Sample records for a3 receptor affinity

  1. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  2. Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands.

    PubMed

    Bedini, Annalida; Spadoni, Gilberto; Gatti, Giuseppe; Lucarini, Simone; Tarzia, Giorgio; Rivara, Silvia; Lorenzi, Simone; Lodola, Alessio; Mor, Marco; Lucini, Valeria; Pannacci, Marilou; Scaglione, Francesco

    2006-12-14

    A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o- or [(m-benzyl)phenyl]ethyl-alkanamides were synthesized and tested on MT(1) and MT(2) receptors. The class of 3,3-diphenyl-propenyl-alkanamides was the most interesting one, with compounds having MT(2) receptor affinity similar to that of MLT, remarkable MT(2) selectivity, and partial agonist or antagonist behavior. In particular, the (E)-m-methoxy cyclobutanecarboxamido derivative 18f and the di-(m-methoxy) acetamido one, 18g, have sub-nM affinity for the MT(2) subtype, with more than 100-fold selectivity over MT(1), 18f being an antagonist and 18g a partial agonist on GTPgammaS test. Docking of 18g into a previously developed MT(2) receptor model showed a binding scheme consistent with that of other antagonists. The MT(2) expected binding affinities of the new compounds were calculated by a previously developed 3D-QSAR CoMFA model, giving satisfactory predictions.

  3. Synthesis and binding affinity of new 1,4-disubstituted triazoles as potential dopamine D(3) receptor ligands.

    PubMed

    Insua, Ignacio; Alvarado, Mario; Masaguer, Christian F; Iglesias, Alba; Brea, José; Loza, María I; Carro, Laura

    2013-10-15

    A series of new 1,4-disubstituted triazoles was prepared from appropriate arylacetylenes and aminoalkylazides using click chemistry methodology. These compounds were evaluated as potential ligands on several subtypes of dopamine receptors in in vitro competition assays, showing high affinity for dopamine D3 receptors, lower affinity for D2 and D4, and no affinity for the D1 receptors. Compound 18 displayed the highest affinity at the D3 receptor with a Ki value of 2.7 nM, selectivity over D2 (70-fold) and D4 (200-fold), and behaviour as a competitive antagonist in the low nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Synthesis, modelling, and mu-opioid receptor affinity of N-3(9)-arylpropenyl-N-9(3)-propionyl-3,9-diazabicycl.

    PubMed

    Pinna, G A; Murineddu, G; Curzu, M M; Villa, S; Vianello, P; Borea, P A; Gessi, S; Toma, L; Colombo, D; Cignarella, G

    2000-08-01

    A series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1a-g) and of reverted N-3-propionyl-N-9-arylpropenyl isomers (2a-g), as homologues of the previously reported analgesic 3,8-diazabicyclo[3.2.1]octanes (I-II), were synthesized and evaluated for the binding affinity towards opioid receptor subtypes mu, delta and kappa. Compounds 1a-g and 2a-g exhibited a strong selective mu-affinity with Ki values in the nanomolar range, which favourably compared with those of I and II. In addition, contrary to the trend observed for DBO-I, II, the mu-affinity of series 2 is markedly higher than that of the isomeric series 1. This aspect was discussed on the basis of the conformational studies performed on DBN which allowed hypotheses on the mode of interaction of these compounds with the mu receptor.

  5. High Affinity Binding of Epibatidine to Serotonin Type 3 Receptors*

    PubMed Central

    Drisdel, Renaldo C.; Sharp, Douglas; Henderson, Tricia; Hales, Tim G.; Green, William N.

    2008-01-01

    Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of 125I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT3Rs) block the remaining 25%. 125I-Epibatidine binds with a high affinity to native 5-HT3Rs of N1E-115 cells and to receptors composed of only 5-HT3A subunits expressed in HEK cells. In these cells, serotonin, the 5-HT3R-specific antagonist MDL72222, and the 5-HT3R agonist chlorophenylbiguanide readily competed with 125I-epibatidine binding to 5-HT3Rs. Nicotine was a poor competitor for 125I-epibatidine binding to 5-HT3Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of 125I-epibatidine binding to 5-HT3Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT3Rs in neuroblastoma cell lines and 5-HT3ARs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT3Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT3R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT3Rs. PMID:17702741

  6. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    PubMed

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that

  7. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine

    PubMed Central

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H.; Alhaj, Mazin; Cooke, Helen J.; Grants, Iveta; Ren, Tianhua

    2009-01-01

    We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl− secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (Isc, Cl− secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC50 for IB-MECA was 0.8 μM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex Isc responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at

  8. The transformed glucocorticoid receptor has a lower steroid-binding affinity than the nontransformed receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, Takayuki; Ohara-Nemoto, Yuko; Denis, M.

    1990-02-20

    High-salt treatment of cytosolic glucocorticoid receptor (GR) preparations reduces the steroid-binding ability of the receptor and induces the conversion of the receptor from a nontransformed (non-DNA-binding) 9S form to a transformed (DNA-binding) 4S entity. Therefore, the authors decided to investigate the possible relationship between these two phenomena. The binding of ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) to the 9S form was almost saturated at a concentration of 20 nM, whereas ({sup 3}H)TA was hardly bound to the 4S form at this concentration. The 4S form was efficiently labeled at 200 nM. Scatchard analysis of the GR showed the presence of twomore » types of binding sites. In the absence of molybdate, the ratio of the lower affinity site was increased, but the total number of binding sites was not modified. The GR with the low ({sup 3}H)TA-binding affinity bound to DNA-cellulose even in its unliganded state, whereas the form with the high affinity did not. These results indicate that the transformed GR has a reduced ({sup 3}H)TA-binding affinity as compared to the nontransformed GR. The steroid-binding domain (amino acids 477-777) and the DNA- and steroid-binding domains (amino acids 415-777) of the human GR were expressed in Escherichia coli as protein A fused proteins. Taken together, these results suggest that the component(s) associating with the nontransformed GR, possibly the heat shock protein hsp 90, play(s) an important role in stabilizing the GR in a high-affinity state for steroids.« less

  9. Computer-aided structure-affinity relationships in a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives binding to the μ-opioid receptor

    NASA Astrophysics Data System (ADS)

    Barlocco, Daniela; Cignarella, Giorgio; Greco, Giovanni; Novellino, Ettore

    1993-10-01

    Molecular modeling studies were carried out on a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives with the aim to highlight the main factors modulating their affinity for the μ-opioid receptor. Structure-affinity relationships were developed with the aid of molecular mechanics and semiempirical quantum-mechanics methods. According to our proposed pharmacodynamic model, the binding to the μ-receptor is promoted by the following physico-chemical features: the presence of hydrocarbon fragments on the nitrogen ring frame capable of interacting with one of two hypothesized hydrophobic receptor pockets; a `correct' orientation of an N-propionyl side chain so as to avoid a sterically hindered region of the receptor; the possibility of accepting a hydrogen bond from a receptor site complementary to the morphine phenol oxygen.

  10. ( sup 3 H)-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and ( sup 3 H) ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branchek, T.; Adham, N.; Macchi, M.

    1990-11-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding themore » serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.« less

  11. Relationships between chemical structure and affinity for acetylcholine receptors

    PubMed Central

    Abramson, F. B.; Barlow, R. B.; Mustafa, M. G.; Stephenson, R. P.

    1969-01-01

    1. Series of analogues of acetylcholine have been prepared in which the acetyl group was replaced by phenylacetyl, cyclohexylacetyl, diphenylacetyl, dicyclohexylacetyl, (±)-phenylcyclohexylacetyl, benziloyl and (±)-phenylcyclohexylhydroxyacetyl groups and the trimethylammonium group was replaced by Me2EtN+, MeEt2N+, Et3N+, [Formula: see text] Further series were prepared in which the acetoxyethyl group was replaced by ethoxyethyl, phenylethoxyethyl, cyclohexylethoxyethyl, diphenylethoxyethyl, and dicyclohexylethoxyethyl groups, and by n-pentyl, 5-phenylpentyl, 5-cyclohexylpentyl and 5:5-diphenylpentyl groups. 2. The ethoxyethyl and n-pentyl series contain some compounds which are agonists or partial agonists when tested on the isolated guinea-pig ileum, but all the other compounds are antagonists. 3. The affinity of the compounds for the postganglionic (“muscarinesensitive”) acetylcholine receptors has been measured in conditions in which the antagonists have been shown to be acting competitively. There were considerable differences between their affinities, the most active (log K, 9·8) having one million times the affinity of the least active (log K, 3·7). 4. The changes in affinity as the onium group was modified were not entirely independent of changes in the rest of the molecule. Increasing the size of the onium group, as judged from conductivity measurements on simpler onium salts, increased affinity in the series containing one large group (phenyl or cyclohexyl) but, in the series with two large groups, affinity declined when the size was increased beyond -+NMeEt2. 5. In general, the effects of changes in the rest of the molecule on affinity were bigger than the effects of changes in the onium group and there were bigger interactions. Affinity was increased to a greater extent by introducing one phenyl and one cyclohexyl group together than by introducing either two phenyl or two cyclohexyl groups; the increment was greater than the separate

  12. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  13. Ether modifications to 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503): effects on binding affinity and selectivity for sigma receptors and monoamine transporters.

    PubMed

    Xu, Rong; Lord, Sarah A; Peterson, Ryan M; Fergason-Cantrell, Emily A; Lever, John R; Lever, Susan Z

    2015-01-01

    Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity.

    PubMed

    Sharma, P; Postel, S; Sundberg, E J; Kranz, D M

    2013-12-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.

  15. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity

    PubMed Central

    Sharma, P.; Postel, S.; Sundberg, E.J.; Kranz, D.M.

    2013-01-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection. PMID:24167300

  16. Differential affinities of molindone, metoclopramide and domperidone for classes of [3H]spiroperidol binding sites in rat striatum: evidence for pharmacologically distinct classes of receptors.

    PubMed

    Rosenfeld, M R; Dvorkin, B; Klein, P N; Makman, M H

    1982-03-04

    Rat striatum contains two populations of dopaminergic [3H]spiroperidol binding sites. The two populations are similar in their affinities for chlorpromazine and dopamine. Only one population, that with a somewhat higher affinity for spiroperidol itself, exhibits high affinity for the selective D2 antagonists molindone, metoclopramide and domperidone. Hence, this population may represent D2 receptor sites. The other larger population may represent either a separate class of receptor sites or a different form of D2 receptor sites.

  17. Use of receptor chimeras to identify small molecules with high affinity for the dynorphin A binding domain of the kappa opioid receptor.

    PubMed

    Kumar, Virendra; Guo, Deqi; Marella, Michael; Cassel, Joel A; Dehaven, Robert N; Daubert, Jeffrey D; Mansson, Erik

    2008-06-15

    A series of 2-substituted sulfamoyl arylacetamides of general structure 2 were prepared as potent kappa opioid receptor agonists and the affinities of these compounds for opioid and chimeric receptors were compared with those of dynorphin A. Compounds 2e and 2i were identified as non-peptide small molecules that bound to chimeras 3 and 4 with high affinities similar to dynorphin A, resulting in K(i) values of 1.5 and 1.2 nM and 1.3 and 2.2 nM, respectively.

  18. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein

    PubMed Central

    Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung

    2012-01-01

    Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519

  19. Human thyrotropin receptor subunits characterized by thyrotropin affinity purification and western blotting.

    PubMed

    Leedman, P J; Newman, J D; Harrison, L C

    1989-07-01

    We studied the subunit structure of the human TSH receptor in thyroid tissue from patients with Graves' disease and multinodular goiter by TSH affinity chromatography, immunoprecipitation with Graves' immunoglobulins (Igs), and a modified technique of Western blotting. Human TSH receptor-binding activity was purified about 1,270-fold by sequential affinity chromatography on wheat germ lectin-agarose and TSH-agarose. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of nonreduced affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed three noncovalently linked subunits of 70,000, 50,000, and 35,000 mol wt. When reduced, a major subunit of 25,000 mol wt was identified. When 3 mol/L NaCl was used to elute affinity-purified receptors only the 50,000 mol wt nonreduced subunit was detected. This subunit bound [125I]bovine TSH and was precipitated by Graves' Igs. Modifications to the conventional Western blotting technique enabled thyroglobulin components (approximately 220,000 mol wt), thyroid microsomal antigen (a doublet of approximately 110,000 mol wt), and putative TSH receptor subunits of 70,000 and 50,000 mol wt to be identified in thyroid particulate membranes by Graves' Igs. Blotting of affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed subunits of either 70,000 or 50,000 mol wt, with a minority of Graves' serum samples. We conclude that the nonreduced human TSH receptor is an oligomeric complex comprising three different subunits of 70,000, 50,000, and 35,000 mol wt. The reduced receptor exists as a single subunit of 25,000 mol wt, which may be disulfide linked to form the higher mol wt forms. The 70,000 and 50,000 mol wt subunits contain epitopes that bind Graves' Igs in modified Western blots, thus directly confirming that the human TSH receptor is a target for Graves' Igs.

  20. SLP-76 is required for high-affinity IgE receptor- and IL-3 receptor-mediated activation of basophils.

    PubMed

    Hidano, Shinya; Kitamura, Daisuke; Kumar, Lalit; Geha, Raif S; Goitsuka, Ryo

    2012-11-01

    Basophils have been reported to play a critical role in allergic inflammation by secreting IL-4 in response to IL-3 or high-affinity IgE receptor (FcεRI)-cross-linking. However, the signaling pathways downstream of FcεRI and the IL-3 receptor in basophils have yet to be determined. In the present study, we used mice deficient in SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76kDa) to demonstrate critical functions of this adaptor molecule in transducing FcεRI- and IL-3 receptor-mediated signals that induce basophil activation. Although SLP-76 was dispensable for in vivo differentiation, as well as IL-3-induced in vitro proliferation of basophils, IL-4 production induced by both stimuli was completely ablated by SLP-76 deficiency. Biochemical analyses revealed that IL-3-induced phosphorylation of phospholipase C (PLC) γ2 and Akt, but not STAT5, was severely reduced in SLP-76-deficient basophils, whereas FcεRI cross-linking phosphorylation of PLCγ2, but not Akt, was abrogated by SLP-76 deficiency, suggesting important differences in the requirement of SLP-76 for Akt activation between FcεRI- and IL-3 receptor-mediated signaling pathways in basophils. Because IL-3-induced IL-4 production was sensitive to calcineurin inhibitors and an intracellular calcium chelator, in addition to PI3K inhibitors, SLP-76 appears to regulate FcεRI- and IL-3 receptor-induced IL-4 production via mediating PLCγ2 activation in basophils. Taken together, these findings indicate that SLP-76 is an essential signaling component for basophil activation downstream of both FcεRI and the IL-3 receptor.

  1. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells.

    PubMed

    Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D

    1993-03-10

    Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.

  2. A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D(1) and D(2) dopamine receptors.

    PubMed

    Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam

    2015-06-05

    Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. N-(4-(4-(2,3-Dichloro- or 2-methoxyphenyl)piperazin-1-yl)-butyl)-heterobiarylcarboxamides with Functionalized Linking Chains as High Affinity and Enantioselective D3 Receptor Antagonistsγ

    PubMed Central

    Newman, Amy Hauck; Grundt, Peter; Cyriac, George; Deschamps, Jeffrey R.; Taylor, Michelle; Kumar, Rakesh; Ho, David; Luedtke, Robert R.

    2009-01-01

    In the present report, the D3 receptor pharmacophore is modified in the 2,3-diCl-and 2-OCH3-phenyl piperazine class of compounds with the goal to improve D3 receptor affinity and selectivity. This extension of structure-activity relationships (SAR) has resulted in the identification of the first enantioselective D3 antagonists (R- and S-22) to be reported, wherein enantioselectivity is more pronounced at D3 than at D2, and that a binding region on the second extracellular loop (E2) may play a role in both enantioselectivity and D3 receptor selectivity. Moreover, we have discovered some of the most D3-selective compounds reported to date that show high affinity (Ki =1 nM) for D3 and ∼400-fold selectivity over the D2 receptor subtype. Several of these analogues showed exquisite selectivity for D3 receptors over >60 other receptors further underscoring their value as in vivo research tools. These lead compounds also have appropriate physical characteristics for in vivo exploration and therefore will be useful in determining how intrinsic activity at D3 receptors tested in vitro is related to behaviors in animal models of addiction and other neuropsychiatric disorders. PMID:19331412

  4. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    PubMed

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  5. Synthesis and binding affinity of neuropeptide Y at opiate receptors.

    PubMed

    Kiddle, James J; McCreery, Heather J; Soles, Sonia

    2003-03-24

    Neuropeptide Y and several metabolic fragments were synthesized and evaluated for binding affinity at non-selective opiate receptors. Neuropeptide Y and several C-terminal fragments were shown to bind to non-selective opiate receptors with an affinity similar to that of Leu-enkephalin.

  6. Structure-5-HT/D2 Receptor Affinity Relationship in a New Group of 1-Arylpiperazynylalkyl Derivatives of 8-Dialkylamino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione.

    PubMed

    Żmudzki, Paweł; Satała, Grzegorz; Chłoń-Rzepa, Grażyna; Bojarski, Andrzej J; Kazek, Grzegorz; Siwek, Agata; Gryboś, Anna; Głuch-Lutwin, Monika; Wesołowska, Anna; Pawłowski, Maciej

    2016-10-01

    In our previous papers, we have reported that some 8-amino-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives possessed high affinity and displayed agonistic, partial agonistic, or antagonistic activity for serotonin 5-HT 1A and dopamine D 2 receptors. In order to examine further the influence of the substituent in the position 8 of the purine moiety and the influence of the xanthine core on the affinity for serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors, two series of 1-arylpiperazynylalkyl derivatives of 8-amino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione were synthesized. All the final compounds were investigated in in vitro competition binding experiments for the serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors. The structure-affinity relationships for this group of compounds were discussed. For selected compounds, the functional assays for the 5-HT 1A and D 2 receptors were carried out. The results of the assays indicated that these groups of derivatives possessed antagonistic activity for 5-HT 1A receptors and agonistic, partial agonistic, or antagonistic activity for D 2 receptors. In total, 26 new compounds were synthesized, 20 of which were tested in in vitro binding experiments and 5 were tested in in vitro functional assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Point mutation increases a form of the NK1 receptor with high affinity for neurokinin A and B and septide

    PubMed Central

    Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M

    1998-01-01

    The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding

  8. Design and Application of Synthetic Receptors for Recognition of Methylated Lysine and Supramolecular Affinity Labeling

    NASA Astrophysics Data System (ADS)

    Gober, Isaiah Nathaniel

    This dissertation involves the design and synthesis of new synthetic receptors and their application in the molecular recognition of methylated lysine and their use as tools for chemical biology. The dissertation is divided into four parts. The first section focuses on the development of a novel labeling method that is based on ligand-directed affinity labeling principles. In this labeling method, a synthetic receptor that binds to trimethyl lysine (Kme3) is attached through a linker to an electrophilic tag group that can react with a nucleophilic amine in a histone peptide. This affinity labeling probe, which we called CX4-ONBD, is equipped with an electrophilic tag that allows for turn-on fluorescence labeling of Kme3 histone peitdes. We show that the probe gives a pronounced turn-on fluorescence response when it is incubated with a histone peptide that contains Kme3 and a nearby reactive lysine. This probe also displays >5-fold selectivity in covalent labeling over an unmethylated lysine peptide. This represents the first time a synthetic receptor has been used for affinity labeling purposes, and it also expands on the chemical toolkit that is available for sensing PTMs like lysine methylation. In the second section, the supramolecular affinity labeling method that was optimized using CX4-ONBD was applied to the development of a real-time assay for measuring enzymatic activity. More specifically, the probe was used to create a turn-on fluorescence assay for histone deacetylase (HDAC) activity and for inhibitor screening and IC50 determination. Most commercial kits for HDAC activity have limited substrate scope, and other common methods used for characterizing enzymatic activity often require chromatographic separation and are therefore not high-throughput. This small molecule receptor-mediated affinity labeling strategy allowed for facile readout of HDAC activity and inhibition. Overall, this application of supramolecular affinity labeling expands on the

  9. Characterization of [3H]LS-3-134, a Novel Arylamide Phenylpiperazine D3 Dopamine Receptor Selective Radioligand

    PubMed Central

    Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.

    2014-01-01

    LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389

  10. Efficient T-cell receptor signaling requires a high-affinity interaction between the Gads C-SH3 domain and the SLP-76 RxxK motif.

    PubMed

    Seet, Bruce T; Berry, Donna M; Maltzman, Jonathan S; Shabason, Jacob; Raina, Monica; Koretzky, Gary A; McGlade, C Jane; Pawson, Tony

    2007-02-07

    The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8-20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity.

  11. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the rangemore » of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.« less

  12. High affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling

    PubMed Central

    Fernandes, Herman B.; Catches, Justin S.; Petralia, Ronald S.; Copits, Bryan A.; Xu, Jian; Russell, Theron A.; Swanson, Geoffrey T.; Contractor, Anis

    2009-01-01

    Summary Kainate receptors are atypical members of the glutamate receptor family which are able to signal through both ionotropic and metabotropic pathways. Of the five individual kainate receptor subunits the high-affinity subunits, GluK4 (KA1) and GluK5 (KA2), are unique in that they do not form functional homomeric receptors in recombinant expression systems, but combine with the primary subunits GluK1-3 (GluR5-7) to form heteromeric assemblies. Here we generated a GluK4 mutant mouse by disrupting the Grik4 gene locus. We found that loss of the GluK4 subunit leads to a significant reduction in synaptic kainate receptor currents. Moreover, ablation of both high-affinity subunits in GluK4/GluK5 double knockout mice leads to a complete loss of pre- and postsynaptic ionotropic function of synaptic kainate receptors. The principal subunits remain at the synaptic plasma membrane, but are distributed away from postsynaptic densities and presynaptic active zones. There is also an alteration in the properties of the remaining kainate receptors, as kainic acid application fails to elicit responses in GluK4/GluK5 knockout neurons. Despite the lack of detectable ionotropic synaptic receptors, the kainate receptor-mediated inhibition of the slow afterhyperpolarization current (IsAHP), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown critical role for the high-affinity kainate receptor subunits as obligatory components of ionotropic kainate receptor function, and further, demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels. PMID:19778510

  13. Quantitative analysis of rat brain alpha 2-receptors discriminated by [3H]clonidine and [3H]rauwolscine.

    PubMed

    Asakura, M; Tsukamoto, T; Imafuku, J; Matsui, H; Ino, M; Hasegawa, K

    1984-10-30

    Quantitative analysis of direct ligand binding of both [3H]clonidine and [3H]rauwolscine to the rat cerebral cortex alpha 2-receptors indicates the existence of two affinity states of the same receptor populations. In the presence of Mn2+, the high affinity state of [3H]clonidine binding was increased, whereas the high affinity state of [3H]rauwolscine binding was reduced. By contrast, GTP in micromolar ranges caused a decrease of the agonist high affinity state and an increase of the antagonist high affinity state. The total receptor sites and the respective separate affinities for both radioligands were approximately equal to their control values under all conditions, indicating that Mn2+ and GTP modulate the proportion of the two affinity states of the receptor. These results can be incorporated into a two-step, ternary complex model involving a guanine nucleotide binding protein (N protein) for the agonist and antagonist interaction with the alpha 2-receptor. Furthermore, the effects of GTP on the interaction of both ligands with the two affinity states can be mimicked by EDTA. It is suggested that divalent cations induce the formation of the receptor-N protein binary complex showing high affinity for agonists and low affinity for antagonists.

  14. Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water.

    PubMed

    Beaver, Joshua E; Peacor, Brendan C; Bain, Julianne V; James, Lindsey I; Waters, Marcey L

    2015-03-21

    Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.

  15. Identification of two H3-histamine receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less

  16. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.

    PubMed

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-02-01

    Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.

  17. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  18. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities.

    PubMed

    Harland, Aubrie A; Yeomans, Larisa; Griggs, Nicholas W; Anand, Jessica P; Pogozheva, Irina D; Jutkiewicz, Emily M; Traynor, John R; Mosberg, Henry I

    2015-11-25

    In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.

  19. Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.

    PubMed

    Murase, Akio; Nakao, Kazunari; Takada, Junji

    2008-01-01

    In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.

  20. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    PubMed

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  1. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    PubMed

    White, Jim F; Grisshammer, Reinhard

    2010-09-07

    Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1. To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein. Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  2. Efficacy of antipsychotic agents at human 5-HT(1A) receptors determined by [3H]WAY100,635 binding affinity ratios: relationship to efficacy for G-protein activation.

    PubMed

    Newman-Tancredi, A; Verrièle, L; Touzard, M; Millan, M J

    2001-10-05

    5-HT(1A) receptors are implicated in the aetiology of schizophrenia. Herein, the influence of 15 antipsychotics on the binding of the selective 'neutral' antagonist, [3H]WAY100,635 ([3H]N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)-cyclo-hexanecarboxamide), was examined at human 5-HT(1A) receptors expressed in Chinese Hamster Ovary cells. In competition binding experiments, 5-HT displayed biphasic isotherms which were shifted to the right in the presence of the G-protein uncoupling agent, GTPgammaS (100 microM). In analogy, the isotherms of ziprasidone, quetiapine and S16924 (((R-2-[1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), were displaced to the right by GTPgammaS, consistent with agonist actions. Binding of several other antipsychotics, such as ocaperidone, olanzapine and risperidone, was little influenced by GTPgammaS. Isotherms of the neuroleptics, haloperidol, chlorpromazine and thioridazine were shifted to the left in the presence of GTPgammaS, suggesting inverse agonist properties. For most ligands, the magnitude of affinity changes induced by GTPgammaS (alteration in pK(i) values) correlated well with their previously determined efficacies in [35S]GTPgammaS binding studies [Eur. J. Pharmacol. 355 (1998) 245]. In contrast, the affinity of the 'atypical' antipsychotic agent, clozapine, which is a known partial agonist at 5-HT(1A) receptors, was less influenced by GTPgammaS. When the ratio of high-/low-affinity values was plotted against efficacy, hyperbolic isotherms were obtained, consistent with a modified ternary complex model which assumes that receptors can adopt active conformations in the absence of agonist. In conclusion, modulation of [3H]-WAY100,635 binding by GTPgammaS differentiated agonist vs. inverse agonist properties of antipsychotics at 5-HT(1A) receptors. These may contribute to differing profiles of antipsychotic activity.

  3. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  4. Antidepressant-like activity of VN2222, a serotonin reuptake inhibitor with high affinity at 5-HT1A receptors.

    PubMed

    Tordera, Rosa M; Monge, Antonio; Del Río, Joaquín; Lasheras, Berta

    2002-05-03

    It has been suggested that drugs combining serotonin (5-hydroxytryptamine, 5-HT) transporter blockade and 5-HT1A autoreceptor antagonism could be a novel strategy for a shorter onset of action and higher therapeutic efficacy of antidepressants. The present study was aimed at characterizing the pharmacology of 1-(3-benzo[b]tiophenyl)-3-[4-(2-methoxyphenyl)-1-piperazinyl]-1-propanol (VN2222) a new synthetic compound with high affinity at both the 5-HT transporter and 5-HT1A receptors and devoid of high affinity at other receptors studied, with the only exception of alpha1-adrenoceptors. In keeping with the binding affinity at the 5-HT transporter, VN2222 inhibited 5-HT uptake in vitro both in rat cortical synaptosomes and in mesencephalic cultures and also in vivo when administered locally into the rat ventral hippocampus. After systemic administration, VN2222 exhibited an inverted U-shape effect so the inhibition of [3H]5-HT uptake ex vivo and the increase in 5-HT extracellular levels in microdialysis experiments was observed at low doses of 0.01-0.1 mg/kg whereas higher doses were ineffective. In studies related to 5-HT1A receptor function, 0.01-0.1 microM VN2222 produced a partial inhibition of forskolin-stimulated cAMP formation behaving as a weak agonist of 5-HT1A receptors. In body temperature studies, 5 mg/kg VN2222 produced a mild hypothermic effect in mice, suggesting a weak agonist activity at presynaptic 5-HT1A receptors; much lower doses (0.01-0.5 mg/kg) partially antagonized the hypothermia induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) possibly through 5-HT transporter blockade. In the learned helplessness test in rats, an animal model for antidepressants, 1-5 mg/kg VN2222 reduced significantly the number of escape failures. Consequently, VN2222 is a new compound with a dual effect on the serotonergic system, as 5-HT uptake blocker and 5-HT1A receptor partial agonist, and with a remarkable activity in an animal model of depression with

  5. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.

    PubMed Central

    Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1992-01-01

    In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full

  6. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.

    PubMed

    Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1992-08-01

    In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full

  7. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Novel antipsychotics activate recombinant human and native rat serotonin 5-HT1A receptors: affinity, efficacy and potential implications for treatment of schizophrenia.

    PubMed

    Newman-Tancredi, Adrian; Assié, Marie-Bernadette; Leduc, Nathalie; Ormière, Anne-Marie; Danty, Nathalie; Cosi, Cristina

    2005-09-01

    Serotonin 5-HT1A receptors are promising targets in the management of schizophrenia but little information exists about affinity and efficacy of novel antipsychotics at these sites. We addressed this issue by comparing binding affinity at 5-HT1A receptors with dopamine rD2 receptors, which are important targets for antipsychotic drug action. Agonist efficacy at 5-HT1A receptors was determined for G-protein activation and adenylyl cyclase activity. Whereas haloperidol, thioridazine, risperidone and olanzapine did not interact with 5-HT1A receptors, other antipsychotic agents exhibited agonist properties at these sites. E(max) values (% effect induced by 10 microM of 5-HT) for G-protein activation at rat brain 5-HT1A receptors: sarizotan (66.5), bifeprunox (35.9), SSR181507 (25.8), nemonapride (25.7), ziprasidone (20.6), SLV313 (19), aripiprazole (15), tiospirone (8.9). These data were highly correlated with results obtained at recombinant human 5-HT1A receptors in determinations of G-protein activation and inhibition of forskolin-stimulated adenylyl cyclase. In binding-affinity determinations, the antipsychotics exhibited diverse properties at r5-HT1A receptors: sarizotan (pK(i)=8.65), SLV313 (8.64), SSR181507 (8.53), nemonapride (8.35), ziprasidone (8.30), tiospirone (8.22), aripiprazole (7.42), bifeprunox (7.19) and clozapine (6.31). The affinity ratios of the ligands at 5-HT1A vs. D2 receptors also varied widely: ziprasidone, SSR181507 and SLV313 had similar affinities whereas aripiprazole, nemonapride and bifeprunox were more potent at D2 than 5-HT1A receptors. Taken together, these data indicate that aripiprazole has low efficacy and modest affinity at 5-HT1A receptors, whereas bifeprunox has low affinity but high efficacy. In contrast, SSR181507 has intermediate efficacy but high affinity, and is likely to have more prominent 5-HT1A receptor agonist properties. Thus, the contribution of 5-HT1A receptor activation to the pharmacological profile of action of the

  9. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+

    NASA Astrophysics Data System (ADS)

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  10. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.

    PubMed

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  11. Novel soluble, high-affinity gastrin-releasing peptide binding proteins in Swiss 3T3 fibroblasts.

    PubMed

    Kane, M A; Portanova, L B; Kelley, K; Holley, M; Ross, S E; Boose, D; Escobedo-Morse, A; Alvarado, B

    1994-01-01

    Swiss 3T3 cells contained substantial amounts of soluble and specific [125I]GRP binders. Like the membrane-associated GRP receptor, they were of high affinity, saturable, bound to GRP(14-27) affinity gels, and exhibited specificity for GRP(14-27) binding. They differed in that acid or freezing destroyed specific binding, specific binding exhibited different time and temperature effects, no detergent was required for their solubilization, ammonium sulfate fractionation yielded different profiles, the M(rs) were lower, GRP(1-16) also blocked binding, and a polyclonal anti-GRP receptor antiserum did not bind on Western blots. The isolated, soluble GRP binding protein(s) rapidly degraded [125I]GRP. These soluble GRP binding proteins may play a role in the regulation of the mitogenic effects of GRP on these cells.

  12. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    PubMed

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of a Sigma-2 Receptor affinity filter through a Monte Carlo based QSAR analysis.

    PubMed

    Rescifina, Antonio; Floresta, Giuseppe; Marrazzo, Agostino; Parenti, Carmela; Prezzavento, Orazio; Nastasi, Giovanni; Dichiara, Maria; Amata, Emanuele

    2017-08-30

    For the first time in sigma-2 (σ 2 ) receptor field, a quantitative structure-activity relationship (QSAR) model has been built using pK i values of the whole set of known selective σ 2 receptor ligands (548 compounds), taken from the Sigma-2 Receptor Selective Ligands Database (S2RSLDB) (http://www.researchdsf.unict.it/S2RSLDB/), through the Monte Carlo technique and employing the software CORAL. The model has been developed by using a large and structurally diverse set of compounds, allowing for a prediction of different populations of chemical compounds endpoint (σ 2 receptor pK i ). The statistical quality reached, suggested that model for pK i determination is robust and possesses a satisfactory predictive potential. The statistical quality is high for both visible and invisible sets. The screening of the FDA approved drugs, external to our dataset, suggested that sixteen compounds might be repositioned as σ 2 receptor ligands (predicted pK i ≥8). A literature check showed that six of these compounds have already been tested for affinity at σ 2 receptor and, of these, two (Flunarizine and Terbinafine) have shown an experimental σ 2 receptor pK i >7. This suggests that this QSAR model may be used as focusing screening filter in order to prospectively find or repurpose new drugs with high affinity for the σ 2 receptor, and overall allowing for an enhanced hit rate respect to a random screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling.

    PubMed

    Fernandes, Herman B; Catches, Justin S; Petralia, Ronald S; Copits, Bryan A; Xu, Jian; Russell, Theron A; Swanson, Geoffrey T; Contractor, Anis

    2009-09-24

    Kainate receptors signal through both ionotropic and metabotropic pathways. The high-affinity subunits, GluK4 and GluK5, are unique among the five receptor subunits, as they do not form homomeric receptors but modify the properties of heteromeric assemblies. Disruption of the Grik4 gene locus resulted in a significant reduction in synaptic kainate receptor currents. Moreover, ablation of GluK4 and GluK5 caused complete loss of synaptic ionotropic kainate receptor function. The principal subunits were distributed away from postsynaptic densities and presynaptic active zones. There was also a profound alteration in the activation properties of the remaining kainate receptors. Despite this, kainate receptor-mediated inhibition of the slow afterhyperpolarization current (I(sAHP)), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown obligatory role for the high-affinity subunits for ionotropic kainate receptor function and further demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels.

  15. Synthesis, molecular modeling, and opioid receptor affinity of 9, 10-diazatricyclo[4.2.1.1(2,5)]decanes and 2,7-diazatricyclo[4.4.0. 0(3,8)]decanes structurally related to 3,8-diazabicyclo[3.2. 1]octanes.

    PubMed

    Vianello, P; Albinati, A; Pinna, G A; Lavecchia, A; Marinelli, L; Borea, P A; Gessi, S; Fadda, P; Tronci, S; Cignarella, G

    2000-06-01

    Various lines of evidence, including molecular modeling studies, imply that the endoethylenic bridge of 3,8-diazabicyclo[3.2. 1]octanes (DBO, 1) plays an essential role in modulating affinity toward mu opioid receptors. This hypothesis, together with the remarkable analgesic properties observed for N(3) propionyl, N(8) arylpropenyl derivatives (2) and of the reverted isomers (3), has prompted us to insert an additional endoethylenic bridge on the piperazine moiety in order to identify derivatives with increased potency toward this receptor class. In the present report, we describe the synthesis of the novel compounds 9,10-diazatricyclo[4.2. 1.1(2,5)]decane (4) and 2,7-diazatricyclo[4.4.0.0(3,8)]decane (5), as well as the representative derivatives functionalized at the two nitrogen atoms by propionyl and arylpropenyl groups (6a-e, 7a-d). Opioid receptor binding assays revealed that, among the compounds tested, the N-propionyl-N-cinnamyl derivatives 6a and 7a exhibited the highest mu-receptor affinity, and remarkably, compound 7a displayed in vivo (mice) an analgesic potency 6-fold that of morphine.

  16. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    PubMed

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  17. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

    PubMed

    McPartland, John M; MacDonald, Christa; Young, Michelle; Grant, Phillip S; Furkert, Daniel P; Glass, Michelle

    2017-01-01

    Introduction: Cannabis biosynthesizes Δ 9 -tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ 9 -tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB 1 ). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB 1 and hCB 2 was measured in competition binding assays, using transfected HEK cells and [ 3 H]CP55,940. Efficacy at hCB 1 and hCB 2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB 1 and hCB 2 , equating to approximate K i values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB 1 and 125-fold greater affinity at hCB 2 . In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB 1 , suggestive of weak agonist activity, and no measurable efficacy at hCB 2 . Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB 1 or CB 2 .

  18. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  19. Affinity purification of angiotensin type 2 receptors from N1E-115 cells: evidence for agonist-induced formation of multimeric complexes.

    PubMed

    Siemens, I R; Yee, D K; Reagan, L P; Fluharty, S J

    1994-01-01

    The murine neuroblastoma N1E-115 cell line possesses type 1 and type 2 angiotensin II (AngII) receptor subtypes. In vitro differentiation of these cells substantially increases the density of the AT2-receptor subtype, whereas the density of the AT1 receptors remains unchanged. In the present study, we report that the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) selectively solubilized AT2 receptors from N1E-115 cell membranes and that these receptors could be purified further to near homogeneity by affinity chromatography. More specifically, the presence of an agonist (AngII) during affinity purification of AT2 receptors resulted in the elution of high (110-kDa) and low (66-kDa) molecular mass proteins as determined by gel electrophoresis under nonreducing conditions. In contrast, when the nonselective antagonist Sar1,Ile8-AngII was used during purification, only the lower 66-kDa protein was observed. Affinity purification in the presence of the peptide and nonpeptide AT2-receptor antagonists CGP42112A and PD123319 also resulted in elution of the same 66-kDa protein, but unlike that in the presence of Sar1,Ile8-AngII, some of the high molecular weight site was observed as well. On the other hand, Losartan, an AT1-receptor antagonist, was completely ineffective in eluting any AngII receptors from the affinity column, further confirming their AT2 identity. After agonist elution, the 110-kDa band dissociated into two low molecular mass bands of 66 kDa and 54 kDa when sodium dodecyl sulfate-gel electrophoresis was run under reducing conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less

  1. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    PubMed Central

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  2. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

    PubMed

    Jenkinson, K M; Southwell, B R; Furness, J B

    1999-01-01

    1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.

  3. Tumour necrosis factors modulate the affinity state of the leukotriene B4 receptor on human neutrophils.

    PubMed Central

    Brom, J; Knöller, J; Köller, M; König, W

    1988-01-01

    Pre-incubation of human polymorphonuclear granulocytes with recombinant human tumour necrosis factors (TNF) revealed a time- and dose-dependent reduction of the expression of leukotriene B4-receptor sites. Analysis of the binding data by Scatchard plots showed a shift from a heterologous receptor population (indicating high- and low-affinity subsets) to a homologous population. From the results it is considered that TNF can influence host defence through the modulation of leukotriene B4 receptor affinity. PMID:2851543

  4. Development of an affinity-matured humanized anti-epidermal growth factor receptor antibody for cancer immunotherapy.

    PubMed

    Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi

    2013-02-01

    We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.

  5. HIGH-AFFINITY T CELL RECEPTOR DIFFERENTIATES COGNATE PEPTIDE-MHC AND ALTERED PEPTIDE LIGANDS WITH DISTINCT KINETICS AND THERMODYNAMICS

    PubMed Central

    Persaud, Stephen P.; Donermeyer, David L.; Weber, K. Scott; Kranz, David M.; Allen, Paul M.

    2010-01-01

    Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor. PMID:20334923

  6. Identification of a Lacosamide Binding Protein Using an Affinity Bait and Chemical Reporter Strategy: 14-3-3 ζ

    PubMed Central

    Park, Ki Duk; Kim, Dong Wook; Reamtong, Onrapak; Eyers, Claire; Gaskell, Simon J.; Liu, Rihe; Kohn, Harold

    2011-01-01

    We have advanced a useful strategy to elucidate binding partners of ligands (drugs) with modest binding affinity. Key to this strategy is attaching to the ligand an affinity bait (AB) and a chemical reporter (CR) group, where the AB irreversibly attaches the ligand to the receptor upon binding and the CR group is employed for receptor detection and isolation. We have tested this AB&CR strategy using lacosamide ((R)-1), a low-molecular-weight antiepileptic drug. We demonstrate that using a (R)-lacosamide AB&CR agent ((R)-2) 14-3-3 ζ in rodent brain soluble lysates is preferentially adducted, adduction is stereospecific with respect to the AB&CR agent, and adduction depends upon the presence of endogenous levels of the small molecule metabolite xanthine. Substitution of lacosamide AB agent ((R)- 5) for (R)-2 led to the identification of the 14-3-3 ζ adduction site (K120) by mass spectrometry. Competition experiments using increasing amounts of (R)-1 in the presence of (R)-2 demonstrated that (R)-1 binds at or near the (R)-2 modification site on 14-3-3 ζ. Structure-activity studies of xanthine derivatives provided information concerning the likely binding interaction between this metabolite and recombinant 14-3-3 ζ. Documentation of the 14-3-3 ζ-xanthine interaction was obtained with isothermal calorimetry using xanthine and the xanthine analogue 1,7-dimethylxanthine. PMID:21692503

  7. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nye, J.S.

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one classmore » of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.« less

  8. Methods for quantifying T cell receptor binding affinities and thermodynamics

    PubMed Central

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  9. Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.

    PubMed

    Unelius, L; Cannon, B; Nedergaard, J

    1994-10-07

    The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.

  10. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    PubMed

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  11. Comparison of receptor affinity of natSc-DOTA-TATE versus natGa-DOTA-TATE.

    PubMed

    Koumarianou, Eftychia; Pawlak, Dariusz; Korsak, Agnieszka; Mikolajczak, Renata

    2011-01-01

    44Sc as a positron emitter can be an interesting alternative to 68Ga (T½=67.71 min) due to its longer half-life (T½=3.97 h). Moreover, the b-emitter 47Sc can be used for therapy when attached to the same biomolecule vectors. DOTA as a chelating agent has been proven suitable for the radiolabelling of peptides recognising tumour cell receptors in vivo with M3+ radiometals. DOTA-derivatized peptides have been successfully labelled with 90Y and 177Lu for therapy, and with 68Ga for PET imaging. However, published data on 44Sc-labelled DOTA-biomolecules as potential PET radiotracers are still very limited. The aim of this study was to compare the affinity of natGa- and natSc-labelled DOTA-TATE to somatostatin receptors subtype 2 expressed in rat pancreatic cancer cell line AR42J. The cold complexes of DOTA-TATE with natGa and natSc were synthesized and identified by HPLC and MS analysis and evaluated in vitro for competitive binding to cancer cell line AR42J expressing somatostatin receptors subtype 2 (sstr2). The IC50 values calculated from the displacement curve of {125I-Tyr11}-SST-14 were: 0.20±0.18, 0.70±0.20, 0.64±0.22 and 0.67±0.12 for natGa-DOTA-TATE, natSc-DOTA-TATE, DOTA-TATE, and {Tyr11}-SST-14 complexes, respectively, with the affinity lowering in the decreasing order: natGa-DOTA-TATE>DOTA-TATE>Tyr11-SST-14>natSc-DOTA-TATE. The binding affinity of natGa-DOTA-TATE appeared higher than that of natSc-DOTA-TATE. Further in vitro and in vivo studies are needed to verify the influence of the chelated metal on the affinity and uptake of the respective radiolabelled compounds. This information might be crucial when the in vivo applications of peptides labelled with 68Ga and 44Sc for PET, as well as the use of 47Sc for radiotherapy are considered.

  12. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    PubMed

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  13. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis

    PubMed Central

    Jenkinson, Karl M; Southwell, Bridget R; Furness, John B

    1999-01-01

    In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r.We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum.SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis.The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leuψ[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-βAla) were both more potent in inhibiting endocytosis (50× and 8× greater respectively) against septide than against SP.The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor. PMID:10051129

  14. The size of the hydroxyl group and its contribution to the affinity of atropine for muscarine-sensitive acetylcholine receptors.

    PubMed Central

    Barlow, R. B.; Ramtoola, S.

    1980-01-01

    1 From measurements of the affinity constants of hydratropyltropine and its methiodide for muscarine-sensitive acetylcholine receptors in the guinea-pig ileum, the increment in log K for the hydroxyl group in atropine is 2.06 and in the methiodide it is 2.16. These effects are slightly bigger than any so far recorded with these receptors. 2 The estimate of the increment in apparent molal volume for the hydroxyl group is 1.1 cm3/mol in atropine and 1.0 cm3/mol in the methobromide. 3 The large effect of the group on affinity may be linked to its small apparent size in water as suggested in the previous paper. PMID:7470742

  15. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3.

    PubMed

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([ 11 C]MA2) and a fluorine-18 ([ 18 F]MA3) labeled analog of a highly potent N -arylamide oxadiazole CB2 agonist (EC 50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC 50 : 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for h CB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC 50 values when compared to the originally reported trifluoromethyl analog 12 . [ 11 C]MA2 and [ 18 F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [ 11 C]MA2 and [ 18 F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.

  16. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3

    PubMed Central

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M.

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2) and a fluorine-18 ([18F]MA3) labeled analog of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analog 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted. PMID:27713686

  17. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures.

    PubMed

    Rosenthaler, Sarah; Pöhn, Birgit; Kolmanz, Caroline; Huu, Chi Nguyen; Krewenka, Christopher; Huber, Alexandra; Kranner, Barbara; Rausch, Wolf-Dieter; Moldzio, Rudolf

    2014-01-01

    Phytocannabinoids are potential candidates for neurodegenerative disease treatment. Nonetheless, the exact mode of action of major phytocannabinoids has to be elucidated, but both, receptor and non-receptor mediated effects are discussed. Focusing on the often presumed structure-affinity-relationship, Ki values of phytocannabinoids cannabidiol (CBD), cannabidivarin (CBDV), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), THC acid (THCA) and THC to human CB1 and CB2 receptors were detected by using competitive inhibition between radioligand [(3)H]CP-55,940 and the phytocannabinoids. The resulting Ki values to CB1 range from 23.5 nM (THCA) to 14711 nM (CBDV), whereas Ki values to CB2 range from 8.5 nM (THC) to 574.2 nM (CBDV). To study the relationship between binding affinity and effects on neurons, we investigated possible CB1 related cytotoxic properties in murine mesencephalic primary cell cultures and N18TG2 neuroblastoma cell line. Most of the phytocannabinoids did not affect the number of dopaminergic neurons in primary cultures, whereas propidium iodide and resazurin formation assays revealed cytotoxic properties of CBN, CBDV and CBG. However, THC showed positive effects on N18TG2 cell viability at a concentration of 10 μM, whereas CBC and THCA also displayed slightly positive activities. These findings are not linked to the receptor binding affinity therewith pointing to another mechanism than a receptor mediated one. [Corrected] Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study

    NASA Astrophysics Data System (ADS)

    Réau, Manon; Langenfeld, Florent; Zagury, Jean-François; Montes, Matthieu

    2018-01-01

    The Drug Design Data Resource (D3R) Grand Challenges are blind contests organized to assess the state-of-the-art methods accuracy in predicting binding modes and relative binding free energies of experimentally validated ligands for a given target. The second stage of the D3R Grand Challenge 2 (GC2) was focused on ranking 102 compounds according to their predicted affinity for Farnesoid X Receptor. In this task, our workflow was ranked 5th out of the 77 submissions in the structure-based category. Our strategy consisted in (1) a combination of molecular docking using AutoDock 4.2 and manual edition of available structures for binding poses generation using SeeSAR, (2) the use of HYDE scoring for pose selection, and (3) a hierarchical ranking using HYDE and MM/GBSA. In this report, we detail our pose generation and ligands ranking protocols and provide guidelines to be used in a prospective computer aided drug design program.

  19. Cognitive impairments of alcoholic cirrhotic patients: correlation with endogenous benzodiazepine receptor ligands and increased affinity of platelet receptors.

    PubMed Central

    Kapczinski, F; Curran, H V; Przemioslo, R; Williams, R; Fluck, E; Fernandes, C; File, S E

    1996-01-01

    OBJECTIVES--To determine whether differences in cognitive function between alcoholic and non-alcoholic cirrhotic patients relate to differences in endogenous ligands for the benzodiazepine receptor and/or benzodiazepine binding. METHODS--Seventeen grade-I hepatic encephalopathic patients (nine alcoholic, eight non-alcoholic) were compared with 10 matched controls on plasma concentrations of endogenous ligands for the neuronal benzodiazepine receptor, benzodiazepine binding in platelets, and performance on tests of cognitive function. RESULTS--Both groups of patients were impaired on verbal recall and on reaction time tasks compared with controls; alcoholic patients were also impaired on Reitan's trails test and digit cancellation. Four of the 17 patients had detectable concentrations of endogenous benzodiazepine ligands and they were more impaired than other patients on trails and cancellation tests. The groups did not differ in the density of benzodiazepine platelet receptors, but receptor affinity was higher in alcoholic patients than in controls; furthermore, receptor affinity correlated with the time to complete the cancellation task and with reaction time. CONCLUSION--Alcoholic cirrhotic patients may have enhanced concentrations of ligands for neuronal and peripheral benzodiazepine receptors and these may contribute to cognitive impairments in these patients. PMID:8648337

  20. Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors.

