NPs (neural precursors) that occurs during recovery from hypoxic-ischemic brain injury. The purpose of the current studies was to identify the conditions and the transcription factor (s) responsible for inducing the EGF-R. Here, we show that the increase in EGF-R expression and the more rapid division of the NPs can be recapitulated in in vitro by exposing SVZ NPs to hypoxia and hypoglycemia simultaneously, but not separately. The EGF-R promoter has binding sites for multiple transcription factors that includes the zinc finger transcription factor, Egr-1. We show that Egr-1 expression increases in NPs, but not astrocytes, following hypoxia and hypoglycemia where it accumulates in the nucleus. To determine whether Egr-1 is necessary for EGF-R expression, we used SiRNAs (small interfering RNA) specific for Egr-1 to decrease Egr-1 expression. Knocking-down Egr-1 decreased basal levels of EGF-R and it abolished the stress-induced increase in EGF-R expression. By contrast, HIF-1 accumulation did not contribute to EGF-R expression and FGF-2 only modestly induced EGF-R. These studies establish a new role for Egr-1 in regulating the expression of the mitogenic EGF-R. They also provide new information into mechanisms that promote NP expansion and provide insights into strategies for amplifying the numbers of stem cells for CNS (central nervous system) regeneration. PMID:23763269

  14. Grafted c-kit+/SSEA1- eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses.

    PubMed

    Chen, Xi; Chen, Zehua; Li, Zhengya; Zhao, Chen; Zeng, Yuxiao; Zou, Ting; Fu, Caiyun; Liu, Xiaoli; Xu, Haiwei; Yin, Zheng Qin

    2016-12-30

    capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit + /SSEA1 - cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Grafted c-kit + /SSEA1 - cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses.

  15. Targeting human oligodendrocyte progenitors for myelin repair☆

    PubMed Central

    Dietz, Karen C.; Polanco, Jessie J.; Pol, Suyog U.; Sim, Fraser J.

    2017-01-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair. PMID:27001544

  16. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  17. Isolation, characterization and preclinical development of human glial-restricted progenitor cells for treatment of neurological disorders.

    PubMed

    Sandrock, Robert W; Wheatley, Will; Levinthal, Cynthia; Lawson, Jennifer; Hashimoto, Brooke; Rao, Mahendra; Campanelli, James T

    2010-05-01

    Glial-restricted progenitor cells (GRPs), a neural cell population that gives rise to astrocytes and oligodendrocytes both in vitro and in vivo, hold great promise as a cellular therapeutic for the treatment of demyelinating and neurodegenerative diseases of the CNS. The manufacturing and characterization protocols of human-derived GRPs (hGRPs; trade name Q-Cells) for use in a clinical setting that adhere to rigorous standards for their isolation, propagation, characterization and storage are presented. hGRPs, defined by their immunoreactivity with A2B5 antibodies, were isolated from fetal cadaver forebrain tissue of mice 17-24 weeks gestational age using Miltenyi paramagnetic bead cell separation technology. GRPs were grown in a defined xenobiotic-free medium for 6 days. At harvest, hGRPs were characterized using immunocytochemical techniques. Long-term cryopreservation and storage conditions, and viability upon freeze-thaw were determined. The phenotypic differentiation potential of hGRPs was determined by implantation experiments into the CNS of shiverer mice. hGRPs were isolated from over 50 neural tissues of either sex during gestational ages of 17-24 weeks. Cells expanded out to 6 days in vitro in a xenobiotic-free medium demonstrated very consistent immunocytochemical profiles. No residual antibody used in the purification process was detected after 6 days of growth in vitro. GRPs could be frozen at up to 24 million cells/ml and were over 70% viable upon freeze-thaw. Thawed hGRPs transplanted into the brain of the dysmyelinated shiverer mouse model were observed to differentiate into both glial fibrillary acidic protein-positive astrocytes and myelin basic protein-positive oligodendrocytes; no human-derived NeuN-positive neuronal cells were observed and no abnormal cell proliferation was observed. We demonstrate that hGRPs can be consistently obtained, propagated, cryopreserved and characterized using protocols that can be transferred to a good laboratory

  18. Stem and progenitor cells: the premature desertion of rigorous definitions.

    PubMed

    Seaberg, Raewyn M; van der Kooy, Derek

    2003-03-01

    A current disturbing trend in stem cell biology is the abandonment of rigorous definitions of stem and progenitor cells in favor of more ambiguous, all-encompassing concepts. However, recent studies suggest that there are consistent, functional differences in the biology of these two cell types. Admittedly, it can be difficult to harmonize the in vivo and in vitro functional differences between stem and progenitor cells. Nonetheless, these distinctions between cell types should be emphasized rather than ignored, as they can be used to test specific hypotheses in neural stem cell biology.

  19. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.

    PubMed

    Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas

    2016-06-01

    Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p < 0.05), without correlation with time from injury until surgery. The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p < 0.05); this was inversely correlated with time from injury to surgery (r = -0.8, p < 0.05). These results indicate that severe focal human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  20. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex.

    PubMed

    Florio, Marta; Heide, Michael; Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline; Huttner, Wieland B; Hiller, Michael

    2018-03-21

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL , demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. © 2018, Florio et al.

  1. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex

    PubMed Central

    Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline

    2018-01-01

    Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. PMID:29561261

  2. Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.

    PubMed

    Ju, Peijun; Zhang, Si; Yeap, Yeeshan; Feng, Zhiwei

    2012-11-01

    Besides neural stem cells, some glial cells, such as GFAP+ cells, radial glia, and oligodendrocyte progenitor cells can produce neuronal cells. Attractively, NG2+ glial progenitors exhibit lineage plasticity, and they rapidly proliferate and differentiate in response to central nervous system (CNS) injuries. These attributes of NG2+ glial progenitors make them a promising source of neurons. However, the potential of neuronal regeneration from NG2+ glial progenitors in CNS pathologies remains to be investigated. In this study, we showed that antagonizing epidermal growth factor receptor (EGFR) function with EGFR inhibitor caused a significant number of proliferative NG2+ glial progenitors to acquire neuronal phenotypes in contusive spinal cord injury (SCI), which presumably led to an accumulation of newly generated neurons and contributed to the improved neural behavioral performance of animals. In addition, the neuronal differentiation of glial progenitors induced by EGFR inhibitor was further confirmed with two different cell lines either in vitro or through ex vivo transplantation experiment. The inhibition of EGFR signaling pathway under the gliogenic conditions could induce these cells to acquire neuronal phenotypes. Furthermore, we find that the Ras-ERK axis played a key role in neuronal differentiation of NG2+ glial progenitors upon EGFR inhibition. Taken together, our studies suggest that the EGFR inhibitor could promote neurogenesis post SCI, mainly from the NG2+ glial progenitors. These findings support the possibility of evoking endogenous neuronal replacement from NG2+ glial progenitors and suggest that EGFR inhibition may be beneficial to CNS trauma. Copyright © 2012 Wiley Periodicals, Inc.

  3. Diabetes and apoptosis: neural crest cells and neural tube.

    PubMed

    Chappell, James H; Wang, Xiao Dan; Loeken, Mary R

    2009-12-01

    Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.

  4. Diabetes and apoptosis: neural crest cells and neural tube

    PubMed Central

    Chappell, James H.; Dan Wang, Xiao

    2016-01-01

    Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy. PMID:19333760

  5. Distribution and Characterization of Progenitor Cells within the Human Filum Terminale

    PubMed Central

    Jaff, Nasren; Ossoinak, Amina; Jansson, Katarina; Hägerstrand, Anders; Johansson, Clas B.; Brundin, Lou; Svensson, Mikael

    2011-01-01

    Background Filum terminale (FT) is a structure that is intimately associated with conus medullaris, the most caudal part of the spinal cord. It is well documented that certain regions of the adult human central nervous system contains undifferentiated, progenitor cells or multipotent precursors. The primary objective of this study was to describe the distribution and progenitor features of this cell population in humans, and to confirm their ability to differentiate within the neuroectodermal lineage. Methodology/Principal Findings We demonstrate that neural stem/progenitor cells are present in FT obtained from patients treated for tethered cord. When human or rat FT-derived cells were cultured in defined medium, they proliferated and formed neurospheres in 13 out of 21 individuals. Cells expressing Sox2 and Musashi-1 were found to outline the central canal, and also to be distributed in islets throughout the whole FT. Following plating, the cells developed antigen profiles characteristic of astrocytes (GFAP) and neurons (β-III-tubulin). Addition of PDGF-BB directed the cells towards a neuronal fate. Moreover, the cells obtained from young donors shows higher capacity for proliferation and are easier to expand than cells derived from older donors. Conclusion/Significance The identification of bona fide neural progenitor cells in FT suggests a possible role for progenitor cells in this extension of conus medullaris and may provide an additional source of such cells for possible therapeutic purposes. Filum terminale, human, progenitor cells, neuron, astrocytes, spinal cord. PMID:22096566

  6. Epigenome profiling and editing of neocortical progenitor cells during development.

    PubMed

    Albert, Mareike; Kalebic, Nereo; Florio, Marta; Lakshmanaperumal, Naharajan; Haffner, Christiane; Brandl, Holger; Henry, Ian; Huttner, Wieland B

    2017-09-01

    The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator Eomes We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the Eomes locus in vivo , which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development. © 2017 The Authors.

