Science.gov

Sample records for a3 subunit gene

  1. The structure of the gene encoding the human skeletal muscle {alpha}{sub 1} subunit of the dihydropyridine-sensitive L-type calcium channel (CACNL 1A3)

    SciTech Connect

    Hogan, K.; Gregg, R.G.; Powers, P.A.

    1996-02-01

    The structure of the gene encoding the human skeletal muscle {alpha}{sub 1} subunit (CACNL1A3) of the dihydropyridine-sensitive voltage-dependent calcium channel was determined by isolation of overlapping genomic DNA clones from human cosmid, phage, and P1 libraries. Genomic fragments containing exons were subcloned, and the sequences of the exons and flanking introns were defined. Knowledge of the genomic structure of the CACNL1A3 gene, which spans 90 kb and consists of 44 exons, will facilitate the search for additional mutations in CACNL1A3 that cause neuromuscular disease. 12 refs., 1 fig., 1 tab.

  2. Influence of low-molecular-weight glutenin subunit genes at Glu-A3 locus on wheat sodium dodecyl sulfate sedimentation volume and solvent retention capacity value.

    PubMed

    Li, Zhixia; Si, Hongqi; Xia, Yunxiang; Ma, Chuanxi

    2015-08-15

    To understand the effect of low-molecular-weight (LMW) glutenin alleles at the Glu-A3 locus on sodium dodecyl sulfate (SDS) sedimentation volume and solvent retention capacity (SRC) values, 244 accessions of Chinese wheat (Triticum aestivum L.) mini core collections were investigated. In this study the significant differences in wholemeal flour SDS sedimentation volume and SRC values associated with specific glutenin alleles at the Glu-A3 locus were explained. Seven glutenin alleles at the Glu-A3 locus were confirmed by locus-specific polymerase chain reaction (PCR). SDS sedimentation volume and lactic acid SRC value were significantly affected by alleles Glu-A3b and Glu-A3g. Based on total average values, 28 varieties carrying Glu-A3b had significantly higher means of SDS sedimentation volume and lactic acid SRC value, whereas 19 varieties carrying Glu-A3g had significantly lower means. Alleles Glu-A3d and Glu-A3f significantly increased only SDS sedimentation volume and sucrose SRC value respectively. Correlation analysis showed that SDS sedimentation volume was uncorrelated with lactic acid SRC and sucrose SRC values. The Glu-A3 LMW glutenin subunit could predict 12.8% of the variance in SDS sedimentation volume, 4.7% in lactic acid SRC and 6.4% in sucrose SRC. © 2014 Society of Chemical Industry.

  3. Assignment of the human gene for the [alpha][sub 1] subunit of the skeletal muscle DHP-sensitive Ca[sup 2+] channel (CACNL1A3) to chromosome 1q31-q32

    SciTech Connect

    Gregg, R.G.; Couch, F.; Hogan, K.; Powers, P.A. )

    1993-01-01

    A human clone corresponding to the gene encoding the [alpha][sub 1] subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (CACNL1A3) has been isolated and partially sequenced. Oligonucleotides based on this sequence were used in a polymerase chain reaction to amplify specifically the human gene in human-rodent somatic cell hybrids, allowing the assignment of CACNL1A3 to chromosome 1. A polymorphic dinucleotide repeat also was identified in the human clone and using PCR was typed on a subset of the CEPH families. Multipoint linkage analysis places the CACNL1A3 gene between D1S52 and D1S70, on chromosome 1q31-q32. 40 refs., 3 figs., 3 tabs.

  4. Rubisco small subunit gene family in cassava.

    PubMed

    Yeo, T W; Mak, Y M; Ho, K K

    1999-01-01

    Cassava leaves of two different cultivars, Brazil and Buloh, were used to isolate mRNA. The mRNA isolated was successfully used in the construction of cDNA libraries for each of the cultivars. The cDNA libraries were screened for members of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene family and positive clones were sequenced. A total of seven different SSU genes, of which five were from cultivar Brazil and two were from cultivar Buloh, were isolated. Comparison results show that even though all the sequences are highly similar, they can be classified into three subfamilies. Homology between members of the same subfamily is higher than homology between members from the same cultivar.

  5. Gene targeting of CK2 catalytic subunits

    PubMed Central

    Lou, David Y.; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2013-01-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/ CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects. PMID:18594950

  6. Cytochrome oxidase subunit V gene of Neurospora crassa: DNA sequences, chromosomal mapping, and evidence that the cya-4 locus specifies the structural gene for subunit V.

    PubMed Central

    Sachs, M S; Bertrand, H; Metzenberg, R L; RajBhandary, U L

    1989-01-01

    The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA. Images PMID:2540423

  7. NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts.

    PubMed Central

    Nosek, J; Fukuhara, H

    1994-01-01

    The genes encoding the NADH dehydrogenase subunits of respiratory complex I have not been identified so far in the mitochondrial DNA (mtDNA) of yeasts. In the linear mtDNA of Candida parapsilosis, we found six new open reading frames whose sequences were unambiguously homologous to those of the genes known to code for NADH dehydrogenase subunit proteins of different organisms, i.e., ND1, ND2, ND3, ND4L, ND5, and ND6. The gene for ND4 also appears to be present, as judged from hybridization experiments with a Podospora gene probe. Specific transcripts from these open reading frames (ND genes) could be detected in the mitochondria. Hybridization experiments using C. parapsilosis genes as probes suggested that ND genes are present in the mtDNAs of a wide range of yeast species including Candida catenulata, Pichia guilliermondii, Clavispora lusitaniae, Debaryomyces hansenii, Hansenula polymorpha, and others. Images PMID:7521869

  8. [A promoter responsible for over-expression of cholera toxin B subunit in cholera toxin A subunit structure gene].

    PubMed

    Cao, C; Shi, C; Li, P; Ma, Q

    1997-01-01

    A promoter sequence, which promotes the transcription of cholera toxin B subunit gene, was found in cholera toxin A subunit structure gene. The transcription starts at the adenine Located at +833, that is 456bp upstream to the A of the initiation codon ATG of cholera toxin B gene. Under the control of the promoter, cholera toxin B subunit was over-expressed as high as 200 mg/L at an optimized culture condition. The chloramphenicol acetyl transferase gene and beta-galactosidase could also be efficiently expressed under the direction of the promoter. This promoter may be responsible for the 6 fold and 7 fold higher expression level of cholera toxin B subunit than cholera toxin A subunit in V. cholerae and Escheria coli respectively. The over-expression of CTB may be useful in preparing vaccine against cholera and facilitating the construction of peptide-bearing immunogenic hybrid proteins.

  9. A putative fourth Na+,K(+)-ATPase alpha-subunit gene is expressed in testis.

    PubMed Central

    Shamraj, O I; Lingrel, J B

    1994-01-01

    The Na+,K(+)-ATPase alpha subunit has three known isoforms, alpha 1, alpha 2 and alpha 3, each encoded by a separate gene. This study was undertaken to determine the functional status of a fourth human alpha-like gene, ATP1AL2. Partial genomic sequence analysis revealed regions exhibiting sequence similarity with exons 3-6 of the Na+,K(+)-ATPase alpha isoform genes. ATP1AL2 cDNAs spanning the coding sequence of a novel P-type ATPase alpha subunit were isolated from a rat testis library. The predicted polypeptide is 1028 amino acids long and exhibits 76-78% identity with the rat Na+,K(+)-ATPase alpha 1, alpha 2 and alpha 3 isoforms, indicating that ATP1AL2 may encode a fourth Na+,K(+)-ATPase alpha isoform. A 3.9-kb mRNA is expressed abundantly in human and rat testis. Images Fig. 2 Fig. 5 PMID:7809153

  10. Amyloid-β effects on synapses and memory require AMPA receptor subunit GluA3

    PubMed Central

    Reinders, Niels R.; Pao, Yvonne; Renner, Maria C.; da Silva-Matos, Carla M.; Lodder, Tessa R.; Malinow, Roberto; Kessels, Helmut W.

    2016-01-01

    Amyloid-β (Aβ) is a prime suspect for causing cognitive deficits during the early phases of Alzheimer’s disease (AD). Experiments in AD mouse models have shown that soluble oligomeric clusters of Aβ degrade synapses and impair memory formation. We show that all Aβ-driven effects measured in these mice depend on AMPA receptor (AMPAR) subunit GluA3. Hippocampal neurons that lack GluA3 were resistant against Aβ-mediated synaptic depression and spine loss. In addition, Aβ oligomers blocked long-term synaptic potentiation only in neurons that expressed GluA3. Furthermore, although Aβ-overproducing mice showed significant memory impairment, memories in GluA3-deficient congenics remained unaffected. These experiments indicate that the presence of GluA3-containing AMPARs is critical for Aβ-mediated synaptic and cognitive deficits. PMID:27708157

  11. Expansion of transducin subunit gene families in early vertebrate tetraploidizations.

    PubMed

    Lagman, David; Sundström, Görel; Ocampo Daza, Daniel; Abalo, Xesús M; Larhammar, Dan

    2012-10-01

    Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations.

  12. Regulation of expression of a soybean storage protein subunit gene. Progress report

    SciTech Connect

    Thompson, J.F.; Madison, J.T.

    1984-04-23

    We have found that the methionine repression of the ..beta..-subunit gene expression is not due to degradation of the ..beta..-subunit but is due to an effect on synthesis of the ..beta..-subunit. The effect of methionine on the synthesis of the ..beta..-is due to an inhibition of ..beta..-subunit mRNA synthesis. 3 references, 1 figure.

  13. Characterization of the low-molecular-weight glutenin subunit gene family members using a PCR-based marker approach

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the processing quality of wheat flour. The LMW-GS are encoded by multi-gene families located on the short arms of the homoeologous group 1 chromosomes, at the Glu-A3, G...

  14. [Nucleotide sequence of genes for alpha- and beta-subunits of luciferase from Photobacterium leiognathi].

    PubMed

    Illarionov, B A; Protopopova, M V; Karginov, V A; Mertvetsov, N P; Gitel'zon, I I

    1988-03-01

    Nucleotide sequence of the Photobacterium leiognathi DNA containing genes of alpha and beta subunits of luciferase has been determined. We also deduced amino acid sequence and molecular mass of luciferase and localized luciferase genes in the sequenced DNA fragment.

  15. Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene.

    PubMed Central

    Azuma, Y; Yamagishi, M; Ishihama, A

    1993-01-01

    To improve our understanding of the structure and function of eukaryotic RNA polymerase II, we purified the enzyme from the fission yeast Schizosaccharomyces pombe. The highly purified RNA polymerase II contained more than eleven polypeptides. The sizes of the largest the second-, and the third-largest polypeptides as measured by SDS-polyacrylamide gel electrophoresis were about 210, 150, and 40 kilodaltons (kDa), respectively, and are similar to those of RPB1, 2, and 3 subunits of Saccharomyces cerevisiae RNA polymerase II. Using the degenerated primers designed after amino acid micro-sequencing of the 40 kDa third-largest polypeptide (subunit 3), we cloned the subunit 3 gene (rpb3) and determined its DNA sequence. Taken together with the sequence of parts of PCR-amplified cDNA, the predicted coding sequence of rpb3, interrupted by two introns, was found to encode a polypeptide of 297 amino acid residues in length with a molecular weight of 34 kDa. The S. pombe subunit 3 contains four structural domains conserved for the alpha-subunit family of RNA polymerase from both eukaryotes and prokaryotes. A putative leucine zipper motif was found to exist in the C-terminal proximal conserved region (domain D). Possible functions of the conserved domains are discussed. Images PMID:8367291

  16. PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes.

    PubMed

    Kandil, E; Kohda, K; Ishibashi, T; Tanaka, K; Kasahara, M

    1997-01-01

    The 20S proteasome is a multi-subunit protease responsible for the production of peptides presented by major histocompatibility complex (MHC) class I molecules. Recent evidence indicates that an interferon-gamma (IFN-gamma)-inducible PA28 activator complex enhances the generation of class I binding peptides by altering the cleavage pattern of the proteasome. In the present study, we determined the primary structures of the mouse PA28 alpha- and beta-subunits. The deduced amino acid sequences of the alpha- and beta-subunits were 49% identical. We also determined the primary structure of the mouse PA28 gamma-subunit (Ki antigen), a protein of unknown function structurally related to the alpha- and beta-subunits. The amino acid sequence identity of the gamma-subunit to the alpha- and beta-subunits was 40% and 32%, respectively. Interspecific backcross mapping showed that the mouse genes coding for the alpha- and beta-subunits (designated Psme1 and Psme2, respectively) are tightly linked and map close to the Atp5g1 locus on chromosome 14. Thus, unlike the LMP2 and LMP7 subunits, the IFN-gamma-inducible subunits of PA28 are encoded outside the MHC. The gene coding for the gamma-subunit (designated Psme3) was mapped to the vicinity of the Brca1 locus on chromosome 11. A computer search of the DNA databases identified a gamma-subunit-like protein in ticks and Caenorhabditis elegans, the organisms with no adaptive immune system. It appears that the IFN-gamma-inducible alpha- and beta-subunits emerged by gene duplication from a gamma-subunit-like precursor.

  17. Self-Subunit Swapping Occurs in Another Gene Type of Cobalt Nitrile Hydratase

    PubMed Central

    Xia, Yuanyuan; Cui, Youtian; Kobayashi, Michihiko; Zhou, Zhemin

    2012-01-01

    Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase) family of enzymes. All of these NHases possess a gene organization of <β-subunit> <α-subunit> , which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of <α-subunit> <β-subunit> , was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K) of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K)2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K)2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K)2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a <β-subunit> <α-subunit> order. Our findings expand the general features of self-subunit swapping maturation. PMID:23226397

  18. Identification and isolation of three proteasome subunits and their encoding genes from Trypanosoma brucei.

    PubMed

    Huang, L; Shen, M; Chernushevich, I; Burlingame, A L; Wang, C C; Robertson, C D

    1999-08-20

    We have determined peptide sequences of three Trypanosoma brucei proteasome subunit proteins by mass spectrometry of tryptic digests of the proteins purified by two-dimensional (2-D) polyacrylamide gel electrophoresis. Three genes identified by the sequence of their cDNA encode the peptides identified in these three proteins. The three proteins predicted from the gene sequences have significant similarity to other known proteasome subunits and represent an alpha6 type subunit (TbPSA6), and two beta-type subunits belonging to the beta1-type (TbPSB1) and beta2 type (TbPSB2). The sequences of both beta-subunits predict formation of catalytically active subunits through proteolytic processing. The prediction is supported by the presence in each of the two beta-subunits of a tryptic peptide that has the correctly processed N-terminus that creates the threonine nucleophile of the mature protein. This peptide cannot be generated by trypsin because of the required cleavage of a glycine-threonine bond. It is thus likely that there are at least two catalytically active beta-subunits, TbPSB1 and TbPSB2, present in the mature 20S proteasome from T. brucei.

  19. Characterization and mutagenesis of the gene encoding the A49 subunit of RNA polymerase A in Saccharomyces cerevisiae.

    PubMed Central

    Liljelund, P; Mariotte, S; Buhler, J M; Sentenac, A

    1992-01-01

    The gene encoding the 49-kDa subunit of RNA polymerase A in Saccharomyces cerevisiae has been identified by formation of a hybrid enzyme between the S. cerevisiae A49 subunit and Saccharomyces douglasii subunits based on a polymorphism existing between the subunits of RNA polymerase A in these two species. The sequence of the gene reveals a basic protein with an unusually high lysine content, which may account for the affinity for DNA shown by the subunit. No appreciable homology with any polymerase subunits, enzymes, or transcription factors is found. Complete deletion of the single-copy RPA49 gene leads to viable but slowly growing colonies. Insertion of the HIS3 gene halfway into the RPA49 coding region results in synthesis of a truncated A49 subunit that is incorporated into the polymerase. The truncated and wild-type subunits compete equally for assembly in the heterozygous diploid, although the wild type is phenotypically dominant. Images PMID:1409638

  20. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    SciTech Connect

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. )

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  1. Methionine adenosyltransferase II beta subunit gene expression provides a proliferative advantage in human hepatoma.

    PubMed

    Martínez-Chantar, Maria L; García-Trevijano, Elena R; Latasa, M Ujue; Martín-Duce, Antonio; Fortes, Puri; Caballería, Juan; Avila, Matías A; Mato, José M

    2003-04-01

    Of the 2 genes (MAT1A, MAT2A) encoding methionine adenosyltransferase, the enzyme that synthesizes S-adenosylmethionine, MAT1A, is expressed in liver, whereas MAT2A is expressed in extrahepatic tissues. In liver, MAT2A expression associates with growth, dedifferentiation, and cancer. Here, we identified the beta subunit as a regulator of proliferation in human hepatoma cell lines. The beta subunit has been cloned and shown to lower the K(m) of methionine adenosyltransferase II alpha2 (the MAT2A product) for methionine and to render the enzyme more susceptible to S-adenosylmethionine inhibition. Methionine adenosyltransferase II alpha2 and beta subunit expression was analyzed in human and rat liver and hepatoma cell lines and their interaction studied in HuH7 cells. beta Subunit expression was up- and down-regulated in human hepatoma cell lines and the effect on DNA synthesis determined. We found that beta subunit is expressed in rat extrahepatic tissues but not in normal liver. In human liver, beta subunit expression associates with cirrhosis and hepatoma. beta Subunit is expressed in most (HepG2, PLC, and Hep3B) but not all (HuH7) hepatoma cell lines. Transfection of beta subunit reduced S-adenosylmethionine content and stimulated DNA synthesis in HuH7 cells, whereas down-regulation of beta subunit expression diminished DNA synthesis in HepG2. The interaction between methionine adenosyltransferase II alpha2 and beta subunit was demonstrated in HuH7 cells. Our findings indicate that beta subunit associates with cirrhosis and cancer providing a proliferative advantage in hepatoma cells through its interaction with methionine adenosyltransferase II alpha2 and down-regulation of S-adenosylmethionine levels.

  2. The human ATP synthase beta subunit gene: sequence analysis, chromosome assignment, and differential expression.

    PubMed

    Neckelmann, N; Warner, C K; Chung, A; Kudoh, J; Minoshima, S; Fukuyama, R; Maekawa, M; Shimizu, Y; Shimizu, N; Liu, J D

    1989-11-01

    In humans, the functional F0F1-ATP synthase beta subunit gene is located on chromosome 12 in the p13----qter region. Other partially homologous sequences have been detected on chromosomes 2 and 17. The bona fide beta subunit gene has 10 exons encoding a leader peptide of 49 amino acids and a mature protein of 480 amino acids. Thirteen Alu family DNA repeats are found upstream from the gene and in four introns. The gene has four "CCAAT" sequences upstream and in close proximity to the transcriptional initiation site. A 13-bp motif is found in the 5' nontranscribed region of both the beta subunit gene and an ADP/ATP translocator gene that is expressed in high levels in cardiac and skeletal muscle. Analysis of the beta subunit mRNA levels reveals marked differences among tissues. The highest levels are found in heart, lower levels in skeletal muscle, and the lowest levels in liver and kidney. These findings suggest that the tissue-specific levels of ATP synthase beta subunit mRNA may be generated through transcriptional control.

  3. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  4. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms

    NASA Technical Reports Server (NTRS)

    Kopczynski, E. D.; Bateson, M. M.; Ward, D. M.

    1994-01-01

    When PCR was used to recover small-subunit (SSU) rRNA genes from a hot spring cyanobacterial mat community, chimeric SSU rRNA sequences which exhibited little or no secondary structural abnormality were recovered. They were revealed as chimeras of SSU rRNA genes of uncultivated species through separate phylogenetic analysis of short sequence domains.

  5. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease.

    PubMed

    Gopisetty, Gopal; Thangarajan, Rajkumar

    2016-09-01

    Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.

  6. Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes

    PubMed Central

    Eagleson, Kathie L.; Gravielle, Maria C.; SchlueterMcFadyen-Ketchum, Lisa J.; Russek, Shelley J.; Farb, David H.; Levitt, Pat

    2010-01-01

    Disruption of the GABAergic system has been implicated in multiple developmental disorders, including epilepsy, autism spectrum disorder and schizophrenia. The human gene encoding uPAR (PLAUR) has been shown recently to be associated with the risk of autism. The uPAR-/- mouse exhibits a regionally selective reduction in GABAergic interneurons in frontal and parietal regions of the cerebral cortex as well as in the CA1 and dentate gyrus subfields of the hippocampus. Behaviorally, these mice exhibit increased sensitivity to pharmacologically-induced seizures, heightened anxiety, and atypical social behavior. Here, we explore potential alterations in GABAergic circuitry that may occur in the context of altered interneuron development. Analysis of gene expression for 13 GABAA receptor subunits using quantitative real-time PCR indicates seven subunit mRNAs (α1, α2, α3, β2, β3, γ2S and γ2L) of interest. Semi-quantitative in situ hybridization analysis focusing on these subunit mRNAs reveals a complex pattern of potential gene regulatory adaptations. The levels of α2 subunit mRNAs increase in frontal cortex, CA1 and CA3, while those of α3 decrease in frontal cortex and CA1. In contrast, α1 subunit mRNAs are unaltered in any region examined. β2 subunit mRNAs are increased in frontal cortex whereas β3 subunit mRNAs are decreased in parietal cortex. Finally, γ2S subunit mRNAs are increased in parietal cortex while γ2L subunit mRNAs are increased in the dentate gyrus, potentially altering the γ2S:γ2L ratio in these two regions. For all subunits, no changes were observed in forebrain regions where GABAergic interneuron numbers are normal. We propose that disrupted differentiation of GABAergic neurons specifically in frontal and parietal cortices leads to regionally-selective alterations in local circuitry and subsequent adaptive changes in receptor subunit composition. Future electrophysiological studies will be useful in determining how alterations in network

  7. Localization of the human genes encoding the two subunits of general transcription factor TFIIE.

    PubMed

    Purrello, M; Di Pietro, C; Rapisarda, A; Motta, S; Pavone, L; Grzeschik, K H; Sichel, G

    1994-09-01

    TFIIE is a general transcription factor for class II genes composed of two types of subunits, a large one of 56 kDa and a small of 34 kDa. By Southern analysis at high and at low stringency of a panel of mouse/human hybrid cell lines and by in situ chromosomal hybridization, we have demonstrated that both polypeptides are encoded by genes that are single copy in the human genome and are localized at 3q13-q21 and at 8p12, respectively. A TaqI RFLP (heterozygosity index of 0.07) was detected at the locus for the 56-kDa subunit.

  8. Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.

    PubMed

    Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent

    2016-01-01

    The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  10. Missense mutation in the Chlamydomonas chloroplast gene that encodes the Rubisco large subunit

    SciTech Connect

    Spreitzer, R.J.; Brown, T.; Chen, Zhixiang; Zhang, Donghong; Al-Abed, S.R. )

    1988-04-01

    The 69-12Q mutant of Chlamydomonas reinhardtii lacks ribulose-1,5-bisphosphate carboxylase activity, but retains holoenzyme protein. It results from a mutation in the chloroplast large-subunit gene that causes an isoleucine-for-threonine substitution at amino-acid residue 173. Considering that lysine-175 is involved in catalysis, it appears that mutations cluster at the active site.

  11. Candidate gene study of eight GABAA receptor subunits in panic disorder.

    PubMed

    Crowe, R R; Wang, Z; Noyes, R; Albrecht, B E; Darlison, M G; Bailey, M E; Johnson, K J; Zoëga, T

    1997-08-01

    gamma-Aminobutyric acid type A (GABAA) receptor subunit genes are candidate genes for panic disorder. Benzodiazepine agonists acting at this receptor can suppress panic attacks, and both inverse agonists and antagonists can precipitate them. The human GABAA receptor subtypes are composed of various combinations of 13 subunits, each encoded by a unique gene. The authors tested eight of these subunits in a candidate gene linkage study of panic disorder. In 21 U.S. and five Icelandic multiplex pedigrees of panic disorder, 104 individuals had DSM-III-R panic disorder (the narrowly defined affected phenotype) and 134 had either this diagnosis or subsyndromal panic disorder characterized by panic attacks that failed to meet either the criterion of attack frequency or the number of criterion symptoms necessary for a definite diagnosis (the broadly defined affected phenotype). The authors conducted lod score linkage analyses with both phenotypes using both a dominant and a recessive model of inheritance for the following loci: GABRA1-GABRA5 (alpha 1-alpha 5), GABRB1 (beta 1), GABRB3 (beta 3), and GABRG2 (gamma 2). The results failed to support the hypothesis that any of these genes cause panic disorder in a majority of the pedigrees. Within the limitations of the candidate gene linkage method, panic disorder does not appear to be caused by mutation in any of the eight GABAA receptor genes tested.

  12. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.

    PubMed

    Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao

    2011-04-01

    Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron.

    PubMed Central

    Sjöberg, B M; Hahne, S; Mathews, C Z; Mathews, C K; Rand, K N; Gait, M J

    1986-01-01

    The bacteriophage T4 gene nrdB codes for the small subunit of the enzyme ribonucleotide reductase. The T4 nrdB gene was localized between 136.1 kb and 137.8 kb in the T4 genetic map according to the deduced structural homology of the protein to the amino acid sequence of its bacterial counterpart, the B2 subunit of Escherichia coli. This positions the C-terminal end of the T4 nrdB gene approximately 2 kb closer to the T4 gene 63 than earlier anticipated from genetic recombinational analyses. The most surprising feature of the T4 nrdB gene is the presence of an approximately 625 bp intron which divides the structural gene into two parts. This is the second example of a prokaryotic structural gene with an intron. The first prokaryotic intron was reported in the nearby td gene, coding for the bacteriophage T4-specific thymidylate synthase enzyme. The nucleotide sequence at the exon-intron junctions of the T4 nrdB gene is similar to that of the junctions of the T4 td gene: the anticipated exon-intron boundary at the donor site ends with a TAA stop codon and there is an ATG start codon at the putative downstream intron-exon boundary of the acceptor site. In the course of this work the denA gene of T4 (endonuclease II) was also located. PMID:3530746

  14. Intracellular gene transfer: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase

    PubMed Central

    Daley, Daniel O.; Clifton, Rachel; Whelan, James

    2002-01-01

    Subunit 2 of cytochrome c oxidase (Cox2) in legumes offers a rare opportunity to investigate factors necessary for successful gene transfer of a hydrophobic protein that is usually mitochondrial-encoded. We found that changes in local hydrophobicity were necessary to allow import of this nuclear-encoded protein into mitochondria. All legume species containing both a mitochondrial and nuclear encoded Cox2 displayed a similar pattern, with a large decrease in hydrophobicity evident in the first transmembrane region of the nuclear encoded protein compared with the organelle-encoded protein. Mitochondrial-encoded Cox2 could not be imported into mitochondria under the direction of the mitochondrial targeting sequence that readily supports the import of nuclear encoded Cox2. Removal of the first transmembrane region promotes import ability of the mitochondrial-encoded Cox2. Changing just two amino acids in the first transmembrane region of mitochondrial-encoded Cox2 to the corresponding amino acids in the nuclear encoded Cox2 also promotes import ability, whereas changing the same two amino acids in the nuclear encoded Cox2 to what they are in the mitochondrial-encoded copy prevents import. Therefore, changes in amino acids in the mature protein were necessary and sufficient for gene transfer to allow import under the direction of an appropriate signal to achieve the functional topology of Cox2. PMID:12142462

  15. The gene encoding cytochrome-c oxidase subunit I from Synechocystis PCC6803.

    PubMed

    Alge, D; Schmetterer, G; Peschek, G A

    1994-01-28

    The gene (coxI or CoxA) encoding subunit I (COI) of cytochrome-c oxidase (cytochrome aa3) of Synechocystis PCC6803, Synechococcus PCC7942 (Anacystis nidulans R2) and Nostoc PCC8002 (Nostoc Mac), was identified by heterologous hybridization of chromosomal digests with a 17-bp oligodeoxyribonucleotide (probe C) derived from the coxI of Paracoccus denitrificans. A single genomic fragment was found to bind to probe C in all chromosomal digests. Due to its favorable signal-to-noise ratio, the genome of Synechocystis was chosen for the isolation and sequencing of this gene. A genomic DNA library in pUC18 was screened with probe C. The two probe C-positive plasmids, pDAUV1 and pDAUV2, contained a 1-kb overlapping region, with the conserved 17-bp sequence encoding the CuB-binding region of the COI polypeptide. These plasmids were subcloned into competent Escherichia coli DH5 alpha cells, and the nucleotide sequences were determined. The deduced amino acid (aa) sequences of Synechocystis COI and homologous proteins from a variety of prokaryotic and eukaryotic organisms showed an overall similarity of between 38.6 and 45.8%. Hydropathy plots revealed 12 potential transmembrane helices. All of the six histidines needed for the binding of heme a and the heme a3/CuB bimetallic center are present in the expected positions of the Synechocystis COI protein (533 aa, M(r) 59,390). A monospecific antibody raised against P. denitrificans COI gave an unequivocal immunological cross-reaction on Western blots of membrane preparations from Synechocystis, Anacystis and Nostoc, showing that the product of gene coxI is indeed synthesized and incorporated into cyanobacterial membranes.

  16. Identification and linkage of the proteasome activator complex PA28 subunit genes in zebrafish.

    PubMed

    Murray, B W; Sültmann, H; Klein, J

    2000-06-01

    PA28 is an activator of the latent 20S proteasome, a large multisubunit complex involved in intracellular proteolysis. Two forms of hexameric PA28 have been identified, PA28-(alphabeta)3 and PA28-(gamma)6, of which the former is of immunological importance. Both the PA28-alpha and PA28-beta subunits are inducible by interferon-gamma (IFN-gamma) and the PA28-(alphabeta)3 complex enhances the ability of the 20S proteasome to produce peptides suited for binding to major histocompatibility complex (Mhc) class I molecules. To identify the homologues of the PA28 subunits in zebrafish we screened a cDNA library and obtained full-length cDNA sequences of the genes PSME1, PSME2 and PSME3 coding for the PA28-alpha, PA28-beta and PA28-gamma subunits, respectively. Phylogenetic analysis indicates the existence of the ancestors of all three genes prior to the divergence of tetrapods and bony fishes. The IFN-gamma-inducible subunits, PA28-alpha and PA28-beta, evolve faster than the presumably older PA28-gamma subunit. Using zebrafish radiation hybrid panels, the genes PSME2 and PSME3 were mapped to linkage group 12 and shown to be separated by a distance of less than 2.4 cM. This observation suggests that an intrachromosomal duplication event created the precursor of the IFN-gamma-inducible genes from a PA28-gamma-like ancestor prior to their recruitment into the Mhc class I peptide presentation pathway.