    PubMed

    Horton, William J; Gissel, Hannah J; Saboy, Jennifer E; Wright, Kenneth P; Stitzel, Jerry A

    2015-07-01

    While it is known that tobacco use varies across the 24-h day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however, the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. The objective of this study is examine the role of melatonin and melatonin receptors in nicotine free-choice consumption A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin-deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin-proficient mice lacking both or one of the high-affinity melatonin receptors (MT1 and MT2; double-null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild-type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin-proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However, single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and potential mechanistic

  1. Diphtheria toxin can simultaneously bind to its receptor and adenylyl-(3',5')-uridine 3'-monophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbieri, J.T.; Collins, C.M.; Collier, R.J.

    1986-10-21

    Diphtheria toxin (DT) that was bound to receptors on BS-C-1 cells was able to bind approximately 1 molar equiv of adenylyl-(3',5')-uridine 3'-monophosphate (ApUp). In contrast, receptor-bound CRM197, a mutant form of toxin with greatly diminished affinity for dinucleotides, did not bind ApUp. Affinity of the dinucleotide for receptor-bound toxin differed from that for free toxin by less than an order of magnitude. These results indicate that the receptor site and the ApUp site on the toxin do not significantly overlap. BS-C-1 cells were incubated with or without /sup 125/I-DT or CRM 197. They were then incubated with (/sup 32/P)ApUp, andmore » assayed.« less

  2. Structural basis of ligand recognition in 5-HT3 receptors

    PubMed Central

    Kesters, Divya; Thompson, Andrew J; Brams, Marijke; van Elk, René; Spurny, Radovan; Geitmann, Matthis; Villalgordo, Jose M; Guskov, Albert; Helena Danielson, U; Lummis, Sarah C R; Smit, August B; Ulens, Chris

    2013-01-01

    The 5-HT3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT3 receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT3 receptor. PMID:23196367

  3. Identification and functional characterization of hemorphins VV-H-7 and LVV-H-7 as low-affinity agonists for the orphan bombesin receptor subtype 3

    PubMed Central

    Lammerich, Hans-Peter; Busmann, Annette; Kutzleb, Christian; Wendland, Martin; Seiler, Petra; Berger, Claudia; Eickelmann, Peter; Meyer, Markus; Forssmann, Wolf-Georg; Maronde, Erik

    2003-01-01

    The human orphan G-protein coupled receptor bombesin receptor subtype 3 (hBRS-3) was screened for peptide ligands by a Ca2+ mobilization assay resulting in the purification and identification of two specific ligands, the naturally occurring VV-hemorphin-7 (VV-H-7) and LVV-hemorphin-7 (LVV-H-7), from human placental tissue. These peptides were functionally characterized as full agonists with unique specificity albeit low affinity for hBRS-3 compared to other bombesin receptors. VV-H-7 and LVV-H-7 induced a dose-dependent response in hBRS-3 overexpressing CHO cells, as well as in NCI-N417 cells expressing the hBRS-3 endogenously. The affinity of VV-H-7 was higher in NCI-N417 cells compared to overexpressing CHO cells. In detail, the EC50 values were 45±15 μM for VV-H-7 and 183±60 μM for LVV-H-7 in CHO cells, and 19±6 μM for VV-H-7 and 38±18 μM for LVV-H-7 in NCI-N417 cells. Other hemorphins had no effect. Gastrin-releasing peptide (GRP) and neuromedin B (NMB) showed similar EC50 values of 13–20 μM (GRP) and of 1–2 μM (NMB) on both cell lines. Structure-function analysis revealed that both the N-terminal valine and the C-terminal phenylalanine residues of VV-H-7 are critical for the ligand-receptor interaction. Endogenous hBRS-3 in NCI-N417 activated by VV-H-7 couples to phospholipase C resulting in changes of intracellular calcium, which is initially released from an inositol trisphosphate (IP3)-sensitive store followed by a capacitive calcium entry from extracellular space. VV-H-7-induced hBRS-3 activation led to phosphorylation of p42/p44-MAP kinase in NCI-N417 cells, but did not stimulate cell proliferation. In contrast, phosphorylation of focal adhesion kinase (p125FAK) was not observed. PMID:12721098

  4. DOTA-derivatives of octreotide dicarba-analogues with high affinity for somatostatin sst2,5 receptors

    NASA Astrophysics Data System (ADS)

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M.; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-02-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumours and their metastases. In fact, peptide ligands of somatostatin receptors (sst’s) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogues, which show interesting binding profiles at sst’s. In this context, it was mandatory to explore the possibility that our analogues could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogues of octreotide. Interestingly, two conjugated analogues exhibited nanomolar affinities on sst2 and sst5 somatostatin receptor subtypes.

  5. DOTA-Derivatives of Octreotide Dicarba-Analogs with High Affinity for Somatostatin sst2,5 Receptors.

    PubMed

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-01-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumors and their metastases. In fact, peptide ligands of somatostatin receptors (sst's) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogs, which show interesting binding profiles at sst's. In this context, it was mandatory to explore the possibility that our analogs could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogs of octreotide. Interestingly, two conjugated analogs exhibited nanomolar affinities on sst 2 and sst 5 somatostatin receptor subtypes.

  6. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoformsmore » with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.« less

  7. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors

    NASA Astrophysics Data System (ADS)

    Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony

    2016-04-01

    Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.

  8. RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR

    EPA Science Inventory

    RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
    The USEPA has been mandated to screen industria...

  9. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling.

    PubMed

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M; Morrice, Nick A; MacKintosh, Carol

    2009-11-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.

  10. The high-affinity receptor for IgG, FcγRI, of humans and non-human primates.

    PubMed

    Chenoweth, Alicia M; Trist, Halina M; Tan, Peck-Szee; Wines, Bruce D; Hogarth, P Mark

    2015-11-01

    Non-human primate (NHP) models, especially involving macaques, are considered important models of human immunity and have been essential in preclinical testing for vaccines and therapeutics. Despite this, much less characterization of macaque Fc receptors has occurred compared to humans or mice. Much of the characterization of macaque Fc receptors so far has focused on the low-affinity Fc receptors, particularly FcγRIIIa. From these studies, it is clear that there are distinct differences between the human and macaque low-affinity receptors and their interaction with human IgG. Relatively little work has been performed on the high-affinity IgG receptor, FcγRI, especially in NHPs. This review will focus on what is currently known of how FcγRI interacts with IgG, from mutation studies and recent crystallographic studies of human FcγRI, and how amino acid sequence differences in the macaque FcγRI may affect this interaction. Additionally, this review will look at the functional consequences of differences in the amino acid sequences between humans and macaques. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs.

    PubMed

    Lipani, Luca; Odadzic, Dalibor; Weizel, Lilia; Schwed, Johannes-Stephan; Sadek, Bassem; Stark, Holger

    2014-10-30

    The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. High-affinity binding of (/sup 3/H)estradiol-17 beta by an estrogen receptor in the liver of the turtle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, S.M.; Fehrer, S.; Yu, M.

    1988-06-01

    Specific (3H)estradiol-17 beta ((3H)E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds (3H)E2 with highmore » affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of (3H)E2 binding activity in both cytosolic and nuclear fractions. The exchange between (3H)E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species.« less

  13. Roles of affinity and lipophilicity in the slow kinetics of prostanoid receptor antagonists on isolated smooth muscle preparations

    PubMed Central

    Jones, RL; Woodward, DF; Wang, JW; Clark, RL

    2011-01-01

    BACKGROUND AND PURPOSE The highly lipophilic acyl-sulphonamides L-798106 and L-826266 showed surprisingly slow antagonism of the prostanoid EP3 receptor system in guinea-pig aorta. Roles of affinity and lipophilicity in the onset kinetics of these and other prostanoid ligands were investigated. EXPERIMENTAL APPROACH Antagonist selectivity was assessed using a panel of human recombinant prostanoid receptor-fluorimetric imaging plate reader assays. Potencies/affinities and onset half-times of agonists and antagonists were obtained on guinea-pig-isolated aorta and vas deferens. n-Octanol-water partition coefficients were predicted. KEY RESULTS L-798106, L-826266 and the less lipophilic congener (DG)-3ap appear to behave as selective, competitive-reversible EP3 antagonists. For ligands of low to moderate lipophilicity, potency increments for EP3 and TP (thromboxane-like) agonism on guinea-pig aorta (above pEC50 of 8.0) were associated with progressively longer onset half-times; similar trends were found for TP and histamine H1 antagonism above a pA2 limit of 8.0. In contrast, L-798106 (EP3), L-826266 (EP3, TP) and the lipophilic H1 antagonists astemizole and terfenadine exhibited very slow onset rates despite their moderate affinities; (DG)-3ap (EP3) had a faster onset. Agonism and antagonism on the vas deferens EP3 system were overall much faster, although trends were similar. CONCLUSIONS AND IMPLICATIONS High affinity and high liphophilicity may contribute to the slow onsets of prostanoid ligands in some isolated smooth muscle preparations. Both relationships are explicable by tissue disposition under the limited diffusion model. EP3 antagonists used as research tools should have moderate lipophilicity. The influence of lipophilicity on the potential clinical use of EP3 antagonists is discussed. PMID:20973775

  14. [125I]-GR231118: a high affinity radioligand to investigate neuropeptide Y Y1 and Y4 receptors

    PubMed Central

    Dumont, Yvan; Quirion, Rémi

    2000-01-01

    GR231118 (also known as 1229U91 and GW1229), a purported Y1 antagonist and Y4 agonist was radiolabelled using the chloramine T method. [125I]-GR231118 binding reached equilibrium within 10 min at room temperature and remained stable for at least 4 h. Saturation binding experiments showed that [125I]-GR231118 binds with very high affinity (Kd of 0.09–0.24 nM) in transfected HEK293 cells with the rat Y1 and Y4 receptor cDNA and in rat brain membrane homogenates. No specific binding sites could be detected in HEK293 cells transfected with the rat Y2 or Y5 receptor cDNA demonstrating the absence of significant affinity of GR231118 for these two receptor classes. Competition binding experiments revealed that specific [125I]-GR231118 binding in rat brain homogenates is most similar to that observed in HEK293 cells transfected with the rat Y1, but not rat Y4, receptor cDNA. Autoradiographic studies demonstrated that [125I]-GR231118 binding sites were fully inhibited by the Y1 antagonist BIBO3304 in most areas of the rat brain. Interestingly, high percentage of [125I]-GR231118/BIBO3304-insensitive binding sites were detected in few areas. These [125I]-GR231118/BIBO3304-insensitive binding sites likely represent labelling to the Y4 receptor subtype. In summary, [125I]-GR231118 is a new radiolabelled probe to investigate the Y1 and Y4 receptors; its major advantage being its high affinity. Using highly selective Y1 antagonists such as BIBO3304 or BIBP3226 it is possible to block the binding of [125I]-GR231118 to the Y1 receptor allowing for the characterization and visualization of the purported Y4 subtype. PMID:10694200

  15. CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist.

    PubMed

    Chen, Jianyong; Collins, Gregory T; Levant, Beth; Woods, James; Deschamps, Jeffrey R; Wang, Shaomeng

    2011-08-11

    We have identified several ligands with high binding affinities to the dopamine D3 receptor and excellent selectivity over the D2 and D1 receptors. CJ-1639 (17) binds to the D3 receptor with a K(i) value of 0.50 nM and displays a selectivity of >5,000 times over D2 and D1 receptors in binding assays using dopamine receptors expressed in the native rat brain tissues. CJ-1639 binds to human D3 receptor with a K(i) value of 3.61 nM and displays over >1000-fold selectivity over human D1 and D2 receptors. CJ-1639 is active at 0.01 mg/kg at the dopamine D3 receptor in the rat and only starts to show a modest D2 activity at doses as high as 10 mg/kg. CJ-1639 is the most potent and selective D3 full agonist reported to date.

  16. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    PubMed

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range.

    PubMed

    Baba, Satoko; Enomoto, Takeshi; Horisawa, Tomoko; Hashimoto, Takashi; Ono, Michiko

    2015-03-01

    Antagonism of the dopamine D3 receptor has been hypothesized to be beneficial for schizophrenia cognitive deficits, negative symptoms and extrapyramidal symptoms. However, recent animal and human studies have shown that most antipsychotics do not occupy D3 receptors in vivo, despite their considerable binding affinity for this receptor in vitro. In the present study, we investigated the D3 receptor binding of blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptors antagonist, in vitro and in vivo. Blonanserin showed the most potent binding affinity for human D3 receptors among the tested atypical antipsychotics (risperidone, olanzapine and aripiprazole). Our GTPγS-binding assay demonstrated that blonanserin acts as a potent full antagonist for human D3 receptors. All test-drugs exhibited antipsychotic-like efficacy in methamphetamine-induced hyperactivity in rats. Treatment with blonanserin at its effective dose blocked the binding of [(3)H]-(+)-PHNO, a D2/D3 receptor radiotracer, both in the D2 receptor-rich region (striatum) and the D3 receptor-rich region (cerebellum lobes 9 and 10). On the other hand, the occupancies of other test-drugs for D3 receptors were relatively low. In conclusion, we have shown that blonanserin, but not other tested antipsychotics, extensively occupies D3 receptors in vivo in rats. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  18. A Cyclic Tetrapeptide (“Cyclodal”) and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists

    PubMed Central

    Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.

    2016-01-01

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089

  19. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, T.B.; Benington, F.; Morin, R.D.

    1982-11-01

    Serotonin receptor affinity and photelectron spectral data were obtained on a number of substituted N,N-dimethyltryptamines. Evidence is presented that electron-donating substituents in the 5-position lead to enhanced behavioral disruption activity and serotonin receptor affinity as compared to unsubstituted N,N-dimethyltryptamine and analogues substituted in the 4- or 6-position. Some correlation was found between ionization potentials and behavioral activity, which may have implications concerning the mechanism of receptor binding.

  20. Differential 14-3-3 Affinity Capture Reveals New Downstream Targets of Phosphatidylinositol 3-Kinase Signaling*

    PubMed Central

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M.; Morrice, Nick A.; MacKintosh, Carol

    2009-01-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways. PMID:19648646

  1. Discovery of a new class of ionotropic glutamate receptor antagonists by the rational design of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid.

    PubMed

    Larsen, Ann M; Venskutonytė, Raminta; Valadés, Elena Antón; Nielsen, Birgitte; Pickering, Darryl S; Bunch, Lennart

    2011-02-16

    The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1-5. In this article, we present the discovery of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid (1) based on a rational design process. Target compound 1 was synthesized by a stereoselective strategy in 10 steps from commercially available starting materials. Binding affinities of 1 at native ionotropic Glu receptors were determined to be in the micromolar range (AMPA, 51 μM; KA, 22 μM; NMDA 6 μM), with the highest affinity for cloned homomeric KA receptor subtypes GluK1,3 (3.0 and 8.1 μM, respectively). Functional characterization of 1 by two electrode voltage clamp (TEVC) electrophysiology at a nondesensitizing mutant of GluK1 showed full competitive antagonistic behavior with a K(b) of 11.4 μM.

  2. Investigation of various N-heterocyclic substituted piperazine versions of 5/ 7-{[2-(4-Aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol: Effect on affinity and selectivity for dopamine D3 receptor

    PubMed Central

    Brown, Dennis A.; Mishra, Manoj; Zhang, Suhong; Biswas, Swati; Parrington, Ingrid; Antonio, Tamara; Reith, Maarten E. A.; Dutta, Aloke K.

    2009-01-01

    Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/ 7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [3H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (Ki) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (-)-10e (Ki; D2 = 47.5 nM, D3 = 0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (Ki; D2 = 113 nM, D3 = 3.73 nM). Additionally, compound (-)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPγS binding study, one of the lead molecules, (-)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential activity at D3. PMID:19427222

  3. The Affinity of D2-Like Dopamine Receptor Antagonists Determines the Time to Maximal Effect on Cocaine Self-Administration

    PubMed Central

    Tabet, Michael R.; Norman, Mantana K.; Fey, Brittney K.; Tsibulsky, Vladimir L.; Millard, Ronald W.

    2011-01-01

    Differences in the time to maximal effect (Tmax) of a series of dopamine receptor antagonists on the self-administration of cocaine are not consistent with their lipophilicity (octanol-water partition coefficients at pH 7.4) and expected rapid entry into the brain after intravenous injection. It was hypothesized that the Tmax reflects the time required for maximal occupancy of receptors, which would occur as equilibrium was approached. If so, the Tmax should be related to the affinity for the relevant receptor population. This hypothesis was tested using a series of nine antagonists having a 2500-fold range of Ki or Kd values for D2-like dopamine receptors. Rats self-administered cocaine at regular intervals and then were injected intravenously with a dose of antagonist, and the self-administration of cocaine was continued for 6 to 10 h. The level of cocaine at the time of every self-administration (satiety threshold) was calculated throughout the session. The satiety threshold was stable before the injection of antagonist and then increased approximately 3-fold over the baseline value at doses of antagonists selected to produce this approximately equivalent maximal magnitude of effect (maximum increase in the equiactive cocaine concentration, satiety threshold; Cmax). Despite the similar Cmax, the mean Tmax varied between 5 and 157 min across this series of antagonists. Furthermore, there was a strong and significant correlation between the in vivo Tmax values for each antagonist and the affinity for D2-like dopamine receptors measured in vitro. It is concluded that the cocaine self-administration paradigm offers a reliable and predictive bioassay for measuring the affinity of a competitive antagonist for D2-like dopamine receptors. PMID:21606176

  4. Affinity chromatography for purification of the modular protein growth factor receptor-bound protein 2 and development of a screening test for growth factor receptor-bound protein 2 Src homology 3 domain inhibitor using peroxidase-linked ligand.

    PubMed

    Gril, B; Liu, W Q; Lenoir, C; Garbay, C; Vidal, M

    2006-04-01

    Growth factor receptor-bound protein 2 (Grb2) is an adapter protein involved in the Ras-dependent signaling pathway that plays an important role in human cancers initiated by oncogenic receptors. Grb2 is constituted by one Src homology 2 domain surrounded by two SH3 domains, and the inhibition of the interactions produced by these domains could provide an antitumor approach. In evaluating chemical libraries, to search for potential Grb2 inhibitors, it was necessary to elaborate a rapid test for their screening. We have developed, first, a batch method based on the use of an affinity column bearing a Grb2-SH3 peptide ligand to isolate highly purified Grb2. We subsequently describe a very rapid 96-well screening of inhibitors based on a simple competition between purified Grb2 and a peroxidase-coupled proline-rich peptide.

  5. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  6. [125I]2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), a high-affinity radioligand selective for I1 imidazoline receptors.

    PubMed

    Greney, Hugues; Urosevic, Dragan; Schann, Stephan; Dupuy, Laurence; Bruban, Véronique; Ehrhardt, Jean-Daniel; Bousquet, Pascal; Dontenwill, Monique

    2002-07-01

    The I1 subtype of imidazoline receptors (I1R) is a plasma membrane protein that is involved in diverse physiological functions. Available radioligands used so far to characterize the I(1)R were able to bind with similar affinities to alpha2-adrenergic receptors (alpha2-ARs) and to I1R. This feature was a major drawback for an adequate characterization of this receptor subtype. New imidazoline analogs were therefore synthesized and the present study describes one of these compounds, 2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), which was of high affinity and selectivity for the I1R. LNP 911 was radioiodinated and its binding properties characterized in different membrane preparations. Saturation experiments with [125I]LNP 911 revealed a single high affinity binding site in PC-12 cell membranes (K(D) = 1.4 nM; B(max) = 398 fmol/mg protein) with low nonspecific binding. [125I]LNP 911 specific binding was inhibited by various imidazolines and analogs but was insensitive to guanosine-5'-O-(3-thio)triphosphate. The rank order of potency of some competing ligands [LNP 911, PIC, rilmenidine, 4-chloro-2-(imidazolin-2-ylamino)-isoindoline (BDF 6143), lofexidine, and clonidine] was consistent with the definition of [125I]LNP 911 binding sites as I1R. However, other high-affinity I1R ligands (moxonidine, efaroxan, and benazoline) exhibited low affinities for these binding sites in standard binding assays. In contrast, when [125I]LNP 911 was preincubated at 4 degrees C, competition curves of moxonidine became biphasic. In this case, moxonidine exhibited similar high affinities on [125I]LNP 911 binding sites as on I1R defined with [125I]PIC. Moxonidine proved also able to accelerate the dissociation of [125I]LNP 911 from its binding sites. These results suggest the existence of an allosteric modulation at the level of the I1R, which seems to be corroborated by the dose-dependent enhancement by LNP 911 of the agonist effects on the adenylate cyclase pathway

  7. Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands.

    PubMed

    Bender, Aaron M; Clark, Mary J; Agius, Michael P; Traynor, John R; Mosberg, Henry I

    2014-01-15

    In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Expression of σ receptors of human urinary bladder tumor cells (RT-4 cells) and development of a competitive receptor binding assay for the determination of ligand affinity to human σ(2) receptors.

    PubMed

    Schepmann, Dirk; Lehmkuhl, Kirstin; Brune, Stefanie; Wünsch, Bernhard

    2011-07-15

    A selective competitive binding assay for the determination of the affinity of compounds to the human σ(2) receptor using 96-well multiplates and a solid state scintillator was developed. In the assay system, [(3)H]ditolylguanidine (DTG) was used as radioligand and membrane homogenates from human RT-4 cells physiologically expressing σ(2) receptors served as receptor material. In order to block the interaction of the unselective radioligand [(3)H]DTG with σ(1) receptors, all experiments were performed in the presence of the σ(1) selective ligand (+)-pentazocine. The density of σ(2) receptors of the cells was analyzed by a saturation experiment with [(3)H]DTG. The radioligand [(3)H]DTG was bound to a single, saturable site on human σ(2) receptors, resulting in a B(max) value of 2108±162fmol/mg protein and K(d)-value of 8.3±2.0nM. The expression of competing σ(1) receptors was evaluated by performing a saturation experiment using the σ(1) selective radioligand [(3)H](+)-pentazocine, which resulted in a B(max) value of 279±40fmol/mg protein and K(d) value of 13.4±1.6nM. For validation of the σ(2) binding assay, the K(i)-values of four σ(2) ligands (ditolylguanidine, haloperidol, rimczole and BMY-14802) were determined with RT-4 cell membrane preparations. The K(i) values obtained from these experiments are in good accordance with the K(i)-values obtained with rat liver membrane preparations as receptor material and with K(i) values given in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    PubMed

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  10. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells.

    PubMed

    Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I

    2017-11-01

    T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.

  11. Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges

    NASA Astrophysics Data System (ADS)

    Wingert, Bentley M.; Oerlemans, Rick; Camacho, Carlos J.

    2018-01-01

    The goal of virtual screening is to generate a substantially reduced and enriched subset of compounds from a large virtual chemistry space. Critical in these efforts are methods to properly rank the binding affinity of compounds. Prospective evaluations of ranking strategies in the D3R grand challenges show that for targets with deep pockets the best correlations (Spearman ρ 0.5) were obtained by our submissions that docked compounds to the holo-receptors with the most chemically similar ligand. On the other hand, for targets with open pockets using multiple receptor structures is not a good strategy. Instead, docking to a single optimal receptor led to the best correlations (Spearman ρ 0.5), and overall performs better than any other method. Yet, choosing a suboptimal receptor for crossdocking can significantly undermine the affinity rankings. Our submissions that evaluated the free energy of congeneric compounds were also among the best in the community experiment. Error bars of around 1 kcal/mol are still too large to significantly improve the overall rankings. Collectively, our top of the line predictions show that automated virtual screening with rigid receptors perform better than flexible docking and other more complex methods.

  12. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  13. Micromolar-affinity benzodiazepine receptors regulate voltage-sensitive calcium channels in nerve terminal preparations.

    PubMed Central

    Taft, W C; DeLorenzo, R J

    1984-01-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498

  14. New analogues of oxotremorine and oxotremorine-M: estimation of their in vitro affinity and efficacy at muscarinic receptor subtypes.

    PubMed

    Barocelli, E; Ballabeni, V; Bertoni, S; Dallanoce, C; De Amici, M; De Micheli, C; Impicciatore, M

    2000-06-30

    Two subsets of tertiary amines (1a-6a) and methiodides (1b-6b) with a structural resemblance to oxotremorine and oxotremorine-M were tested at rabbit vas deferens (M1), guinea pig left atrium (M2), guinea pig ileum and urinary bladder (M3) muscarinic receptor subtypes. The pharmacological profile of the derivatives under study has been discussed by evaluating their potency, affinity and efficacy as well as the regional differences in muscarinic receptor occupancy.

  15. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  16. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. atmore » 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.« less

  17. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  18. Analysis of molecular determinants of affinity and relative efficacy of a series of R- and S-2-(dipropylamino)tetralins at the 5-HT1A serotonin receptor

    PubMed Central

    Alder, J Tracy; Hacksell, Uli; Strange, Philip G

    2003-01-01

    Factors influencing agonist affinity and relative efficacy have been studied for the 5-HT1A serotonin receptor using membranes of CHO cells expressing the human form of the receptor and a series of R-and S-2-(dipropylamino)tetralins (nonhydroxylated and monohydroxylated (5-OH, 6-OH, 7-OH, 8-OH) species). Ligand binding studies were used to determine dissociation constants for agonist binding to the 5-HT1A receptor: Ki values for agonists were determined in competition versus the binding of the agonist [3H]-8-OH DPAT. Competition data were all fitted best by a one-binding site model.Ki values for agonists were also determined in competition versus the binding of the antagonist [3H]-NAD-199. Competition data were all fitted best by a two-binding site model, and agonist affinities for the higher (Kh) and lower affinity (Kl) sites were determined. The ability of the agonists to activate the 5-HT1A receptor was determined using stimulation of [35S]-GTPγS binding. Maximal effects of agonists (Emax) and their potencies (EC50) were determined from concentration/response curves for stimulation of [35S]-GTPγS binding. Kl/Kh determined from ligand binding assays correlated with the relative efficacy (relative Emax) of agonists determined in [35S]-GTPγS binding assays. There was also a correlation between Kl/Kh and Kl/EC50 for agonists determined from ligand binding and [35S]-GTPγS binding assays. Simulations of agonist binding and effect data were performed using the Ternary Complex Model in order to assess the use of Kl/Kh for predicting the relative efficacy of agonists. PMID:12684269

  19. A Non-imaging High Throughput Approach to Chemical Library Screening at the Unmodified Adenosine-A3 Receptor in Living Cells.

    PubMed

    Arruda, Maria Augusta; Stoddart, Leigh A; Gherbi, Karolina; Briddon, Stephen J; Kellam, Barrie; Hill, Stephen J

    2017-01-01

    Recent advances in fluorescent ligand technology have enabled the study of G protein-coupled receptors in their native environment without the need for genetic modification such as addition of N-terminal fluorescent or bioluminescent tags. Here, we have used a non-imaging plate reader (PHERAstar FS) to monitor the binding of fluorescent ligands to the human adenosine-A 3 receptor (A 3 AR; CA200645 and AV039), stably expressed in CHO-K1 cells. To verify that this method was suitable for the study of other GPCRs, assays at the human adenosine-A 1 receptor, and β 1 and β 2 adrenoceptors (β 1 AR and β 2 AR; BODIPY-TMR-CGP-12177) were also carried out. Affinity values determined for the binding of the fluorescent ligands CA200645 and AV039 to A 3 AR for a range of classical adenosine receptor antagonists were consistent with A 3 AR pharmacology and correlated well ( R 2 = 0.94) with equivalent data obtained using a confocal imaging plate reader (ImageXpress Ultra). The binding of BODIPY-TMR-CGP-12177 to the β 1 AR was potently inhibited by low concentrations of the β 1 -selective antagonist CGP 20712A (pK i 9.68) but not by the β 2 -selective antagonist ICI 118551(pK i 7.40). Furthermore, in experiments conducted in CHO K1 cells expressing the β 2 AR this affinity order was reversed with ICI 118551 showing the highest affinity (pK i 8.73) and CGP20712A (pK i 5.68) the lowest affinity. To determine whether the faster data acquisition of the non-imaging plate reader (~3 min per 96-well plate) was suitable for high throughput screening (HTS), we screened the LOPAC library for inhibitors of the binding of CA200645 to the A 3 AR. From the initial 1,263 compounds evaluated, 67 hits (defined as those that inhibited the total binding of 25 nM CA200645 by ≥40%) were identified. All compounds within the library that had medium to high affinity for the A 3 AR (pK i ≥6) were successfully identified. We found three novel compounds in the library that displayed unexpected

  20. Cell surface control of the multiubiquitination and deubiquitination of high-affinity immunoglobulin E receptors.

    PubMed Central

    Paolini, R; Kinet, J P

    1993-01-01

    Multiubiquitination of proteins is a critical step leading to selective degradation for many polypeptides. Therefore, activation-induced multiubiquitination of cell surface receptors, such as the platelet-derived growth factor (PDGF) receptor and the T cell antigen (TCR) receptor, may correspond to a degradation pathway for ligand-receptor complexes. Here we show that the antigen-induced engagement of high-affinity immunoglobulin E receptors (Fc epsilon RI) results in the immediate multiubiquitination of Fc epsilon RI beta and gamma chains. This ubiquitination is independent of receptor phosphorylation and is restricted to activated receptors. Surprisingly, receptor multiubiquitination is immediately reversible when receptors are disengaged. Therefore, multiubiquitination and deubiquitination of Fc epsilon RI receptors is controlled at the cell surface by receptor engagement and disengagement. The rapidity, specificity and, most importantly, the reversibility of the activation-induced receptor multiubiquitination suggest that this process may turn on/off a cell surface receptor signaling function thus far unsuspected. Images PMID:8382611

  1. 3-Arylpiperazinylethyl-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione derivatives as novel, high-affinity and selective alpha(1)-adrenoceptor ligands.

    PubMed

    Pittalà, Valeria; Romeo, Giuseppe; Salerno, Loredana; Siracusa, Maria Angela; Modica, Maria; Materia, Luisa; Mereghetti, Ilario; Cagnotto, Alfredo; Mennini, Tiziana; Marucci, Gabriella; Angeli, Piero; Russo, Filippo

    2006-01-01

    The discovery of a new series of selective and high-affinity alpha(1)-adrenoceptor (alpha(1)-AR) ligands, characterized by a 1H-pyrrolo[2,3-d]-pyrimidine-2,4(3H,7H)-dione system, is described in this paper. Some synthesized compounds, including 20, 22, and 30, displayed affinity in the nanomolar range for alpha(1)-ARs and substantial selectivity with respect to 5-HT(1A) and dopaminergic D(1) and D(2) receptors. Functional assays, performed on selected derivatives, showed antagonistic properties.

  2. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR) and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    PubMed Central

    Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning

    2017-01-01

    The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously

  3. Evaluation of antidepressant-like and anxiolytic-like activity of purinedione-derivatives with affinity for adenosine A2A receptors in mice.

    PubMed

    Dziubina, Anna; Szmyd, Karina; Zygmunt, Małgorzata; Sapa, Jacek; Dudek, Magdalena; Filipek, Barbara; Drabczyńska, Anna; Załuski, Michał; Pytka, Karolina; Kieć-Kononowicz, Katarzyna

    2016-12-01

    It has recently been suggested that the adenosine A 2A receptor plays a role in several animal models of depression. Additionally, A 2A antagonists have reversed behavioral deficits and exhibited a profile similar to classical antidepressants. In the present study, imidazo- and pyrimido[2,1-f]purinedione derivatives (KD 66, KD 167, KD 206) with affinity to A 2A receptors but poor A 1 affinity were evaluated for their antidepressant- and anxiolytic-like activity. The activity of these derivatives was tested using a tail suspension and forced swim test, two widely-used behavioral paradigms for the evaluation of antidepressant-like activity. In turn, the anxiolytic activity was evaluated using the four-plate test. The results showed the antidepressant-like activity of pyrimido- and imidazopurinedione derivatives (i.e. KD 66, KD 167 and KD 206) in acute and chronic behavioral tests in mice. KD 66 revealed an anxiolytic-like effect, while KD 167 increased anxiety behaviors. KD 206 had no effect on anxiety. Furthermore, none of the tested compounds increased locomotor activity. Available data support the proposition that the examined compounds with adenosine A 2A receptor affinity may be an interesting target for the development of antidepressant and/or anxiolytic agents. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Probes for narcotic receptor mediated phenomena. 43. Synthesis of the ortho-a and para-a, and improved synthesis and optical resolution of the ortho-b and para–b oxide-bridged phenylmorphans: Compounds with moderate to low opioid-receptor affinity

    PubMed Central

    Li, Feng; Folk, John E.; Cheng, Kejun; Kurimura, Muneaki; Deck, Jason A.; Deschamps, Jeffrey R.; Rothman, Richard B.; Dersch, Christina M.; Jacobson, Arthur E.; Rice, Kenner C.

    2011-01-01

    N-Phenethyl-substituted ortho-a and para-a oxide-bridged phenylmorphans have been obtained through an improved synthesis and their binding affinity examined at the various opioid receptors. Although the N-phenethyl substituent showed much greater affinity for μ- and κ-opioid receptors than their N-methyl relatives (e.g., Ki = 167 nM and 171 nM at μ- and κ-receptors vs >2800 and 7500 nM for the N-methyl ortho-a oxide-bridged phenylmorphan), the a-isomers were not examined further because of their relatively low affinity. The N-phenethyl substituted ortho-b and para-b oxide-bridged phenylmorphans were also synthesized and their enantiomers were obtained using supercritical fluid chromatography. Of the four enantiomers, only the (+)-ortho-b isomer had moderate affinity for μ- and κ-receptors (Ki = 49 and 42 nM, respectively, and it was found to also have moderate μ- and κ-opioid antagonist activity in the [35S]GTP-γ-S assay (Ke = 31 and 26 nM). PMID:21684752

  5. A search for presynaptic inhibitory histamine receptors in guinea-pig tissues: Further H3 receptors but no evidence for H4 receptors.

    PubMed

    Petri, Doris; Schlicker, Eberhard

    2016-07-01

    The histamine H4 receptor is coupled to Gi/o proteins and expressed on inflammatory cells and lymphoid tissues; it was suggested that this receptor also occurs in the brain or on peripheral neurones. Since many Gi/o protein-coupled receptors, including the H3 receptor, serve as presynaptic inhibitory receptors, we studied whether the sympathetic neurones supplying four peripheral tissues and the cholinergic neurones in the hippocampus from the guinea-pig are equipped with release-modulating H4 and H3 receptors. For this purpose, we preincubated tissue pieces from the aorta, atrium, renal cortex and vas deferens with (3)H-noradrenaline and hippocampal slices with (3)H-choline and determined the electrically evoked tritium overflow. The stimulation-evoked overflow in the five superfused tissues was inhibited by the muscarinic receptor agonist oxotremorine, which served as a positive control, but not affected by the H4 receptor agonist 4-methylhistamine. The H3 receptor agonist R-α-methylhistamine inhibited noradrenaline release in the peripheral tissues without affecting acetylcholine release in the hippocampal slices. Thioperamide shifted the concentration-response curve of histamine in the aorta and the renal cortex to the right, yielding apparent pA2 values of 8.0 and 8.1, respectively, which are close to its affinity at other H3 receptors but higher by one log unit than its pKi at the H4 receptor of the guinea-pig. In conclusion, histamine H4 receptors could not be identified in five experimental models of the guinea-pig that are suited for the detection of presynaptic inhibitory receptors whereas H3 receptors could be shown in the peripheral tissues but not in the hippocampus. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.

    PubMed

    Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio

    2016-08-01

    Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Adrenergic receptors in frontal cortex in human brain.

    PubMed

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  8. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.

    PubMed

    Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre

    2017-04-01

    Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  9. Inhibiting HER3-mediated tumor cell growth with affibody molecules engineered to low picomolar affinity by position-directed error-prone PCR-like diversification.

    PubMed

    Malm, Magdalena; Kronqvist, Nina; Lindberg, Hanna; Gudmundsdotter, Lindvi; Bass, Tarek; Frejd, Fredrik Y; Höidén-Guthenberg, Ingmarie; Varasteh, Zohreh; Orlova, Anna; Tolmachev, Vladimir; Ståhl, Stefan; Löfblom, John

    2013-01-01

    The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 pM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.

  10. The kangaroo cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II with low affinity.

    PubMed

    Yandell, C A; Dunbar, A J; Wheldrake, J F; Upton, Z

    1999-09-17

    The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.

  11. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    PubMed

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  12. Human GIP(3-30)NH2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors.

    PubMed

    Gabe, Maria Buur Nordskov; Sparre-Ulrich, Alexander Hovard; Pedersen, Mie Fabricius; Gasbjerg, Lærke Smidt; Inoue, Asuka; Bräuner-Osborne, Hans; Hartmann, Bolette; Rosenkilde, Mette Marie

    2018-04-01

    GIP(3-30)NH 2 is a high affinity antagonist of the GIP receptor (GIPR) in humans inhibiting insulin secretion via G protein-dependent pathways. However, its ability to inhibit G protein-independent signaling is unknown. Here we determine its action on arrestin-recruitment and receptor internalization in recombinant cells. As GIP is adipogenic, we evaluate the inhibitory actions of GIP(3-30)NH 2 in human adipocytes. Finally, we determine the receptor selectivity of GIP(3-30)NH 2 among other human and animal GPCRs. cAMP accumulation and β-arrestin 1 and 2 recruitment were studied in transiently transfected HEK293 cells and real-time internalization in transiently transfected HEK293A and in HEK293A β-arrestin 1 and 2 knockout cells. Furthermore, human subcutaneous adipocytes were assessed for cAMP accumulation following ligand stimulation. Competition binding was examined in transiently transfected COS-7 cells using human 125 I-GIP(3-30)NH 2 . The selectivity of human GIP(3-30)NH 2 was examined by testing for agonistic and antagonistic properties on 62 human GPCRs. Human GIP(3-30)NH 2 inhibited GIP(1-42)-induced cAMP and β-arrestin 1 and 2 recruitment on the human GIPR and Schild plot analysis showed competitive antagonism with a pA 2 and Hill slope of 16.8 nM and 1.11 ± 0.02 in cAMP, 10.6 nM and 1.15 ± 0.05 in β-arrestin 1 recruitment, and 10.2 nM and 1.06 ± 0.05 in β-arrestin 2 recruitment. Efficient internalization of the GIPR was dependent on the presence of either β-arrestin 1 or 2. Moreover, GIP(3-30)NH 2 inhibited GIP(1-42)-induced internalization in a concentration-dependent manner and notably also inhibited GIP-mediated signaling in human subcutaneous adipocytes. Finally, the antagonist was established as GIPR selective among 62 human GPCRs being species-specific with high affinity binding to the human and non-human primate (Macaca fascicularis) GIPRs, and low affinity binding to the rat and mouse GIPRs (K d values of 2.0, 2.5, 31

  13. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    PubMed

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  14. Clobazam and Its Active Metabolite N-desmethylclobazam Display Significantly Greater Affinities for α2- versus α1-GABAA–Receptor Complexes

    PubMed Central

    Jensen, Henrik Sindal; Nichol, Kathryn; Lee, Deborah; Ebert, Bjarke

    2014-01-01

    Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α1-subunit–selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α2 subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α1, α2, α3, or α5), β2, and γ2 subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α2- vs. α1-receptor complexes, a difference not observed for CLN, for which no distinction between α2 and α1 receptors was observed. Our experiments with ZOL confirmed the high preference for α1 receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB. PMID:24533090

  15. N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity.

    PubMed

    Lee, Sang-Min; Booe, Jason M; Gingell, Joseph J; Sjoelund, Virginie; Hay, Debbie L; Pioszak, Augen A

    2017-07-05

    The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is activated by the peptide hormones calcitonin and amylin. Calcitonin regulates bone remodeling through CTR, whereas amylin regulates blood glucose and food intake by activating CTR in complex with receptor activity-modifying proteins (RAMPs). These receptors are targeted clinically for the treatment of osteoporosis and diabetes. Here, we define the role of CTR N-glycosylation in hormone binding using purified calcitonin and amylin receptor extracellular domain (ECD) glycoforms and fluorescence polarization/anisotropy and isothermal titration calorimetry peptide-binding assays. N-Glycan-free CTR ECD produced in Escherichia coli exhibited ∼10-fold lower peptide affinity than CTR ECD produced in HEK293T cells, which yield complex N-glycans, or in HEK293S GnTI - cells, which yield core N-glycans (Man 5 GlcNAc 2 ). PNGase F-catalyzed removal of N-glycans at N73, N125, and N130 in the CTR ECD decreased peptide affinity ∼10-fold, whereas Endo H-catalyzed trimming of the N-glycans to single GlcNAc residues had no effect on peptide binding. Similar results were observed for an amylin receptor RAMP2-CTR ECD complex. Characterization of peptide-binding affinities of purified N → Q CTR ECD glycan site mutants combined with PNGase F and Endo H treatment strategies and mass spectrometry to define the glycan species indicated that a single GlcNAc residue at CTR N130 was responsible for the peptide affinity enhancement. Molecular modeling suggested that this GlcNAc functions through an allosteric mechanism rather than by directly contacting the peptide. These results reveal an important role for N-linked glycosylation in the peptide hormone binding of a clinically relevant class B GPCR.

  16. Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain.

    PubMed

    Foster, A C; Kemp, J A; Leeson, P D; Grimwood, S; Donald, A E; Marshall, G R; Priestley, T; Smith, J D; Carling, R W

    1992-05-01

    The glycine site on the N-methyl-D-aspartate (NMDA) subtype of receptors for the excitatory neurotransmitter glutamate is a potential target for the development of neuroprotective drugs. We report here two chemical series of glycine site antagonists derived from kynurenic acid (KYNA), with greatly improved potency and selectivity. Disubstitution with chlorine or bromine in the 5- and 7-positions of KYNA increased affinity for [3H]glycine binding sites in rat cortex/hippocampus P2 membranes, with a parallel increase of potency for antagonism of NMDA-evoked responses in the rat cortical wedge preparation. The optimal compound was 5-I,7-Cl-KYNA, with an IC50 for [3H]glycine binding of 29 nM and an apparent Kb in the cortical wedge preparation of 0.41 microM. Reduction of the right-hand ring of 5,7-diCl-KYNA reduced affinity by 10-fold, but this was restored by substitution in the 4-position with the trans-phenylamide and further improved in the trans-benzylamide. The optimal compound was the transphenylurea (L-689,560), with an IC50 of 7.4 nM and an apparent Kb of 0.13 microM. Both series of compounds displayed a high degree of selectivity for the glycine site, having IC50 values of greater than 10 microM versus radioligand binding to the glutamate recognition sites of NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors and the strychnine-sensitive glycine receptor. Selectivity versus AMPA receptor-mediated responses was also apparent in the rat cortical wedge and in patch-clamp recordings of cortical neurons in culture. Experiments using [3H]dizocilpine (MK-801) binding indicated that 5,7-diBr-KYNA, 5,7-diCl-KYNA, 5-I,7-Cl-KYNA, and L-689,560 all behaved as full antagonists and were competitive with glycine. Patch-clamp recordings of cortical neurons in culture also indicated that NMDA-induced currents were antagonized by competition for the glycine site, and gave no evidence for partial agonist activity. pKi values for 5,7-di

  17. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less

  18. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.

    PubMed

    Samaradivakara, Saroopa; Kankanamge, Dinesh; Senarath, Kanishka; Ratnayake, Kasun; Karunarathne, Ajith

    2018-06-11

    Interactions of cytosolic G protein coupled receptor kinase 2 (GRK2) with activated G protein coupled receptors (GPCRs) induce receptor phosphorylation and desensitization. GRK2 is recruited to active M3-muscarinic receptors (M3R) with the participation of the receptor, Gαq and Gβγ. Since we have shown that signaling efficacy of Gβγ is governed by its Gγ subtype identity, the present study examined whether recruitment of GRK2 to M3R is also Gγ subtype dependent. To capture the dynamics of GRK2-recruitment concurrently with GPCR-G protein activation, we employed live cell confocal imaging and a novel assay based on Gβγ translocation. Data show that M3R activation-induced GRK2 recruitment is Gγ subtype dependent in which Gβγ dimers with low PM-affinity Gγ9 exhibited a two-fold higher GRK2-recruitment compared to high PM affinity3 expressing cells. Since 12-mammalian Gγ types exhibit a cell and tissue specific expressions and the PM-affinity of a Gγ is linked to its subtype identity, our results indicate a mechanism by which Gγ profile of a cell controls GRK2 signaling and GPCR desensitization. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair.

    PubMed

    Xu, Qiang; Wang, Yanshu; Dabdoub, Alain; Smallwood, Philip M; Williams, John; Woods, Chad; Kelley, Matthew W; Jiang, Li; Tasman, William; Zhang, Kang; Nathans, Jeremy

    2004-03-19

    Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a ligand-receptor pair based on (1) the similarity in vascular phenotypes caused by Norrin and Fz4 mutations in humans and mice, (2) the specificity and high affinity of Norrin-Fz4 binding, (3) the high efficiency with which Norrin induces Fz4- and Lrp-dependent activation of the classical Wnt pathway, and (4) the signaling defects displayed by disease-associated variants of Norrin and Fz4. These data define a Norrin-Fz4 signaling system that plays a central role in vascular development in the eye and ear, and they indicate that ligands unrelated to Wnts can act through Fz receptors.

  20. 3,4-Dihydro-2H-benzoxazinones are 5-HT(1A) receptor antagonists with potent 5-HT reuptake inhibitory activity.

    PubMed

    Atkinson, Peter J; Bromidge, Steven M; Duxon, Mark S; Gaster, Laramie M; Hadley, Michael S; Hammond, Beverley; Johnson, Christopher N; Middlemiss, Derek N; North, Stephanie E; Price, Gary W; Rami, Harshad K; Riley, Graham J; Scott, Claire M; Shaw, Tracey E; Starr, Kathryn R; Stemp, Geoffrey; Thewlis, Kevin M; Thomas, David R; Thompson, Mervyn; Vong, Antonio K K; Watson, Jeannette M

    2005-02-01

    Starting from a high throughput screening hit, a series of 3,4-dihydro-2H-benzoxazinones has been identified with both high affinity for the 5-HT(1A) receptor and potent 5-HT reuptake inhibitory activity. The 5-(2-methyl)quinolinyloxy derivative combined high 5-HT(1A/1B/1D) receptor affinities with low intrinsic activity and potent inhibition of the 5-HT reuptake site (pK(i)8.2). This compound also had good oral bioavailability and brain penetration in the rat.

  1. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.

    PubMed

    Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T

    2006-12-21

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.

  2. Binding of phycoerythrin and its conjugates to murine low affinity receptors for immunoglobulin G.

    PubMed

    Takizawa, F; Kinet, J P; Adamczewski, M

    1993-06-18

    Conjugates of R-phycoerythrin are widely used for immunohistochemistry, especially for two-color flow cytometry. Their use is however limited by their apparent tendency to bind non-specifically. Using cells transfected with cDNAs for the murine low affinity receptors for immunoglobulin G (Fc gamma RII and -III) and cells naturally expressing these receptors, we demonstrate that R-phycoerythrin and its conjugates bind specifically and inhibitably to Fc gamma RII and -III. Immunofluorescence stainings of cells bearing these receptors, such as macrophages, monocytes, neutrophils, mast cells, subsets of T cells, and natural killer cells, may therefore not reflect the binding of antibody to antigen, but rather the binding of R-phycoerythrin to the receptors.

  3. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John; Mittler, Ron; Harmon, Alice; Harper, Jeffrey

    2014-01-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, a 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a “tandem affinity purification” (TAP) tag and expressed in transgenic plants. Purified complexes were analyzed by tandem mass spectrometry. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (1) Ion transport, such as a K+ channel (GORK), a Cl− channel (CLCg), Ca2+ channels belonging to the glutamate receptor family (GLRs 1.2, 2.1, 2.9, 3.4, 3.7); (2) hormone signaling, such as ACC synthase (isoforms ACS-6, 7 and 8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (3) transcription, such as 7 WRKY family transcription factors; (4) metabolism, such as phosphoenol pyruvate (PEP) carboxylase; and (5) lipid signaling, such as phospholipase D (β, and γ). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300. PMID:19452453

  4. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.

    PubMed

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John C; Mittler, Ron; Harmon, Alice; Harper, Jeffrey F

    2009-06-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.

  5. Evidence for two distinct phosphorylation pathways activated by high affinity immunoglobulin E receptors.

    PubMed

    Adamczewski, M; Paolini, R; Kinet, J P

    1992-09-05

    The high affinity receptor for immunoglobulin (Ig) E on mast cells, along with the antigen receptors on T and B cells and Fc receptors for IgG, belongs to a class of receptors which lack intrinsic kinase activity, but activate non-receptor tyrosine and serine/threonine kinases. Receptor engagement triggers a chain of signaling events leading from protein phosphorylation to activation of phosphatidylinositol-specific phospholipase C, an increase in intracellular calcium levels, and ultimately the activation of more specialized functions. IgE receptor disengagement leads to reversal of phosphorylation by undefined phosphatases and to inhibition of activation pathways. Here we show that phenylarsine oxide, a chemical which reacts with thiol groups and has been reported to inhibit tyrosine phosphatases, uncouples the IgE receptor-mediated phosphorylation signal from activation of phosphatidyl inositol metabolism, the increase in intracellular calcium levels, and serotonin release. Phenylarsine oxide inhibits neither the kinases (tyrosine and serine/threonine) phosphorylating the receptor and various cellular substrates nor, unexpectedly, the phosphatases responsible for the dephosphorylation following receptor disengagement. By contrast, it abolishes the receptor-mediated phosphorylation of phospholipase C-gamma 1, but not phospholipase C activity in vitro. Therefore the phosphorylation and activation of phospholipase C likely requires a phenylarsine oxide-sensitive element. Receptor aggregation thus activates at least two distinct phosphorylation pathways: a phenylarsine oxide-insensitive pathway leading to phosphorylation/dephosphorylation of the receptor and of various substrates and a sensitive pathway leading to phospholipase C-gamma 1 phosphorylation.