  7. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  8. Conserved gene regulatory module specifies lateral neural borders across bilaterians.

    PubMed

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao

    2017-08-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.

  9. Conserved gene regulatory module specifies lateral neural borders across bilaterians

    PubMed Central

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua

    2017-01-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans. Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans. Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis. We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis. These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians. PMID:28716930

  10. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment

    PubMed Central

    Ravanelli, Andrew M.; Appel, Bruce

    2015-01-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621

  11. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    PubMed Central

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia. PMID:21135096

  12. Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia.

    PubMed

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-03-18

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia.

  13. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation

    PubMed Central

    Middelbeek, Jeroen; Kamermans, Alwin; Kuipers, Arthur J.; Hoogerbrugge, Peter M.; Jalink, Kees; van Leeuwen, Frank N.

    2015-01-01

    Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features. PMID:25797249

  14. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors.

    PubMed

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting; Paulson, Robert F

    2015-03-12

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. © 2015 by The American Society of Hematology.

  15. Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Osterrieder, N.; Cohrs, R. J.; Kaufer, B. B.

    2014-01-01

    The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6].

  16. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytesmore » and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.« less

  17. The BAF (BRG1/BRM-Associated Factor) chromatin-remodeling complex exhibits ethanol sensitivity in fetal neural progenitor cells and regulates transcription at the miR-9-2 encoding gene locus.

    PubMed

    Burrowes, Sasha G; Salem, Nihal A; Tseng, Alexander M; Balaraman, Sridevi; Pinson, Marisa R; Garcia, Cadianna; Miranda, Rajesh C

    2017-05-01

    Fetal alcohol spectrum disorders are a leading cause of intellectual disability worldwide. Previous studies have shown that developmental ethanol exposure results in loss of microRNAs (miRNAs), including miR-9, and loss of these miRNAs, in turn, mediates some of ethanol's teratogenic effects in the developing brain. We previously found that ethanol increased methylation at the miR-9-2 encoding gene locus in mouse fetal neural stem cells (NSC), advancing a mechanism for epigenetic silencing of this locus and consequently, miR-9 loss in NSCs. Therefore, we assessed the role of the BAF (BRG1/BRM-Associated Factor) complex, which disassembles nucleosomes to facilitate access to chromatin, as an epigenetic mediator of ethanol's effects on miR-9. Chromatin immunoprecipitation and DNAse I-hypersensitivity analyses showed that the BAF complex was associated with both transcriptionally accessible and heterochromatic regions of the miR-9-2 locus, and that disintegration of the BAF complex by combined knockdown of BAF170 and BAF155 resulted in a significant decrease in miR-9. We hypothesized that ethanol exposure would result in loss of BAF-complex function at the miR-9-2 locus. However, ethanol exposure significantly increased mRNA transcripts for maturation-associated BAF-complex members BAF170, SS18, ARID2, BAF60a, BRM/BAF190b, and BAF53b. Ethanol also significantly increased BAF-complex binding within an intron containing a CpG island and in the terminal exon encoding precursor (pre)-miR-9-2. These data suggest that the BAF complex may adaptively respond to ethanol exposure to protect against a complete loss of miR-9-2 in fetal NSCs. Chromatin remodeling factors may adapt to the presence of a teratogen, to maintain transcription of critical miRNA regulatory pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    PubMed

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  19. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    PubMed

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  20. Neuronal Progenitor Maintenance Requires Lactate Metabolism and PEPCK-M-Directed Cataplerosis.

    PubMed

    Álvarez, Zaida; Hyroššová, Petra; Perales, José Carlos; Alcántara, Soledad

    2016-03-01

    This study investigated the metabolic requirements for neuronal progenitor maintenance in vitro and in vivo by examining the metabolic adaptations that support neuronal progenitors and neural stem cells (NSCs) in their undifferentiated state. We demonstrate that neuronal progenitors are strictly dependent on lactate metabolism, while glucose induces their neuronal differentiation. Lactate signaling is not by itself capable of maintaining the progenitor phenotype. The consequences of lactate metabolism include increased mitochondrial and oxidative metabolism, with a strict reliance on cataplerosis through the mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) pathway to support anabolic functions, such as the production of extracellular matrix. In vivo, lactate maintains/induces populations of postnatal neuronal progenitors/NSCs in a PEPCK-M-dependent manner. Taken together, our data demonstrate that, lactate alone or together with other physical/biochemical cues maintain NSCs/progenitors with a metabolic signature that is classically found in tissues with high anabolic capacity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The Roles and Regulation of Polycomb Complexes in Neural Development

    PubMed Central

    Corley, Matthew; Kroll, Kristen L.

    2014-01-01

    In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb Repressive Complexes, effectively limiting the expression of fate-determining genes. Here, we review distinct roles that the Polycomb Repressive Complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of how Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation, facilitating the efficient generation of specific neuronal and glial cell types for many biological applications. PMID:25367430

  2. Embryonic mescencephalon derived neurospheres contain progenitors as well as differentiated neurons and glia.

    PubMed

    Khaing, Zin Z; Roberts, James L

    2009-01-01

    Stem cells and progenitor cells in the central nervous system may have potential for therapeutic use in patients with degenerative diseases or after injury. Neural precursor cells can be grown in culture in the presence of mitogens as aggregates termed neurospheres (NSs), as a source of proliferating progenitor cells. Withdrawal of mitogen and allowing the NSs to adhere to a substrate is the conventional way to study the differentiation potential of the progenitor cells propagated in NSs form. Here we asked if differentiation occurs within NSs cultured in the normal manner, in the presence of mitogen. We used non-passaged NSs derived from E13.5 mouse ventral mesencephalon. The NSs contained not only progenitor cells but also phenotypically-differentiated neurons and glia, in the presence of mitogen. Extracellular matrix molecules (fibronectin, laminin and collagen type IV) were also detected within these NSs, which may aid in the differentiation of progenitors inside the NSs. The cell types within NSs were also organized in a way that the differentiated cells were found in the inner cell mass while progenitors were found in the outer region. Additionally, the proportion of differentiated cell types within the NSs was also affected by exposure to different mitogens. Moreover, when placed together in to co-culture, dissociated embryonic striatal and mesencephalic cells aggregated spontaneously to form mixed NSs, enhancing the eventual differentiation into dopaminergic neurons from progenitors within these NSs. Therefore, the NSs contained progenitor cells and differentiated neurons and glial cells. In addition, NS culture system can be used to study cellular differentiation in vitro in non-adherent conditions.

  3. Chondroitin sulfate effects on neural stem cell differentiation.

    PubMed

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  4. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2013-05-28

    ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience. 2011 Sep 29;192:793-805. Krishnamoorthy M, Gerwe BA, Scharer...coupled receptors . Pharmacol Ther. 2011 Mar;129(3):290-306. Workshop/conference abstracts, presentations, posters, and papers Powe, A, et al

  5. Prospects for neural stem cell-based therapies for neurological diseases.

    PubMed

    Imitola, Jaime

    2007-10-01

    Neural stem and progenitor cells have great potential for the treatment of neurological disorders. However, many obstacles remain to translate this field to the patient's bedside, including rationales for using neural stem cells in individual neurological disorders; the challenges of neural stem cell biology; and the caveats of current strategies of isolation and culturing neural precursors. Addressing these challenges is critical for the translation of neural stem cell biology to the clinic. Recent work using neural stem cells has yielded novel biologic concepts such as the importance of the reciprocal interaction between neural stem cells and the neurodegenerative environment. The prospect of using transplants of neural stem cells and progenitors to treat neurological diseases requires a better understanding of the molecular mechanisms of both neural stem cell behavior in experimental models and the intrinsic repair capacity of the injured brain.

  6. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.

    PubMed

    Leucht, Philipp; Kim, Jae-Beom; Amasha, Raimy; James, Aaron W; Girod, Sabine; Helms, Jill A

    2008-09-01

    The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.

  7. The Oligodendrocyte Progenitor Response to Demyelination

    DTIC Science & Technology

    2006-01-01

    DATE 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE The Oligodendrocyte Progenitor Response to Demyelination...material in the thesis manuscript entitled: “The Oligodendrocyte Progenitor Response to Demyelination” is appropriately acknowledged and, beyond... oligodendrocyte progenitor (OP) amplification prior to remyelination. Myelin transcription factor 1 (Myt1) influences OP proliferation, differentiation, and

  8. Combinatorial programming of human neuronal progenitors using magnetically-guided stoichiometric mRNA delivery.

    PubMed

    Azimi, Sayyed M; Sheridan, Steven D; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih

    2018-05-01

    Identification of optimal transcription-factor expression patterns to direct cellular differentiation along a desired pathway presents significant challenges. We demonstrate massively combinatorial screening of temporally-varying mRNA transcription factors to direct differentiation of neural progenitor cells using a dynamically-reconfigurable magnetically-guided spotting technology for localizing mRNA, enabling experiments on millimetre size spots. In addition, we present a time-interleaved delivery method that dramatically reduces fluctuations in the delivered transcription-factor copy-numbers per cell. We screened combinatorial and temporal delivery of a pool of midbrain-specific transcription factors to augment the generation of dopaminergic neurons. We show that the combinatorial delivery of LMX1A, FOXA2 and PITX3 is highly effective in generating dopaminergic neurons from midbrain progenitors. We show that LMX1A significantly increases TH -expression levels when delivered to neural progenitor cells either during proliferation or after induction of neural differentiation, while FOXA2 and PITX3 increase expression only when delivered prior to induction, demonstrating temporal dependence of factor addition. © 2018, Azimi et al.