  17. Gene structure of murine Gna11 and Gna15: tandemly duplicated Gq class G protein alpha subunit genes.

    PubMed

    Davignon, I; Barnard, M; Gavrilova, O; Sweet, K; Wilkie, T M

    1996-02-01

    G protein alpha subunits are encoded by a multigene family of 16 genes that can be grouped into four classes, Gq, Gs, Gi, and G12. The Gq class is composed of four genes in mouse and human, and two of these genes, Gna11 and Gna15, cosegregate on mouse chromosome 10. We have characterized the gene structures of murine Gna11 and Gna15. The two genes are tandemly duplicated in a head-to-tail array. The upstream gene, Gna11, is ubiquitously expressed, whereas expression of the downstream gene, Gna15, is restricted to hematopoietic cells. The coding sequence of each gene is contained within seven exons, and the two genes together span 43 kb, separated by 6 kb of intergenic region. We have found no evidence for alternative splicing within the coding sequence of either gene. Sequence alignments show that the positions of the six intervening sequences are conserved in the two genes, consistent with Gna11 and Gna15 arising by tandem duplication from a common progenitor gene in vertebrates. Phylogenetic trees reveal unequal evolutionary rates among alpha subunits of the Gq class. The rate of change is approximately six fold higher in Gna15 than in Gna11.

  18. Gene structure of murine Gna11 and Gna15: Tandemly duplicated Gq class G protein {alpha} subunit genes

    SciTech Connect

    Davignon, I.; Barnard, M.; Sweet, K.

    1996-02-01

    G protein {alpha} subunits are encoded by a multigene family of 16 genes that can be grouped into four classes, Gq, Gs, Gi, and G12. The Gq class is composed of four genes in mouse and human, and two of these genes, Gna11 and Gna15, cosegregate on mouse chromosome 10. We have characterized the gene structures of murine Gna11 and Gna15. The two genes are tandemly duplicated in a head-to-tail array. The upstream gene, Gna11, is ubiquitously expressed, whereas expression of the downstream gene, Gna15, is restricted to hematopoietic cells. The coding sequence of each gene is contained within seven exons, and the two genes together span 43 kb, separated by 6 kb of intergenic region. We have found no evidence for alternative splicing within the coding sequence of either gene. Sequence alignments show that the positions of the six intervening sequences are conserved in the two genes, consistent with Gna11 and Gna15 arising by tandem duplication from a common progenitor gene in vertebrates. Phylogenetic trees reveal unequal evolutionary rates among {alpha} subunits of the Gq class. The rate of change is approximately six fold higher in Gna15 than in Gna11. 43 refs., 3 figs., 2 tabs.

  19. Molecular cloning and sequencing of the gene encoding the fimbrial subunit protein of Bacteroides gingivalis.

    PubMed Central

    Dickinson, D P; Kubiniec, M A; Yoshimura, F; Genco, R J

    1988-01-01

    The gene encoding the fimbrial subunit protein of Bacteroides gingivalis 381, fimbrilin, has been cloned and sequenced. The gene was present as a single copy on the bacterial chromosome, and the codon usage in the gene conformed closely to that expected for an abundant protein. The predicted size of the mature protein was 35,924 daltons, and the secretory form may have had a 10-amino-acid, hydrophilic leader sequence similar to the leader sequences of the MePhe fimbriae family. The protein sequence had no marked similarity to known fimbrial sequences, and no homologous sequences could be found in other black-pigmented Bacteroides species, suggesting that fimbrillin represents a class of fimbrial subunit protein of limited distribution. Images PMID:2895100

  20. Molecular characterization of the gene encoding the DNA gyrase A subunit of Streptococcus pneumoniae.

    PubMed

    Balas, D; Fernández-Moreira, E; De La Campa, A G

    1998-06-01

    The gene encoding the DNA gyrase A subunit of Streptococcus pneumoniae was cloned and sequenced. The gyrA gene codes for a protein of 822 amino acids homologous to the gyrase A subunit of eubacteria. Translation of the gene in an Escherichia coli expression system revealed a 92-kDa polypeptide. A sequence-directed DNA curvature was identified in the promoter region of gyrA. The bend center was mapped and located between the -35 and -10 regions of the promoter. Primer extension analysis showed that gyrA transcription initiates 6 bp downstream of an extended -10 promoter. The possible implications of the bent DNA region as a regulatory element in the transcription of gyrA are discussed.

  1. Molecular Characterization of the Gene Encoding the DNA Gyrase A Subunit of Streptococcus pneumoniae

    PubMed Central

    Balas, Delia; Fernández-Moreira, Esteban; De La Campa, Adela G.

    1998-01-01

    The gene encoding the DNA gyrase A subunit of Streptococcus pneumoniae was cloned and sequenced. The gyrA gene codes for a protein of 822 amino acids homologous to the gyrase A subunit of eubacteria. Translation of the gene in an Escherichia coli expression system revealed a 92-kDa polypeptide. A sequence-directed DNA curvature was identified in the promoter region of gyrA. The bend center was mapped and located between the −35 and −10 regions of the promoter. Primer extension analysis showed that gyrA transcription initiates 6 bp downstream of an extended −10 promoter. The possible implications of the bent DNA region as a regulatory element in the transcription of gyrA are discussed. PMID:9603872

  2. Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish

    PubMed Central

    Fuse, Yuji; Tamaoki, Junya; Akiyama, Shin-ichi; Muratani, Masafumi

    2016-01-01

    The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7) and 2 enzymes involved in glucose metabolism (pgd and fbp1a) were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates. PMID:28116036

  3. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  4. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  5. Neural regulation of muscle acetylcholine receptor epsilon- and alpha- subunit gene promoters in transgenic mice

    PubMed Central

    1993-01-01

    The effects of denervation were investigated in mice with transgenes containing promoter elements from the muscle acetylcholine receptor epsilon- and alpha-subunit genes. The promoter sequences were coupled to a nuclear localization signal-beta-galactosidase fusion gene (nlacZ) as a reporter. While many postsynaptic specializations form in the embryo, expression of the epsilon subunit is induced during the first two postnatal weeks. When muscles were denervated at birth, before the onset of epsilon expression, epsilon nlacZ still appeared at the former synaptic sites on schedule. This result suggests that the nerve leaves a localized "trace" in the muscle that can continue to regulate transcription. An additional finding was that epsilon nlacZ expression was much stronger in denervated than in intact muscles. This suggests that the epsilon promoter is similar to the other subunits in containing elements that are activated on cessation of neural activity. However, even after denervation, epsilon nlacZ expression was always confined to the synaptic region whereas alpha nlacZ expression increased in nuclei along the entire length of the fiber. This suggests that while the epsilon gene is similar in its activity dependence to other subunit genes, it is unique in that local nerve-derived signals are essential for its expression. Consequently, inactivity enhances epsilon expression only in synaptic nuclei where such signals are present, but enhances expression throughout the muscle fiber. Truncations and an internal deletion of the epsilon promoter indicate that cis-elements essential for the response to synaptic signals are contained within 280 bp of the transcription start site. In contrast to these results in young animals, denervation in older animals leads to an unexpected reduction in nlacZ activity. However, mRNA measurements indicated that transgene expression was increased in these animals. This discordance between nlacZ mRNA and enzyme activity, demonstrates a

  6. New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    PubMed Central

    Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  7. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae.

    PubMed

    Leffers, H; Gropp, F; Lottspeich, F; Zillig, W; Garrett, R A

    1989-03-05

    The genes for the four largest subunits, A, B', B" and C, of the DNA-dependent RNA polymerase were cloned from the extreme halophile Halobacterium halobium and sequenced and their transcription was analyzed. The downstream half of this gene cluster from another extreme halophile Halococcus morrhuae was also cloned, sequenced and its transcription products characterized. The H. halobium genes were transcribed into a common transcript from an upstream promoter in the order B", B', A and C. They are flanked by, and co-transcribed with, two smaller genes coding for 75 and 139 amino acid residues, respectively. Immediately downstream from these genes were two open reading frames that are homologous to ribosomal proteins S12 and S7 from Escherichia coli. In both extreme halophiles these genes were transcribed from their own promoter, but in Hc. morrhuae there was also considerable read-through from the RNA polymerase genes. Sequence alignment studies showed that the combined B" + B' subunits are equivalent to the B subunits of the eukaryotic polymerases I and II and to the eubacterial beta subunit, while the combined A + C subunits correspond to the A subunits of eukaryotic RNA polymerases I, II and III and to the eubacterial beta' subunit. The sequence similarity to the eukaryotic subunits was always much higher than to the eubacterial subunits. Conserved sequence regions within the individual subunits were located which are likely to constitute functionally important domains; they include sites associated with rifampicin and alpha-amanitin binding and two possible zinc binding fingers. Phylogenetic analyses based on sequence alignments confirmed that the extreme halophiles belong to the archaebacterial kingdom.

  8. Regulation of expression of a soybean storage protein subunit gene. Progress report

    SciTech Connect

    Thompson, J.F.; Madison, J.T.

    1984-07-16

    We have found that soybean cotyledons could be cultured in vitro and that the storage proteins were formed essentially as on a plant. When methionine was added to the medium, the cotyledons grew faster, and the methionine content of the protein fraction was increased by over 20 percent. The high methionine content of the protein fraction was found to be due to a shift in the relative amounts of the two major storage proteins. The later effect was the result of methionine treatment suppressing the expression of one storage protein subunit gene. The goal was to determine the mechanism by which methionine is able to regulate the expression of the ..beta..-subunit gene.

  9. The human thyrotropin beta-subunit gene differs in 5' structure from murine TSH-beta genes.

    PubMed

    Guidon, P T; Whitfield, G K; Porti, D; Kourides, I A

    1988-12-01

    The gene encoding the beta-subunit of human thyrotropin (hTSH-beta) was isolated, and its nucleotide sequence was determined. The gene is 4.3 kb in length, consists of three exons and two introns, and is present as a single copy as determined by Southern blot analysis of total genomic DNA. The protein coding portion of the gene, which includes exons 2 and 3, was isolated from a human genomic phage library, while exon 1, which encodes only 5' untranslated mRNA sequence, was isolated from a plasmid library of size-selected genomic DNA fragments. Here we describe the isolation of the 5' untranslated exon of the hTSH-beta subunit and 5'-flanking region. The structure of the hTSH-beta gene is very similar to the previously characterized TSH-beta genes from mouse and rat. The genes from all three species have two distinct promoter regions, but while both promoters are utilized by the murine TSH-beta genes, the human TSH-beta gene apparently utilizes only the proximal promoter for transcription initiation. A striking difference in hTSH-beta gene structure compared to the murine genes is that exon 1 of the human gene is 36 nucleotides. An analysis of the mouse, rat, and human exon 1 and 5'-flanking region shows a high percentage of sequence homology, with the exception of a 9-nucleotide insertion 13 bases 3' from the proximal TATA box found in the human gene but not found in the other two species. We propose that this insertion results in the additional length of human exon 1 compared to the mouse and rat genes. By isolating the promoter region of the hTSH-beta gene, we can begin to identify specific sequences involved in the regulation of hTSH gene expression.

  10. The Gβ-Subunit-Encoding Gene bpp1 Controls Cyclic-AMP Signaling in Ustilago maydis

    PubMed Central

    Müller, Philip; Leibbrandt, Andreas; Teunissen, Hedwich; Cubasch, Stephanie; Aichinger, Christian; Kahmann, Regine

    2004-01-01

    In the phytopathogenic fungus Ustilago maydis, fusion of haploid cells is a prerequisite for infection. This process is controlled by a pheromone-receptor system. The receptors belong to the seven-transmembrane class that are coupled to heterotrimeric G proteins. Of four Gα subunits in U. maydis, only gpa3 has a function during mating and cyclic AMP (cAMP) signaling. Activation of the cAMP cascade induces pheromone gene expression; however, it does not lead to the induction of conjugation tubes seen after pheromone stimulation. To investigate the possibility that a Gβ subunit participates in pheromone signaling, we isolated the single β subunit gene, bpp1, from U. maydis. bpp1 deletion mutants grew filamentously and showed attenuated pheromone gene expression, phenotypes associated with Δgpa3 strains. In addition, a constitutively active allele of gpa3 suppressed the phenotype of the bpp1 deletion strains. We suggest that Bpp1 and Gpa3 are components of the same heterotrimeric G protein acting on adenylyl cyclase. Interestingly, while Δgpa3 strains are impaired in pathogenicity, Δbpp1 mutants are able to induce plant tumors. This could indicate that Gpa3 operates independently of Bpp1 during pathogenic development. PMID:15190001

  11. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    PubMed Central

    Li, Ben-Wen; Rush, Amy C.; Weil, Gary J.

    2015-01-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects

  12. Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats.

    PubMed

    Makatsori, A; Duncko, R; Schwendt, M; Moncek, F; Johansson, B B; Jezova, D

    2003-07-01

    Lewis rats that are known to be addiction-prone, develop compulsive running if they have access to running wheels. The present experiments were aimed 1) to evaluate the activation of stress systems following chronic and acute voluntary wheel running in Lewis rats by measurement of hormone release and gene expression of neuropeptides related to hypothalamic-pituitary-adrenocortical (HPA) axis activity and 2) to test the hypothesis that wheel running as a combined model of addictive behavior and stress exposure is associated with modulation of ionotropic glutamate receptor subunits in the ventral tegmental area. Voluntary running for three weeks but not for one night resulted in a rise in plasma corticosterone and adrenocorticotropic hormone (ACTH) levels (p<0.05) compared to those in control rats. Principal component analysis revealed the relation between POMC gene expression in the intermediate pituitary and running rate. Acute exposure of animals to voluntary wheel running induced a significant decrease in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluR1 subunit mRNA levels (p<0.01), while repeated voluntary physical activity increased levels of GluR1 mRNA in the ventral tegmentum (p<0.05). Neither acute nor chronic wheel running influenced N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA levels in the ventral tegmental area. Thus, the present study revealed changes in AMPA receptor subunit gene expression in a reward-related brain structure as well as an activation of HPA axis in response to compulsive wheel running in Lewis rats. It may be suggested that hormones of HPA axis and glutamate receptors belong to the factors that substantiate higher vulnerability to addictive behavior.

  13. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation

    PubMed Central

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Madhav, Sheshu M.; Kirti, P. B.

    2016-01-01

    Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2–3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in

  14. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli.

    PubMed

    Inose, Ken; Fujikawa, Masako; Yamazaki, Tomohiko; Kojima, Katsuhiro; Sode, Koji

    2003-02-21

    We have cloned a 1620-nucleotide gene encoding the catalytic subunit (alpha subunit) of a thermostable glucose dehydrogenase (GDH) from Burkholderia cepacia. The FAD binding motif was found in the N-terminal region of the alpha subunit. The deduced primary structure of the alpha subunit showed about 48% identity to the catalytic subunits of sorbitol dehydrogenase (SDH) from Gluconobacter oxydans and 2-keto-D-gluconate dehydrogenases (2KGDH) from Erwinia herbicola and Pantoea citrea. The alpha subunit of B. cepacia was expressed in Escherichia coli in its active water-soluble form, showing maximum dye-mediated GDH activity at 70 degrees C, retaining high thermal stability. A putative open reading frame (ORF) of 507 nucleotides was also found upstream of the alpha subunit encoding an 18-kDa peptide, designated as gamma subunit. The deduced primary structure of gamma subunit showed about 30% identity to the small subunits of the SDH from G. oxydans and 2KGDHs from E. herbicola and P. citrea.

  15. Pituitary transcription factor Prop-1 stimulates porcine follicle-stimulating hormone beta subunit gene expression.

    PubMed

    Aikawa, Satoko; Kato, Takako; Susa, Takao; Tomizawa, Kyoko; Ogawa, Satoshi; Kato, Yukio

    2004-11-12

    Molecular cloning of the transcription factor that modulates the expression of porcine follicle-stimulating hormone beta subunit (FSHbeta) gene was performed by the yeast one-hybrid cloning system using the -852/-746 upstream region (Fd2) as a bait sequence. We eventually cloned a pituitary transcription factor, Prop-1, which has been identified as an upstream transcription factor of Pit-1 gene. Binding ability of Prop-1 to the bait sequence was confirmed using recombinant Prop-1, and the binding property was investigated by DNase I footprinting, revealing that Prop-1 certainly bound to the large AT-rich region throughout the Fd2. Co-transfection of Prop-1 expression vector together with a reporter gene fused with Fd2 in CHO cells demonstrated an attractive stimulation of reporter gene expression. Immunohistochemistry of adult porcine pituitary confirmed the colocalization of the Prop-1 and FSHbeta subunit. This study is the first to report that Prop-1 participates in the regulation of FSHbeta gene. The present finding will provide new insights into the development of pituitary cell lineage and combined pituitary hormone deficiency (CPHD), since why the defect of Prop-1 causes CPHD including gonadotropins (FSH and LH) has yet to be clarified.

  16. Allele-specific interactions between the yeast RFC1 and RFC5 genes suggest a basis for RFC subunit-subunit interactions.

    PubMed

    Beckwith, W; McAlear, M A

    2000-11-01

    Replication factor C (RFC) is an essential, multi-subunit ATPase that functions in DNA replication, DNA repair, and DNA metabolism-related checkpoints. In order to investigate how the individual RFC subunits contribute to these functions in vivo, we undertook a genetic analysis of RFC genes from budding yeast. We isolated and characterized mutations in the RFC5 gene that could suppress the cold-sensitive phenotype of rfc1-1 mutants. Analysis of the RFC5 suppressors revealed that they could not suppress the elongated telomere phenotype, the sensitivity to DNA damaging agents, or the mutator phenotype of rfc1-1 mutants. Unlike the checkpoint-defective rfc5-1 mutation, the RFC5 suppressor mutations did not interfere with the methylmethane sulfonate- or hydroxyurea-induced phosphorylation of Rad53p. The Rfc5p suppressor substitutions mapped to amino acid positions in the conserved RFC box motifs IV-VII. Comparisons of the structures of related RFC box-containing proteins suggest that these RFC motifs may function to coordinate interactions between neighboring subunits of multi-subunit ATPases.

  17. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora).

    PubMed

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.

  18. Genetic Differentiation of the Mitochondrial Cytochrome Oxidase c Subunit I Gene in Genus Paramecium (Protista, Ciliophora)

    PubMed Central

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    Background The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. Methodology/Principal findings We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Conclusions Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp. PMID:24204730

  19. Cloning of the elk TSH beta-subunit cDNA and seasonal expression of the pituitary glycoprotein hormone genes.

    PubMed

    Clark, Rena J; Furlan, Michael A; Chedrese, P Jorge

    2005-06-01

    We report the elk (Cervus elaphus) thyroid stimulating hormone (TSH) beta-subunit cDNA cloning, nucleotide and deduced amino acid sequences. The TSH beta-subunit cDNA was obtained by RT-PCR of polyadenylated pituitary RNA. The deduced elk TSH beta-subunit peptide chain shares between 93 to 99% sequence similarities with the reported TSH beta-subunit of a sub-set of related species. The TSH beta-subunit gene is expressed in the elk pituitary gland as a mature transcript of approximately 600 bases, which corresponds to the size of the mRNA expressed in the sheep pituitary gland. Seasonal expression of the pituitary gonadotropin genes was investigated by Northern blot analyses. Samples of elk pituitary glands collected during the breeding season showed elevated steady state levels of common alpha-subunit and FSH and LH beta-subunit gene expression, consistent with the seasonal reproductive cycling of this species. Samples collected before the breeding season demonstrated decreased expression of the gonadotropin genes. TSH, which is not directly tied to reproduction, had similar levels of expression, regardless of the animal's reproductive status.

  20. Fibrinogen {alpha} genes: Conservation of bipartite transcripts and carboxy-terminal-extended {alpha} subunits in vertebrates

    SciTech Connect

    Fu, Y.; Cao, Y.; Hertzberg, K.M.; Grieninger, G.

    1995-11-01

    All three well-studied subunits of the clotting protein fibrinogen ({alpha}, {beta}, {gamma}) share N-terminal structural homologies, but until recently only the {beta} and {gamma} chains were recognized as having similar globular C-termini. With the discovery of an extra exon in the human fibrinogen {alpha} gene (exon VI), a minor form of the {alpha} subunit ({alpha}{sub E}) with an extended {beta}- and {gamma}-like C-terminus has been identified. In the present study, the polymerase chain reaction has been used to identify sequences that encode counterparts to {alpha}{sub E} in chicken, rabbit, rat, and baboon. The basic six-exon structure of the fibrinogen {alpha} genes is shown to be conserved among mammals and birds, as are the intron positions. Bipartite transcripts - still bearing an intron prior to the last exon - are found among the products of the various vertebrate fibrinogen {alpha} genes. The last exon represents the largest conserved segment of the gene and, in each species examined, encodes exactly 236 amino acids. The C-termini of these {alpha}{sub E} chains align without a single gap and are between 76 and 99% identical. Since the exon VI-encoded domain of {alpha}{sub E} is as well conserved as the corresponding regions of the {beta} and {gamma} chains, it follows that it is equally important and that {alpha}{sub E}-fibrinogen plays a vital, if as-yet unrecognized physiological role. 21 refs., 7 figs., 1 tab.

  1. Diverse gene-silencing mechanisms with distinct requirements for RNA polymerase subunits in Zea mays.

    PubMed

    Sloan, Amy E; Sidorenko, Lyudmila; McGinnis, Karen M

    2014-11-01

    In Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants. This finding suggests that transgene-derived small interfering RNAs (siRNAs) circumvented the requirement for MOP1, a predicted RNA-dependent RNA polymerase, and MOP3, the predicted largest subunit of RNA polymerase IV (Pol IV). Because the Arabidopsis protein orthologous to MOP2 is the second largest subunit of Pol IV and V, our results may indicate that hairpin-induced siRNAs cannot bypass the requirement for the predicted scaffolding activity of Pol V. In contrast to a1pIR, the b1IR transgene silenced endogenous B1 in all three homozygous mutant genotypes--mop1-1, Mop2-1, and mop3-1--suggesting that transgene mediated b1 silencing did not involve MOP2-containing Pol V complexes. Based on the combined results for a1, b1, and three previously described loci, we propose a speculative hypothesis of locus-specific deployment of Pol II, MOP2-containing Pol V, or alternative versions of Pol V with second largest subunits other than MOP2 to explain the mechanistic differences in silencing at specific loci, including one example associated with paramutation. Copyright © 2014 by the Genetics Society of America.

  2. Diverse Gene-Silencing Mechanisms with Distinct Requirements for RNA Polymerase Subunits in Zea mays

    PubMed Central

    Sloan, Amy E.; Sidorenko, Lyudmila; McGinnis, Karen M.

    2014-01-01

    In Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants. This finding suggests that transgene-derived small interfering RNAs (siRNAs) circumvented the requirement for MOP1, a predicted RNA-dependent RNA polymerase, and MOP3, the predicted largest subunit of RNA polymerase IV (Pol IV). Because the Arabidopsis protein orthologous to MOP2 is the second largest subunit of Pol IV and V, our results may indicate that hairpin-induced siRNAs cannot bypass the requirement for the predicted scaffolding activity of Pol V. In contrast to a1pIR, the b1IR transgene silenced endogenous B1 in all three homozygous mutant genotypes—mop1-1, Mop2-1, and mop3-1—suggesting that transgene mediated b1 silencing did not involve MOP2-containing Pol V complexes. Based on the combined results for a1, b1, and three previously described loci, we propose a speculative hypothesis of locus-specific deployment of Pol II, MOP2-containing Pol V, or alternative versions of Pol V with second largest subunits other than MOP2 to explain the mechanistic differences in silencing at specific loci, including one example associated with paramutation. PMID:25164883

  3. The structures of the human calcium channel {alpha}{sub 1} subunit (CACNL1A2) and {beta} subunit (CACNLB3) genes

    SciTech Connect

    Yamada, Yuichiro; Masuda, Kazuhiro; Li, Qing

    1995-05-20

    Calcium influx in pancreatic {beta}-cells is regulated mainly by L-type voltage-dependent calcium channels (VDCCs) and triggers insulin secretion. The {alpha}{sub 1} subunit (CACN4) and the {beta} subunit ({beta}{sub 3}) of VDCCs, both of which are expressed in pancreatic islets, are major components for the VDCC activity, and so they may play a critical role in the regulation of insulin secretion. The authors have determined the structures of the human CACN4 (CACNL1A2) and the human {beta}{sub 3} (CACNLB3) genes. The CACNL1A2 gene spans more than 155 kb and has 49 exons. Most of the positions interrupted by introns are well conserved between the CACNL1A2 gene and the previously reported L-type VDCC {alpha}{sub 1} subunit, CACNL1A1, gene. On the other hand, the CACNLB3 gene distributes in {approximately} 8 kb and comprises 13 exons, most of which are located together within {approximately} 5 kb. Comparisons of the genomic sequences of CACNL1A2 with the previously reported cDNA sequences indicate that there are a number of polymorphisms in the human CACNL1A2 gene. In addition, the PCR-SSCP procedure of exon 1 of CACNL1A2 revealed a change from 7 to 8 ATG trinucleotide repeats in a patient with noninsulin-dependent diabetes mellitus (NIDDM), resulting in an addition of methionine at the amino-terminus of CACN4. The determination of the structures of the human CACNL1A2 and CACNLB3 genes should facilitate study of the role of these genes in the development of NIDDM and also other genetic diseases such as long QT syndrome. 39 refs., 3 figs., 3 tabs.

  4. Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h.

    PubMed

    Jensen, P E; Willows, R D; Petersen, B L; Vothknecht, U C; Stummann, B M; Kannangara, C G; von Wettstein, D; Henningsen, K W

    1996-03-07

    Barley mutants in the loci Xantha-f, Xantha-g and Xantha-h, when fed with 5-aminolevulinate in the dark, accumulate protoporphyrin IX. Mutant alleles at these loci that are completely blocked in protochlorophyllide synthesis are also blocked in development of prolamellar bodies in etioplasts. In contrast to wild type, the xan-f, -g and -h mutants had no detectable Mg-chelatase activity, whereas they all had methyltransferase activity for synthesis of Mg-protoporphyrin monomethyl ester. Antibodies recognising the CH42 protein of Arabidopsis thaliana and the OLIVE (OLI) protein of Antirrhinum majus immunoreacted in wild-type barley with 42 and 150 kDa proteins, respectively. The xan-h mutants lacked the protein reacting with antibodies raised against the CH42 protein. Two xan-f mutants lacked the 150 kDa protein recognised by the anti-OLI antibody. Barley genes homologous to the A. majus olive and the A. thaliana Ch-42 genes were cloned using PCR and screening of cDNA and genomic libraries. Probes for these genes were applied to Northern blots of RNA from the xantha mutants and confirmed the results of the Western analysis. The mutants xan-f27, -f40, -h56 and -h57 are defective in transcript accumulation while -h38 is defective in translation. Southern blot analysis established that h38 has a deletion of part of the gene. Mutants xan-f10 and -f41 produce both transcript and protein and it is suggested that these mutations are in the catalytic sites of the protein. It is concluded that X an-f -h genes encode two subunits of the barley Mg-chelatase and that X an-g is likely to encode a third subunit. The XAN-F protein displays 82% amino acid sequence identity to the OLI protein of Antirrhinum, 66% to the Synechocystis homologue and 34% identity to the Rhodobacter BchH subunit of Mg-chelatase. The XAN-H protein has 85% amino acid sequence identity to the Arabidopsis CH42 protein, 69% identity to the Euglena CCS protein, 70% identity to the Cryptomonas BchA and

  5. Multiple Thyrotropin β-Subunit and Thyrotropin Receptor-Related Genes Arose during Vertebrate Evolution

    PubMed Central

    Maugars, Gersende; Dufour, Sylvie; Cohen-Tannoudji, Joëlle; Quérat, Bruno

    2014-01-01

    Thyroid-stimulating hormone (TSH) is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated. PMID:25386660

  6. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core. PMID:25950761

  7. Isolation and characterization of rubisco small subunit gene promoter from common wheat (Triticum aestivum L.).

    PubMed

    Mukherjee, Shalini; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-01-01

    Choice of an appropriate promoter is critical to express target genes in intended tissues and developmental stages. However, promoters capable of directing gene expression in specific tissues and stages are not well characterized in monocot species. To identify such a promoter in wheat, this study isolated a partial sequence of the wheat small subunit of RuBisCO (TarbcS) promoter. In silico analysis revealed the presence of elements that are characteristic to rbcS promoters of other, mainly dicot, species. Transient expression of the TarbcS:GUS in immature wheat embryos and tobacco leaves but not in the wheat roots indicate the functionality of the TarbcS promoter fragment in directing the expression of target genes in green plant tissues.

  8. Activity, Expression and Function of a Second Drosophila Protein Kinase a Catalytic Subunit Gene

    PubMed Central

    Melendez, A.; Li, W.; Kalderon, D.