  6. Tranylcypromine Substituted cis-Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D3 Receptor Antagonists

    PubMed Central

    2015-01-01

    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155

  7. Clobazam and its active metabolite N-desmethylclobazam display significantly greater affinities for α₂- versus α₁-GABA(A)-receptor complexes.

    PubMed

    Jensen, Henrik Sindal; Nichol, Kathryn; Lee, Deborah; Ebert, Bjarke

    2014-01-01

    Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α₁-subunit-selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α₂ subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α₁, α₂, α₃, or α₅), β₂, and γ₂ subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α₂- vs. α₁-receptor complexes, a difference not observed for CLN, for which no distinction between α₂ and α₁ receptors was observed. Our experiments with ZOL confirmed the high preference for α₁ receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB.

  8. 5-Fluorotryptamine is a partial agonist at 5-HT3 receptors, and reveals that size and electronegativity at the 5 position of tryptamine are critical for efficient receptor function.

    PubMed

    Bower, Kiowa S; Price, Kerry L; Sturdee, Laura E C; Dayrell, Mariza; Dougherty, Dennis A; Lummis, Sarah C R

    2008-02-12

    Antagonists, but not agonists, of the 5-HT3 receptor are useful therapeutic agents, and it is possible that partial agonists may also be potentially useful in the clinic. Here we show that 5-fluorotryptamine (5-FT) is a partial agonist at both 5-HT3A and 5-HT3AB receptors with an Rmax (Imax/Imax 5-HT) of 0.64 and 0.45 respectively. It is about 10 fold less potent than 5-HT: EC50=16 and 27 microM, and Ki for displacement of [3H]granisetron binding=0.8 and 1.8 microM for 5-HT3A and 5-HT3AB receptors respectively. We have also explored the potencies and efficacies of tryptamine and a range of 5-substituted tryptamine derivatives. At 5-HT3A receptors tryptamine is a weak (Rmax=0.15), low affinity (EC50=113 microM; Ki=4.8 microM) partial agonist, while 5-chlorotryptamine has a similar affinity to 5-FT (EC50=8.1 microM; Ki=2.7 microM) but is a very weak partial agonist (Rmax=0. 0037). These, and data from 5-methyltryptamine and 5-methoxytryptamine, reveal the importance of size and electronegativity at this location for efficient channel opening.

  9. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5more » mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.« less

  10. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Deng-Liang; Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou; Song, Yan-Ling

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the idealmore » antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.« less

  11. Soluble TL1A is sufficient for activation of death receptor 3.

    PubMed

    Bittner, Sebastian; Knoll, Gertrud; Füllsack, Simone; Kurz, Maria; Wajant, Harald; Ehrenschwender, Martin

    2016-01-01

    Death receptor 3 (DR3) is a typical member of the tumor necrosis factor receptor family, and was initially identified as a T-cell co-stimulatory molecule. However, further studies revealed a more complex and partly dichotomous role for DR3 and its ligand TL1A under (patho)physiological conditions. TL1A and DR3 are not only a driving force in the development of autoimmune and inflammatory diseases, but also play an important role in counteracting these processes through an increase in the number of regulatory T cells. Ligands of the tumor necrosis factor family typically occur in two forms, membrane-bound and soluble, that can differ strikingly with respect to their efficacy in activating their corresponding receptor(s). Ligand-based approaches to activate the TL1A-DR3 pathway therefore require understanding of the molecular prerequisites of TL1A-based DR3 activation. To date, this has not been addressed. Here, we show that recombinant soluble trimeric TL1A is fully sufficient to strongly activate DR3-associated pro- and anti-apoptotic signaling pathways. In contrast to the TRAIL death receptors, which are much better activated by soluble TRAIL upon secondary ligand oligomerization, but similarly to the death receptor tumor necrosis factor receptor 1, DR3 is efficiently activated by soluble TL1A trimers. Additionally, we have measured the affinity of TL1A-DR3 interaction in a cell-based system, and demonstrated TL1A-induced DR3 internalization. Identification of DR3 as a tumor necrosis factor receptor that responds to soluble ligand trimers without further oligomerization provides a basis for therapeutic exploitation of the TL1A-DR3 pathway. © 2015 FEBS.

  12. Structure–Activity Relationships for a Novel Series of Dopamine D2-like Receptor Ligands Based on N-Substituted 3-Aryl-8-azabicyclo[3.2.1]octan-3-ol

    PubMed Central

    Paul, Noel M.; Taylor, Michelle; Kumar, Rakesh; Deschamps, Jeffrey R.; Luedtke, Robert R.; Newman, Amy Hauck

    2011-01-01

    Discovering dopamine D2-like receptor subtype-selective ligands has been a focus of significant investigation. The D2R-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidinyl]methylindole (1, L741,626; Ki(D2R/D3R) = 11.2:163 nM) has previously provided a lead template for chemical modification. Herein, analogues have been synthesized where the piperidine was replaced by a tropane ring that reversed the selectivity seen in the parent compound, in human hD2LR- or hD3R-transfected HEK 293 cells (31, Ki(D2R/D3R) = 33.4: 15.5 nM). Further exploration of both N-substituted and aryl ring-substituted analogues resulted in the discovery of several high affinity D2R/D3R ligands with 3-benzofurylmethyl-substituents (e.g., 45, Ki(D2R/D3R) = 1.7:0.34 nM) that induced high affinity not achieved in similarly N-substituted piperidine analogues and significantly (470-fold) improved D3R binding affinity compared to the parent ligand 1. X-ray crystallographic data revealed a distinctive spatial arrangement of pharmacophoric elements in the piperidinol vs tropine analogues, providing clues for the diversity in SAR at the D2 and D3 receptor subtypes. PMID:18774793

  13. Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate.

    PubMed

    Eldefrawi, M E; Schweizer, G; Bakry, N M; Valdes, J J

    1988-01-01

    The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-alpha-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh- or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.

  14. Candida albicans C3d receptor, isolated by using a monoclonal antibody.

    PubMed Central

    Linehan, L; Wadsworth, E; Calderone, R

    1988-01-01

    Pseudohyphae of Candida albicans possess a receptor for C3d, a fragment of the complement component C3. This receptor was partially purified by using a monoclonal antibody (CA-A) that previously had been shown to inhibit the binding of C3d to C. albicans pseudohyphae. Purified immunoglobulin G from ascites fluid (CA-A) was coupled to a cyanogen bromide-activated Sepharose column, and an affinity-purified fraction (A2) from C. albicans pseudohyphae was obtained. This fraction inhibited rosetting of the EAC3d receptor by pseudohyphae and appeared to contain glycoprotein, since receptor activity could be removed when A2 was incubated with lectins specific for mannose and glucose. A2 was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two polypeptides of approximately 60 and 70 kilodaltons (kDa) were consistently identified in reducing gels. The 60-kDa protein was identified as a glycoprotein by concanavalin A binding. A2 was further analyzed by high-pressure liquid chromatography (HPLC). Of three fractions obtained by HPLC, one containing the 60-kDa protein was found to have receptor activity. When analyzed by HPLC, this protein was found to contain mannose and glucose in approximately equal amounts. Both immunofluorescence and electron microscopy of pseudohyphae treated with CA-A identified A2 as a surface moiety. Thus, the C3d receptor of C. albicans, isolated with CA-A, is a glycoprotein of approximately 60 kDa. Images PMID:2969374

  15. Dual Targeting of the Chemokine Receptors CXCR4 and ACKR3 with Novel Engineered Chemokines*

    PubMed Central

    Hanes, Melinda S.; Salanga, Catherina L.; Chowdry, Arnab B.; Comerford, Iain; McColl, Shaun R.; Kufareva, Irina; Handel, Tracy M.

    2015-01-01

    The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3. PMID:26216880

  16. Kappa-receptor selective binding of opioid ligands with a heterocyclic bicyclo[3.3.1]nonan-9-one structure.

    PubMed

    Benyhe, S; Márki, A; Nachtsheim, Corina; Holzgrabe, Ulrike; Borsodi, Anna

    2003-01-01

    Previous pharmacological results have suggested that members of the heterocyclic bicyclo[3.3.1]nonan-9-one-like compounds are potent kappa-opioid receptor specific agonists. One lead molecule of this series. called compound 1 (dimethyl 7-methyl-2,4-di-2-pyridyl-3.7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate) exhibited high affinity for [3H]ethylketocyclazocine and [3H]U-69.593 binding sites in guinea pig cerebellar membranes which known to be a good source for kappa1 receptors. It was shown by molecular modelling that heterocyclic bicyclo[3.3.1]nonan-9-ones fit very well with the structure of ketazocine, a prototypic kappa-selective benzomorphan compound; when compared to the arylacetamide structure of U-69.593, a specific kappa1-receptor agonist, a similar geometry was found with a slightly different distribution of the charges. It is postulated, that the essential structural skeleton involved in the opioid activity is an aryl-propyl-amine element distributed along the N7-C6-C5-C4-aryl bonds.

  17. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor

    PubMed Central

    Yeliseev, Alexei; Zoubak, Lioudmila; Schmidt, Thomas G.M.

    2017-01-01

    Human cannabinoid receptor CB2 belongs to the class A of G protein-coupled receptor (GPCR). High resolution structural studies of CB2 require milligram quantities of purified, structurally intact protein. Here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB2 with the resin, the double repeat of the Strep-tag was attached either to the N- or C-terminus of CB2 via a short linker. The CB2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification protocol reported here enables efficient isolation of a recombinant GPCR expressed at low titers in host cells. This procedure is suitable for preparation of milligram quantities of stable isotope-labelled receptor for high-resolution NMR studies. PMID:27867058

  18. Direct Measurement of T Cell Receptor Affinity and Sequence from Naïve Anti-Viral T Cells

    PubMed Central

    Zhang, Shuqi; Parker, Patricia; Ma, Keyue; He, Chenfeng; Shi, Qian; Cui, Zhonghao; Williams, Chad; Wendel, Ben S.; Meriwether, Amanda; Salazar, Mary A.; Jiang, Ning

    2016-01-01

    T cells recognize and kill a myriad of pathogen-infected or cancer cells using a diverse set of T cell receptors (TCR). The affinity of TCR to cognate antigen is of high interest in adoptive T cell transfer immunotherapy and antigen-specific T cell repertoire immune profiling because it is widely known to correlate with downstream T cell responses. Here, we introduce the in situ TCR affinity and sequence test (iTAST) for simultaneous measurement of TCR affinity and sequence from single primary CD8+ T cells in human blood. We demonstrate that the repertoire of primary antigen-specific T cells from pathogen inexperienced individuals has a surprisingly broad affinity range of 1000-fold composed of diverse TCR sequences. Within this range, samples from older individuals contained a reduced frequency of high affinity T cells compared to young individuals, demonstrating an age-related effect of T cell attrition that could cause holes in the repertoire. iTAST should enable the rapid selection of high affinity TCRs ex vivo for adoptive immunotherapy and measurement of T cell response for immune monitoring applications. PMID:27252176

  19. In vivo gene transfer to dopamine neurons of rat substantia nigra via the high-affinity neurotensin receptor.

    PubMed Central

    Alvarez-Maya, I.; Navarro-Quiroga, I.; Meraz-Ríos, M. A.; Aceves, J.; Martinez-Fong, D.

    2001-01-01

    BACKGROUND: Recently, we synthesized a nonviral gene vector capable of transfecting cell lines taking advantage of neurotensin (NT) internalization. The vector is NT cross-linked with poly-L-lysine, to which a plasmid DNA was bound to form a complex (NT-polyplex). Nigral dopamine neurons are able to internalize NT, thus representing a target for gene transfer via NT-polyplex. This hypothesis was tested here using reporter genes encoding green fluorescent protein or chloramphenicol acetyl transferase. MATERIALS AND METHODS: NT-polyplex was injected into the substantia nigra. Double immunofluorescence labeling was used to reveal the cell type involved in the propidium iodide-labeled polyplex internalization and reporter gene expression. RESULTS: Polyplex internalization was observed within dopamine neurons but not within glial cells, and was prevented by both hypertonic sucrose solution and SR-48692, a selective nonpeptide antagonist of NT receptors. Reporter gene expression was observed in dopamine neurons from 48 hr up to 15 days after NT-polyplex injection, and was prevented by SR-48692. However, no expression was seen when the NT-polyplex was injected into the ansiform lobule of the cerebellum, which contains low- but not high-affinity NT receptors. Neither internalization nor expression was observed in cultured glial cells, despite the NT-polyplex binding to those cells that was prevented by levocabastine, a low-affinity NT receptor antagonist. CONCLUSIONS: These results suggest that high-affinity NT receptors mediate the uptake of NT-polyplex with the subsequent reporter gene expression in vivo. NT polyfection may be used to transfer genes of physiologic interest to nigrostriatal dopamine neurons, and to produce transgenic animal models of dopamine-related diseases. PMID:11471555

  20. Targeting the dopamine D3 receptor: an overview of drug design strategies.

    PubMed

    Cortés, Antoni; Moreno, Estefanía; Rodríguez-Ruiz, Mar; Canela, Enric I; Casadó, Vicent

    2016-07-01

    Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.

  1. A bambusuril macrocycle that binds anions in water with high affinity and selectivity.

    PubMed

    Yawer, Mirza Arfan; Havel, Vaclav; Sindelar, Vladimir

    2015-01-02

    Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1-10(3)  L mol(-1) . The anion-templated synthesis of a water-soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 10(7)  L mol(-1) . Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000-fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods

    NASA Astrophysics Data System (ADS)

    Roos, Katarina; Hogner, Anders; Ogg, Derek; Packer, Martin J.; Hansson, Eva; Granberg, Kenneth L.; Evertsson, Emma; Nordqvist, Anneli

    2015-12-01

    In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R2 = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R2 = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.

  3. L-689,660, a novel cholinomimetic with functional selectivity for M1 and M3 muscarinic receptors.

    PubMed Central

    Hargreaves, R. J.; McKnight, A. T.; Scholey, K.; Newberry, N. R.; Street, L. J.; Hutson, P. H.; Semark, J. E.; Harley, E. A.; Patel, S.; Freedman, S. B.

    1992-01-01

    1. L-689,660, 1-azabicyclo[2.2.2]octane, 3-(6-chloropyrazinyl)maleate, a novel cholinomimetic, demonstrated high affinity binding (pKD (apparent) 7.42) at rat cerebral cortex muscarinic receptors. L-689,660 had a low ratio (34) of pKD (apparent) values for the displacement of binding of the antagonist ([3H]-N-methylscopolamine ([3H]-NMS) compared with the displacement of the agonist [3H]-oxotremorine-M ([3H]-Oxo-M), in rat cerebral cortex. Low NMS/Oxo-M ratios have been shown previously to be a characteristic of compounds that are low efficacy partial agonists with respect to stimulation of phosphatidyl inositol turnover in the cerebral cortex. 2. L-689,660 showed no muscarinic receptor subtype selectivity in radioligand binding assays but showed functional selectivity in pharmacological assays. At M1 muscarinic receptors in the rat superior cervical ganglion, L-689,660 was a potent (pEC50 7.3 +/- 0.2) full agonist in comparison with (+/-)-muscarine. At M3 receptors in the guinea-pig ileum myenteric plexus-longitudinal muscle or in trachea, L-689,660 was again a potent agonist (pEC50 7.5 +/- 0.2 and 7.7 +/- 0.3 respectively) but had a lower maximum response than carbachol. In contrast L-689,660 was an antagonist at M2 receptors in guinea-pig atria (pA2 7.2 (95% confidence limits 7, 7.4)) and at muscarinic autoreceptors in rat hippocampal slices. 3. The putative M1-selective muscarinic agonist, AF102B (cis-2-methylspiro-(1,3-oxathiolane 5,3')-quinuclidine hydrochloride) was found to have a profile similar to L-689,660 but had up to 100 times less affinity in binding and functional assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422595

  4. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists.

    PubMed

    Bonet, Isis; Franco-Montero, Pedro; Rivero, Virginia; Teijeira, Marta; Borges, Fernanda; Uriarte, Eugenio; Morales Helguera, Aliuska

    2013-12-23

    A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.

  5. Relationships between chemical structure and affinity for postganglionic acetylcholine receptors of the guinea-pig ileum

    PubMed Central

    Abramson, F.B.; Barlow, R.B.; Franks, Fiona M.; Pearson, J.D.M.

    1974-01-01

    1 Some phenylacetyl, diphenylacetyl, benziloyl and (±)-cyclohexylphenylglycolloyl esters have been made with 2- and 3-hydroxymethylpyrrolidines, 3-hydroxymethyl-N-methylpiperidine, piperidin-3-ols, piperidin-4-ols, 2,2,6,6-tetramethyl-N-methylpiperidin-4-ol, tropine, pseudotropine and quinuclidin-3-ol, and the affinity of these compounds and of their metho- and etho- derivatives has been measured for postganglionic acetylcholine receptors of the guinea-pig isolated ileum. 2 Some of the compounds were very active indeed; the benziloyl esters of N-methylpiperidin-4-ol methiodide, tropine methiodide, and quinculidin-3-ol, and the (±)-cyclohexylphenylglycolloyl esters of N-methylpiperidin-4-ol and its methiodide had affinity constants greater than 1010. 3 The effects of inserting an additional methylene group onto the nitrogen were extremely variable, ranging from a decrease in log K of 1.64 units to an increase of 0.97 units. The effects of replacing hydrogen by phenyl in the acid portion ranged from an increase of 1.04 units to an increase of 3.06 units and of replacing hydrogen by hydroxyl from a decrease of 0.09 units to an increase of 1.94 units. 4 The extent of the variation in the effects of a particular change in structure on affinity does not appear to be any different in these relatively rigid compounds from that observed with the same changes in open-chain aminoalcohols. 5 Reasons for the variable effects of groups on affinity are discussed. If differences in effects on preferred conformations of these particular compounds in solution are of secondary importance, the effect of a group on affinity will be the net result of what it could contribute to binding, offset by the disturbance it causes to existing binding. The maximum effect observed in a large number of comparisons may indicate the contribution in the absence of disturbance and for groups containing only carbon and hydrogen it appears to be related to size, assessed from the increments in apparent

  6. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Synthesis, NMR conformational analysis and pharmacological evaluation of 7,7a,13,14-tetrahydro-6H-cyclobuta[b]pyrimido[1,2-a:3,4-a']diindole analogues as melatonin receptor ligands.

    PubMed

    Attia, Mohamed I; Güclü, Deniz; Hertlein, Barbara; Julius, Justin; Witt-Enderby, Paula A; Zlotos, Darius P

    2007-07-07

    A structure for the self-condensation product of 2-(1H-indol-2-yl)ethyl tosylate 2a, previously proposed as 6,7,14,15-tetrahydro-15aH-azocino[1,2-a:6,5-b]diindole 3a, was revised based on the (13)C-2D-INADEQUATE experiment, and proved to be 7,7a,13,14-tetrahydro-6H-cyclobuta[b]pyrimido[1,2-a:3,4-a']diindole 4a. A mechanism for the unexpected formation of this novel hexacyclic heterocycle was proposed and its NMR solution structure was elucidated. Five derivatives of the title ring skeleton 12-16 designed as melatonin receptor ligands were synthesized and their affinities for the human MT(1) and MT(2) receptors were determined. Both butyramides 13 and 15, as well as the non-methoxy acetamide 12 exhibited micromolar binding affinities for both receptors being slightly MT(2) selective. The methoxy acetamide 14 showed the best pharmacological profile exhibiting a five times higher affinity for MT(1) (K(i) = 49 nM) than for MT(2) (K(i) = 246 nM) receptor.

  8. Structure-activity relationship of 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole analogues as 5-HT(6) receptor agonists.

    PubMed

    Mattsson, Cecilia; Svensson, Peder; Boettcher, Henning; Sonesson, Clas

    2013-05-01

    To further investigate the structure-activity relationship (SAR) of the 5-hydroxytryptamine type 6 (5-HT6) receptor agonist 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (EMD386088, 6), a series of 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were synthesized, and in vitro affinity to, and functional activity at 5-HT6 receptors was tested. We focused on substituents made at the indole N(1)-, 2- and 5-positions and these were found to not only influence the affinity at 5-HT6 receptors but also the intrinsic activity leading to antagonists, partial agonists and full agonists. In order for a compound to demonstrate potent 5-HT6 receptor agonist properties, the indole N(1) should be unsubstituted, an alkyl group such as 2-methyl is needed and finally halogen substituents in the indole 5-position (fluoro, chloro or, bromo) were essential requirements. However, the introduction of a benzenesulfonyl group at N(1)-position switched the full agonist 6 to be a 5-HT6 receptor antagonist (30). A few compounds within the 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were also screened for off-targets and generally they displayed low affinity for other 5-HT subtypes and serotonin transporter protein (SERT). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Mapping of Adenovirus of serotype 3 fibre interaction to desmoglein 2 revealed a novel 'non-classical' mechanism of viral receptor engagement.

    PubMed

    Vassal-Stermann, Emilie; Mottet, Manon; Ducournau, Corinne; Iseni, Frédéric; Vragniau, Charles; Wang, Hongjie; Zubieta, Chloe; Lieber, André; Fender, Pascal

    2018-05-30

    High-affinity binding of the trimeric fibre protein to a cell surface primary receptor is a common feature shared by all adenovirus serotypes. Recently, a long elusive species B adenovirus receptor has been identified. Desmoglein 2 (DSG2) a component of desmosomal junction, has been reported to interact at high affinity with Human adenoviruses HAd3, HAd7, HAd11 and HAd14. Little is known with respect to the molecular interactions of adenovirus fibre with the DSG2 ectodomain. By using different DSG2 ectodomain constructs and biochemical and biophysical experiments, we report that the third extracellular cadherin domain (EC3) of DSG2 is critical for HAd3 fibre binding. Unexpectedly, stoichiometry studies using multi-angle laser light scattering (MALLS) and analytical ultra-centrifugation (AUC) revealed a non-classical 1:1 interaction (one DSG2 per trimeric fibre), thus differentiating 'DSG2-interacting' adenoviruses from other protein receptor interacting adenoviruses in their infection strategy.

  10. Identification of Elf-1 and B61 as high affinity ligands for the receptor tyrosine kinase MDK1.

    PubMed

    Ciossek, T; Ullrich, A

    1997-01-09

    Mouse Developmental Kinase 1 (MDK1) is a receptor tyrosine kinase of the eck/eph subfamily expressed in a variety of tissues during early mouse embryogenesis. To obtain further insight into the function of MDK1, we determined identity and localisation of its physiological ligand(s). Staining whole embryos with fusion proteins between the extracellular domain of MDK1 and human secreted alkaline phosphatase revealed areas of high receptor binding in the caudal mesencephalon, the frontal neocortex and the limb buds. This staining was sensitive to treatment with phosphatidylinositol-specific phospholipase C. Using Scatchard analysis, high affinity binding of Elf-1 (1.7 x 10(-10) M) and B61 (2.2 x 10(-10) M) towards MDK1 could be demonstrated. However, the transmembrane ligand Lerk2 displayed no measurable affinity for MDK1. Elf-1 and B61 bind to the three full-length MDK1 isoforms with similar dissociation constants. Slightly lower affinities were observed for the two truncated receptors MDK1-Tl and MDK1-T2. The activation of MDK1 with Elf-1 or B61 leads to the rapid autophosphorylation of MDK1 as well as tyrosine phosphorylation of an unknown 62 kDa phosphoprotein in Rat1 cells. These findings implicate MDK1 in patterning processes during early mouse embryogenesis and suggest MDK1 involvement in early organogenesis and midbrain development.

  11. High Specific Activity Tritium-Labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): A High Affinity 5-HT2A Receptor-Selective Agonist Radioligand

    PubMed Central

    Nichols, David E.; Frescas, Stewart P.; Chemel, Benjamin R.; Rehder, Kenneth S.; Zhong, Desong; Lewin, Anita H.

    2009-01-01

    The title compound ([3H]INBMeO) was prepared by an O,O-dimethylation reaction of a t-BOC protected diphenolic precursor using no carrier added tritiated iodomethane in DMF with K2CO3. Removal of the t-BOC protecting group and purification by HPLC afforded an overall yield of 43%, with a radiochemical purity of 99% and specific activity of 164 Ci/mmol. The new radioligand was suitable for labeling human 5-HT2A receptors in two heterologous cell lines and had about 20-fold higher affinity than [3H]ketanserin. PMID:18468904

  12. Enhancement of GABAergic transmission by zolpidem, an imidazopyridine with preferential affinity for type I benzodiazepine receptors.

    PubMed

    Biggio, G; Concas, A; Corda, M G; Serra, M

    1989-02-28

    The effect of zolpidem, an imidazopyridine derivative with high affinity at the type I benzodiazepine recognition site, on the function of the GABAA/ionophore receptor complex was studied in vitro. Zolpidem, mimicking the action of diazepam, increased [3H]GABA binding, enhanced muscimol-stimulated 36Cl- uptake and reduced [35S]TBPS binding in rat cortical membrane preparations. Zolpidem was less effective than diazepam on the above parameters. Zolpidem induced a lower increase of [3H]GABA binding (23 vs. 35%) and muscimol-stimulated 36Cl- uptake (22 vs. 40%) and a smaller decrease of [35S]TBPS binding (47 vs. 77%) than diazepam. The finding that zolpidem enhanced the function of GABAergic synapses with an efficacy qualitatively and quantitatively different from that of diazepam suggests that this compound is a partial agonist at the benzodiazepine recognition site. Thus, our results are consistent with the view that the biochemical and pharmacological profile of a benzodiazepine recognition site ligand reflects its efficacy to enhance GABAergic transmission. Whether the preferential affinity of zolpidem at the type I site is involved in its atypical biochemical and pharmacological profile remains to be clarified.

  13. A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering.

    PubMed

    Kruziki, Max A; Bhatnagar, Sumit; Woldring, Daniel R; Duong, Vandon T; Hackel, Benjamin J

    2015-07-23

    Small protein ligands can provide superior physiological distribution compared with antibodies, and improved stability, production, and specific conjugation. Systematic evaluation of the PDB identified a scaffold to push the limits of small size and robust evolution of stable, high-affinity ligands: 45-residue T7 phage gene 2 protein (Gp2) contains an α helix opposite a β sheet with two adjacent loops amenable to mutation. De novo ligand discovery from 10(8) mutants and directed evolution toward four targets yielded target-specific binders with affinities as strong as 200 ± 100 pM, Tms from 65 °C ± 3 °C to 80°C ± 1 °C, and retained activity after thermal denaturation. For cancer targeting, a Gp2 domain for epidermal growth factor receptor was evolved with 18 ± 8 nM affinity, receptor-specific binding, and high thermal stability with refolding. The efficiency of evolving new binding function and the size, affinity, specificity, and stability of evolved domains render Gp2 a uniquely effective ligand scaffold. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist

    PubMed Central

    Wilson, Richard J; Giblin, Gerard M P; Roomans, Susan; Rhodes, Sharron A; Cartwright, Kerri-Ann; Shield, Vanessa J; Brown, Jason; Wise, Alan; Chowdhury, Jannatara; Pritchard, Sara; Coote, Jim; Noel, Lloyd S; Kenakin, Terry; Burns-Kurtis, Cynthia L; Morrison, Valerie; Gray, David W; Giles, Heather

    2006-01-01

    N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl}benzene sulphonamide (GW627368X) is a novel, potent and selective competitive antagonist of prostanoid EP4 receptors with additional human TP receptor affinity. At recombinant human prostanoid EP4 receptors expressed in HEK293 cells, GW627368X produced parallel rightward shifts of PGE2 concentration–effect (E/[A]) curves resulting in an affinity (pKb) estimate of 7.9±0.4 and a Schild slpoe not significantly different from unity. The affinity was independent of the agonist used. In rings of phenylephrine precontracted piglet saphenous vein, GW627368X (30–300 nM) produced parallel rightward displacement of PGE2 E/[A] curves (pKb=9.2±0.2; slope=1). GW627368X appears to bind to human prostanoid TP receptors but not the TP receptors of other species. In human washed platelets, GW627368X (10 μM) produced 100% inhibition of U-46619 (EC100)-induced aggregation (approximate pA2 ∼7.0). However, in rings of rabbit and piglet saphenous vein and of guinea-pig aorta GW627368X (10 μM) did not displace U-46619 E/[A] curves indicating an affinity of <5.0 for rabbit and guinea-pig prostanoid TP receptors. In functional assays GW627368X is devoid of both agonism and antagonist affinity for prostanoid CRTH2, EP2, EP3, IP and FP receptors. At prostanoid EP1 receptors, GW627368X was an antagonist with a pA2 of 6.0, and at prostanoid IP receptors the compound increased the maximum effect of iloprost by 55%. At rabbit prostanoid EP2 receptors the pA2 of GW627368X was <5.0. In competition radioligand bioassays, GW627368X had affinity for human prostanoid EP4 and TP receptors (pKi=7.0±0.2 (n=10) and 6.8 (n=2), respectively). Affinity for all other human prostanoid receptors was <5.3. GW627368X will be a valuable tool to explore the role of the prostanoid EP4 receptor in many physiological and pathological settings. PMID:16604093

  15. 5-Fluorotryptamine is a partial agonist at 5-HT3 receptors, and reveals that size and electronegativity at the 5 position of tryptamine are critical for efficient receptor function

    PubMed Central

    Bower, Kiowa S.; Price, Kerry L.; Sturdee, Laura E.C.; Dayrell, Mariza; Dougherty, Dennis A.; Lummis, Sarah C.R.

    2008-01-01

    Antagonists, but not agonists, of the 5-HT3 receptor are useful therapeutic agents, and it is possible that partial agonists may also be potentially useful in the clinic. Here we show that 5-fluorotryptamine (5-FT) is a partial agonist at both 5-HT3A and 5-HT3AB receptors with an Rmax (Imax / Imax5-HT) of 0.64 and 0.45 respectively. It is about 10 fold less potent than 5-HT: EC50 = 16 and 27 μM, and Ki for displacement of [3H]granisetron binding = 0.8 and 1.8 μM for 5-HT3A and 5-HT3AB receptors respectively. We have also explored the potencies and efficacies of tryptamine and a range of 5-substituted tryptamine derivatives. At 5-HT3A receptors tryptamine is a weak (Rmax = 0.15), low affinity (EC50 = 113 μM; Ki = 4.8 μM) partial agonist, while 5-chlorotryptamine has a similar affinity to 5-FT (EC50 = 8.1 μM; Ki = 2.7 μM) but is a very weak partial agonist (Rmax = 0. 0037). These, and data from 5-methyltryptamine and 5-methoxytryptamine, reveal the importance of size and electronegativity at this location for efficient channel opening. PMID:18082160

  16. Red cell 2,3-diphosphoglycerate and oxygen affinity.

    PubMed

    MacDonald, R

    1977-06-01

    The ease with which haemoglobin releases oxygen to the tissues is controlled by erythrocytic 2,3-diphosphoglycerate (2,3-DPG) such that an increase in the concentration of 2,3-DPG decreases oxygen affinity and vice versa. This review article describes the synthesis and breakdown of 2,3-DPG in the Embden-Meyerof pathway in red cells and briefly explains the molecular basis for its effect on oxygen affinity. Interaction of the effects of pH, Pco2, temperature and 2,3-DPG on the oxyhaemoglobin dissociation curve are discussed. The role of 2,3-DPG in the intraerythrocytic adaptation to various types of hypoxaemia is described. The increased oxygen affinity of blood stored in acid-citrate-dextrose (ACD) solution has been shown to be due to the decrease in the concentration of 2,3-DPG which occurs during storage. Methods of maintaining the concentration of 2,3-DPG in stored blood are described. The clinical implication of transfusion of elderly people, anaemic or pregnant patients with ACD stored blood to anaesthetically and surgically acceptable haemoglobin concentrations are discussed. Hypophosphataemia in association with parenteral feeding reduces 2,3-DPG concentration and so increases oxygen affinity. Since post-operative use of intravenous fluids such as dextrose or dextrose/saline also lead to hypophosphataemia, the addition of inorganic phosphorus to routine post-operative intravenous fluid may be advisable. Disorders of acid-base balance effect oxygen affinity not only by the direct effect of pH on the oxyhaemoglobin dissociation curve but by its control of 2,3-DPG metabolism. Management of acid-base disorders and pre-operative aklalinization of patients with sickle cell disease whould take account of this. It is known that anaesthesia alters the position of the oxyhaemoglobin dissociation curve, but it is thought that this is independent of any effects which anaesthetic agents may have on 2,3-DPG concentration. In vitro manipulation of 2,3-DPG concentration

  17. Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner.

    PubMed

    Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka

    2015-02-17

    Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Receptor-based 3D QSAR analysis of estrogen receptor ligands - merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.

  19. Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method

    NASA Astrophysics Data System (ADS)

    Hogues, Hervé; Sulea, Traian; Gaudreault, Francis; Corbeil, Christopher R.; Purisima, Enrico O.

    2018-01-01

    The Farnesoid X receptor (FXR) exhibits significant backbone movement in response to the binding of various ligands and can be a challenge for pose prediction algorithms. As part of the D3R Grand Challenge 2, we tested Wilma-SIE, a rigid-protein docking method, on a set of 36 FXR ligands for which the crystal structures had originally been blinded. These ligands covered several classes of compounds. To overcome the rigid protein limitations of the method, we used an ensemble of publicly available structures for FXR from the PDB. The use of the ensemble allowed Wilma-SIE to predict poses with average and median RMSDs of 2.3 and 1.4 Å, respectively. It was quite clear, however, that had we used a single structure for the receptor the success rate would have been much lower. The most successful predictions were obtained on chemical classes for which one or more crystal structures of the receptor bound to a molecule of the same class was available. In the absence of a crystal structure for the class, observing a consensus binding mode for the ligands of the class using one or more receptor structures of other classes seemed to be indicative of a reasonable pose prediction. Affinity prediction proved to be more challenging with generally poor correlation with experimental IC50s (Kendall tau 0.3). Even when the 36 crystal structures were used the accuracy of the predicted affinities was not appreciably improved. A possible cause of difficulty is the internal energy strain arising from conformational differences in the receptor across complexes, which may need to be properly estimated and incorporated into the SIE scoring function.

  20. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra.

    PubMed

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J P; Holstein, Thomas W; Gründer, Stefan

    2010-04-16

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission.

  1. Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor.

    PubMed

    Dantas de Araujo, Aline; Wu, Chongyang; Wu, Kai-Chen; Reid, Robert C; Durek, Thomas; Lim, Junxian; Fairlie, David P

    2017-06-21

    Measuring ligand affinity for a G protein-coupled receptor is often a crucial step in drug discovery. It has been traditionally determined by binding putative new ligands in competition with native ligand labeled with a radioisotope of finite lifetime. Competing instead with a lanthanide-based fluorescent ligand is more attractive due to greater longevity, stability, and safety. Here, we have chemically synthesized the 77 residue human C3a protein and conjugated its N-terminus to europium diethylenetriaminepentaacetate to produce a novel fluorescent protein (Eu-DTPA-hC3a). Time-resolved fluorescence analysis has demonstrated that Eu-DTPA-hC3a binds selectively to its cognate G protein-coupled receptor C3aR with full agonist activity and similar potency and selectivity as native C3a in inducing calcium mobilization and phosphorylation of extracellular signal-regulated kinases in HEK293 cells that stably expressed C3aR. Time-resolved fluorescence analysis for saturation and competitive binding gave a dissociation constant (K d ) of 8.7 ± 1.4 nM for Eu-DTPA-hC3a and binding affinities for hC3a (pK i of 8.6 ± 0.2 and K i of 2.5 nM) and C3aR ligands TR16 (pK i of 6.8 ± 0.1 and K i of 138 nM), BR103 (pK i of 6.7 ± 0.1 and K i of 185 nM), BR111 (pK i of 6.3 ± 0.2 and K i of 544 nM) and SB290157 (pK i of 6.3 ± 0.1 and K i of 517 nM) via displacement of Eu-DTPA-hC3a from hC3aR. The macromolecular conjugate Eu-DTPA-hC3a is a novel nonradioactive probe suitable for studying ligand-C3aR interactions with potential value in accelerating drug development for human C3aR in physiology and disease.

  2. Introduction of D-phenylalanine enhanced the receptor binding affinities of gonadotropin-releasing hormone peptides.

    PubMed

    Lu, Jie; Hathaway, Helen J; Royce, Melanie E; Prossnitz, Eric R; Miao, Yubin

    2014-02-01

    The purpose of this study was to examine whether the introduction of D-Phe could improve the GnRH receptor binding affinities of DOTA-conjugated D-Lys(6)-GnRH peptides. Building upon the construct of DOTA-Ahx-(D-Lys(6)-GnRH1) we previously reported, an aromatic amino acid of D-Phe was inserted either between the DOTA and Ahx or between the Ahx and D-Lys(6) to generate new DOTA-D-Phe-Ahx-(D-Lys(6)-GnRH) or DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) peptides. Compared to DOTA-Ahx-(D-Lys(6)-GnRH1) (36.1 nM), the introduction of D-Phe improved the GnRH receptor binding affinities of DOTA-D-Phe-Ahx-(D-Lys(6)-GnRH) (16.3 nM) and DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) (7.6 nM). The tumor targeting and pharmacokinetic properties of (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) was determined in MDA-MB-231 human breast cancer-xenografted nude mice. Compared to (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1), (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) exhibited comparable tumor uptake with faster renal and liver clearance. The MDA-MB-231 human breast cancer-xenografted tumors were clearly visualized by single photon emission computed tomography (SPECT) using (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) as an imaging probe, providing a new insight into the design of new GnRH peptides in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg²⁺ binding to the MIDAS.

    PubMed

    Zhu, Jieqing; Choi, Won-Seok; McCoy, Joshua G; Negri, Ana; Zhu, Jianghai; Naini, Sarasija; Li, Jihong; Shen, Min; Huang, Wenwei; Bougie, Daniel; Rasmussen, Mark; Aster, Richard; Thomas, Craig J; Filizola, Marta; Springer, Timothy A; Coller, Barry S

    2012-03-14

    An integrin found on platelets, α(IIb)β(3) mediates platelet aggregation, and α(IIb)β(3) antagonists are effective antithrombotic agents in the clinic. Ligands bind to integrins in part by coordinating a magnesium ion (Mg(2+)) located in the β subunit metal ion-dependent adhesion site (MIDAS). Drugs patterned on the integrin ligand sequence Arg-Gly-Asp have a basic moiety that binds the α(IIb) subunit and a carboxyl group that coordinates the MIDAS Mg(2+) in the β(3) subunits. They induce conformational changes in the β(3) subunit that may have negative consequences such as exposing previously hidden epitopes and inducing the active conformation of the receptor. We recently reported an inhibitor of α(IIb)β(3) (RUC-1) that binds exclusively to the α(IIb) subunit; here, we report the structure-based design and synthesis of RUC-2, a RUC-1 derivative with a ~100-fold higher affinity. RUC-2 does not induce major conformational changes in β(3) as judged by monoclonal antibody binding, light scattering, gel chromatography, electron microscopy, and a receptor priming assay. X-ray crystallography of the RUC-2-α(IIb)β(3) headpiece complex in 1 mM calcium ion (Ca(2+))/5 mM Mg(2+) at 2.6 Å revealed that RUC-2 binds to α(IIb) the way RUC-1 does, but in addition, it binds to the β(3) MIDAS residue glutamic acid 220, thus displacing Mg(2+) from the MIDAS. When the Mg(2+) concentration was increased to 20 mM, however, Mg(2+) was identified in the MIDAS and RUC-2 was absent. RUC-2's ability to inhibit ligand binding and platelet aggregation was diminished by increasing the Mg(2+) concentration. Thus, RUC-2 inhibits ligand binding by a mechanism different from that of all other α(IIb)β(3) antagonists and may offer advantages as a therapeutic agent.

  4. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  5. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  6. (/sup 3/H)-(Thr4,Gly7)OT: a highly selective ligand for central and peripheral OT receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elands, J.; Barberis, C.; Jard, S.

    1988-01-01

    Oxytocin receptors in rat hippocampal synaptic plasma membranes were compared with mammary gland and uterine oxytocin receptors. For this purpose, a highly specific oxytocic agonist (Thr4,Gly7)oxytocin was tritiated. We demonstrated that this ligand labels oxytocin receptors selectively. Scatchard analyses revealed a high affinity for all the oxytocin receptors investigated, with equilibrium dissociation constants between 1.0 and 2.0 nM. Binding appeared to take place at a single population of receptor sites. Competition experiments confirmed the high affinity of arginine vasopressin for hippocampal oxytocin receptors but also revealed that mammary gland and uterine oxytocin receptors do not discriminate more efficiently between oxytocinmore » and arginine vasopressin. This lack in specificity is not affected by applying different concentrations of Mg ions.« less

  7. Inflammation triggers constitutive activity and agonist-induced negative responses at M(3) muscarinic receptor in dental pulp.

    PubMed

    Sterin-Borda, Leonor; Orman, Betina; De Couto Pita, Alejandra; Borda, Enri

    2011-02-01

    The purpose of this study was to investigate whether the inflammation of rat dental pulp induces the muscarinic acetylcholine receptor (mAChR) constitutive receptor activity. Pulpitis was induced with bacterial lipolysaccharide in rat incisors dental pulp. Saturation assay with [(3)H]-quinuclidinyl benzilate ([(3)H] QNB), competitive binding with different mAChR antagonist subtypes, and nitric oxide synthase (NOS) activity were performed. A drastic change in expression and response to mAChR subtypes was observed in pulpitis. Inflamed pulp expressed high number of M(3) mAChR of high affinity, whereas the M(1) mAChR is the main subtype displayed in normal pulp. Consistent with the identification of the affinity constant (Ki) of M(3) and Ki of M(1) in both pulpitis and in normal pulps are the differences in the subtype functionality of these cells. In pulpitis, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) exerted an inhibitory action on NOS activity that was blocked by J 104129 fumarate (highest selective affinity to M(3) mAChR). In normal pulps, pilocarpine (1 × 10(-11) mol/L to 5 × 10(-9) mol/L) has no effect. NOS basal activity was 5.9 times as high in pulpitis as in the normal pulp as a result of the activation of inducible NOS. The irreversible pulpitis could induce a mAChR alteration, increasing the high-affinity receptor density and transduction-coupling efficiency of inducible NOS activity, leading to a spontaneously active conformation of the receptor. Pilocarpine acting as an inverse agonist might be useful therapeutically to prevent necrosis and subsequent loss of dental pulp. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Vigues, S.; Hobbs, J.

    2005-01-01

    The molecular mechanisms by which G protein-coupled receptor (GPCR)-type chemosensory receptors of animals selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. This study showed that each of the two subunits in the mammalian heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli, though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in mice.more » Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.« less

  9. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Zeynep; Koukos, Panagiotis I.; Citro, Nevia; Trellet, Mikael E.; Rodrigues, J. P. G. L. M.; Moreira, Irina S.; Roel-Touris, Jorge; Melquiond, Adrien S. J.; Geng, Cunliang; Schaarschmidt, Jörg; Xue, Li C.; Vangone, Anna; Bonvin, A. M. J. J.

    2018-01-01

    We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.

  10. Refined docking as a valuable tool for lead optimization: application to histamine H3 receptor antagonists.

    PubMed

    Levoin, Nicolas; Calmels, Thierry; Poupardin-Olivier, Olivia; Labeeuw, Olivier; Danvy, Denis; Robert, Philippe; Berrebi-Bertrand, Isabelle; Ganellin, C Robin; Schunack, Walter; Stark, Holger; Capet, Marc

    2008-10-01

    Drug-discovery projects frequently employ structure-based information through protein modeling and ligand docking, and there is a plethora of reports relating successful use of them in virtual screening. Hit/lead optimization, which represents the next step and the longest for the medicinal chemist, is very rarely considered. This is not surprising because lead optimization is a much more complex task. Here, a homology model of the histamine H(3) receptor was built and tested for its ability to discriminate ligands above a defined threshold of affinity. In addition, drug safety is also evaluated during lead optimization, and "antitargets" are studied. So, we have used the same benchmarking procedure with the HERG channel and CYP2D6 enzyme, for which a minimal affinity is strongly desired. For targets and antitargets, we report here an accuracy as high as at least 70%, for ligands being classified above or below the chosen threshold. Such a good result is beyond what could have been predicted, especially, since our test conditions were particularly stringent. First, we measured the accuracy by means of AUC of ROC plots, i. e. considering both false positive and false negatives. Second, we used as datasets extensive chemical libraries (nearly a thousand ligands for H(3)). All molecules considered were true H(3) receptor ligands with moderate to high affinity (from microM to nM range). Third, the database is issued from concrete SAR (Bioprojet H(3) BF2.649 library) and is not simply constituted by few active ligands buried in a chemical catalogue.

  11. Specific labelling of serotonin 5-HT(1B) receptors in rat frontal cortex with the novel, phenylpiperazine derivative, [3H]GR125,743. A pharmacological characterization.

    PubMed

    Millan, M J; Newman-Tancredi, A; Lochon, S; Touzard, M; Aubry, S; Audinot, V

    2002-04-01

    Although several tritiated agonists have been used for radiolabelling serotonin (5-hydroxytryptamine, 5-HT)(1B) receptors in rats, data with a selective, radiolabelled antagonist have not been presented. Inasmuch as [3H]GR125,743 specifically labels cloned, human and native guinea pig 5-HT(1B) receptors and has been employed for characterization of cerebral 5-HT(1B) receptor in the latter species [Eur. J. Pharmacol. 327 (1997) 247.], the present study evaluated its utility for characterization of native, cerebral 5-HT(1B) sites in the rat. In homogenates of frontal cortex, [3H]GR125,743 (0.8 nM) showed rapid association (t(1/2)=3.4 min), >90% specific binding and high affinity (K(d)=0.6 nM) for a homogeneous population of receptors with a density (B(max)) of 160 fmol/mg protein. In competition binding studies, affinities were determined for 15 chemically diverse 5-HT(1B) agonists, including 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl]ethylamine (L694,247; pK(i), 10.4), 5-carboxamidotryptamine (5-CT; 9.7), 3-[3-(2-dimethylamino-ethyl)-1H-indol-6-yl]-N-(4-methoxybenzyl)acrylamide (GR46,611; 9.6), 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU24,969; 9.5), dihydroergotamine (DHE; 8.6), 5-H-pyrrolo[3,2-b]pyridin-5-one,1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl (CP93,129; 8.4), anpirtoline (7.9), sumatriptan (7.4), 1-[2-(3-fluorophenyl)ethyl]-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazine (L775,606; 6.4) and (minus sign)-1(S)-[2-[4-(4-methoxyphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-2-benzopyran-6-carboxamide (PNU109,291; <5.0). Similarly, affinities were established for 13 chemically diverse antagonists, including N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(4-pyridyl)benzamide (GR125,743; pK(i), 9.1), (-)cyanopindolol (9.0), (-)-tertatolol (8.2), N-(4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiozol-3-yl)biphenyl-4-carboxamide (GR127,935; 8.2), N-[3

  12. Improved binding affinity and interesting selectivities of aminopyrimidine-bearing carbohydrate receptors in comparison with their aminopyridine analogues.

    PubMed

    Lippe, Jan; Seichter, Wilhelm; Mazik, Monika

    2015-12-28

    Due to the problems with the exact prediction of the binding properties of an artificial carbohydrate receptor, the identification of characteristic structural features, having the ability to influence the binding properties in a predictable way, is of high importance. The purpose of our investigation was to examine whether the previously observed higher affinity of 2-aminopyrimidine-bearing carbohydrate receptors in comparison with aminopyridine substituted analogues represents a general tendency of aminopyrimidine-bearing compounds. Systematic binding studies on new compounds consisting of 2-aminopyrimidine groups confirmed such a tendency and allowed the identification of interesting structure-activity relationships. Receptors having different symmetries showed systematic preferences for specific glycosides, which are remarkable for such simple receptor systems. Particularly suitable receptor architectures for the recognition of selected glycosides were identified and represent a valuable base for further developments in this field.

  13. Identification of four areas each enriched in a unique muscarinic receptor subtype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoss, W.; Ellerbrock, B.R.; Goldman, P.S.

    The affinities of muscarinic agonists and antagonists were determined by autoradiography and image analysis in selected areas of the rat brain. IC{sub 50} values and Hill coefficients for the inhibition of the binding of 0.2 nM ({sup 3}H)-QNB to dentate gyrus, superior colliculus, rhomboid thalamus and substantia nigra were measured in coronal sections. Pirenzepine displayed a high affinity for receptors in the dentate gyrus and AF-DX 116, the superior colliculus. Both pirenzepine and AF-DX 116 had high affinities for the substantia nigra and low affinities for the rhomboid thalamus. Gallamine displayed a 50-fold preference for superior colliculus over dentate gyrusmore » receptors. Amitriptyline was less selective, showing a modest preference for substantia nigra receptors and 4-DAMP was essentially nonselective. Carbachol was the most selective agonist with a 4000-fold preference for superior colliculus over dentate gyrus receptors. Other agonists except RS 86 were also selective for superior colliculus receptors in the order carbachol >> arecoline > bethanechol > McN A343 = oxotremorine = pilocarpine.« less

  14. Temperature-sensitive high affinity (/sup 3/H)serotonin binding: characterization and effects of antidepressant treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmeste, D.M.; Tang, S.W.

    1984-08-13

    Characterization of temperature-sensitive (/sup 3/H)serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S/sub 1/ and S/sub 2/ receptors. In vivo pretreatment (48 h before) with mianserin did not alter B/sub max/ or Kd for the 1 nM Kd (/sup 3/H)5-HT site, although (/sup 3/H)ketanserin (S/sub 2/) densities were decreased by 50%. This suggested that possible S/sub 2/ components of (/sup 3/H)5-HT binding must be negligible, even though ketanserin competed with high affinity (IC/sub 50/ = 3 nM) for a portion of themore » 1 nM Kd (/sup 3/H)5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd (/sup 3/H)5-HT site in a non-competitive manner, as shown by a decrease in B/sub max/ with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.« less

  15. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.