  9. Red supergiants as supernova progenitors

    NASA Astrophysics Data System (ADS)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  10. Red supergiants as supernova progenitors.

    PubMed

    Davies, Ben

    2017-10-28

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  11. Human hematopoietic progenitors express erythropoietin.

    PubMed

    Stopka, T; Zivny, J H; Stopkova, P; Prchal, J F; Prchal, J T

    1998-05-15

    Erythropoietin (EPO) is a factor essential for erythroid cell proliferation, differentiation, and survival. The production of EPO by the kidneys in response to hypoxia and anemia is well documented. To determine whether EPO is also produced by hematopoietic cells, we analyzed the expression of EPO in normal human hematopoietic progenitors and in their progeny. Undifferentiated CD34(+)lin- hematopoietic progenitors do not have detectable EPO mRNA. Differentiating CD34(+) cells that are stimulated with recombinant human EPO in serum-free liquid cultures express both EPO and EPO receptor (EPOR). Because CD34(+) cells represent a heterogeneous cell population, we analyzed individual burst-forming units-erythroid (BFU-E) and nonerythroid colony-forming unit-granulocyte-macrophage colonies for EPO mRNA. Only BFU-E colonies were positive for EPO mRNA. Lysates from pooled BFU-E colonies stained positively for EPO by immunoblotting. To further confirm the intrinsic nature of erythroid EPO, we replaced extrinsic EPO in erythroid colony cultures with EPO-mimicking peptide (EMP). We show EPO expression in the EMP-stimulated BFU-Es at both mRNA and protein levels. Stimulation of bone marrow mononuclear cells (BMMCs) with EMP upregulated EPO expression. Furthermore, we found EPO and EPOR mRNAs as well as EPO protein in K562 cells, a human erythroleukemia cell line. Stimulation of K562 cells with EMP upregulated EPO expression. We suggest that EPO of erythroid origin may have a role in the regulation of erythropoiesis.

  12. The progenitors of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.

    2013-05-01

    The type Ib/c SNe are those explosions which come from massive star populations, but lack hydrogen and helium. These have been proposed to originate in the explosions of massive Wolf-Rayet stars, and we should easily be able to detect the very luminous, young progenitors if they exist. However, there has not been any detection of progenitors so far. I present the study of two extinguished Type Ic SNe 2003jg and 2004cc. In both cases there is no clear evidence of a direct detection of their progenitors in deep pre-explosion images. Upper limits derived by inserting artificial stars of known brightness at random positions around the progenitor positions (M_v>-8.8 and M_v>-9 magnitudes for the progenitors of SN 2003jg and SN 2004cc, respectively) are brighter than those expected for a massive WC (Wolf-Rayet, carbon-rich) or WO (Wolf-Rayet, oxygen-rich) (e.g., approximately between -3 and -6 in the LMC). Therefore, this is perhaps further evidence that the most massive stars may give rise to black-holes forming SNe, or it is an undetected, compact massive star hidden by a thick dust lane. However the extinction toward these SNe is currently one of the largest known. Even if these results do not directly reveal the nature of the type Ic SN progenitors, they can help to characterize the dusty environment which surrounded the progenitor of the stripped-envelope CC-SNe.

  13. Multipotent progenitor cells are present in human peripheral blood.

    PubMed

    Cesselli, Daniela; Beltrami, Antonio Paolo; Rigo, Silvia; Bergamin, Natascha; D'Aurizio, Federica; Verardo, Roberto; Piazza, Silvano; Klaric, Enio; Fanin, Renato; Toffoletto, Barbara; Marzinotto, Stefania; Mariuzzi, Laura; Finato, Nicoletta; Pandolfi, Maura; Leri, Annarosa; Schneider, Claudio; Beltrami, Carlo Alberto; Anversa, Piero

    2009-05-22

    To determine whether the peripheral blood in humans contains a population of multipotent progenitor cells (MPCs), products of leukapheresis were obtained from healthy donor volunteers following the administration of granulocyte colony-stimulating factor. Small clusters of adherent proliferating cells were collected, and these cells continued to divide up to 40 population doublings without reaching replicative senescence and growth arrest. MPCs were positive for the transcription factors Nanog, Oct3/4, Sox2, c-Myc, and Klf4 and expressed several antigens characteristic of mesenchymal stem cells. However, they were negative for markers of hematopoietic stem/progenitor cells and bone marrow cell lineages. MPCs had a cloning efficiency of approximately 3%, and following their expansion, retained a highly immature phenotype. Under permissive culture conditions, MPCs differentiated into neurons, glial cells, hepatocytes, cardiomyocytes, endothelial cells, and osteoblasts. Moreover, the gene expression profile of MPCs partially overlapped with that of neural and embryonic stem cells, further demonstrating their primitive, uncommitted phenotype. Following subcutaneous transplantation in nonimmunosuppressed mice, MPCs migrated to distant organs and integrated structurally and functionally within the new tissue, acquiring the identity of resident parenchymal cells. In conclusion, undifferentiated cells with properties of embryonic stem cells can be isolated and expanded from human peripheral blood after granulocyte colony-stimulating factor administration. This cell pool may constitute a unique source of autologous cells with critical clinical import.

  14. Carbon nanotubes in neural interfacing applications

    NASA Astrophysics Data System (ADS)

    Voge, Christopher M.; Stegemann, Jan P.

    2011-02-01

    Carbon nanotubes (CNT) are remarkable materials with a simple and inert molecular structure that gives rise to a range of potentially valuable physical and electronic properties, including high aspect ratio, high mechanical strength and excellent electrical conductivity. This review summarizes recent research on the application of CNT-based materials to study and control cells of the nervous system. It includes the use of CNT as cell culture substrates, to create patterned surfaces and to study cell-matrix interactions. It also summarizes recent investigations of CNT toxicity, particularly as related to neural cells. The application of CNT-based materials to directing the differentiation of progenitor and stem cells toward neural lineages is also discussed. The emphasis is on how CNT surface chemistry and nanotopography can be altered, and how such changes can affect neural cell function. This knowledge can be applied to creating improved neural interfaces and devices, as well as providing new approaches to neural tissue engineering and regeneration.

  15. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  16. Identification and characterization of secondary neural tube-derived embryonic neural stem cells in vitro.

    PubMed

    Shaker, Mohammed R; Kim, Joo Yeon; Kim, Hyun; Sun, Woong

    2015-05-15

    Secondary neurulation is an embryonic progress that gives rise to the secondary neural tube, the precursor of the lower spinal cord region. The secondary neural tube is derived from aggregated Sox2-expressing neural cells at the dorsal region of the tail bud, which eventually forms rosette or tube-like structures to give rise to neural tissues in the tail bud. We addressed whether the embryonic tail contains neural stem cells (NSCs), namely secondary NSCs (sNSCs), with the potential for self-renewal in vitro. Using in vitro neurosphere assays, neurospheres readily formed at the rosette and neural-tube levels, but less frequently at the tail bud tip level. Furthermore, we identified that sNSC-generated neurospheres were significantly smaller in size compared with cortical neurospheres. Interestingly, various cell cycle analyses revealed that this difference was not due to a reduction in the proliferation rate of NSCs, but rather the neuronal commitment of sNSCs, as sNSC-derived neurospheres contain more committed neuronal progenitor cells, even in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). These results suggest that the higher tendency for sNSCs to spontaneously differentiate into progenitor cells may explain the limited expansion of the secondary neural tube during embryonic development.

  17. Isolation and culture of neural crest cells from embryonic murine neural tube.

    PubMed

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  18. Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube

    PubMed Central

    Pfaltzgraff, Elise R.; Mundell, Nathan A.; Labosky, Patricia A.

    2012-01-01

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter

  19. Morphological and genetical changes of endothelial progenitor cells after in-vitro conversion into photoreceptors.

    PubMed

    Qiang, Shi; Alsaeedi, Hiba Amer; Yuhong, Cheng; Yang, Hao; Tong, Li; Kumar, Suresh; Higuchi, Akon; Alarfaj, Abdullah A; Munisvaradass, Rusheni; Ling, Mok Pooi; Cheng, Pei

    2018-06-01

    Retinal degeneration is a condition ensued by various ocular disorders such as artery occlusion, diabetic retinopathy, retrolental fibroplasia and retinitis pigmentosa which cause abnormal loss of photoreceptor cells and lead to eventual vision impairment. No efficient treatment has yet been found, however, the use of stem cell therapy such as bone marrow and embryonic stem cells has opened a new treatment modality for retinal degenerative diseases. The major goal of this study is to analyze the potential of endothelial progenitor cells derived from bone marrow to differentiate into retinal neural cells for regenerative medicine purposes. In this study, endothelial progenitor cells were induced in-vitro with photoreceptor growth factor (taurine) for 21 days. Subsequently, the morphology and gene expression of CRX and RHO of the photoreceptors-induced EPCs were examined through immunostaining assay. The results indicated that the induced endothelial progenitor cells demonstrated positive gene expression of CRX and RHO. Our findings suggested that EPC cells may have a high advantage in cell replacement therapy for treating eye disease, in addition to other neural diseases, and may be a suitable cell source in regenerative medicine for eye disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Histone modifications controlling native and induced neural stem cell identity.