    1995-01-01

    The DC2 gene was isolated previously on the basis of sequence similarity to DCO, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. PMID:8601490

  9. Gyrase activity and number of copies of the gyrase B subunit gene in Haemophilus influenzae.

    PubMed Central

    Cabrera-Juárez, E; Setlow, J K

    1985-01-01

    Gyrase activities in extracts of various strains of Haemophilus influenzae can differ by more than an order of magnitude (J. K. Setlow, E. Cabrera-Juárez, W. L. Albritton, D. Spikes, and A. Mutschler, J. Bacteriol. 164:525-534, 1985). Measurements of in vitro activity and copy number indicated that most of these differences arose from variations in the number of copies of the gene for the gyrase B subunit, with some strains containing multicopy plasmids coding for that subunit. The quantitative relationship between gyrase and copy number depended on the mutations in the plasmids and in the host. The gyrase and copy number were considerably lower in plasmid-bearing strains carrying the prophage HP1c1. Two mutations affecting gyrase that are apparently regulatory caused an increase in gyrase without a concomitant increase in copy number. The possibility that the in vivo gyrase activity did not reflect the in vitro data was explored by measurement of alkaline phosphatase and ATPase activity in the extracts. Alkaline phosphatase activity increased with increasing gyrase activity measured in vitro, but ATPase activity did not. We conclude that extra supercoiling enhanced transcription of the alkaline phosphatase gene but not the ATPase gene and that it is unlikely that there is much discrepancy between gyrase activity assayed in vitro and the activity in the cell. PMID:2997116

  10. Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits

    NASA Technical Reports Server (NTRS)

    Li, Xiangyang; Xing, Jinpeng; Gianfagna, Thomas J.; Janes, Harry W.

    2002-01-01

    ADP-glucose pyrophosphorylase (AGPase, EC2.7.7.27) is a key regulatory enzyme in starch biosynthesis. The enzyme is a heterotetramer with two S and two B subunits. In tomato, there are three multiple forms of the S subunit gene. Agp S1, S2 and B are highly expressed in fruit from 10 to 25 days after anthesis. Agp S3 is only weakly expressed in fruit. Sucrose significantly elevates expression of Agp S1, S2 and B in both leaves and fruits. Agp S1 exhibits the highest degree of regulation by sucrose. In fact, sucrose may be required for Agp S1 expression. For excised leaves incubated in water, no transcripts for Agp S1 could be detected in the absence of sucrose, whereas it took up to 16 h in water before transcripts were no longer detectable for Agp S2 and B. Neither Agp S3 nor the tubulin gene is affected by sucrose, demonstrating that this response is specifically regulated by a carbohydrate metabolic signal, and is not due to a general increase in metabolism caused by sucrose treatment. Truncated versions of the promoter for Agp S1 indicate that a specific region 1.3-3.0 kb upstream from the transcription site is responsible for sucrose sensitivity. This region of the S1 promoter contains several cis-acting elements present in the promoters of other genes that are also regulated by sucrose. c2002 Elsevier Science Ireland Ltd. All rights reserved.

  11. Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits

    NASA Technical Reports Server (NTRS)

    Li, Xiangyang; Xing, Jinpeng; Gianfagna, Thomas J.; Janes, Harry W.

    2002-01-01

    ADP-glucose pyrophosphorylase (AGPase, EC2.7.7.27) is a key regulatory enzyme in starch biosynthesis. The enzyme is a heterotetramer with two S and two B subunits. In tomato, there are three multiple forms of the S subunit gene. Agp S1, S2 and B are highly expressed in fruit from 10 to 25 days after anthesis. Agp S3 is only weakly expressed in fruit. Sucrose significantly elevates expression of Agp S1, S2 and B in both leaves and fruits. Agp S1 exhibits the highest degree of regulation by sucrose. In fact, sucrose may be required for Agp S1 expression. For excised leaves incubated in water, no transcripts for Agp S1 could be detected in the absence of sucrose, whereas it took up to 16 h in water before transcripts were no longer detectable for Agp S2 and B. Neither Agp S3 nor the tubulin gene is affected by sucrose, demonstrating that this response is specifically regulated by a carbohydrate metabolic signal, and is not due to a general increase in metabolism caused by sucrose treatment. Truncated versions of the promoter for Agp S1 indicate that a specific region 1.3-3.0 kb upstream from the transcription site is responsible for sucrose sensitivity. This region of the S1 promoter contains several cis-acting elements present in the promoters of other genes that are also regulated by sucrose. c2002 Elsevier Science Ireland Ltd. All rights reserved.

  12. [The glutamate-cysteine ligase catalytic subunit gene C-129T and modifier subunit gene G-23T polymorphisms and risk for coronary diseases].

    PubMed

    Zuo, Hong-peng; Xu, Wen-jun; Luo, Ming; Zhu, Zhong-zheng; Zhu, Guan-shan

    2007-07-01

    To investigate the possible association between the glutamate-cysteine ligase catalytic subunit gene (GCLC) C-129T and modifier subunit gene (GCLM) G-23T polymorphisms with coronary heart disease (CHD) in Chinese population. GCLC C-129T and GCLM G-23T genotypes were determined in 212 CHD patients and 218 healthy individuals using a PCR-based restriction fragment length polymorphism (RFLP) method. Odds ratio (OR) for CHD and 95% confidence interval (CI) from unconditional logistic regression models were used to evaluate relative risks. The T allele of the GCLC C-129T polymorphism was more frequently found in CHD cases than in controls (P < 0.01) and individuals with GCLC-129T allele had a significantly higher risk for CHD (OR = 2.38, 95% CI: 1.25 - 4.54) as compared to individuals with the -129C allele. When compared with CC homozygote, CT heterozygote had a 2.14-fold higher risk for CHD (95% CI: 1.08 - 4.24, P < 0.05) and carriers of the-129T allele (CT or TT genotype) also had a similarly 2.28-fold higher risk for CHD (95% CI: 1.16 - 4.49, P < 0.05). In contrast, the frequency of T allele of the GCLM G-23T polymorphism was lower in CHD patients than that of controls (0.174 vs. 0.264) and individuals with the GCLM-23T allele had a significantly lower risk for CHD (OR = 0.59, 95% CI: 0.42 - 0.82, P < 0.01) as compared to the -23G allele. When compared with GG homozygote, the OR of CHD for GT heterozygote was 0.71 (95% CI: 0.47 - 1.08, P > 0.05), for TT homozygote was 0.18 (95% CI: 0.06 - 0.55, P < 0.01), and for carriers of the -23T allele (GT or TT genotype) was 0.61 (95% CI: 0.42 - 0.92, P < 0.05). The GCLC C-129T polymorphism may be one of the genetic risk factor while the GCLM G-23T polymorphism may be one of the genetic protective factors for CHD in this Chinese population.

  13. Sequence analysis of dolphin ferritin H and L subunits and possible iron-dependent translational control of dolphin ferritin gene

    PubMed Central

    Takaesu, Azusa; Watanabe, Kiyotaka; Takai, Shinji; Sasaki, Yukako; Orino, Koichi

    2008-01-01

    Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit). Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR) fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas). The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98) ; L: 98–100%). The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed. PMID:18954429

  14. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    PubMed

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  15. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    PubMed Central

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-01-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold. PMID:6458041

  16. The murine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor.

    PubMed Central

    Zhu, Y; Pless, M; Inhorn, R; Mathey-Prevot, B; D'Andrea, A D

    1996-01-01

    Cytokines regulate cell growth and differentiation by inducing the expression of specific target genes. We have recently isolated a cytokine-inducible, immediate-early cDNA, DUB-1, that encodes a deubiquitinating enzyme. The DUB-1 mRNA was specifically induced by the receptors for interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5, suggesting a role for the beta common (betac subunit known to be shared by these receptors. In order to identify the mechanism of cytokine induction, we isolated a murine genomic clone for DUB-1 containing a functional promoter region. The DUB-1 gene contains two exons, and the nucleotide sequence of its coding region is identical to the sequence of DUB-1 cDNA. Various regions of the 5' flanking region of the DUB-1 gene were assayed for cytokine-inducible activity. An enhancer region that retains the beta c-specific inducible activity of the DUB-1 gene was identified. Enhancer activity was localized to a 112-bp fragment located 1.4 kb upstream from the ATG start codon. Gel mobility shift assays revealed two specific protein complexes that bound to this minimal enhancer region. One complex was induced by betac signaling, while the other was noninducible. Finally, the membrane-proximal region of human betac was required for DUB-1 induction. In conclusion, DUB-1 is the first example of an immediate-early gene that is induced by a specific subunit of a cytokine receptor. Further analysis of the DUB-1 enhancer element may reveal specific determinants of a betac-specific signaling pathway. PMID:8756639

  17. Expression profile of G-protein βγ subunit gene transcripts in the mouse olfactory sensory epithelia

    PubMed Central

    Sathyanesan, Aaron; Feijoo, Adrian A.; Mehta, Saloni T.; Nimarko, Akua F.; Lin, Weihong

    2013-01-01

    Heterotrimeric G-proteins mediate a variety of cellular functions, including signal transduction in sensory neurons of the olfactory system. Whereas the Gα subunits in these neurons are well characterized, the gene transcript expression profile of Gβγ subunits is largely missing. Here we report our comprehensive expression analysis to identify Gβ and Gγ subunit gene transcripts in the mouse main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Our reverse transcriptase PCR (RT-PCR) and realtime qPCR analyses of all known Gβ (β1,2,3,4,5) and Gγ (γ1,2,2t,3,4,5,7,8,10,11,12,13) subunits indicate presence of multiple Gβ and Gγ subunit gene transcripts in the MOE and the VNO at various expression levels. These results are supported by our RNA in situ hybridization (RISH) experiments, which reveal the expression patterns of two Gβ subunits and four Gγ subunits in the MOE as well as one Gβ and four Gγ subunits in the VNO. Using double-probe fluorescence RISH and line intensity scan analysis of the RISH signals of two dominant Gβγ subunits, we show that Gγ13 is expressed in mature olfactory sensory neurons (OSNs), while Gβ1 is present in both mature and immature OSNs. Interestingly, we also found Gβ1 to be the dominant Gβ subunit in the VNO and present throughout the sensory epithelium. In contrast, we found diverse expression of Gγ subunit gene transcripts with Gγ2, Gγ3, and Gγ13 in the Gαi2-expressing neuronal population, while Gγ8 is expressed in both layers. Further, we determined the expression of these Gβγ gene transcripts in three post-natal developmental stages (p0, 7, and 14) and found their cell-type specific expression remains largely unchanged, except the transient expression of Gγ2 in a single basal layer of cells in the MOE during P7 and P14. Taken together, our comprehensive expression analyses reveal cell-type specific gene expression of multiple Gβ and Gγ in sensory neurons of the olfactory system. PMID:23759900

  18. The `heavy' subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the gene, nucleotide and amino acid sequence

    PubMed Central

    Michel, H.; Weyer, K. A.; Gruenberg, H.; Lottspeich, F.

    1985-01-01

    The gene coding for the `heavy' subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis was isolated in an expression vector. Expression of the heavy subunit in Escherichia coli was detected with antibodies raised against crystalline reaction centres. The entire subunit, and not a fusion protein, was expressed in E. coli. The protein coding region of the gene was sequenced and the amino acid sequence derived. Part of the amino acid sequence was confirmed by chemical sequence analysis of the protein. The heavy subunit consists of 258 amino acids and its mol. wt. is 28 345. It possesses one membrane-spanning α-helical segment, as was revealed by the concomitant X-ray structure analysis. ImagesFig. 1.Fig. 2. PMID:16453623

  19. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers.

    PubMed

    Lam, David Chi-Leung; Girard, Luc; Ramirez, Ruben; Chau, Wing-Shun; Suen, Wai-sing; Sheridan, Shelley; Tin, Vicky P C; Chung, Lap-ping; Wong, Maria P; Shay, Jerry W; Gazdar, Adi F; Lam, Wah-kit; Minna, John D

    2007-05-15

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChR) on bronchial epithelial cells, can regulate cellular proliferation and apoptosis via activating the Akt pathway. Delineation of nAChR subtypes in non-small-cell lung cancers (NSCLC) may provide information for prevention or therapeutic targeting. Expression of nAChR subunit genes in 66 resected primary NSCLCs, 7 histologically non-involved lung tissues, 13 NSCLC cell lines, and 6 human bronchial epithelial cell lines (HBEC) was analyzed with quantitative PCR and microarray analysis. Five nonmalignant HBECs were exposed to nicotine in vitro to study the variation of nAChR subunit gene expression with nicotine exposure and removal. NSCLCs from nonsmokers showed higher expression of nAChR alpha6 (P < 0.001) and beta3 (P = 0.007) subunit genes than those from smokers, adjusted for gender. In addition, nAChR alpha4 (P < 0.001) and beta4 (P = 0.029) subunit gene expression showed significant difference between NSCLCs and normal lung. Using Affymetrix GeneChip U133 Sets, 65 differentially expressed genes associated with NSCLC nonsmoking nAChR alpha6beta3 phenotype were identified, which gave high sensitivity and specificity of prediction. nAChR alpha1, alpha5, and alpha7 showed significant reversible changes in expression levels in HBECs upon nicotine exposure. We conclude that between NSCLCs from smokers and nonsmokers, different nAChR subunit gene expression patterns were found, and a 65-gene expression signature was associated with nonsmoking nAChR alpha6beta3 expression. Finally, nicotine exposure in HBECs resulted in reversible differences in nAChR subunit gene expression. These results further implicate nicotine in bronchial carcinogenesis and suggest targeting nAChRs for prevention and therapy in lung cancer.

  20. Activity, expression and function of a second Drosophila protein kinase a catalytic subunit gene

    SciTech Connect

    Melendez, A.; Li, W.; Kalderon, D.

    1995-12-01

    The DC2 was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. 62 refs., 10 figs., 2 tabs.

  1. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review.

    PubMed

    Sheng, Juan-Juan; Jin, Jian-Ping

    2014-01-01

    Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.

  2. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus

    SciTech Connect

    Menon, N.K.; Peck, H.D. Jr.; Le Gall, J.; Przybyla, A.E.

    1987-12-01

    The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities.

  3. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus.

    PubMed Central

    Menon, N K; Peck, H D; Gall, J L; Przybyla, A E

    1987-01-01

    The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities. Images PMID:3316183

  4. Virus-induced gene silencing of RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    USDA-ARS?s Scientific Manuscript database

    In eukaryotic cells, RNA polymerase III is highly conserved, contains 17 subunits and transcribes housekeeping genes such as ribosomal 50S rRNA, tRNA and other small RNAs. Functional roles of the RPC5 are poorly characterized in the literature. In this work, we report that virus-induced gene silenci...

  5. Assignment of the gene for the. beta. subunit of thyroid-stimulating hormone to the short arm of human chromosome 1

    SciTech Connect

    Dracopoli, N.C.; Rettig, W.J.; Whitfield, G.K.; Darlington, G.J.; Spengler, B.A.; Biedler, J.L.; Old, L.J.; Kourides, I.A.

    1986-03-01

    The chromosomal locations of the genes for the ..beta.. subunit of human thyroid-stimulating hormone (TSH) and the glycoprotein hormone ..cap alpha.. subunit have been determined by restriction enzyme analysis of DNA extracted from rodent-human somatic cell hybrids. Human chorionic gonadotropin (CG) ..cap alpha..-subunit cDNA and a cloned 0.9-kilobase (kb) fragment of the human TSH ..beta..-subunit gene were used as hybridization probes in the analysis of Southern blots of DNA extracted from rodent-human hybrid clones. Analysis of the segregation of 5- and 10-kb EcoRI fragments hybridizing to CG ..cap alpha..-subunit cDNA confirmed the previous assignment of this gene to chromosome 6. Analysis of the patterns of segregation of a 2.3-kb EcoRI fragment containing human TSH ..beta..-subunit sequences permitted the assignment of the TSH ..beta..-subunit gene to human chromosome 1. The subregional assignment of TSH ..beta.. subunit to chromosome 1p22 was made possible by the additional analysis of a set of hybrids containing partially overlapping segments of this chromosome. Human TSH ..beta.. subunit is not syntenic with genes encoding the ..beta.. subunits of CG, luteinizing hormone, or follicle-stimulating hormone and is assigned to a conserved linkage group that also contains the structural genes for the ..beta.. subunit of nerve growth factor (NGFB) and the proto-oncogene N-ras (NRAS).

  6. Comparative genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult carnivores.

    PubMed

    Zaldívar-López, Sara; Rowell, Jennie L; Fiala, Elise M; Zapata, Isain; Couto, C Guillermo; Alvarez, Carlos E

    2017-02-08

    The main function of hemoglobin (Hb) is to transport oxygen in the circulation. It is among the most highly studied proteins due to its roles in physiology and disease, and most of our understanding derives from comparative research. There is great diversity in Hb gene evolution in placental mammals, mostly in the repertoire and regulation of the β-globin subunits. Dogs are an ideal model in which to study Hb genes because: 1) they are members of Laurasiatheria, our closest relatives outside of Euarchontoglires (including primates, rodents and rabbits), 2) dog breeds are isolated populations with their own Hb-associated genetics and diseases, and 3) their high level of health care allows for development of biomedical investigation and translation. We established that dogs have a complement of five α and five β-globin genes, all of which can be detected as spliced mRNA in adults. Strikingly, HBD, the allegedly-unnecessary adult β-globin protein in humans, is the primary adult β-globin in dogs and other carnivores; moreover, dogs have two active copies of the HBD gene. In contrast, the dominant adult β-globin of humans, HBB, has high sequence divergence and is expressed at markedly lower levels in dogs. We also showed that canine HBD and HBB genes are complex chimeras that resulted from multiple gene conversion events between them. Lastly, we showed that the strongest signal of evolutionary selection in a high-altitude breed, the Bernese Mountain Dog, lies in a haplotype block that spans the β-globin locus. We report the first molecular genetic characterization of Hb genes in dogs. We found important distinctions between adult β-globin expression in carnivores compared to other members of Laurasiatheria. Our findings are also likely to raise new questions about the significance of human HBD. The comparative genomics of dog hemoglobin genes sets the stage for diverse research and translation.

  7. The gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis contains a group I intron.

    PubMed Central

    De Wachter, R; Neefs, J M; Goris, A; Van de Peer, Y

    1992-01-01

    The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing. PMID:1561081

  8. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene

    PubMed Central

    Roignant, Jean-Yves; Treisman, Jessica E.

    2010-01-01

    Summary The exon junction complex (EJC) is assembled on spliced mRNAs upstream of exon-exon junctions, and can regulate their subsequent translation, localization, or degradation. We isolated mutations in Drosophila mago nashi (mago), which encodes a core EJC subunit, based on their unexpectedly specific effects on photoreceptor differentiation. Loss of Mago prevents Epidermal growth factor receptor signaling, due to a large reduction in MAPK mRNA levels. MAPK expression also requires the EJC subunits Y14 and eIF4AIII, and EJC-associated splicing factors. Mago depletion does not affect the transcription or stability of MAPK mRNA, but alters its splicing pattern. MAPK expression from an exogenous promoter requires Mago only when the template includes introns. MAPK is the primary functional target of mago in eye development; in cultured cells, Mago knockdown disproportionately affects other large genes located in heterochromatin. These data support a nuclear role for EJC components in splicing a specific subset of introns. PMID:20946982

  9. Molecular characterisation and evolution of HMW glutenin subunit genes in Brachypodium distachyon L.

    PubMed

    Subburaj, Saminathan; Chen, Guanxing; Han, Caixia; Lv, Dongwen; Li, Xiaohui; Zeller, Friedrich J; Hsam, Sai L K; Yan, Yueming

    2014-02-01

    Brachypodium distachyon, a small wild grass within the Pooideae family, is a new model organism for exploring the functional genomics of cereal crops. It was shown to have close relationships to wheat, barley and rice. Here, we describe the molecular characterisation and evolutionary relationships of high molecular weight glutenin subunits (HMW-GS) genes from B. distachyon. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), high performance capillary electrophoresis (HPCE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses demonstrated that there was no HMW-GS expression in the Brachypodium grains due to the silencing of their encoding genes. Through allele-specific polymerase chain reaction (AS-PCR) amplification and cloning, a total of 13 HMW-GS encoding genes from diploid, tetraploid and hexaploid Brachypodium species were obtained, and all of them had typical structural features of y-type HMW-GS genes from common wheat and related species, particularly more similar to the 1Dy12 gene. However, the presence of an in-frame premature stop codon (TAG) at position 1521 in the coding region resulted in the conversion of all the genes to pseudogenes. Further, quantitative real-time PCR (qRT-PCR) analysis revealed that HMW-GS genes in B. distachyon displayed a similar trend, but with a low transcriptional expression profile during grain development due to the occurrence of the stop codon. Phylogenetic analysis showed that the highly conserved Glu-1-2 loci were presented in B. distachyon, which displayed close phylogenetic evolutionary relationships with Triticum and related species.

  10. Molecular Evolution of the Small Subunit of Ribulose Bisphosphate Carboxylase: Nucleotide Substitution and Gene Conversion

    PubMed Central

    Meagher, R. B.; Berry-Lowe, S.; Rice, K.

    1989-01-01

    The nucleotide sequences encoding the mature portion of 31 ribulose 1,5-bisphosphate carboxylase small subunit (SSU) genes from 17 genera of plants, green algae and cyanobacteria were examined. Among the 465 pairwise sequence comparisons, SSU multigene family members within the same species were more similar to each other in nonsynonymous or replacement nucleotide substitutions (RNS) than they were to SSU sequences in any other organism. The concerted evolution of independent SSU gene lineages within closely related plant species suggests that homogenization of RNS positions has occurred at least once in the life of each genus. The rate of expected RNS among mature SSU sequences was calculated to be 1.25 X 10(-9)/site/yr for the first 70 million years (MY) of divergence with a significant slowing to 0.13 X 10(-9)/site/yr for the next 1,400 MY. The data suggest that mature SSU sequences do not accumulate more than 20% differences in the RNS positions without compensatory changes in other components of this enzyme system. During the first 70 MY of divergence between species, the rate of expected synonymous or silent nucleotide substitutions (SNS) is ~6.6 X 10(-9)/site/yr. This is five times the RNS rate and is similar to the silent rate observed in animals. In striking contrast, SNS and RNS do not show this correlation among SSU gene family members within a species. A mechanism involving gene conversion within the exons followed by selection for biased gene conversion products with conservation of RNS positions and divergence of SNS positions is discussed. A SSU gene tree based on corrected RNS for 31 SSU sequences is presented and agrees well with a species tree based on morphological and cytogenetic traits for the 17 genera examined. SSU gene comparisons may be useful in predicting phylogenetic relationships and in some cases divergence times of various plant, algal and cyanobacterial species. PMID:2515110

  11. Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.

    PubMed

    Ling, S S; Zhu, Y; Lan, D; Li, D S; Pang, H Z; Wang, Y; Li, D Y; Wei, R P; Zhang, H M; Wang, C D; Hu, Y D

    2017-01-23

    The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.

  12. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls.

    PubMed

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H M; Gurjar, Suraj K; Gupta, I D; Verma, Archana

    2017-02-01

    This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Genomic DNA was isolated by phenol-chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5'UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible.

  13. The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes.

    PubMed

    Tsubokura, Yasutaka; Hajika, Makita; Kanamori, Hiroyuki; Xia, Zhengjun; Watanabe, Satoshi; Kaga, Akito; Katayose, Yuichi; Ishimoto, Masao; Harada, Kyuya

    2012-02-01

    β-conglycinin, a major seed protein in soybean, is composed of α, α', and β subunits sharing a high homology among them. Despite its many health benefits, β-conglycinin has a lower amino acid score and lower functional gelling properties compared to glycinin, another major soybean seed protein. In addition, the α, α', and β subunits also contain major allergens. A wild soybean (Glycine soja Sieb et Zucc.) line, 'QT2', lacks all of the β-conglycinin subunits, and the deficiency is controlled by a single dominant gene, Scg-1 (Suppressor of β-conglycinin). This gene was characterized using a soybean cultivar 'Fukuyutaka', 'QY7-25', (its near-isogenic line carrying the Scg-1 gene), and the F₂ population derived from them. The physical map of the Scg-1 region covered by lambda phage genomic clones revealed that the two α-subunit genes, a β-subunit gene, and a pseudo α-subunit gene were closely organized. The two α-subunit genes were arranged in a tail-to-tail orientation, and the genes were separated by 197 bp in Scg-1 compared to 3.3 kb in the normal allele (scg-1). In addition, small RNA was detected in immature seeds of the mutants by northern blot analysis using an RNA probe of the α subunit. These results strongly suggest that β-conglycinin deficiency in QT2 is controlled by post-transcriptional gene silencing through the inverted repeat of the α subunits.

  14. The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon.

    PubMed Central

    Yepiz-Plascencia, G M; Radebaugh, C A; Hallick, R B

    1990-01-01

    The rpoB gene coding for a beta-like subunit of the chloroplast DNA-dependent RNA polymerase has been located on the chloroplast genome of Euglena gracilis distal to the rrnC ribosomal RNA operon. We have determined 5760 base-pairs of DNA sequence, including 97 bp of the 5S rRNA gene, an intergenic spacer of 1264 bp, the rpoB gene of 4249 bp, 84 bp spacer and 67 bp of the rpoC1 gene. The rpoB gene is of the same polarity as the rRNA operons. The organization of the rpoB and rpoC genes resembles the E. coli rpoB-rpoC and higher plant chloroplast rpoB-rpoC1-rpoC2 operons. The Euglena rpoB gene (1082 codons) encodes a polypeptide with a predicted molecular weight of 124,288. The rpoB gene is interrupted by seven Group III introns of 93, 95, 94, 99, 101, 110 and 99 bp respectively and a Group II intron of 309 bp. All other known rpoB genes lack introns. All the exon-exon junctions were experimentally determined by cDNA cloning and sequencing or direct primer extension RNA sequencing. Transcripts from the rpoB locus were characterized by Northern hybridization. Fully-spliced, monocistronic rpoB mRNA, as well as rpoB-rpoC1 and rpoB1-rpoC1-rpoC2 mRNAs were identified. Images PMID:2110656

  15. The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon.

    PubMed

    Yepiz-Plascencia, G M; Radebaugh, C A; Hallick, R B

    1990-04-11

    The rpoB gene coding for a beta-like subunit of the chloroplast DNA-dependent RNA polymerase has been located on the chloroplast genome of Euglena gracilis distal to the rrnC ribosomal RNA operon. We have determined 5760 base-pairs of DNA sequence, including 97 bp of the 5S rRNA gene, an intergenic spacer of 1264 bp, the rpoB gene of 4249 bp, 84 bp spacer and 67 bp of the rpoC1 gene. The rpoB gene is of the same polarity as the rRNA operons. The organization of the rpoB and rpoC genes resembles the E. coli rpoB-rpoC and higher plant chloroplast rpoB-rpoC1-rpoC2 operons. The Euglena rpoB gene (1082 codons) encodes a polypeptide with a predicted molecular weight of 124,288. The rpoB gene is interrupted by seven Group III introns of 93, 95, 94, 99, 101, 110 and 99 bp respectively and a Group II intron of 309 bp. All other known rpoB genes lack introns. All the exon-exon junctions were experimentally determined by cDNA cloning and sequencing or direct primer extension RNA sequencing. Transcripts from the rpoB locus were characterized by Northern hybridization. Fully-spliced, monocistronic rpoB mRNA, as well as rpoB-rpoC1 and rpoB1-rpoC1-rpoC2 mRNAs were identified.

  16. Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria.

    PubMed

    Polet, Stephane; Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-03-01

    In his grand monograph of Radiolaria, Ernst Haeckel originally included Phaeodarea together with Acantharea and Polycystinea, all three taxa characterized by the presence of a central capsule and the possession of axopodia. Cytological and ultrastructural studies, however, questioned the monophyly of Radiolaria, suggesting an independent evolutionary origin of the three taxa, and the first molecular data on Acantharea and Polycystinea brought controversial results. To test further the monophyly of Radiolaria, we sequenced the complete small subunit ribosomal RNA gene of three phaeodarians and three polycystines. Our analyses reveal that phaeodarians clearly branch among the recently described phylum Cercozoa, separately from Acantharea and Polycystinea. This result enhances the morphological variability within the phylum Cercozoa, which already contains very heterogeneous groups of protists. Our study also confirms the common origin of Acantharea and Polycystinea, which form a sister-group to the Cercozoa, and allows a phylogenetic reinterpretation of the morphological features of the three radiolarian groups.

  17. Phylogenetic relationships among onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene.

    PubMed

    Gleeson, D M; Rowell, D M; Tait, N N; Briscoe, D A; Higgins, A V

    1998-10-01

    Nucleotide sequence variation in a region of the mitochondrial cytochrome oxidase subunit I (COI) gene (456 bp) was examined for 26 onychophorans representing 15 genera of the family Peripatopsidae from Australasia. Sequence analysis revealed high intergeneric COI sequence divergence (up to 20.6% corrected) but low amino acid substitution rates, with high levels of transitional saturation evident. Among unambiguously alignable sequences, parsimony and distance analyses revealed a broadly congruent tree topology, robust to various algorithms and statistical analysis. There are two major groupings. One, largely unresolved, consists entirely of Australian mainland taxa. The other, for which there is convincing support, includes all of the New Zealand and Tasmanian taxa together with one mainland Australian species. In respect of the two major groupings, this topology is consistent with previous morphologically based phylogenies and provides further evidence for an ancient radiation within the mainland Australian Onychophora. The biogeographic implications of the close affinities revealed between the Tasmanian and New Zealand taxa are discussed.

  18. Promoter Structure of the RNA Polymerase II Large Subunit Gene in Caenorhabditis elegans and C. briggsae.

    PubMed

    Bird, D M; Kaloshian, I; Molinari, S

    1997-06-01

    The 5'-end of the Caenorhabditis elegans ama-1 gene transcript, which encodes the largest subunit of RNA polymerase II, was cloned. Sequencing revealed that the message is trans-spliced. To characterize the Ce-ama-1 promoter, DNA sequence spanning 3 kb upstream from the initiation codon was determined. Typical elements, such as TATA and Spl sites, were absent. The homologue of ama-1 in C. briggsae, Cb-ama-1, was isolated and its 5' flanking sequence compared with that of Ce-ama-1, revealing only limited similarity, although both sequences included a potential initiator-class transcriptional regulator and phased repeats of an ATC motif. The latter elements are postulated to facilitate DNA bending and may play a role in transcription regulation.

  19. Protein phosphatase 2A subunit gene haplotypes and proliferative breast disease modify breast cancer risk

    PubMed Central

    Dupont, William D.; Breyer, Joan P.; Bradley, Kevin M.; Schuyler, Peggy A.; Plummer, W. Dale; Sanders, Melinda E.; Page, David L.; Smith, Jeffrey R.