  16. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    PubMed Central

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M.; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G.; Marini, Pietro; Pertwee, Roger G.; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-01-01

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  17. Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand.

    PubMed

    Frazier, William R; Steiner, Noriko; Hou, Lihua; Dakshanamurthy, Sivanesan; Hurley, Carolyn Katovich

    2013-06-15

    Although extensive homology exists between their extracellular domains, NK cell inhibitory receptors killer Ig-like receptor (KIR) 2DL2*001 and KIR2DL3*001 have previously been shown to differ substantially in their HLA-C binding avidity. To explore the largely uncharacterized impact of allelic diversity, the most common KIR2DL2/3 allelic products in European American and African American populations were evaluated for surface expression and binding affinity to their HLA-C group 1 and 2 ligands. Although no significant differences in the degree of cell membrane localization were detected in a transfected human NKL cell line by flow cytometry, surface plasmon resonance and KIR binding to a panel of HLA allotypes demonstrated that KIR2DL3*005 differed significantly from other KIR2DL3 allelic products in its ability to bind HLA-C. The increased affinity and avidity of KIR2DL3*005 for its ligand was also demonstrated to have a larger impact on the inhibition of IFN-γ production by the human KHYG-1 NK cell line compared with KIR2DL3*001, a low-affinity allelic product. Site-directed mutagenesis established that the combination of arginine at residue 11 and glutamic acid at residue 35 in KIR2DL3*005 were critical to the observed phenotype. Although these residues are distal to the KIR/HLA-C interface, molecular modeling suggests that alteration in the interdomain hinge angle of KIR2DL3*005 toward that found in KIR2DL2*001, another strong receptor of the KIR2DL2/3 family, may be the cause of this increased affinity. The regain of inhibitory capacity by KIR2DL3*005 suggests that the rapidly evolving KIR locus may be responding to relatively recent selective pressures placed upon certain human populations.

  18. Molecular basis for subtype-specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino terminal domain

    PubMed Central

    Romero-Hernandez, Annabel; Simorowski, Noriko; Karakas, Erkan

    2016-01-01

    Summary Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino terminal domain (ATD). Despite physiological importance, the molecular mechanism underlying the high-affinity zinc inhibition has been incomplete due to lack of a GluN2A ATD structure. Here we show the first crystal structures of the heterodimeric GluN1-GluN2A ATD, which provide the complete map of the high-affinity zinc binding site and reveals distinctive features from the ATD of the GluN1-GluN2B subtype. Perturbation of hydrogen bond networks at the hinge of the GluN2A bi-lobe structure affects both zinc inhibition and open probability supporting the general model where the bi-lobe motion in ATD regulates the channel activity in NMDA receptors. PMID:27916457

  19. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice

    PubMed Central

    Liu, Xiaojun; Jiang, Shuguang; Fang, Chongyun; Yang, Shiyu; Olalere, Devvora; Pequignot, Edward C.; Cogdill, Alexandria P.; Li, Na; Ramones, Melissa; Granda, Brian; Zhou, Li; Loew, Andreas; Young, Regina M.; June, Carl H.; Zhao, Yangbing

    2015-01-01

    Target-mediated toxicity is a major limitation in the development of chimeric antigen T cell receptors (CAR) for adoptive cell therapy of solid tumors. In this study, we developed a strategy to adjust the affinities of the scFv component of CAR to discriminate tumors overexpressing the target from normal tissues which express it at physiologic levels. A CAR-expressing T cell panel was generated with target antigen affinities varying over three orders of magnitude. High-affinity cells recognized target expressed at any level, including at levels in normal cells that were undetectable by flow cytometry. Affinity-tuned cells exhibited robust antitumor efficacy similar to high-affinity cells, but spared normal cells expressing physiologic target levels. The use of affinity-tuned scFvs offers a strategy to empower wider use of CAR T cells against validated targets widely overexpressed on solid tumors, including those considered undruggable by this approach. PMID:26330166

  20. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors.

    PubMed

    Ikeda, Yuichi; Kumagai, Hidetoshi; Okazaki, Hiroaki; Fujishiro, Mitsuhiro; Motozawa, Yoshihiro; Nomura, Seitaro; Takeda, Norifumi; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Komuro, Issei; Yanagisawa, Masashi

    2015-01-01

    Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.

  1. Design, synthesis, radiolabeling and in vivo evaluation of carbon-11 labeled N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a potential Positron Emission Tomography tracer for the dopamine D4 receptors

    PubMed Central

    Lacivita, Enza; De Giorgio, Paola; Lee, Irene T.; Rodeheaver, Sean I.; Weiss, Bryan A.; Fracasso, Claudia; Caccia, Silvio; Berardi, Francesco; Perrone, Roberto; Zhang, Ming-Rong; Maeda, Jun; Higuchi, Makoto; Suhara, Tetsuya; Schetz, John A.; Leopoldo, Marcello

    2010-01-01

    Here we describe the design, synthesis, physicochemical, and pharmacological evaluation of D4 dopamine receptor ligands related to N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (2). Structural features were incorporated to increase affinity for the target receptor, to improve selectivity over D2 and sigma1 receptors, to enable labeling with carbon-11 or fluorine-18, and to adjust lipophilicity within the range considered optimal for brain penetration and low nonspecific binding. Compounds 7 and 13 showed the overall best characteristics: nanomolar affinity for the D4 receptor, > 100-fold selectivity over D2 and D3 dopamine receptor 5-HT1A, 5-HT2A and 5-HT2C serotonin receptors and sigma1 receptors, and logP = 2.37–2.55. Following intraperitoneal administration, both compounds rapidly entered the central nervous system. The methoxy of N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide (7) was radiolabelled with carbon-11 and subjected to PET analysis in non-human primate. [11C]7 time-dependently accumulated to saturation in the posterior eye in the region of the retina, a tissue containing a high density of D4 receptors. PMID:20873719

  2. Increased thermolability of benzodiazepine receptors in cerebral cortex of a baboon with spontaneous seizures: a case report.

    PubMed

    Squires, R; Naquet, R; Riche, D; Braestrup, C

    1979-06-01

    The benzodiazepine receptor in the cortex of 1 spontaneously epileptic baboon exhibited an increased rate of thermal inactivation at 65 degrees C when compared with those from 3 other baboons. In other respects (receptor concentration, affinities for flunitrazepam and diazepam, and response to changing pH), the benzodiazepine receptor from this animal was very similar to the receptors in the cortex of 3 other baboons. The 3H-QNB (muscarinic) and 3H-naloxone (opiate) binding sites in the brain of all 4 baboons appeared very similar with respect to all parameters studied (thermal stability, concentration, regional distribution, and affinities for respective ligands). An endogenous factor stabilizing the benzodiazepine receptor could be lacking in the spontaneously epileptic baboon.

  3. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    PubMed

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  4. [18F]Fluorophenylazocarboxylates: Design and Synthesis of Potential Radioligands for Dopamine D3 and μ-Opioid Receptor

    PubMed Central

    2017-01-01

    18F-Labeled building blocks from the type of [18F]fluorophenylazocarboxylic-tert-butyl esters offer a rapid, mild, and reliable method for the 18F-fluoroarylation of biomolecules. Two series of azocarboxamides were synthesized as potential radioligands for dopamine D3 and the μ-opioid receptor, revealing compounds 3d and 3e with single-digit and sub-nanomolar affinity for the D3 receptor and compound 4c with only micromolar affinity for the μ-opioid receptor, but enhanced selectivity for the μ-subtype in comparison to the lead compound AH-7921. A “minimalist procedure” without the use of a cryptand and base for the preparation of 4-[18F]fluorophenylazocarboxylic-tert-butyl ester [18F]2a was established, together with the radiosynthesis of methyl-, methoxy-, and phenyl-substituted derivatives ([18F]2b–f). With the substituted [18F]fluorophenylazocarbylates in hand, two prototype azocarboxylates radioligands were synthesized by 18F-fluoroarylation, namely the methoxy azocarboxamide [18F]3d as the D3 receptor radioligand and [18F]4a as a prototype structure of the μ-opioid receptor radioligand. By introducing the new series of [18F]fluorophenylazocarboxylic-tert-butyl esters, the method of 18F-fluoroarylation was significantly expanded, thereby demonstrating the versatility of 18F-labeled phenylazocarboxylates for the design of potential radiotracers for positron emission tomography . PMID:29479577

  5. Alterations in the stereochemistry of the kappa-selective opioid agonist U50,488 result in high-affinity sigma ligands.

    PubMed

    de Costa, B R; Bowen, W D; Hellewell, S B; George, C; Rothman, R B; Reid, A A; Walker, J M; Jacobson, A E; Rice, K C

    1989-08-01

    The synthesis and in vitro sigma receptor activity of the two diastereomers of U50,488 [(+/-)-2], namely, (1R,2S)-(+)- cis-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacet ami de [(+)-1] and (1S,2R)-(-)-cis-3,4-dichloro- N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide [(-)-1], are described. (+)-1 and (-)-1 were synthesized from (+/-)-trans-N-methyl-2-aminocyclohexanol [(+/-)-3]. Pyridinium chlorochromate (PCC) oxidation of the N-t-Boc-protected derivative of (+/-)-3 afforded (+/-)-2-[N- [(tert-butyloxy)carbonyl]-N-methylamino]cyclohexanone [(+/-)-5]. The sequence of enamine formation with pyrrolidine, catalytic reduction, N-deprotection, and optical resolution afforded (1R,2S)-(-)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(-)-10] and (1S,2R)-(+)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(+)-10]. The optical purity (greater than 99.5%) of (-)-10 and (+)-10 was determined by HPLC analysis of the diastereomeric ureas formed by reaction with optically pure (R)-alpha-methylbenzyl isocyanate. The absolute configuration of (-)-10 and (+)-10 was determined by single-crystal X-ray diffractometry of the bis-(R)-mandelate salt. Condensation of optically pure (-)-10 and (+)-10 with 3,4-dichlorophenylacetic acid furnished (+)-1 and (-)-1, respectively. Compounds (+)-1, (-)-1, (-)-2, and (+)-2 were compared for their binding affinities at kappa opioid, sigma, D2-dopamine, and phencyclidine (PCP) receptors in competitive binding assays using [3H]bremazocine ([3H]BREM) or [3H]U69,593, [3H]-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [[3H]-(+)-3-PPP], or [3H]-1,3-di(o-tolyl)guanidine ([3H]DTG), [3H]-(-)-sulpiride [[3H]-(-)SULP], and [3H]-1- [1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP), respectively. In the systems examined, (-)-2 exhibited the highest affinity for kappa receptors, with a Ki of 44 +/- 8 nM. However, (-)-2 also showed moderate affinity for sigma receptors, with a Ki of 594 +/- 3 nM [[3H]-(+)-3-PPP]. The (1R,2R

  6. Solubilization and purification of melatonin receptors from lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less

  7. Solubilization and purification of melatonin receptors from lizard brain.

    PubMed

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  8. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor.

    PubMed

    He, Junyi; Peng, Tao; Yang, Xianhai; Liu, Huihui

    2018-02-01

    Endocrine disrupting effect has become a central point of concern, and various biological mechanisms involve in the disruption of endocrine system. Recently, we have explored the mechanism of disrupting hormonal transport protein, through the binding affinity of sex hormone-binding globulin in different fish species. This study, serving as a companion article, focused on the mechanism of activating/inhibiting hormone receptor, by investigating the binding interaction of chemicals with the estrogen receptor (ER) of different fish species. We collected the relative binding affinity (RBA) of chemicals with 17β-estradiol binding to the ER of eight fish species. With this parameter as the endpoints, quantitative structure-activity relationship (QSAR) models were established using DRAGON descriptors. Statistical results indicated that the developed models had satisfactory goodness of fit, robustness and predictive ability. The Euclidean distance and Williams plot verified that these models had wide application domains, which covered a large number of structurally diverse chemicals. Based on the screened descriptors, we proposed an appropriate mechanism interpretation for the binding potency. Additionally, even though the same chemical had different affinities for ER from different fish species, the affinity of ER exhibited a high correlation for fish species within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes), which consistent with that in our previous study. Hence, when performing the endocrine disrupting effect assessment, the species diversity should be taken into account, but maybe the fish species in the same Order can be grouped together. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Pharmacological characterization of the cloned kappa opioid receptor as a kappa 1b subtype.

    PubMed

    Lai, J; Ma, S W; Zhu, R H; Rothman, R B; Lentes, K U; Porreca, F

    1994-10-27

    Substantial pharmacological evidence in vitro and in vivo has suggested the existence of subtypes of the kappa opioid receptor. Quantitative radioligand binding techniques resolved the presence of two high affinity binding sites for the kappa 1 ligand [3H]U69,593 in mouse brain membranes, termed kappa 1a and kappa 1b, respectively. Whereas the kappa 1a site has high affinity for fedotozine and oxymorphindole and low affinity for bremazocine and alpha-neoendorphin, site kappa 1b has high affinity for bremazocine and alpha-neoendorphin and low affinity for fedotozine and oxymorphindole. CI-977 and U69,593 bind equally well at both sites. To determine the relationship between these kappa 1 receptor subtypes and the recently cloned mouse kappa 1 receptor (KOR), we examined [3H]U69,593 binding to the KOR in stably transfected cells (KORCHN-8). Competition of [3H]U69,593 binding to the KOR by bremazocine, alpha-neoendorphin, fedotozine and oxymorphindole resolved a single class of binding sites at which these agents had binding affinities similar to that of the kappa 1b site present in mouse brain. These results suggest that the cloned KOR corresponds to the kappa 1 site in mouse brain defined as kappa 1b.

  10. Characterization of the three different states of the cholecystokinin (CCK) receptor in pancreatic acini.

    PubMed

    Talkad, V D; Patto, R J; Metz, D C; Turner, R J; Fortune, K P; Bhat, S T; Gardner, J D

    1994-10-20

    By measuring binding of [125I]CCK-8 and [3H]L-364,718 to rat pancreatic acini we demonstrated directly that the pancreatic CCK receptor can exist in three different affinity states with respect to CCK--high affinity, low affinity and very low affinity. Binding of [125I]CCK-8 reflects interaction of the tracer with the high and low affinity states, whereas binding of [3H]L-364,718 reflects interaction of the tracer with the low and very low affinity states. Treating acini with carbachol abolished the high affinity state of the CCK receptor and converted approximately 25% of the low affinity receptors to the very low affinity state. Carbachol treatment was particularly useful in establishing the values of Kd for the high and low affinity states for different CCK receptor agonists and antagonists. Of the various CCK receptor agonists tested, CCK-8 had the highest affinity for the high affinity state (Kd approximately 1 nM), whereas CCK-JMV-180 had the highest affinity for the low (Kd 7 nM) and very low affinity (Kd 200 nM) states. Gastrin and de(SO4)CCK-8 had affinities for the high and low affinity states of the receptor that were 100- to 400-fold less than those of CCK-8 but had affinities for the very low affinity state that were only 3- to 10-fold less than that of CCK-8. CCK receptor antagonists showed several patterns in interacting with the different states of the CCK receptor. L-364,718 had the same affinity for each state of the CCK receptor. CR1409 and Bt2cGMP each had similar affinities for the high and low affinity states and lower affinity for the very low affinity state. L-365,260 and CCK-JMV-179 had the highest affinity for the low affinity state and lower affinities for the high and very low affinity states. Different CCK receptor agonists caused the same maximal stimulation of amylase secretion but showed different degrees of amplification in terms of the relationship between their abilities to stimulate amylase secretion and their abilities to occupy

  11. Crystal Structures of the Glutamate Receptor Ion Channel GluK3 and GluK5 Amino-Terminal Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Janesh; Mayer, Mark L.

    2010-11-30

    Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 andmore » GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10{sup o}, in contrast to the 50{sup o} difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.« less

  12. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  13. Antinociceptive action of DBO 17 and DBO 11 in mice: two 3,8 diazabicyclo (3.2.1.) octane derivates with selective mu opioid receptor affinity.

    PubMed

    Fadda, P; Barlocco, D; Tronci, S; Cignarella, G; Fratta, W

    1997-11-01

    Two 3,8 diazabicyclo (3.2.1.) octane derivates, namely DBO 17 and DBO 11, were studied for the opioid-like activity. In the rat brain membrane preparation binding studies, DBO 17 and DBO 11 showed a high affinity and selectivity for the mu opioid receptor (Ki's: 5.1 and 25 nM, respectively). DBO 17 and DBO 11 inhibited the nociceptive response in the hot-plate test of mice with ED50 values of 0.16 mg/kg and 0.44 mg/kg, respectively. The antinociceptive action of both DBO 17 and DBO 11 was blocked by naloxone. Tolerance to the antinociceptive action of DBO 17 and DBO 11 was present after 13 and 7 days of repeated treatment, respectively. Both DBO 17 and DBO 11 were ineffective in morphine-tolerant mice and vice versa. Chronic treatments (three times daily for seven consecutive days) of DBO 17 and DBO 11 induced a naloxone-precipitated withdrawal syndrome in DBO 17 treated mice similar to that in morphine treated mice, whereas in DBO 11 treated mice abstinence signs were virtually absent. These results indicate an interesting pharmacological profile that suggests these compounds as possible new candidates for the clinical treatment of pain.

  14. Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia

    PubMed Central

    Kubota, Manabu; Nagashima, Tomohisa; Takano, Harumasa; Kodaka, Fumitoshi; Fujiwara, Hironobu; Takahata, Keisuke; Moriguchi, Sho; Higuchi, Makoto; Okubo, Yoshiro; Takahashi, Hidehiko; Ito, Hiroshi

    2017-01-01

    Abstract Background Dopamine D2 receptors are reported to have high-affinity (D2High) and low-affinity (D2Low) states. Although an increased proportion of D2High has been demonstrated in animal models of schizophrenia, few clinical studies have investigated this alteration of D2High in schizophrenia in vivo. Methods Eleven patients with schizophrenia, including 10 antipsychotic-naive and 1 antipsychotic-free individuals, and 17 healthy controls were investigated. Psychopathology was assessed by Positive and Negative Syndrome Scale, and a 5-factor model was used. Two radioligands, [11C]raclopride and [11C]MNPA, were employed to quantify total dopamine D2 receptor and D2High, respectively, in the striatum by measuring their binding potentials. Binding potential values of [11C]raclopride and [11C]MNPA and the binding potential ratio of [11C]MNPA to [11C]raclopride in the striatal subregions were statistically compared between the 2 diagnostic groups using multivariate analysis of covariance controlling for age, gender, and smoking. Correlations between binding potential and Positive and Negative Syndrome Scale scores were also examined. Results Multivariate analysis of covariance demonstrated a significant effect of diagnosis (schizophrenia and control) on the binding potential ratio (P=.018), although the effects of diagnosis on binding potential values obtained with either [11C]raclopride or [11C]MNPA were nonsignificant. Posthoc test showed that the binding potential ratio was significantly higher in the putamen of patients (P=.017). The Positive and Negative Syndrome Scale “depressed” factor in patients was positively correlated with binding potential values of both ligands in the caudate. Conclusions The present study indicates the possibilities of: (1) a higher proportion of D2High in the putamen despite unaltered amounts of total dopamine D2 receptors; and (2) associations between depressive symptoms and amounts of caudate dopamine D2 receptors in patients

  15. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype.

    PubMed

    Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C

    2000-05-01

    CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B

  16. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  17. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lach, E.; Trifilieff, A.; Landry, Y.

    1991-01-01

    The binding of the radiolabeled bombesin analogue ({sup 125}I-Tyr{sup 4})bombesin to guinea-pig lung membranes was investigated. Binding of ({sup 125}I-Tyr{sup 4})bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B{sub max} = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K{sub D} = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as ({sup 125}I-Tyr{sup 4})bombesin, neuromedin B and neuromedin C inhibited the binding of ({sup 125}I-Tyr{sup 4})bombesin inmore » an order of potencies as follows: ({sup 125}I-Tyr{sup 4})bombesin {gt} bombesin {ge} neuromedin C {much gt} neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B.« less

  18. Functional somatostatin receptors on a rat pancreatic acinar cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.

    1988-07-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less

  19. Interaction of ( sup 3 H)MK-801 with multiple states of the N-methyl-D-aspartate receptor complex of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javitt, D.C.; Zukin, S.R.

    1989-01-01

    N-Methyl-D-aspartate (N-Me-D-Asp) and phencyclidine receptors interactively mediate central nervous system processes including psychotomimetic effects of drugs as well as neurodegenerative, cognitive, and developmental events. To elucidate the mechanism of this interaction, effects of N-Me-D-Asp agonists and antagonists and of glycine-like agents upon binding of the radiolabeled phencyclidine receptor ligand ({sup 3}H)MK-801 were determined in rat brain. Scatchard analysis revealed two discrete components of ({sup 3}H)MK-801 binding after 4 hr of incubation. Incubation in the presence of L-glutamate led to an increase in apparent densities but not in affinities of both components of ({sup 3}H)MK-801 binding as well as conversion ofmore » sites from apparent low to high affinity. Incubation in the presence of combined D-serine and L-glutamate led to an increase in the apparent density of high-affinity ({sup 3}H)MK-801 binding compared with incubation in the presence of either L-glutamate or D-serine alone. These data support a model in which phencyclidine receptor ligands bind differentially to closed as well as open conformations of the N-Me-D-Asp receptor complex and in which glycine-like agents permit or facilitate agonist-induced conversion of N-Me-D-Asp receptors from closed to open conformations.« less

  20. A three-parameter two-state model of receptor function that incorporates affinity, efficacy, and signal amplification.

    PubMed

    Buchwald, Peter

    2017-06-01

    A generalized model of receptor function is proposed that relies on the essential assumptions of the minimal two-state receptor theory (i.e., ligand binding followed by receptor activation), but uses a different parametrization and allows nonlinear response (transduction) for possible signal amplification. For the most general case, three parameters are used: K d , the classic equilibrium dissociation constant to characterize binding affinity; ε , an intrinsic efficacy to characterize the ability of the bound ligand to activate the receptor (ranging from 0 for an antagonist to 1 for a full agonist); and γ , a gain (amplification) parameter to characterize the nonlinearity of postactivation signal transduction (ranging from 1 for no amplification to infinity). The obtained equation, E/Emax=εγLεγ+1-εL+Kd, resembles that of the operational (Black and Leff) or minimal two-state (del Castillo-Katz) models, E/Emax=τLτ+1L+Kd, with εγ playing a role somewhat similar to that of the τ efficacy parameter of those models, but has several advantages. Its parameters are more intuitive as they are conceptually clearly related to the different steps of binding, activation, and signal transduction (amplification), and they are also better suited for optimization by nonlinear regression. It allows fitting of complex data where receptor binding and response are measured separately and the fractional occupancy and response are mismatched. Unlike the previous models, it is a true generalized model as simplified forms can be reproduced with special cases of its parameters. Such simplified forms can be used on their own to characterize partial agonism, competing partial and full agonists, or signal amplification.

  1. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors.

    PubMed

    Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P

    2001-04-01

    The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H

  2. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165)

    NASA Astrophysics Data System (ADS)

    Koide, Hiroyuki; Yoshimatsu, Keiichi; Hoshino, Yu; Lee, Shih-Hui; Okajima, Ai; Ariizumi, Saki; Narita, Yudai; Yonamine, Yusuke; Weisman, Adam C.; Nishimura, Yuri; Oku, Naoto; Miura, Yoshiko; Shea, Kenneth J.

    2017-07-01

    Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts.

  3. Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats.

    PubMed

    Yoshizawa, Tsuyoshi; Hayashi, Yukio; Yoshida, Akira; Yoshida, Shohei; Ito, Yoshihiko; Yamaguchi, Kenya; Yamada, Shizuo; Takahashi, Satoru

    2018-03-01

    To investigate time course of bladder dysfunction and concurrent changes in number and affinity of the muscarinic and P 2 X receptor in the early stage of streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by the intraperitoneal injection of 50 mg/kg of STZ to 7-week-old female Wistar rats. We performed recording of 24-h voiding behavior and cystometry at 1, 4, 8, and 12 weeks after the induction of diabetes. A muscle strip experiments with electrical field stimulation (EFS), carbachol, and α,β-methylene adenosine 5'-triphosphate (α,β-MeATP) were also performed at the same time-points. Additionally, concurrent changes in number and affinity of bladder muscarinic and P 2 X receptor were measured by a radioreceptor assay using [N-methyl- 3 H] scopolamine methyl chloride ([ 3 H]NMS) and α,β-methylene-ATP (2,8- 3 H) tetrasodium salt ([ 3 H]α,β-MeATP). In STZ-induced diabetic rats, polydipsic polyuric pollakiuria were noted on recording of 24-h voiding behavior from early stage. Also, the residual urine volume markedly increased in diabetic rats on cystometry. In the muscle strip experiment, the detrusor contractions induced by EFS, carbachol, and α,β-MeATP were enhanced in STZ-induced diabetic rats. Based on the radioreceptor assay, the maximum number of sites (Bmax) for the specific binding of [ 3 H]NMS and [ 3 H]α,β-MeATP was concurrently increased in the bladder from diabetic rats. Increased bladder contractility is found in early stage of diabetic rats. Then, bladder dysfunction is associated with increased number of muscarinic and P 2 X receptors in STZ-induced diabetic rats.

  4. Psychotomimetic opiate receptors labeled and visualized with (+)-(/sup 3/H)3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Largent, B.L.; Gundlach, A.L.; Snyder, S.H.

    1984-08-01

    3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) has been proposed as a selective dopamine autoreceptor agonist in the central nervous system. This report describes the pharmacology and localization of specific high-affinity binding sites for (+)-(/sup 3/H)3-PPP in brain. The drug specificity of (+)-(/sup 3/H)3-PPP binding is identical to that of sigma receptors, which may mediate psychotomimetic effects of some opiates. Haloperidol and the opioid derivatives, pentazocine, cyclazocine, and SKF 10,047 are potent inhibitors of (+)-(/sup 3/H)3-PPP binding. Stereoselectivity is exhibited for the (+) isomers of cyclazocine and SKF 10.047 at the sigma site, opposite to the stereoselectivity seen at ..mu.., sigma, and k opiate receptors.more » (+)-(/sup 3/H)3-PPP does not label dopamine receptors, as potent dopamine agonists and antagonists are weak inhibitors of binding and the localization of specific (+)-(/sup 3/H)3-PPP binding sites does not parallel that of dopamine neurons. Discrete localizations of (+)-(/sup 3/H)3-PPP binding sites in many brain areas including limbic, midbrain, brainstem, and cerebellar regions may explain psychotomimetic actions of opiates and behavior effects of 3-PPP. 41 references, 2 figures, 1 table.« less

  5. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    PubMed

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Initial in vivo PET imaging of 5-HT1A receptors with 3-[18F]mefway

    PubMed Central

    Wooten, Dustin W; Hillmer, Ansel T; Murali, Dhanabalan; Barnhart, Todd E; Thio, Joanne P; Bajwa, Alisha K; Bonab, Ali A; Normandin, Marc D; Schneider, Mary L; Mukherjee, Jogeshwar; Christian, Bradley T

    2014-01-01

    4-trans-[18F]Mefway is a PET radiotracer with high affinity for 5-HT1A receptors. Our preliminary work indicated the positional isomer, 3-[18F]mefway, would be suitable for PET imaging of 5-HT1A receptors. We now compare the in vivo behaviour of 3-mefway with 4-mefway to evaluate 3-[18F]mefway as a potential 5-HT1A PET radiotracer. Two male rhesus macaques were given bolus injections of both 3- and 4-trans-[18F]mefway in separate experiments. 90 minute dynamic PET scans were acquired. TACs were extracted in the mesial temporal lobe (MTL) and caudal anterior cingulate gyrus (cACg). The cerebellum (CB) was used as a reference region. In vivo behavior of the radiotracers in the CB was compared based upon the ratio of normalized PET uptake for 3- and 4-trans-[18F]mefway. Specific binding was compared by examining MTL/CB and cACg/CB ratios. The subject-averaged ratio of 3-[18F]mefway to 4-trans-[18F]mefway in the cerebellum was 0.96 for 60-90 minutes. MTL/CB reached plateaus of ~2.7 and ~6 by 40 minutes and 90 minutes for 3- and 4-trans-[18F]mefway, respectively. cACg/CB reached plateaus of ~2.5 and ~6 by 40 minutes and 70 minutes for 3- and 4-trans-[18F]mefway, respectively. The short pseudoequilibration times and sufficient uptake of 3-[18F]mefway may be useful in studies requiring short scan times. Furthermore, the similar nondisplaceable clearance in the CB to 4-trans-[18F]mefway suggests the lower BPND of 3-[18F]mefway is due to a lower affinity. The lower affinity of 3-[18F]mefway may make it useful for measuring changes in endogenous 5-HT levels, however, this remains to be ascertained. PMID:25143866

  7. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    PubMed

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  8. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  9. Crystal structure of human glycine receptor3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  10. Toward biophysical probes for the 5-HT3 receptor: structure-activity relationship study of granisetron derivatives.

    PubMed

    Vernekar, Sanjeev Kumar V; Hallaq, Hasan Y; Clarkson, Guy; Thompson, Andrew J; Silvestri, Linda; Lummis, Sarah C R; Lochner, Martin

    2010-03-11

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT(3)A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT(3)A receptors in mammalian cells.

  11. Toward Biophysical Probes for the 5-HT3 Receptor: Structure−Activity Relationship Study of Granisetron Derivatives

    PubMed Central

    2010-01-01

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT3A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT3A receptors in mammalian cells. PMID:20146481

  12. Docking model of the nicotinic acetylcholine receptor and nitromethylene neonicotinoid derivatives with a longer chiral substituent and their biological activities.

    PubMed

    Nagaoka, Hikaru; Nishiwaki, Hisashi; Kubo, Takuya; Akamatsu, Miki; Yamauchi, Satoshi; Shuto, Yoshihiro

    2015-02-15

    In the present study, nitromethylene neonicotinoid derivatives possessing substituents that contain a sulfur atom, oxygen atom or aromatic ring at position 5 on the imidazolidine ring were synthesized to evaluate their affinity for the nicotinic acetylcholine receptor (nAChR) and their insecticidal activity against adult female houseflies. Comparing the receptor affinity of the alkylated derivative with the receptor affinity of compounds possessing either ether or thioether groups revealed that conversion of the carbon atom to a sulfur atom did not influence the receptor affinity, whereas conversion to an oxygen atom was disadvantageous for the receptor affinity. The receptor affinity of compounds possessing a benzyl or phenyl group was lower than that of the unsubstituted compound. Analysis of the three-dimensional quantitative structure-activity relationship using comparative molecular field analysis demonstrated that steric hindrance of the receptor should exist around the C3 of an n-butyl group attached at position 5 on the imidazolidine ring. A docking study of the nAChR-ligand model suggested that the ligand-binding region expands as the length of the substituent increases by brushing against the amino acids that form the binding region. The insecticidal activity of the compounds was positively correlated with the receptor affinity by considering logP and the number of heteroatoms, including sulfur and oxygen atoms, in the substituents, suggesting that the insecticidal activity is influenced by the receptor affinity, hydrophobicity, and metabolic stability of the compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics.

    PubMed

    Seeman, P; Ko, F; Tallerico, T

    2005-09-01

    Although phencyclidine and ketamine are used to model a hypoglutamate theory of schizophrenia, their selectivity for NMDA receptors has been questioned. To determine the affinities of phencyclidine, ketamine, dizocilpine and LSD for the functional high-affinity state of the dopamine D2 receptor, D2High, their dissociation constants (Ki) were obtained on [3H]domperidone binding to human cloned dopamine D2 receptors. Phencyclidine had a high affinity for D2High with a Ki of 2.7 nM, in contrast to its low affinity for the NMDA receptor, with a Ki of 313 nM, as labeled by [3H]dizocilpine on rat striatal tissue. Ketamine also had a high affinity for D2High with a Ki of 55 nM, an affinity higher than its 3100 nM Ki for the NMDA sites. Dizocilpine had a Ki of 0.3 nM at D2High, but a Kd of 1.8 nM at the NMDA receptor. LSD had a Ki of 2 nM at D2High. Because the psychotomimetics had higher potency at D2High than at the NMDA site, the psychotomimetic action of these drugs must have a major contribution from D2 agonism. Because these drugs have a combined action on both dopamine receptors and NMDA receptors, these drugs, when given in vivo, test a combined hyperdopamine and hypoglutamate theory of psychosis.

  14. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    PubMed

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  15. Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, R.T.; Mahan, D.R.; Smith, R.B.

    1990-10-01

    The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptormore » sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.« less

  16. Current drug treatments targeting dopamine D3 receptor.

    PubMed

    Leggio, Gian Marco; Bucolo, Claudio; Platania, Chiara Bianca Maria; Salomone, Salvatore; Drago, Filippo

    2016-09-01

    Dopamine receptors (DR) have been extensively studied, but only in recent years they became object of investigation to elucidate the specific role of different subtypes (D1R, D2R, D3R, D4R, D5R) in neural transmission and circuitry. D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D2R and D4R) differ in signal transduction, binding profile, localization in the central nervous system and physiological effects. D3R is involved in a number of pathological conditions, including schizophrenia, Parkinson's disease, addiction, anxiety, depression and glaucoma. Development of selective D3R ligands has been so far challenging, due to the high sequence identity and homology shared by D2R and D3R. As a consequence, despite a rational design of selective DR ligands has been carried out, none of currently available medicines selectively target a given D2-like receptor subtype. The availability of the D3R ligand [(11)C]-(+)-PHNO for positron emission tomography studies in animal models as well as in humans, allows researchers to estimate the expression of D3R in vivo; displacement of [(11)C]-(+)-PHNO binding by concurrent drug treatments is used to estimate the in vivo occupancy of D3R. Here we provide an overview of studies indicating D3R as a target for pharmacological therapy, and a review of market approved drugs endowed with significant affinity at D3R that are used to treat disorders where D3R plays a relevant role. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Synthesis and pharmacological evaluation of indole-based sigma receptor ligands

    PubMed Central

    Mésangeau, Christophe; Amata, Emanuele; Alsharif, Walid; Seminerio, Michael J.; Robson, Matthew J.; Matsumoto, Rae R.; Poupaert, Jacques H.; McCurdy, Christopher R.

    2011-01-01

    A series of novel indole-based analogues were prepared and their affinities for sigma receptors were determined using in vitro radioligand binding assays. The results of this study identified several compounds with nanomolar sigma-2 affinity and significant selectivity over sigma-1 receptors. In particular, 2-(4-(3-(4-fluorophenyl)indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (9f) was found to display high affinity at sigma-2 receptors with good selectivity (σ-1/σ-2 = 395). The pharmacological binding profile for this compound was established with other relevant nonsigma sites. PMID:21899931

  18. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    PubMed

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  19. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI

    PubMed Central

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-01-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization. PMID:26388148

  20. Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1.

    PubMed

    Millard, Christopher J; Ludeman, Justin P; Canals, Meritxell; Bridgford, Jessica L; Hinds, Mark G; Clayton, Daniel J; Christopoulos, Arthur; Payne, Richard J; Stone, Martin J

    2014-11-04

    Trafficking of leukocytes in immune surveillance and inflammatory responses is activated by chemokines engaging their receptors. Sulfation of tyrosine residues in peptides derived from the eosinophil chemokine receptor CCR3 dramatically enhances binding to cognate chemokines. We report the structural basis of this recognition and affinity enhancement. We describe the structure of a CC chemokine (CCL11/eotaxin-1) bound to a fragment of a chemokine receptor: residues 8–23 of CCR3, including two sulfotyrosine residues. We also show that intact CCR3 is sulfated and sulfation enhances receptor activity. The CCR3 sulfotyrosine residues form hydrophobic, salt bridge and cation-p interactions with residues that are highly conserved in CC chemokines. However, the orientation of the chemokine relative to the receptor N terminus differs substantially from those observed for two CXC chemokines, suggesting that initial binding of the receptor sulfotyrosine residues guides subsequent steps in receptor activation, thereby influencing the receptor conformational changes and signaling.

  1. Radiosynthesis and in vitro evaluation of 2-(N-alkyl-N-1'-11C-propyl)amino-5-hydroxytetralin analogs as high affinity agonists for dopamine D-2 receptors.

    PubMed

    Shi, B; Narayanan, T K; Yang, Z Y; Christian, B T; Mukherjee, J

    1999-10-01

    We have developed radiotracers based on agonists that may potentially allow the in vivo assessment of the high affinity (HA) state of the dopamine D-2 receptors. The population of HA state, which is likely the functional state of the receptor, may be altered in certain diseases. We carried out radiosyntheses and evaluated the binding affinities, lipophilicity, and in vitro autoradiographic binding characteristics of three dopamine D-2 receptor agonists: (+/-)-2-(N,N-dipropyl)amino-5-hydroxytetralin (5-OH-DPAT), (+/-)-2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), and (+/-)-2-(N-cyclohexylethyl-N-propyl)amino-5-hydroxytetralin (ZYY-339). In 3H-spiperone assays using rat striata, ZYY-339 exhibited subnanomolar affinity for D-2 receptor sites (IC50 = 0.010 nM), PPHT was somewhat weaker (IC50 = 0.65 nM), and 5-OH-DPAT exhibited the weakest affinity (IC50 = 2.5 nM) of the three compounds. Radiosynthesis of these derivatives, 2-(N-propyl-N-1'-11C-propyl)amino-5-hydroxytetralin (11C-5-OH-DPAT), 2-(N-phenethyl-N-1'-11C-propyl)amino-5-hydroxytetralin (11C-PPHT), and 2-(N-cyclohexylethyl-N-1'-11C-propyl)amino-5-hydroxytetralin (11C-ZYY-339) was achieved by first synthesizing 11C-1-propionyl chloride and subsequent coupling with the appropriate secondary amine precursor to form the respective amide, which was then reduced to provide the desired tertiary amine products. The final products were obtained by reverse-phase high performance liquid chromatography (HPLC) purification in radiochemical yields of 5-10% after 60-75 min from the end of 11CO2 trapping and with specific activities in the range of 250-1,000 Ci/mmol. In vitro autoradiographs in rat brain slices with 11C-5-OH-DPAT, 11C-PPHT, and 11C-ZYY-339 revealed selective binding of the three radiotracers to the dopamine D-2 receptors in the striata.

  2. Ligand affinity of the 67-kD elastin/laminin binding protein is modulated by the protein's lectin domain: visualization of elastin/laminin-receptor complexes with gold-tagged ligands

    PubMed Central

    1991-01-01

    Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand. PMID:1848864

  3. Analysis of the Expression of Peptide–Major Histocompatibility Complexes Using High Affinity Soluble Divalent T Cell Receptors

    PubMed Central

    O'Herrin, Sean M.; Lebowitz, Michael S.; Bieler, Joan G.; al-Ramadi, Basel K.; Utz, Ursula; Bothwell, Alfred L.M.; Schneck, Jonathan P.

    1997-01-01

    Understanding the regulation of cell surface expression of specific peptide–major histocompatibility complex (MHC) complexes is hindered by the lack of direct quantitative analyses of specific peptide–MHC complexes. We have developed a direct quantitative biochemical approach by engineering soluble divalent T cell receptor analogues (TCR–Ig) that have high affinity for their cognate peptide–MHC ligands. The generality of this approach was demonstrated by specific staining of peptide-pulsed cells with two different TCR–Ig complexes: one specific for the murine alloantigen 2C, and one specific for a viral peptide from human T lymphocyte virus–1 presented by human histocompatibility leukocyte antigens–A2. Further, using 2C TCR– Ig, a more detailed analysis of the interaction with cognate peptide–MHC complexes revealed several interesting findings. Soluble divalent 2C TCR–Ig detected significant changes in the level of specific antigenic–peptide MHC cell surface expression in cells treated with γ-interferon (γ-IFN). Interestingly, the effects of γ-IFN on expression of specific peptide–MHC complexes recognized by 2C TCR–Ig were distinct from its effects on total H-2 Ld expression; thus, lower doses of γ-IFN were required to increase expression of cell surface class I MHC complexes than were required for upregulation of expression of specific peptide–MHC complexes. Analysis of the binding of 2C TCR–Ig for specific peptide–MHC ligands unexpectedly revealed that the affinity of the 2C TCR–Ig for the naturally occurring alloreactive, putatively, negatively selecting, complex, dEV-8–H-2 Kbm3, is very low, weaker than 71 μM. The affinity of the 2C TCR for the other naturally occurring, negatively selecting, alloreactive complex, p2Ca–H-2 Ld, is ∼1000-fold higher. Thus, negatively selecting peptide–MHC complexes do not necessarily have intrinsically high affinity for cognate TCR. These results, uniquely revealed by this analysis

  4. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less

  5. Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain.

    PubMed

    Runge, Steffen; Schimmer, Susann; Oschmann, Jan; Schiødt, Christine Bruun; Knudsen, Sanne Möller; Jeppesen, Claus Bekker; Madsen, Kjeld; Lau, Jesper; Thøgersen, Henning; Rudolph, Rainer

    2007-05-15

    Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4.

  6. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL II

    EPA Science Inventory

    The training set used to derive a common reactivity pattern (COREPA) model for estrogen receptor (ER) binding affinity in Model I (see Abstract I in this series) was extended to include 47 rat estrogen receptor (rER) relative binding affinity (RBA) measurements in addition to the...

  7. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsicmore » activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights:

  8. Palonosetron (Aloxi): a second-generation 5-HT3 receptor antagonist for chemotherapy-induced nausea and vomiting

    PubMed Central

    2006-01-01

    In July 2003, the Food and Drug Administration approved palonosetron hydrochloride injection for the treatment of chemotherapy-induced nausea and vomiting (CINV). The newest agent in the class of 5-HT3 receptor antagonists (5-HT3RAs), palonosetron differs from other agents in its class by its higher receptor-binding affinity and longer half-life. These pharmacological properties have resulted in improved antiemetic activity in clinical trials, particularly in the treatment of delayed CINV following moderate emetogenic chemotherapy. Based on the results of these clinical studies, palonosetron is the only 5-HT3RA approved for delayed CINV. Palonosetron is given as a single 0.25-mg intravenous dose 30 minutes before the initial dose of chemotherapy. Headache and constipation were the most common adverse events reported with palonosetron therapy. PMID:17106506

  9. Residues within the Transmembrane Domain of the Glucagon-Like Peptide-1 Receptor Involved in Ligand Binding and Receptor Activation: Modelling the Ligand-Bound Receptor

    PubMed Central

    Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.

    2011-01-01

    The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452

  10. Affinity of C-Reactive Protein toward FcγRI Is Strongly Enhanced by the γ-Chain

    PubMed Central

    Röcker, Carlheinz; Manolov, Dimitar E.; Kuzmenkina, Elza V.; Tron, Kyrylo; Slatosch, Holger; Torzewski, Jan; Nienhaus, G. Ulrich

    2007-01-01

    C-reactive protein (CRP), the prototype human acute phase protein, is widely regarded as a key player in cardiovascular disease, but the identity of its cellular receptor is still under debate. By using ultrasensitive confocal imaging analysis, we have studied CRP binding to transfected COS-7 cells expressing the high-affinity IgG receptor FcγRI. Here we show that CRP binds to FcγRI on intact cells, with a kd of 10 ± 3 μmol/L. Transfection of COS-7 cells with a plasmid coding for both FcγRI and its functional counterpart, the γ-chain, markedly increases CRP affinity to FcγRI, resulting in a kd of 0.35 ± 0.10 μmol/L. The affinity increase results from an ∼30-fold enhanced association rate coefficient. The pronounced enhancement of affinity by the γ-chain suggests its crucial involvement in the CRP receptor interaction, possibly by mediating interactions between the transmembrane moieties of the receptors. Dissociation of CRP from the cell surfaces cannot be detected throughout the time course of several hours and is thus extremely slow. Considering the pentameric structure of CRP, this result indicates that multivalent binding and receptor clustering are crucially involved in the interaction of CRP with nucleated cells. PMID:17255341

  11. Evidence of paired M2 muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, L.T.; Ballesteros, L.A.; Bichajian, L.H.

    Binding assays involving various antagonists, including N-(3H) methylscopolamine, (3H)quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat brainstem (medulla, pons, and colliculi). However, competition curves between N-(3H)methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization withmore » digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of (3H)-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with (3H)quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.« less

  12. The protein-protein interface evolution acts in a similar way to antibody affinity maturation.

    PubMed

    Li, Bohua; Zhao, Lei; Wang, Chong; Guo, Huaizu; Wu, Lan; Zhang, Xunming; Qian, Weizhu; Wang, Hao; Guo, Yajun

    2010-02-05

    Understanding the evolutionary mechanism that acts at the interfaces of protein-protein complexes is a fundamental issue with high interest for delineating the macromolecular complexes and networks responsible for regulation and complexity in biological systems. To investigate whether the evolution of protein-protein interface acts in a similar way as antibody affinity maturation, we incorporated evolutionary information derived from antibody affinity maturation with common simulation techniques to evaluate prediction success rates of the computational method in affinity improvement in four different systems: antibody-receptor, antibody-peptide, receptor-membrane ligand, and receptor-soluble ligand. It was interesting to find that the same evolutionary information could improve the prediction success rates in all the four protein-protein complexes with an exceptional high accuracy (>57%). One of the most striking findings in our present study is that not only in the antibody-combining site but in other protein-protein interfaces almost all of the affinity-enhancing mutations are located at the germline hotspot sequences (RGYW or WA), indicating that DNA hot spot mechanisms may be widely used in the evolution of protein-protein interfaces. Our data suggest that the evolution of distinct protein-protein interfaces may use the same basic strategy under selection pressure to maintain interactions. Additionally, our data indicate that classical simulation techniques incorporating the evolutionary information derived from in vivo antibody affinity maturation can be utilized as a powerful tool to improve the binding affinity of protein-protein complex with a high accuracy.

  13. In Vitro Mouse and Human Serum Stability of a Heterobivalent Dual-Target Probe That Has Strong Affinity to Gastrin-Releasing Peptide and Neuropeptide Y1 Receptors on Tumor Cells.

    PubMed

    Ghosh, Arijit; Raju, Natarajan; Tweedle, Michael; Kumar, Krishan

    2017-02-01

    Receptor-targeting radiolabeled molecular probes with high affinity and specificity are useful in studying and monitoring biological processes and responses. Dual- or multiple-targeting probes, using radiolabeled metal chelates conjugated to peptides, have potential advantages over single-targeting probes as they can recognize multiple targets leading to better sensitivity for imaging and radiotherapy when target heterogeneity is present. Two natural hormone peptide receptors, gastrin-releasing peptide (GRP) and Y1, are specifically interesting as their expression is upregulated in most breast and prostate cancers. One of our goals has been to develop a dual-target probe that can bind both GRP and Y1 receptors. Consequently, a heterobivalent dual-target probe, t-BBN/BVD15-DO3A (where a GRP targeting ligand J-G-Abz4-QWAVGHLM-NH 2 and Y1 targeting ligand INP-K [ɛ-J-(α-DO3A-ɛ-DGa)-K] YRLRY-NH 2 were coupled), that recognizes both GRP and Y1 receptors was synthesized, purified, and characterized in the past. Competitive displacement cell binding assay studies with the probe demonstrated strong affinity (IC 50 values given in parentheses) for GRP receptors in T-47D cells (18 ± 0.7 nM) and for Y1 receptors in MCF7 cells (80 ± 11 nM). As a further evaluation of the heterobivalent dual-target probe t-BBN/BVD15-DO3A, the objective of this study was to determine its mouse and human serum stability at 37°C. The in vitro metabolic degradation of the dual-target probe in mouse and human serum was studied by using a 153 Gd-labeled t-BBN/BVD15-DO3A and a high-performance liquid chromatography/radioisotope detector analytical method. The half-life (t 1/2 ) of degradation of the dual-target probe in mouse serum was calculated as 7 hours and only ∼20% degradation was seen after 6 hours incubation in human serum. The slow in vitro metabolic degradation of the dual-target probe can be compared with the degradation t 1/2 of the corresponding monomeric probes, BVD15

  14. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3,3-dibromoflavanone in mice.

    PubMed

    Higgs, Josefina; Wasowski, Cristina; Loscalzo, Leonardo M; Marder, Mariel

    2013-09-01

    The pharmacotherapy for the treatment of pain is an active area of investigation. There are effective drugs to treat this problem, but there is also a need to find alternative treatments free of undesirable side effects. In the present work the capacity of a series of flavonoids to bind to the μ opioid receptor was evaluated. The most active compound, 3,3-dibromoflavanone (31), a synthetic flavonoid, presented a significant inhibition of the binding of the selective μ opioid ligand [(3)H]DAMGO, with a Ki of 0.846 ± 0.263 μM. Flavanone 31 was further synthesized using a simple and cheap procedure with good yield. Its in vivo effects in mice, after acute treatments, were studied using antinociceptive and behavioral assays. It showed no sedative, anxiolytic, motor incoordination effects or inhibition of the gastrointestinal transit in mice at the doses tested. It evidenced antinociceptive activity on the acetic acid-induced nociception, hot plate and formalin tests (at 10 mg/kg and 30 mg/kg). The results showed that the 5-HT2 receptor and the adrenoceptors seem unlikely to be involved in its antinociceptive effects. Naltrexone, a nonselective opioid receptors antagonist, totally blocked compound 31 antinociceptive effects on the hot plate test, but naltrindole (δ opioid antagonist) and nor-binaltorphimine (κ opioid antagonist) did not. These findings demonstrated that 3,3-dibromoflavanone (31), at doses that did not interfere with the motor performance, exerted clear dose dependent antinociception when assessed in the chemical and thermal models of nociception in mice and it seems that its action is related to the activation of the μ opioid receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  16. Characterization of rodent liver and kidney AVP receptors: pharmacologic evidence for species differences.

    PubMed

    Tahara, A; Tsukada, J; Ishii, N; Tomura, Y; Wada, K; Kusayama, T; Yatsu, T; Uchida, W; Tanaka, A

    1999-10-22

    Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.