    PubMed

    Broccoli, Vania; Colasante, Gaia; Sessa, Alessandro; Rubio, Alicia

    2015-10-01

    During development, neural progenitor cells (NPCs) that are capable of self-renewing maintain a proliferative cellular pool while generating all differentiated neural cell components. Although the genetic network of transcription factors (TFs) required for neural specification has been well characterized, the unique set of histone modifications that accompanies this process has only recently started to be investigated. In vitro neural differentiation of pluripotent stem cells is emerging as a powerful system to examine epigenetic programs. Deciphering the histone code and how it shapes the chromatin environment will reveal the intimate link between epigenetic changes and mechanisms for neural fate determination in the developing nervous system. Furthermore, it will offer a molecular framework for a stringent comparison between native and induced neural stem cells (iNSCs) generated by direct neural cell conversion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors.

    PubMed

    Mundell, Nathan A; Plank, Jennifer L; LeGrone, Alison W; Frist, Audrey Y; Zhu, Lei; Shin, Myung K; Southard-Smith, E Michelle; Labosky, Patricia A

    2012-03-15

    The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs) self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our earlier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progenitors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to enteric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage labeling of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in patterning and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells derived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre transgene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor proliferation, neural patterning, and glial

  2. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    NASA Astrophysics Data System (ADS)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  3. Circulating endothelial progenitor cells and cardiovascular outcomes.

    PubMed

    Werner, Nikos; Kosiol, Sonja; Schiegl, Tobias; Ahlers, Patrick; Walenta, Katrin; Link, Andreas; Böhm, Michael; Nickenig, Georg

    2005-09-08

    Endothelial progenitor cells derived from bone marrow are believed to support the integrity of the vascular endothelium. The number and function of endothelial progenitor cells correlate inversely with cardiovascular risk factors, but the prognostic value associated with circulating endothelial progenitor cells has not been defined. The number of endothelial progenitor cells positive for CD34 and kinase insert domain receptor (KDR) was determined with the use of flow cytometry in 519 patients with coronary artery disease as confirmed on angiography. After 12 months, we evaluated the association between baseline levels of endothelial progenitor cells and death from cardiovascular causes, the occurrence of a first major cardiovascular event (myocardial infarction, hospitalization, revascularization, or death from cardiovascular causes), revascularization, hospitalization, and death from all causes. A total of 43 participants died, 23 from cardiovascular causes. A first major cardiovascular event occurred in 214 patients. The cumulative event-free survival rate increased stepwise across three increasing baseline levels of endothelial progenitor cells in an analysis of death from cardiovascular causes, a first major cardiovascular event, revascularization, and hospitalization. After adjustment for age, sex, vascular risk factors, and other relevant variables, increased levels of endothelial progenitor cells were associated with a reduced risk of death from cardiovascular causes (hazard ratio, 0.31; 95 percent confidence interval, 0.16 to 0.63; P=0.001), a first major cardiovascular event (hazard ratio, 0.74; 95 percent confidence interval, 0.62 to 0.89; P=0.002), revascularization (hazard ratio, 0.77; 95 percent confidence interval, 0.62 to 0.95; P=0.02), and hospitalization (hazard ratio, 0.76; 95 percent confidence interval, 0.63 to 0.94; P=0.01). Endothelial progenitor-cell levels were not predictive of myocardial infarction or of death from all causes. The level of

  4. Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo

    2013-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607

  5. Brain oxygen tension controls the expansion of outer subventricular zone-like basal progenitors in the developing mouse brain.

    PubMed

    Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander

    2015-09-01

    The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.

  6. Neuropeptides: Developmental Signals in Placode Progenitor Formation

    PubMed Central

    Lleras-Forero, Laura; Tambalo, Monica; Christophorou, Nicolas; Chambers, David; Houart, Corinne; Streit, Andrea

    2013-01-01

    Summary Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system. PMID:23906067

  7. Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain.

    PubMed

    Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana

    2018-03-23

    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  8. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  9. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs

    PubMed Central

    McLean, Will J.; McLean, Dalton T.; Eatock, Ruth Anne

    2016-01-01

    Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear – the vestibular and cochlear sensory epithelia and the spiral ganglion – by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin. PMID:27789624

  10. Endothelial progenitor cells--an evolving story.

    PubMed

    Pearson, Jeremy D

    2010-05-01

    The first description of endothelial progenitor cells (EPC) in 1997 led rapidly to substantial changes in our understanding of angiogenesis, and within 5 years to the first clinical studies in humans using bone marrow derived EPC to enhance coronary neovascularisation and cardiac function after myocardial ischemia. However, to improve the success of this therapy a clearer understanding of the biology of EPC is needed. This article summarises recent data indicating that most EPC are not, in fact, endothelial progenitors but can be better described as angiogenic monocytes, and explores the implications this has for their future therapeutic use. Copyright 2009 Elsevier Inc. All rights reserved.

  11. On the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Mazzali, Paolo

    2018-03-01

    We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious difficulties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.

  12. AKT signaling displays multifaceted functions in neural crest development.

    PubMed

    Sittewelle, Méghane; Monsoro-Burq, Anne H

    2018-05-31

    AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube

    PubMed Central

    Kerosuo, Laura; Bronner, Marianne E.

    2014-01-01

    Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680

  14. SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche

    PubMed Central

    Pastor, Patricia; Cisternas, Pedro; Salazar, Katterine; Silva-Alvarez, Carmen; Oyarce, Karina; Jara, Nery; Espinoza, Francisca; Martínez, Agustín D.; Nualart, Francisco

    2013-01-01

    Known as a critical antioxidant, recent studies suggest that vitamin C plays an important role in stem cell generation, proliferation and differentiation. Vitamin C also enhances neural differentiation during cerebral development, a function that has not been studied in brain precursor cells. We observed that the rat neurogenic niche is structurally organized at day 15 of postnatal development, and proliferation and neural differentiation increase at day 21. In the human brain, a similar subventricular niche was observed at 1-month of postnatal development. Using immunohistochemistry, sodium-vitamin C cotransporter 2 (SVCT2) expression was detected in the subventricular zone (SVZ) and rostral migratory stream (RMS). Low co-distribution of SVCT2 and βIII-tubulin in neuroblasts or type-A cells was detected, and minimal co-localization of SVCT2 and GFAP in type-B or precursor cells was observed. Similar results were obtained in the human neurogenic niche. However, BrdU-positive cells also expressed SVCT2, suggesting a role of vitamin C in neural progenitor proliferation. Primary neurospheres prepared from rat brain and the P19 teratocarcinoma cell line, which forms neurospheres in vitro, were used to analyze the effect of vitamin C in neural stem cells. Both cell types expressed functional SVCT2 in vitro, and ascorbic acid (AA) induced their neural differentiation, increased βIII-tubulin and SVCT2 expression, and amplified vitamin C uptake. PMID:23964197

  15. Sox2 acts in a dose-dependent fashion to regulate proliferation of cortical progenitors.

    PubMed

    Hagey, Daniel W; Muhr, Jonas

    2014-12-11

    Organ formation and maintenance depends on slowly self-renewing stem cells that supply an intermediate population of rapidly dividing progenitors, but how this proliferative hierarchy is regulated is unknown. By performing genome-wide single-cell and functional analyses in the cortex, we demonstrate that reduced Sox2 expression is a key regulatory signature of the transition between stem cells and rapidly dividing progenitors. In stem cells, Sox2 is expressed at high levels, which enables its repression of proproliferative genes, of which Cyclin D1 is the most potent target. Sox2 confers this function through binding to low-affinity motifs, which facilitate the recruitment of Gro/Tle corepressors in synergy with Tcf/Lef proteins. Upon differentiation, proneural factors reduce Sox2 expression, which derepresses Cyclin D1 and promotes proliferation. Our results show how concentration-dependent Sox2 occupancy of DNA motifs of varying affinities translates into recruitment of repressive complexes, which regulate the proliferative dynamics of neural stem and progenitor cells. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy.

    PubMed

    Lüer, Karin; Technau, Gerhard M

    2009-08-03

    The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once

  17. Noninvasive Imaging of Administered Progenitor Cells

    SciTech Connect

    Steven R Bergmann, M.D., Ph.D.

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusionmore » and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a

  18. Hematopoietic progenitor migration to the adult thymus

    PubMed Central

    Zlotoff, Daniel A.; Bhandoola, Avinash

    2010-01-01

    While most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the bone marrow, continues with their circulation in the bloodstream, and concludes with their settling in the thymus. This review will discuss each of these steps as they occur in the unirradiated and post-irradiation scenarios, focusing on the molecular mechanisms of regulation. Improved knowledge about these early steps in T cell generation may accelerate the development of new therapeutic options in patients with impaired T cell number or function. PMID:21251013

  19. Friction forces position the neural anlage.

    PubMed

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-04-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.