    2009-01-01

    BACKGROUND Protein phosphatase 2A (PP2A) is a major cellular phosphatase and plays key regulatory roles in growth, differentiation, and apoptosis. Women diagnosed with benign proliferative breast disease are at increased risk for the subsequent development of breast cancer. METHODS We evaluated genetic variation of PP2A holoenzyme subunits for potential contribution to breast cancer risk. We performed a nested case-control investigation of a cohort of women with a history of benign breast disease. Subjects were followed for an average of 18 years; DNA prepared from the original archival benign breast biopsy (1954 – 1995) was available for 450 women diagnosed with breast cancer on follow-up, and for 890 of their 900 controls who were matched on race, age, and year of entry biopsy. RESULTS Single allele- and haplotype-based tests of association were conducted, with assessment of significance by permutation testing. We identified significant risk and protective haplotypes of PPP2R1A, giving odds ratios of 1.63 (95% CI 1.3 – 2.1) and 0.55 (95% CI 0.41 – 0.76), respectively. These odds ratios remained significant upon adjustment for multiple comparisons. Women with both the risk PPP2R1A haplotype and a history of proliferative breast disease had an odds ratio of 2.44 (95% CI 1.7 – 3.5) for the subsequent development of breast cancer. The effects of haplotypes for two regulatory subunit genes, PPP2R2A and PPP2R5E on breast cancer risk were nominally significant, but did not remain significant upon adjustment for multiple comparisons. CONCLUSION This evidence supports the previously hypothesized role of PP2A as a tumor suppressor gene in breast cancer. PMID:19890961

  20. Gene structure, chromosomal localization, and expression pattern of Capn12, a new member of the calpain large subunit gene family.

    PubMed

    Dear, T N; Meier, N T; Hunn, M; Boehm, T

    2000-09-01

    We report the identification of mouse Capn12, a new member of the calpain large subunit gene family. It possesses potential protease and calcium-binding domains, features typical of the classical calpains. In situ hybridization and Northern blot analysis demonstrate that during the anagen phase of the hair cycle the cortex of the hair follicle is the major expression site of Capn12. The gene was sequenced in its entirety and consists of 21 exons spanning 13 kb with an exon-intron structure typical of the calpain gene family. The last exon of the mouse Actn4 gene overlaps the 3' end of Capn12 but in the opposite orientation. This overlap between the two genes is conserved in the human genome. Three versions of the Capn12 mRNA transcript were identified. They occur as a result of alternative splicing, and two of these encode a protein lacking the C-terminal calmodulin-like domain. Radiation hybrid mapping localized Capn12 to mouse chromosome 7, closely linked to a marker positioned at 10.4 cM. Refined mapping of Capn5, also previously localized to chromosome 7, indicated that it was not closely linked to Capn12, mapping tightly linked to a marker positioned at 48.5 cM.

  1. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    PubMed Central

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  2. Utility of the cytochrome c oxidase subunit I gene for the diagnosis of toxoplasmosis using PCR.

    PubMed

    Feng, Xue; Norose, Kazumi; Li, Kexin; Hikosaka, Kenji

    2017-10-01

    Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which belongs to the phylum Apicomplexa. Since this parasite causes severe clinical symptoms in immunocompromised patients, early diagnosis of toxoplasmosis is essential. PCR is currently used for early diagnosis, but there is no consensus regarding the most effective method for amplifying Toxoplasma DNA. In this study, we considered the utility of the cytochrome c subunit I (cox1) gene, which is encoded in the mitochondrial DNA of this parasite, as a novel target of PCR for the diagnosis of toxoplasmosis. To do this, we compared its copy number per haploid nuclear genome and the detection sensitivity of cox1-PCR with the previously reported target genes B1 and 18S rRNA and the AF146527 repeat element. We found that the copy number of cox1 was high and that the PCR using cox1 primers was more efficient at amplifying Toxoplasma DNA than the other PCR targets examined. In addition, PCR using clinical samples indicated that the cox1 gene would be useful for the diagnosis of toxoplasmosis. These findings suggest that use of cox1-PCR would facilitate the diagnosis of toxoplasmosis in clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene

    PubMed Central

    LI, Xiu-Feng; HAN, Chong; ZHONG, Cai-Rong; XU, Jun-Qiu; HUANG, Jian-Rong

    2016-01-01

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans. PMID:27686791

  4. Molecular cloning and expression analysis of a novel BCCP subunit gene from Aleurites moluccana.

    PubMed

    Xuan, W Y; Zhang, Y; Liu, Z Q; Feng, D; Luo, M Y

    2015-08-19

    Aleurites moluccana L. is grown as a roadside tree in southern China and the oil content of its seed is higher than other oil plants, such as Jatropha curcas and Camellia oleifera. A. moluccana is considered a promising energy plant because its seed oil could be used to produce biodiesel and bio-jet fuel. In addition, the bark, leaves, and kernels of A. moluccana have various medical and commercial uses. Here, a novel gene coding the biotin carboxyl carrier protein subunit (BCCP) was cloned from A. moluccana L. using the homology cloning method combined with rapid amplification of cDNA end (RACE) technology. The isolated full-length cDNA sequence (designated AM-accB) was 1188 bp, containing a 795-bp open reading frame coding for 265 amino acids. The deduced amino acid sequence of AM-accB contained a biotinylated domain located between amino acids 190 and 263. A. moluccana BCCP shows high identity at the amino acid level to its homologues in other higher plants, such as Vernicia fordii, J. curcas, and Ricinus communis (86, 77, and 70%, respectively), which all contain conserved domains for ACCase activity. The expression of the AM-accB gene during the middle stage of development and maturation in A. moluccana seeds was higher than that in early and later stages. The expression pattern of the AM-accB gene is very similar to that of the oil accumulation rate.

  5. Identification of Leptospira serovars by RFLP of the RNA polymerase beta subunit gene (rpoB)

    PubMed Central

    Jung, Lenice Roteia Cardoso; Bomfim, Maria Rosa Quaresma; Kroon, Erna Geessien; Nunes, Álvaro Cantini

    2015-01-01

    Leptospires are usually classified by methods based on DNA-DNA hybridization and the conventional cross-agglutination absorption test, which uses polyclonal antibodies against lipopolysaccharides. In this study, the amplification of the rpoB gene, which encodes the beta-subunit of RNA polymerase, was used as an alternative tool to identify Leptospira. DNA extracts from sixty-eight serovars were obtained, and the hypervariable region located between 1990 and 2500-bp in the rpoB gene was amplified by polymerase chain reaction (PCR). The 600-bp amplicons of the rpoB gene were digested with the restriction endonucleases TaqI, Tru1I, Sau3AI and MslI, and the restriction fragments were separated by 6% polyacrylamide gel electrophoresis. Thirty-five fragment patters were obtained from the combined data of restriction fragment length polymorphism (PCR-RFLP) analysis and used to infer the phylogenetic relationships among the Leptospira species and serovars. The species assignments obtained were in full agreement with the established taxonomic classifications. Twenty-two serovars were effectively identified based on differences in their molecular profiles. However, the other 46 serovars remained clustered in groups that included more than one serovar of different species. This study demonstrates the value of RFLP analysis of PCR-amplified rpoB as an initial method for identifying Leptospira species and serovars. PMID:26273261

  6. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements.

    PubMed

    Vander Kooi, Beth T; Onuma, Hiroshi; Oeser, James K; Svitek, Christina A; Allen, Shelley R; Vander Kooi, Craig W; Chazin, Walter J; O'Brien, Richard M

    2005-12-01

    Glucose-6-phosphatase catalyzes the final step in the gluconeogenic and glycogenolytic pathways. Glucocorticoids stimulate glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription and studies performed in H4IIE hepatoma cells demonstrate the presence of a glucocorticoid response unit (GRU) in the proximal G6Pase promoter. In vitro deoxyribonuclease I footprinting analyses show that the glucocorticoid receptor binds to three glucocorticoid response elements (GREs) in the -231 to -129 promoter region and transfection results indicate all three contribute to glucocorticoid induction of G6Pase gene transcription. Furthermore, binding sites for hepatocyte nuclear factor-1 and -4, CRE binding factors, and FKHR (FOXO1a) are required for the full glucocorticoid response. Chromatin immunoprecipitation assays show that dexamethasone treatment stimulates glucocorticoid receptor and FKHR binding to the endogenous G6Pase promoter. Surprisingly, although glucocorticoids stimulate G6Pase gene transcription, deoxyribonuclease I footprinting and transfection analyses demonstrate the presence of a negative GRE and an associated negative accessory factor element in the -271 to -225 promoter region, which inhibit the glucocorticoid response. This appears to be the first report of a promoter that contains both positive and negative GREs, which function within the same cellular environment. We hypothesize that targeted signaling to the negative accessory element within the GRU may provide tight regulation of the glucocorticoid stimulation.

  7. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat

    PubMed Central

    Zhang, Xiaofei; Liu, Dongcheng; Zhang, Jianghua; Jiang, Wei; Luo, Guangbin; Yang, Wenlong; Sun, Jiazhu; Tong, Yiping; Cui, Dangqun; Zhang, Aimin

    2013-01-01

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4–6 were located at the Glu-A3 locus, 3–5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9–13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes. PMID:23536608

  8. Heteropolymorphism of mitochondrial NADH dehydrogenase subunit 3 gene for the population analysis of chum salmon, Oncorhynchus keta.

    PubMed

    Yoon, M; Choi, Y S; Jin, H J; Sohn, Y C; Lee, S K; Jin, D H

    2008-07-01

    Mitochondrial DNAs (mtDNAs) has been frequently used as genetic markers for the population genetic studies. In this study we used chum salmon (Oncorhynchus keta) from Korea, Japan andAmerica, and compared their mitochondrial NADH dehydrogenase subunit 3 (ND3) genes by DNA sequence analysis. Sequence variation was studied in the ND3 among total 11 individuals from three populations. The ND3 gene was amplified by PCR targeting parts of cytochrome oxidase III gene (COIII) and NADH dehydrogenase subunit 4L gene (ND4L). ND3 gene sequence, encoded 752 bps, presented some genetic variation in the chum salmon populations. The observed nucleotide variations inferred the distinct genetic differentiation of American salmons from Korean and Japanese chum salmons. Six sites of single nucleotide polymorphism (SNP) were explored in the ND3 locus. Denaturing gradient gel electrophoresis analysis also showed a clear heterogenous band in American salmons compared to Asian salmons.

  9. Further evidence for clustering of human GABA[sub A] receptor subunit genes: Localization of the [alpha][sub 6]-subunit gene (GABRA6) to distal chromosome 5q by linkage analysis

    SciTech Connect

    Hicks, A.A.; Kamphuis, W.; Darlison, M.G. ); Bailey, M.E.S.; Johnson, K.J. ); Riley, B.P. ); Siciliano, M.J. )

    1994-03-15

    GABA[sub A] receptors are hetero-oligomeric ion-channel complexes that are composed of combinations of [alpha], [beta], [gamma], and [delta] subunits and play a major role in inhibitory neurotransmission in the mammalian brain. The authors report here a microsatellite polymorphism within the human [alpha][sub 6]-subunit gene (GABRA6). Mapping of this marker in a human-hamster hybrid cell-line panel and typing of the repeat in the Centre d'Etude du Polymorphisme Humain (CEPH) reference families enabled the localization of this gene to chromosome 5q and established its linkage to the GABA[sub A] receptor [alpha][sub 1]-subunit gene (GA-BRA1) with a maximum lod score (Z[sub max]) of 39.87 at a [theta] of 0.069 (males) and 0.100 (females). These results reveal the clustering of GABRA6, GABRA1, and the GABA[sub A] receptor [gamma][sub 2]-subunit gene (GABRG2) on distal chromosome 5q. 17 refs., 1 fig., 1 tab.

  10. The {gamma}-aminobutyric acid receptor {gamma}3 subunit gene (GABRG3) is tightly linked to the {alpha}5 subunit gene (GABRA5) on human chromosome 15q11-q13 and is transcribed in the same orientation

    SciTech Connect

    Greger, V. |; Knoll, J.H.M.; Woolf, E. |

    1995-03-20

    GABA{sub A} receptors are heterooligomeric ligand-gated ion channels that mediate the effect of the inhibitory neurotransmitter {gamma}-aminobutyric acid. The GABA{sub A} receptors consist of at least 15 different receptor subunits that can be classified into 5 subfamilies ({alpha},{beta},{gamma},{delta},{rho}) on the basis of sequence similarity. Chromosomal mapping studies have revealed that several of the GABA{sub A} receptor subunit genes appear to be organized as clusters. One such cluster, which consists of the GABA{sub A} receptor {beta}3 (GABRB3) and {alpha}5 (GABRA5) sub-unit genes, is located in chromosome 15q11-q13. It is shown here that the GABA{sub A} receptor {gamma}3 subunit gene (GABRG3) also maps to this region. Lambda and P1 phage clones surrounding both ends of GABRG3 were isolated; the clones derived from the 5{prime} end of GABRG3 were linked to an existing phage contig spanning the 3{prime} end of GABRA5. The two genes are located within 35 kb of each other and are transcribed in the same orientation. 39 refs., 4 figs.

  11. Nuclear life of the voltage-gated Cacnb4 subunit and its role in gene transcription regulation.

    PubMed

    Ronjat, Michel; Kiyonaka, Shigeki; Barbado, Maud; De Waard, Michel; Mori, Yasuo

    2013-01-01

    The pore-forming subunit of voltage-gated calcium channels is associated to auxiliary subunits among which the cytoplasmic β subunit. The different isoforms of this subunit control both the plasma membrane targeting and the biophysical properties of the channel moiety. In a recent study, we demonstrated that the Cacnb4 (β 4) isoform is at the center of a new signaling pathway that connects neuronal excitability and gene transcription. This mechanism relies on nuclear targeting of β 4 triggered by neuronal electrical stimulation. This re-localization of β 4 is promoted by its interaction with Ppp2r5d a regulatory subunit of PP2A in complex with PP2A itself. The formation, as well as the nuclear translocation, of the β 4/ Ppp2r5d/ PP2A complex is totally impaired by the premature R482X stops mutation of β 4 that has been previously associated with juvenile epilepsy. Taking as a case study the tyrosine hydroxylase gene that is strongly upregulated in brain of lethargic mice, deficient for β 4 expression, we deciphered the molecular steps presiding to this signaling pathway. Here we show that expression of wild-type β 4 in HEK293 cells results in the regulation of several genes, while expression of the mutated β 4 (β 1-481) produces a different set of gene regulation. Several genes regulated by β 4 in HEK293 cells were also regulated upon neuronal differentiation of NG108-15 cells that induces nuclear translocation of β 4 suggesting a link between β 4 nuclear targeting and gene regulation.

  12. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells

    PubMed Central

    Taylor, Jackson; Pereyra, Andrea; Zhang, Tan; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Kuan, Pei-Fen

    2014-01-01

    Voltage-gated calcium channel (Cav) β subunits are auxiliary subunits to Cavs. Recent reports show Cavβ subunits may enter the nucleus and suggest a role in transcriptional regulation, but the physiological relevance of this localization remains unclear. We sought to define the nuclear function of Cavβ in muscle progenitor cells (MPCs). We found that Cavβ1a is expressed in proliferating MPCs, before expression of the calcium conducting subunit Cav1.1, and enters the nucleus. Loss of Cavβ1a expression impaired MPC expansion in vitro and in vivo and caused widespread changes in global gene expression, including up-regulation of myogenin. Additionally, we found that Cavβ1a localizes to the promoter region of a number of genes, preferentially at noncanonical (NC) E-box sites. Cavβ1a binds to a region of the Myog promoter containing an NC E-box, suggesting a mechanism for inhibition of myogenin gene expression. This work indicates that Cavβ1a acts as a Cav-independent regulator of gene expression in MPCs, and is required for their normal expansion during myogenic development. PMID:24934157

  13. Molecular characterization and gene expression of the channel catfish Ferritin H subunit after bacterial infection and iron treatment

    USDA-ARS?s Scientific Manuscript database

    Ferritins are the major iron storage protein in the cytoplasm of cells, responsible for regulating levels of intracellular iron. Ferritin genes are widely distributed in both prokaryotes and eukaryotes. In mammals, ferritin molecules are composed of heavy- (H) and light- (L) chain subunits; amphibia...

  14. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells.

    PubMed

    Taylor, Jackson; Pereyra, Andrea; Zhang, Tan; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Kuan, Pei-Fen; Delbono, Osvaldo

    2014-06-23

    Voltage-gated calcium channel (Cav) β subunits are auxiliary subunits to Cavs. Recent reports show Cavβ subunits may enter the nucleus and suggest a role in transcriptional regulation, but the physiological relevance of this localization remains unclear. We sought to define the nuclear function of Cavβ in muscle progenitor cells (MPCs). We found that Cavβ1a is expressed in proliferating MPCs, before expression of the calcium conducting subunit Cav1.1, and enters the nucleus. Loss of Cavβ1a expression impaired MPC expansion in vitro and in vivo and caused widespread changes in global gene expression, including up-regulation of myogenin. Additionally, we found that Cavβ1a localizes to the promoter region of a number of genes, preferentially at noncanonical (NC) E-box sites. Cavβ1a binds to a region of the Myog promoter containing an NC E-box, suggesting a mechanism for inhibition of myogenin gene expression. This work indicates that Cavβ1a acts as a Cav-independent regulator of gene expression in MPCs, and is required for their normal expansion during myogenic development.

  15. Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes

    PubMed Central

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Eichorst, Stephanie A.

    2012-01-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp). PMID:22194300

  16. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates

    PubMed Central

    2008-01-01

    Background Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains. Results In a dataset comprising 29 vertebrate taxa, including representatives from all major groups of primates, there is nearly 100% conservation of the COX5A amino acid sequence among extant, non-anthropoid placental mammals. The most recent common ancestor of these species lived about 100 million years (MY) ago. In contrast, anthropoid primates show markedly elevated rates of nonsynonymous evolution. In particular, branch site tests identify five positively selected codons in anthropoids, and ancestral reconstructions infer that substitutions in these codons occurred predominantly on stem lineages (anthropoid, ape and New World monkey) and on the human terminal branch. Examination of catarrhine brain samples by immunohistochemistry characterizes for the first time COX5A protein distribution in the primate neocortex, and suggests that the protein is most abundant in the mitochondria of large-size projection neurons. Real time quantitative PCR supports previous microarray results showing COX5A is expressed in cerebral cortical tissue at a higher level in human than in chimpanzee or gorilla. Conclusion Taken together, these results suggest that both protein structural and gene regulatory changes contributed to COX5A evolution during humankind's ancestry. Furthermore, these findings are consistent with the hypothesis that adaptations in ETC genes contributed to the emergence of the energetically expensive anthropoid neocortex. PMID:18197981

  17. Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes.

    PubMed

    Liu, Kuan-Liang; Porras-Alfaro, Andrea; Kuske, Cheryl R; Eichorst, Stephanie A; Xie, Gary

    2012-03-01

    Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project.

  18. Cloning and Expression of Beta Subunit Gene of Phycocyanin From Spirulina platensis in Escherichia coli

    PubMed Central

    Shoja, Zahra; Rajabi Memari, Hamid; Roayaei Ardakani, Mohammd

    2015-01-01

    Background: C-Phycocyanin (C-PC) from blue-green algae such as Spirulina has been reported to have various pharmacological characteristics, including anti-inflammatory and anti-tumor activities. Recombinant β-subunit of C-PC (C-PC/β) is an inhibitor of cell proliferation and an inducer of cancer cell apoptosis. Objectives: Since C-PC/β has a big potential to be used as a promising cancer prevention or therapy agent, the purpose of this study was to clone and express Spirulina platensis cpcB gene in a bacterial expression system. This is a significant step for the production of this compound. Materials and Methods: The cpcB gene was amplified using specific primers and cloned in a bacterial expression vector, namely pET43.1a+. Gene expression of cpcB was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the dot blotting technique. Results: The SDS-PAGE analysis and dot blotting confirmed the production of recombinant C-PC/β in the bacterial expression system. Over-expression of cpcB gene was optimized in induction by 1 mM Isopropyl-β-D-Thiogalactoside (IPTG), after four hours of inoculation at 30°C. Conclusions: Over-expression of the synthetic CPC/β protein in the bacterial system (Escherichia coli BL-21) showed that E. coli can be used as a basis for further research to produce this desired protein in large quantities. PMID:26464761

  19. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls

    PubMed Central

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana

    2017-01-01

    Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410

  20. Characterization of the nicotinic acetylcholine receptor subunit gene Mdalpha2 from the house fly, Musca domestica.

    PubMed

    Gao, Jian-Rong; Deacutis, Juliane M; Scott, Jeffrey G

    2007-01-01

    A nicotinic acetylcholine receptor (nAChR) subunit gene, Mdalpha2, was isolated and characterized from the house fly, Musca domestica. This is the first nAChR family member cloned from house flies. Mdalpha2 had a cDNA of 2,607 bp, which included a 696 bp 5'-untranslated region (UTR), an open reading frame of 1,692 bp, and a 219 bp 3'-UTR. Its deduced amino acid sequence possesses the typical characteristics of nAChRs. Mdalpha2 genomic sequence was 11.2 kb in length in the aabys strain and 10.9 kb in the OCR strain, including eight exons and seven introns. Based on the deduced amino acid sequence, Mdalpha2 had the closest phylogenetic relationship to the Drosophila melanogaster Dalpha2 and Anopheles gambiae Agamalpha2, and a similar genomic structure to Dalpha2. Quantitative real-time PCR analysis showed that Mdalpha2 is expressed in the head and the thorax at 150- and 8.5-fold higher levels than in the abdomen. Linkage analysis of a Mdalpha2 polymorphism indicates this gene is on autosome 2. The importance of these results in understanding the diversity and phylogenetic relationships of insect nAChRs, the physiology of nAChRs in the house fly, and the utility of nAChR sequences in resistance detection/monitoring is discussed.

  1. Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24

    SciTech Connect

    Lewis, T.B.; DuPont, B.R.; Leach, R.

    1996-02-15

    This article reports on the localization of a gene for a glutamate binding subunit of an N-methyl-D-aspartate (NMDA) receptor, called GRINA, to human chromosome 8q24 using fluorescence in situ hybridization and radiation hybridization mapping. This gene mapped outside the critical region for benign familial neonatal convulsions (BFNC), a rare form of epilepsy; however, GRINA could be the causative genetic factor inducing idiopathic generalized epilepsy. Further studies need to be conducted. 15 refs., 2 figs.

  2. Functional Properties of a New Voltage-dependent Calcium Channel α2δ Auxiliary Subunit Gene (CACNA2D2)*

    PubMed Central

    Gao, Boning; Sekido, Yoshitaka; Maximov, Anton; Saad, Mohamad; Forgacs, Eva; Latif, Farida; Wei, Ming H.; Lerman, Michael; Lee, Jung-Ha; Perez-Reyes, Edward; Bezprozvanny, Ilya; Minna, John D.

    2012-01-01

    We have positionally cloned and characterized a new calcium channel auxiliary subunit, α2δ-2 (CACNA2D2), which shares 56% amino acid identity with the known α2δ-1 subunit. The gene maps to the critical human tumor suppressor gene region in chromosome 3p21.3, showing very frequent allele loss and occasional homozygous deletions in lung, breast, and other cancers. The tissue distribution of α2δ-2 expression is different from α2δ-1, and α2δ-2 mRNA is most abundantly expressed in lung and testis and well expressed in brain, heart, and pancreas. In contrast, α2δ-1 is expressed predominantly in brain, heart, and skeletal muscle. When co-expressed (via cRNA injections) with α1B and β3 subunits in Xenopus oocytes, α2δ-2 increased peak size of the N-type Ca2+ currents 9-fold, and when co-expressed with α1C or α1G subunits in Xenopus oocytes increased peak size of L-type channels 2-fold and T-type channels 1.8-fold, respectively. Anti-peptide antibodies detect the expression of a 129-kDa α2δ-2 polypeptide in some but not all lung tumor cells. We conclude that the α2δ-2 gene encodes a functional auxiliary subunit of voltage-gated Ca2+ channels. Because of its chromosomal location and expression patterns, CACNA2D2 needs to be explored as a potential tumor suppressor gene linking Ca2+ signaling and lung, breast, and other cancer pathogenesis. The homologous location on mouse chromosome 9 is also the site of the mouse neurologic mutant ducky (du), and thus, CACNA2D2 is also a candidate gene for this inherited idiopathic generalized epilepsy syndrome. PMID:10766861

  3. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.

    PubMed

    Whitney, S M; Andrews, T J

    2001-01-01

    To assess the extent to which a nuclear gene for a chloroplast protein retained the ability to be expressed in its presumed preendosymbiotic location, we relocated the RbcS gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to the tobacco plastid genome. Plastid RbcS transgenes, both with and without the transit presequence, were equipped with 3' hepta-histidine-encoding sequences and psbA promoter and terminator elements. Both transgenes were transcribed abundantly, and their products were translated into small subunit polypeptides that folded correctly and assembled into the Rubisco hexadecamer. When present, either the transit presequence was not translated or the transit peptide was cleaved completely. After assembly into Rubisco, transplastomic small subunits were relatively stable. The hepta-histidine sequence fused to the C terminus of a single small subunit was sufficient for isolation of the whole Rubisco hexadecamer by Ni(2)+ chelation. Small subunits produced by the plastid transgenes were not abundant, never exceeding approximately 1% of the total small subunits, and they differed from cytoplasmically synthesized small subunits in their N-terminal modifications. The scarcity of transplastomic small subunits might be caused by inefficient translation or assembly.

  4. The maize chloroplast genes for the beta and epsilon subunits of the photosynthetic coupling factor CF1 are fused.

    PubMed Central

    Krebbers, E T; Larrinua, I M; McIntosh, L; Bogorad, L

    1982-01-01

    We have cloned and sequenced the maize chloroplast genome fragment Eco RI e which contains the 2.2 kb transcript previously reported (Link, G. and Bogorad, L. (1980) Proc. Nat. Acad. Sci. 77 6821-6825) to lie next to the maize gene for the large subunit of ribulose bisphosphate carboxylase (LS) and to be transcribed divergently. Immunochemical and sequencing data show that the gene codes for the beta subunit of the maize chloroplast coupling factor complex (CF1). The derived amino acid sequence is highly homologous to that of the corresponding E. coli protein (Saraste et al. (1981) Nucleic Acids Res. 9 5287-5296). The last base of the codon for the terminal lysine residue of the beta subunit of CF1 is the first base of the codon for the initiating methionine of an open reading frame whose derived amino acid composition and size closely match that reported for the epsilon subunit (Binder et al. (1978) J. Biol. Chem. 253 3094-3100). The close coupling of the two genes may serve to in sure their stoichiometric production. Images PMID:6290998

  5. Molecular evolution at the cytochrome oxidase subunit 2 gene among divergent populations of the intertidal copepod, Tigriopus californicus.

    PubMed

    Rawson, Paul D; Burton, Ronald S

    2006-06-01

    The cytochrome c oxidase subunit 2 gene (COII) encodes a highly conserved protein that is directly responsible for the initial transfer of electrons from cytochrome c to cytochrome c oxidase (COX) crucial to the production of ATP during cellular respiration. Despite its integral role in electron transport, we have observed extensive intraspecific nucleotide and amino acid variation among 26 full-length COII sequences sampled from seven populations of the marine copepod, Tigriopus californicus. Although intrapopulation divergence was virtually nonexistent, interpopulation divergence at the COII locus was nearly 20% at the nucleotide level, including 38 nonsynonymous substitutions. Given the high degree of interaction between the cytochrome c oxidase subunit 2 protein (COX2) and the nuclear-encoded subunits of COX and cytochrome c (CYC), we hypothesized that some codons in the COII gene are likely to be under positive selection in order to compensate for amino acid substitutions in other subunits. Estimates of the ratio of nonsynonymous to synonymous substitution (omega), obtained using a series of maximum likelihood models of codon substitution, indicated that the majority of codons in T. californicus COII are under strong purifying selection (omega < 1), while approximately 4% of the sites in this gene appear to evolve under relaxed selective constraint (omega = 1). A branch-site maximum likelihood model identified three sites that may have experienced positive selection within the central California sequence clade in our COII phylogeny; these results are consistent with previous studies showing functional and fitness consequences among interpopulation hybrids between central and northern California populations.

  6. Regulation of genes encoding steroidogenic factor-1 (SF-1) and gonadotropin subunits in the ovine pituitary gland.

    PubMed

    Baratta, M; Turzillo, A M; Arreguin-Arevalo, A; Clay, C M; Nett, T M

    2003-07-01

    Steroidogenic factor-1 (SF-1) is a transcription factor originally characterized as a mediator of gene expression in steroidogenic tissues. Studies in SF-1 knockout mice revealed that SF-1 has additional roles at multiple levels of the hypothalamic-pituitary-gonadal axis, including regulation of gene expression in pituitary gonadotropes. Specific binding sites for SF-1 have been demonstrated in several pituitary genes with essential roles in gonadotropin synthesis, including alpha subunit, LHbeta subunit, and GnRH receptor. In studies aimed at identifying physiological factors controlling pituitary expression of SF-1, GnRH has been implicated as a co-regulator of SF-1 and gonadotropin subunit genes. In both rats and ewes, elevated endogenous secretion of GnRH following ovariectomy was associated with increased amounts of SF-1 mRNA in the anterior pituitary gland. Conversely, removal of GnRH input to the pituitary gland by hypothalamic-pituitary disconnection (HPD) in ovariectomized (OVX) ewes reduced SF-1 expression. Despite these changes, however, treatment of OVX ewes with GnRH following HPD only partially restored levels of SF-1 mRNA in the pituitary gland. Therefore, it is possible that regulation of SF-1 gene expression by GnRH during the estrous cycle may involve ovarian hormones or other hypothalamic factors. Additional studies are required to further define the physiological roles of SF-1 in regulation of the hypothalamic-pituitary-gonadal axis in domestic ruminants.