  17. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Existence of three subtypes of bradykinin B2 receptors in guinea pig.

    PubMed

    Seguin, L; Widdowson, P S; Giesen-Crouse, E

    1992-12-01

    We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state.

    PubMed

    Dostalova, Zuzana; Zhou, Xiaojuan; Liu, Aiping; Zhang, Xi; Zhang, Yinghui; Desai, Rooma; Forman, Stuart A; Miller, Keith W

    2014-02-01

    Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state. © 2013 The Protein Society.

  20. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach, A.L.; Largent, B.L.; Snyder, S.H.

    1986-06-01

    (+)3H-3-PPP ((+)3H-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine) binds with high affinity to brain membranes with a pharmacological profile consistent with that of sigma receptors. The distribution of (+)3H-3-PPP binding sites in brain and spinal cord of both guinea pig and rat has been determined by in vitro autoradiography with binding densities quantitated by computer-assisted densitometry. (+)3H-3-PPP binding to slide-mounted brain sections is saturable and displays high affinity and a pharmacological specificity very similar to sites labeled in homogenates. (+)3H-3-PPP binding sites are heterogeneously distributed. Highest concentrations of binding sites occur in spinal cord, particularly the ventral horn and dorsal root ganglia; the pons-medulla, associated withmore » the cranial nerve and pontine nuclei and throughout the brain stem reticular formation; the cerebellum, over the Purkinje cell layer; the midbrain, particularly the central gray and red nucleus; and hippocampus, over the pyramidal cell layer. Lowest levels are seen in the basal ganglia and parts of the thalamus, while all other areas, including hypothalamus and cerebral cortex, exhibit moderate grain densities. Quinolinic acid-induced lesions of the hippocampus indicate that (+)3H-3-PPP labels hippocampal pyramidal cells and granule cells in the dentate gyrus. Intrastriatal injection of ibotenic acid dramatically reduces (+)3H-3-PPP binding in this area, while injection of 6-hydroxydopamine produces a relatively slight decrease. The distribution of (+)3H-3-PPP binding sites does not correlate with the receptor distribution of any recognized neurotransmitter or neuropeptide, including dopamine. However, there is a notable similarity between the distribution of (+)3H-3-PPP sites and high-affinity binding sites for psychotomimetic opioids, such as the benzomorphan (+)SKF 10,047.« less

  1. SSR126768A (4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor.

    PubMed

    Serradeil-Le Gal, Claudine; Valette, Gérard; Foulon, Loïc; Germain, Guy; Advenier, Charles; Naline, Emmanuel; Bardou, Marc; Martinolle, Jean-Pierre; Pouzet, Brigitte; Raufaste, Danielle; Garcia, Corinne; Double-Cazanave, Eléonore; Pauly, Maxime; Pascal, Marc; Barbier, Alain; Scatton, Bernard; Maffrand, Jean-Pierre; Le Fur, Gérard

    2004-04-01

    4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)benzamide, hydrochloride (SSR126768A), a new potent and selective, orally active oxytocin (OT) receptor antagonist was characterized in several biochemical and pharmacological models. In binding studies, SSR126768A showed nanomolar affinity for rat and human recombinant and native OT receptors (K(i) = 0.44 nM) and exhibited much lower affinity for V(1a), V(1b), and V(2) receptors. In addition, it did not interact with a large number of other receptors, enzymes, and ion channels (1 microM). In autoradiographic experiments performed on at-term human pregnant uterus sections, SSR126768A dose dependently displaced [I(125)]d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8) (125)I-Tyr-NH(2)(9)]VT in situ labeling to OT receptors highly expressed in these tissues. In functional studies, SSR126768A behaved as a full antagonist and potently antagonized OT-induced intracellular Ca(2+) increase (K(i) = 0.50 nM) and prostaglandin release (K(i) = 0.45 nM) in human uterine smooth muscle cells. In rat isolated myometrium, OT-induced uterine contractions were competitively antagonized by SSR126768A (pA(2) = 8.47). Similarly, in human pregnant myometrial strips, SSR126768A inhibited the contractile uterine response to OT. In conscious telemetrated rats, oral administration of SSR126768A (1-10 mg/kg) produced a competitive inhibition of the dose response to OT on uterine contractions up to 24 h at 3 mg/kg p.o.; no tachyphylaxis was observed after 4-day repeated treatment. Finally, SSR126768A (30 mg/kg p.o.) significantly delayed parturition in pregnant rats in labor similar to ritodrine (10 mg/kg p.o.). Thus, SSR126768A is a potent, highly selective, orally active OT receptor antagonist with a long duration of action. This molecule could find therapeutic application as a tocolytic agent for acute and chronic oral management of preterm labor.

  2. Magneto-nanosensor platform for probing low-affinity protein–protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction

    PubMed Central

    Lee, Jung-Rok; Bechstein, Daniel J. B.; Ooi, Chin Chun; Patel, Ashka; Gaster, Richard S.; Ng, Elaine; Gonzalez, Lino C.; Wang, Shan X.

    2016-01-01

    Substantial efforts have been made to understand the interactions between immune checkpoint receptors and their ligands targeted in immunotherapies against cancer. To carefully characterize the complete network of interactions involved and the binding affinities between their extracellular domains, an improved kinetic assay is needed to overcome limitations with surface plasmon resonance (SPR). Here, we present a magneto-nanosensor platform integrated with a microfluidic chip that allows measurement of dissociation constants in the micromolar-range. High-density conjugation of magnetic nanoparticles with prey proteins allows multivalent receptor interactions with sensor-immobilized bait proteins, more closely mimicking natural-receptor clustering on cells. The platform has advantages over traditional SPR in terms of insensitivity of signal responses to pH and salinity, less consumption of proteins and better sensitivities. Using this platform, we characterized the binding affinities of the PD-1—PD-L1/PD-L2 co-inhibitory receptor system, and discovered an unexpected interaction between the two known PD-1 ligands, PD-L1 and PD-L2. PMID:27447090

  3. Beyond small molecule SAR – using the dopamine D3 receptor crystal structure to guide drug design

    PubMed Central

    Keck, Thomas M.; Burzynski, Caitlin; Shi, Lei; Newman, Amy Hauck

    2016-01-01

    The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This review will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small molecule SAR to improve the selectivity and directed efficacy profiles are examined. PMID:24484980

  4. Photoactivable analogs for labeling 25-hydroxyvitamin D3 serum binding protein and for 1,25-dihydroxyvitamin D3 intestinal receptor protein

    NASA Technical Reports Server (NTRS)

    Kutner, A.; Link, R. P.; Schnoes, H. K.; DeLuca, H. F.

    1986-01-01

    3-Azidobenzoates and 3-azidonitrobenzoates of 25-hydroxyvitamin D3 as well as 3-deoxy-3-azido-25-hydroxyvitamin D3 and 3-deoxy-3-azido-1,25-dihydroxyvitamin D3 were prepared as photoaffinity labels for vitamin D serum binding protein and 1,25-dihydroxyvitamin D3 intestinal receptor protein. The compounds prepared were easily activated by short- or long-wavelength uv light, as monitored by uv and ir spectrometry. The efficacy of the compounds to compete with 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 for the binding site of serum binding protein and receptor, respectively, was studied to evaluate the vitamin D label with the highest affinity for the protein. The presence of an azidobenzoate or azidonitrobenzoate substituent at the C-3 position of 25-OH-D3 significantly decreased (10(4)- to 10(6)-fold) the binding activity. However, the labels containing the azido substituent attached directly to the vitamin D skeleton at the C-3 position showed a high affinity, only 20- to 150-fold lower than that of the parent compounds with their respective proteins. Therefore, 3-deoxy-3-azidovitamins present potential ligands for photolabeling of vitamin D proteins and for studying the structures of the protein active sites.

  5. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drugmore » has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.« less

  6. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.

    PubMed

    Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana

    2016-09-01

    The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016

  7. Opiate receptor binding properties of morphine-, dihydromorphine-, and codeine 6-O-sulfate ester congeners.

    PubMed

    Crooks, Peter A; Kottayil, Santosh G; Al-Ghananeem, Abeer M; Byrn, Stephen R; Butterfield, D Allan

    2006-08-15

    A series of 3-O-acyl-6-O-sulfate esters of morphine, dihydromorphine, N-methylmorphinium iodide, codeine, and dihydrocodeine were prepared and evaluated for their ability to bind to mu-, delta-, kappa(1)-, kappa(2)-, and kappa(3)-opiate receptors. Several compounds exhibited good affinity for the mu-opiate receptor. Morphine-3-O-propionyl-6-O-sulfate had four times greater affinity than morphine at the mu-opiate receptor and was the most selective compound at this receptor subtype.

  8. Iodination of (Tyr11)somatostatin yields a super high affinity ligand for somatostatin receptors in GH4C1 pituitary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Presky, D.H.; Schonbrunn, A.

    1988-11-01

    GH4C1 cells are a clonal strain of rat pituitary tumor cells which contain high affinity receptors for the inhibitory neuropeptide somatostatin (SRIF). In contrast to other peptides that bind to specific receptors on these cells, receptor-bound (125I-Tyr1)SRIF does not undergo rapid endocytosis. Rather, partial degradation to 125I-tyrosine occurs concomitantly with the dissociation of (125I-Tyr1)SRIF from cell surface receptors. In this study we characterize the binding, biological activity and receptor-mediated degradation of (125I-Tyr11)SRIF, a SRIF analog that is radiolabeled in the center of the molecule. The binding of trace concentrations of (125I-Tyr11)SRIF (less than 50 pM) required 6 hr to reachmore » equilibrium at 37 degrees compared with the 60 min required for (125I-Tyr1)SRIF. Analysis of the kinetics of (125I- Tyr11)SRIF binding showed that the rate constant for association (kon = 1.7 x 10(8) M-8min-1) was similar to that for (125I-Tyr1)SRIF (0.8 x 10(8) M-1min-1). However, the two radioligands exhibited markedly different dissociation kinetics; the koff for (125I-Tyr11)SRIF was 0.002 min-1 compared with the value of 0.02 min-1 for (125I-Tyr1) SRIF. In agreement with its much slower rate of dissociation, (125I-Tyr11)SRIF bound to the SRIF receptor with higher affinity (Kd = 70 pM) than did (125I-Tyr1)SRIF (Kd = 350 pM). However, the apparent ED50 for (I-Tyr11)SRIF to inhibit cAMP accumulation (1.9 +/- 0.4 nM) was greater than the ED50 for SRIF (0.19 +/- 0.04 nM). The low potency of (I-Tyr11)SRIF probably resulted from the fact that subsaturating concentrations of this peptide did not achieve equilibrium binding during the 30-min incubation used to assay biological activity. As previously reported for (125I-Tyr1)SRIF, receptor-bound (125I-Tyr11)SRIF was not internalized and was released from the cells as a mixture of intact (125I-Tyr11)SRIF (30%) and the degradation product 125I-tyrosine (65%).« less

  9. The distribution of the orphan bombesin receptor subtype-3 in the rat CNS.

    PubMed

    Jennings, C A; Harrison, D C; Maycox, P R; Crook, B; Smart, D; Hervieu, G J

    2003-01-01

    Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor that shares between 47 and 51% homology with other known bombesin receptors. The natural ligand for BRS-3 is currently unknown and little is known about the mechanisms regulating BRS-3 gene expression. Unlike other mammalian bombesin receptors that have been shown to be predominantly expressed in the CNS and gastrointestinal tract, expression of the BRS-3 receptor in the rat brain has previously not been observed. To gain further understanding of the biology of BRS-3, we have studied the distribution of BRS-3 mRNA and protein in the rat CNS. The mRNA expression pattern was studied using reverse transcription followed by quantitative polymerase chain reaction. Using immunohistological techniques, the distribution of BRS-3 protein in the rat brain was investigated using a rabbit affinity-purified polyclonal antiserum raised against an N-terminal peptide. The BRS-3 receptor was found to be widely expressed in the rat brain at both mRNA and protein levels. Particularly strong immunosignals were observed in the cerebral cortex, hippocampal formation, hypothalamus and thalamus. Other regions of the brain such as the basal ganglia, midbrain and reticular formation were also immunopositive for BRS-3. In conclusion, our neuroanatomical data provide evidence that BRS-3 is as widely expressed in the rat brain as other bombesin-like peptide receptors and suggest that this receptor may also have important roles in the CNS, mediating the functions of a so far unidentified ligand.

  10. Somatostatin receptors in differentiated ovarian tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reubi, J.C.; Horisberger, U.; Klijn, J.G.

    1991-05-01

    The presence of somatostatin receptors was investigated in 57 primary human ovarian tumors using in vitro receptor autoradiography with three different somatostatin radioligands, {sup 125}I-(Tyr11)-somatostatin-14, {sup 125}I-(Leu8, D-Trp22, Tyr25)-somatostatin-28, or {sup 125}I-(Tyr3)-SMS 201-995. Three cases, all belonging to epithelial tumors, were receptor positive; specifically 1 of 42 adenocarcinomas, 1 of 3 borderline malignancies, and 1 of 2 cystadenomas. Four other epithelial tumors (3 fibroadenomas, 1 Brenner tumor), 4 sex cord-stromal tumors (2 fibrothecomas, 2 granulosa cell tumors), and 2 germ cell tumors (1 dysgerminoma, 1 teratoma) were receptor negative. In the positive cases, the somatostatin receptors were localized on epithelialmore » cells exclusively, were of high affinity (KD = 4.6 nmol/l (nanomolar)), and specific for somatostatin analogs. These receptors bound somatostatin-14 and somatostatin-28 radioligands with a higher affinity than the octapeptide (Tyr3)-SMS 201-995. Healthy ovarian tissue had no somatostatin receptors. A subpopulation of relatively well-differentiated ovarian tumors, therefore, was identified pathobiochemically on the basis of its somatostatin receptor content. This small group of somatostatin receptor-positive tumors may be a target for in vivo diagnostic imaging with somatostatin ligands.« less

  11. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    PubMed

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  12. PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: A COMPARISON OF THREE MODELS

    EPA Science Inventory

    A comparative analysis of how three COREPA models for ER binding affinity performed when used to predict potential estrogen receptor (ER) ligands is presented. Models I and II were developed based on training sets of 232 and 279 rat ER binding affinity measurements, respectively....

  13. D3R Grand Challenge 2015: Evaluation of Protein-Ligand Pose and Affinity Predictions

    PubMed Central

    Gathiaka, Symon; Liu, Shuai; Chiu, Michael; Yang, Huanwang; Stuckey, Jeanne A; Kang, You Na; Delproposto, Jim; Kubish, Ginger; Dunbar, James B.; Carlson, Heather A.; Burley, Stephen K.; Walters, W. Patrick; Amaro, Rommie E.; Feher, Victoria A.; Gilson, Michael K.

    2017-01-01

    The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and February 2016. Two targets served as the framework to test community docking and scoring methods: (i) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), and (ii) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted in two stages, with the first stage testing pose predictions and the capacity to rank compounds by affinity with minimal structural data; and the second stage testing methods for ranking compounds with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge provided small groups of chemically similar HSP90 compounds amenable to alchemical calculations of relative binding free energy. Unlike previous blinded Challenges, we did not provide cognate receptors or receptors prepared with hydrogens and likewise did not require a specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows that tested not only core docking and scoring technologies, but also methods for addressing water-mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of protein structures for use in docking calculations. Nearly 40 participating groups submitted over 350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the organization of the challenge components, summarizes the results across all submitted predictions, and considers broad conclusions that may be drawn from this collaborative community endeavor. PMID:27696240

  14. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions

    NASA Astrophysics Data System (ADS)

    Gathiaka, Symon; Liu, Shuai; Chiu, Michael; Yang, Huanwang; Stuckey, Jeanne A.; Kang, You Na; Delproposto, Jim; Kubish, Ginger; Dunbar, James B.; Carlson, Heather A.; Burley, Stephen K.; Walters, W. Patrick; Amaro, Rommie E.; Feher, Victoria A.; Gilson, Michael K.

    2016-09-01

    The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and February 2016. Two targets served as the framework to test community docking and scoring methods: (1) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), and (2) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted in two stages, with the first stage testing pose predictions and the capacity to rank compounds by affinity with minimal structural data; and the second stage testing methods for ranking compounds with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge provided small groups of chemically similar HSP90 compounds amenable to alchemical calculations of relative binding free energy. Unlike previous blinded Challenges, we did not provide cognate receptors or receptors prepared with hydrogens and likewise did not require a specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows that tested not only core docking and scoring technologies, but also methods for addressing water-mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of protein structures for use in docking calculations. Nearly 40 participating groups submitted over 350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the organization of the challenge components, summarizes the results across all submitted predictions, and considers broad conclusions that may be drawn from this collaborative community endeavor.

  15. First and second generation antipsychotics influence hippocampal gamma oscillations by interactions with 5-HT3 and D3 receptors

    PubMed Central

    Schulz, Steffen B; Heidmann, Karin E; Mike, Arpad; Klaft, Zin-Juan; Heinemann, Uwe; Gerevich, Zoltan

    2012-01-01

    BACKGROUND AND PURPOSE Disturbed cortical gamma band oscillations (30–80 Hz) have been observed in schizophrenia: positive symptoms of the disease correlate with an increase in gamma oscillation power, whereas negative symptoms are associated with a decrease. EXPERIMENTAL APPROACH Here we investigated the effects of first and second generation antipsychotics (FGAs and SGAs, respectively) on gamma oscillations. The FGAs haloperidol, flupenthixol, chlorpromazine, chlorprothixene and the SGAs clozapine, risperidone, ziprasidone, amisulpride were applied on gamma oscillations induced by acetylcholine and physostigmine in the CA3 region of rat hippocampal slices. KEY RESULTS Antipsychotics inhibited the power of gamma oscillations and increased the bandwidth of the gamma band. Haloperidol and clozapine had the highest inhibitory effects. To determine which receptor is responsible for the alterations in gamma oscillations, the effects of the antipsychotics were plotted against their pKi values for 19 receptors and analysed for correlation. Our results indicated that 5-HT3 receptors have an enhancing effect on gamma oscillations whereas dopamine D3 receptors inhibit them. To test this prediction, m-chlorophenylbiguanide, PD 128907 and CP 809101, selective agonists at 5-HT3, D3 and 5-HT2C receptors were applied and revealed that 5-HT3 receptors indeed enhanced the gamma power whereas D3 receptors reduced it. As predicted, 5-HT2C receptors had no effects on gamma oscillations. CONCLUSION AND IMPLICATIONS Our data suggest that antipsychotics alter hippocampal gamma oscillations by interacting with 5-HT3 and dopamine D3 receptors. Moreover, a correlation of receptor affinities with the biological effects can be used to predict targets for the pharmacological effects of multi-target drugs. PMID:22817643

  16. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    PubMed

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  17. Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanko, S.; Fukuda, R.; Hattori, M.

    The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. Themore » LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.« less

  18. Purification and characterization of rat liver nuclear thyroid hormone receptors.

    PubMed Central

    Ichikawa, K; DeGroot, L J

    1987-01-01

    Nuclear thyroid hormone receptor was purified to 904 pmol of L-3,5,3'-triiodothyronine (T3) binding capacity per mg of protein with 2.5-5.2% recovery by sequentially using hydroxylapatite column chromatography, ammonium sulfate precipitation, Sephadex G-150 gel filtration, DNA-cellulose column chromatography, DEAE-Sephadex column chromatography, and heparin-Sepharose column chromatography. Assuming that one T3 molecule binds to the 49,000-Da unit of the receptor, we reproducibly obtained 6.4-14.7 micrograms of receptor protein with 4.2-4.9% purity from 4-5 kg of rat liver. Elution of receptor from the heparin-Sepharose column was performed using 10 mM pyridoxal 5'-phosphate, which was observed to diminish binding of receptor to heparin-Sepharose or DNA-cellulose. This effect was specific for pyridoxal 5'-phosphate, since related compounds were not effective. Purified receptor bound T3 with high affinity (6.0 X 10(9) liter/mol), and the order of affinity of iodothyronine analogues to purified receptor was identical to that observed with crude receptor preparations [3,5,3'-triiodothyroacetic acid greater than L-T3 greater than D-3,5,3'-triiodothyronine (D-T3) greater than L-thyroxine greater than D-thyroxine]. Purified receptor had a sedimentation coefficient of 3.4 S, Stokes radius of 34 A, and calculated molecular mass of 49,000. Among several bands identified by silver staining after electrophoresis in NaDodSO4/polyacrylamide gels, one 49,000-Da protein showed photoaffinity labeling with [125I]thyroxine that was displaceable with excess unlabeled T3. The tryptic fragment and endogenous proteinase-digested fragment of the affinity-labeled receptor showed saturable binding in 27,000-Da and 36,000-Da peptides, respectively. These molecular masses are in agreement with estimates from gel filtration and gradient sedimentation, indicating that affinity labeling occurred at the hormone binding domain of nuclear thyroid hormone receptor. This procedure reproducibly

  19. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor.

    PubMed

    Yeliseev, Alexei; Zoubak, Lioudmila; Schmidt, Thomas G M

    2017-03-01

    Human cannabinoid receptor CB 2 belongs to the class A of G protein-coupled receptor (GPCR). CB 2 is predominantly expressed in membranes of cells of immune origin and is implicated in regulation of metabolic pathways of inflammation, neurodegenerative disorders and pain sensing. High resolution structural studies of CB 2 require milligram quantities of purified, structurally intact protein. While we previously reported on the methodology for expression of the recombinant CB 2 and its stabilization in a functional state, here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB 2 with the resin, the double repeat of the Strep-tag (a sequence of eight amino acids WSHPQFEK), named the Twin-Strep-tag was attached either to the N- or C-terminus of CB 2 via a short linker, and the recombinant protein was expressed in cytoplasmic membranes of E. coli as a fusion with the N-terminal maltose binding protein (MBP). The CB 2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed on the purified protein demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB 2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The binding capacity of the resin was several-fold higher for the tag located at the N-terminus of the protein as opposed to the C-terminus- or middle of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification

  20. Modification of cocaine self-administration by buspirone (buspar®): potential involvement of D3 and D4 dopamine receptors

    PubMed Central

    Bergman, Jack; Roof, Rebecca A.; Furman, Cheryse A.; Conroy, Jennie L.; Mello, Nancy K.; Sibley, David R.; Skolnick, Phil

    2016-01-01

    Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (~98 and ~29 nM respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose–effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction. PMID:22827916

  1. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII.

    PubMed

    Takizawa, F; Adamczewski, M; Kinet, J P

    1992-08-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation.

  2. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  3. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less

  4. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    PubMed

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  5. High-affinity 3H-substance P binding to longitudinal muscle membranes of the guinea pig small intestine.

    PubMed

    Buck, S H; Maurin, Y; Burks, T F; Yamamura, H I

    1984-01-30

    The binding of 3H-substance P (3H-SP) to longitudinal muscle membranes of the guinea pig small intestine has been characterized. The binding of 3H-SP exhibited a high affinity (Kd = 0.5nM). It was saturable (Bmax = 2 fmoles/mg tissue), reversible, and temperature-dependent. Kinetic studies and competition of 3H-SP binding by unlabeled SP yielded Kd and Ki values, respectively, which were in good agreement with the Kd calculated from saturation studies. The binding of 3H-SP appeared to be dependent on the presence of divalent cations in the incubation buffer. It was displaced by SP and various analogs and fragments in the rank order of SP greater than SP-(2-11) = SP-(3-11) greater than Nle11- SP = physalaemin greater than SP-(4-11) greater than SP-(5-11) greater than eledoisin much greater than SP-(7-11). Our results indicate that 3H-SP binds in longitudinal muscle of the guinea pig small intestine to a biologically relevant receptor which in many respects resembles the SP receptor characterized in the brain and the salivary gland of the rat.

  6. Allelic Variation in KIR2DL3 Generates a KIR2DL2-like Receptor with Increased Binding to Its HLA-C Ligand12

    PubMed Central

    Frazier, William R.; Steiner, Noriko; Hou, Lihua; Dakshanamurthy, Sivanesan; Hurley, Carolyn Katovich

    2013-01-01

    Although extensive homology exists between their extracellular domains, natural killer cell inhibitory receptors KIR2DL2*001 and KIR2DL3*001 have previously been shown to differ substantially in their HLA-C binding avidity. To explore the largely uncharacterized impact of allelic diversity, the most common KIR2DL2/3 allelic products in European American and African American populations were evaluated for surface expression and binding affinity to their HLA-C group 1 and 2 ligands. Although no significant differences in the degree of cell membrane localization were detected in a transfected human NKL cell line by flow cytometry, surface plasmon resonance and KIR binding to a panel of HLA allotypes demonstrated that KIR2DL3*005 differed significantly from other KIR2DL3 allelic products in its ability to bind HLA-C. The increased affinity and avidity of KIR2DL3*005 for its ligand was also demonstrated to have a larger impact on the inhibition of IFN-γ production by the human KHYG-1 NK cell line compared to KIR2DL3*001, a low affinity allelic product. Site-directed mutagenesis established that the combination of arginine at residue 11 and glutamic acid at residue 35 in KIR2DL3*005 were critical to the observed phenotype. Although these residues are distal to the KIR/HLA-C interface, molecular modeling suggests that alteration in the interdomain hinge angle of KIR2DL3*005 towards that found in KIR2DL2*001, another strong receptor of the KIR2DL2/3 family, may be the cause of this increased affinity. The regain of inhibitory capacity by KIR2DL3*005 suggests that the rapidly evolving KIR locus may be responding to relatively recent selective pressures placed upon certain human populations. PMID:23686481

  7. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.

    PubMed

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.

  8. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    PubMed Central

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-01-01

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors. PMID:25871974

  9. Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain

    DOE PAGES

    Volkow, N. D.; Wang, G. -J.; Logan, J.; ...

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less

  10. Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N. D.; Wang, G. -J.; Logan, J.

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less

  11. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  12. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    NASA Astrophysics Data System (ADS)

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-04-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.

  13. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region.

    PubMed

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-04-07

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.

  14. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.

    1988-05-15

    Purified rat liver glucocorticoid receptor was covalently charged with (/sup 3/H)glucocorticoid by photoaffinity labeling (UV irradiation of (/sup 3/H)triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with (/sup 3/H)dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with (/sup 3/H)triamcinolone acetonide and Cys-656 after affinity labeling with (/sup 3/H)dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. Themore » patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A.« less

  15. Kinin receptor classification.

    PubMed

    Regoli, D; Jukic, D; Tousignant, C; Rhaleb, N E

    1992-01-01

    Apparent affinities of kinin agonists and antagonists were determined in terms of pD2 and pA2 respectively, on three isolated smooth muscles: rabbit jugular vein (Rb.J.V.), rabbit aorta (Rb.A.) and guinea pig ileum (G.P.I.). Both kinin agonists and antagonists were evaluated for their ability to induce the release of histamine from rat mastocytes. Our results indicate that the kininase I metabolites (desArg9-BK and desArg10-KD) were inactive on Rb.J.V. and G.P.I. (B2 preparations) and were full agonists on Rb.A. (B1) while [Tyr(Me)8]-BK and [Hyp3,Tyr(Me)8]-BK were inactive on Rb.A. and maintain a high affinity on Rb.J.V. and G.P.I. In addition, [Hyp3]-BK was a potent agonist on Rb.J.V. (pD2 = 8.88) and was of a moderate affinity on G.P.I. (pD2 = 7.27). On the other hand, the affinity of [Aib7]-BK was identical to that of BK on G.P.I. (pD2 = 7.90) but drastically reduced in Rb.J.V. (pD2 = 6.28). Conctractile effects of kinins in the Rb.J.V. and G.P.I. were reduced or eliminated by B2 receptor antagonists but at different concentration levels (e.g. DArg[Hyp3,DPhe7,Leu8]-BK showed pA2 values of 8.86 on Rb.J.V., but only 6.77 on G.P.I. DArg[Hyp3,Gly6,Leu8]BK showed high affinity on Rb.J.V. (pA2 = 7.60) but was a full agonist on G.P.I. Conversely, DArg[Tyr3,DPhe7,Leu8,BK] showed high agonistic activity on Rb.J.V. (pD2 = 8.30, alpha E = 1.0) and showed a pA2 value of 6.80 on G.P.I. All compounds (agonists and antagonists) were quite potent on histamine release induced in rat mastocytes. [Arg1(Tos),Hyp3,Thi5,DTic7,Oic8]-BK and DArg[Hyp3,Thi5,DTic7,Oic8]-BK showed almost similar pA2 values on both Rb.J.V. and G.P.I., but were inactive on Rb.A. (B1). These results suggest that kinins act on at least four functional sites: B1 (Rb.A.), B2A (Rb.J.V.), B2B (G.P.I.) and BH. However, there is no clear evidence of a kinin receptor on rat mast cells and the release of histamine may simply be a non-receptor phenomenon. Our data also show that B2A and B2B receptor subtypes might

  16. N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging.

    PubMed

    Gourni, Eleni; Mansi, Rosalba; Jamous, Mazen; Waser, Beatrice; Smerling, Christiane; Burian, Antje; Buchegger, Franz; Reubi, Jean Claude; Maecke, Helmut R

    2014-10-01

    Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated

  17. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor.

    PubMed

    Guerrieri, Elena; Mallareddy, Jayapal Reddy; Tóth, Géza; Schmidhammer, Helmut; Spetea, Mariana

    2015-03-18

    Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.

  18. Interaction of 3,8-diazabicyclo (3.2.1) octanes with mu and delta opioid receptors.

    PubMed

    Cignarella, G; Barlocco, D; Tranquillini, M E; Volterra, A; Brunello, N; Racagni, G

    1988-05-01

    A series of 3,8-diazabicyclo (3.2.1) octanes (DBO) (1) substituted at the nitrogen atoms by acyl and aralkenyl groups, were tested in in vitro binding assays towards mu and delta opioid receptors. The most representative terms (1a, 1d, 1g, 1j,) were also evaluated for the analgesic potency in vivo by the hot plate method. Among the compounds tested the most potent was the p.nitrocinnamyl DBO (1d) which displayed a mu/delta selectivity and an analgesic activity respectively 25 and 17 fold those of morphine. On the contrary, the m.hydroxycinnamyl DBO (1g) was markedly less active as agonist than the parent 1a, thus suggesting that structure 1 interacts with opioid receptors in a different fashion than morphine. Compound 1j isomer of 1a which is provided with high mu affinity, but lower analgesic potency, was found to possess a mixed agonist-antagonist activity.

  19. Synthesis and serotonergic activity of variously substituted (3-amido)phenylpiperazine derivatives and benzothiophene-4-piperazine derivatives: novel antagonists for the vascular 5-HT1B receptor.

    PubMed

    Moloney, Gerard P; Garavelas, Agatha; Martin, Graeme R; Maxwell, Miles; Glen, Robert C

    2004-04-01

    The synthesis and vascular 5-HT(1B) receptor activity of a novel series of substituted 3-amido phenylpiperazine and 4-(4-methyl-1-piperazinyl)-1-benzo[b]thiophene derivatives is described. Modifications to the amido linked sidechains of the 3-amidophenyl-piperazine derivatives and to the 2-sidechain of the 1-benzo[b]thiophene derivatives have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B) receptor of pK(B) > 7.0. From the 3-amidophenyl-piperazine series, N-(4-(4-chlorophenyl)thiazol-2-yl-3-(4-methyl-1-piperazinyl)benzamide (30) and from the benzo[b]thiophene-4-piperazine series N-(2-ethylphenyl)-4-(4-methyl-1- piperazinyl)-1-benzo[b]thiophene-2-carboxamide (38) were identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B) receptor mediated agonist activity in the rabbit femoral artery) and competitive vascular 5-HT(1B) receptor antagonist. The affinity of compounds from these two series of compounds for the vascular 5-HT(1B) receptor is discussed as well as a proposed mode of binding to the receptor pharmacophore.

  20. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist.

    PubMed

    Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin

    2008-12-25

    Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.

  1. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor ligands. Part 2: carboxamide derivatives with different spacer motifs.

    PubMed

    Eibl, Christoph; Munoz, Lenka; Tomassoli, Isabelle; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane (bispidine) based nicotinic acetylcholine receptor (nAChR) ligands have been synthesized and evaluated for nAChRs interaction. Diverse spacer motifs were incorporated between the hydrogen bond acceptor (HBA) part and a variety of substituted (hetero)aryl moieties. Bispidine carboxamides bearing spacer motifs often showed high affinity in the low nanomolar range and selectivity for the α4β2(∗) nAChR. Compounds 15, 25, and 47 with Ki values of about 1 nM displayed the highest affinities for α4β2(∗) nAChR. All evaluated compounds are partial agonists or antagonists at α4β2(∗), with reduced or no effects on α3β4(∗) with the exception of compound 15 (agonist), and reduced or no effect at α7 and muscle subtypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences

    PubMed Central

    McPartland, J M; Glass, M; Pertwee, R G

    2007-01-01

    A meta-analysis, unlike a literature review, synthesizes previous studies into new results. Pooled data from 211 studies measured ligand binding affinities at human (Hs) or rat (Rn) cannabinoid receptors CB1 and CB2. Cochrane methods were modified for this non-clinical analysis. Meta-regression detected data heterogeneity arising from methodological factors: use of sectioned tissues, lack of PMSF and choice of radioligand. Native brain tissues exhibited greater affinity (lower nM) than transfected cells, but the trend fell short of significance, as did the trend between centrifugation and filtration methods. Correcting for heterogeneity, mean Ki values for Δ9-tetrahydrocannabinol differed significantly between HsCB1 and RnCB1 (25.1 and 42.6 nM, respectively) but not between HsCB1 and HsCB2 (25.1 and 35.2). Mean Kd values for HsCB1, RnCB1 and HsCB2 of CP55,940 (2.5, 0.98, 0.92) and WIN55,212-2 (16.7, 2.4, 3.7) differed between HsCB1 and RnCB1 and between HsCB1 and HsCB2. SR141716A differed between HsCB1 and RnCB1 (2.9 and 1.0 nM). Anandamide at HsCB1, RnCB1 and HsCB2 (239.2, 87.7, 439.5) fell short of statistical differences due to heterogeneity. We consider these Kd and Ki values to be the most valid estimates in the literature. Sensitivity analyses did not support the numerical validity of cannabidiol, cannabinol, 2-arachidonoyl glycerol and all ligands at RnCB2. Aggregate rank order analysis of CB1 distribution in the brain (pooled from 119 autoradiographic, immunohistochemical and in situ hybridization studies) showed denser HsCB1 expression in cognitive regions (cerebral cortex) compared to RnCB1, which was relatively richer in movement-associated areas (cerebellum, caudate-putamen). Implications of interspecies differences are discussed. PMID:17641667

  3. Aberrant antibody affinity selection in SHIP-deficient B cells.

    PubMed

    Leung, Wai-Hang; Tarasenko, Tatiana; Biesova, Zuzana; Kole, Hemanta; Walsh, Elizabeth R; Bolland, Silvia

    2013-02-01

    The strength of the Ag receptor signal influences development and negative selection of B cells, and it might also affect B-cell survival and selection in the GC. Here, we have used mice with B-cell-specific deletion of the 5'-inositol phosphatase SHIP as a model to study affinity selection in cells that are hyperresponsive to Ag and cytokine receptor stimulation. In the absence of SHIP, B cells have lower thresholds for Ag- and interferon (IFN)-induced activation, resulting in augmented negative selection in the BM and enhanced B-cell maturation in the periphery. Despite a tendency to spontaneously downregulate surface IgM expression, SHIP deficiency does not alter anergy induction in response to soluble hen-egg lysozyme Ag in the MDA4 transgenic model. SHIP-deficient B cells spontaneously produce isotype-switched antibodies; however, they are poor responders in immunization and infection models. While SHIP-deficient B cells form GCs and undergo mutation, they are not properly selected for high-affinity antibodies. These results illustrate the importance of negative regulation of B-cell responses, as lower thresholds for B-cell activation promote survival of low affinity and deleterious receptors to the detriment of optimal Ab affinity maturation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    PubMed Central

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  5. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Derivatives of 2-(dipropylamino)tetralin: effect of the C8-substituent on the interaction with 5-HT1A receptors.

    PubMed

    Liu, Y; Yu, H; Svensson, B E; Cortizo, L; Lewander, T; Hacksell, U

    1993-12-24

    A series of 2-(dipropylamino)tetralin derivatives in which the C8 substituent is varied has been prepared and evaluated pharmacologically to explore the importance of the C8 substituent in the interaction of 2-aminotetralin-based ligands with serotonin (5-HT1A) receptors. Enantiopure derivatives were prepared by facile palladium-catalyzed reactions of the triflates of the enantiomers of 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT, 1). The affinity of the compounds for the 5-HT1A receptors was evaluated by competition experiments with [3H]-8-OH-DPAT in rat hippocampal and cortical tissue. In addition, the compounds were evaluated for central 5-HT and dopamine receptor stimulating activity in vivo by use of biochemical and behavioral assays in rats. With the exception of the carboxy-substituted derivative which is devoid of 5-HT1A receptor affinity, the compounds have moderate to high affinities (K(i) values range from 0.7 to 130 nM) for 5-HT1A receptors. Surprisingly, several of the derivatives do not produce any apparent effects in vivo although they have fairly high 5-HT1A receptor affinities. However, the methoxycarbonyl- and acetyl-substituted derivatives are potent 5-HT1A receptor agonists in vivo and exhibit in vitro affinities in the same range as the enantiomers of 1.

  7. N- and C-terminal substance P fragments: differential effects on striatal [3H]substance P binding and NK1 receptor internalization.

    PubMed

    Michael-Titus, A T; Blackburn, D; Connolly, Y; Priestley, J V; Whelpton, R

    1999-07-13

    N- and C-terminal substance P (SP) fragments increase striatal dopamine outflow at nanomolar concentrations. This contrasts with their low affinity for NK1 receptors. To explore this discrepancy, we investigated the interaction of SP and SP fragments with NK1 sites in fresh striatal slices, the same model used in the functional studies on dopamine outflow. [3H]SP bound specifically to one site (Kd = 6.6 +/- 0.9 nM; Bmax = 12.6 +/- 0.7 fmol/mg protein). [3H]SP binding was displaced by SP (IC50 = 11.8 nM), but not by SP(1-7) or SP(5-11), up to 10 microM. In contrast, 10 nM SP(1-7) or SP(5-11) induced significant internalization of the NK1 receptor, similar to that induced by SP. We suggest that SP fragments have high affinity for an NK1 receptor conformer which is different from that labelled by [3H]SP.

  8. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    PubMed Central

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine. PMID:28387240

  9. Muscarinic receptor occupation and receptor activation in the guinea-pig ileum by some acetamides related to oxotremorine.

    PubMed Central

    Ringdahl, B.

    1984-01-01

    The dissociation constants (KD values) and relative efficacies of seven acetamide analogues of oxotremorine, including two enantiomeric pairs, at muscarinic receptors in the guinea-pig isolated ileum were determined. The method used involved analysis of dose-response data before and after fractional inactivation of receptors with propylbenzilylcholine mustard. All of the compounds studied had lower affinities than oxotremorine, but some had substantially higher relative efficacies. Replacement of the pyrrolidine ring of N-methyl-N-(4- pyrrolidino -2- butynyl )acetamide(I), the parent compound in the series, by a dimethylamino or a trimethylammonium group decreased the affinity 32 and 4.5 fold, respectively, whereas the relative efficacy increased 5.7-8.3 times. There was no correlation between relative efficacies and affinities of the compounds. The structural requirements for high affinity and high efficacy appeared to be quite different. PMID:6733356

  10. Identification of the low affinity receptor for immunoglobulin E on mouse mast cells and macrophages as Fc gamma RII and Fc gamma RIII

    PubMed Central

    1992-01-01

    In addition to their well characterized high affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) mast cells have long been suspected to express undefined Fc receptors capable of binding IgE with low affinity. In this paper, we show that Fc gamma RII and Fc gamma RIII, but not Mac-2, on mouse mast cells and macrophages bind IgE-immune complexes. This binding is efficiently competed by 2.4G2, a monoclonal antibody against the extracellular homologous region of both Fc gamma RII and Fc gamma RIII. Furthermore, IgE-immune complexes bind specifically to Fc gamma RII or Fc gamma RIII transfected into COS-7 cells. The association constants of IgE binding estimated from competition experiments are about 3.1 x 10(5) M-1 for Fc gamma RII, and 4.8 x 10(5) M-1 for Fc gamma RIII. Engagement of Fc gamma RII and Fc gamma RIII with IgE-immune complexes (after blocking access to Fc epsilon RI) or with IgG-immune complexes triggers C57.1 mouse mast cells to release serotonin. This release is inhibited by 2.4G2, and at maximum, reaches 30-40% of the intracellular content, about half of the maximal release (60-80%) obtained after Fc epsilon RI engagement. These data demonstrate that mouse Fc gamma RII and Fc gamma RIII are not isotype specific, and that the binding of IgE-immune complexes to these receptors induces cell activation. PMID:1386873

  11. Ring size of somatostatin analogues (ODT-8) modulates receptor selectivity and binding affinity

    PubMed Central

    Erchegyi, Judit; Grace, Christy Rani R.; Samant, Manoj; Cescato, Renzo; Piccand, Veronique; Riek, Roland; Reubi, Jean Claude; Rivier, Jean E.

    2009-01-01

    The synthesis, biological testing and NMR studies of several analogues of H-c[Cys3-Phe6-Phe7-dTrp8-Lys9-Thr10-Phe11-Cys14]-OH (ODT-8, a pan-somatostatin analogue) (1), have been performed to assess the effect of changing the stereochemistry and the number of the atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (SRIF numbering) were/was substituted with d-cysteine, Nor-cysteine, d-Nor-cysteine, Homo-cysteine and/or d-Homo-cysteine. The 3D structures of selected partially selective, bioactive analogues (3, 18, 19 and 21) were carried out in DMSO. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst4 in all cases). PMID:18410084

  12. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist.

    PubMed

    Cialdai, Cecilia; Tramontana, Manuela; Patacchini, Riccardo; Lecci, Alessandro; Catalani, Claudio; Catalioto, Rose-Marie; Meini, Stefania; Valenti, Claudio; Altamura, Maria; Giuliani, Sandro; Maggi, Carlo Alberto

    2006-11-07

    The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA2a dose-related and persistent manner colon contractions induced by the selective tachykinin NK2 receptor agonist, [betaAla8]neurokinin A(4-10) (3 nmol/kg i.v.), either after intravenous (ED50 0.18 micromol/kg), intraduodenal (ED50 3.16 micromol/kg) or oral administration (10-30 micromol/kg) without affecting, at 3 micromol/kg, i.v., the colonic contractions produced by the NK1 receptor selective agonist [Sar9]substance P sulfone (3 nmol/kg i.v.). In addition MEN15596 was effective in inhibiting bronchoconstriction produced by i.v. administration of [betaAla8]neurokinin A(4-10). Overall the results indicate that MEN15596 is a potent and selective

  13. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    PubMed

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100< pmol/mouse) than when administered i.t. (ED(50): 1.34-4.51 pmol/mouse). These results suggest the involvement of nociceptin-like agonistic effects of the Ac-RYYRIK pharmacophore in the peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  14. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  15. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.B.; Reid, A.; Mahboubi, A.

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and lowmore » affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.« less

  16. Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach.

    PubMed

    Vijayan, R S K; Ghoshal, Nanda

    2008-10-01

    Given the heterogeneity of GABA(A) receptor, the pharmacological significance of identifying subtype selective modulators is increasingly being recognized. Thus, drugs selective for GABA(A) alpha(3) receptors are expected to display fewer side effects than the drugs presently in clinical use. Hence we carried out 3D QSAR (three-dimensional quantitative structure-activity relationship) studies on a series of novel GABA(A) alpha(3) subtype selective modulators to gain more insight into subtype affinity. To identify the 3D functional attributes required for subtype selectivity, a chemical feature-based pharmacophore, primarily based on selective ligands representing diverse structural classes was generated. The obtained pseudo receptor model of the benzodiazepine binding site revealed a binding mode akin to "Message-Address" concept. Scaffold hopping was carried out across multi-conformational May Bridge database for the identification of novel chemotypes. Further a focused data reduction approach was employed to choose a subset of enriched compounds based on "Drug likeness" and "Similarity-based" methods. These results taken together could provide impetus for rational design and optimization of more selective and high affinity leads with a potential to have decreased adverse effects.

  17. Concepts in receptor optimization: targeting the RGD peptide.

    PubMed

    Chen, Wei; Chang, Chia-en; Gilson, Michael K

    2006-04-12

    Synthetic receptors have a wide range of potential applications, but it has been difficult to design low molecular weight receptors that bind ligands with high, "proteinlike" affinities. This study uses novel computational methods to understand why it is hard to design a high-affinity receptor and to explore the limits of affinity, with the bioactive peptide RGD as a model ligand. The M2 modeling method is found to yield excellent agreement with experiment for a known RGD receptor and then is used to analyze a series of receptors generated in silico with a de novo design algorithm. Forces driving binding are found to be systematically opposed by proportionate repulsions due to desolvation and entropy. In particular, strong correlations are found between Coulombic attractions and the electrostatic desolvation penalty and between the mean energy change on binding and the cost in configurational entropy. These correlations help explain why it is hard to achieve high affinity. The change in surface area upon binding is found to correlate poorly with affinity within this series. Measures of receptor efficiency are formulated that summarize how effectively a receptor uses surface area, total energy, and Coulombic energy to achieve affinity. Analysis of the computed efficiencies suggests that a low molecular weight receptor can achieve proteinlike affinity. It is also found that macrocyclization of a receptor can, unexpectedly, increase the entropy cost of binding because the macrocyclic structure further restricts ligand motion.

  18. Effects of asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors on the irreversible binding of nitrogen mustard analogs of acetylcholine and McN-A-343

    PubMed Central

    Suga, Hinako; Ehlert, Frederick J.

    2013-01-01

    We investigated how asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors alters the irreversible binding of acetylcholine mustard and BR384 (4-[(2-bromoethyl)methyl-amino]-2-butynyl N-(3-chlorophenyl)carbamate), a nitrogen mustard derivative of McN-A-343 ([4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl] trimethylammonium chloride). The D2.50N mutation moderately increased the affinity of the aziridinium ions of acetylcholine mustard and BR384 for M2 – M4 receptors and had little effect on the rate constant for receptor alkylation. The D3.32N mutation greatly reduced the rate constant for receptor alkylation by acetylcholine mustard, but not by BR384, although the affinity of BR384 was reduced. The combination of both mutations (D2.50N/D3.32N) substantially reduced the rate constant for receptor alkylation by BR384 relative to wild type and mutant D2.50N and D3.32N receptors. The change in binding affinity caused by the mutations suggests that the D2.50N mutation alters the interaction of acetylcholine mustard with D3.32 of M1 and M3 receptors, but not that of the M4 receptor. BR384 exhibited the converse relationship. The simplest explanation is that acetylcholine mustard and BR384 alkylate at least two residues on M1 – M4 receptors and that the D2.50N mutation alters the rate of alkylation of D3.32 relative to another residue, perhaps D2.50 itself. PMID:23826889

  19. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  20. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation.

    PubMed

    Henningsson, Markus; Prieto, Claudia; Chiribiri, Amedeo; Vaillant, Ghislain; Razavi, Reza; Botnar, René M

    2014-01-01

    Robust motion correction is necessary to minimize respiratory motion artefacts in coronary MR angiography (CMRA). The state-of-the-art method uses a 1D feet-head translational motion correction approach, and data acquisition is limited to a small window in the respiratory cycle, which prolongs the scan by a factor of 2-3. The purpose of this work was to implement 3D affine motion correction for Cartesian whole-heart CMRA using a 3D navigator (3D-NAV) to allow for data acquisition throughout the whole respiratory cycle. 3D affine transformations for different respiratory states (bins) were estimated by using 3D-NAV image acquisitions which were acquired during the startup profiles of a steady-state free precession sequence. The calculated 3D affine transformations were applied to the corresponding high-resolution Cartesian image acquisition which had been similarly binned, to correct for respiratory motion between bins. Quantitative and qualitative comparisons showed no statistical difference between images acquired with the proposed method and the reference method using a diaphragmatic navigator with a narrow gating window. We demonstrate that 3D-NAV and 3D affine correction can be used to acquire Cartesian whole-heart 3D coronary artery images with 100% scan efficiency with similar image quality as with the state-of-the-art gated and corrected method with approximately 50% scan efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  1. N-substituted 8-aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecanes as σ receptor ligands with potential neuroprotective effects.

    PubMed

    Banister, Samuel D; Manoli, Miral; Barron, Melissa L; Werry, Eryn L; Kassiou, Michael

    2013-10-01

    Several libraries of similarly N-substituted 8-aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecanes (9), N-methyl-8-aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecanes (14), and N-methyl-11-aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecan-8-ones (13) were synthesised and screened against a panel of CNS targets in order to develop structure-affinity relationships for cage-modified trishomocubane σ receptor ligands based on the N-substituted 4-azahexacyclo[5.4.1.0(2,6).0(3,10).0(5,9).0(8,11)]dodecan-3-ol (8) scaffold. In general, compared to the corresponding 4-azahexacyclo[5.4.1.0(2,6).0(3,10).0(5,9).0(8,11)]dodecan-3-ols, compounds of type 9 were potent σ receptor ligands with low levels of subtype selectivity, while the corresponding N-methyl-8-aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecanes showed reduced affinity but greater selectivity for σ2 receptors. The N-methyl-11-aminopentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecan-8-ones demonstrated the poorest σ receptor affinities, suggesting that 4-azahexacyclo[5.4.1.0(2,6).0(3,10).0(5,9).0(8,11)]dodecan-3-ols interact with σ receptors in the bridged hemiaminal form rather than as the non-transannular, aminoketone tautomers. Several compounds of type 8, 9, and 14 were assessed for their ability to inhibit nitric oxide release in vitro, and demonstrated comparable or greater efficacy than 4-phenyl-1-(4-phenylbutyl)piperidine (PPBP), an established neuroprotective σ ligand with NOS inhibitory activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Tetrahydroquinoline Ring as a Versatile Bioisostere of Tetralin for Melatonin Receptor Ligands.