  20. Friction forces position the neural anlage

    PubMed Central

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-01-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. PMID:28346437

  1. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  2. Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells

    PubMed Central

    Kurabayashi, Nobuhiro; Sanada, Kamon

    2013-01-01

    Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS. PMID:24352425

  3. Transfusion Support for ABO-Incompatible Progenitor Cell Transplantation

    PubMed Central

    Kopko, Patricia M.

    2016-01-01

    Summary ABO-incompatible transplants comprise up to 50% of allogeneic progenitor cell transplants. Major, minor and bidirectional ABO-incompatible transplants each have unique complications that can occur, including hemolysis at the time of progenitor cell infusion, hemolysis during donor engraftment, passenger lymphocyte syndrome, delayed red blood cell engraftment, and pure red cell aplasia. Appropriate transfusion support during the different phases of the allogeneic progenitor cell transplant process is an important part of ABO-incompatible transplantation. PMID:27022318

  4. Analysis of Neural Stem Cells from Human Cortical Brain Structures In Vitro.

    PubMed

    Aleksandrova, M A; Poltavtseva, R A; Marei, M V; Sukhikh, G T

    2016-05-01

    Comparative immunohistochemical analysis of the neocortex from human fetuses showed that neural stem and progenitor cells are present in the brain throughout the gestation period, at least from week 8 through 26. At the same time, neural stem cells from the first and second trimester fetuses differed by the distribution, morphology, growth, and quantity. Immunocytochemical analysis of neural stem cells derived from fetuses at different gestation terms and cultured under different conditions showed their differentiation capacity. Detailed analysis of neural stem cell populations derived from fetuses on gestation weeks 8-9, 18-20, and 26 expressing Lex/SSEA1 was performed.

  5. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  6. A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development

    PubMed Central

    Ciarlo, Christie; Kaufman, Charles K; Kinikoglu, Beste; Michael, Jonathan; Yang, Song; D′Amato, Christopher; Blokzijl-Franke, Sasja; den Hertog, Jeroen; Schlaeger, Thorsten M; Zhou, Yi; Liao, Eric

    2017-01-01

    The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation. PMID:28832322

  7. Introduction to Neural Networks.

    DTIC Science & Technology

    1992-03-01

    parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.

  8. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neuralmore » networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for

  9. Retinal pigment epithelium expansion around the neural retina occurs in two separate phases with distinct mechanisms.

    PubMed

    Cechmanek, Paula Bernice; McFarlane, Sarah

    2017-08-01

    The retinal pigment epithelium (RPE) is a specialized monolayer of epithelial cells that forms a tight barrier surrounding the neural retina. RPE cells are indispensable for mature photoreceptor renewal and survival, yet how the initial RPE cell population expands around the neural retina during eye development is poorly understood. Here we characterize the differentiation, proliferation, and movements of RPE progenitors in the Zebrafish embryo over the period of optic cup morphogenesis. RPE progenitors are present in the dorsomedial eye vesicle shortly after eye vesicle evagination. We define two separate phases that allow for full RPE expansion. The first phase involves a previously uncharacterized antero-wards expansion of the RPE progenitor domain in the inner eye vesicle leaflet, driven largely by an increase in cell number. During this phase, RPE progenitors start to express differentiation markers. In the second phase, the progenitor domain stretches in the dorsoventral and posterior axes, involving cell movements and shape changes, and coinciding with optic cup morphogenesis. Significantly, cell division is not required for RPE expansion. RPE development to produce the monolayer epithelium that covers the back of the neural retina occurs in two distinct phases driven by distinct mechanisms. Developmental Dynamics 246:598-609, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2

    PubMed Central

    Micheli, Laura; Ceccarelli, Manuela; Gioia, Roberta; D’Andrea, Giorgio; Farioli-Vecchioli, Stefano; Costanzi, Marco; Saraulli, Daniele; Cestari, Vincenzo; Tirone, Felice

    2017-01-01

    Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate. PMID:28740463

  11. Signatures of progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hoeflich, P.; Chakraborty, S.; Comaskey, W.; Fisher, A.; Hristov, B.; Collins, D.; Diamond, T. R.; Dragulin, P.; Hsiao, E. Y.; Sadler, B.

    Thermonuclear Supernovae (SNe Ia) are one of the building blocks of modern cosmology and laboratories for the explosion physics of White Dwarf star/s (WD) in close binary systems. The second star may be a WD (double degenerate systems, DD), or a non-degenerated star (SD) with a main sequence star, red giant or a helium star as companion \\citep{branch95,nomoto03,wang2012}. Light curves and spectra of the explosion look similar because a 'stellar amnesia' \\citep{h06}. Basic nuclear physics determines the progenitor structure and the explosion physics, breaking the link between progenitor evolution, and the explosion, resulting in three main classes of explosion scenarios: a) dynamical merging of two WD and a heating on time scales of seconds \\citep{webbink84,isern11}, b) surface helium detonations on top of a WD which ignite the central C/O by a detonation wave traveling inwards \\citep{n82,hk96,Kromer2010}; c) compressional heating in an accreting WD approaching the Chandrasekar mass on time of up to 108 years which may originated from SD and DD systems \\citep{WI73,Piersanti2004}. Simulations of the explosions depend on the inital conditions at the onset of the explosions, namely the mass and angular momentum of the WD(s). For all scenarios, diversity in SNe Ia must be expected because the WD originates from a range of Main Sequence masses (MMS < 8 M_⊙) and metallicities Z. Moreover, there is growing evidence that magnetic fields B may have to be added to the 'mix'. Only with recent advances in observations ranging from X-ray to radio, high precision spectroscopy, polarimetry and photometry and in the time-domain astronomy we obtain constraints for progenitor, on the explosion scenarios and links emerge between the progenitors and their environment with LCs and spectral signatures needed for high precision cosmology. It is too early to give final answers but we present our personal view. We will give some examples from the theory point of view and discuss

  12. Retinal and anterior eye compartments derive from a common progenitor pool in the avian optic cup

    PubMed Central

    Venters, Sara J.; Cuenca, Paulina D.

    2011-01-01

    Purpose The optic cup is created through invagination of the optic vesicle. The morphogenetic rearrangement creates a double-layered cup, with a hinge (the Optic Cup Lip) where the epithelium bends back upon itself. Shortly after the optic cup forms, it is thought to be sub-divided into separate lineages: i) pigmented epithelium in the outer layer; ii) presumptive iris and ciliary body at the most anterior aspect of the inner layer; and iii) presumptive neural retina in the remainder of the inner layer. We test the native developmental potential of the anterior cup to determine if it normally contributes to the retina. Methods Vital dye and green fluorescent protein (GFP) expressing replication-incompetent retroviral vectors were used to label cells in the nascent optic cup and follow their direct progeny throughout development. Label was applied to either the optic cup lip (n=40), or to the domain just posterior to the lip (n=20). Retroviral labeling is a permanent lineage marker and enabled the analysis of advanced stages of development. Results Labeling within the optic cup gave rise to labeled progeny in the posterior optic cup that differentiated as neural retina (20 of 20). In contrast, labeling cells in the optic cup lip gave rise to progeny of labeled cells arrayed in a linear progression, from the lip into the neural retina (36 of 40). Label was retained in cells at the optic cup lip, regardless of age at examination. In older embryos, labeled progeny delaminated from the optic cup lip to differentiate as muscle of the pupillary margin. Conclusions The data show that the cells at the optic cup lip are a common progenitor population for pigmented epithelium, anterior eye tissues (ciliary body, iris, and pupillary muscle) and retinal neurons. The findings are supportive of an interpretation where the optic cup lip is a specialized niche containing a multipotent progenitor population. PMID:22219630

  13. Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Geissler, Sydney A.; Sabin, Alexandra L.; Besser, Rachel R.; Gooden, Olivia M.; Shirk, Bryce D.; Nguyen, Quan M.; Khaing, Zin Z.; Schmidt, Christine E.

    2018-04-01

    Objective. Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. Approach. A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. Main results. Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. Significance. The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.

  14. Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury.

    PubMed

    Geissler, Sydney A; Sabin, Alexandra L; Besser, Rachel R; Gooden, Olivia M; Shirk, Bryce D; Nguyen, Quan M; Khaing, Zin Z; Schmidt, Christine E

    2018-04-01

    Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.

  15. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex.

    PubMed

    Hill, Matthew J; Killick, Richard; Navarrete, Katherinne; Maruszak, Aleksandra; McLaughlin, Gemma M; Williams, Brenda P; Bray, Nicholas J

    2017-05-01

    Common variants in the TCF4 gene are among the most robustly supported genetic risk factors for schizophrenia. Rare TCF4 deletions and loss-of-function point mutations cause Pitt-Hopkins syndrome, a developmental disorder associated with severe intellectual disability. To explore molecular and cellular mechanisms by which TCF4 perturbation could interfere with human cortical development, we experimentally reduced the endogenous expression of TCF4 in a neural progenitor cell line derived from the developing human cerebral cortex using RNA interference. Effects on genome-wide gene expression were assessed by microarray, followed by Gene Ontology and pathway analysis of differentially expressed genes. We tested for genetic association between the set of differentially expressed genes and schizophrenia using genome-wide association study data from the Psychiatric Genomics Consortium and competitive gene set analysis (MAGMA). Effects on cell proliferation were assessed using high content imaging. Genes that were differentially expressed following TCF4 knockdown were highly enriched for involvement in the cell cycle. There was a nonsignificant trend for genetic association between the differentially expressed gene set and schizophrenia. Consistent with the gene expression data, TCF4 knockdown was associated with reduced proliferation of cortical progenitor cells in vitro. A detailed mechanistic explanation of how TCF4 knockdown alters human neural progenitor cell proliferation is not provided by this study. Our data indicate effects of TCF4 perturbation on human cortical progenitor cell proliferation, a process that could contribute to cognitive deficits in individuals with Pitt-Hopkins syndrome and risk for schizophrenia.