  7. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    PubMed

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  8. PHYLOGENY OF ANGIOSTRONGYLUS CANTONENSIS IN THAILAND BASED ON CYTOCHROME C OXIDASE SUBUNIT I GENE SEQUENCE.

    PubMed

    Apichat, Vitta; Narongrit, Srisongcram; Jittranuch, Thiproaj; Anucha, Wongma; Wilaiwan, Polsut; Chamaiporn, Fukruksa; Thatcha, Yimthin; Bandid, Mangkit; Aunchalee, Thanwisai; Paron, Dekumyoy

    2016-05-01

    Angiostrongylus cantonensis is an emerging infectious agent causing eosinophilic meningitis or meningoencephalitis in humans with clinical manifestation of severe headache. Molecular genetic studies on classification and phylogeny of A. cantonensis in Thailand are limited. This study surveyed A. cantonensis larvae prevalence in natural intermediate hosts across Thailand and analyzed their phylogenetic relationships. A total of 14,032 freshwater and land snails were collected from 19 provinces of Thailand. None of Filopaludina sp, Pomacea sp, and Cyclophorus sp were infected with Angiostrongylus larvae, whereas Achatina fulica, Cryptozona siamensis, and Megaustenia siamensis collected from Kalasin, Kamphaeng Phet, Phetchabun, Phitsanulok, and Tak Provinces were infected, with C. siamensis being the common intermediate host. Based on morphology, larvae isolated from 11 samples of these naturally infected snails preliminarily were identified as A. cantonensis. Comparison of partial nucleotide sequences of cytochrome c oxidase subunit I gene revealed that four sequences are identical to A. cantonensis haplotype ac4 from Bangkok and the other seven to that of A. cantonensis isolate AC Thai, indicating two independent lineages of A. cantonensis in Thailand.

  9. Phylogenetic Analysis of Cryptosporidium Parasites Based on the Small-Subunit rRNA Gene Locus

    PubMed Central

    Xiao, Lihua; Escalante, Lillian; Yang, Chunfu; Sulaiman, Irshad; Escalante, Anannias A.; Montali, Richard J.; Fayer, Ronald; Lal, Altaf A.

    1999-01-01

    Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed. PMID:10103253

  10. Beta*, a UV-inducible smaller form of the beta subunit sliding clamp of DNA polymerase III of Escherichia coli. I. Gene expression and regulation.

    PubMed

    Paz-Elizur, T; Skaliter, R; Blumenstein, S; Livneh, Z

    1996-02-02

    The 40.6-kDa beta subunit of DNA polymerase III of Escherichia coli is a sliding DNA clamp responsible for tethering the polymerase to DNA and endowing it with high processivity (Stukenberg, P. T., Studwell-Vaughan, P. S., and O'Donnell, M. (1991) J. Biol. Chem. 266, 11328-11334). UV irradiation of E. coli induces a smaller 26-kDa form of the beta subunit, termed beta*, that, when overproduced from a plasmid, increases UV resistance of E. coli (Skaliter, R., Paz-Elizur, T., and Livneh, Z. (1996) J. Biol. Chem. 271, 2478-2481). Here we show that this protein is synthesized from a UV-inducible internal gene, termed dnaN*, that is located in-frame inside the coding region of dnaN, encoding the beta subunit. The initiation codon and the Shine-Dalgarno sequence of dnaN* were identified by site-directed mutagenesis. The dnaN* transcript was shown to be induced upon treatment with nalidixic acid, and transcriptional dnaN*-cat gene fusions were UV inducible, suggesting induction of dnaN* at the transcriptional level. Analysis of translational dnaN*-lacZ gene fusions revealed that UV induction was abolished in strains carrying the recA56, lexA3, or delta rpoH mutations, indicating involvement of both SOS and heat shock stress responses in the induction process. Expression of dnaN* represents a strategy of producing several proteins with related functional domains from a single gene.

  11. Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16.

    PubMed Central

    Tran-Betcke, A; Warnecke, U; Böcker, C; Zaborosch, C; Friedrich, B

    1990-01-01

    The genes hoxF, -U, -Y, and -H which encode the four subunit polypeptides alpha, gamma, delta, and beta of the NAD-reducing hydrogenase (HoxS) of Alcaligenes eutrophus H16, were cloned, expressed in Pseudomonas facilis, and sequenced. On the basis of the nucleotide sequence, the predicted amino acid sequences, and the N-terminal amino acid sequences, it was concluded that the structural genes are tightly linked and presumably organized as an operon, denoted hoxS. Two pairs of -24 and -12 consensus sequences resembling RpoN-activatable promoters lie upstream of hoxF, the first of the four genes. Primer extension experiments indicate that the second promoter is responsible for hoxS transcription. hoxF and hoxU code for the flavin-containing dimer (alpha and gamma subunits) of HoxS which exhibits NADH:oxidoreductase activity. A putative flavin-binding region is discussed. The 26.0-kilodalton (kDa) gamma subunit contains two cysteine clusters which may participate in the coordination of two [4F3-4S]centers. The genes hoxY and hoxH code for the small 22.9-kDa delta subunit and the nickel-containing 54.8-kDa beta subunit, respectively, of the hydrogenase dimer of HoxS. The latter dimer exhibits several conserved regions found in all nickel-containing hydrogenases. The roles of these regions in coordinating iron and nickel are discussed. Although the deduced amino acid sequences of the delta and beta subunits share some conserved regions with the corresponding polypeptides of other [NiFe] hydrogenases, the overall amino acid homology is marginal. Nevertheless, significant sequence homology (35%) to the corresponding polypeptides of the soluble methylviologen-reducing hydrogenase of Methanobacterium thermoautotrophicum was found. Unlike the small subunits of the membrane-bound and soluble periplasmic hydrogenases, the HoxS protein does not appear to be synthesized with an N-terminal leader peptide. Images PMID:2188945

  12. Complex I Subunit Gene Therapy With NDUFA6 Ameliorates Neurodegeneration in EAE

    PubMed Central

    Talla, Venu; Koilkonda, Rajeshwari; Porciatti, Vittorio; Chiodo, Vince; Boye, Sanford L.; Hauswirth, William W.; Guy, John

    2015-01-01

    Purpose. To address the permanent disability induced by mitochondrial dysfunction in experimental autoimmune encephalomyelitis (EAE). Methods. Mice sensitized for EAE were rescued by intravitreal injection of adeno-associated viral vector serotype 2 with the complex I subunit gene scAAV-NDUFA6Flag. Controls were injected with a mitochondrially targeted red fluorescent protein (scAAV-COX8-cherry). Another group received scAAV-COX8-cherry, but was not sensitized for EAE. Serial pattern electroretinograms (PERGs) and optical coherent tomography (OCT) evaluated visual function and structure of the retina at 1, 3, and 6 months post injection (MPI). Treated mice were killed 6 MPI for histopathology. Immunodetection of cleaved caspase 3 gauged apoptosis. Complex I activity was assessed spectrophotometrically. Expression of NDUFA6Flag in the retina and optic nerve were evaluated between 1 week to 1 month post injection by RT-PCR, immunofluorescence and immunoblotting. Results. Reverse transcription-PCR and immunoblotting confirmed NDUFA6Flag overexpression with immunoprecipitation and blue native PAGE showing integration into murine complex I. Overexpression of NDUFA6Flag in the visual system of EAE mice rescued retinal complex I activity completely, axonal loss by 73%, and retinal ganglion cell (RGC) loss by 88%, RGC apoptosis by 66%, and restored the 33% loss of complex I activity in EAE to normal levels; thereby, preventing loss of vision indicated by the 43% reduction in the PERG amplitudes of EAE mice. Conclusions. NDUFA6 gene therapy provided long-term suppression of neurodegeneration in the EAE animal model suggesting that it may also ameliorate the mitochondrial dysfunction associated with permanent disability in optic neuritis and MS patients. PMID:25613946

  13. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    PubMed Central

    Collins, Ann L.; Ma, Deqiong; Whitehead, Patrice L.; Martin, Eden R.; Wright, Harry H.; Abramson, Ruth K.; Hussman, John P.; Haines, Jonathan L.; Cuccaro, Michael L.; Gilbert, John R.

    2006-01-01

    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SNPs) within a GABA receptor subunit gene on chromosome 4, GABRA4, and interaction between SNPs in GABRA4 and GABRB1 (also on chromosome 4), within Caucasian autism patients. Studies of genetic variation in African-American autism families are rare. Analysis of 557 Caucasian and an independent population of 54 African-American families with 35 SNPs within GABRB1 and GABRA4 strengthened the evidence for involvement of GABRA4 in autism risk in Caucasians (rs17599165, p=0.0015; rs1912960, p=0.0073; and rs17599416, p=0.0040) and gave evidence of significant association in African-Americans (rs2280073, p=0.0287 and rs16859788, p=0.0253). The GABRA4 and GABRB1 interaction was also confirmed in the Caucasian dataset (most significant pair, rs1912960 and rs2351299; p=0.004). Analysis of the subset of families with a positive history of seizure activity in at least one autism patient revealed no association to GABRA4; however, three SNPs within GABRB1 showed significant allelic association; rs2351299 (p=0.0163), rs4482737 (p=0.0339), and rs3832300 (p=0.0253). These results confirmed our earlier findings, indicating GABRA4 and GABRB1 as genes contributing to autism susceptibility, extending the effect to multiple ethnic groups and suggesting seizures as a stratifying phenotype. PMID:16770606

  14. Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.

    PubMed Central

    Liu, Zhongle; Moran, Gary P.; Myers, Lawrence C.

    2016-01-01

    Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of ‘free,’ non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large ‘free’ pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the

  15. A single gene codes for the nicotinic acetylcholine receptor alpha-subunit in Torpedo marmorata: structural and developmental implications.

    PubMed Central

    Klarsfeld, A; Devillers-Thiéry, A; Giraudat, J; Changeux, J P

    1984-01-01

    We have used Southern blot hybridization to analyze the genomic structure encoding the alpha-subunit of the acetylcholine receptor (AChR) in Torpedo marmorata, with cDNA probes isolated from the electric organ. Four different radiolabelled probes, corresponding to various parts of the alpha-subunit mRNA, hybridized to several genomic fragments of T. marmorata DNA generated by digestion with the restriction enzymes SstI, PvuII and PstI. The same hybridization pattern was observed after washing the blots under low- or high-stringency conditions. As a check for detection sensitivity of heterologous sequences, the same probes were hybridized to PvuII-digested chicken DNA, revealing bands at low stringency which disappeared at higher stringencies. Unambiguously, two of our probes (one of them entirely within the coding region) hybridized to a single genomic fragment from T. marmorata DNA. This feature, as well as the results of an extensive study of the whole hybridization pattern, points towards the uniqueness of alpha-subunit-specific sequences in the genome of T. marmorata. Since overall more bands were found than expected from the cDNA sequence, this alpha-subunit gene must be split by several introns (at least four, possibly more). The length of this gene is at least 20 kb. The existence of a single alpha-subunit gene is consistent with the absence of chemical heterogeneity in the NH2-terminal sequence of the purified alpha-chain, and supports the view that the two alpha-chains belonging to one AChR oligomer have an identical primary structure. It also suggests that localization and stabilization of the AChR in well-defined post-synaptic areas of T. marmorata electric organ basically relies, during development, on 'epigenetic' mechanisms. Images Fig. 2. Fig. 3. Fig. 4. PMID:6323168

  16. Sequential mutations in the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor beta-subunit genes are necessary for the complete conversion to growth autonomy mediated by a truncated beta C subunit.

    PubMed

    Hannemann, J; Hara, T; Kawai, M; Miyajima, A; Ostertag, W; Stocking, C

    1995-05-01

    An amino-terminally truncated beta C receptor (beta C-R) subunit of the interleukin-3 (IL3)/granulocyte-macrophage colony-stimulating factor/IL5 receptor complex mediates factor-independent and tumorigenic growth in two spontaneous mutants of a promyelocytic cell line. The constitutive activation of the JAK2 protein kinase in these mutants confirms that signaling occurs through the truncated receptor protein. Noteworthily, in addition to a 10-kb deletion in the beta C-R subunit gene encoding the truncated receptor, several secondary and independent mutations that result in the deletion or functional inactivation of the allelic beta C-R subunit and the closely related beta IL3-R subunit genes were observed in both mutants, suggesting that such mutations are necessary for the full oncogenic penetrance of the truncated beta C-R subunit. Reversion of these mutations by the expression of the wild-type beta C-R in the two mutants resulted in a fivefold decrease in cloning efficiency of the mutants in the absence of IL3, confirming a functional interaction between the wild-type and truncated proteins. Furthermore, expression of the truncated beta C-R subunit in factor-dependent myeloid cells did not immediately render the cells autonomous but increased the spontaneous frequency to factor-independent growth by 4 orders of magnitude. Implications for both leukemogenic progression and receptor-subunit interaction and signaling are discussed.

  17. A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare).

    PubMed Central

    Thorbjørnsen, T; Villand, P; Kleczkowski, L A; Olsen, O A

    1996-01-01

    ADP-glucose pyrophosphorylase (AGPase), a heterotetrameric enzyme composed of two small and two large subunits, catalyses the first committed step of starch synthesis in plant tissues. In an attempt to learn more about the organization and expression of the small-subunit gene of AGPase, we have studied the small-subunit transcripts as well as the structure of the gene encoding these transcripts in barley (Hordeum vulgare L. cv. Bomi). Two different transcripts (bepsF1 and blps14) were identified: bepF1 was abundantly expressed in the starchy endosperm but not in leaves, whereas blps14 was isolated from leaves but was also found to be present at a moderate level in the starchy endosperm. The sequences for the two transcripts are identical over approx. 90% of the length, with differences being confined solely to their 5' ends. In blps14, the unique 5' end is 259 nt long and encodes a putative plastid transit peptide sequence. For the 178-nt 5' end of bepsF1, on the other hand, no transit peptide sequence could be recognized. A lambda clone that hybridized to the AGPase transcripts was isolated from a barley genomic library and characterized. The restriction map has suggested a complex organization of the gene, with alternative exons encoding the different 5' ends of the two transcripts followed by nine exons coding for the common part of the transcripts. The sequence of a portion of the genomic clone, covering the alternative 5'-end exons as well as upstream regions, has verified that both transcripts are encoded by the gene. The results suggest that the small-subunit gene of barley AGPase transcribes two different mRNAs by a mechanism classified as alternative splicing. PMID:8546676

  18. Effects of Ghrelin on Sexual Behavior and Luteinizing Hormone Beta-subunit Gene Expression in Male Rats

    PubMed Central

    Babaei-Balderlou, Farrin; Khazali, Homayoun

    2016-01-01

    Background: The hormones of hypothalamo-pituitary-gonadal (HPG) axis have facilitative effects on reproductive behavior in mammals. Ghrelin as a starvation hormone has an inhibitory effect on HPG axis’ function. Hence, it is postulated that ghrelin may reduce the sexual behavior through inhibiting of HPG axis. The aim of this study was to examine the effects of ghrelin and its antagonist, [D-Lys3 ]-GHRP-6, on sexual behavior and LH beta-subunit gene expression in male rats. Methods: In this experimental study, 128 male Wistar rats were divided into two groups. Each group was further subdivided into eight subgroups (n=8 rats/subgroup) including the animals that received saline, ghrelin (2, 4 or 8 nmol), [D-Lys3 ]-GHRP-6 (5 or 10 nmol) or co-administration of ghrelin (4 nmol) and [D-Lys3 ]-GHRP-6 (5 or 10 nmol) through the stereotaxically implanted cannula into the third cerebral ventricle. The sexual behavior of male rats encountering with females and the hypo-physeal LH beta-subunit gene expression were evaluated at two different groups. Data were analyzed by ANOVA and p<0.05 was considered statistically significant. Results: Ghrelin injection (4 and 8 nmol) significantly (p<0.01) increased the latencies to the first mount, intromission and ejaculation as well as the post-ejaculatory interval. Also, 4 and 8 nmol ghrelin significantly (p<0.05) increased the number of mount and decreased the number of ejaculation. In co-administrated groups, [D-Lys3 ]-GHRP-6 antagonized the effects of ghrelin. Ghrelin injection (4 and 8 nmol) reduced the LH beta-subunit gene expression while pretreatment with [D-Lys3 ]-GHRP-6 improved the gene expression. Conclusion: Ghrelin decreased the sexual behavior and LH beta-subunit gene expression in male rats, whereas [D-Lys3 ]-GHRP-6 antagonizes these effects. PMID:27141463

  19. Exonic Sp1 sites are required for neural-specific expression of the glycine receptor beta subunit gene.

    PubMed Central

    Tintrup, H; Fischer, M; Betz, H; Kuhse, J

    2001-01-01

    The gene encoding the beta subunit of the inhibitory glycine receptor (GlyR) is widely expressed throughout the mammalian central nervous system. To unravel the elements regulating its transcription, we isolated its 5' non-coding and upstream flanking regions from mouse. Sequence analysis revealed significant differences between the 5' region of the beta subunit gene and the corresponding regions of the homologous GlyR alpha subunit genes; it also identified a novel exon (exon 0) that encodes most of the 5'-untranslated portion of the GlyR beta mRNA. Primer extension experiments disclosed multiple transcriptional start sites. Transfection experiments with luciferase reporter gene constructs showed that sequences encompassing 1.58 kb of upstream flanking region and 180 bp of exon 0 displayed high promoter activity in two neuroblastoma cell lines but not in non-neural cells. Analysis of various deletion constructs showed that the 5' flanking region preceding the transcriptional start sites silences expression in non-neural cells but is not essential for general promoter activity. In contrast, the deletion of sequences within exon 0 drastically decreased or abolished transcription; the removal of sequences harbouring Sp1 consensus sequences within exon 0 decreased expression specifically in a neuroblastoma cell line. Band-shift assays confirmed the binding of Sp1 to sites within the deleted sequence. Our results indicate that neural-specific expression of the GlyR beta subunit gene might depend on a direct interaction of Sp1 transcription factors with cis elements located downstream from transcription initiation sites. PMID:11256962

  20. Transgenic Over Expression of Nicotinic Receptor Alpha 5, Alpha 3, and Beta 4 Subunit Genes Reduces Ethanol Intake in Mice

    PubMed Central

    Gallego, Xavier; Ruiz, Jessica; Valverde, Olga; Molas, Susanna; Robles, Noemí; Sabrià, Josefa; Crabbe, John C.; Dierssen, Mara

    2012-01-01

    Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol’s as well as nicotine’s effects. PMID:22459873

  1. Functional identification of the promoter for the gene encoding the alpha subunit of calcium/calmodulin-dependent protein kinase II.

    PubMed Central

    Olson, N J; Massé, T; Suzuki, T; Chen, J; Alam, D; Kelly, P T

    1995-01-01

    To examine the expression of the alpha subunit of calcium/calmodulin-dependent protein kinase II, various 5' flanking genomic sequences were inserted into a chloramphenicol acetyltransferase (CAT) reporter plasmid and CAT enzyme activities were analyzed in transfected NB2a neuroblastoma cells and mRNA transcription was analyzed by nuclease protection assays. A core promoter was identified which contained an essential TATA element located 162 nt 5' to the transcription start site. Sequences 3' to the transcription start site, as well as 5' to the TATA element, increased levels of CAT activity in transfected cells. The alpha-subunit gene promoter displayed higher CAT activities, relative to a simian virus 40 promoter, in transfected neuronal cell lines than in nonneuronal cell lines. Results also suggested that sequence surrounding the natural alpha-gene transcription initiation site may be important for targeting transcription initiation 162 nt downstream of its TATA element. Images Fig. 1 Fig. 3 PMID:7878035

  2. Evolution, Expression Differentiation and Interaction Specificity of Heterotrimeric G-Protein Subunit Gene Family in the Mesohexaploid Brassica rapa

    PubMed Central

    Arya, Gulab C.; Kumar, Roshan; Bisht, Naveen C.

    2014-01-01

    Heterotrimeric G-proteins, comprising of Gα, Gβ, and Gγ subunits, are important signal transducers which regulate many aspects of fundamental growth and developmental processes in all eukaryotes. Initial studies in model plants Arabidopsis and rice suggest that the repertoire of plant G-protein is much simpler than that observed in metazoans. In order to assess the consequence of whole genome triplication events within Brassicaceae family, we investigated the multiplicity of G-protein subunit genes in mesohexaploid Brassica rapa, a globally important vegetable and oilseed crop. We identified one Gα (BraA.Gα1), three Gβ (BraA.Gβ1, BraA.Gβ2, and BraA.Gβ3), and five Gγ (BraA.Gγ1, BraA.Gγ2, BraA.Gγ3, BraA.Gγ4, and BraA.Gγ5) genes from B. rapa, with a possibility of 15 Gαβγ heterotrimer combinations. Our analysis suggested that the process of genome triplication coupled with gene-loss (gene-fractionation) phenomenon have shaped the quantitative and sequence diversity of G-protein subunit genes in the extant B. rapa genome. Detailed expression analysis using qRT-PCR assays revealed that the G-protein genes have retained ubiquitous but distinct expression profiles across plant development. The expression of multiple G-protein genes was differentially regulated during seed-maturation and germination stages, and in response to various phytohormone treatments and stress conditions. Yeast-based interaction analysis showed that G-protein subunits interacted in most of the possible combinations, with some degree of subunit-specific interaction specificity, to control the functional selectivity of G-protein heterotrimer in different cell and tissue-types or in response to different environmental conditions. Taken together, this research identifies a highly diverse G-protein signaling network known to date from B. rapa, and provides a clue about the possible complexity of G-protein signaling networks present across globally important Brassica species. PMID

  3. Evolution, expression differentiation and interaction specificity of heterotrimeric G-protein subunit gene family in the mesohexaploid Brassica rapa.

    PubMed

    Arya, Gulab C; Kumar, Roshan; Bisht, Naveen C

    2014-01-01

    Heterotrimeric G-proteins, comprising of Gα, Gβ, and Gγ subunits, are important signal transducers which regulate many aspects of fundamental growth and developmental processes in all eukaryotes. Initial studies in model plants Arabidopsis and rice suggest that the repertoire of plant G-protein is much simpler than that observed in metazoans. In order to assess the consequence of whole genome triplication events within Brassicaceae family, we investigated the multiplicity of G-protein subunit genes in mesohexaploid Brassica rapa, a globally important vegetable and oilseed crop. We identified one Gα (BraA.Gα1), three Gβ (BraA.Gβ1, BraA.Gβ2, and BraA.Gβ3), and five Gγ (BraA.Gγ1, BraA.Gγ2, BraA.Gγ3, BraA.Gγ4, and BraA.Gγ5) genes from B. rapa, with a possibility of 15 Gαβγ heterotrimer combinations. Our analysis suggested that the process of genome triplication coupled with gene-loss (gene-fractionation) phenomenon have shaped the quantitative and sequence diversity of G-protein subunit genes in the extant B. rapa genome. Detailed expression analysis using qRT-PCR assays revealed that the G-protein genes have retained ubiquitous but distinct expression profiles across plant development. The expression of multiple G-protein genes was differentially regulated during seed-maturation and germination stages, and in response to various phytohormone treatments and stress conditions. Yeast-based interaction analysis showed that G-protein subunits interacted in most of the possible combinations, with some degree of subunit-specific interaction specificity, to control the functional selectivity of G-protein heterotrimer in different cell and tissue-types or in response to different environmental conditions. Taken together, this research identifies a highly diverse G-protein signaling network known to date from B. rapa, and provides a clue about the possible complexity of G-protein signaling networks present across globally important Brassica species.

  4. Nucleotide sequence of the Klebsiella pneumoniae nifD gene and predicted amino acid sequence of the alpha-subunit of nitrogenase MoFe protein.

    PubMed Central

    Ioannidis, I; Buck, M

    1987-01-01

    The nucleotide sequence of the Klebsiella pneumoniae nifD gene is presented and together with the accompanying paper [Holland, Zilberstein, Zamir & Sussman (1987) Biochem. J. 247, 277-285] completes the sequence of the nifHDK genes encoding the nitrogenase polypeptides. The K. pneumoniae nifD gene encodes the 483-amino acid-residue nitrogenase alpha-subunit polypeptide of Mr 54156. The alpha-subunit has five strongly conserved cysteine residues at positions 63, 89, 155, 184 and 275, some occurring in a region showing both primary sequence and potential structural homology to the K. pneumoniae nitrogenase beta-subunit. A comparison with six other alpha-subunit amino acid sequences has been made, which indicates a number of potentially important domains within alpha-subunits. PMID:3322262

  5. Differentially expressed three non-coding alternate exons at 5' UTR of regulatory type I beta subunit gene of mouse.

    PubMed

    Banday, Abdul Rouf; Azim, Shafquat; Tabish, Mohammad

    2012-04-01

    Prkar1b gene encodes regulatory type I, beta subunit (RIβ) of cAMP dependent protein kinase A in mouse. Among the various isoforms of regulatory and catalytic subunits that comprise mammalian PKA, RIβ subunit is considered to be one of the important subunits for neuronal functions. This is involved in multiple forms of synaptic plasticity, and influences memory and learning by maintaining hippocampal long-term potentiation (LTP). Deficient expression of this gene has been implicated in autoimmune disease systemic lupus erythematosus (SLE). We have identified two novel non-coding exons of the Prkar1b gene (designated as exon 1A and exon 1B), which are spliced to the canonical exon 2 and constitute the 5' untranslated region giving rise to three alternative transcript isoforms. We have also confirmed the expression of the previously known first exon (designated as exon 1C) with known transcript published earlier. The transcripts containing exons 1A, 1B and 1C are differentially regulated during the development and tissue types. In silico study of more than 20 kb nucleotide sequence upstream of known translational initiation codon revealed three distinct promoter regions named as PA, PB, and PC upstream of the exon 1A, exon 1B and exon 1C respectively. PB is non-CpG related promoter but PA and PC are CpG related promoters, however all three promoters are TATA less. Further analysis showed that these promoters possess potential signature sequences for common as well as different transcription factors suggesting complex regulation of Prkar1b gene.

  6. Biochemically Silent Abdominal Paragangliomas in Patients with Mutations in the Succinate Dehydrogenase Subunit B Gene

    PubMed Central

    Timmers, Henri J. L. M.; Pacak, Karel; Huynh, Thanh T.; Abu-Asab, Mones; Tsokos, Maria; Merino, Maria J.; Baysal, Bora E.; Adams, Karen T.; Eisenhofer, Graeme

    2008-01-01

    Context: Patients with adrenal and extra-adrenal abdominal paraganglioma (PGL) almost invariably have increased plasma and urine concentrations of metanephrines, the O-methylated metabolites of catecholamines. We report four cases of biochemically silent abdominal PGL, in which metanephrines were normal despite extensive disease. Objective: Our objective was to identify the mechanism underlying the lack of catecholamine hypersecretion and metabolism to metanephrines in biochemically silent PGL. Design: This is a descriptive study. Setting: The study was performed at a referral center. Patients: One index case and three additional patients with large abdominal PGL and metastases but with the lack of evidence of catecholamine production, six patients with metastatic catecholamine-producing PGL and a mutation of the succinate dehydrogenase subunit B (SDHB) gene, and 136 random patients with catecholamine-producing PGL were included in the study. Main Outcome Measures: Plasma, urine, and tumor tissue concentrations of catecholamines and metabolites were calculated with electron microscopy and tyrosine hydroxylase immunohistochemistry. Results: All four patients with biochemically silent PGL had an underlying SDHB mutation. In the index case, the tumor tissue concentration of catecholamines (1.8 nmol/g) was less than 0.01% that of the median (20,410 nmol/g) for the 136 patients with catecholamine-producing tumors. Electron microscopy showed the presence of normal secretory granules in all four biochemically silent PGLs. Tyrosine hydroxylase immunoreactivity was negligible in the four biochemically silent PGLs but abundant in catecholamine-producing PGLs. Conclusions: Patients with SDHB mutations may present with biochemically silent abdominal PGLs due to defective catecholamine synthesis resulting from the absence of tyrosine hydroxylase. Screening for tumors in patients with SDHB mutations should not be limited to biochemical tests of catecholamine excess. PMID

  7. Genetic interaction of an origin recognition complex subunit and the Polycomb group gene MEDEA during seed development.

    PubMed

    Collinge, Margaret A; Spillane, Charles; Köhler, Claudia; Gheyselinck, Jacqueline; Grossniklaus, Ueli

    2004-04-01

    The eukaryotic origin recognition complex (ORC) is made up of six subunits and functions in nuclear DNA replication, chromatin structure, and gene silencing in both fungi and metazoans. We demonstrate that disruption of a plant ORC subunit homolog, AtORC2 of Arabidopsis (Arabidopsis thaliana), causes a zygotic lethal mutant phenotype (orc2). Seeds of orc2 abort early, typically producing embryos with up to eight cells. Nuclear division in the endosperm is arrested at an earlier developmental stage: only approximately four nuclei are detected in orc2 endosperm. The endosperm nuclei in orc2 are dramatically enlarged, a phenotype that is most similar to class B titan mutants, which include mutants in structural maintenance of chromosomes (SMC) cohesins. The highest levels of ORC2 gene expression were found in preglobular embryos, coinciding with the stage at which homozygous orc2 mutant seeds arrest. The homologs of the other five Arabidopsis ORC subunits are also expressed at this developmental stage. The orc2 mutant phenotype is partly suppressed by a mutation in the Polycomb group gene MEDEA. In double mutants between orc2 and medea (mea), orc2 homozygotes arrest later with a phenotype intermediate between those of mea and orc2 single mutants. Either alterations in chromatin structure or the release of cell cycle checkpoints by the mea mutation may allow more cell and nuclear divisions to occur in orc2 homozygous seeds.

  8. [C825T polymorphism of the GNB3 gene codifying the G-protein beta3-subunit and cardiovascular risk].