    PubMed

    Rivara, Silvia; Scalvini, Laura; Lodola, Alessio; Mor, Marco; Caignard, Daniel-Henri; Delagrange, Philippe; Collina, Simona; Lucini, Valeria; Scaglione, Francesco; Furiassi, Lucia; Mari, Michele; Lucarini, Simone; Bedini, Annalida; Spadoni, Gilberto

    2018-04-26

    A new family of melatonin receptor ligands, characterized by a tetrahydroquinoline (THQ) scaffold carrying an amide chain in position 3, was devised as conformationally constrained analogs of flexible N-anilinoethylamides previously developed. Molecular superposition models allowed to identify the patterns of substitution conferring high receptor binding affinity and to support the THQ ring as a suitable scaffold for the preparation of melatonin ligands. The biological activity of 3-acylamino-THQs was compared with that of the corresponding tetralin derivatives. The THQ ring proved to be a versatile scaffold for easy feasible MT 1 and MT 2 ligands, which resulted as more polar bioisosteres of their tetralin analogs. Potent partial agonists, with subnanomolar binding affinity for the MT 2 receptor, were obtained, and a new series of THQ derivatives is presented. The putative binding mode of potent THQs and tetralines was discussed on the basis of their conformational equilibria as inferred from molecular dynamics simulations and experimental NMR data.

  3. The identification of high-affinity G protein-coupled receptor ligands from large combinatorial libraries using multicolor quantum dot-labeled cell-based screening

    PubMed Central

    Fu, Junjie; Lee, Timothy; Qi, Xin

    2014-01-01

    G protein-coupled receptors (GPCRs), which are involved in virtually every biological process, constitute the largest family of transmembrane receptors. Many top-selling and newly approved drugs target GPCRs. In this review, we aim to recapitulate efforts and progress in combinatorial library-assisted GPCR ligand discovery, particularly focusing on one-bead-one-compound library synthesis and quantum dot-labeled cell-based assays, which both effectively enhance the rapid identification of GPCR ligands with higher affinity and specificity. PMID:24941874

  4. Improvement of anemia in W/WV mice by recombinant human erythropoietin (rHuEPO) mediated through EPO receptors with lowered affinity.

    PubMed

    Kabaya, K; Akiyama, H; Nishi, N; Misaizu, T; Okada, Y; Kawagishi, M; Amano, K; Kusaka, M; Seki, M; Uzumaki, H

    1995-01-01

    We studied the effects of recombinant human erythropoietin (rHuEPO) on anemic W/WV mice which manifested severe anemia accompanied by mutation of the W gene encoding tyrosine kinase type receptor (c-kit gene) of bone marrow hematopoietic cells. Nine-week-old male W/WV mice or normal littermates (+/+) were used. Since serum EPO concentration in W/WV mice increased in proportion to severity of anemia, EPO production in the kidneys of these animals was found to be regulated normally. Hematocrit in +/+ mice increased and a maximal response was also obtained with 2,000 IU/kg of rHuEPO. On the other hand, hematocrit in W/WV mice increased in a dose-responsive manner by administration with 2,000 and 10,000 IU/kg, showing different responses to rHuEPO in these two types of mice. The responsiveness of W/WV mice to rHuEPO was low in terms of increases in erythroblastic precursor cells (CFU-E), and immature cells in the bone marrow. Scatchard analysis of the specific binding of 125I-rHuEPO against bone marrow cells revealed that the different responsiveness to rHuEPO between W/WV and +/+ mice may be correlated with differences in affinity of EPO receptor of bone marrow cells in these mice. From these results, a high dose of rHuEPO is capable of improving the anemia in W/WV mice that had EPO receptors with lowered affinity, indicating the possible effectiveness of rHuEPO in anemic patients with EPO receptor abnormality.

  5. Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron.

    PubMed Central

    Steward, L. J.; Ge, J.; Bentley, K. R.; Barber, P. C.; Hope, A. G.; Lambert, J. J.; Peters, J. A.; Blackburn, T. P.; Barnes, N. M.

    1995-01-01

    1. The radioligand binding characteristics of the 3H-derivative of the novel 5-HT3 receptor antagonist BRL46470 were investigated and directly compared to the well characterized 5-HT3 receptor radioligand [3H]-granisetron, in tissue homogenates prepared from rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen. 2. In rat cerebral cortex/hippocampus, rat ileum, NG108-15 cell and HEK-5-HT3As cell homogenates, [3H]-BRL46470 bound with high affinity (Kd (nM): 1.57 +/- 0.18, 2.49 +/- 0.30, 1.84 +/- 0.27, 3.46 +/- 0.36, respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 102 +/- 16, 44 +/- 4, 968 +/- 32 and 2055 +/- 105, respectively; mean +/- s.e. mean, n = 3-4) but failed to display specific binding in human putamen homogenates. 3. In the same homogenates of rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen as used for the [3H]-BRL46470 studies, [3H]-granisetron also bound with high affinity (Kd (nM): 1.55 +/- 0.61, 2.31 +/- 0.44, 1.89 +/- 0.36, 2.03 +/- 0.42 and 6.46 +/- 2.58 respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 39 +/- 4, 20 +/- 2, 521 +/- 47, 870 +/- 69 and 18 +/- 2, respectively; mean +/- s.e. mean, n = 3-4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528560

  6. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Functionalized Congeners of P2Y1 Receptor Antagonists:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM

  8. Towards functional selectivity for α6β3γ2 GABAA receptors: a series of novel pyrazoloquinolinones

    PubMed Central

    Treven, Marco; Siebert, David C B; Holzinger, Raphael; Bampali, Konstantina; Fabjan, Jure; Varagic, Zdravko; Wimmer, Laurin; Steudle, Friederike; Scholze, Petra; Schnürch, Michael; Mihovilovic, Marko D

    2017-01-01

    Background and Purpose The GABAA receptors are ligand‐gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β− interfaces, using a systematically varied series of pyrazoloquinolinones. Experimental Approach Recombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA‐elicited currents by the newly synthesized and reference compounds were investigated by the two‐electrode voltage clamp method. Key Results We identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1–5) subtypes. This modulation was independent of affinity for α+/γ− interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β− interfaces. Conclusion and Implications These results constitute a major step towards a potential selective positive modulation of certain α6‐containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms. PMID:29127702

  9. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets

    PubMed Central

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan

    2016-01-01

    ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581

  10. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets.

    PubMed

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2016-07-15

    Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT7 receptor activity. Part III.

    PubMed

    Leopoldo, Marcello; Lacivita, Enza; De Giorgio, Paola; Fracasso, Claudia; Guzzetti, Sara; Caccia, Silvio; Contino, Marialessandra; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto

    2008-09-25

    Starting from the previously reported 5-HT 7 receptor agents 4-7 with N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamide structure, the 1-(2-methylthiophenyl)-, 1-(2-diphenyl)-, 1-(2-isopropylphenyl)-, and 1-(2-methoxyphenyl)piperazine derivatives 8-31 were designed with the primary aim to obtain new compounds endowed with suitable physicochemical properties for rapid and extensive penetration into the brain. The affinities for 5-HT 7, 5-HT 1A, and D 2 receptors of compounds 8-31 were assessed, and several compounds displayed 5-HT 7 receptor affinities in the nanomolar range. Among these, N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (25) showed high 5-HT 7 receptor affinity (Ki = 0.58 nM), high selectivity over 5-HT 1A and D 2 receptors (324- and 245-fold, respectively), and agonist properties (maximal effect = 82%, EC 50 = 0.60 microM). After intraperitoneal injection in mice, 25 rapidly reached the systemic circulation and entered the brain. Its brain concentration-time profile paralleled that in plasma, indicating that 25 rapidly and freely distributes across the blood-brain barrier. Compound 25 underwent N-dealkylation to the corresponding 1-arylpiperazine metabolite.

  12. Analysis of the actions of the novel dopamine receptor-directed compounds (S)-OSU6162 and ACR16 at the D2 dopamine receptor

    PubMed Central

    Kara, Elodie; Lin, Hong; Svensson, Kjell; Johansson, Anette M; Strange, Philip G

    2010-01-01

    BACKGROUND AND PURPOSE The two phenylpiperidines, OSU6162 and ACR16, have been proposed as novel drugs for the treatment of brain disorders, including schizophrenia and Huntington's disease, because of their putative dopamine stabilizing effects. Here we evaluated the activities of these compounds in a range of assays for the D2 dopamine receptor in vitro. EXPERIMENTAL APPROACH The affinities of these compounds for the D2 dopamine receptor were evaluated in competition with [3H]spiperone and [3H]NPA. Agonist activity of these compounds was evaluated in terms of their ability to stimulate [35S]GTPγS binding. KEY RESULTS Both compounds had low affinities for inhibition of [3H]spiperone binding (pKi vs. [3H]spiperone, ACR16: <5, OSU6162: 5.36). Neither compound was able to stimulate [35S]GTPγS binding when assayed in the presence of Na+ ions, but if the Na+ ions were removed, both compounds were low-affinity, partial agonists (Emax relative to dopamine: ACR16: 10.2%, OSU6162:54.3%). Schild analysis of the effects of OSU6162 to inhibit dopamine-stimulated [35S]GTPγS binding indicated Schild slopes of ∼0.9, suggesting little deviation from competitive inhibition. OSU6162 was, however, able to accelerate [3H]NPA dissociation from D2 dopamine receptors, indicating some allosteric effects of this compound. CONCLUSIONS AND IMPLICATIONS The two phenylpiperidines were low-affinity, low-efficacy partial agonists at the D2 dopamine receptor in vitro, possibly exhibiting some allosteric effects. Comparing their in vitro and in vivo effects, the in vitro affinities were a reasonable guide to potencies in vivo. However, the lack of in vitro–in vivo correlation for agonist efficacy needs to be further addressed. PMID:20804495

  13. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  14. (11)C-MK-8278 PET as a tool for pharmacodynamic brain occupancy of histamine 3 receptor inverse agonists.

    PubMed

    Van Laere, Koenraad J; Sanabria-Bohórquez, Sandra M; Mozley, David P; Burns, Donald H; Hamill, Terence G; Van Hecken, Anne; De Lepeleire, Inge; Koole, Michel; Bormans, Guy; de Hoon, Jan; Depré, Marleen; Cerchio, Kristine; Plalcza, John; Han, Lingling; Renger, John; Hargreaves, Richard J; Iannone, Robert

    2014-01-01

    The histamine 3 (H3) receptor is a presynaptic autoreceptor in the central nervous system that regulates the synthesis and release of histamine and modulates the release of other major neurotransmitters. H3 receptor inverse agonists (IAs) may be efficacious in the treatment of various central nervous system disorders, including excessive daytime sleepiness, attention deficit hyperactivity disorder, Alzheimer disease, ethanol addiction, and obesity. Using PET and a novel high-affinity and selective radioligand (11)C-MK-8278, we studied the tracer biodistribution, quantification, and brain H3 receptor occupancy (RO) of MK-0249 and MK-3134, 2 potential IA drugs targeting cerebral H3 receptors, in 6 healthy male subjects (age, 19-40 y). The relationship among H3 IA dose, time on target, and peripheral pharmacokinetics was further investigated in 15 healthy male volunteers (age, 18-40 y) with up to 3 PET scans and 3 subjects per dose level. The mean effective dose for (11)C-MK-8278 was 5.4 ± 1.1 μSv/MBq. Human brain kinetics showed rapid high uptake and fast washout. Binding potential values can be assessed using the pons as a reference region, with a test-retest repeatability of 7%. Drug RO data showed low interindividual variability per dose (mean RO SD, 2.1%), and a targeted 90% RO can be reached for both IAs at clinically feasible doses. (11)C-MK-8278 is a useful novel PET radioligand for determination of human cerebral H3 receptor binding and allows highly reproducible in vivo brain occupancy of H3-targeting drugs, hereby enabling the evaluation of novel compounds in early development to select doses and schedules.

  15. Insights into GABA receptor signalling in TM3 Leydig cells.

    PubMed

    Doepner, Richard F G; Geigerseder, Christof; Frungieri, Monica B; Gonzalez-Calvar, Silvia I; Calandra, Ricardo S; Raemsch, Romi; Fohr, Karl; Kunz, Lars; Mayerhofer, Artur

    2005-01-01

    Gamma-aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A )receptor subunits, but also bind the GABA agonist [(3)H]muscimol with a binding affinity in the range reported for other endocrine cells (K(d) = 2.740 +/- 0.721 nM). However, they exhibit a low B(max) value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl(-) currents, changes in resting membrane potential, intracellular Ca(2+) or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an atypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Basel.

  16. Low molecular weight glycosaminoglycan C3 attenuates AF64A-stimulated, low-affinity nerve growth factor receptor-immunoreactive axonal varicosities in the rat septum.

    PubMed

    Dudas, Bertalan; Rose, Michael; Cornelli, Umberto; Hanin, Israel

    2005-02-01

    Glycosaminoglycans (GAGs) play a pivotal role in the pathogenesis of Alzheimer's disease (AD). Although, as we have shown earlier, a low molecular weight GAG, C3, protects against ethylcholine aziridinium (AF64A)-induced cholinergic damage, and against A(beta)-induced tau-2-immunoreactivity (IR), the mechanism of the neuroprotective effect of GAGs is not yet known. Several clues exist. Previous studies in rats revealed that continuous NGF infusion (icv) after AF64A injection increases septal ChAT and AChE activities. Moreover, C3 increases axonal outgrowth in the rat hippocampus, raising the possibility of a NGF-receptor mediated neuroprotection. Furthermore, it has been reported that NGF expression is increased in the septum following AF64A administration. To study the question regarding the mechanism of neuroprotective action of GAGs, AF64A, a selective cholinotoxin, was administered stereotaxically, bilaterally, into the lateral ventricles of Fischer albino male rats (1 nmol/2 microl/side). In order to establish the effect of C3 on the expression of the NGF receptor-IR elements, C3 was administered orally (25 mg/kg, once a day), by gavage, 7 days before, and 7 days after the AF64A injection. NGF receptor immunohistochemistry revealed that AF64A induced the appearance of NGF-receptor-IR axonal varicosities in the rat medial septum. These varicose fibers were attenuated by 14 days' administration of C3. The possible explanation of our data may be that C3 increases NGF synthesis in the lateral septum. The increased level of NGF could suppress the increased, AF64A-induced NGF receptor expression in the medial septal nucleus. These results further accentuate our earlier observations that C3 may have potential as a therapeutic agent in AD and other neurodegenerative disorders.

  17. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding.

    PubMed

    Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.

  19. High affinity IgM(+) memory B cells are generated through a germinal center-dependent pathway.

    PubMed

    Hara, Yasushi; Tashiro, Yasuyuki; Murakami, Akikazu; Nishimura, Miyuki; Shimizu, Takeyuki; Kubo, Masato; Burrows, Peter D; Azuma, Takachika

    2015-12-01

    During a T cell-dependent immune response, B cells undergo clonal expansion and selection and the induction of isotype switching and somatic hypermutation (SHM). Although somatically mutated IgM(+) memory B cells have been reported, it has not been established whether they are really high affinity B cells. We tracked (4-hydroxy-3-nitrophenyl) acetyl hapten-specific GC B cells from normal immunized mice based on affinity of their B cell receptor (BCR) and performed BCR sequence analysis. SHM was evident by day 7 postimmunization and increased with time, such that high affinity IgM(+) as well as IgG(+) memory B cells continued to be generated up to day 42. In contrast, class-switch recombination (CSR) was almost completed by day 7 and then the ratio of IgG1(+)/IgM(+) GC B cells remained unchanged. Together these findings suggest that IgM(+) B cells undergo SHM in the GC to generate high affinity IgM(+) memory cells and that this process continues even after CSR is accomplished. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Structure of dual receptor binding to botulinum neurotoxin B.

    PubMed

    Berntsson, Ronnie P-A; Peng, Lisheng; Dong, Min; Stenmark, Pål

    2013-01-01

    Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.

  1. Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea-pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes.

    PubMed Central

    Guard, S.; Watson, S. P.; Maggio, J. E.; Too, H. P.; Watling, K. J.

    1990-01-01

    1. The binding properties and pharmacological specificity of the selective NK3 tachykinin receptor agonist [3H))-senktide [( 3H]-succinyl[Asp6,MePhe8] substance P (6-11] have been examined in homogenates of guinea-pig ileum longitudinal muscle-myenteric plexus (LM/MP) and cerebral cortex. 2. Scatchard analysis of saturation binding studies in guinea-pig ileum LM/MP and cerebral cortex membranes indicated that [3H]-senktide bound to a single site with apparent high affinity, KD = 2.21 +/- 0.65 nM; Bmax = 13.49 +/- 0.04 fmol mg-1 protein in ileum and KD = 8.52 +/- 0.45 nM; Bmax = 76.3 +/- 1.6 fmol mg-1 protein in cortex (values are means +/- ranges; n = 2). 3. The pharmacological profile for tachykinins and analogues in displacing [3H]-senktide from ileum membranes was: [MePhe7] neurokinin B greater than neurokinin B (NKB) congruent to senktide greater than eledoisin greater than substance P (SP) greater than neurokinin A(NKA) greater than physalaemin greater than [Sar9,Met(O2)11]SP greater than [Nle10]NKA(4-10) = [Glp6,L-Pro9]-SP(6-11) greater than substance P methyl ester, consistent with [3H]-senktide binding to an NK3 subtype of tachykinin receptor. A similar rank order of affinity was obtained for these peptides in displacing [3H]-senktide from cortex membranes. 4. Several tachykinin receptor agonists were tested for their ability to displace [3H]-senktide from ileal and cortical NK3 binding sites and were found to be either weak displacers (pIC50 less than 5.00) or inactive.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1694464

  2. A Human Blood-Brain Barrier Transcytosis Assay Reveals Antibody Transcytosis Influenced by pH-Dependent Receptor Binding

    PubMed Central

    Sade, Hadassah; Baumgartner, Claudia; Hugenmatter, Adrian; Moessner, Ekkehard; Freskgård, Per-Ola; Niewoehner, Jens

    2014-01-01

    We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation. PMID:24788759

  3. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  4. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  5. Dopamine D(3) receptor antagonists. 1. Synthesis and structure-activity relationships of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans.

    PubMed

    Haadsma-Svensson, S R; Cleek, K A; Dinh, D M; Duncan, J N; Haber, C L; Huff, R M; Lajiness, M E; Nichols, N F; Smith, M W; Svensson, K A; Zaya, M J; Carlsson, A; Lin, C H

    2001-12-20

    5,6-Dimethoxy-2-(N-dipropyl)-aminoindan (3, PNU-99194A) was found to be a selective dopamine D(3) receptor antagonist with potential antipsychotic properties in animal models. To investigate the effects of nitrogen substitution on structure-activity relationships, a series of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans were synthesized and evaluated in vitro for binding affinity and metabolic stability. The results indicate that substitution at the amine nitrogen of the 2-aminoindans is fairly limited to the di-N-propyl group in order to achieve selective D(3) antagonists. Thus, combinations of various alkyl groups were generally inactive at the D(3) receptor. Although substitution with an N-alkylaryl or N-alkylheteroaryl group yields compounds with potent D(3) binding affinity, the D(2) affinity is also enhanced, resulting in a less than 4-fold preference for the D(3) receptor site, and no improvements in metabolic stability were noted. A large-scale synthesis of the D(3) antagonist 3 has been developed that has proven to be reproducible with few purification steps. The improvements include the use of 3,4-dimethoxybenzaldehyde as a low-cost starting material to provide the desired 5,6-dimethoxy-1-indanone 5c in good overall yield (65%) and the formation of a soluble silyl oxime 17 that was reduced efficiently with BH(3).Me(2)S. The resulting amino alcohol was alkylated and then deoxygenated using a Lewis acid and Et(3)SiH to give the desired product 3 in good overall yield of ( approximately 65%) from the indanone 5c.

  6. ( sup 3 H)opipramol labels a novel binding site and sigma receptors in rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.

    1991-02-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. ({sup 3}H)Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). ({sup 3}H)Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-({sup 3}H)3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to anymore » known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects.« less

  7. Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

    PubMed Central

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian

    2012-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844

  8. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand.

    PubMed

    Ferry, D R; Goll, A; Glossmann, H

    1987-04-01

    The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.

  9. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics.

    PubMed

    Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus

    2017-12-01

    Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.

  10. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romm, E.; Marks, M.J.; Collins, A.C.

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  11. D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies

    NASA Astrophysics Data System (ADS)

    Gaieb, Zied; Liu, Shuai; Gathiaka, Symon; Chiu, Michael; Yang, Huanwang; Shao, Chenghua; Feher, Victoria A.; Walters, W. Patrick; Kuhn, Bernd; Rudolph, Markus G.; Burley, Stephen K.; Gilson, Michael K.; Amaro, Rommie E.

    2018-01-01

    The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank (http://www.pdb.org), and in affinity ranking and scoring of bound ligands.

  12. Mutation in Fas Ligand Impairs Maturation of Thymocytes Bearing Moderate Affinity T Cell Receptors

    PubMed Central

    Boursalian, Tamar E.; Fink, Pamela J.

    2003-01-01

    Fas ligand, best known as a death-inducer, is also a costimulatory molecule required for maximal proliferation of mature antigen-specific CD4+ and CD8+ T cells. We now extend the role of Fas ligand by showing that it can also influence thymocyte development. T cell maturation in some, but not all, strains of TCR transgenic mice is severely impaired in thymocytes expressing mutant Fas ligand incapable of interacting with Fas. Mutant Fas ligand inhibits neither negative selection nor death by neglect. Instead, it appears to modulate positive selection of thymocytes expressing both class I– and class II–restricted T cell receptors of moderate affinity for their positively selecting ligands. Fas ligand is therefore an inducer of death, a costimulator of peripheral T cell activation, and an accessory molecule in positive selection. PMID:12860933

  13. Presynaptic imidazoline receptors and non-adrenoceptor[3H]-idazoxan binding sites in human cardiovascular tissues

    PubMed Central

    Molderings, G J; Likungu, J; Jakschik, J; Göthert, M

    1997-01-01

    evoked [3H]-noradrenaline release. In human atrial appendages, non-adrenoceptor [3H]-idazoxan binding sites were identified and characterized. The binding of [3H]-idazoxan was specific, reversible, saturable and of high affinity (KD: 25.5 nM). The specific binding of [3H]-idazoxan (defined by cirazoline 0.1 mM) to membranes of human atrial appendages was concentration-dependently inhibited by several imidazolines and guanidines, but not by rauwolscine and agmatine. In most cases, the competition curves were best fitted to a two-site model. The rank order of affinity for the high affinity site (in a few cases for the only detectable site; cirazoline=idazoxan>BDF 6143>DTG⩾clonidine) is compatible with the pharmacological properties of I2-imidazoline binding sites, but is clearly different from the rank order of potency for inhibiting evoked noradrenaline release from sympathetic nerves in the same tissue. It is concluded that noradrenaline release in the human atrium and, less well established, in the pulmonary artery is inhibited via presynaptic imidazoline receptors. These presynaptic imidazoline receptors appear to be related to those previously characterized in rabbit aorta and pulmonary artery, but differ clearly from I1 and I2 imidazoline binding sites. PMID:9298527

  14. Comparison of kappa opioids in rhesus monkeys: behavioral effects and receptor binding affinities.

    PubMed

    France, C P; Medzihradsky, F; Woods, J H

    1994-01-01

    Bremazocine, [5R-(5,7,8 beta)]-N-methyl-N-[7-(1-pyrrolidinyl)1-oxaspiro [4,5]dec-8-yl]-4-benzofuranacetamide (Cl-977), (+-)-trans-3,4-dichloro-N- methyl-(2-(pyrrolidin-1-yl)-5-methoxy-1,2,3,4-tetrahydronapth++ +-1-yl benzeneacetamide methanesulfonate (DUP 747), ethylketocyclazocine (EKC), nalorphine, (+/-)-trans-N-methyl-N-[2-(1- pyrrolidnyl)-cyclohexyl]benzo[b]thiophene-4-acetamide (PD117302), trans-(+/-)-3,4-dichloro-N-methyl-[2-(1-pyrrolidinyl)- cyclohexyl]benzeneacetamide (U-50,488), (5,7,8 beta)-N-methyl-N[2-(1- pyrrolidinyl), 1-oxaspiro[4,5]dec-8-yl benzeneacetamide (U-69,593) and spiradoline were compared in rhesus monkeys for their discriminative stimulus, analgesic and respiratory effects. Selected compounds also were studied for their binding affinities at mu [[3H](D-Ala2-Me-Phe4,Glyol5)enkephalin], kappa ([3H]U-69,593) and delta [[3H](D-Pen2-D-Pen5) enkephalin], opioid receptors in monkey brain membranes. All compounds substituted completely (> or = 90%) for EKC in monkeys discriminating between EKC and saline, with the exception that DUP 747 produced a maximum of 74% EKC responding. None of the compounds reversed naltrexone responding in morphine-abstinent monkeys; all of the compounds substituted for naltrexone in morphine-treated monkeys discriminating between naltrexone and saline, with the exception that spiradoline produced a maximum of 68% naltrexone responding. Eight compounds produced maximum analgesic effects in a tail withdrawal procedure and quadazocine antagonized these effects; nalorphine did not have analgesic effects, but it antagonized analgesic effects of several other compounds. U-50,488 did not decrease respiratory function, whereas U-69,593 decreased frequency of respiration and volume of respiration to less than 40% of control values; Cl-977, DUP 747, PD117302 and spiradoline had limited effects on respiratory function. Larger doses of each compound increased both respiration and motor activity.

  15. Two classes of receptor specific for sperm-activating peptide III in sand-dollar spermatozoa.

    PubMed

    Yoshino, K; Suzuki, N

    1992-06-15

    We characterized receptors specific for sperm-activating peptide III (SAP-III: DSDSAQNLIQ) in spermatozoa of the sand dollar, Clypeaster japonicus, using both binding and cross-linking techniques. Analyses of the data obtained from the equilibrium binding of a radiolabeled SAP-III analogueto C. japonicus spermatozoa, using Klotz, Scatchard and Hill plots, showed the presence of two classes of receptors specific for SAP-III in the spermatozoa. One of the receptors (high-affinity) had a Kd of 3.4 nM and 3.4 x 10(4) binding sites/spermatozoon. The other receptor (low-affinity) had a Kd of 48 nM, with 6.1 x 10(4) binding sites/spermatozoon. The Kd of the high-affinity receptor was comparable to the median effective concentration of the intracellular-pH-increasing activity of SAP-III and that of the low-affinity receptor was comparable to the median effective concentration of the cellular-cGMP-elevating activity of the peptide. In addition, Scatchard and Hill plots of the data suggested the existence of positive cooperativity between the high-affinity members. Similar results were also obtained from a binding experiment using a sperm-membrane fraction prepared from C. japonicus spermatozoa. The incubation of intact spermatozoa or sperm plasma membranes with the radioiodinated SAP-III analogue and a chemical cross-linking reagent, disuccinimidyl suberate, resulted in the radiolabeling of three proteins with molecular masses of 126, 87 and 64 kDa, estimated by SDS/PAGE under reducing conditions.

  16. Radioligand binding characterization of the bradykinin B(2) receptor in the rabbit and pig ileal smooth muscle.

    PubMed

    Meini, Stefania; Cucchi, Paola; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Giuliani, Sandro; Maggi, Carlo Alberto

    2010-06-10

    Several species-related differences have been reported in kinin B(2) receptor pharmacology. The present study aimed to evaluate the affinity of the bradykinin B(2) receptor antagonist MEN16132 for the rabbit and pig B(2) receptor, and radioligand binding experiments using [(3)H]bradykinin and membranes of rabbit and pig ileum smooth muscle were conducted. The [(3)H]bradykinin binding was characterized by homologous displacement curves indicating K(d) values of 0.65 and 0.33nM in rabbit and pig, respectively. The B(2) receptor specificity of [(3)H]bradykinin binding was shown by the low affinity (>microM) displayed by agonists ([desArg(9)]bradykinin and Lys[desArg(9)]bradykinin) and antagonists [Leu(8),desArg(9)]bradykinin and Lys[Leu(8),desArg(9)]bradykinin) selective for the B(1) receptor. The affinity of MEN16132 and other antagonists was determined by inhibition curves (pK(i) values in the rabbit and pig assay, respectively): MEN16132 (10.4 and 10.3) and peptide compounds such as icatibant (10.1 and 9.9) and MEN11270 (10.3 and 10.1) displayed subnanomolar potency in both assays; the nonpeptide LF16-0687 (8.4 and 8.5) and FR173657 (8.2 and 9.1) exhibited a different affinity pattern, whereas WIN64338 displayed low affinity (5.7 and receptor. An attempt to highlight differences which can undertake ligands selectivity across the species is presented. In conclusion, the present study indicates MEN16132 as the only nonpeptidic compound which displays an even subnanomolar affinity for the rabbit and pig B(2) receptor.

  17. Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcεRI

    PubMed Central

    Sabban, Sari; Ye, Hongtu; Helm, Birgit

    2014-01-01

    The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains 1. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout 2, 3. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml-1 of antigen. This assay was modified from previous assays used to study human and canine allergic responses 4, 5. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease 6, 2, 3. PMID:25406512

  18. 2-Methyltetrahydro-3-benzazepin-1-ols - The missing link in SAR of GluN2B selective NMDA receptor antagonists.

    PubMed

    Dey, Sougata; Schepmann, Dirk; Wünsch, Bernhard

    2018-01-15

    The NMDA receptor containing GluN2B subunits represents a promising target for the development of drugs for the treatment of various neurological disorders including neurodegenerative diseases. In order to study the role of CH 3 and OH moieties trisubstituted tetrahydro-3-benzazepines 4 were designed as missing link between tetra- and disubstituted 3-benzazepines 2 and 5. The synthesis of 4 comprises eight reaction steps starting from alanine. The intramolecular Friedel-Crafts acylation to obtain the ketone 12 and the base-catalyzed elimination of trifluoromethanesulfinate (CF 3 SO 2 - ) followed by NaBH 4 reduction represent the key steps. The GluN2B affinity of the cis-configured 3-benzazepin-1-ol cis-4a with a 4-phenylbutyl side chain (K i  = 252 nM) is considerably lower than the GluN2B affinity of (R,R)-2 (K i  = 17 nM) indicating the importance of the phenolic OH moiety for the interaction with the receptor protein. Introduction of an additional CH 3 moiety in 2-position led to a slight decrease of GluN2B affinity as can be seen by comparing the affinity data of cis-4a and 5. The homologous phenylpentyl derivative cis-4b shows the highest GluN2B affinity (K i  = 56 nM) of this series of compounds. According to docking studies cis-4a adopts the same binding mode as the cocrystallized ligand ifenprodil-keto 1A and 5 at the interface of the GluN2B and GluN1a subunits. The same crucial H-bonds are formed between the C(O)NH 2 moiety of Gln110 within the GluN2B subunit and the protonated amino moiety and the OH moiety of (R,R)-cis-4a. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro.

    PubMed

    Dietz, Birgit M; Mahady, Gail B; Pauli, Guido F; Farnsworth, Norman R

    2005-08-18

    Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor.

  20. Characterization and validation of fluorescent receptor ligands: a case study of the ionotropic serotonin receptor.

    PubMed

    Hovius, Ruud

    2013-01-01

    The application of fluorescent receptor ligands has become widespread, incited by two important reasons. "Seeing is believing"-it is possible to visualize in real time in live cells ligand-receptor interactions, and to locate the receptors with subcellular precision allowing one to follow, e.g., internalization of the ligand-receptor complex. The high sensitivity of photon detection permits observation of on the one hand receptor-ligand interactions on cells with low, native receptor abundance, and on the other of individual fluorophores unveiling the stochastic properties of single ligand-receptor complexes.The major bottlenecks that impede extensive use of fluorescent ligands are due to possible dramatic changes of the pharmacological properties of a ligand upon chemical modification and fluorophore conjugation, aggravated by the observation that different fluorophores can provoke very dissimilar effects. This makes it virtually impossible to predict beforehand which labelling strategy to use to produce a fluorescent ligand with the desired qualities.Here, we focus on the design, synthesis, and evaluation of a high-affinity fluorescent antagonist for the ionotropic serotonin type-3 receptor.

  1. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist.

    PubMed Central

    Beattie, D. T.; Beresford, I. J.; Connor, H. E.; Marshall, F. H.; Hawcock, A. B.; Hagan, R. M.; Bowers, J.; Birch, P. J.; Ward, P.

    1995-01-01

    1. The in vitro and in vivo pharmacology of GR203040 ((2S, 3S)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), a novel, highly potent and selective non-peptide tachykinin NK1 receptor antagonist, was investigated in the present study. 2. GR203040 potently inhibited [3H]-substance P binding to human NK1 receptors expressed in Chinese hamster ovary (CHO) and U373 MG astrocytoma cells, and NK1 receptors in ferret and gerbil cortex (pKi values of 10.3, 10.5, 10.1 and 10.1 respectively). GR203040 had lower affinity at rat NK1 receptors (pKi = 8.6) and little affinity for human NK2 receptors (pKi < 5.0) in CHO cells and NK3 receptors in guinea-pig cortex (pKi < 6.0). With the exception of the histamine H1 receptor (pIC50 = 7.5). GR203040 had little affinity (pIC50 < 6.0) at all non-NK1 receptors and ion channels examined. Furthermore, GR203040 produced only weak inhibition of Na+ currents in SH-SY5Y neuroblastoma and superior cervical ganglion cells (pIC50 values < 4.0). GR203040 produced only weak antagonism of Ca(2+)-evoked contractions of rat isolated portal vein (pKn = 4.1). The enantiomer of GR203040, GR205608 (2R, 3R)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), had 10,000 fold lower affinity at the human NK1 receptor expressed in CHO cells (pKi = 6.3). 3. In gerbil ex vivo binding experiments, GR203040 produced a dose-dependent inhibition of the binding of [3H]-substance P to cerebral cortical membranes (ED50 = 15 micrograms kg-1 s.c. and 0.42 mg kg-1 p.o.). At 10 micrograms kg-1 s.c., the inhibition of [3H]-substance P binding was maintained for > 6 h. In the rat, GR203040 was less potent (ED50 = 15.4 mg kg-1 s.c.) probably reflecting, at least in part, its lower affinity at the rat NK1 receptor. 4. In guinea-pig isolated ileum and dog isolated middle cerebral and basilar arteries, GR203040 produced a rightward displacement of the concentration-effect curves to substance P methyl ester (SPOMe) with suppression of the

  2. Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro

    PubMed Central

    Dietz, Birgit M.; Mahady, Gail B.; Pauli, Guido F.; Farnsworth, Norman R.

    2018-01-01

    Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABAA receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT5a receptor, but only weak binding affinity to the 5-HT2b and the serotonin transporter. Subsequent binding studies focused on the 5-HT5a receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep–wake cycle. The PE extract inhibited [3H]lysergic acid diethylamide (LSD) binding to the human 5-HT5a receptor (86% at 50 μg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC50 curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC50 of 15.7 ng/ml for the high-affinity state and 27.7 μg/ml for the low-affinity state. The addition of GTP (100 AM) resulted in a right-hand shift of the binding curve with an IC50 of 11.4 μg/ml. Valerenic acid, the active constituent of both extracts, had an IC50 of 17.2 AM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT5a receptor. PMID:15921820

  3. Arrestin binds to different phosphorylated regions of the thyrotropin-releasing hormone receptor with distinct functional consequences.

    PubMed

    Jones, Brian W; Hinkle, Patricia M

    2008-07-01

    Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.

  4. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes

    PubMed Central

    Zhan, Xuanzhi; Gimenez, Luis E.; Gurevich, Vsevolod V.; Spiller, Benjamin W.

    2011-01-01

    Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. Here we report the first crystal structure of arrestin-3, solved at 3.0Å. Arrestin-3 is an elongated two-domain molecule with the overall fold and key inter-domain interactions that hold free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and -3 we show that the presence of this loose structure correlates with reduced arrestin selectivity for activated receptor, consistent with a conformational change in this β-sheet upon receptor binding. PMID:21215759

  5. Parainfluenza virus type 3 induced alterations in tachykinin NK1 receptors, substance P levels and respiratory functions in guinea pig airways.

    PubMed

    Kudlacz, E M; Shatzer, S A; Farrell, A M; Baugh, L E

    1994-08-03

    We have investigated the effects of parainfluenza virus type 3 (PI-3) on sensory neuropeptide levels, tachykinin receptors and their functions in guinea pig airways during the course of respiratory viral infection. PI-3 infected guinea pigs were hyperresponsive to methacholine and substance P aerosols as determined by earlier onset of dyspnea in these animals as compared with control on post-inoculation day (PID) 7 but not 19. In addition, plasma protein extravasation produced in response to the tachykinin was increased in infected airways during the first week post inoculation. Infected guinea pig trachea did not respond any differently to methacholine when smooth muscle contraction and [3H]inositol phosphate accumulation were measured although the magnitude of substance P effects using in vitro tests was significantly greater than control on post-inoculation day 7 but not 19. Trachea from PI-3 infected animals were characterized by reductions in substance P-like immunoreactivity, tachykinin NK1 receptor number and agonist affinity during the first post-inoculation week. Substance P levels or tachykinin NK1 receptor numbers or affinity were not altered in trachea of guinea pigs 4 days after treatment with lipopolysaccharide. These data suggest substance P release occurs during critical periods of respiratory viral infection which are temporally correlated with airway hyperresponsiveness. Despite apparent down-regulation of tachykinin NK1 receptors, substance P-mediated functions remained enhanced suggesting some alterations in post-receptor mechanisms.

  6. Neuroprotection Profile of the High Affinity NMDA Receptor Antagonist Conantokin-G

    DTIC Science & Technology

    2002-01-01

    antagonist dextromethorphan reduced infarction a maxi- TABLE 4 Physiological parameters for (0.5 nmol) Con-G and vehicle-treated rats with and without MCAo...experience, only AHN649, an analog of dextromethorphan , has produced comparable reductions in cerebral infarction (Tortella et al. 1999). Although...ischemia) and neurotoxicity (electroencephalographic) studies in rats with AHN649, a 3-amino analog of dextromethorphan and low-affinity N-methyl-D

  7. Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3.

    PubMed Central

    Nabhani, Thomas; Zhu, Xinsheng; Simeoni, Ilenia; Sorrentino, Vincenzo; Valdivia, Héctor H; García, Jesús

    2002-01-01

    Most adult mammalian skeletal muscles contain only one isoform of ryanodine receptor (RyR1), whereas neonatal muscles contain two isoforms (RyR1 and RyR3). Membrane depolarization fails to evoke calcium release in muscle cells lacking RyR1, demonstrating an essential role for this isoform in excitation-contraction coupling. In contrast, the role of RyR3 is unknown. We studied the participation of RyR3 in calcium release in wild type (containing both RyR1 and RyR3 isoforms) and RyR3-/- (containing only RyR1) myotubes in the presence or absence of imperatoxin A (IpTxa), a high-affinity agonist of ryanodine receptors. IpTxa significantly increased the amplitude and the rate of release only in wild-type myotubes. Calcium currents, recorded simultaneously with the transients, were not altered with IpTxa treatment. [(3)H]ryanodine binding to RyR1 or RyR3 was significantly increased in the presence of IpTxa. Additionally, IpTxa modified the gating and conductance level of single RyR1 or RyR3 channels when studied in lipid bilayers. Our data show that IpTxa can interact with both RyRs and that RyR3 is functional in myotubes and it can amplify the calcium release signal initiated by RyR1, perhaps through a calcium-induced mechanism. In addition, our data indicate that when RyR3-/- myotubes are voltage-clamped, the effect of IpTxa is not detected because RyR1s are under the control of the dihydropyridine receptor. PMID:11867448

  8. Design of chimeric peptide ligands to galanin receptors and substance P receptors.

    PubMed

    Langel, U; Land, T; Bartfai, T

    1992-06-01

    Several chimeric peptides were synthesized and found to be high-affinity ligands for both galanin and substance P receptors in membranes from the rat hypothalamus. The peptide galantide, composed of the N-terminal part of galanin and C-terminal part of substance P (SP), galanin-(1-12)-Pro-SP-(5-11) amide, which is the first galanin antagonist to be reported, recognizes two classes of galanin binding sites (KD(1) less than 0.1 nM and KD(2) approximately 6 nM) in the rat hypothalamus, while it appears to bind to a single population of SP receptors (KD approximately 40 nM). The chimeric peptide has higher affinity towards galanin receptors than the endogenous peptide galanin-(1-29) (KD approximately 1 nM) or its N-terminal fragment galanin-(1-13) (KD approximately 1 microM), which constitutes the N-terminus of the chimeric peptide. Galantide has also higher affinity for the SP receptors than the C-terminal SP fragment-(4-11) amide (KD = 0.4 microM), which constitutes its C-terminal portion. Substitution of amino acid residues, which is of importance for recognition of galanin by galanin receptors, such as [Trp2], in the galanin portion of the chimeric peptide or substitution of ([Phe7] or [Met11]-amide) in the SP portion of chimeric peptide both cause significant loss in affinity of the analogs of galantide for both the galanin- and the SP-receptors. These results suggest that the high affinity of the chimeric peptide, galantide, may in part be accounted for by simultaneous recognition/binding to both receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.

    PubMed

    Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M

    2010-07-12

    The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the

  10. Notch and affinity boundaries in Drosophila.

    PubMed

    Herranz, Héctor; Milán, Marco

    2006-02-01

    Cells in multicellular organisms often do not intermingle freely with each other. Differential cell affinities can contribute to organizing cells into different tissues. Drosophila limbs and the vertebrate central nervous system are subdivided into compartments. Cells in adjacent compartments do not mix. Cell interactions mediated by Notch-family receptors have been implicated in the specification of these compartment boundaries. Two recent reports analyze the role of the Notch signaling pathway in the generation of an affinity boundary in the Drosophila wing. The first report analyzes the connection between Notch and the actin cytoskeleton. The second report analyzes the differential requirements of Notch and the transcription factor Suppressor of Hairless in generating the affinity boundary.

  11. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  12. Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import

    PubMed Central

    Azimi, Mohammad; Mofrad, Mohammad R. K.

    2013-01-01

    Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized. PMID:24282617

  13. Volatile anesthetics interfere with muscarinic receptor-g protein interactions in rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, B.L.

    The influence of halothane and enflurane (0.5-8%) on muscarinic receptor binding in rat atrium was studied using (/sup 3/H) methylscopolamine ((/sup 3/H)MS). Anesthetic-gas mixtures were blown over membrane suspensions for 20 min before and during the binding assays. Halothane and enflurane increased the affinity of cardiac muscarinic receptors for (/sup 3/H)MS by slowing the rate of dissociation. These anesthetics did not affect the affinity of the receptor for carbamylcholine, but significantly reduced the sensitivity of agonist binding to regulation by guanine nucleotides. For example, the fraction of receptors displaying high affinity agonist binding was decreased by a GTP analog frommore » 0.64 to 0.43 in the absence, but only to 0.52 in the presence of 2% halothane. The binding of a radiolabeled agonist, (/sup 3/H)oxotremorine-M, was reduced by 50% by halothane, while its sensitivity to guanine nucleotides was reduced by at least 100 fold. The diminution of the guanine nucleotide effect may reflect a stabilization of the receptor-G proteincomplex due to either a direct action on the receptor complex or to an alteration of the physical state of the membrane. It is also possible that the ability of the G protein to bind guanine nucleotides is adversely affected by anesthetic agents.« less

  14. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    PubMed

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  15. Batrachotoxin Changes the Properties of the Muscarinic Receptor in Rat Brain and Heart: Possible Interaction(s) between Muscarinic Receptors and Sodium Channels

    NASA Astrophysics Data System (ADS)

    Cohen-Armon, Malca; Kloog, Yoel; Henis, Yoav I.; Sokolovsky, Mordechai

    1985-05-01

    The effects of Na+-channel activator batrachotoxin (BTX) on the binding properties of muscarinic receptors in homogenates of rat brain and heart were studied. BTX enhanced the affinity for the binding of the agonists carbamoylcholine and acetylcholine to the muscarinic receptors in brainstem and ventricle, but not in the cerebral cortex. Analysis of the data according to a two-site model for agonist binding indicated that the effect of BTX was to increase the affinity of the agonists to the high-affinity site. Guanyl nucleotides, known to induce interconversion of high-affinity agonist binding sites to the low-affinity state, canceled the effect of BTX on carbamoylcholine and acetylcholine binding. BTX had no effect on the binding of the agonist oxotremorine or on the binding of the antagonist [3H]-N-methyl-4-piperidyl benzilate. The local anesthetics dibucaine and tetracaine antagonized the effect of BTX on the binding of muscarinic agonists at concentrations known to inhibit the activation of Na+ channels by BTX. On the basis of these findings, we propose that in specific tissues the muscarinic receptors may interact with the BTX binding site (Na+ channels).

  16. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    PubMed Central

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2011-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  17. Absence of C-type natriuretic peptide receptors in hamster glomeruli.

    PubMed

    Luk, J K; Wong, E F; Wong, N L

    1994-01-01

    The distribution of atrial natriuretic peptide receptor B (ANPR-B) varies between tissues and species. The aim of this study is to determine whether ANPR-B is present in the hamster glomeruli. In vitro C-type natriuretic peptide (CNP)- and atrial natriuretic factor (ANF)-stimulated cGMP accumulation studies were performed in hamster glomeruli. Elevated cGMP accumulations were observed upon ANF addition. No cGMP response was seen with CNP. Competitive receptor-binding experiments were performed with 125I-CNP and 125I-ANF against their respective cold peptides in hamster glomeruli. Although no CNP binding was detected, positive ANF binding was found and two types of ANF receptor were demonstrated. The affinity (Kdl) and maximum binding capacity (Bmaxl) of the high-affinity ANF receptor were 0.014 +/- 0.001 nM and 60.4 +/- 10.2 fmol/mg protein, respectively. Those of the low-affinity receptor (Kd2 and Bmax2) were 45.7 +/- 6.2 nM and 28.3 +/- 6.3 pmol/mg protein, respectively. Similarly, saturation binding experiments also failed to show any CNP receptor binding in hamster glomeruli. This finding suggests that ANPR-B is not present in hamster glomeruli and CNP is not a direct physiological regulator of hamster renal function.

  18. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  19. A novel substance P binding site in rat brain regions modulates TRH receptor binding.

    PubMed

    Sharif, N A

    1990-10-01

    Binding sites for thyrotropin-releasing hormone (TRH) were labelled with [3H](2-Me-His3)TRH ([3H]MeTRH) on membranes from rat brain regions at 0 degrees C for 5 h. Amygdaloid membranes bound [3H]MeTRH with high-affinity (Kd = 3.1 +/- 0.5 nM (n = 4)). Five TRH analogs competed for this binding with the same rank order and with affinities that matched the pharmacological specificity of pituitary TRH receptors. Substance P (SP) and its C-terminal fragments reduced amygdaloid TRH receptor binding in a concentration dependent manner (IC50 for SP = 65 microM). The rank order of potency of SP analogs at inhibiting TRH receptor binding was: SP greater than nonapeptide (3-11) greater than hexapeptide (6-11) greater than heptapeptide (5-11) greater than pentapeptide (7-11). However, other tachykinins were inactive in this system. SP was a potent inhibitor of [3H]MeTRH binding in hippocampus greater than spinal cord greater than retina greater than n. accumbens greater than hypothalamus greater than amygdaloid greater than olfactory bulb greater than or equal to pituitary greater than pons/medulla in parallel assays. In amygdaloid membranes SP (50 microM) reduced the apparent maximum receptor density by 39% (p less than 0.01) without altering the binding affinity, and 100 microM SP induced a biphasic dissociation of [3H]MeTRH with kinetics faster than those induced by both TRH (10 microM) and serotonin (100 microM). In contrast, other neuropeptides such as neurotensin, proctolin, angiotensin II, bombesin and luteinizing hormone releasing hormone did not significantly inhibit [3H]MeTRH binding to amygdaloid membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Synthesis and evaluation of a series of 2-substituted-5-thiopropylpiperazine (piperidine)-1,3,4-oxadiazoles derivatives as atypical antipsychotics.

    PubMed

    Chen, Yin; Xu, Xiangqing; Liu, Xin; Yu, Minquan; Liu, Bi-Feng; Zhang, Guisen

    2012-01-01

    It is important to develop novel antipsychotics that can effectively treat schizophrenia with minor side-effects. The aim of our work is to develop novel antipsychotics that act on dopamine D(2) and D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors with low affinity for the serotonin 5-HT(2C) and H(1) receptors, which can effectively cure positive symptoms, negative symptoms and cognitive impairment without the weight gain side-effect. A series of 2-substituted-5-thiopropylpiperazine (piperidine) -1,3,4-oxadiazoles derivatives have been synthesized and the target compounds were evaluated for binding affinities to D(2), 5-HT(1A) and 5-HT(2A) receptors. Preliminary results indicated that compounds 14, 16 and 22 exhibited high affinities to D(2), 5-HT(1A) and 5-HT(2A) receptors among these compounds. Further binding tests showed that compound 22 had high affinity for D(3) receptor, and low affinity for serotonin 5-HT(2C) and H(1) receptors. In addition, compound 22 inhibited apomorphine-induced climbing behavior and MK-801-induced hyperactivity with no extrapyramidal symptoms liability in mice. Moreover, compound 22 exhibited acceptable pharmacokinetic properties. Compound 22 showed an atypical antipsychotic activity without liability for extrapyramidal symptoms. We anticipate compound 22 to be useful for developing a novel class of drug for the treatment of schizophrenia.