  16. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages.

    PubMed

    Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D

    2005-08-01

    Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.

  17. A zinc finger protein Zfp521 directs neural differentiation and beyond

    PubMed Central

    2011-01-01

    Neural induction is largely considered a default process, whereas little is known about intrinsic factors that drive neural differentiation. Kamiya and colleagues now demonstrate that a transcription factor, Zfp521, is capable of directing embryonic stem (ES) cells into neural progenitors. They discovered that Zfp521 transcripts were enriched in early neural lineage of ES cell differentiation. Forced expression of Zfp521 turned ES cells into neural progenitors in culture conditions that would normally inhibit neural differentiation. Zfp521 was expressed in mouse embryos during gastrulation. The protein was shown to associate with a co-activator p300 and directly induce expression of early neural genes. Knockdown of the Zfp521 by shRNA halted cells at the epiblast stage and suppressed neural differentiation. Zfp521 is a nuclear protein with 30 Krüppel-like zinc fingers mediating multiple protein-protein interactions, and regulates transcription in diverse tissues and organs. The protein promotes proliferation, delays differentiation and reduces apoptosis. The findings by Kamiya and colleagues that Zfp521 directs and sustains early neural differentiation now opens up a series of studies to investigate roles of Zfp521 in stem cells and brain development of mice and men. PMID:21539723

  18. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2016-09-01

    development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be key to...cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...common underlying cause of post- traumatic osteoarthritis . This is particularly striking in young, healthy individuals such as military personnel

  19. Predicting the nature of supernova progenitors

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    2017-09-01

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  20. The progenitors of supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia

    2014-09-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.

  1. Predicting the nature of supernova progenitors.

    PubMed

    Groh, Jose H

    2017-10-28

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  2. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  3. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  4. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    PubMed

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Identification and isolation of adult liver stem/progenitor cells.

    PubMed

    Tanaka, Minoru; Miyajima, Atsushi

    2012-01-01

    Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.

  6. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation.

    PubMed

    Galve-Roperh, Ismael; Chiurchiù, Valerio; Díaz-Alonso, Javier; Bari, Monica; Guzmán, Manuel; Maccarrone, Mauro

    2013-10-01

    Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. Copyright © 2013 Elsevier Ltd

  7. Autologous Fibrin Glue as an Encapsulating Scaffold for Delivery of Retinal Progenitor Cells

    PubMed Central

    Ahmed, Tamer A. E.; Ringuette, Randy; Wallace, Valerie A.; Griffith, May

    2015-01-01

    The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG) produced by the CryoSeal®FS system in combination with mouse retinal progenitor cells (RPCs) were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD-independent mechanism. The three-dimensional environment and the attachment surface provided by FG was associated with a rapid down-regulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers cone-rod homeobox and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors. PMID:25692127

  8. Characterization of human pancreatic progenitor cells.

    PubMed

    Noguchi, Hirofumi; Naziruddin, Bashoo; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Chujo, Daisuke; Takita, Morihito; Kobayashi, Naoya; Onaca, Nicholas; Hayashi, Shuji; Levy, Marlon F; Matsumoto, Shinichi

    2010-01-01

    β-Cell replacement therapy via islet transplantation is an effective treatment for diabetes mellitus, but its widespread use is severely limited by the shortage of donor organs. Because pancreatic stem/progenitor cells are abundantly available in the pancreas of these patients and in donor organs, the cells could become a useful target for β-cell replacement therapy. We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we used the techniques to identify and isolate human pancreatic stem/progenitor cells. The cells from a duct-rich population were cultured in 23 kinds of culture media, based on media for mouse pancreatic stem cells or for human embryonic stem cells. The cells in serum-free media formed "cobblestone" morphologies, similar to a mouse pancreatic stem cell line. On the other hand, the cells in serum-containing medium and the medium for human embryonic stem cells formed "fibroblast-like" morphologies. The cells divided actively until day 30, and the population doubling level (PDL) was 6-10. However, the cells stopped dividing after 30 days in any culture conditions. During the cultures, the nucleus/cytoplasm (N/C) ratio decreased, suggesting that the cells entered senescence. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology into the cells induced insulin and pancreas-related gene expression. Although the duplications of these cells were limited, this approach could provide a potential new source of insulin-producing cells for transplantation.

  9. Neural Networks

    NASA Astrophysics Data System (ADS)

    Schwindling, Jerome

    2010-04-01

    This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  10. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice.

    PubMed

    Han, Xiaoning; Chen, Michael; Wang, Fushun; Windrem, Martha; Wang, Su; Shanz, Steven; Xu, Qiwu; Oberheim, Nancy Ann; Bekar, Lane; Betstadt, Sarah; Silva, Alcino J; Takano, Takahiro; Goldman, Steven A; Nedergaard, Maiken

    2013-03-07

    Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap-junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long-term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice

    PubMed Central

    Han, Xiaoning; Chen, Michael; Wang, Fushun; Windrem, Martha; Wang, Su; Shanz, Steven; Xu, Qiwu; Oberheim, Nancy Ann; Bekar, Lane; Betstadt, Sarah; Silva, Alcino J.; Takano, Takahiro; Goldman, Steven A.; Nedergaard, Maiken

    2013-01-01

    Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice. PMID:23472873

  12. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury

    PubMed Central

    Jablonska, Beata; Gierdalski, Marcin; Chew, Li-Jin; Hawley, Teresa; Catron, Mackenzie; Lichauco, Arturo; Cabrera-Luque, Juan; Yuen, Tracy; Rowitch, David; Gallo, Vittorio

    2016-01-01

    Regenerative processes in brain pathologies require the production of distinct neural cell populations from endogenous progenitor cells. We have previously demonstrated that oligodendrocyte progenitor cell (OPC) proliferation is crucial for oligodendrocyte (OL) regeneration in a mouse model of neonatal hypoxia (HX) that reproduces diffuse white matter injury (DWMI) of premature infants. Here we identify the histone deacetylase Sirt1 as a Cdk2 regulator in OPC proliferation and response to HX. HX enhances Sirt1 and Sirt1/Cdk2 complex formation through HIF1α activation. Sirt1 deacetylates retinoblastoma (Rb) in the Rb/E2F1 complex, leading to dissociation of E2F1 and enhanced OPC proliferation. Sirt1 knockdown in culture and its targeted ablation in vivo suppresses basal and HX-induced OPC proliferation. Inhibition of Sirt1 also promotes OPC differentiation after HX. Our results indicate that Sirt1 is an essential regulator of OPC proliferation and OL regeneration after neonatal brain injury. Therefore, enhancing Sirt1 activity may promote OL recovery after DWMI. PMID:27991597

  13. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration.

    PubMed

    Kaslin, Jan; Kroehne, Volker; Ganz, Julia; Hans, Stefan; Brand, Michael

    2017-04-15

    Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. © 2017. Published by The Company of Biologists Ltd.

  14. PDL Progenitor-Mediated PDL Recovery Contributes to Orthodontic Relapse.

    PubMed

    Feng, L; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; He, D; Gan, Y; Kou, X; Zhou, Y

    2016-08-01

    Periodontal ligament (PDL) is subjected to mechanical force during physiologic activities. PDL stem /: progenitor cells are the main mesenchymal stem cells in PDL. However, how PDL progenitors participate in PDL homeostasis upon and after mechanical force is largely unknown. In this study, force-triggered orthodontic tooth movement and the following relapse were used as models to demonstrate the response of PDL progenitors and their role in PDL remodeling upon and after mechanical force. Upon orthodontic force, PDL collagen on the compression side significantly degraded, showing a broken and disorganized pattern. After force withdrawal, the degraded PDL collagen recovered during the early stage of relapse. Correspondingly, increased CD90(+) PDL progenitors with suppressed expression of type I collagen (Col-I) were observed upon orthodontic force, whereas these cells accumulated at the degradation regions and regained Col-I expression after force withdrawal during early relapse. Our results further showed that compressive force altered cell morphology and repressed collagen expression in cultured PDL progenitors, which both recovered after force withdrawal. Force withdrawal-induced recovery of collagen expression in cultured PDL progenitors could be regulated by transforming growth factor-β (TGF-β), a key molecule for tissue homeostasis and extracellular matrix remodeling. More interesting, inhibiting the regained Col-I expression in CD90(+) PDL progenitors by blocking TGF-β interrupted PDL collagen recovery and partially inhibited the early relapse. These data suggest that PDL progenitors can respond to mechanical force and may process intrinsic stability to recover to original status after force withdrawal. PDL progenitors with intrinsic stability are required for PDL recovery and consequently contribute to early orthodontic relapse, which can be regulated by TGF-β signaling. © International & American Associations for Dental Research 2016.