    PubMed

    Sartori, Michelangelo; Parotto, Emanuela; Ceolotto, Giulio; Papparella, Italia; Lenzini, Livia; Calò, Lorenzo A; Semplicini, Andrea

    2004-01-01

    Hypertension is a common disorder of multifactorial origin that constitutes a major risk factor for cardiovascular events such as stroke and myocardial infarction. The subunits of the heterotrimeric G proteins are attractive candidate gene products for both susceptibility to essential hypertension and interindividual variation in blood pressure. A polymorphism (825C/T) in exon 10 of the GNB3 gene, that encodes for the beta3 subunit, has recently been described. The 825T allele is associated with alternative splicing of the gene and formation of a truncated but functionally active beta3 subunit. Carriers of the 825T allele appear to have an increased risk for hypertension, obesity, insulin-resistance and left ventricular hypertrophy. Moreover, 825T allele carriers respond with a stronger decrease in blood pressure to therapy with a thiazide diuretic and with clonidine. GNB3 825T allele may be regarded as a potential genetic marker for a better definition of the risk profile of hypertensive subjects, but further studies are needed to precisely define the impact of T allele on the prognosis of such patients.

  9. Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108.

    PubMed

    Masud, Uraiwan; Matsushita, Kazunobu; Theeragool, Gunjana

    2010-03-31

    The adhS gene which encodes the smallest subunit, subunit III, of quinoprotein alcohol dehydrogenase (PQQ-ADH) from Acetobacter pasteurianus SKU1108 has been cloned and characterized. The role of this subunit on the function of PQQ-ADH was investigated by construction of adhS gene disruptant and mutants. The adhS gene disruptant completely lost its PQQ-ADH activity and acetate-producing ability but retained acetic acid toleration. In contrast, this disruptant grew well, even better than the wild type, in the ethanol containing medium even though its PQQ-ADH activity and ethanol oxidizing ability was completely lost, while NAD(+)-dependent ADH (NAD(+)-ADH) was induced. Heme staining and immunoblot analysis of both membrane and soluble fractions with anti-ADH subunit III suggested that ethanol did not affect the adhS gene expression but induced PQQ-ADH activity. Over-expressed adhS did not enhance acetic acid production in both the wild type and the adhS disruptant. In addition, deletion analysis of upstream region of adhS gene suggested that its tentative promoter(s) might be located at around 118-268 bp upstream from an initiation codon. Random mutagenesis of adhS gene revealed that complete loss of PQQ-ADH activity and ethanol oxidizing ability were observed in the mutants' lack of the 140 and 73 amino acid residues at the C-terminal, whereas the lack of 22 amino acid residues at the C-terminal affected neither the PQQ-ADH activity nor ethanol oxidizing ability. In addition, some amino acid substitutions such as Leu18Gln, Ala26Val, Val36Ile, Val54Ile, Gly55Asp, Val70Ala and Val107Ala did not show any affect on PQQ-ADH activity and ethanol oxidizing ability. Interestingly, alteration of Thr104Lys led to a complete loss of ethanol oxidizing ability. However, point mutation at the possible promoter region also exhibited low PQQ-ADH activity and ethanol oxidizing ability. This result suggests that 104Thr might be involved in molecular coupling with subunit I in order

  10. Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.).

    PubMed

    An, X; Zhang, Q; Yan, Y; Li, Q; Zhang, Y; Wang, A; Pei, Y; Tian, J; Wang, H; Hsam, S L K; Zeller, F J

    2006-08-01

    Three novel low molecular weight (LMW) glutenin subunits from cultivated einkorn (Triticum monococcum L., A(m)A(m), 2n = 2x = 14) were characterized by SDS-PAGE and molecular weights determined by MALDI-TOF-MS. Their coding genes were amplified and cloned with designed AS-PCR primers, revealing three complete gene sequences. All comprised upstream, open reading frame (ORF), downstream and no introns were present. The deduced amino acid sequences showed that all three genes, named as LMW-M1, LMW-M3 and LMW-M5, respectively, belonged to the LMW-i type subunits with the predicted molecular weight between 38.5206 and 38.7028 kDa. They showed high similarity with other LMW-i type genes from hexaploid bread wheats, but also displayed unique features. Particularly, LMW-M5 subunit contained an extra cysteine residue in the C-terminus except for eight conserved cysteines, which resulted from a single-nucleotide polymorphism (SNP) of the T-C transition, namely arginine --> cysteine substitution at position 242 from the N-terminal end. This is the first report that the LMW-i subunit contained nine cysteines residues that could result in a more highly cross-linked and more elastic glutenin suggesting that LMW-M5 gene may associates with good quality properties. In addition, a total of 25 SNPs and one insertions/deletions (InDels) were detected among three LMW-i genes, which could result in significant functional changes in polymer formation of gluten. It is anticipated that these SNPs could be used as reliable genetic markers during wheat quality improvement. The phylogenetic analysis indicated that LMW-i type genes apparently differed from LMW-m and LMW-s type genes and diverged early from the primitive LMW-GS gene family, at about 12.92 million years ago (MYA) while the differentiation of A(m) and A genomes was estimated at 3.98 MYA.

  11. The carB Gene Encoding the Large Subunit of Carbamoylphosphate Synthetase from Lactococcus lactis Is Transcribed Monocistronically

    PubMed Central

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalyzed by the heterodimeric enzyme carbamoylphosphate synthetase. The genes encoding the two subunits of this enzyme in procaryotes are normally transcribed as an operon, but the gene encoding the large subunit (carB) in Lactococcus lactis is shown to be transcribed as an isolated unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis, L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by means of the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines, most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame showing a high degree of similarity to those of glutathione peroxidases from other organisms was identified. PMID:9721272

  12. Prodynorphin gene deletion increased anxiety-like behaviours, impaired the anxiolytic effect of bromazepam and altered GABAA receptor subunits gene expression in the amygdala.

    PubMed

    Femenía, Teresa; Pérez-Rial, Sandra; Urigüen, Leyre; Manzanares, Jorge

    2011-01-01

    This study evaluated the role of prodynorphin gene in the regulation of anxiety and associated molecular mechanisms. Emotional responses were assessed using the light-dark test, elevated plus maze and social interaction tests in prodynorphin knockout and wild-type mice. Corticotrophin releasing factor and proopiomelanocortin gene expressions in the hypothalamus were evaluated after restraint stress using in situ hybridization. The anxiolytic efficacy of bromazepam and GABA(A) receptor subunits gene expression in the amygdala were also assessed in both genotypes. The deletion of prodynorphin increased anxiety-like behaviours and proopiomelanocortin gene expression in the arcuate nucleus (two-fold). Moreover, the anxiolytic action of bromazepam was significantly attenuated in the mutant mice. Decreased GABA(A)γ(2) and increased GABA(A)β(2) gene expression receptor subunits were found in the amygdala of prodynorphin knockout mice. These results indicate that deletion of prodynorphin gene is associated with increased anxiety-like behaviours, enhanced sensibility response to stress stimuli, reduced anxiolytic efficacy of bromazepam and altered expression of the GABA(A) receptor subunits.

  13. The Mitochondrial Genome Integrity Gene, Mgi1, of Kluyveromyces Lactis Encodes the β-Subunit of F(1)-Atpase

    PubMed Central

    Chen, X. J.; Clark-Walker, G. D.

    1996-01-01

    In a previous report, we found that mutations at the mitochondrial genome integrity locus, MGI1, can convert Kluyveromyces lactis into a petite-positive yeast. In this report, we describe the isolation of the MGI1 gene and show that it encodes the β-subunit of the mitochondrial F(1)-ATPase. The site of mutation in four independently isolated mgi1 alleles is at Arg435, which has changed to Gly in three cases and Ile in the fourth isolate. Disruption of MGI1 does not lead to the production of mitochondrial genome deletion mutants, indicating that an assembled F(1) complex is needed for the ``gain-of-function'' phenotype found in mgi1 point mutants. The location of Arg435 in the β-subunit, as deduced from the three-dimensional structure of the bovine F(1)-ATPase, together with mutational sites in the previously identified mgi2 and mgi5 alleles, suggests that interaction of the β- and α- (MGI2) subunits with the γ-subunit (MGI5) is likely to be affected by the mutations. PMID:8978033

  14. Cloning and functional characterization of a putative sodium channel auxiliary subunit gene from the house fly (Musca domestica).

    PubMed

    Lee, S H; Smith, T J; Ingles, P J; Soderlund, D M

    2000-06-01

    The functional expression of cloned Drosophila melanogaster and house fly (Musca domestica) voltage-sensitive sodium channels in Xenopus oocytes is enhanced, and the inactivation kinetics of the expressed channels are accelerated, by coexpression with the tipE protein, a putative sodium channel auxiliary subunit encoded by the tipE gene of D. melanogaster. These results predict the existence of a tipE ortholog in the house fly. Using a PCR-based homology probing approach, we isolated cDNA clones encoding an ortholog of tipE (designated Vssc beta) from adult house fly heads. Clones comprising 3444 bp of cDNA sequence contained a 1317 bp open-reading frame encoding a 438 amino acid protein. The predicted Vssc beta protein exhibited 72% amino acid sequence identity to the entire D. melanogaster tipE protein sequence and 97% identity within the two hydrophobic segments identified as probable transmembrane domains. Coexpression of Vssc beta with the house fly sodium channel alpha subunit (Vssc1) in oocytes enhanced the level of sodium current expression five-fold and accelerated the rate of sodium current inactivation 2.2-fold. Both of these effects were significantly larger in magnitude than the corresponding effects of the D. melanogaster tipE protein on the expression and kinetics of Vssc1 sodium channels. These results identify a second example of a putative sodium channel auxiliary subunit from an insect having functional but not structural homology to vertebrate sodium channel beta subunits.

  15. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ

    PubMed Central

    Gibbs, Peter E. M.; McGregor, W. Glenn; Maher, Veronica M.; Nisson, Paul; Lawrence, Christopher W.

    1998-01-01

    To get a better understanding of mutagenic mechanisms in humans, we have cloned and sequenced the human homolog of the Saccharomyces cerevisiae REV3 gene. The yeast gene encodes the catalytic subunit of DNA polymerase ζ, a nonessential enzyme that is thought to carry out translesion replication and is responsible for virtually all DNA damage-induced mutagenesis and the majority of spontaneous mutagenesis. The human gene encodes an expected protein of 3,130 residues, about twice the size of the yeast protein (1,504 aa). The two proteins are 29% identical in an amino-terminal region of ≈340 residues, 39% identical in a carboxyl-terminal region of ≈850 residues, and 29% identical in a 55-residue region in the middle of the two genes. The sequence of the expected protein strongly predicts that it is the catalytic subunit of a DNA polymerase of the pol ζ type; the carboxyl-terminal domain possesses, in the right order, the six motifs characteristic of eukaryotic DNA polymerases, most closely resembles yeast pol ζ among all polymerases in the GenBank database, and is different from the human α, δ, and ɛ enzymes. Human cells expressing high levels of an hsREV3 antisense RNA fragment grow normally, but show little or no UV-induced mutagenesis and are slightly more sensitive to killing by UV. The human gene therefore appears to carry out a function similar to that of its yeast counterpart. PMID:9618506

  16. NODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus

    PubMed Central

    Soyano, Takashi; Kouchi, Hiroshi; Hirota, Atsuko; Hayashi, Makoto

    2013-01-01

    The interactions of legumes with symbiotic nitrogen-fixing bacteria cause the formation of specialized lateral root organs called root nodules. It has been postulated that this root nodule symbiosis system has recruited factors that act in early signaling pathways (common SYM genes) partly from the ancestral mycorrhizal symbiosis. However, the origins of factors needed for root nodule organogenesis are largely unknown. NODULE INCEPTION (NIN) is a nodulation-specific gene that encodes a putative transcription factor and acts downstream of the common SYM genes. Here, we identified two Nuclear Factor-Y (NF-Y) subunit genes, LjNF-YA1 and LjNF-YB1, as transcriptional targets of NIN in Lotus japonicus. These genes are expressed in root nodule primordia and their translational products interact in plant cells, indicating that they form an NF-Y complex in root nodule primordia. The knockdown of LjNF-YA1 inhibited root nodule organogenesis, as did the loss of function of NIN. Furthermore, we found that NIN overexpression induced root nodule primordium-like structures that originated from cortical cells in the absence of bacterial symbionts. Thus, NIN is a crucial factor responsible for initiating nodulation-specific symbiotic processes. In addition, ectopic expression of either NIN or the NF-Y subunit genes caused abnormal cell division during lateral root development. This indicated that the Lotus NF-Y subunits can function to stimulate cell division. Thus, transcriptional regulation by NIN, including the activation of the NF-Y subunit genes, induces cortical cell division, which is an initial step in root nodule organogenesis. Unlike the legume-specific NIN protein, NF-Y is a major CCAAT box binding protein complex that is widespread among eukaryotes. We propose that the evolution of root nodules in legume plants was associated with changes in the function of NIN. NIN has acquired functions that allow it to divert pathways involved in the regulation of cell division to

  17. Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex.

    PubMed

    Fernández-Cabrera, Mónica R; Selvas, Abraham; Miguéns, Miguel; Higuera-Matas, Alejandro; Vale-Martínez, Anna; Ambrosio, Emilio; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma

    2017-04-21

    The rodent parafascicular nucleus (PFn) or the centromedian-parafascicular complex of primates is a posterior intralaminar nucleus of the thalamus related to cortical activation and maintenance of states of consciousness underlying attention, learning and memory. Deep brain stimulation (DBS) of the PFn has been proved to restore arousal and consciousness in humans and to enhance performance in learning and memory tasks in rats. The primary expected effect of PFn DBS is to induce plastic changes in target neurons of brain areas associated with cognitive function. In this study, Wistar rats were stimulated for 20mins in the PFn following a DBS protocol that had previously facilitated memory in rats. NMDA and GABAB receptor binding, and gene expression of the GluN1subunit of the NMDA receptor (NMDAR) were assessed in regions related to cognitive functions, such as the prefrontal cortex and hippocampus. The results showed that PFn DBS induced a decrease in NMDAR GluN1 subunit gene expression in the cingulate and prelimbic cortices, but no significant statistical differences were found in the density of NMDA or GABAB receptors in any of the analyzed regions. Taken together, our findings suggest a possible role for the NMDAR GluN1 subunit in the prefrontal cortex in the procognitive actions of the PFn DBS.

  18. Identification of Egyptian Fasciola species by PCR and restriction endonucleases digestion of the nuclear small subunit ribosomal RNA gene.

    PubMed

    El-Gozamy, Bothina R; Shoukry, Nahla M

    2009-08-01

    Fascioliasis is one of the familiar zoonotic health problems of worldwide distribution including Egypt. In this study, a simple and rapid polymerase chain reaction/restriction fragment length polymorphisms (PCR/RFLPs) assay, using the common restriction endonucleases Aval, EcoRI, Eael, Sac11 and Avail was applied to differentiate between both Fasciola gigantica and F. hepatica. The five restriction endonucleases were used to differentiate between the two species of Fasciola based on -1950 bp long sequence of the 18S nuclear small subunit ribosomal RNA gene. Aval and EcoRI restriction endonucleases failed to differentiate between the two Fasciola species when each restriction enzyme gave the same restriction patterns in both of them. However, F. gigantica and F. hepatica were well-differentiated when their small subunit ribosomal DNA were digested with Eael and Sac 11 restriction endonucleases.

  19. Domain mapping of the retinal cyclic GMP phosphodiesterase gamma-subunit. Function of the domains encoded by the three exons of the gamma-subunit gene.

    PubMed

    Takemoto, D J; Hurt, D; Oppert, B; Cunnick, J

    1992-02-01

    Retinal rod-outer-segment phosphodiesterase (PDE) is a heterotetramer consisting of two similar, but not identical, catalytic subunits (alpha and beta) and two identical inhibitory subunits (gamma 2). Previously, we have reported that the site of PDE alpha/beta interaction with PDE gamma is located within residues 54-87 [Cunnick, Hurt, Oppert, Sakamoto & Takemoto (1990) Biochem. J. 271, 721-727]. The site for PDE gamma interaction with transducin alpha (T alpha) was found to encompass residues 24-45 of PDE gamma [Morrison, Cunnick, Oppert & Takemoto (1989) J. Biol. Chem. 264, 11671-11681]. In order to identify binding sites and other functional domains of PDE gamma, the three peptides which are encoded by the three exons of the PDE gamma gene were synthesized chemically. These exons encode for residues 1-49, 50-62 and 63-87 of bovine PDE gamma [Piriev, Purishko, Khramtsov & Lipkin (1990) Dokl. Akad. Nauk. SSSR 315, 229-230]. The peptide encompassing residues 63-87 was inhibitory in a PDE assay, whereas peptides 1-49 and 50-62 had no effect. However, both peptides 1-49 and 63-87 bound to PDE alpha/beta in a solid-phase binding assay. Only peptide 1-49 bound to T alpha.GTP[S] (GTP[S] is guanosine 5'-[gamma-thio]triphosphate). These data confirm that the inhibitory region of PDE gamma is encoded by exon 3 (residues 63-87), whereas a separate binding site for PDE alpha/beta and for T alpha.GTP[S] is encoded by exon 1 (residues 1-49). To study further the structure-function relationship of PDE gamma, this entire protein and two mutants were chemically synthesized. One mutant (-CT) lacked residues 78-87, whereas another replaced tyrosine-84 with glycine (TYR-84). Whereas the synthetic PDE gamma inhibited PDE alpha/beta catalytic activity, the -CT and TVR-84 mutants did not. All three synthetic proteins bound to both PDE alpha/beta and and T alpha.GTP[S]. These data confirm the presence of an alternative binding site on PDE gamma and demonstrate the importance of tyrosine

  20. The epithelial sodium channel γ-subunit gene and blood pressure: family based association, renal gene expression, and physiological analyses.

    PubMed

    Büsst, Cara J; Bloomer, Lisa D S; Scurrah, Katrina J; Ellis, Justine A; Barnes, Timothy A; Charchar, Fadi J; Braund, Peter; Hopkins, Paul N; Samani, Nilesh J; Hunt, Steven C; Tomaszewski, Maciej; Harrap, Stephen B

    2011-12-01

    Variants in the gene encoding the γ-subunit of the epithelial sodium channel (SCNN1G) are associated with both Mendelian and quantitative effects on blood pressure. Here, in 4 cohorts of 1611 white European families composed of a total of 8199 individuals, we undertook staged testing of candidate single-nucleotide polymorphisms for SCNN1G (supplemented with imputation based on data from the 1000 Genomes Project) followed by a meta-analysis in all of the families of the strongest candidate. We also examined relationships between the genotypes and relevant intermediate renal phenotypes, as well as expression of SCNN1G in human kidneys. We found that an intronic single-nucleotide polymorphism of SCNN1G (rs13331086) was significantly associated with age-, sex-, and body mass index-adjusted blood pressure in each of the 4 populations (P<0.05). In an inverse variance-weighted meta-analysis of this single-nucleotide polymorphism in all 4 of the populations, each additional minor allele copy was associated with a 1-mm Hg increase in systolic blood pressure and 0.52-mm Hg increase in diastolic blood pressure (SE=0.33, P=0.002 for systolic blood pressure; SE=0.21, P=0.011 for diastolic blood pressure). The same allele was also associated with higher 12-hour overnight urinary potassium excretion (P=0.04), consistent with increased epithelial sodium channel activity. Renal samples from hypertensive subjects showed a nonsignificant (P=0.07) 1.7-fold higher expression of SCNN1G compared with normotensive controls. These data provide genetic and phenotypic evidence in support of a role for a common genetic variant of SCNN1G in blood pressure determination.

  1. Augmentation of lung liquid clearance via adenovirus-mediated transfer of a Na,K-ATPase beta1 subunit gene.

    PubMed Central

    Factor, P; Saldias, F; Ridge, K; Dumasius, V; Zabner, J; Jaffe, H A; Blanco, G; Barnard, M; Mercer, R; Perrin, R; Sznajder, J I

    1998-01-01

    Previous studies have suggested that alveolar Na,K-ATPases play an important role in active Na+ transport and lung edema clearance. We reasoned that overexpression of Na,K-ATPase subunit genes could increase Na,K-ATPase function in lung epithelial cells and edema clearance in rat lungs. To test this hypothesis we produced replication deficient human type 5 adenoviruses containing cDNAs for the rat alpha1 and beta1 Na,K-ATPase subunits (adMRCMValpha1 and adMRCMVbeta1, respectively). As compared to controls, adMRCMVbeta1 increased beta1 subunit expression and Na,K-ATPase function by 2. 5-fold in alveolar type 2 epithelial cells and rat airway epithelial cell monolayers. No change in Na,K-ATPase function was noted after infection with adMRCMValpha1. Rat lungs infected with adMRCMVbeta1, but not adMRCMValpha1, had increased beta1 protein levels and lung liquid clearance 7 d after tracheal instillation. Alveolar epithelial permeability to Na+ and mannitol was mildly increased in animals infected with adMRCMVbeta1 and a similar Escherichia coli lacZ-expressing virus. Our data shows, for the first time, that transfer of the beta1 Na,K-ATPase subunit gene augments Na,K-ATPase function in epithelial cells and liquid clearance in rat lungs. Conceivably, overexpression of Na,K-ATPases could be used as a strategy to augment lung liquid clearance in patients with pulmonary edema. PMID:9769335

  2. Bilaterian phylogeny based on analyses of a region of the sodium-potassium ATPase beta-subunit gene.

    PubMed

    Anderson, Frank E; Córdoba, Alonso J; Thollesson, Mikael

    2004-03-01

    Molecular investigations of deep-level relationships within and among the animal phyla have been hampered by a lack of slowly evolving genes that are amenable to study by molecular systematists. To provide new data for use in deep-level metazoan phylogenetic studies, primers were developed to amplify a 1.3-kb region of the alpha subunit of the nuclear-encoded sodium-potassium ATPase gene from 31 bilaterians representing several phyla. Maximum parsimony, maximum likelihood, and Bayesian analyses of these sequences (combined with ATPase sequences for 23 taxa downloaded from GenBank) yield congruent trees that corroborate recent findings based on analyses of other data sets (e.g., the 18S ribosomal RNA gene). The ATPase-based trees support monophyly for several clades (including Lophotrochozoa, a form of Ecdysozoa, Vertebrata, Mollusca, Bivalvia, Gastropoda, Arachnida, Hexapoda, Coleoptera, and Diptera) but do not support monophyly for Deuterostomia, Arthropoda, or Nemertea. Parametric bootstrapping tests reject monophyly for Arthropoda and Nemertea but are unable to reject deuterostome monophyly. Overall, the sodium-potassium ATPase alpha-subunit gene appears to be useful for deep-level studies of metazoan phylogeny.

  3. Dimorphisms of the proteasome subunit beta type 8 gene (PSMB8) of ectothermic tetrapods originated in multiple independent evolutionary events.

    PubMed

    Huang, Ching-Huei; Tanaka, Yuta; Fujito, Naoko T; Nonaka, Masaru

    2013-11-01

    The proteasome subunit beta type 8 gene (PSMB8) encodes one of the beta subunits of the immunoproteasome responsible for the generation of peptides presented by major histocompatibility complex class I molecules. Dimorphic alleles of the PSMB8 gene, termed A and F types, based on the deduced 31st amino acid residue of the mature protein have been reported from various vertebrates. Phylogenetic analysis revealed the presence of dichotomous ancient lineages, one comprising the F-type PSMB8 of basal ray-finned fishes, and the other comprising the A-type PSMB8 of these animals and both the F- and A-type PSMB8 of Xenopus and acanthopterygians, indicating that evolutionary history of the PSMB8 dimorphism was not straightforward. We analyzed the PSMB8 gene of five reptile and one amphibian species and found both the A and F types from all six. Phylogenetic analysis indicated that the PSMB8 F type was apparently regenerated from the PSMB8 A type at least five times independently during tetrapod evolution. Genomic typing of wild individuals of geckos and newts indicated that the frequencies of the A- and F-type alleles are not highly biased in these species. Phylogenetic analysis of each exon of the reptile PSMB8 gene suggested interallelic sequence homogenization as a possible evolutionary mechanism for the apparent recurrent regeneration of PSMB8 dimorphism in tetrapods. An extremely strong balancing selection acting on PSMB8 dimorphism was implicated in an unprecedented pattern of allele evolution.

  4. R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes.

    PubMed Central

    Burke, W D; Müller, F; Eickbush, T H

    1995-01-01

    A 4.7 kb sequence-specific insertion in the 26S ribosomal RNA gene of Ascaris lumbricoides, named R4, is shown to be a non-long terminal repeat (non-LTR) retrotransposable element. The R4 element inserts at a site in the large subunit rRNA gene which is midway between two other sequence-specific non-LTR retrotransposable elements, R1 and R2, found in most insect species. Based on the structure of its open reading frame and the sequence of its reverse transcriptase domain, R4 elements do not appear to be a family of R1 or R2 elements that have changed their insertion site. R4 is most similar in structure and in sequence to the element Dong, which is not specialized for insertion into rRNA units. Thus R4 represents a separate non-LTR retrotransposable element that has become specialized for insertion in the rRNA genes of its host. Using oligonucleotide primers directed to a conserved region of the reverse transcriptase encoding domain, insertions in the R4 site were also amplified from Parascaris equorum and Haemonchus contortus. Why several non-LTR retrotransposable elements have become specialized for insertion into a short (87 bp) region of the large subunit rRNA gene is discussed. PMID:8524653

  5. Pyruvate dehydrogenase complex: mRNA and protein expression patterns of E1α subunit genes in human spermatogenesis.

    PubMed

    Pinheiro, Ana; Silva, Maria João; Graça, Inês; Silva, Joaquina; Sá, Rosália; Sousa, Mário; Barros, Alberto; Tavares de Almeida, Isabel; Rivera, Isabel

    2012-09-10

    During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.

  6. The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization.

    PubMed Central

    Purschke, W G; Schmidt, C L; Petersen, A; Schäfer, G

    1997-01-01

    A terminal quinol oxidase has been isolated from the plasma membrane of the crenarchaeon Acidianus ambivalens (DSM 3772) (formerly Desulfurolobus ambivalens), cloned, and sequenced. The detergent-solubilized complex oxidizes caldariella quinol at high rates and is completely inhibited by cyanide and by quinolone analogs, potent inhibitors of quinol oxidases. It is composed of at least five different subunits of 64.9, 38, 20.4, 18.8, and 7.2 kDa; their genes are located in two different operons. doxB, the gene for subunit I, is located together with doxC and two additional small open reading frames (doxE and doxF) in an operon with a complex transcription pattern. Two other genes of the oxidase complex (doxD and doxA) are located in a different operon and are cotranscribed into a common 1.2-kb mRNA. Both operons exist in duplicate on the genome of A. ambivalens. Only subunit I exhibits clear homology to other members of the superfamily of respiratory heme-copper oxidases; however, it reveals 14 transmembrane helices. In contrast, the composition of the accessory proteins is highly unusual; none is homologous to any known accessory protein of cytochrome oxidases, nor do homologs exist in the databases. DoxA is classified as a subunit II equivalent only by analogy of molecular size and hydrophobicity pattern to corresponding polypeptides of other oxidases. Multiple alignments and phylogenetic analysis of the heme-bearing subunit I (DoxB) locate this oxidase at the bottom of the phylogenetic tree, in the branch of heme-copper oxidases recently suggested to be incapable of superstoichiometric proton pumping. This finding is corroborated by lack of the essential amino acid residues delineating the putative H+-pumping channel. It is therefore concluded that A. ambivalens copes with its strongly acidic environment simply by an extreme turnover of its terminal oxidase, generating a proton gradient only by chemical charge separation. PMID:9023221

  7. Exclusion of catalytic and regulatory subunits of cAMP-dependent protein kinase as candidate genes for the defect causing cystic fibrosis.

    PubMed

    Scambler, P; Oyen, O; Wainwright, B; Farrall, M; Law, H Y; Estivill, X; Sandberg, M; Williamson, R; Jahnsen, T

    1987-11-01

    Cystic fibrosis (CF) is a common autosomal recessive disease with significant morbidity and mortality. Defects in cAMP control mechanisms are implicated in the pathophysiology of the disease. The mutation causing CF has been localized to chromosome 7q22-7q31.1. We have used (1) somatic-cell hybrids containing this region of the human genome in a mouse background and (2) segregation analysis in families to exclude both the genes coding for a catalytic subunit and three distinct regulatory subunits of cAMP-dependent protein kinase as candidates for the gene defect in CF. Two of these genes--those for the human homologue of the mouse type I regulatory subunit and the human homologue of the rat type II regulatory subunit--map to human chromosome 7.

  8. ChAy/Bx, a novel chimeric high-molecular-weight glutenin subunit gene apparently created by homoeologous recombination in Triticum turgidum ssp. dicoccoides.

    PubMed

    Guo, Xiao-Hui; Bi, Zhe-Guang; Wu, Bi-Hua; Wang, Zhen-Zhen; Hu, Ji-Liang; Zheng, You-Liang; Liu, Deng-Cai

    2013-12-01

    High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n=4x=28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1,671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.

  9. Genetic mapping of the LMP2 proteasome subunit gene to the BoLA class IIb region

    SciTech Connect

    Shalhevet, D.; Da, Y.; Beever, J.E.; Eijk, M.J.T. van; Ma, R.; Lewin, H.A.; Gaskins, H.R.

    1995-01-01

    Recent identification of four tightly-linked genes within the class II region of the major histocompatibility complex (MHC) in humans and rodents has led to a better understanding of class I antigen processing mechanisms. Two of these genes, LMP2 and LMP7, encode subunits of a low molecular mass poypeptide (LMP) complex. Several observations suggest that the LMP complex may be the proteolytic system responsible for generating the size-restricted peptides required for MHC class I assembly. For example, the LMP complex is a large cytoplasmic structure that is antigenically and biochemically related to the proteasome, a proteolytic complex that mediates degradation of ubiquitinated substrates. Data regarding proteolytic specificity indicates that the LMP complex may specifically produce nonamers, the appropriate peptide size for class I binding. In addition, similar to all components of the class I assembly process, intra-MHC LMP genes are regulated by IFN{gamma}. 26 refs., 2 figs., 1 tab.

  10. Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms.