  1. In Silico Molecular Interaction of Bisphenol Analogues with Human Nuclear Receptors Reveals their Stronger Affinity vs. Classical Bisphenol A.

    PubMed

    Sharma, Shikha; Ahmad, Shahzad; Faraz Khan, Mohemmed; Parvez, Suhel; Raisuddin, Sheikh

    2018-06-21

    Bisphenol A (BPA) is known for endocrine disrupting activity. In order to replace BPA a number of bisphenol analogues have been designed. However, their activity profile is poorly described and little information exists about their endocrine disrupting potential and interactions with nuclear receptors. An understanding of such interaction may unravel mechanism of their molecular action and provide valuable inputs for risk assessment. BPA binds and activates peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) which act as transcription factors and regulate genes involved in glucose, lipid, and cholesterol metabolism and adipogenesis. We studied binding efficiency of 18 bisphenol analogues and BPA with human PPARs and RXRs. Using Maestro Schrodinger 9.4, docking scores of bisphenols were compared with the known endogenous and exogenous ligands of hPPARs and hRXRs. BPA showed good binding efficiency. Several analogues also showed higher binding efficiency than BPA. BPPH which has high tendency to be absorbed in tissues showed the strongest binding with hPPARα, hPPARβ, hPPARγ and hRXRα whereas two of the most toxic bisphenols, BPM and BPAF showed strongest binding with hRXRβ and hRXRγ. Some of the bisphenol analogues showed a stronger binding affinity with PPAR and RXR compared to BPA implying that BPA substitutes may not be fully safe and chemico-biological interactions indicate their toxic potential. These results may also serve to plan further studies for determining safety profile of bisphenol analogues and be helpful in risk characterization.

  2. Structural Modifications to Tetrahydropyridine-3-Carboxylate Esters en route to the Discovery of M5-Preferring Muscarinic Receptor Orthosteric Antagonists

    PubMed Central

    Zheng, Guangrong; Smith, Andrew M.; Huang, Xiaoqin; Subramanian, Karunai L.; Siripurapu, Kiran B.; Deaciuc, Agripina; Zhan, Chang-Guo; Dwoskin, Linda P.

    2013-01-01

    The M5 muscarinic acetylcholine receptor is suggested to be a potential pharmacotherapeutic target for the treatment of drug abuse. We describe herein the discovery of a series of M5-preferring orthosteric antagonists based on the scaffold of 1,2,5,6-tetrahydropyridine-3-carboxylic acid. Compound 56, the most selective compound in this series, possesses an 11-fold selectivity for the M5 over M1 receptor, and shows little activity at M2–M4. This compound, although exhibiting modest affinity (Ki = 2.24 μM) for the [3H]N-methylscopolamine binding site on the M5 receptor, is potent (IC50 = 0.45 nM) in inhibiting oxotremorine-evoked [3H]DA release from rat striatal slices. Further, a homology model of human M5 receptor based on the crystal structure of the rat M3 receptor was constructed, and docking studies of compounds 28 and 56 were performed in an attempt to understand the possible binding mode of these novel analogues to the receptor. PMID:23379472

  3. [18F]fallypride characterization of striatal and extrastriatal D2/3 receptors in Parkinson's disease.

    PubMed

    Stark, Adam J; Smith, Christopher T; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Donahue, Manus J; Kessler, Robert M; Deutch, Ariel Y; Zald, David H; Claassen, Daniel O

    2018-01-01

    Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D 2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D 2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D 2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [ 18 F]fallypride, a high affinity D 2/3 receptor ligand, to measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BP ND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D 2/3 receptors, where reduced BP ND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D 2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D 2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.

  4. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric

    2016-09-01

    The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

  5. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  6. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

    NASA Astrophysics Data System (ADS)

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A.; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-06-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6.

  7. Probing ligand recognition of the opioid pan antagonist AT-076 at nociceptin, kappa, mu, and delta opioid receptors through structure-activity relationships.

    PubMed

    Journigan, V Blair; Polgar, Willma E; Tuan, Edward W; Lu, James; Daga, Pankaj R; Zaveri, Nurulain T

    2017-10-16

    Few opioid ligands binding to the three classic opioid receptor subtypes, mu, kappa and delta, have high affinity at the fourth opioid receptor, the nociceptin/orphanin FQ receptor (NOP). We recently reported the discovery of AT-076 (1), (R)-7-hydroxy-N-((S)-1-(4-(3-hydroxyphenyl)piperidin-1-yl)-3-methylbutan-2-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide, a pan antagonist with nanomolar affinity for all four subtypes. Since AT-076 binds with high affinity at all four subtypes, we conducted a structure-activity relationship (SAR) study to probe ligand recognition features important for pan opioid receptor activity, using chemical modifications of key pharmacophoric groups. SAR analysis of the resulting analogs suggests that for the NOP receptor, the entire AT-076 scaffold is crucial for high binding affinity, but the binding mode is likely different from that of NOP antagonists C-24 and SB-612111 bound in the NOP crystal structure. On the other hand, modifications of the 3-hydroxyphenyl pharmacophore, but not the 7-hydroxy Tic pharmacophore, are better tolerated at kappa and mu receptors and yield very high affinity multifunctional (e.g. 12) or highly selective (e.g. 16) kappa ligands. With the availability of the opioid receptor crystal structures, our SAR analysis of the common chemotype of AT-076 suggests rational approaches to modulate binding selectivity, enabling the design of multifunctional or selective opioid ligands from such scaffolds.

  8. A randomized controlled non-inferiority study comparing the antiemetic effect between intravenous granisetron and oral azasetron based on estimated 5-HT3 receptor occupancy.

    PubMed

    Endo, Junki; Iihara, Hirotoshi; Yamada, Maya; Yanase, Koumei; Kamiya, Fumihiko; Ito, Fumitaka; Funaguchi, Norihiko; Ohno, Yasushi; Minatoguchi, Shinya; Itoh, Yoshinori

    2012-09-01

    The acute antiemetic effect was compared between oral azasetron and intravenous granisetron based on the 5-hydroxytryptamine(3) (5-HT(3)) receptor occupancy theory. Receptor occupancy was estimated from reported data on plasma concentrations and affinity constants to 5-HT(3) receptor. A randomized non-inferiority study comparing acute antiemetic effects between oral azasetron and intravenous granisetron was performed in 105 patients receiving the first course of carboplatin-based chemotherapy for lung cancer. Azasetron exhibited the highest 5-HT(3) receptor occupancy among various first-generation 5-HT(3) antagonists. The complete response to oral azasetron was shown to be non-inferior to that of intravenous granisetron, in which the risk difference was 0.0004 (95% confidence interval: -0.0519-0.0527). The lower limit of the confidence intervals did not exceed the negative non-inferiority margin (-0.1). The complete response during the overall period was not different (68% versus 67%). Oral azasetron was found to be non-inferior to intravenous granisetron in the acute antiemetic effect against moderately emetogenic chemotherapy.

  9. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT(1) angiotensin II receptor antagonist: reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies.

    PubMed

    Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John

    2010-09-01

    A new 1,5 disubstituted imidazole AT(1) Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity (V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT(1) receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.

  10. An efficient synthesis of a rationally designed 1,5 disubstituted imidazole AT1 Angiotensin II receptor antagonist: reorientation of imidazole pharmacophore groups in losartan reserves high receptor affinity and confirms docking studies

    NASA Astrophysics Data System (ADS)

    Agelis, George; Roumelioti, Panagiota; Resvani, Amalia; Durdagi, Serdar; Androutsou, Maria-Eleni; Kelaidonis, Konstantinos; Vlahakos, Demetrios; Mavromoustakos, Thomas; Matsoukas, John

    2010-09-01

    A new 1,5 disubstituted imidazole AT1 Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity ( V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT1 receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.

  11. Influences of Histidine-1 and Azaphenylalanine-4 on the Affinity, Anti-inflammatory, and Antiangiogenic Activities of Azapeptide Cluster of Differentiation 36 Receptor Modulators.

    PubMed

    Chignen Possi, Kelvine; Mulumba, Mukandila; Omri, Samy; Garcia-Ramos, Yesica; Tahiri, Houda; Chemtob, Sylvain; Ong, Huy; Lubell, William D

    2017-11-22

    Azapeptide analogues of growth hormone releasing peptide-6 (GHRP-6) exhibit promising affinity, selectivity, and modulator activity on the cluster of differentiation 36 receptor (CD36). For example, [A 1 , azaF 4 ]- and [azaY 4 ]-GHRP-6 (1a and 2b) were previously shown to bind selectively to CD36 and exhibited respectively significant antiangiogenic and slight angiogenic activities in a microvascular sprouting assay using choroid explants. The influences of the 1- and 4-position residues on the affinity, anti-inflammatory, and antiangiogenic activity of these azapeptides have now been studied in detail by the synthesis and analysis of a set of 25 analogues featuring Ala 1 or His 1 and a variety of aromatic side chains at the aza-amino acid residue in the 4-position. Although their binding affinities differed only by a factor of 17, the analogues exhibited significant differences in ability to modulate production of nitric oxide (NO) in macrophages and choroidal neovascularization.

  12. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Affinity Maturation of a Cyclic Peptide Handle for Therapeutic Antibodies Using Deep Mutational Scanning*

    PubMed Central

    van Rosmalen, Martijn; Janssen, Brian M. G.; Hendrikse, Natalie M.; van der Linden, Ardjan J.; Pieters, Pascal A.; Wanders, Dave; de Greef, Tom F. A.; Merkx, Maarten

    2017-01-01

    Meditopes are cyclic peptides that bind in a specific pocket in the antigen-binding fragment of a therapeutic antibody such as cetuximab. Provided their moderate affinity can be enhanced, meditope peptides could be used as specific non-covalent and paratope-independent handles in targeted drug delivery, molecular imaging, and therapeutic drug monitoring. Here we show that the affinity of a recently reported meditope for cetuximab can be substantially enhanced using a combination of yeast display and deep mutational scanning. Deep sequencing was used to construct a fitness landscape of this protein-peptide interaction, and four mutations were identified that together improved the affinity for cetuximab 10-fold to 15 nm. Importantly, the increased affinity translated into enhanced cetuximab-mediated recruitment to EGF receptor-overexpressing cancer cells. Although in silico Rosetta simulations correctly identified positions that were tolerant to mutation, modeling did not accurately predict the affinity-enhancing mutations. The experimental approach reported here should be generally applicable and could be used to develop meditope peptides with low nanomolar affinity for other therapeutic antibodies. PMID:27974464

  14. An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12.

    PubMed

    Ferguson, A D; Breed, J; Diederichs, K; Welte, W; Coulton, J W

    1998-07-01

    FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).

  15. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  16. The importance of the presence of a 5'-ribonucleotide and the contribution of the T1R1 + T1R3 heterodimer and an additional low-affinity receptor in the taste detection of L-glutamate as assessed psychophysically.

    PubMed

    Smith, Kimberly R; Spector, Alan C

    2014-09-24

    The molecular receptors underlying the purported "umami" taste quality commonly associated with l-glutamate have been controversial. Evidence supports the involvement of the T1R1 + T1R3 heterodimer, a GPCR broadly tuned to l-amino acids, but variants of two mGluRs expressed in taste buds have also been implicated. Using a rigorous psychophysical taste-testing paradigm, we demonstrated impaired, if not eliminated, detection of MSG in WT and T1R1, T1R2, T1R3, and T1R2 + T1R3 KO mice when the contribution of sodium was minimized by the epithelial sodium channel blocker amiloride. When inosine 5'-monophosphate (IMP), a ribonucleotide that potentiates the l-glutamate signal through the T1R1 + T1R3 heterodimer, was added, the WT and T1R2 KO mice were able to detect the compound stimulus across all MSG (+amiloride) concentrations due, in part, to the taste of IMP. In contrast, mice lacking T1R1 or T1R3 could not detect IMP alone, yet some were able to detect MSG + amiloride + IMP, but only at the higher MSG concentrations. Interestingly, the sensitivity of T1R1 KO mice to another l-amino acid, lysine, was unimpaired, suggesting that some l-amino acids can be detected through T1R1 + T1R3-independent receptors without sensitivity loss. Given that IMP is not thought to affect mGluRs, behavioral detection of l-glutamate appears to require the contribution of the T1R1 + T1R3 receptor. However, the partial competence observed in some T1R1 and T1R3 KO mice when MSG + amiloride + IMP was tested suggests that a T1R1 or T1R3 homodimer or an unidentified protein, perhaps in conjunction with T1R1 or T1R3, can serve as a low-affinity taste receptor for l-glutamate in the presence of IMP. Copyright © 2014 the authors 0270-6474/14/3413234-12$15.00/0.

  17. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents.

    PubMed

    Hildebrand, P; Mrozinski, J E; Mantey, S A; Patto, R J; Jensen, R T

    1993-05-01

    Endothelin-1 (ET-1) and ET-3 mRNA have been found in the pancreas. We investigated the ability of ET-1, ET-2, and ET-3 to interact with and alter dispersed rat pancreatic acinar cell function. Radiolabeled ETs bound in a time- and temperature-dependent fashion, which was specific and saturable. Analysis demonstrated two classes of receptors, one class (ETA receptor) had a high affinity for ET-1 but a low affinity for ET-3, and the other class (ETB receptor) had equally high affinities for ET-1 and ET-3. No specific receptor for ET-2 was identified. Pancreatic secretagogues that activate phospholipase C (PLC) inhibited binding of 125I-labeled ET-1 (125I-ET-1) or 125I-ET-3, whereas agents that act through adenosine 3',5'-cyclic monophosphate (cAMP) did not. A23187 had no effect on 125I-ET-1 or 125I-ET-3 binding, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate reduced binding. The effect of cholecystokinin octapeptide (CCK-8) was mediated through its own receptor. Stripping of surface bound ligand studies demonstrated that both 125I-labeled ET-1 and 125I-labeled ET-3 were rapidly internalized. CCK-8 decreased the internalization but did not change the amount of surface bound ligand. Endothelins neither stimulate nor alter changes in enzyme secretion, intracellular calcium, cAMP, or [3H]inositol trisphosphate (IP3). This study demonstrates the presence of ETA and ETB receptors on rat pancreatic acini; occupation of both receptors resulted in rapid internalization, which is regulated by PLC-activating secretagogues. Occupation of either ET receptor did not alter intracellular calcium, cAMP, IP3, or stimulate amylase release.

  18. Sarizotan, a serotonin 5-HT1A receptor agonist and dopamine receptor ligand. 1. Neurochemical profile.

    PubMed

    Bartoszyk, G D; Van Amsterdam, C; Greiner, H E; Rautenberg, W; Russ, H; Seyfried, C A

    2004-02-01

    Sarizotan exhibited high affinities only to serotonin 5-HT1A receptors and dopamine DA D4>D3>D2 receptors with the profile of a 5-HT1A agonist and DA antagonist demonstrated by the inhibition of cAMP-stimulation and guinea pig ileum contraction, decreased accumulation of the 5-HT precursor 5-hydroxytryptophan and increased levels of 5-HT metabolites, increased accumulation of DA precursor dihydroxyphenylalanine (DOPA) and the reduced levels of DA metabolites in intact rats. However, sarizotan at higher doses decreased DA precursor accumulation in reserpinized rats and induced contralateral rotational behavior in unilaterally substantia nigra lesioned rats, indicating some intrinsic dopaminergic activity; at D2 receptors sarizotan may act as a partial agonist, depending on the dopaminergic impulse flow. Sarizotan represents a new approach for the treatment of extrapyramidal motor complications such as l-DOPA-induced dyskinesia in Parkinson's disease.

  19. Discovery of Lacosamide Affinity Bait Agents That Exhibit Potent Voltage-Gated Sodium Channel Blocking Properties

    PubMed Central

    2012-01-01

    Lacosamide ((R)-1) is a recently marketed, first-in-class, antiepileptic drug. Patch-clamp electrophysiology studies are consistent with the notion that (R)-1 modulates voltage-gated Na+ channel function by increasing and stabilizing the slow inactivation state without affecting fast inactivation. The molecular pathway(s) that regulate slow inactivation are poorly understood. Affinity baits are chemical reactive units, which when appended to a ligand (drug) can lead to irreversible, covalent modification of the receptor thus permitting drug binding site identification including, possibly, the site of ligand function. We describe, herein, the synthesis of four (R)-1 affinity baits, (R)-N-(4″-isothiocyanatobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-8), (S)-N-(4″-isothiocyanatobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((S)-8), (R)-N-(3″-isothiocyanatobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-9), and (R)-N-(3″-acrylamidobiphenyl-4′-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-10). The affinity bait compounds were designed to interact with the receptor(s) responsible for (R)-1-mediated slow inactivation. We show that (R)-8 and (R)-9 are potent inhibitors of Na+ channel function and function by a pathway similar to that observed for (R)-1. We further demonstrate that (R)-8 function is stereospecific. The calculated IC50 values determined for Na+ channel slow inactivation for (R)-1, (R)-8, and (R)-9 were 85.1, 0.1, and 0.2 μM, respectively. Incubating (R)-9 with the neuronal-like CAD cells led to appreciable levels of Na+ channel slow inactivation after cellular wash, and the level of slow inactivation only modestly decreased with further incubation and washing. Collectively, these findings have identified a promising structural template to investigate the voltage-gated Na+ channel slow inactivation process. PMID:23509982

  20. Label-free Fab and Fc affinity/avidity profiling of the antibody complex half-life for polyclonal and monoclonal efficacy screening.

    PubMed

    Read, Thomas; Olkhov, Rouslan V; Williamson, E Diane; Shaw, Andrew M

    2015-09-01

    A unified approach to affinity screening for Fab and Fc interactions of an antibody for its antigen and FcγR receptor has been developed. An antigen array is used for the Fab affinity and cross-reactivity screening and protein A/G proxy is the FcγR receptor. The affinities are derived using a simple 1:1 binding model with a consistent error analysis. The association and dissociation kinetics are measured over optimised times for accurate determination. The Fab/Fc affinities are derived for ten antibodies: mAb-actin (mouse), pAb-BSA (sheep), pAb-collagen V (rabbit), pAb-CRP (goat), mAb-F1 (mouse), mAbs (mouse) 7.3, 12.3, 29.3, 36.3 and 46.3 raised against LcrV in Yersinia pestis. The rate of the dissociation of antigen-antibody complexes relates directly to their immunological function as does the Fc-FcγR complex and a new half-life plot has been defined with a Fab/Fc half-life range of 17-470 min. The upper half-life value points to surface avidity. Two antibodies that are protective as an immunotherapy define a Fab half-life >250 min and an Fc half-life >50 min as characteristics of ideal interactions which can form the basis of an antibody screen for immunotherapy.

  1. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate.

    PubMed

    Khansari, Maryam Emami; Johnson, Corey R; Basaran, Ismet; Nafis, Aemal; Wang, Jing; Leszczynski, Jerzy; Hossain, Md Alamgir

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea ( L1 ) and tris([(4-cyanophenyl)amino]propyl)thiourea ( L2 ), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1 H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F - > H 2 PO 4 - > HCO 3 - > HSO 4 - > CH 3 COO - > SO 4 2- > Cl - > Br - > I in DMSO- d 6 . The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F - , H 2 PO 4 - , HCO 3 - , HSO 4 - or CH 3 COO - due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO 4 - than SO 4 2- is attributed to the proton transfer from HSO 4 - to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO- d 6 . In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2 ).

  2. Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430

    PubMed Central

    Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob

    2009-01-01

    Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569

  3. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    PubMed

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  4. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niles, L.P.; Hashemi, F.

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less

  6. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  7. Evaluation of affinity and pseudo-affinity adsorption processes for penicillin acylase purification.

    PubMed

    Fonseca, L P; Cabral, J M

    1996-01-01

    Affinity ligand (6-Aminopenicillanic acid, Amoxycillin, Ampicillin, Benzylpenicillin and 4-Phenylbutylanzine) of penicillin acylase (EC 3.5.1.11) were attached to hydrophilic gels like Sepharose 4B-CNBr and Minileak 'medium'. Ampicillin and 4-Phenylbutylamine were the affinity ligands that presented the higher concentrations attached to both gels. Penicillin acylase adsorption on these affinity gels was mainly dependent on the activated group of the gel, the affinity ligand attached and the experimental conditions of enzyme adsorption. Under affinity conditions only the ligands Amoxycillin, Ampicillin and 4-Phenylbutylamine, immobilized on Minileak, adsorbed the enzyme from osmotic shock extracts at different pH values. These affinity ligand systems were characterized by low adsorption capacities of penicillin acylase activity (1.2-2.1 IU mL-1 gel) and specific activity (1.5-2.9 IU mg-1 prot). Under pseudo-affinity conditions all the ligands attached both activated to gels (Sepharose 4B-CNBr and Minileak) adsorbed the enzyme. The affinity gels were characterized by higher values of adsorption capacity (3.7 and 55.6 IU mL-1 gel) and adsorbed specific activity (2.0 and 6.1 IU mg-1 prot) than those observed under affinity conditions. The space arm of Minileak gel, shown to be fundamental to enzyme adsorption under affinity conditions, preferentially adsorbed proteins in relation to the enzyme under pseudo-affinity conditions. However, this effect was partially minimized when the gel was derivatized by the affinity ligands at concentrations higher than 6 mumol mL-1 gel. Ampicillin was the affinity ligand that presented the best results for specific adsorption of penicillin acylase under affinity and pseudo-affinity adsorption processes. The Sepharose 4B-CNBr derivatized gel also presented a good adsorption capacity of enzyme activity (26.8 IU mL-1 gel) under pseudo-affinity adsorption processes.

  8. A New Family of Nuclear Receptor Coregulators That Integrate Nuclear Receptor Signaling through CREB-Binding Protein

    PubMed Central

    Mahajan, Muktar A.; Samuels, Herbert H.

    2000-01-01

    We describe the cloning and characterization of a new family of nuclear receptor coregulators (NRCs) which modulate the function of nuclear hormone receptors in a ligand-dependent manner. NRCs are expressed as alternatively spliced isoforms which may exhibit different intrinsic activities and receptor specificities. The NRCs are organized into several modular structures and contain a single functional LXXLL motif which associates with members of the steroid hormone and thyroid hormone/retinoid receptor subfamilies with high affinity. Human NRC (hNRC) harbors a potent N-terminal activation domain (AD1), which is as active as the herpesvirus VP16 activation domain, and a second activation domain (AD2) which overlaps with the receptor-interacting LXXLL region. The C-terminal region of hNRC appears to function as an inhibitory domain which influences the overall transcriptional activity of the protein. Our results suggest that NRC binds to liganded receptors as a dimer and this association leads to a structural change in NRC resulting in activation. hNRC binds CREB-binding protein (CBP) with high affinity in vivo, suggesting that hNRC may be an important functional component of a CBP complex involved in mediating the transcriptional effects of nuclear hormone receptors. PMID:10866662

  9. Synthesis of heteroaromatic tropeines and heterogeneous binding to glycine receptors.

    PubMed

    Maksay, Gábor; Vincze, Zoltán; Nemes, Péter

    2009-10-01

    Heteroaromatic carboxylic esters of (nor)tropine were synthesized. Tropine esters displaced [(3)H]strychnine binding to glycine receptors of rat spinal cord with low Hill slopes. Two-site displacement resulted in nanomolar IC(50,1) and micromolar IC(50,2) values, and IC(50,2)/IC(50,1) ratios up to 615 depending on the heteroaromatic rings and N-methyl substitution. Nortropeines displayed high affinity and low heterogeneity. IC(50,1) and IC(50,2) values of tropeines did not correlate suggesting different binding modes/sites. Glycine potentiated only the nanomolar displacement reflecting positive allosteric interactions and potentiation of ionophore function. Affinities of three (nor)tropeines were different for glycine receptors but identical for 5-HT(3) receptors.

  10. Effects of N-Substitutions on the Tetrahydroquinoline (THQ) Core of Mixed-Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Ligands.

    PubMed

    Harland, Aubrie A; Bender, Aaron M; Griggs, Nicholas W; Gao, Chao; Anand, Jessica P; Pogozheva, Irina D; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I

    2016-05-26

    N-Acetylation of the tetrahydroquinoline (THQ) core of a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands increases DOR affinity, resulting in ligands with balanced MOR and DOR affinities. We report a series of N-substituted THQ analogues that incorporate various carbonyl-containing moieties to maintain DOR affinity and define the steric and electronic requirements of the binding pocket across the opioid receptors. 4h produced in vivo antinociception (ip) for 1 h at 10 mg/kg.

  11. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    PubMed Central

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  12. In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor.

    PubMed

    Shoblock, James R; Welty, Natalie; Nepomuceno, Diane; Lord, Brian; Aluisio, Leah; Fraser, Ian; Motley, S Timothy; Sutton, Steve W; Morton, Kirsten; Galici, Ruggero; Atack, John R; Dvorak, Lisa; Swanson, Devin M; Carruthers, Nicholas I; Dvorak, Curt; Lovenberg, Timothy W; Bonaventure, Pascal

    2010-02-01

    The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor. Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist. The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y(2) bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release. JNJ-31020028 bound with high affinity (pIC(50) = 8.07 +/- 0.05, human, and pIC(50) = 8.22 +/- 0.06, rat) and was >100-fold selective versus human Y(1), Y(4), and Y(5) receptors. JNJ-31020028 was demonstrated to be an antagonist (pK(B) = 8.04 +/- 0.13) in functional assays. JNJ-31020028 occupied Y(2) receptor binding sites (approximately 90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake. These results suggest that Y(2) receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions.

  13. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia

    PubMed Central

    Charache, Samuel; Grisolia, Santiago; Fiedler, Adam J.; Hellegers, Andre E.

    1970-01-01

    Blood of patients with sickle cell anemia (SS) exhibits decreased affinity for oxygen, although the oxygen affinity of hemoglobin S is the same as that of hemoglobin A. SS red cells contain more 2,3-diphosphoglycerate (DPG) than normal erythrocytes. The oxygen affinity of hemolyzed red cells is decreased by added DPG, and hemolysates prepared from SS red cells do not differ from normal hemolysates in this regard. Reduction of oxygen affinity to the levels found in intact SS red cells required DPG concentrations in excess of those found in most SS patients. The same was true of oxygen affinity of patients with pyruvate kinase deficiency. Other organic phosphates, as well as inorganic ions, are known to alter the oxygen affinity of dilute solutions of hemoglobin. These substances, the state of aggregation of hemoglobin molecules, and cytoarchitectural factors probably play roles in determining oxygen affinity of both normal and SS red cells. PMID:5443181

  14. Identification of stepped changes of binding affinity during interactions between the disintegrin rhodostomin and integrin αIIbβ3 in living cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Hsieh, Chia-Fen; Chang, Bo-Jui; Pai, Chyi-Huey; Chen, Hsuan-Yi; Chi, Sien; Hsu, Long; Tsai, Jin-Wu; Lin, Chi-Hung

    2004-10-01

    Integrin receptors serve as both mechanical links and signal transduction mediators between the cell and its environment. Experimental evidence demonstrates that conformational changes and lateral clustering of the integrin proteins may affect their binding to ligands and regulate downstream cellular responses; however, experimental links between the structural and functional correlations of the ligand-receptor interactions are not yet elucidated. In the present report, we utilized optical tweezers to measure the dynamic binding between the snake venom rhodostomin, coated on a microparticle and functioned as a ligand, and the membrane receptor integrin alpha(IIb)beta(3) expressed on a Chinese Hamster Ovary (CHO) cell. A progressive increase of total binding affinity was found between the bead and CHO cell in the first 300 sec following optical tweezers-guided contact. Further analysis of the cumulative data revealed the presence of "unit binding force" presumably exerted by a single rhodostomin-integrin pair. Interestingly, two such units were found. Among the measurements of less total binding forces, presumably taken at the early stage of ligand-receptor interactions, a unit of 4.15 pN per molecule pair was derived. This unit force dropped to 2.54 pN per molecule pair toward the later stage of interactions when the total binding forces were relatively large. This stepped change of single molecule pair binding affinity was not found when mutant rhodostomin proteins were used as ligands (a single unit of 1.81 pN per pair was found). These results were interpreted along with the current knowledge about the conformational changes of integrins during the "molecule activation" process.

  15. Superpotent [Dmt¹] dermorphin tetrapeptides containing the 4-aminotetrahydro-2-benzazepin-3-one scaffold with mixed μ/δ opioid receptor agonistic properties.

    PubMed

    Vandormael, Bart; Fourla, Danai-Dionysia; Gramowski-Voss, Alexandra; Kosson, Piotr; Weiss, Dieter G; Schröder, Olaf H-U; Lipkowski, Andrzej; Georgoussi, Zafiroula; Tourwé, Dirk

    2011-11-24

    Novel dermorphin tetrapeptides are described in which Tyr(1) is replaced by Dmt(1), where d-Ala(2) and Gly(4) are N-methylated, and where Phe(3)-Gly(4) residue is substituted by the constrained Aba(3)-Gly(4) peptidomimetic. Most of these peptidic ligands displayed binding affinities in the nanomolar range for both μ- and δ-opioid receptors but no detectable affinity for the κ-opioid receptor. Measurements of cAMP accumulation, phosphorylation of extracellular signal-regulated kinase (ERK1/2) in HEK293 cells stably expressing each of these receptors individually, and functional screening in primary neuronal cultures confirmed the potent agonistic properties of these peptides. The most potent ligand H-Dmt-NMe-d-Ala-Aba-Gly-NH(2) (BVD03) displayed mixed μ/δ opioid agonist properties with picomolar functional potencies. Functional electrophysiological in vitro assays using primary cortical and spinal cord networks showed that this analogue possessed electrophysiological similarity toward gabapentin and sufentanil, which makes it an interesting candidate for further study as an analgesic for neuropathic pain.

  16. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head.

    PubMed

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E; Kozyraki, Renata

    2013-06-07

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.

  17. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. In vitro and in vivo evaluation of N-{2-[4-(3-Cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenz-amide, a positron emission tomography (PET) radioligand for dopamine D4 receptors, in rodents.

    PubMed

    Leopoldo, Marcello; Selivanova, Svetlana V; Müller, Adrienne; Lacivita, Enza; Schetz, John A; Ametamey, Simon M

    2014-09-01

    The D4 dopamine receptor belongs to the D2 -like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high-affinity D4 receptor-selective ligand N-{2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenzamide ([(11) C]2) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Anion binding in the C3v-symmetric cavity of a protonated tripodal amine receptor: potentiometric and single crystal X-ray studies.

    PubMed

    Bose, Purnandhu; Ravikumar, I; Ghosh, Pradyut

    2011-11-07

    Tris(2-aminoethyl)amine (tren) based pentafluorophenyl-substituted tripodal L, tris[[(2,3,4,5,6-pentafluorobenzyl)amino]ethyl]amine receptor is synthesized in good yield and characterized by single crystal X-ray diffraction analysis. Detailed structural aspects of binding of different anionic guests toward L in its triprotonated form are examined thoroughly. Crystallographic results show binding of fluoride in the C(3v)-symmetric cavity of [H(3)L](3+) where spherical anion fluoride is in tricoordinated geometry via (N-H)(+)···F interaction in the complex [H(3)L(F)]·[F](2)·2H(2)O, (3). In the case of complexes [H(3)L(OTs)]·[OTs](2), (4) and [H(3)L(OTs)]·[NO(3)]·[OTs], (5), tetrahedral p-toluenesulphonate ion is engulfed in the cavity of [H(3)L](3+) via (N-H)(+)···O interactions. Interestingly, complex [(H(3)L)(2)(SiF(6))]·[BF(4)](4)·CH(3)OH·H(2)O, (6) shows encapsulation of octahedral hexafluorosilicate in the dimeric capsular assembly of two [H(3)L](3+) units, via a number of (N-H)(+)···F interactions. The kinetic parameters of L upon binding with different anions are evaluated using a potentiometric study in solution state. The potentiometric titration experiments in a polar protic methanol/water (1:1 v/v) binary solvent system show high affinity of the receptor toward more basic fluoride and acetate anions, with a lesser affinity for other inorganic anions (e.g., chloride, bromide, nitrate, sulfate, dihydrogenphosphate, and p-toluenesulphonate). © 2011 American Chemical Society

  20. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine.

    PubMed

    Köhrle, J; Rasmussen, U B; Rokos, H; Leonard, J L; Hesch, R D

    1990-04-15

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27

  1. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    PubMed

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the

  2. Detachment of affinity-captured bioparticles by elastic deformation of a macroporous hydrogel

    PubMed Central

    Dainiak, Maria B.; Kumar, Ashok; Galaev, Igor Yu.; Mattiasson, Bo

    2006-01-01

    Adsorption of bioparticles to affinity surfaces involves polyvalent interactions, complicating greatly the recovery of the adsorbed material. A unique system for the efficient binding and release of different cells and particles is described. Affinity-bound bioparticles and synthetic particles are detached from the macroporous hydrogel matrix, a so-called cryogel, when the cryogel undergoes elastic deformation. The particle detachment upon elastic deformation is believed to be due to breaking of many of the multipoint attachments between the particles and the affinity matrix and the change in the distance between affinity ligands when the matrix is deformed. However, no release of affinity-bound protein occurred upon elastic deformation. The phenomenon of particle detachment upon elastic deformation is believed to be of a generic nature, because it was demonstrated for a variety of bioparticles of different sizes and for synthetic particles, for different ligand–receptor pairs (IgG–protein A, sugar–ConA, metal ion–chelating ligand), and when the deformation was caused by either external forces (mechanical deformation) or internal forces (the shrinkage of thermosensitive, macroporous hydrogel upon an increase in temperature). The elasticity of cryogel monoliths ensures high recovery of captured cells under mild conditions, with highly retained viability. This property, along with their continuous porous structure makes cryogel monoliths very attractive for applications in affinity cell separation. PMID:16418282

  3. Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β.

    PubMed

    Jung, Hye-Won; Park, Inae; Ghil, Sungho

    2014-09-01

    Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.

  4. The Importance of the Presence of a 5′-Ribonucleotide and the Contribution of the T1R1 + T1R3 Heterodimer and an Additional Low-Affinity Receptor in the Taste Detection of l-Glutamate as Assessed Psychophysically

    PubMed Central

    Smith, Kimberly R.

    2014-01-01

    The molecular receptors underlying the purported “umami” taste quality commonly associated with l-glutamate have been controversial. Evidence supports the involvement of the T1R1 + T1R3 heterodimer, a GPCR broadly tuned to l-amino acids, but variants of two mGluRs expressed in taste buds have also been implicated. Using a rigorous psychophysical taste-testing paradigm, we demonstrated impaired, if not eliminated, detection of MSG in WT and T1R1, T1R2, T1R3, and T1R2 + T1R3 KO mice when the contribution of sodium was minimized by the epithelial sodium channel blocker amiloride. When inosine 5′-monophosphate (IMP), a ribonucleotide that potentiates the l-glutamate signal through the T1R1 + T1R3 heterodimer, was added, the WT and T1R2 KO mice were able to detect the compound stimulus across all MSG (+amiloride) concentrations due, in part, to the taste of IMP. In contrast, mice lacking T1R1 or T1R3 could not detect IMP alone, yet some were able to detect MSG + amiloride + IMP, but only at the higher MSG concentrations. Interestingly, the sensitivity of T1R1 KO mice to another l-amino acid, lysine, was unimpaired, suggesting that some l-amino acids can be detected through T1R1 + T1R3-independent receptors without sensitivity loss. Given that IMP is not thought to affect mGluRs, behavioral detection of l-glutamate appears to require the contribution of the T1R1 + T1R3 receptor. However, the partial competence observed in some T1R1 and T1R3 KO mice when MSG + amiloride + IMP was tested suggests that a T1R1 or T1R3 homodimer or an unidentified protein, perhaps in conjunction with T1R1 or T1R3, can serve as a low-affinity taste receptor for l-glutamate in the presence of IMP. PMID:25253867

  5. Cocaine Self-Administration Produces a Persistent Increase in Dopamine D2High Receptors

    PubMed Central

    Briand, Lisa A.; Flagel, Shelly B.; Seeman, Philip; Robinson, Terry E.

    2008-01-01

    Cocaine addicts are reported to have decreased numbers of striatal dopamine D2 receptors. However, in rodents, repeated cocaine administration consistently produces hypersensitivity to the psychomotor activating effects of both indirect dopamine agonists, such as cocaine itself, and importantly, to direct-acting D2 receptor agonists. The current study reports a possible resolution to this long-standing paradox. The dopamine D2 receptor exists in both a low and a high affinity state, and dopamine exerts its effects via the more functionally relevant high-affinity D2 receptor (D2High). We report here that cocaine self-administration experience produces a large (approximately 150%) increase in the proportion of D2High receptors in the striatum with no change in the total number of D2 receptors, and this effect is evident both 3 and 30 days after the discontinuation of cocaine self-administration. Changes in D2High receptors would not be evident with the probes used in human (and non-human primate) imaging studies. We suggest, therefore, that cocaine addicts and animals previously treated with cocaine may be hyper-responsive to dopaminergic drugs in part because an increase in D2High receptors results in dopamine supersensitivity. This may also help explain why stimuli that increase dopamine neurotransmission, including drugs themselves, are so effective in producing relapse in individuals with a history of exposure to cocaine. PMID:18284941

  6. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    PubMed

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan).

    PubMed

    Martin, G R; Robertson, A D; MacLennan, S J; Prentice, D J; Barrett, V J; Buckingham, J; Honey, A C; Giles, H; Moncada, S

    1997-05-01

    1. 311C90 (zolmitriptan zomig: (S)-4[[3-[2-(dimethylamino)ethyl]-1H-indol-5-yl]methyl]-2-oxazolidinone) is a novel 5-HT1B/1D receptor agonist with proven efficacy in the acute treatment of migraine. Here, we describe the receptor specificity of the drug and its actions on trigeminal-evoked plasma protein extravasation into the dura mater of the anaesthetized guinea-pig. 2. At the "5-HT1B-like' receptor mediating vascular contraction (rabbit saphenous vein), the compound was a potent (p[A50] = 6.79 +/- 0.06) partial agonist achieving 77 +/- 4% of the maximum effect to 5-hydroxytryptamine (5-HT). In the same experiments, sumatriptan (p[A50] = 6.48 +/- 0.04) was half as potent as 311C90 and produced 97 +/- 2% of the 5-HT maximum effect. Studies in which receptor inactivation methods were used to estimate the affinity (pKA) and efficacy relative to 5-HT (tau rel) for each agonist confirmed that 311C90 exhibits higher affinity than sumatriptan (pKA = 6.63 +/- 0.04 and 6.16 +/- 0.03, respectively) and that both drugs are partial agonists relative to 5-HT (tau rel = 0.61 +/- 0.03 and 0.63 +/- 0.10, respectively, compared to 5-HT = 1.0). 3. Consistent with its effects in rabbit saphenous vein, 311C90 also produced concentration-dependent contractions of primate basilar artery and human epicardial coronary artery rings. In basilar artery, agonist potency (p[A50] = 6.92 +/- 0.07) was similar to that demonstrated in rabbit saphenous vein, again being 2-3 fold higher than for sumatriptan (p[A50] = 6.46 +/- 0.03). Both agonists produced about 50% of the maximum response obtained with 5-HT in the same preparations. In rings of human coronary artery, the absolute potency of 311C90 and sumatriptan was higher than in primate basilar artery (p[A50] = 7.3 +/- 0.1 and 6.7 +/- 0.1, respectively), but maximum effects relative to 5-HT were lower (37 +/- 8% and 35 +/- 7%, respectively). In both types of vessel, the inability of 5-HT1B/1D agonists to achieve the same maximum as the

  8. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    PubMed

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  9. Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) or G-Protein-Coupled Estrogen Receptor (GPER).

    PubMed

    Thekkumkara, Thomas; Snyder, Russell; Karamyan, Vardan T

    2016-01-01

    The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.

  10. Specific binding of (/sup 3/H-Tyr8)physalaemin to rat submaxillary gland substance P receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Lazaro, D.M.; Brundish, D.E.

    1985-01-01

    (/sup 3/H)Physalaemin ((/sup 3/H)PHY) binds to a single class of noninteracting sites on rat submaxillary gland membranes suspended in high ionic strength media with a KD of 2.7 nM, a Bmax of 240 fmol/mg of protein, and low nonspecific binding. The relative potencies of substance P (SP) and its fragments in competing with (/sup 3/H)PHY correlate with their relative salivation potencies. This indicates that (/sup 3/H)PHY interacts with a physiologically relevant SP receptor. In low ionic strength media, the KD of (/sup 3/H)PHY does not change, but SP and some of its fragments are more potent than PHY in competingmore » with (/sup 3/H) PHY. Computer-assisted analysis of (/sup 3/H)PHY and (/sup 3/H)SP binding in high and low ionic strength media demonstrated that both peptides are equipotent in high ionic strength but that the affinity of SP increases by 70-fold in low ionic strength. The SP fragments that contain a basic residue in positions 1 and/or 3 also display an increased affinity in low ionic strength. These findings document that (/sup 3/H)PHY binding in high ionic strength (mu . 0.6) accurately reflects the pharmacological potencies of agonists on the SP-P receptor. The binding of (/sup 3/H)PHY, like that of (/sup 3/H)SP, increases by the addition of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+). Guanine nucleotides decrease (/sup 3/H)PHY binding by decreasing the Bmax to the same level (160 fmol/mg of protein), in the presence or absence of Mg2+.« less

  11. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  12. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less

  13. Isolation of a human anti-epidermal growth factor receptor Fab antibody, EG-19-11, with subnanomolar affinity from naïve immunoglobulin repertoires using a hierarchical antibody library system.

    PubMed

    Hur, Byung-ung; Yoon, Jae-bong; Liu, Li-Kun; Cha, Sang-hoon

    2010-11-30

    Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.5×10(9) human naïve heavy chains and eight unspecified human naïve light chains was selected against the EGFR-Fc protein by biopanning, and four anti-EGFR Fab clones were isolated. Because one of the Fab clones, denoted EG-L2-11, recognized a native EGFR expressed on A431 cells, the heavy chain of the Fab was shuffled with a human naïve light chain repertoire with a diversity of 1.4×10(8) and selected a second time against the EGFR-Fc protein again. One EG-L2-11 variant, denoted EG-19-11, recognized an EGFR epitope that was almost the same as that bound by cetuximab and had a K(D) of approximately 540 pM for soluble EGFR, which is about 7-fold higher than that of the FabC225 derived from cetuximab. This variant was also internalized by A431 cells, likely via receptor-mediated endocytosis, and it efficiently inhibited EGF-mediated tyrosine phosphorylation of the EGFR. These results demonstrate that the use of our hierarchical antibody library system is advantageous in generating fully human antibodies especially with a therapeutic purpose. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcεRI.

    PubMed

    Sabban, Sari; Ye, Hongtu; Helm, Birgit

    2014-11-01

    The interaction of IgE with its high-affinity Fc receptor (FcεRI) followed by an antigenic challenge is the principal pathway in IgE mediated allergic reactions. As a consequence of the high affinity binding between IgE and FcεRI, along with the continuous production of IgE by B cells, allergies usually persist throughout life, with currently no permanent cure available. Horses, especially race horses, which are commonly inbred, are a species of mammals that are very prone to the development of hypersensitivity responses, which can seriously affect their performance. Physiological responses to allergic sensitization in horses mirror that observed in humans and dogs. In this paper we describe the development of an in situ assay system for the quantitative assessment of the release of mediators of the allergic response pertaining to the equine system. To this end, the gene encoding equine FcεRIα was transfected into and expressed onto the surface of parental Rat Basophil Leukemia (RBL-2H3.1) cells. The gene product of the transfected equine α-chain formed a functional receptor complex with the endogenous rat β- and γ-chains. The resultant assay system facilitated an assessment of the quantity of mediator secreted from equine FcεRIα transfected RBL-2H3.1 cells following sensitization with equine IgE and antigenic challenge using β-hexosaminidase release as a readout. Mediator release peaked at 36.68% ± 4.88% at 100 ng ml(-1) of antigen. This assay was modified from previous assays used to study human and canine allergic responses. We have also shown that this type of assay system has multiple applications for the development of diagnostic tools and the safety assessment of potential therapeutic intervention strategies in allergic disease.

  15. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  16. GTP effects in rat brain slices support the non-interconvertability of M/sub 1/ and M/sub 2/ muscarinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, D.G. Jr.; Horvath, E.; Traber, J.

    GTP (guanosine-5'-triphosphate) markedly reduced high-affinity /sup 3/H-oxotremorine-M binding to M/sub 2/ receptors on brain slices in autoradiographic experiments while /sup 3/H-pirenzepine binding to M/sub 1/ receptors was largely unaffected. The distribution of M/sub 1/ receptors so labelled was also not altered by GTP to include former M/sub 2/-rich regions, thus indicating that GTP could not, by itself, interconvert high agonist-affinity M/sub 2/ receptors to M/sub 1/ receptors. 18 references, 1 figure.

  17. Discovery of novel Tetrahydrobenzo[b]thiophene and pyrrole based scaffolds as potent and selective CB2 receptor ligands: The structural elements controlling binding affinity, selectivity and functionality.

    PubMed

    Osman, Noha A; Ligresti, Alessia; Klein, Christian D; Allarà, Marco; Rabbito, Alessandro; Di Marzo, Vincenzo; Abouzid, Khaled A; Abadi, Ashraf H

    2016-10-21

    CB2-based therapeutics show strong potential in the treatment of diverse diseases such as inflammation, multiple sclerosis, pain, immune-related disorders, osteoporosis and cancer, without eliciting the typical neurobehavioral side effects of CB1 ligands. For this reason, research activities are currently directed towards the development of CB2 selective ligands. Herein, the synthesis of novel heterocyclic-based CB2 selective compounds is reported. A set of 2,5-dialkyl-1-phenyl-1H-pyrrole-3-carboxamides, 5-subtituted-2-(acylamino)/(2-sulphonylamino)-thiophene-3-carboxylates and 2-(acylamino)/(2-sulphonylamino)-tetrahydrobenzo[b]thiophene-3-carboxylates were synthesized. Biological results revealed compounds with remarkably high CB2 binding affinity and CB2/CB1 subtype selectivity. Compound 19a and 19b from the pyrrole series exhibited the highest CB2 receptor affinity (Ki = 7.59 and 6.15 nM, respectively), as well as the highest CB2/CB1 subtype selectivity (∼70 and ∼200-fold, respectively). In addition, compound 6b from the tetrahydrobenzo[b]thiophene series presented the most potent and selective CB2 ligand in this series (Ki = 2.15 nM and CB2 subtype selectivity of almost 500-fold over CB1). Compound 6b showed a full agonism, while compounds 19a and 19b acted as inverse agonists when tested in an adenylate cyclase assay. The present findings thus pave the way to the design and optimization of heterocyclic-based scaffolds with lipophilic carboxamide and/or retroamide substituent that can be exploited as potential CB2 receptor activity modulators. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Thieno[3,2-b]- and thieno[2,3-b]pyrrole bioisosteric analogues of the hallucinogen and serotonin agonist N,N-dimethyltryptamine.

    PubMed

    Blair, J B; Marona-Lewicka, D; Kanthasamy, A; Lucaites, V L; Nelson, D L; Nichols, D E

    1999-03-25

    The synthesis and biological activity of 6-[2-(N, N-dimethylamino)ethyl]-4H-thieno[3,2-b]pyrrole (3a) and 4-[2-(N, N-dimethylamino)ethyl]-6H-thieno[2,3-b]pyrrole (3b), thienopyrroles as potential bioisosteres of N,N-dimethyltryptamine (1a), are reported. Hallucinogen-like activity was evaluated in the two-lever drug discrimination paradigm using LSD- and DOI-trained rats. Neither 3a nor 3b substituted for LSD or DOI up to doses of 50 micromol/kg. By comparison, 1a fully substituted in LSD-trained rats. However, 3a and 3b fully substituted for the 5-HT1A agonist LY293284 ((-)-(4R)-6-acetyl-4-(di-n-propylamino)-1,3,4, 5-tetrahydrobenz[c,d]indole). Both 3a and 3b induced a brief "serotonin syndrome" and salivation, an indication of 5-HT1A receptor activation. At the cloned human 5-HT2A receptor 3b had about twice the affinity of 3a. At the cloned human 5-HT2B and 5-HT2C receptors, however, 3a had about twice the affinity of 3b. Therefore, thiophene lacks equivalence as a replacement for the phenyl ring in the indole nucleus of tryptamines that bind to 5-HT2 receptor subtypes and possess LSD-like behavioral effects. Whereas both of the thienopyrroles had lower affinity than the corresponding 1a at 5-HT2 receptors, 3a and 3b had significantly greater affinity than 1a at the 5-HT1A receptor. Thus, thienopyrrole does appear to serve as a potent bioisostere for the indole nucleus in compounds that bind to the serotonin 5-HT1A receptor. These differences in biological activity suggest that serotonin receptor isoforms are very sensitive to subtle changes in the electronic character of the aromatic systems of indole compounds.

  19. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  20. The effect of omalizumab treatment on the low affinity immunoglobulin E receptor (CD23/fc epsilon RII) in patients with severe allergic asthma.