  15. Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs) via β1 Integrin.

    PubMed

    Zhu, Bangfu; Nicholls, Matthew; Gu, Yu; Zhang, Gaofeng; Zhao, Chao; Franklin, Robin J M; Song, Bing

    2016-11-22

    The guided migration of neural cells is essential for repair in the central nervous system (CNS). Oligodendrocyte progenitor cells (OPCs) will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs) are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.

  16. Identification of oocyte progenitor cells in the zebrafish ovary.

    PubMed

    Draper, Bruce W

    2012-01-01

    Zebrafish breed year round and females are capable of producing thousands of eggs during their lifetime. This amazing fecundity is due to the fact that the adult ovary, contains premeiotic oocyte progenitor cells, called oogonia, which produce a continuous supply of new oocytes throughout adult life. Oocyte progenitor cells can be easily identified based on their expression of Vasa, and their characteristic nuclear morphology. Thus, the zebrafish ovary provides a unique and powerful system to study the genetic regulation of oocyte production in a vertebrate animal. A method is presented here for identifying oocyte progenitor cells in the zebrafish ovary using whole-mount confocal immunofluorescence that is simple and accurate.

  17. Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity

    PubMed Central

    Jacques-Fricke, Bridget T.; Gammill, Laura S.

    2014-01-01

    Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration. PMID:25318671

  18. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT

    PubMed Central

    Zhu, Jianjian; Kwan, Kin Ming; Mackem, Susan

    2016-01-01

    The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial–mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers. PMID:27006501

  19. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT.

    PubMed

    Zhu, Jianjian; Kwan, Kin Ming; Mackem, Susan

    2016-04-05

    The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial-mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.

  20. A quantitative framework to evaluate modeling of cortical development by neural stem cells

    PubMed Central

    Stein, Jason L.; de la Torre-Ubieta, Luis; Tian, Yuan; Parikshak, Neelroop N.; Hernandez, Israel A.; Marchetto, Maria C.; Baker, Dylan K.; Lu, Daning; Hinman, Cassidy R.; Lowe, Jennifer K.; Wexler, Eric M.; Muotri, Alysson R.; Gage, Fred H.; Kosik, Kenneth S.; Geschwind, Daniel H.

    2014-01-01

    Summary Neural stem cells have been adopted to model a wide range of neuropsychiatric conditions in vitro. However, how well such models correspond to in vivo brain has not been evaluated in an unbiased, comprehensive manner. We used transcriptomic analyses to compare in vitro systems to developing human fetal brain and observed strong conservation of in vivo gene expression and network architecture in differentiating primary human neural progenitor cells (phNPCs). Conserved modules are enriched in genes associated with ASD, supporting the utility of phNPCs for studying neuropsychiatric disease. We also developed and validated a machine learning approach called CoNTExT that identifies the developmental maturity and regional identity of in vitro models. We observed strong differences between in vitro models, including hiPSC-derived neural progenitors from multiple laboratories. This work provides a systems biology framework for evaluating in vitro systems and supports their value in studying the molecular mechanisms of human neurodevelopmental disease. PMID:24991955

  1. Rodent Zic Genes in Neural Network Wiring.

    PubMed

    Herrera, Eloísa

    2018-01-01

    The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.

  2. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  3. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  4. Reporter-Based Isolation of Developmental Myogenic Progenitors

    PubMed Central

    Kheir, Eyemen; Cusella, Gabriella; Messina, Graziella; Cossu, Giulio; Biressi, Stefano

    2018-01-01

    The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS). The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors. PMID:29674978

  5. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells.

    PubMed

    Prescott, Hilary M A; Manning, Craig; Gardner, Aaron; Ritchie, William A; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A B

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  6. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells

    PubMed Central

    Prescott, Hilary M. A.; Manning, Craig; Gardner, Aaron; Ritchie, William A.; Pizzi, Romain; Girling, Simon; Valentine, Iain; Wang, Chengdong; Jahoda, Colin A. B.

    2015-01-01

    Since the first mammal was cloned, the idea of using this technique to help endangered species has aroused considerable interest. However, several issues limit this possibility, including the relatively low success rate at every stage of the cloning process, and the dearth of usable tissues from these rare animals. iPS cells have been produced from cells from a number of rare mammalian species and this is the method of choice for strategies to improve cloning efficiency and create new gametes by directed differentiation. Nevertheless information about other stem cell/progenitor capabilities of cells from endangered species could prove important for future conservation approaches and adds to the knowledge base about cellular material that can be extremely limited. Multipotent progenitor cells, termed skin-derived precursor (SKP) cells, can be isolated directly from mammalian skin dermis, and human cheek tissue has also been shown to be a good source of SKP-like cells. Recently we showed that structures identical to SKPs termed m-SKPs could be obtained from monolayer/ two dimensional (2D) skin fibroblast cultures. Here we aimed to isolate m-SKPs from cultured cells of three endangered species; giant panda (Ailuropoda melanoleuca); red panda (Ailurus fulgens); and Asiatic lion (Panthera leo persica). m-SKP-like spheres were formed from the giant panda buccal mucosa fibroblasts; whereas dermal fibroblast (DF) cells cultured from abdominal skin of the other two species were unable to generate spheres. Under specific differentiation culture conditions giant panda spheres expressed neural, Schwann, adipogenic and osteogenic cell markers. Furthermore, these buccal mucosa derived spheres were shown to maintain expression of SKP markers: nestin, versican, fibronectin, and P75 and switch on expression of the stem cell marker ABCG2. These results demonstrate that giant panda cheek skin can be a useful source of m-SKP multipotent progenitors. At present lack of sample numbers

  7. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues.

    PubMed

    Ghahrizjani, Fatemeh Ahmadi; Ghaedi, Kamran; Salamian, Ahmad; Tanhaei, Somayeh; Nejati, Alireza Shoaraye; Salehi, Hossein; Nabiuni, Mohammad; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2015-02-25

    Availability of human embryonic stem cells (hESCs) has enhanced the capability of basic and clinical research in the context of human neural differentiation. Derivation of neural progenitor (NP) cells from hESCs facilitates the process of human embryonic development through the generation of neuronal subtypes. We have recently indicated that fibronectin type III domain containing 5 protein (FNDC5) expression is required for appropriate neural differentiation of mouse embryonic stem cells (mESCs). Bioinformatics analyses have shown the presence of three isoforms for human FNDC5 mRNA. To differentiate which isoform of FNDC5 is involved in the process of human neural differentiation, we have used hESCs as an in vitro model for neural differentiation by retinoic acid (RA) induction. The hESC line, Royan H5, was differentiated into a neural lineage in defined adherent culture treated by RA and basic fibroblast growth factor (bFGF). We collected all cell types that included hESCs, rosette structures, and neural cells in an attempt to assess the expression of FNDC5 isoforms. There was a contiguous increase in all three FNDC5 isoforms during the neural differentiation process. Furthermore, the highest level of expression of the isoforms was significantly observed in neural cells compared to hESCs and the rosette structures known as neural precursor cells (NPCs). High expression levels of FNDC5 in human fetal brain and spinal cord tissues have suggested the involvement of this gene in neural tube development. Additional research is necessary to determine the major function of FDNC5 in this process. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  9. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    pluripotent stem cells for osteoarthritis drug screening . Arthritis Rheumatol. 66, 3062–3072. Xia, Y., Zheng, S., Bidthanapally, A., 2008. Depth-dependent...the development of knee osteoarthritis (OA). New treatments centered on the stem /progenitor cell population resident within the adult meniscus will be...biology to develop a profile of repair cells in the adult meniscus, track meniscal stem /progenitor cell (MSPC) behavior within meniscus as function of

  10. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    the development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be...cells, stem cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...changes that occur after injury. As a result, meniscal injuries are a common underlying cause of post-traumatic osteoarthritis . This is particularly

  11. Ultra-stripped supernovae: progenitors and fate

    NASA Astrophysics Data System (ADS)

    Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp

    2015-08-01

    The explosion of ultra-stripped stars in close binaries can lead to ejecta masses <0.1 M⊙ and may explain some of the recent discoveries of weak and fast optical transients. In Tauris et al., it was demonstrated that helium star companions to neutron stars (NSs) may experience mass transfer and evolve into naked ˜1.5 M⊙ metal cores, barely above the Chandrasekhar mass limit. Here, we elaborate on this work and present a systematic investigation of the progenitor evolution leading to ultra-stripped supernovae (SNe). In particular, we examine the binary parameter space leading to electron-capture (EC SNe) and iron core-collapse SNe (Fe CCSNe), respectively, and determine the amount of helium ejected with applications to their observational classification as Type Ib or Type Ic. We mainly evolve systems where the SN progenitors are helium star donors of initial mass MHe = 2.5-3.5 M⊙ in tight binaries with orbital periods of Porb = 0.06-2.0 d, and hosting an accreting NS, but we also discuss the evolution of wider systems and of both more massive and lighter - as well as single - helium stars. In some cases, we are able to follow the evolution until the onset of silicon burning, just a few days prior to the SN explosion. We find that ultra-stripped SNe are possible for both EC SNe and Fe CCSNe. EC SNe only occur for MHe = 2.60-2.95 M⊙ depending on Porb. The general outcome, however, is an Fe CCSN above this mass interval and an ONeMg or CO white dwarf for smaller masses. For the exploding stars, the amount of helium ejected is correlated with Porb - the tightest systems even having donors being stripped down to envelopes of less than 0.01 M⊙. We estimate the rise time of ultra-stripped SNe to be in the range 12 h-8 d, and light-curve decay times between 1 and 50 d. A number of fitting formulae for our models are provided with applications to population synthesis. Ultra-stripped SNe may produce NSs in the mass range 1.10-1.80 M⊙ and are highly relevant for

  12. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    PubMed

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  13. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    PubMed

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  14. Muscle: a source of progenitor cells for bone fracture healing.