    PubMed

    Alfreider, A; Vogt, C; Hoffmann, D; Babel, W

    2003-05-01

    To test our hypothesis that microbial autotrophic CO2 fixation plays an important role in subsurface systems of two large groundwater remediation projects, several anaerobic/microaerobic aquifer and groundwater samples were taken and used to investigate the distribution and phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes. Two primer sets were designed for amplifying partial-subunit genes of RubisCO forms I and II from the DNA, directly extracted from the samples. PCR products were used to construct five clone libraries with putative RubisCO form I sequences, and two libraries of DNA amplified by form II primers. Selected clones were screened for variation by restriction fragment length polymorphism analysis, and a total of 28 clone inserts were sequenced and further analyzed. The phylogenies constructed from amino acid sequences derived from the partial RubisCO large-subunit sequences showed a distinct pattern. Diverse sequences affiliated to the cluster of green-like type IA RubisCO sequences were found, representing various obligate and facultative chemolithoautotrophic Proteobacteria, whereas type II RubisCO sequences detected were most closely related to those of thiobacilli species. An isolate obtained from aquifer enrichment culture, which has been provisionally named Halothiobacillus sp. RA13 on the basis of its 16S rDNA sequence, was found to contain both types of RubisCO genes, i.e., forms I and II. Physiological and ecological considerations are discussed in the context of additional microbial data and physicochemical properties.

  11. Effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABA(A) receptor subunit gene expression in the rodent basal ganglia and thalamus.

    PubMed

    Chadha, A; Dawson, L G; Jenner, P G; Duty, S

    2000-01-01

    In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABA(A) receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABA(A) receptor subunits (alpha(1-4), beta(1-3), gamma(1-3) and delta) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of alpha1 and beta2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11 +/- 4% and 17 +/- 1%, respectively), and significantly reduced in the globus pallidus (18 +/- 3% and 16 +/- 3%, respectively) and parafascicular nucleus (19 +/- 3% and 16 +/- 5%, respectively). Smaller changes in the messenger RNA levels encoding the alpha1 subunit in the lateral amygdala (8 +/- 1% decrease) and the alpha4 and gamma2 subunits in the striatum (10 +/- 2% and 6 +/- 1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABA(A) receptor subunit gene expression occurs following a nigrostriatal tract lesion. The changes in expression of the alpha1 and beta2 subunit genes probably contribute to the documented changes in GABA(A) receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.

  12. The role of the 3' region of mammalian gonadotropin β subunit gene in the luteinizing hormone to chorionic gonadotropin evolution.

    PubMed

    Gabay, Reut; Rozen, Shelly; Samokovlisky, Albena; Amor, Yehudit; Rosenfeld, Rakefet; Kohen, Fortune; Amsterdam, Abraham; Berger, Peter; Ben-Menahem, David

    2014-02-15

    CGβ subunits comprise a unique carboxyl-terminal peptide (CTP) that has multiple O-linked glycans and extends serum half-life of the protein. It has evolved by incorporating a previously untranslated region of the LHβ gene into the reading frame. Although CTP-like sequences are encrypted in the LHβ genes of several mammals, the CGβ subunit developed only in primates and equids. To study this restriction in evolution, we examined whether the cryptic CTP decoded from the bovine LHβ gene (boCTP) possesses key characteristics of the human (h) CGβ-CTP. The boCTP does not impede several crucial aspects of hormone biosynthesis, but compared to the hCGβ-CTP, the stretch lacks O-glycans and determinants for circulatory survival. O-glycan deficiency and the associated incapacity to extend serum half-life is a major drawback of the boCTP. This may explain why LH did not evolve into CG in ruminants and consequently alternative mechanisms evolved to delay luteolysis early in gestation.

  13. Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes.

    PubMed

    Procházka, Emanuel; Poláková, Silvia; Piskur, Jure; Sulo, Pavol

    2010-08-01

    The progenitor of the Dekkera/Brettanomyces clade separated from the Saccharomyces/Kluyveromyces clade over 200 million years ago. However, within both clades, several lineages developed similar physiological traits. Both Saccharomyces cerevisiae and Dekkera bruxellensis are facultative anaerobes; in the presence of excess oxygen and sugars, they accumulate ethanol (Crabtree effect) and they both spontaneously generate respiratory-deficient mutants (petites). In order to understand the role of respiratory metabolism, the mitochondrial DNA (mtDNA) molecules of two Dekkera/Brettanomyces species were analysed. Dekkera bruxellensis mtDNA shares several properties with S. cerevisiae, such as the large genome size (76 453 bp), and the organization of the intergenic sequences consisting of spacious AT-rich regions containing a number of hairpin GC-rich cluster-like elements. In addition to a basic set of the mitochondrial genes coding for the components of cytochrome oxidase, cytochrome b, subunits of ATPase, two rRNA subunits and 25 tRNAs, D. bruxellensis also carries genes for the NADH dehydrogenase complex. Apparently, in yeast, the loss of this complex is not a precondition to develop a petite-positive, Crabtree-positive and anaerobic nature. On the other hand, mtDNA from a petite-negative Brettanomyces custersianus is much smaller (30 058 bp); it contains a similar gene set and has only short intergenic sequences.

  14. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits

    PubMed Central

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression. PMID:25429295

  15. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa.

    PubMed

    McLaughlin, M E; Sandberg, M A; Berson, E L; Dryja, T P

    1993-06-01

    We have found four mutations in the human gene encoding the beta-subunit of rod cGMP phosphodiesterase (PDE beta) that cosegregate with autosomal recessive retinitis pigmentosa, a degenerative disease of photoreceptors. In one family two affected siblings both carry allelic nonsense mutations at codons 298 and 531. Affected individuals have abnormal rod and cone electroretinograms. PDE beta is the second member of the phototransduction cascade besides rhodopsin that is absent or altered as a cause of retinitis pigmentosa, suggesting that other members of this pathway may be defective in other forms of this disease.

  16. Sequence analysis of the clpG gene, which codes for surface antigen CS31A subunit: evidence of an evolutionary relationship between CS31A, K88, and F41 subunit genes.

    PubMed Central

    Girardeau, J P; Bertin, Y; Martin, C; Der Vartanian, M; Boeuf, C

    1991-01-01

    The clpG gene coding for the CS31A subunit was localized on a 0.9-kb SphI fragment from the recombinant plasmid pAG315. This was established by testing the ability of subclones to hybridize with a 17-meric oligonucleotide probe obtained from N-terminal analysis of the CS31A subunit. The nucleotide sequence of the region coding for CS31A was determined. From primer extension analysis, two initiation translation start sites were detected. Two possible promoterlike sequences were identified; the ribosome binding site and the translation terminator are proposed. Inverted repeat sequences leading to the formation of possible hairpin structures of the transcripts were found on the 5' untranslated region of clpG. The deduced amino acid composition was in close agreement with the chemical amino acid composition and sequence match with the first 25 N-terminal amino acids from the published N-terminal sequence of the purified CS31A subunit. The clpG gene codes for a mature protein of 257 amino acids with a molecular size of 26,777 Da. An obvious homology was observed when the amino acid sequence of CS31A was compared with those of K88 and F41. This homology includes five different conserved sequences of up to 19 identical amino acids, which is associated with conserved proline. An extensive change in the CS31A region homologous to that identified to contain the K88 receptor binding site might be responsible for the functional divergence between CS31A and K88. Images FIG. 4 FIG. 5 PMID:1938963

  17. Regulation of glutathione S-transferase Ya subunit gene expression: Identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds

    SciTech Connect

    Rushmore, T.H.; King, R.G.; Pickett, C.B. ); Paulson, K.E. )

    1990-05-01

    The authors have identified a region in the 5{prime} flanking sequence of the glutathione S-transferase Ya subunit gene that contains a unique xenobiotic-responsive element (XRE). The regulatory region spans nucleotides {minus}722 to {minus}682 of the 5{prime} flanking sequence and is responsible for part of the basal level as well as inducible expression of the Ya subunit gene by planar aromatic compounds such as {beta}-naphthoflavone ({beta}-NF) and 3-methylcholanthrene. The DNA sequence of this region ({beta}-NF-responsive element) is distinct from the DNA sequence of the XRE found in the cytochrome P-450 IA1 gene. In addition to the region containing the {beta}-NF-responsive element, two other regulatory regions of the Ya subunit gene have been identified. The data suggest that regulation of gene expression by planar aromatic compounds can be mediated by a DNA sequence this is distinct from the XRE sequence.

  18. Nuclear omnipotent suppressors of premature termination codons in mitochondrial genes affect the 37S mitoribosomal subunit.

    PubMed

    Boguta, M; Mieszczak, M; Zagórski, W

    1988-02-01

    nam3 and R705, yeast nuclear omnipotent suppressors of mitochondrial mit- mutations, reverse the superimposed spectrum of trans-recessive splicing defects by affecting the protein composition of the small mitoribosomal subunit. Analysis of the suppressor's interaction suggests that suppression results from mutations in the mitoribosomal polypeptides. These data indicate an obligatory connection between mitoribosome function and splicing of introns bI2, bI4 and aI1 in yeast mitochondria.

  19. The Shiga and Shiga-Like Cytotoxins: Gene Regulation and Functional Analysis of the Binding Subunits

    DTIC Science & Technology

    1989-05-05

    hemolytic uremic syndrome in humans. These E · coli are not invasive, do not produce the classical heat -stable or heat -labile Table 1. The categories of...production in ~. dysenteriae type 1 strain 60R and strains of . E ,. coli rendered toxinogenic either by lysogenization or transformation were studied...results suggest that SLT-IIv does not bind a Gb3-receptor analogue. Subunit Complementation. E · coli HB101 was co- transformed with plasmids carrying the

  20. Cloning, expression and molecular analysis of Iranian Brucella melitensis Omp25 gene for designing a subunit vaccine

    PubMed Central

    Yousefi, Soheil; Tahmoorespur, Mojtaba; Sekhavati, Mohammad Hadi

    2016-01-01

    Brucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. The outer membrane protein 25 kDa (Omp25) gene plays an important role in simulating of TNF-α, IFN-α, macrophage, and cytokines cells. In the current study molecular cloning and expression analysis of Omp25 gene for designing a subunit vaccine against Brucella was investigated. Amplifying the full length of candidate gene was performed using specific primers. Sub-cloning of this gene conducted using pTZ57R/T vector in TOP10F strain of Escherichia coli(E.coli) as the host. Also, pET32(a)+ vector used for expression in BL21 (DE3) strain of E.coli. Omp25 gene with 642 bp size was amplified and cloned successfully. The expression results were confirmed by sequencing and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses which showed 42 kDa protein band correctly. Also, phylogenic analysis showed this gene has a near genetic relation with other Brucella strains. According to our results we can propose this gene as a candidate useful for stimulation of cell-mediated and humoral immunity system in future study. PMID:27920824

  1. Multi site polyadenylation and transcriptional response to stress of a vacuolar type H+-ATPase subunit A gene in Arabidopsis thaliana

    PubMed Central

    Magnotta, Scot M; Gogarten, Johann Peter

    2002-01-01

    Background Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. Results Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. Conclusions Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation. PMID:11985780

  2. Mutations in the Caenorhabditis elegans U2AF Large Subunit UAF-1 Alter the Choice of a 3′ Splice Site In Vivo

    PubMed Central

    Ma, Long; Horvitz, H. Robert

    2009-01-01

    The removal of introns from eukaryotic RNA transcripts requires the activities of five multi-component ribonucleoprotein complexes and numerous associated proteins. The lack of mutations affecting splicing factors essential for animal survival has limited the study of the in vivo regulation of splicing. From a screen for suppressors of the Caenorhabditis elegans unc-93(e1500) rubberband Unc phenotype, we identified mutations in genes that encode the C. elegans orthologs of two splicing factors, the U2AF large subunit (UAF-1) and SF1/BBP (SFA-1). The uaf-1(n4588) mutation resulted in temperature-sensitive lethality and caused the unc-93 RNA transcript to be spliced using a cryptic 3′ splice site generated by the unc-93(e1500) missense mutation. The sfa-1(n4562) mutation did not cause the utilization of this cryptic 3′ splice site. We isolated four uaf-1(n4588) intragenic suppressors that restored the viability of uaf-1 mutants at 25°C. These suppressors differentially affected the recognition of the cryptic 3′ splice site and implicated a small region of UAF-1 between the U2AF small subunit-interaction domain and the first RNA recognition motif in affecting the choice of 3′ splice site. We constructed a reporter for unc-93 splicing and using site-directed mutagenesis found that the position of the cryptic splice site affects its recognition. We also identified nucleotides of the endogenous 3′ splice site important for recognition by wild-type UAF-1. Our genetic and molecular analyses suggested that the phenotypic suppression of the unc-93(e1500) Unc phenotype by uaf-1(n4588) and sfa-1(n4562) was likely caused by altered splicing of an unknown gene. Our observations provide in vivo evidence that UAF-1 can act in regulating 3′ splice-site choice and establish a system that can be used to investigate the in vivo regulation of RNA splicing in C. elegans. PMID:19893607

  3. Two new mutations in a late infantile Tay-Sachs patient are both in exon 1 of the beta-hexosaminidase alpha subunit gene.

    PubMed Central

    Harmon, D L; Gardner-Medwin, D; Stirling, J L

    1993-01-01

    We have identified two new point mutations in the beta-hexosaminidase alpha subunit (HEX A) gene in a non-Jewish Tay-Sachs disease patient with an unusual late infantile onset disease phenotype. The patient was a compound heterozygote with each allele of the HEX A gene containing a different mutation in exon 1. One of these is a T to C transition in the initiation codon, expected to produce no alpha subunit and therefore a classical infantile phenotype. The unusual clinical aspects and later onset in the patient must therefore be a result of residual hexosaminidase A activity associated with a mutant alpha subunit containing the second mutation, substitution of serine for proline at amino acid 25 owing to a C to T change at nucleotide 73. Western blotting and DE-52 ion exchange chromatography have been used to examine the behaviour of this mutant alpha subunit. Images PMID:8445615

  4. Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase beta-subunit.

    PubMed

    Paradis, Sonia; Boissinot, Maurice; Paquette, Nancy; Bélanger, Simon D; Martel, Eric A; Boudreau, Dominique K; Picard, François J; Ouellette, Marc; Roy, Paul H; Bergeron, Michel G

    2005-09-01

    The phylogeny of enterobacterial species commonly found in clinical samples was analysed by comparing partial sequences of their elongation factor Tu gene (tuf) and of their F-ATPase beta-subunit gene (atpD). An 884 bp fragment for tuf and an 884 or 871 bp fragment for atpD were sequenced for 96 strains representing 78 species from 31 enterobacterial genera. The atpD sequence analysis exhibited an indel specific to Pantoea and Tatumella species, showing, for the first time, a tight phylogenetic affiliation between these two genera. Comprehensive tuf and atpD phylogenetic trees were constructed and are in agreement with each other. Monophyletic genera are Cedecea, Edwardsiella, Proteus, Providencia, Salmonella, Serratia, Raoultella and Yersinia. Analogous trees based on 16S rRNA gene sequences available from databases were also reconstructed. The tuf and atpD phylogenies are in agreement with the 16S rRNA gene sequence analysis, and distance comparisons revealed that the tuf and atpD genes provide better discrimination for pairs of species belonging to the family Enterobacteriaceae. In conclusion, phylogeny based on tuf and atpD conserved genes allows discrimination between species of the Enterobacteriaceae.

  5. Structural Characterization and Evolutionary Relationship of High-Molecular-Weight Glutenin Subunit Genes in Roegneria nakaii and Roegneria alashanica.

    PubMed

    Zhang, Lujun; Li, Zhixin; Fan, Renchun; Wei, Bo; Zhang, Xiangqi

    2016-07-19

    The Roegneria of Triticeae is a large genus including about 130 allopolyploid species. Little is known about its high-molecular-weight glutenin subunits (HMW-GSs). Here, we reported six novel HMW-GS genes from R. nakaii and R. alashanica. Sequencing indicated that Rny1, Rny3, and Ray1 possessed intact open reading frames (ORFs), whereas Rny2, Rny4, and Ray2 harbored in-frame stop codons. All of the six genes possessed a similar primary structure to known HMW-GS, while showing some unique characteristics. Their coding regions were significantly shorter than Glu-1 genes in wheat. The amino acid sequences revealed that all of the six genes were intermediate towards the y-type. The phylogenetic analysis showed that the HMW-GSs from species with St, StY, or StH genome(s) clustered in an independent clade, varying from the typical x- and y-type clusters. Thus, the Glu-1 locus in R. nakaii and R. alashanica is a very primitive glutenin locus across evolution. The six genes were phylogenetically split into two groups clustered to different clades, respectively, each of the two clades included the HMW-GSs from species with St (diploid and tetraploid species), StY, and StH genomes. Hence, it is concluded that the six Roegneria HMW-GS genes are from two St genomes undergoing slight differentiation.

  6. Structural organization, sequence, and expression of the mouse HEXA gene encoding the alpha subunit of hexosaminidase A.

    PubMed

    Wakamatsu, N; Benoit, G; Lamhonwah, A M; Zhang, Z X; Trasler, J M; Triggs-Raine, B L; Gravel, R A

    1994-11-01

    Genomic clones of the mouse HEXA gene encoding the alpha subunit of lysosomal beta-hexosaminidase A have been isolated, analyzed, and sequenced. The HEXA gene spans approximately 26 kb and consists of 14 exons and 13 introns. The 5' flanking region of the gene has three candidate GC boxes and a number of potential promoter and regulatory elements. Promoter analysis using deletion constructs of 5' flanking sequence fused to the bacterial chloramphenicol acetyltransferase (CAT) gene showed that 150 bp of 5' sequence was sufficient for expression in transfected monkey kidney COS cells. Determination of the sequence of the 5' end of the Hex alpha mRNA by an "anchor-ligation PCR" procedure showed that transcription is initiated from a cluster of sites centered -42, -32, and -21 bp from the first in-frame ATG. Northern blot analysis from 11 different tissues showed over five times the steady-state level of Hex alpha mRNA in testis as compared to that found in three different brain regions; the lowest level (about 1/3 of brain) was found in liver. Comparison of the 5' flanking sequence with that of the human HEXA gene revealed 78% identity within the first 100 bp. These data suggest that the mouse HEXA gene is controlled mainly by sequences located within 150 bp of the 5' flanking region, and we speculate that it may have a role, not only in brain and other tissues, but also in reproductive function in the adult male mouse.

  7. The primary structure of E. coli RNA polymerase, Nucleotide sequence of the rpoC gene and amino acid sequence of the beta'-subunit.

    PubMed

    Ovchinnikov YuA; Monastyrskaya, G S; Gubanov, V V; Guryev, S O; Salomatina, I S; Shuvaeva, T M; Lipkin, V M; Sverdlov, E D

    1982-07-10

    The primary structure of the E. coli rpoC gene (5321 base pairs) coding the beta'-subunit of RNA polymerase as well as its adjacent segment have been determined. The structure analysis of the peptides obtained by cleavage of the protein with cyanogen bromide and trypsin has confirmed the amino acid sequence of the beta'-subunit deduced from the nucleotide sequence analysis. The beta'-subunit of E. coli RNA polymerase contains 1407 amino acid residues. Its translation is initiated by codon GUG and terminated by codon TAA. It has been detected that the sequence following the terminating codon is strikingly homologous to known sequences of rho-independent terminators.

  8. Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit.

    PubMed

    Berti, L; Mittler, G; Przemeck, G K; Stelzer, G; Günzler, B; Amati, F; Conti, E; Dallapiccola, B; Hrabé de Angelis, M; Novelli, G; Meisterernst, M

    2001-06-15

    Hemizygous deletions on chromosome 22q11.2 result in developmental disorders referred to as DiGeorge syndrome (DGS)/velocardiofacial syndrome (VCFS). We report the isolation of a novel gene, PCQAP (PC2 glutamine/Q-rich-associated protein), that maps to the DiGeorge typically deleted region and encodes a protein identified as a subunit of the large multiprotein complex PC2. PC2 belongs to the family of the human Mediator complexes, which exhibit coactivator function in RNA polymerase II transcription. Furthermore, we cloned the homologous mouse Pcqap cDNA. There is 83% amino acid identity between the human and the mouse predicted protein sequences, with 96% similarity at the amino- and carboxy-terminal ends. To assess the potential involvement of PCQAP in DGS/VCFS, its developmental expression pattern was analyzed. In situ hybridization of mouse embryos at different developmental stages revealed that Pcqap is ubiquitously expressed. However, higher expression was detected in the frontonasal region, pharyngeal arches, and limb buds. Moreover, analysis of subjects carrying a typical 22q11 deletion revealed that the human PCQAP gene was deleted in all patients. Many of the structures affected in DGS/VCFS evolve from Pcqap-expressing cells. Together with the observed haploinsufficiency of PCQAP in DGS/VCFS patients, this finding is consistent with a possible role for this novel Mediator subunit in the development of some of the structures affected in DGS/VCFS.

  9. Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells.

    PubMed

    Lacorazza, H D; Flax, J D; Snyder, E Y; Jendoubi, M

    1996-04-01

    In humans, beta-hexosaminidase alpha-subunit deficiency prevents the formation of a functional beta-hexosaminidase A heterodimer resulting in the severe neurodegenerative disorder, Tay-Sachs disease. To explore the feasibility of using ex vivo gene transfer in this lysosomal storage disease, we produced ecotropic retroviruses encoding the human beta-hexosaminidase alpha-subunit cDNA and transduced multipotent neural cell lines. Transduced progenitors stably expressed and secreted high levels of biologically active beta-hexosaminidase A in vitro and cross-corrected the metabolic defect in a human Tay-Sachs fibroblasts cell line in vitro. These genetically engineered CNS progenitors were transplanted into the brains of both normal fetal and newborn mice. Engrafted brains, analyzed at various ages after transplant, produced substantial amounts of human beta-hexosaminidase alpha-subunit transcript and protein, which was enzymatically active throughout the brain at a level reported to be therapeutic in Tay-Sachs disease. These results have implications for treating neurologic diseases characterized by inherited single gene mutations.

  10. Mutations of the Gs alpha-subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis.

    PubMed Central

    Weinstein, L S; Gejman, P V; Friedman, E; Kadowaki, T; Collins, R M; Gershon, E S; Spiegel, A M

    1990-01-01

    Affected members of most kindreds with Albright hereditary osteodystrophy have a partial deficiency of functional Gs, the guanine nucleotide-binding protein that stimulates adenylyl cyclase. By use of the polymerase chain reaction to amplify genomic fragments with the attachment of a high-melting G + C-rich region (GC clamp) and analysis of these fragments by denaturing gradient gel electrophoresis, heterozygous mutations in the Gs alpha-subunit gene were found in two kindreds. These included a G----C substitution at the donor splice junction of intron 10 and a coding frameshift created by a single base deletion within exon 10. The findings illustrate the heterogeneity of genetic defects in Albright hereditary osteodystrophy and the usefulness of the polymerase chain reaction-denaturing gradient gel electrophoresis method to search rapidly for mutations in a large candidate gene. Images PMID:2122458

  11. Large subunit of the ribonucleotide reductase gene is a virulent factor and plays a critical role in Marek's disease virus pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR) gene consisting of two subunits UL39 (RR1) and UL40 (RR2). Both RR1 and RR2 form an active holoenzyme and are necessary for enzyme activity. This gene was indentified by monoclonal antibody T81 in a gt11 MDV expression library and f...

  12. Molecular evolution of integrins: Genes encoding integrin β subunits from a coral and a sponge

    PubMed Central

    Brower, Danny L.; Brower, Sharon M.; Hayward, David C.; Ball, Eldon E.

    1997-01-01

    The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin β subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral βCn1 and, especially, the sponge βPo1 sequences are the most divergent of the “β1-class” integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other β subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in βCn1 and βPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function. PMID:9256456

  13. Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

    PubMed

    Rubin, Carol M; van der List, Deborah A; Ballesteros, Jose M; Goloshchapov, Andrey V; Chalupa, Leo M; Chapman, Barbara

    2011-04-25

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2-/- mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2-/- mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2-/- mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2-/- mutant strains reveals the effects of genetic background upon gene expression.

  14. LIN9, a subunit of the DREAM complex, regulates mitotic gene expression and proliferation of embryonic stem cells.

    PubMed

    Esterlechner, Jasmina; Reichert, Nina; Iltzsche, Fabian; Krause, Michael; Finkernagel, Florian; Gaubatz, Stefan

    2013-01-01

    The DREAM complex plays an important role in regulation of gene expression during the cell cycle. We have previously shown that the DREAM subunit LIN9 is required for early embryonic development and for the maintenance of the inner cell mass in vitro. In this study we examined the effect of knocking down LIN9 on ESCs. We demonstrate that depletion of LIN9 alters the cell cycle distribution of ESCs and results in an accumulation of cells in G2 and M and in an increase of polyploid cells. Genome-wide expression studies showed that the depletion of LIN9 results in downregulation of mitotic genes and in upregulation of differentiation-specific genes. ChIP-on chip experiments showed that mitotic genes are direct targets of LIN9 while lineage specific markers are regulated indirectly. Importantly, depletion of LIN9 does not alter the expression of pluripotency markers SOX2, OCT4 and Nanog and LIN9 depleted ESCs retain alkaline phosphatase activity. We conclude that LIN9 is essential for proliferation and genome stability of ESCs by activating genes with important functions in mitosis and cytokinesis.

  15. Glycine-extended progastrin processing intermediates induce H+,K(+)-ATPase alpha-subunit gene expression through a novel receptor.

    PubMed

    Kaise, M; Muraoka, A; Seva, C; Takeda, H; Dickinson, C J; Yamada, T

    1995-05-12

    Biologically active amidated gastrin is synthesized by carboxyl-terminal alpha-amidation of a glycine-extended progastrin post-translational processing intermediate (G-Gly). Although plasma levels of G-Gly are equivalent to those of gastrin, G-Gly has essentially no acute effect on gastric acid secretion. However, we have observed that inhibition of gastrin amidation leads to increased plasma concentrations of G-Gly and enhanced gastric acid secretion. We hypothesized, therefore, that G-Gly might have a chronic effect to increase H+,K(+)-ATPase expression in gastric parietal cells. In the present studies, we observed that a 2-day preincubation with G-Gly significantly enhanced histamine-stimulated [14C]aminopyrine uptake by isolated canine gastric parietal cells but acutely administered G-Gly had no effect. On Northern blot analysis, both G-Gly and gastrin dose-dependently increased H+,K(+)-ATPase alpha-subunit gene expression with maximal induction (225 +/- 35 and 170 +/- 29% of basal, mean +/- S.E.) achieved at concentrations of 10(-9) M G-Gly and 10(-8) M gastrin, respectively. Using an H+,K(+)-ATPase alpha-subunit gene-luciferase chimeric reporter construct transfected into primary cultured parietal cells, we observed that both G-Gly and gastrin increased luciferase activity in a manner similar to that obtained by Northern blot analysis. L365,260, a specific gastrin/CCKB receptor antagonist, completely reversed the stimulation of luciferase activity induced by gastrin but had no effect on G-Gly-stimulated activity. Gastrin increased [Ca2+]i, although G-Gly did not, however, genistein (a tyrosine kinase inhibitor) significantly reduced induction of luciferase activity by both G-Gly and gastrin. Specific binding of 125I-Leu15-G2-17-Gly to gastric parietal cells was dose-dependently displaced by G2-17-Gly but not by gastrin nor L365,260. Gastrin peptides truncated at the carboxyl- (G1-13) and amino terminus (G5-17-Gly) both induced H+,K(+)-ATPase alpha-subunit

  16. Physical linkage of the human growth hormone gene cluster and the skeletal muscle sodium channel {alpha}-subunit gene (SCN4A) on chromosome 17

    SciTech Connect

    Bennani-Baiti, I.M.; Jones, B.K.; Liebhaber, S.A.; Cooke, N.E.

    1995-10-10

    The human growth hormone (GH) locus, a cluster of five genes, spans 47 kb on chromosome 17q22-q24. The skeletal muscle sodium channel {alpha}-subunit locus (SCN4A), a 32.5-kb gene, has previously been mapped to 17q23.1-q25.3. We demonstrate that both the GH gene cluster and the SCN4A gene colocalize to a single 525-kb yeast artificial chromosome (YAC) containing DNA derived from human chromosome 17. Restriction maps of two cosmids encompassing the 5{prime} terminus of the GH locus and including up to 40 kb of 5{prime}-flanking sequences demonstrate a perfect 20-kb overlap with previously published maps of the SCN4A gene. A 720-bp DNA segment, encompassing sequences 32.3 to 31.6 kb 5{prime} to GH, was sequenced and found to be identical to exon 14 of SCN4A. These data demonstrate that the SCN4A gene and the entire GH gene cluster are contained within 100 kb on chromosome 17 and are separated by only 21.5 kb. Remarkably, this physical linkage between GH and SCN4A also reveals that multiple elements critical to tissue-specific transcriptional activation of the GH gene lie within the SCN4A gene. 48 refs., 5 figs.

  17. Structural analysis and chromosomal localization of the mouse Psmb5 gene coding for the constitutively expressed beta-type proteasome subunit.

    PubMed

    Kohda, K; Matsuda, Y; Ishibashi, T; Tanaka, K; Kasahara, M

    1997-01-01

    The proteasome is a multi-subunit protease responsible for the production of peptides presented by major histocompatibility complex class I molecules. Accumulated evidence indicates that, upon stimulation with interferon-gamma (IFN-gamma), three beta-type subunits, designated LMP2, LMP7, and PSMB10, are incorporated into the 20S proteasome by displacing the housekeeping beta-type subunits designated PSMB6, PSMB5, and PSMB7, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. In the present study, we determined the organization of the mouse gene Psmb5, coding for the PSMB5 subunit. Psmb5 is made up of three exons, spanning approximately 5 kilobases. Its exon-intron organization differs radically from those of the other IFN-gamma-regulated, beta-type subunit genes including Lmp7 with which Psmb5 is believed to share an immediate common ancestor. The structure of the mouse Psmb5 gene is identical to that of its recently characterized human counterpart. Thus, the unique organization of the gene coding for the PSMB5 subunit appears to have been established before mammalian radiation. As well as the Psmb5 gene, the mouse genome contains a processed pseudogene designated Psmb5-ps. Interspecific backcross mapping showed that Psmb5 maps close to the Gtrgal2 locus on chromosome 14 and that Psmb5-ps is located in the vicinity of the Psme3 locus on chromosome 11. These results were confirmed by fluorescent in situ hybridization analysis that localized Psmb5 to band C2 to proximal D1 of chromosome 14 and Psmb5-ps to band D of chromosome 11.