    PubMed

    Assayag, Miri; Moshel, Shabtai; Kohan, Martin; Berkman, Neville

    2018-01-01

    Omalizumab is an anti-immunoglobulin E (IgE) monoclonal antibody used in the treatment of severe asthma. Its therapeutic efficacy is primarily attributed to reduction of serum-free IgE and in the expression of high-affinity IgE receptor, fc epsilon RI. However, its effect on the low-affinity IgE receptor fc epsilon RII/CD23 in vivo has not been evaluated. To determine whether CD23 plays a role in the inflammatory process in severe uncontrolled asthma and whether anti-IgE therapy modulates fc epsilon RII/CD23 expression in these patients. We evaluated the expression of IgE receptors fc epsilon RI, fc epsilon RII/CD23, and soluble CD23 (sCD23), and the activation state of peripheral blood monocytes (tumor necrosis factor alpha, interleukin (IL) 1-beta, transforming growth factor (TGF) beta expression) in the patients with severe asthma before and after 24 weeks of omalizumab treatment and in the healthy controls. Cytokine expression of monocytes in response to different stimulation (IL-4, IL-4 plus IgE, IL-4 plus IgE plus anti-IgE, and IL-4 plus IgE plus anti-IgE plus anti-CD23 for 72 hours) was determined by enzyme-linked immunosorbent assay. Treatment with omalizumab (for 24 weeks) improved disease control and pulmonary function (forced expiratory volume in the first second of expiration, 64.5 versus 74%; p = 0.021). Mean ± SE expression of fc epsilon RI on monocytes was higher in the patients with asthma versus the controls (45.7 ± 12.2% versus 18.6 ± 5.8%; p = 0.04) and was reduced after omalizumab treatment (45.7 ± 12.2% versus 15.6 ± 4.4%; p = 0.027). Mean ± SE TGF-beta levels in supernatants from monocytes were reduced in the patients treated with omalizumab (211 ± 6 pg/mL versus 184 ± 9 pg/mL; p = 0.036). Modulation of the low affinity IgE receptor CD23 in severe asthma is complex, and sCD23 may inversely reflect disease activity. Treatment with omalizumab was associated with reduced monocyte activation.

  1. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Politi, Regina; Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599; Rusyn, Ivan, E-mail: iir@unc.edu

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict bindingmore » affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  2. Age-dependent changes of presynaptic neuromodulation via A1-adenosine receptors in rat hippocampal slices.

    PubMed

    Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S

    1997-10-01

    The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.

  3. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate

    PubMed Central

    Khansari, Maryam Emami; Johnson, Corey R.; Basaran, Ismet; Nafis, Aemal; Wang, Jing

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea (L1) and tris([(4-cyanophenyl)amino]propyl)thiourea (L2), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F− > H2PO4− > HCO3− > HSO4− > CH3COO− > SO42− > Cl− > Br− > I in DMSO-d6. The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F−, H2PO4−, HCO3−, HSO4− or CH3COO− due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO4− than SO42− is attributed to the proton transfer from HSO4− to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO-d6. In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2). PMID:28184300

  4. Oxytocin and vasopressin: distinct receptors in myometrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillon, G.; Balestre, M.N.; Roberts, J.M.

    1987-06-01

    The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/-more » 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.« less

  5. High level transactivation by a modified Bombyx ecdysone receptor in mammalian cells without exogenous retinoid X receptor

    PubMed Central

    Suhr, Steven T.; Gil, Elad B.; Senut, Marie-Claude; Gage, Fred H.

    1998-01-01

    Our studies of the Bombyx mori ecdysone receptor (BE) revealed that, unlike the Drosophila melanogaster ecdysone receptor (DE), treatment of BE with the ecdysone agonist tebufenozide stimulated high level transactivation in mammalian cells without adding an exogenous heterodimer partner. Gel mobility shift and transfection assays with both the ultraspiracle gene product (Usp) and retinoid X receptor heterodimer partners indicated that this property of BE stems from significantly augmented heterodimer complex formation and concomitant DNA binding. We have mapped this “gain of function” to determinants within the D and E domains of BE and demonstrated that, although the D domain determinant is sufficient for high affinity heterodimerization with Usp, both determinants are necessary for high affinity interaction with retinoid X receptor. Modified BE receptors alone used as replication-defective retroviruses potently stimulated separate “reporter” viruses in all cell types examined, suggesting that BE has potentially broad utility in the modulation of transgene expression in mammalian cells. PMID:9653129

  6. The truncated metabolite GLP-2 (3-33) interacts with the GLP-2 receptor as a partial agonist.

    PubMed

    Thulesen, Jesper; Knudsen, Lotte Bjerre; Hartmann, Bolette; Hastrup, Sven; Kissow, Hannelouise; Jeppesen, Palle Bekker; Ørskov, Cathrine; Holst, Jens Juul; Poulsen, Steen Seier

    2002-01-15

    The therapeutic potential of the intestinotrophic mediator glucagon-like peptide-2 (1-33) [GLP-2 (1-33)] has increased interest in the pharmacokinetics of the peptide. This study was undertaken to investigate whether the primary degradation product GLP-2 (3-33) interacts with the GLP-2 receptor. Functional (cAMP) and binding in vitro studies were carried out in cells expressing the transfected human GLP-2 receptor. Furthermore, a biologic response of GLP-2 (3-33) was tested in vivo. Mice were allocated to groups treated for 10 days (twice daily) with: (1) 5 microg GLP-2 (1-33), (2) 25 microg GLP-2 (3-33), (3) 5 microg GLP-2 (1-33)+100 microg GLP-2 (3-33), or (4) 5 microg GLP-2 (1-33)+500 microg GLP-2 (3-33). The intestine was investigated for growth changes. GLP-2 (3-33) bound to the GLP-2 receptor with a binding affinity of 7.5% of that of GLP-2 (1-33). cAMP accumulation was stimulated with an efficacy of 15% and a potency more than two orders of magnitude lower than that of GLP-2 (1-33). Increasing doses of GLP-2 (3-33) (10(-7)-10(-5) M) caused a shift to the right in the dose-response curve of GLP-2 (1-33). Treatment of mice with either GLP-2 (1-33) or (3-33) induced significant growth responses in both the small and large intestines, but the response induced by GLP-2 (3-33) was much smaller. Co-administration of 500 microg of GLP-2 (3-33) and 5 microg GLP-2 (1-33) resulted in a growth response that was smaller than that of 5 microg GLP-2 (1-33) alone. Consistent with the observed in vivo activities, our functional studies and binding data indicate that GLP-2 (3-33) acts as a partial agonist with potential competitive antagonistic properties on the GLP-2 receptor.

  7. Synthesis and Pharmacological Evaluation of [11C]Granisetron and [18F]Fluoropalonosetron as PET Probes for 5-HT3 Receptor Imaging.

    PubMed

    Mu, Linjing; Müller Herde, Adrienne; Rüefli, Pascal M; Sladojevich, Filippo; Milicevic Sephton, Selena; Krämer, Stefanie D; Thompson, Andrew J; Schibli, Roger; Ametamey, Simon M; Lochner, Martin

    2016-11-16

    Serotonin-gated ionotropic 5-HT 3 receptors are the major pharmacological targets for antiemetic compounds. Furthermore, they have become a focus for the treatment of irritable bowel syndrome (IBS) and there is some evidence that pharmacological modulation of 5-HT 3 receptors might alleviate symptoms of other neurological disorders. Highly selective, high-affinity antagonists, such as granisetron (Kytril) and palonosetron (Aloxi), belong to a family of drugs (the "setrons") that are well established for clinical use. To enable us to better understand the actions of these drugs in vivo, we report the synthesis of 8-fluoropalonosetron (15) that has a binding affinity (K i = 0.26 ± 0.05 nM) similar to the parent drug (K i = 0.21 ± 0.03 nM). We radiolabeled 15 by nucleophilic 18 F-fluorination of an unsymmetrical diaryliodonium palonosetron precursor and achieved the radiosynthesis of 1-(methyl- 11 C)-N-granisetron ([ 11 C]2) through N-alkylation with [ 11 C]CH 3 I, respectively. Both compounds [ 18 F]15 (chemical and radiochemical purity >95%, specific activity 41 GBq/μmol) and [ 11 C]2 (chemical and radiochemical purity ≥99%, specific activity 170 GBq/μmol) were evaluated for their utility as positron emission tomography (PET) probes. Using mouse and rat brain slices, in vitro autoradiography with both [ 18 F]15 and [ 11 C]2 revealed a heterogeneous and displaceable binding in cortical and hippocampal regions that are known to express 5-HT 3 receptors at significant levels. Subsequent PET experiments suggested that [ 18 F]15 and [ 11 C]2 are of limited utility for the PET imaging of brain 5-HT 3 receptors in vivo.

  8. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice

    PubMed Central

    Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai

    2016-01-01

    ABSTRACT H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. IMPORTANCE Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues

  9. A Single Mutation at Position 190 in Hemagglutinin Enhances Binding Affinity for Human Type Sialic Acid Receptor and Replication of H9N2 Avian Influenza Virus in Mice.

    PubMed

    Teng, Qiaoyang; Xu, Dawei; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Li, Xuesong; Yan, Liping; Yang, Jianmei; Chen, Hongjun; Yu, Hai; Ma, Wenjun; Li, Zejun

    2016-11-01

    H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues from humans and mouse

  10. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    PubMed

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  11. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  12. What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities.

    PubMed

    Andersson, Martin N; Schlyter, Fredrik; Hill, Sharon Rose; Dekker, Teun

    2012-06-01

    Physiological studies on olfaction frequently ignore the airborne quantities of stimuli reaching the sensory organ. We used a gas chromatography-calibrated photoionization detector to estimate quantities released from standard Pasteur pipette stimulus cartridges during repeated puffing of 27 compounds and verified how lack of quantification could obscure olfactory sensory neuron (OSN) affinities. Chemical structure of the stimulus, solvent, dose, storage condition, puff interval, and puff number all influenced airborne quantities. A model including boiling point and lipophilicity, but excluding vapor pressure, predicted airborne quantities from stimuli in paraffin oil on filter paper. We recorded OSN responses of Drosophila melanogaster, Ips typographus, and Culex quinquefasciatus, to known quantities of airborne stimuli. These demonstrate that inferred OSN tuning width, ligand affinity, and classification can be confounded and require stimulus quantification. Additionally, proper dose-response analysis shows that Drosophila AB3A OSNs are not promiscuous, but highly specific for ethyl hexanoate, with other earlier proposed ligands 10- to 10 000-fold less potent. Finally, we reanalyzed published Drosophila OSN data (DoOR) and demonstrate substantial shifts in affinities after compensation for quantity and puff number. We conclude that consistent experimental protocols are necessary for correct OSN classification and present some simple rules that make calibration, even retroactively, readily possible.

  13. Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.

    PubMed

    Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G

    1998-04-10

    The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.

  14. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors.

    PubMed

    Serradeil-Le Gal, C; Wagnon, J; Garcia, C; Lacour, C; Guiraudou, P; Christophe, B; Villanova, G; Nisato, D; Maffrand, J P; Le Fur, G

    1993-07-01

    SR 49059, a new potent and selective orally active, nonpeptide vasopressin (AVP) antagonist has been characterized in several in vitro and in vivo models. SR 49059 showed high affinity for V1a receptors from rat liver (Ki = 1.6 +/- 0.2) and human platelets, adrenals, and myometrium (Ki ranging from 1.1 to 6.3 nM). The previously described nonpeptide V1 antagonist, OPC-21268, was almost inactive in human tissues at concentrations up to 100 microM. SR 49059 exhibited much lower affinity (two orders of magnitude or more) for AVP V2 (bovine and human), V1b (human), and oxytocin (rat and human) receptors and had no measurable affinity for a great number of other receptors. In vitro, AVP-induced contraction of rat caudal artery was competitively antagonized by SR 49059 (pA2 = 9.42). Furthermore, SR 49059 inhibited AVP-induced human platelet aggregation with an IC50 value of 3.7 +/- 0.4 nM, while OPC-21268 was inactive up to 20 microM. In vivo, SR 49059 inhibited the pressor response to exogenous AVP in pithed rats (intravenous) and in conscious normotensive rats (intravenous and per os) with a long duration of action (> 8 h at 10 mg/kg p.o). In all the biological assays used, SR 49059 was devoid of any intrinsic agonistic activity. Thus, SR 49059 is the most potent and selective nonpeptide AVP V1a antagonist described so far, with marked affinity, selectivity, and efficacy toward both animal and human receptors. With this original profile, SR 49059 constitutes a powerful tool for exploring the therapeutical usefulness of a selective V1a antagonist.

  15. Characterization of 4-Nitrophenylpropyl-N-alkylamine Interactions with Sigma Receptors

    PubMed Central

    Chu, Uyen B.; Hajipour, Abdol R.; Ramachandran, Subramaniam; Ruoho, Arnold E.

    2011-01-01

    Sigma receptors are small membrane proteins implicated in a number of pathophysiological conditions including drug addiction, psychosis and cancer; thus, small molecule inhibitors of sigma receptors have been proposed as potential pharmacotherapeutics for these diseases. We previously discovered that endogenous monochain N-alkyl sphingolipids including D-erythro-sphingosine, sphinganine, and N,N-dimethyl sphingosine bind to the sigma-1 receptor at physiologically relevant concentrations [Ramachandran et al. 2009 Eur J Pharmacol. 609(1–3):19–26]. Here, we investigated several N-alkylamines of varying chain lengths as sigma receptor ligands. Although the KI values for N-alkylamines were found to be in the micromolar range, when N-3-phenylpropyl and N-3-(4-nitrophenyl)propyl derivatives of butyl- (1a and 1b), heptyl- (2a and 2b), dodecyl- (3a and 3b), and octadecyl-amine (4a and 4b) were evaluated as sigma receptor ligands we found that these compounds exhibited nanomolar affinities with both sigma-1 and sigma-2 receptors. A screen of the high affinity ligands 2a, 2b, 3a and 3b against a variety of other receptors/transporters confirmed these four compounds to be highly selective mixed sigma-1 and sigma-2 ligands. Additionally, in HEK293 cells reconstituted with Kv1.4 potassium channel and the sigma-1 receptor, these derivatives were able to inhibit the outward current from the channel – consistent with sigma receptor modulation. Finally, cytotoxicity assays showed that 2a, 2b, 3a and 3b were highly potent against a number of cancer cell lines, demonstrating their potential utility as mixed sigma-1 and sigma-2 receptor anti-cancer agents. PMID:21790129

  16. Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B

    PubMed Central

    Hagenow, S.; Stasiak, A.; Ramsay, R. R.; Stark, H.

    2017-01-01

    Ciproxifan is a well-investigated histamine H3 receptor (H3R) inverse agonist/antagonist, showing an exclusively high species-specific affinity at rodent compared to human H3R. It is well studied as reference compound for H3R in rodent models for neurological diseases connected with neurotransmitter dysregulation, e.g. attention deficit hyperactivity disorder or Alzheimer’s disease. In a screening for potential monoamine oxidase A and B inhibition ciproxifan showed efficacy on both enzyme isoforms. Further characterization of ciproxifan revealed IC50 values in a micromolar concentration range for human and rat monoamine oxidases with slight preference for monoamine oxidase B in both species. The inhibition by ciproxifan was reversible for both human isoforms. Regarding inhibitory potency of ciproxifan on rat brain MAO, these findings should be considered, when using high doses in rat models for neurological diseases. As the H3R and monoamine oxidases are all capable of affecting neurotransmitter modulation in brain, we consider dual targeting ligands as interesting approach for treatment of neurological disorders. Since ciproxifan shows only moderate activity at human targets, further investigations in animals are not of primary interest. On the other hand, it may serve as starting point for the development of dual targeting ligands. PMID:28084411

  17. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

    PubMed

    Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Automated large-scale purification of a G protein-coupled receptor for neurotensin.

    PubMed

    White, Jim F; Trinh, Loc B; Shiloach, Joseph; Grisshammer, Reinhard

    2004-04-30

    Structure determination of integral membrane proteins requires milligram amounts of purified, functional protein on a regular basis. Here, we describe a protocol for the purification of a G protein-coupled neurotensin receptor fusion protein at the 3-mg or 10-mg level using immobilized metal affinity chromatography and a neurotensin column in a fully automated mode. Fermentation at a 200-l scale of Escherichia coli expressing functional receptors provides the material needed to feed into the purification routine. Constructs with tobacco etch virus protease recognition sites at either end of the receptor allow the isolation of neurotensin receptor devoid of its fusion partners. The presented expression and purification procedures are simple and robust, and provide the basis for crystallization experiments of receptors on a routine basis.

  19. The relaxant 5-HT receptor in the dog coronary artery smooth muscle: pharmacological resemblance to the cloned 5-ht7 receptor subtype.

    PubMed Central

    Terrón, J. A.

    1996-01-01

    1. The relaxant effect of 5-hydroxytryptamine (5-HT) in the dog isolated coronary artery deprived of endothelium is mediated by a receptor unrelated to the 5-HT1, 5-HT2, 5-HT3 or 5-HT4 types. Based upon the pharmacological characteristics of this relaxant 5-HT receptor and those reported for the new members of the 5-HT receptor family, the present study explored the possibility that the relaxant 5-HT receptor referred to above, corresponds to the cloned 5-ht7 subtype. Thus, the relaxing and/or blocking effects of several 5-HT receptor drugs as well as some typical and atypical antipsychotic drugs with high affinity for the cloned 5-ht7 receptor in precontracted ring segments were analyzed. 2. 5-HT, 5-carboxamidotryptamine (5-CT) and 5-methoxytryptamine, but not 8-OH-DPAT or sumatriptan, produced concentration-dependent relaxations in endothelium-denuded canine coronary artery rings precontracted with prostaglandin F2a (2 microM). Clozapine (1 microM) produced in some cases a small relaxing effect and antagonized 5-HT- and 5-CT-induced relaxation suggesting a partial agonist effect. In the presence of the 5-HT1D receptor antagonist, GR127935 (100 nM), the rank order of agonist potency was 5-CT > 5-HT > clozapine > or = 5-methoxytryptamine. 8-OH-DPAT and sumatriptan remained inactive as agonists. 3. In GR127935-treated preparations, methiothepin (3 nM) and mianserin (1 microM), as well as the antipsychotics, clozapine (1 microM), pimozide (300 nM), risperidone (3 nM) and spiperone (1 microM), failed to induce a significant relaxation in prostaglandin F2x-precontracted vessels, but produced significant rightward displacements of the concentration-response curves to 5-HT and 5-CT without significantly reducing the Emax. In a final set of experiments with 5-CT, metergoline (100 nM) and mesulergine (300 nM) behaved as competitive antagonists. In contrast, lisuride (3 nM) noncompetitively antagonized 5-CT-induced relaxation. The estimated affinity (apparent pKa values) of

  20. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but

  1. Increased Peptide Contacts Govern High Affinity Binding of a Modified TCR Whilst Maintaining a Native pMHC Docking Mode

    PubMed Central

    Cole, David K.; Sami, Malkit; Scott, Daniel R.; Rizkallah, Pierre J.; Borbulevych, Oleg Y.; Todorov, Penio T.; Moysey, Ruth K.; Jakobsen, Bent K.; Boulter, Jonathan M.; Baker, Brian M.; Yi Li

    2013-01-01

    Natural T cell receptors (TCRs) generally bind to their cognate pMHC molecules with weak affinity and fast kinetics, limiting their use as therapeutic agents. Using phage display, we have engineered a high affinity version of the A6 wild-type TCR (A6wt), specific for the human leukocyte antigen (HLA-A∗0201) complexed with human T cell lymphotropic virus type 111–19 peptide (A2-Tax). Mutations in just 4 residues in the CDR3β loop region of the A6wt TCR were selected that improved binding to A2-Tax by nearly 1000-fold. Biophysical measurements of this mutant TCR (A6c134) demonstrated that the enhanced binding was derived through favorable enthalpy and a slower off-rate. The structure of the free A6c134 TCR and the A6c134/A2-Tax complex revealed a native binding mode, similar to the A6wt/A2-Tax complex. However, concordant with the more favorable binding enthalpy, the A6c134 TCR made increased contacts with the Tax peptide compared with the A6wt/A2-Tax complex, demonstrating a peptide-focused mechanism for the enhanced affinity that directly involved the mutated residues in the A6c134 TCR CDR3β loop. This peptide-focused enhanced TCR binding may represent an important approach for developing antigen specific high affinity TCR reagents for use in T cell based therapies. PMID:23805144

  2. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    PubMed Central

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  3. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    NASA Astrophysics Data System (ADS)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  4. Modification of agonist binding moiety in hybrid derivative 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-1-ol/-2-amino versions: Impact on functional activity and selectivity for dopamine D2/D3 receptors

    PubMed Central

    Gopishetty, Bhaskar; Zhang, Suhong; Kharkar, Prashant S.; Antonio, Tamara; Reith, Maarten; Dutta, Aloke K.

    2013-01-01

    The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization. PMID:23623679

  5. Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active

    PubMed Central

    Brown, Sarah M.; Holtzman, Michael; Kim, Thomas; Kharasch, Evan D.

    2012-01-01

    Background The long-lasting high affinity opioid buprenorphine has complex pharmacology including ceiling effects with respect to analgesia and respiratory depression. Plasma concentrations of the major buprenorphine metabolites norbuprenorphine, buprenorphine-3-glucuronide, and norbuprenorphine-3-glucuronide approximate or exceed those of the parent drug. Buprenorphine glucuronide metabolites pharmacology is undefined. This investigation determined binding and pharmacological activity of the two glucuronide metabolites, and in comparison with buprenorphine and norbuprenorphine. Methods Competitive inhibition of radioligand binding to human mu, kappa, delta opioid and nociceptin receptors was used to determine glucuronide binding affinities for these receptors. Common opiate effects were assessed in vivo in Swiss Webster mice. Antinociception was assessed using a tail-flick assay, respiratory effects were measured using unrestrained whole-body plethysmography, and sedation was assessed by inhibition of locomotion measured by open-field testing. Results Buprenorphine-3-glucuronide had high affinity for human mu (Ki = 4.9±2.7 pM), delta (Ki = 270±0.4 nM), and nociceptin (Ki = 36±0.3 μM) but not kappa receptors. Norbuprenorphine-3-glucuronide had affinity for human kappa (Ki = 300±0.5 nM) and nociceptin (Ki= 18±0.2 μM) but not mu or delta receptors. At the dose tested, buprenorphine-3-glucuronide had a small antinociceptive effect. Neither glucuronide had significant effects on respiratory rate, but norbuprenorphine-3-glucuronide decreased tidal volume. Norbuprenorphine-3-glucuronide also caused sedation. Conclusions Both glucuronide metabolites of buprenorphine are biologically active at doses relevant to metabolite exposures which occur after buprenorphine. Activity of the glucuronides may contribute to the overall pharmacology of buprenorphine. PMID:22037640

  6. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs.

    PubMed

    Gu, Min; Li, Qunhui; Gao, Ruyi; He, Dongchang; Xu, Yunpeng; Xu, Haixu; Xu, Lijun; Wang, Xiaoquan; Hu, Jiao; Liu, Xiaowen; Hu, Shunlin; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-02-06

    We generated and characterized site-directed HA mutants on the genetic backbone of H5N1 clade 2.3.4 virus preferentially binding to α-2,3 receptors in order to identify the key determinants in hemagglutinin rendering the dual affinity to both α-2,3 (avian-type) and α-2,6 (human-type) linked sialic acid receptors of the current clade 2.3.4.4 H5NX subtype avian influenza reassortants. The results show that the T160A substitution resulted in the loss of a glycosylation site at 158N and led not only to enhanced binding specificity for human-type receptors but also transmissibility among guinea pigs, which could be considered as an important molecular marker for assessing pandemic potential of H5 subtype avian influenza isolates.

  7. Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up-regulated by peroxisome proliferators-activator receptor agonist.

    PubMed

    Januszewicz, Elzbieta; Pajak, Beata; Gajkowska, Barbara; Samluk, Lukasz; Djavadian, Rouzanna L; Hinton, Barry T; Nałecz, Katarzyna A

    2009-12-01

    In the brain beta-oxidation, which takes place in astrocytes, is not a major process of energy supply. Astrocytes synthesize important lipid metabolites, mainly due to the processes taking place in peroxisomes. One of the compounds necessary in the process of mitochondrial beta-oxidation and export of acyl moieties from peroxisomes is l-carnitine. Two Na-dependent plasma membrane carnitine transporters were shown previously to be present in astrocytes: a low affinity amino acid transporter B(0,+) and a high affinity cation/carnitine transporter OCTN2. The expression of OCTN2 is known to increase in peripheral tissues upon the stimulation of peroxisome proliferators-activator receptor alpha (PPARalpha), a nuclear receptor known to up-regulate several enzymes involved in fatty acid metabolism. The present study was focused on another high affinity carnitine transporter-OCTN3, its presence, regulation and activity in astrocytes. Experiments using the techniques of real-time PCR, Western blot and immunocytochemistry analysis demonstrated the expression of octn3 in rat astrocytes and, out of two rat sequences ascribed as similar to mouse OCTN3, XM_001073573 was found in these cells. PPARalpha activator-2-[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY-14,643) stimulated by 50% expression of octn3, while, on the contrary to peripheral tissues, it did not change the expression of octn2. This observation was correlated with an increased Na-independent activity of carnitine transport. Analysis by transmission electron microscopy showed an augmented intracellular localization of OCTN3 upon PPARalpha stimulation, mainly in peroxisomes, indicating a physiological role of OCTN3 as peroxisomal membrane transporter. These observations point to an important role of OCTN3 in peroxisomal fatty acid metabolism in astrocytes.

  8. Affinity sensor using 3-aminophenylboronic acid for bacteria detection.

    PubMed

    Wannapob, Rodtichoti; Kanatharana, Proespichaya; Limbut, Warakorn; Numnuam, Apon; Asawatreratanakul, Punnee; Thammakhet, Chongdee; Thavarungkul, Panote

    2010-10-15

    Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Identification of novel β-lactams and pyrrolidinone derivatives as selective Histamine-3 receptor (H3R) modulators as possible anti-obesity agents.

    PubMed

    Ghoshal, Anirban; Kumar, Ajeet; Yugandhar, Doddapaneni; Sona, Chandan; Kuriakose, Sunu; Nagesh, Kommu; Rashid, Mamunur; Singh, Sandeep K; Wahajuddin, Muhammad; Yadav, Prem N; Srivastava, Ajay K

    2018-05-25

    Four series of structurally related β-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) were synthesized by utilizing post-Ugi modifications in one-pot, and their activity towards human histamine-3 receptor (H3R) was evaluated. Out of 94 compounds, screened against histamine-3 receptor (H3R), 21 compounds showed high H3R selective agonist property with EC 50 values ranging from 187 nM to 0.1 nM, whereas none of the compound was found to have the affinity towards other receptors of histamine family such as histamine H1, H2, and H4 receptor. All active compounds have no assay interference activity as determined by in-silico analysis and receptor independent luciferase assay and cell cytotoxicity assay. Given the important role of H3R in hypophagia, we also evaluated the in vivo effect of the representative compound 6k on the cumulative food intake in diet induce obese C57BL6/J mice. Interestingly, we observed that single dose administration (20 mg/kg, intraperitoneal injection) of 6k significantly suppressed cumulative food intake, while no significant effect was observed at 10 mg/kg. These results suggest that β-lactams, 2,5-pyrrolidinediones, azaspirodecatrienediones (ASDT) and dihydropyrroloquinoxalinetriones (DPQT) could be useful for the development of anti-obesity candidate drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Comparison of (/sup 3/H)pirenzepine and (/sup 3/H)quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    The properties of (/sup 3/H)quinuclidinylbenzilate ( (/sup 3/H)QNB) binding and (/sup 3/H)pirenzepine ( (/sup 3/H)PZ) binding to various regions of rat brain were compared. (/sup 3/H)PZ appeared to bind with high affinity to a single site, with a Kd value of approximately 15 nM in the cerebral cortex. The rank order of potencies of muscarinic drugs to inhibit binding of either (/sup 3/H)QNB or (/sup 3/H)PZ was QNB greater than atropine . scopolamine greater than pirenzepine greater than oxotremorine greater than bethanechol. Muscarinic antagonists (except PZ) inhibited both (/sup 3/H)PZ and (/sup 3/H)QNB binding with Hill coefficients of approximately 1.more » PZ inhibited (/sup 3/H)QNB binding in cortex with a Hill coefficient of 0.7, but inhibited (/sup 3/H)PZ binding with a Hill coefficient of 1.0. Hill coefficients for agonists were less than 1. The density of (/sup 3/H)PZ binding sites was approximately half the density of (/sup 3/H)QNB binding sites in cortex, striatum and hippocampus. In pons-medulla and cerebellum, the densities of (/sup 3/H)PZ binding sites were 20 and 0%, respectively, relative to the densities of (/sup 3/H)QNB binding sites. When unlabeled PZ was used to compete for (/sup 3/H)QNB binding, the relative number of high-affinity PZ binding sites in cortex, pons and cerebellum agreed with the relative number of (/sup 3/H)PZ binding sites in those regions. The binding of (/sup 3/H)PZ and (/sup 3/H)QNB was nonadditive in cortex. GTP inhibited high-affinity oxotremorine binding, but not PZ binding. Together, these data suggest that (/sup 3/H)PZ binds to a subset of (/sup 3/H)QNB binding sites. Whether this subset reflects the existence of subtypes of muscarinic receptors or is a consequence of coupling to another membrane protein remains to be seen.« less

  11. N-(3-azidophenyl)-N-methyl-N'-([4-1H]- and [4-3H]-1-naphthyl)guanidine. A potent and selective ligand designed as a photoaffinity label for the phencyclidine site of the N-methyl-D-aspartate receptor.

    PubMed

    Gee, K R; Durant, G J; Holmes, D L; Magar, S S; Weber, E; Wong, S T; Keana, J F

    1993-01-01

    A novel radiolabeled photoaffinity ligand has been synthesized for the phencyclidine (PCP) site of the N-methyl-D-aspartate (NMDA) receptor. N-(3-Azidophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (13) was prepared with a specific activity of 25 Ci/mmol by diazotization of N-(3-aminophenyl)-N-methyl-N'-([4-3H]-1-naphthyl)guanidine (12) followed by treatment with sodium azide. Guanidine 12 was obtained by catalytic tritiation of N-(4-bromo-1-naphthyl)-N'-methyl-N'-(3-nitrophenyl)guanidine (11). The nontritiated analog 5 of 13 was prepared beginning with N-methyl-N'-1-naphthyl-N-(3-nitrophenyl)guanidine (9). The guanidines 9 and 11 were prepared in moderate yield by the aluminum chloride-catalyzed reaction of N-methyl-3-nitroaniline hydrochloride with 1-naphthylcyanamide and 4-bromo-1-naphthylcyanamide, respectively. Azide 5 showed high selectivity and affinity (IC50 = 100 nM vs [3H]MK801; 3000 nM vs [3H]ditolylguanidine) for the PCP site of the NMDA receptor in guinea pig brain homogenate. Photolabeling experiments with 13, however, failed to radiolabel a significant amount of receptor polypeptide.

  12. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity

    PubMed Central

    Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.

    2006-01-01

    The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963

  13. Kinetic sensitivity of a receptor-binding radiopharmaceutical: Technetium-99m galactosyl-neoglycoalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vera, D.R.; Woodle, E.S.; Stadalnik, R.C.

    1989-09-01

    Kinetic sensitivity is the ability of a physiochemical parameter to alter the time-activity curve of a radiotracer. The kinetic sensitivity of liver and blood time-activity data resulting from a single bolus injection of ({sup 99m}Tc)galactosyl-neoglycoalbumin (( Tc)NGA) into healthy pigs was examined. Three parameters, hepatic plasma flow scaled as flow per plasma volume, ligand-receptor affinity, and total receptor concentration, were tested using (Tc)NGA injections of various molar doses and affinities. Simultaneous measurements of plasma volume (iodine-125 human serum albumin dilution), and hepatic plasma flow (indocyanine green extraction) were performed during 12 (Tc)NGA studies. Paired data sets demonstrated differences (P(chi v2)more » less than 0.01) in liver and blood time-activity curves in response to changes in each of the tested parameters. We conclude that the (Tc)NGA radiopharmacokinetic system is therefore sensitive to hepatic plasma flow, ligand-receptor affinity, and receptor concentration. In vivo demonstration of kinetic sensitivity permits delineation of the physiologic parameters that determine the biodistribution of a radiopharmaceutical. This delineation is a prerequisite to a valid analytic assessment of receptor biochemistry via kinetic modeling.« less

  14. Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors.

    PubMed

    Hedlund, P B; Carson, M J; Sutcliffe, J G; Thomas, E A

    1999-12-01

    Oleamide belongs to a family of amidated lipids with diverse biological activities, including sleep induction and signaling modulation of several 5-hydroxytryptamine (5-HT) receptor subtypes, including 5-HT1A, 5-HT2A/2C, and 5-HT7. The 5-HT7 receptor, predominantly localized in the hypothalamus, hippocampus, and frontal cortex, stimulates cyclic AMP formation and is thought to be involved in the regulation of sleep-wake cycles. Recently, it was proposed that oleamide acts at an allosteric site on the 5-HT7 receptor to regulate cyclic AMP formation. We have further investigated the interaction between oleamide and 5-HT7 receptors by performing radioligand binding assays with HeLa cells transfected with the 5-HT7 receptor. Methiothepin, clozapine, and 5-HT all displaced specific [3H]5-HT (100 nM) binding, with pK(D) values of 7.55, 7.85, and 8.39, respectively. Oleamide also displaced [3H]5-HT binding, but the maximum inhibition was only 40% of the binding. Taking allosteric (see below) cooperativity into account, a K(D) of 2.69 nM was calculated for oleamide. In saturation binding experiments, oleamide caused a 3-fold decrease in the affinity of [3H]5-HT for the 5-HT7 receptor, without affecting the number of binding sites. A Schild analysis showed that the induced shift in affinity of [3H]5-HT reached a plateau, unlike that of a competitive inhibitor, illustrating the allosteric nature of the interaction between oleamide and the 5-HT7 receptor. Oleic acid, the product of oleamide hydrolysis, had a similar effect on [3H]5-HT binding, whereas structural analogs of oleamide, trans-9,10-octadecenamide, cis-8,9-octadecenamide, and erucamide, did not alter [3H]5-HT binding significantly. The findings support the hypothesis that oleamide acts via an allosteric site on the 5-HT7 receptor regulating receptor affinity.

  15. Novel 4-Substituted-N,N-dimethyltetrahydronaphthalen-2-amines: Synthesis, Affinity, and In Silico Docking Studies at Serotonin 5-HT2-type and Histamine H1 G Protein-Coupled Receptors

    PubMed Central

    Sakhuja, Rajeev; Kondabolu, Krishnakanth; Córdova-Sintjago, Tania; Travers, Sean; Vincek, Adam S.; Kim, Myong Sang; Abboud, Khalil A.; Fang, Lijuan; Sun, Zhuming; Canal, Clinton E.; Booth, Raymond G.

    2015-01-01

    Syntheses were undertaken of derivatives of (2S, 4R)-(−)-trans-4-phenyl-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (4-phenyl-2-dimethylaminotetralin, PAT), a stereospecific agonist at the serotonin 5-HT2C G protein-coupled receptor (GPCR), with inverse agonist activity at 5-HT2A and 5-HT2B GPCRs. Molecular changes were made at the PAT C(4)-position, while preserving N, N-dimethyl substitution at the 2-position as well as trans-stereochemistry, structural features previously shown to be optimal for 5-HT2 binding. Affinities of analogs were determined at recombinant human 5-HT2 GPCRs in comparison to the phylogenetically closely-related histamine H1 GPCR, and in silico ligand docking studies were conducted at receptor molecular models to help interpret pharmacological results and guide future ligand design. In most cases, C(4)-substituted PAT analogs exhibited the same stereoselectivity ([−]-trans > [+]-trans) as the parent PAT across 5-HT2 and H1 GPCRs, albeit, with variable receptor selectivity. 4-(4′-substituted)-PAT analogs, however, demonstrated reversed stereoselectivity ([2S, 4R]-[+]-trans > [2S, 4R]-[−]-trans), with absolute configuration confirmed by single X-ray crystallographic data for the 4-(4′-Cl)-PAT analog. Pharmacological affinity results and computational results herein support further PAT drug development studies and provide a basis for predicting and interpreting translational results, including, for (+)-trans-4-(4′-Cl)-PAT and (−)-trans-4-(3′-Br)-PAT that were previously shown to be more potent and efficacious than their corresponding enantiomers in rodent models of psychoses, psychostimulant-induced behaviors, and compulsive feeding (‘binge-eating’). PMID:25703249

  16. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review.

    PubMed

    Gautam, Dinesh; Jeon, Jongrye; Li, Jian Hua; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Lu, Huiyan; Deng, Chuxia; Gavrilova, Oksana; Wess, Jürgen

    2008-01-01

    The M(3) muscarinic acetylcholine (ACh) receptor (M(3) mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G(q) family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M(3) mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M(3) receptors in pancreatic beta -cells indicated that beta -cell M(3) mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through beta -cell M(3) mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M(3) mAChR knockout mice showed that the absence of M(3) receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M(3) receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.

  17. Differential homologous desensitization of the human histamine H3 receptors of 445 and 365 amino acids expressed in CHO-K1 cells.

    PubMed

    García-Gálvez, Ana-Maricela; Escamilla-Sánchez, Juan; Flores-Maldonado, Catalina; Contreras, Rubén-Gerardo; Arias, Juan-Manuel; Arias-Montaño, José-Antonio

    2018-01-01

    Histamine H 3 receptors (H 3 Rs) signal through Gα i/o proteins and are found in neuronal cells as auto- and hetero-receptors. Alternative splicing of the human H 3 R (hH 3 R) originates 20 isoforms, and the mRNAs of two receptors of 445 and 365 amino acids (hH 3 R 445 and hH 3 R 365 ) are widely expressed in the human brain. We previously showed that the hH 3 R 445 stably expressed in CHO-K1 cells experiences homologous desensitization. The hH 3 R 365 lacks 80 residues in the third intracellular loop, and in this work we therefore studied whether this isoform also experiences homologous desensitization and the possible differences with the hH 3 R 445 . In clones of CHO-K1 cells stably expressing similar receptor levels (211 ± 12 and 199 ± 16 fmol/mg protein for hH 3 R 445 and hH 3 R 365 , respectively), there were no differences in receptor affinity for selective H 3 R ligands or for agonist-induced [ 35 S]-GTPγS binding to membranes and inhibition of forskolin-stimulated cAMP accumulation in intact cells. For both cell clones, pre-incubation with the H 3 R agonist RAMH (1 μM) resulted in functional receptor desensitization, as indicated by cAMP accumulation assays, and loss of receptors from the cell surface and reduced affinity for the agonist immepip in cell membranes, evaluated by radioligand binding. However, functional desensitization differed in the maximal extent (96 ± 15% and 58 ± 8% for hH 3 R 445 and hH 3 R 365 , respectively) and the length of pre-exposure required to reach the maximum desensitization (60 and 30 min, respectively). Furthermore, the isoforms differed in their recovery from desensitization. These results indicate that the hH 3 R 365 experiences homologous desensitization, but that the process differs between the isoforms in time-course, magnitude and re-sensitization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    PubMed

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  19. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.

    PubMed

    Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc

    2010-03-01

    The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain

  20. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.

    PubMed

    Munck Petersen, C; Nielsen, M S; Jacobsen, C; Tauris, J; Jacobsen, L; Gliemann, J; Moestrup, S K; Madsen, P

    1999-02-01

    We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.

  1. Class B type I scavenger receptor is responsible for the high affinity cholesterol binding activity of intestinal brush border membrane vesicles

    PubMed Central

    Labonté, Eric D.; Howles, Philip N.; Granholm, Norman A.; Rojas, Juan C.; Davies, Joanna P.; Ioannou, Yiannis A.; Hui, David Y.

    2007-01-01

    Recent studies have documented the importance of Niemann Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1−/− mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1−/− mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1−/− mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1. PMID:17442616

  2. Neurotensin effect on Na+, K+-ATPase is CNS area- and membrane-dependent and involves high affinity NT1 receptor.

    PubMed

    López Ordieres, María Graciela; Rodríguez de Lores Arnaiz, Georgina

    2002-11-01

    We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.

  3. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.

    PubMed

    Kim, Eun-Mi; Joung, Min-Hee; Lee, Chang-Moon; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Dong Wook

    2010-07-15

    The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells. 2010 Elsevier Ltd. All rights reserved.

  4. Structure-Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A2A and A3 Adenosine Receptor Ligands

    PubMed Central

    Hou, Xiyan; Majik, Mahesh S.; Kim, Kyunglim; Pyee, Yuna; Lee, Yoonji; Alexander, Varughese; Chung, Hwa-Jin; Lee, Hyuk Woo; Chandra, Girish; Lee, Jin Hee; Park, Seul-gi; Choi, Won Jun; Kim, Hea Ok; Phan, Khai; Gao, Zhan-Guo; Jacobson, Kenneth A.; Choi, Sun; Lee, Sang Kook; Jeong, Lak Shin

    2011-01-01

    Truncated N6-substituted-4′-oxo- and 4′-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A2A and A3 adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA2AAR, but hydrophobic C8 substitution abolished binding at the hA2AAR. However, most of synthesized compounds displayed medium to high binding affinity at the hA3AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA2AAR agonists. C2 substitution probed geometrically through hA2AAR-docking, was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA2AAR agonist and hA3AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases. PMID:22142423

  5. Ligand binding to the human MT2 melatonin receptor: The role of residues in transmembrane domains 3, 6, and 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazna, Petr; Berka, Karel; Jelinkova, Irena

    To better understand the mechanism of interactions between G-protein-coupled melatonin receptors and their ligands, our previously reported homology model of human MT2 receptor with docked 2-iodomelatonin was further refined and used to select residues within TM3, TM6, and TM7 potentially important for receptor-ligand interactions. Selected residues were mutated and radioligand-binding assay was used to test the binding affinities of hMT2 receptors transiently expressed in HEK293 cells. Our data demonstrate that residues N268 and A275 in TM6 as well as residues V291 and L295 in TM7 are essential for 2-iodomelatonin binding to the hMT2 receptor, while TM3 residues M120, G121, V124,more » and I125 may participate in binding of other receptor agonists and/or antagonists. Presented data also hint at possible specific interaction between the side-chain of Y188 in second extracellular loop and N-acetyl group of 2-iodomelatonin.« less

  6. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria

    2013-01-01

    Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Dose-dependent EEG effects of zolpidem provide evidence for GABA(A) receptor subtype selectivity in vivo.

    PubMed

    Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M

    2003-03-01

    Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.

  8. Pharmacological characterization of the bradykinin B2 receptor: inter-species variability and dissociation between binding and functional responses

    PubMed Central

    Paquet, J -L; Luccarini, J -M; Fouchet, C; Defrêne, E; Loillier, B; Robert, C; Bélichard, P; Cremers, B; Pruneau, D

    1999-01-01

    The present study addresses the differences in binding profiles and functional properties of the human and rat bradykinin (BK) B2 receptor using various kinin receptor peptide derivatives as well as the non-peptide receptor antagonists WIN 64338 (phosphonium, [[4-[[2-[[bis(cyclohexylamino)methylene]amino]-3-(2-naphtalenyl)1-oxopropyl]amino]-phenyl]-methyl]tributyl, chloride, monohydro-chloride), and FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[-N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl)oxymethyl]-phenyl]N-methylamino carbonyl methyl] acrylamide. [3H]-BK bound with a similar affinity to membranes of Chinese hamster ovary cells (CHO-K1) expressing the cloned human (hB2-CHO) or rat (rB2-CHO) B2 receptor, human embryonic intestine cells (INT407) expressing the native B2 receptor, human umbilical vein (HUV) and rat uterus (RU). WIN 64338 and FR173657 bound with a 3.8–6.6 fold and 7.0–16.3 fold higher affinity the rat than the human B2 receptor, respectively. The affinity values of BK derivatives as well as non-peptide antagonists were reduced by 6–23 fold in physiological HBSS compared to low ionic strength TES binding buffer. BK (0.01–3000 nM) increased inositol triphosphates (IP3) levels in hB2-CHO, rB2-CHO and INT407 cells. The B2 receptor antagonist, Hoe 140 (D-Arg0-[ Hyp3, Thi5, D-Tic7, Oic8]-BK) at 10−7 M, significantly shifted to the right the IP3 response curves to BK giving apparent pKB values of 8.56, 9.79 and 8.84 for hB2-CHO, rB2-CHO and INT407 cells, respectively. In human isolated umbilical vein, Hoe 140, D-Arg0-[Hyp3, D-Phe7, Leu8]-BK and NPC 567 had a lower potency in functional assays (pKB 8.18, 5.77 and 5.60, respectively) than expected from their affinity in binding studies (pKi 10.52, 8.64 and 8.27, respectively). FR173657 behaved as a high affinity ligand with pKi values of 8.59 and 9.81 and potent competitive antagonist with pKB values of 7.80 and 8.17 in HUV and RU, respectively. FR173657 bound with a similar affinity the cloned and

  9. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    PubMed

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-07-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin.

  10. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    PubMed Central

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-01-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin. PMID:2544892

  11. Template CoMFA Generates Single 3D-QSAR Models that, for Twelve of Twelve Biological Targets, Predict All ChEMBL-Tabulated Affinities

    PubMed Central

    Cramer, Richard D.

    2015-01-01

    The possible applicability of the new template CoMFA methodology to the prediction of unknown biological affinities was explored. For twelve selected targets, all ChEMBL binding affinities were used as training and/or prediction sets, making these 3D-QSAR models the most structurally diverse and among the largest ever. For six of the targets, X-ray crystallographic structures provided the aligned templates required as input (BACE, cdk1, chk2, carbonic anhydrase-II, factor Xa, PTP1B). For all targets including the other six (hERG, cyp3A4 binding, endocrine receptor, COX2, D2, and GABAa), six modeling protocols applied to only three familiar ligands provided six alternate sets of aligned templates. The statistical qualities of the six or seven models thus resulting for each individual target were remarkably similar. Also, perhaps unexpectedly, the standard deviations of the errors of cross-validation predictions accompanying model derivations were indistinguishable from the standard deviations of the errors of truly prospective predictions. These standard deviations of prediction ranged from 0.70 to 1.14 log units and averaged 0.89 (8x in concentration units) over the twelve targets, representing an average reduction of almost 50% in uncertainty, compared to the null hypothesis of “predicting” an unknown affinity to be the average of known affinities. These errors of prediction are similar to those from Tanimoto coefficients of fragment occurrence frequencies, the predominant approach to side effect prediction, which template CoMFA can augment by identifying additional active structural classes, by improving Tanimoto-only predictions, by yielding quantitative predictions of potency, and by providing interpretable guidance for avoiding or enhancing any specific target response. PMID:26065424

  12. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  13. Cyclic peptide unguisin A is an anion receptor with high affinity for phosphate and pyrophosphate.

    PubMed

    Daryl Ariawan, A; Webb, James E A; Howe, Ethan N W; Gale, Philip A; Thordarson, Pall; Hunter, Luke

    2017-04-05

    Unguisin A (1) is a marine-derived, GABA-containing cyclic heptapeptide. The biological function of this flexible macrocycle is obscure. Here we show that compound 1 lacks any detectable activity in antimicrobial growth inhibition assays, a result that runs contrary to a previous report. However, we find that 1 functions as a promiscuous host molecule in a variety of anion-binding interactions, with high affinity particularly for phosphate and pyrophosphate. We also show that a series of rigidified, backbone-fluorinated analogues of 1 displays altered affinity for chloride ions.

  14. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhancedmore » avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.« less

  15. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  16. Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors

    PubMed Central

    Xiong, Wei; Cui, Tanxing; Cheng, Kejun; Yang, Fei; Chen, Shao-Rui; Willenbring, Dan; Guan, Yun; Pan, Hui-Lin; Ren, Ke; Xu, Yan

    2012-01-01

    Certain types of nonpsychoactive cannabinoids can potentiate glycine receptors (GlyRs), an important target for nociceptive regulation at the spinal level. However, little is known about the potential and mechanism of glycinergic cannabinoids for chronic pain treatment. We report that systemic and intrathecal administration of cannabidiol (CBD), a major nonpsychoactive component of marijuana, and its modified derivatives significantly suppress chronic inflammatory and neuropathic pain without causing apparent analgesic tolerance in rodents. The cannabinoids significantly potentiate glycine currents in dorsal horn neurons in rat spinal cord slices. The analgesic potency of 11 structurally similar cannabinoids is positively correlated with cannabinoid potentiation of the α3 GlyRs. In contrast, the cannabinoid analgesia is neither correlated with their binding affinity for CB1 and CB2 receptors nor with their psychoactive side effects. NMR analysis reveals a direct interaction between CBD and S296 in the third transmembrane domain of purified α3 GlyR. The cannabinoid-induced analgesic effect is absent in mice lacking the α3 GlyRs. Our findings suggest that the α3 GlyRs mediate glycinergic cannabinoid-induced suppression of chronic pain. These cannabinoids may represent a novel class of therapeutic agents for the treatment of chronic pain and other diseases involving GlyR dysfunction. PMID:22585736

  17. Negative Cooperativity in the EGF Receptor

    PubMed Central

    Pike, Linda J.

    2012-01-01

    Scatchard analyses of the binding of EGF to its receptor yield concave up Scatchard plots, indicative of some type of heterogenity in ligand binding affinity. This was typically interpreted as being due to the presence of two independent binding site–one of high affinity representing ≤10% of the receptor population and one of low affinity making up the bulk of the receptors. However, the concept of two independent binding sites is difficult to reconcile with the X-ray structures of the dimerized EGF receptor that show symmetric binding of the two ligands. A new approach to the analysis of 125I-EGF binding data combined with the structure of the singly-occupied Drosophila EGF receptor have now shown that this heterogeneity is due to the presence of negative cooperativity in the EGF receptor. Concerns that negative cooperativity precludes ligand-induced dimerization of the EGF receptor confuse the concepts of linkage cooperativity. Linkage refers to the effect of ligand on the assembly of dimers while cooperativity refers to the effect of ligand binding to one subunit on ligand binding to the other subunit within a preassembled dimer. Binding of EGF to its receptor is positively linked with dimer assembly but shows negative cooperativity within the dimer. PMID:22260659

  18. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    PubMed

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT

  19. Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.

    PubMed

    Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti

    2016-04-05

    Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6% success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μM. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N

    1999-01-01

    This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259