    PubMed

    Henrotin, Yves

    2011-12-22

    Bone repair failure is a major complication of open fracture, leading to non-union of broken bone extremities and movement at the fracture site. This results in a serious disability for patients. The role played by the periosteum and bone marrow progenitors in bone repair is now well documented. In contrast, limited information is available on the role played by myogenic progenitor cells in bone repair. In a recent article published in BMC Musculoskeletal Disorders, Liu et al. compared the presence of myogenic progenitor (MyoD lineage cells) in closed and open fractures. They showed that myogenic progenitors are present in open, but not closed fractures, suggesting that muscle satellite cells may colonize the fracture site in the absence of intact periosteum. Interestingly, these progenitors sequentially expressed a chondrogenic and, thereafter, an osteoblastic phenotype, suggestive of a functional role in the repair process. This finding opens up new perspectives for the research of orthopedic surgical methods, which could maximize myogenic progenitor access and mobilization to augment bone repair. Please see related article: http://www.biomedcentral.com/1471-2474/12/288.

  15. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair.

    PubMed

    Erwin, W Mark; Islam, Diana; Eftekarpour, Eftekhar; Inman, Robert D; Karim, Muhammad Zia; Fehlings, Michael G

    2013-02-01

    An in vitro and in vivo evaluation of intervertebral disc (IVD)-derived stem/progenitor cells. To determine the chondrogenic, adipogenic, osteogenic, and neurogenic differentiation capacity of disc-derived stem/progenitor cells in vitro and neurogenic differentiation in vivo. Tissue repair strategies require a source of appropriate cells that could be used to replace dead or damaged cells and tissues such as stem cells. Here we examined the potential use of IVD-derived stem cells in regenerative medicine approaches and neural repair. Nonchondrodystrophic canine IVD nucleus pulposus (NP) cells were used to generate stem/progenitor cells (NP progenitor cells [NPPCs]) and the NPPCs were differentiated in vitro into chondrogenic, adipogenic, and neurogenic lineages and in vivo into the neurogenic lineage. NPPCs were compared with bone marrow-derived mesenchymal (stromal) stem cells in terms of the expression of stemness genes. The expression of the neural crest marker protein 0 and the Brachyury gene were evaluated in NP cells and NPPCs. NPPCs contain stem/progenitor cells and express "stemness" genes such as Sox2, Oct3/4, Nanog, CD133, Nestin, and neural cell adhesion molecule but differ from mesenchymal (stromal) stem cells in the higher expression of the Nanog gene by NPPCs. NPPCs do not express protein 0 or the Brachyury gene both of which are expressed by the totality of IVD NP cells. The percentage of NPPCs within the IVD is 1% of the total as derived by colony-forming assay. NPPCs are capable of differentiating along chondrogenic, adipogenic, and neurogenic lineages in vitro and into oligodendrocyte, neuron, and astroglial specific precursor cells in vivo within the compact myelin-deficient shiverer mouse. We propose that the IVD NP represents a regenerative niche suggesting that the IVD could represent a readily accessible source of precursor cells for neural repair and regeneration.

  16. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors.

    PubMed

    Pattyn, Alexandre; Vallstedt, Anna; Dias, José M; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M; Brunet, Jean-Francois; Ericson, Johan

    2003-03-15

    Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.

  17. Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins.

    PubMed

    Samad, Omar Abdel; Geisen, Marc J; Caronia, Giuliana; Varlet, Isabelle; Zappavigna, Vincenzo; Ericson, Johan; Goridis, Christo; Rijli, Filippo M

    2004-08-01

    Little is known about the molecular mechanisms that integrate anteroposterior (AP) and dorsoventral (DV) positional information in neural progenitors that specify distinct neuronal types within the vertebrate neural tube. We have previously shown that in ventral rhombomere (r)4 of Hoxb1 and Hoxb2 mutant mouse embryos, Phox2b expression is not properly maintained in the visceral motoneuron progenitor domain (pMNv), resulting in a switch to serotonergic fate. Here, we show that Phox2b is a direct target of Hoxb1 and Hoxb2. We found a highly conserved Phox2b proximal enhancer that mediates rhombomere-restricted expression and contains separate Pbx-Hox (PH) and Prep/Meis (P/M) binding sites. We further show that both the PH and P/M sites are essential for Hox-Pbx-Prep ternary complex formation and regulation of the Phox2b enhancer activity in ventral r4. Moreover, the DV factor Nkx2.2 enhances Hox-mediated transactivation via a derepression mechanism. Finally, we show that induction of ectopic Phox2b-expressing visceral motoneurons in the chick hindbrain requires the combined activities of Hox and Nkx2 homeodomain proteins. This study takes an important first step to understand how activators and repressors, induced along the AP and DV axes in response to signaling pathways, interact to regulate specific target gene promoters, leading to neuronal fate specification in the appropriate developmental context.

  18. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors

    PubMed Central

    Pattyn, Alexandre; Vallstedt, Anna; Dias, José M.; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M.; Brunet, Jean-Francois; Ericson, Johan

    2003-01-01

    Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates. PMID:12651891

  19. Role of liver progenitors in liver regeneration

    PubMed Central

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A.

    2015-01-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs. PMID:25713804

  20. Stromalized microreactor supports murine hematopoietic progenitor enrichment.

    PubMed

    Khong, Danika; Li, Matthew; Singleton, Amy; Chin, Ling-Yee; Parekkadan, Biju

    2018-01-20

    There is an emerging need to process, expand, and even genetically engineer hematopoietic stem and progenitor cells (HSPCs) prior to administration for blood reconstitution therapy. A closed-system and automated solution for ex vivo HSC processing can improve adoption and standardize processing techniques. Here, we report a recirculating flow bioreactor where HSCs are stabilized and enriched for short-term processing by indirect fibroblast feeder coculture. Mouse 3 T3 fibroblasts were seeded on the extraluminal membrane surface of a hollow fiber micro-bioreactor and were found to support HSPC cell number compared to unsupported BMCs. CFSE analysis indicates that 3 T3-support was essential for the enhanced intrinsic cell cycling of HSPCs. This enhanced support was specific to the HSPC population with little to no effect seen with the Lineage positive and Lineage negative cells. Together, these data suggest that stromal-seeded hollow fiber micro-reactors represent a platform to screening various conditions that support the expansion and bioprocessing of HSPCs ex vivo.

  1. Endothelial Progenitor Cells and Kidney Diseases.

    PubMed

    Ozkok, Abdullah; Yildiz, Alaattin

    2018-05-10

    Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Role of liver progenitors in liver regeneration.

    PubMed

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  3. TWEAK induces liver progenitor cell proliferation

    PubMed Central

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  4. Possible Progenitor of Special Supernova Type Detected

    NASA Astrophysics Data System (ADS)

    2008-04-01

    caused by material being pulled off a companion star onto the white dwarf, fusion of this material on the surface of the star should heat the star and produce a strong source of X-radiation prior to the explosion. Once the supernova explosion occurs, the white dwarf is expected to be completely destroyed and then would be undetectable in X-rays. In the merger scenario, the intensity of X-ray emission prior to the explosion is expected to be much weaker. Based on the detection of a fairly strong X-ray source at approximately the position of SN 2007on 4 years before the explosion, Voss and Nelemans conclude that the data support the scenario where matter is pulled off a companion star. The small number of X-ray sources in the field implies that there is only a small chance of an unrelated source being so close by coincidence. Also, the X-ray source has similar properties to those expected for fusion on a white dwarf, unlike most X-ray sources in the sky. However, in follow-up studies, Voss, Nelemans and colleagues Gijs Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.) and Cees Bassa (McGill University, Canada) used higher-quality optical images to better determine the supernova's position. This work, which is not yet published, shows a small, but significant difference in the measured positions of the supernova and the X-ray source, suggesting the source may not be the progenitor. Follow-up Chandra observations hint that the X-ray object has disappeared, but further observations are needed to finally decide whether the source was the progenitor or not. The team is also applying this new method to other supernovas and has high hopes that they will eventually succeed in identifying the elusive cause of at least some of these explosions. "We're very excited about opening up a new way of studying supernovas, even though we're not sure that we've seen this particular stellar bomb before it exploded," said Gijs Roelofs. "We're very confident that we

  5. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.; Conway, Simon J.

    2007-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete fa