  18. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    SciTech Connect

    Albertella, M.R.; Jones, H.; Thomson, W.

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  19. Phylogenetic Diversity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large-Subunit Genes from Deep-Sea Microorganisms

    PubMed Central

    Elsaied, Hosam; Naganuma, Takeshi

    2001-01-01

    The phylogenetic diversity of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, E.C. 4.1.1.39) large-subunit genes of deep-sea microorganisms was analyzed. Bulk genomic DNA was isolated from seven samples, including samples from the Mid-Atlantic Ridge and various deep-sea habitats around Japan. The kinds of samples were hydrothermal vent water and chimney fragment; reducing sediments from a bathyal seep, a hadal seep, and a presumed seep; and symbiont-bearing tissues of the vent mussel, Bathymodiolus sp., and the seep vestimentiferan tubeworm, Lamellibrachia sp. The RuBisCO genes that encode both form I and form II large subunits (cbbL and cbbM) were amplified by PCR from the seven deep-sea sample DNA populations, cloned, and sequenced. From each sample, 50 cbbL clones and 50 cbbM clones, if amplified, were recovered and sequenced to group them into operational taxonomic units (OTUs). A total of 29 OTUs were recorded from the 300 total cbbL clones, and a total of 24 OTUs were recorded from the 250 total cbbM clones. All the current OTUs have the characteristic RuBisCO amino acid motif sequences that exist in other RuBisCOs. The recorded OTUs were related to different RuBisCO groups of proteobacteria, cyanobacteria, and eukarya. The diversity of the RuBisCO genes may be correlated with certain characteristics of the microbial habitats. The RuBisCO sequences from the symbiont-bearing tissues showed a phylogenetic relationship with those from the ambient bacteria. Also, the RuBisCO sequences of known species of thiobacilli and those from widely distributed marine habitats were closely related to each other. This suggests that the Thiobacillus-related RuBisCO may be distributed globally and contribute to the primary production in the deep sea. PMID:11282630

  20. Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase {delta} and chromosomal location of the human gene (POLD2)

    SciTech Connect

    Zhang, Jian; Tan, Cheng-Keat; Downey, K.M.

    1995-09-01

    cDNAs encoding the small subunit of bovine and human DNA polymerase {delta} have been cloned and sequenced. The predicted polypeptides, 50,885 and 51,289 Daltons, respectively, are 94% identical, similar to the catalytic subunits. The high degree of conservation of the polypeptides suggests an essential function for the small subunit in the heterodimeric core enzyme. Although the catalytic subunit of DNA polymerase 5 shares significant homology with those of the herpes virus family of DNA polymerases, the small subunit of mammalian DNA polymerase 6 is not homologous to the small subunit of either herpes simplex virus type 1 DNA polymerase (UL42 protein) or the Epstein-Barr virus DNA polymerase (BMRF1 protein). Searches of the protein databases failed to detect significant homology with any protein sequenced thus far. PCR analysis of DNA from a panel of human-hamster hybrid cell lines localized the gene (POLD2) for the small subunit of DNA polymerase 5 to human chromosome 7. 45 refs., 2 figs., 2 tabs.

  1. Regulation of the human MAT2B gene encoding the regulatory beta subunit of methionine adenosyltransferase, MAT II.

    PubMed

    LeGros, L; Halim, A B; Chamberlin, M E; Geller, A; Kotb, M

    2001-07-06

    Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet), a key molecule in transmethylation reactions and polyamine biosynthesis. The MAT II isozyme consists of a catalytic alpha2 and a regulatory beta subunit. Down-regulation of the MAT II beta subunit expression causes a 6-10-fold increase in intracellular AdoMet levels. To understand the mechanism by which the beta subunit expression is regulated, we cloned the MAT2B gene, determined its organization, characterized its 5'-flanking sequences, and elucidated the in vitro and in vivo regulation of its promoter. Transcription of the MAT2B gene initiates at position -203 relative to the translation start site. Promoter deletion analysis defined a minimal promoter between positions +52 and +93 base pairs, a GC-rich region. Inclusion of the sequences between -4 and +52 enhanced promoter activity; this was primarily because of an Sp1 recognition site at +9/+15. The inclusion of sequences up to position -115 provided full activity; this was attributed to a TATA at -32. The Sp1 site at position +9 was key for the formation of protein.DNA complexes. Mutation of both the Sp1 site at +9 and the TATA at -32 reduced promoter activity to its minimal level. Supershift assays showed no effect of the anti-Sp1 antibody on complex formation, whereas the anti-Sp3 antibody had a strong effect on protein.DNA complex formation, suggesting that Sp3 is one of the main factors binding to this Sp1 site. Chromatin immunoprecipitation assays supported the involvement of both Sp1 and Sp3 in complexes formed on the MAT2B promoter. The data show that the 5'-untranslated sequences play an important role in regulating the MAT2B gene and identifies the Sp1 site at +9 as a potential target for modulating MAT2B expression, a process that can have a major effect on intracellular AdoMet levels.

  2. Multi-target Parallel Processing Approach for Gene-to-structure Determination of the Influenza Polymerase PB2 Subunit

    PubMed Central

    Moen, Spencer O.; Smith, Eric; Raymond, Amy C.; Fairman, James W.; Stewart, Lance J.; Staker, Bart L.; Begley, Darren W.; Edwards, Thomas E.; Lorimer, Donald D.

    2013-01-01

    Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year 1. Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans 2. Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains. PMID:23851357

  3. Preparation of polyclonal antibodies of Rubisco large and small subunits and their application in the functional analysis of the genes.

    PubMed

    Ma, Peng-Da; Lu, Tian-Cheng; Zhou, Xiao-Fu; Zhu, Xiao-Juan; Wang, Xing-Zhi

    2004-09-01

    Spinach Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) large (rbcL) and small (rbcS) subunits were separated by SDS-PAGE, and protein amount and purity were determined by Bradford assay. Polyclonal antibodies against rbcL and rbcS subunit were generated in female BALB/c mice and had no cross-reaction with each other. A total of 81 microg antigens were used and 0.3 ml anti-sera with titer of 1:5000 were yielded. The antibodies were also applicable to study rbcL and rbcS in tobacco plant Nicotiana benthamiana. Potato virus X vector pGR107 induced silencing of rbcS gene by Agrobacterium in Nicotiana benthamiana was performed. The expression level of rbcL and rbcS was lower in rbcS silenced plants than that in control plants as detected by the corresponding antibodies. This implied that the expression of rbcL was regulated by rbcS.

  4. Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (Chrna2) Potentiates Nicotine-Modulated Behaviors

    PubMed Central

    Lotfipour, Shahrdad; Byun, Janet S.; Leach, Prescott; Fowler, Christie D.; Murphy, Niall P.; Kenny, Paul J.; Gould, Thomas J.; Boulter, Jim

    2013-01-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2−/− mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2−/− mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2−/− mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors. PMID:23637165

  5. Variation in the Alpha 5 Nicotinic Acetylcholine Receptor Subunit Gene Predicts Cigarette Smoking Intensity as a Function of Nicotine Content

    PubMed Central

    MacQueen, David A.; Heckman, Bryan W.; Blank, Melissa D.; Van Rensburg, Kate Janse; Park, Jong Y.; Drobes, David J.; Evans, David E.

    2013-01-01

    A single nucleotide polymorphism (SNP) in the α5 nicotinic acetylcholine receptor subunit gene, rs16969968, has been repeatedly associated with both smoking and respiratory health phenotypes. However, there remains considerable debate as to whether associations with lung cancer are mediated through effects on smoking behavior. Preclinical studies suggest that α5 receptor subunit expression and function may play a direct role in nicotine titration during self-administration. The present study investigated the association of CHRNA5 polymorphisms and smoking topography in 66 smokers asked to smoke 4 nicotine containing (nicotine yield = .60 mg) and 4 placebo (nicotine yield < .05 mg) cigarettes, during separate experimental sessions. Genotype at rs16969968 predicted nicotine titration, with homozygotes for the major allele (G:G) displaying significantly reduced puff volume in response to nicotine, while minor allele carriers (A:G or AA) produced equivalent puff volumes for placebo and nicotine cigarettes. The present results suggest that puff volume may be a more powerful objective phenotype of smoking behavior than self-reported cigarettes per day and nicotine dependence. Further, these results suggest that the association between rs16969968 and lung cancer may be mediated by the quantity of smoke inhaled. PMID:23358500

  6. Multi-target parallel processing approach for gene-to-structure determination of the influenza polymerase PB2 subunit.

    PubMed

    Armour, Brianna L; Barnes, Steve R; Moen, Spencer O; Smith, Eric; Raymond, Amy C; Fairman, James W; Stewart, Lance J; Staker, Bart L; Begley, Darren W; Edwards, Thomas E; Lorimer, Donald D

    2013-06-28

    Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year (1). Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans (2). Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains.

  7. Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi.

    PubMed

    Jiang, Chengxi; Pei, Yuhe; Zhang, Yanzhen; Li, Xiaohui; Yao, Danian; Yan, Yueming; Ma, Wujun; Hsam, S L K; Zeller, F J

    2008-04-01

    This paper reports cloning and characterisation of four novel low-molecular-weight glutenin subunit (LMW-GS) genes (designated as TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2) from the genomic DNA of Triticum dicoccoides, T. zhukovskyi and Aegilops longissima. The coding regions of TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2 were 1056 bp, 903 bp, 1056 bp and 1050 bp in length, encoding 350, 300, 350 and 348 amino acid residues, respectively. The deduced amino acid sequences showed that the four novel genes were classified as LMW-m types and the comparison results indicated that the four genes had a more similar structure and a higher level of homology with the LMW-m genes than the LMW-s and -i types genes. However, the first cysteine residue's positions of TzLMW-m2, TdLMW-m1 and AlLMW-m2 were different from the others. Moreover, AlLMW-m2, TdLMW-m1 and TzLMW-m2 all possessed a longer repetitive domain, which was considered to be associated with good quality of wheat. The secondary structure prediction revealed that the content of beta-strand in AlLMW-m2 and TdLMW-m1 exceeded the positive control, suggesting that AlLMW-m2 and TdLMW-m1 should be considered as candidate genes that may have positive effect on dough quality. In order to investigate the evolutionary relationship of the novel genes with the other LMW-GSs, a phylogenetic tree was constructed. The results lead to a speculation that AlLMW-m2, TdLMW-m1 and TzLMW-m2 may be the middle types during the evolution of LMW-m and LMW-s.

  8. Negative regulatory elements upstream of a novel exon of the neuronal nicotinic acetylcholine receptor alpha 2 subunit gene.

    PubMed Central

    Bessis, A; Savatier, N; Devillers-Thiéry, A; Bejanin, S; Changeux, J P

    1993-01-01

    The expression of the nicotinic acetylcholine receptor alpha 2 subunit gene is highly restricted to the Spiriform lateralis nucleus of the Chick diencephalon. As a first step toward understanding the molecular mechanism underlying this regulation, we have investigated the structural and regulatory properties of the 5' sequence of this gene. A strategy based on the ligation of an oligonucleotide to the first strand of the cDNA (SLIC) followed by PCR amplification was used. A new exon was found approximately 3kb upstream from the first coding exon, and multiple transcription start sites of the gene were mapped. Analysis of the flanking region shows many consensus sequences for the binding of nuclear proteins, suggesting that the 1 kb flanking region contains at least a portion of the promoter of the gene. We have analysed the negative regulatory elements present within this region and found that a silencer region located between nucleotide -144 and +76 is active in fibroblasts as well as in neurons. This silencer is composed of six tandem repeat Oct-like motifs (CCCCATGCAAT), but does not bind any member of the Oct family. Moreover these motifs were found to act as a silencer only when they were tandemly repeated. When two, four or five motifs were deleted, the silencer activity of the motifs unexpectedly became an enhancer activity in all cells we have tested. Images PMID:8502560

  9. Localization of an alpha-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II.

    PubMed Central

    Bartolomei, M S; Corden, J L

    1987-01-01

    RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene. Images PMID:3821724

  10. Phylogenetic relationships between Vorticella convallaria and other species inferred from small subunit rRNA gene sequences.

    PubMed

    Itabashi, Takeshi; Mikami, Kazuyuki; Fang, Jie; Asai, Hiroshi

    2002-08-01

    Vorticellid ciliates generally dwell in freshwater. In nature, the species have up until now been identified by comparison with previous descriptions. It is difficult to identify between species of the genus Vorticella, because the morphological markers of vorticellid ciliates described in reports are limited and variable. Unfortunately, culturing them has only succeeded with certain species such as Vorticella convallaria, but many others have been impossible to culture. To find out whether the sequence of a small subunit rRNA gene was an appropriate marker to identify vorticellid ciliates, the gene was aligned and compared. Finding a new convenient method will contribute to research on vorticellid ciliates. In strains of V. convallaria, classified morphologically, some varieties of the SSrRNA gene sequences were recognized, but there were large variations within the same species. According to the phylogenetic tree, these strains are closely related. However, the difference was not as big as between Vorticella and Carchesium. In addition, Carchesium constructed a distinct clade from the genus Vorticella and Epistylis. These results show the possibility that the SSrRNA gene is one of the important markers to identify species of Vorticella. This study is first to approach and clarify the complicated taxa in the genus Vorticella.

  11. Mapping of the gene for the p60 subunit of the human chromatin assembly factor (CAF1A) to the Down syndrome region of chromosome 21

    SciTech Connect

    Blouin, J.L.; Gos, A.; Morris, M.A.; Antonarakis, S.E.

    1996-04-15

    Exon trapping was used to clone portions of genes from the Down syndrome critical region (DSCR) of human chromosome 21. One trapped sequence showed complete homology with nucleotide sequence U20980 (GenBank), which corresponds to the gene for the p60 subunit of the human chromatin assembly factor-1 (CAF1A). We mapped this gene to human chromosome 21 by fluorescence in situ hybridization, by the use of somatic cell hybrids, and by hybridization to chromosome 21-specific YACs and cosmids. The CAF1A gene localizes to YACs 745H11 and 230E8 of the Chumakov et al. YAC contig, within the DSCR on 21q22. This CAF1A, which belongs to the WD-motif family of genes and interacts with other polypeptide subunits to promote assembly of histones to replicating DNA, may contribute in a gene dosage-dependent manner to the phenotype of Down syndrome. 22 refs., 1 fig.

  12. Functions of Multiple Genes Encoding ADP-Glucose Pyrophosphorylase Subunits in Maize Endosperm, Embryo, and Leaf1[C][W][OPEN

    PubMed Central

    Huang, Binquan; Hennen-Bierwagen, Tracie A.; Myers, Alan M.

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) provides the nucleotide sugar ADP-glucose and thus constitutes the first step in starch biosynthesis. The majority of cereal endosperm AGPase is located in the cytosol with a minor portion in amyloplasts, in contrast to its strictly plastidial location in other species and tissues. To investigate the potential functions of plastidial AGPase in maize (Zea mays) endosperm, six genes encoding AGPase large or small subunits were characterized for gene expression as well as subcellular location and biochemical activity of the encoded proteins. Seven transcripts from these genes accumulate in endosperm, including those from shrunken2 and brittle2 that encode cytosolic AGPase and five candidates that could encode subunits of the plastidial enzyme. The amino termini of these five polypeptides directed the transport of a reporter protein into chloroplasts of leaf protoplasts. All seven proteins exhibited AGPase activity when coexpressed in Escherichia coli with partner subunits. Null mutations were identified in the genes agpsemzm and agpllzm and shown to cause reduced AGPase activity in specific tissues. The functioning of these two genes was necessary for the accumulation of normal starch levels in embryo and leaf, respectively. Remnant starch was observed in both instances, indicating that additional genes encode AGPase large and small subunits in embryo and leaf. Endosperm starch was decreased by approximately 7% in agpsemzm- or agpllzm- mutants, demonstrating that plastidial AGPase activity contributes to starch production in this tissue even when the major cytosolic activity is present. PMID:24381067

  13. Mutations of the G sup s. alpha. -subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis

    SciTech Connect

    Weinstein, L.S.; Friedman, E.; Collins, R.M.; Spiegel, A.M.; Gejman, P.V.; Kadowaki, Takashi; Gershon, E.S. )

    1990-11-01

    Affected members of most kindreds with Albright hereditary osteodystrophy have a partial deficiency of functional G{sub s}, the guanine nucleotide-binding protein that stimulates adenylyl cyclase. By use of the polymerase chain reaction to amplify genomic fragments with the attachment of a high-melting G+C-rich region (GC clamp) and analysis of these fragments by denaturing gradient gel electrophoresis, heterozygous mutations in the G{sub s} {alpha}-subunit at the donor splice junction of intron 10 and a coding frameshift created by a single base deletion within exon 10. The findings illustrate the heterogeneity of genetic defects in Albright hereditary osteodystrophy and the usefulness of the polymerase chain reaction-denaturing gradient gel electrophoresis method to search rapidly for mutations in a large candidate gene.

  14. Cloning and sequencing of the gene coding for the large subunit of methylamine dehydrogenase from Thiobacillus versutus.

    PubMed Central

    Huitema, F; van Beeumen, J; van Driessche, G; Duine, J A; Canters, G W

    1993-01-01

    The gene that codes for the alpha-subunit of methylamine dehydrogenase from Thiobacillus versutus, madA, was cloned and sequenced. It codes for a protein of 395 amino acids preceded by a leader sequence of 31 amino acids. The derived amino acid sequence was confirmed by partial amino acid sequencing. The start of the mature protein could not be determined by direct sequencing, since the N terminus appeared to be blocked. Instead, it was determined by electrospray mass spectrometry. Confirmation of the results was obtained by sequencing the N terminus after pyroglutamate aminopeptidase digestion. The sequence is homologous to the Paracoccus denitrificans nucleotide sequence. A second open reading frame, called open reading frame 3, is located immediately downstream of madA. PMID:8407797

  15. Primary structure of the catalytic subunit of human DNA polymerase. delta. and chromosomal location of the gene

    SciTech Connect

    Chung, D.W.; Davie, E.W. ); Jian Zhang; Chengkeat Tan; So, A.G.; Downey, K.M. )

    1991-12-15

    The catalytic subunit of human DNA polymerase {delta} has been cloned by PCR using poly (A){sup +}RNA from HepG2 cells and primers designed from the amino acid sequence of regions highly conserved between bovine and yeast DNA polymerase {delta}. The human cDNA was 3,443 nucleotides in length and coded for a polypeptide of 1,107 amino acids. The enzyme was 94% identical to bovine DNA polymerase {delta} and contained the numerous highly conserved regions previously observed in the bovine and yeast enzymes. The human enzyme also contained two putative zinc-finger domains in the carboxyl end of the molecule, as well as a putative nuclear localization signal at the amino-terminal end. The gene coding for human DNA polymerase {delta} was localized to chromosome 19.

  16. Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex I subunit genes.

    PubMed

    Carranza, Julio César; Kowaltowski, Alicia J; Mendonça, Marco Aurélio G; de Oliveira, Thays C; Gadelha, Fernanda R; Zingales, Bianca

    2009-06-01

    In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

  17. Segregation patterns of polymorphic restriction sites of the gene encoding the alpha subunit of human chorionic gonadotropin in trophoblastic disease.

    PubMed Central

    Hoshina, M; Boothby, M R; Hussa, R D; Pattillo, R A; Camel, H M; Boime, I

    1984-01-01

    The gene encoding the alpha subunit of human chorionic gonadotropin contains at least two polymorphic sites in its 3' flanking region detected by restriction enzymes HindIII and EcoRI. We used these polymorphic sites as markers of tissue genotype in normal placenta, hydatidiform mole, choriocarcinoma, and peripheral leukocytes. As expected, inheritance patterns of most hydatidiform moles showed only a paternal genetic contribution. However, one uncommon DNA polymorphism pattern, homozygosity for the absence of the EcoRI site and the presence of the HindIII site, predominated in choriocarcinoma. Thus, our results suggest that moles which have this uncommon polymorphism pattern appear particularly likely to develop into choriocarcinoma. Images PMID:6201859

  18. Molecular analysis of lungworms from European bison (Bison bonasus) on the basis of small subunit ribosomal RNA gene (SSU).

    PubMed

    Pyziel, Anna M

    2014-03-01

    Dictyocaulosis (Nematoda: Trichostrongyloidea) is a widespread parasitosis of the European bison (Bison bonasus) inhabiting Bialowieza Primeval Forest. Bearing in mind the current coexistence of bison with wild cervids, and with domestic ruminants in the 19th and 20th century, the need arose for molecular identification of lungworm species. Molecular analysis was done on adult lungworms that were obtained from the respiratory track of four free-roaming bison euthanized as a part of the population health control program. As the result of the study four identical small subunit-ribosomal RNA gene sequences from the lungworms were obtained and deposited in GenBank as sequence, 1708 bp long (GenBank KC771250). Comparative analysis of the SSU rRNA sequences revealed the European bison to be a host for the bovine lungworm Dictyocaulus viviparus.

  19. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus.

    PubMed

    Kimura, Y; Miyake, R; Tokumasu, Y; Sato, M

    2000-10-01

    We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.

  20. Virus-induced gene silencing of the RPC5-like subunit of RNA polymerase III caused pleiotropic effects in Nicotiana benthamiana

    PubMed Central

    Nemchinov, Lev G.; Boutanaev, Alexander M.; Postnikova, Olga A.

    2016-01-01

    In eukaryotic cells, RNA polymerase III is highly conserved and transcribes housekeeping genes such as ribosomal 5S rRNA, tRNA and other small RNAs. The RPC5-like subunit is one of the 17 subunits forming RNAPIII and its exact functional roles in the transcription are poorly understood. In this work, we report that virus-induced gene silencing of transcripts encoding a putative RPC5-like subunit of the RNA Polymerase III in a model species Nicotiana benthamiana had pleiotropic effects, including but not limited to severe dwarfing appearance, chlorosis, nearly complete reduction of internodes and abnormal leaf shape. Using transcriptomic analysis, we identified genes and pathways affected by RPC5 silencing and thus presumably related to the cellular roles of the subunit as well as to the downstream cascade of reactions in response to partial loss of RNA Polymerase III function. Our results suggest that silencing of the RPC5L in N. benthamiana disrupted not only functions commonly associated with the core RNA Polymerase III transcripts, but also more diverse cellular processes, including responses to stress. We believe this is the first demonstration that activity of the RPC5 subunit is critical for proper functionality of RNA Polymerase III and normal plant development. PMID:27282827

  1. Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis.

    PubMed

    Zhang, Yue; Wu, Huilan; Wang, Ning; Fan, Huajie; Chen, Chunlin; Cui, Yan; Liu, Hongfei; Ling, Hong-Qing

    2014-08-01

    Iron is an essential nutrient for plant growth and development, and its absorption is tightly controlled. Under iron limitation, FIT dimerizes with the four Ib bHLH proteins and activates the expression of iron uptake genes. However, how the dimerized complex activates downstream genes remains unclear. Using forward genetics, a low-iron-sensitive mutant was screened. The corresponding gene (MED16) was isolated, and its biological functions in iron homeostasis were characterized using approaches such as gene expression, protein subcellular localization, protein-protein interaction and chromatin immunoprecipitation assay. Lesion of MED16 significantly reduced FRO2 and IRT1 expression in Arabidopsis roots. The MED16 mutants showed a low shoot iron concentration and severe leaf chlorosis under iron limitation, whereas it grew normally as wild-type under iron sufficiency. Furthermore, we showed that MED16 interacted with FIT and improved the binding of the FIT/Ib bHLH complex to FRO2 and IRT1 promoters under iron-deficient conditions. Additionally, we found that many iron-deficient response genes, which are regulated by FIT, were also controlled by MED16. In conclusion, MED16 is involved in the iron deficiency response, and modulates the iron uptake gene expression under iron limitation. Our results increase the understanding of the molecular regulation mechanisms underlying iron uptake and homeostasis in plants.

  2. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-03

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  3. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    DOE PAGES

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; ...

    2015-10-12

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysismore » reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.« less

  4. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    SciTech Connect

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-10-12

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  5. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  6. Detection of the enzymatically-active polyhydroxyalkanoate synthase subunit gene, phaC, in cyanobacteria via colony PCR.

    PubMed

    Lane, Courtney E; Benton, Michael G

    2015-12-01

    A colony PCR-based assay was developed to rapidly determine if a cyanobacterium of interest contains the requisite genetic material, the PHA synthase PhaC subunit, to produce polyhydroxyalkanoates (PHAs). The test is both high throughput and robust, owing to an extensive sequence analysis of cyanobacteria PHA synthases. The assay uses a single detection primer set and a single reaction condition across multiple cyanobacteria strains to produce an easily detectable positive result - amplification via PCR as evidenced by a band in electrophoresis. In order to demonstrate the potential of the presence of phaC as an indicator of a cyanobacteria's PHA accumulation capabilities, the ability to produce PHA was assessed for five cyanobacteria with a traditional in vivo PHA granule staining using an oxazine dye. The confirmed in vivo staining results were then compared to the PCR-based assay results and found to be in agreement. The colony PCR assay was capable of successfully detecting the phaC gene in all six of the diverse cyanobacteria tested which possessed the gene, while exhibiting no undesired product formation across the nine total cyanobacteria strains tested. The colony PCR quick prep provides sufficient usable DNA template such that this assay could be readily expanded to assess multiple genes of interest simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A linkage study between the GABAA beta2 and GABAA gamma2 subunit genes and major psychoses.

    PubMed

    Ambrósio, Alda M; Kennedy, James L; Macciardi, Fabio; King, Nicole; Azevedo, Maria H; Oliveira, Catarina R; Pato, Carlos N

    2005-01-01

    Alterations of the gamma-aminobutyric acid (GABA) system have been implicated in the pathophysiology of major psychoses. Restriction fragment length polymorphisms associated with the human gamma-aminobutyric acid type A (GABAA) beta2 and GABAA gamma2 subunit genes on chromosome 5q32-q35 were tested to determine whether they confer susceptibility to major psychoses. Thirty-two schizophrenic families and 25 bipolar families were tested for linkage. Nonparametric linkage (NPL) analysis performed by GENEHUNTER showed no significant NPL scores for both genes in schizophrenia (GABAA beta2: NPL narrow= -0.450; NPL broad= -0.808; GABAA gamma2: NPL narrow=0.177; NPL broad= -0.051) or bipolar disorder (GABAA beta2: NPL narrow=0.834; NPL broad=0.783; GABAA gamma2: NPL narrow= -0.159; NPL broad=0.070). Linkage analysis does not support the hypothesis that variants within the GABAA beta2 and GABAA gamma2 genes are significantly linked to major psychoses in a Portuguese population.

  8. Structural organization and splice variants of the POLE1 gene encoding the catalytic subunit of human DNA polymerase epsilon.

    PubMed Central

    Huang, D; Pospiech, H; Kesti, T; Syväoja, J E

    1999-01-01

    The catalytic subunit of human DNA polymerase epsilon, an enzyme involved in nuclear DNA replication and repair, is encoded by the POLE1 gene. This gene is composed of 51 exons spanning at least 97 kb of genomic DNA. It was found to encode three alternative mRNA splice variants that differ in their 5'-terminal sequences and in the N-termini of the predicted proteins. A CpG island covers the promoter region for the major transcript in HeLa cells. This promoter is TATA-less and contains several putative binding sites for transcription factors typical of S-phase-up-regulated and serum-responsive promoters. Potential promoter regions were also identified for the two other alternative transcripts. Interestingly, no nuclear polyadenylation signal sequence was detected in the 3'-untranslated region, although a poly(A) tail was present. These results suggest a complicated regulatory machinery for the expression of the human POLE1 gene, including three alternative transcripts expressed from three promoters. PMID:10215605

  9. Cyclic AMP regulation of the human glycoprotein hormone. cap alpha. -subunit gene is mediated by an 18-base-pair element

    SciTech Connect

    Silver, B.J.; Bokar, J.A.; Virgin, J.B.; Vallen, E.A.; Milsted, A.; Nilson, J.H.

    1987-04-01

    cAMP regulates transcription of the gene encoding the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) in the choriocarcinoma cells (BeWo). To define the sequences required for regulation by cAMP, the authors inserted fragments from the 5' flanking region of the ..cap alpha..-subunit gene into a test vector containing the simian virus 40 early promoter (devoid of its enhancer) linked to the bacterial chloramphenicol acetyltransferase (CAT) gene. Results from transient expression assays in BeWo cells indicated that a 1500-base-pair (bp) fragment conferred cAMP responsiveness on the CAT gene regardless of position or orientation of the insert relative to the viral promoter. A subfragment extending from position -169 to position -100 had the same effect on cAMP-induced expression. Furthermore, the entire stimulatory effect could be achieved with an 18-bp synthetic oligodeoxynucleotide corresponding to a direct repeat between position -146 and -111. In the absence of cAMP, the ..cap alpha..-subunit 5' flanking sequence also enhanced transcription from the simian virus 40 early promoter. They localized this enhancer activity to the same -169/-100 fragment containing the cAMP response element. The 18-bp element alone, however, had no effect on basal expression. Thus, this short DNA sequence serves as a cAMP response element and also functions independently of other promoter-regulatory elements located in the 5' flanking sequence of the ..cap alpha..-subunit gene.

  10. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice.

    PubMed

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji

    2006-08-01

    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  11. Association of GABAA receptor α2 subunit gene (GABRA2) with alcohol dependence-related aggressive behavior.

    PubMed

    Strac, Dubravka Svob; Erjavec, Gordana Nedic; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Borovecki, Fran; Pivac, Nela

    2015-12-03

    Alcohol dependence is a common chronic disorder precipitated by the complex interaction between biological, genetic and environmental risk factors. Recent studies have demonstrated that polymorphisms of the gene encoding the GABAA receptor α2 subunit (GABRA2) are associated with alcohol dependence in different populations of European ancestry. As aggression often occurs in the context of alcohol dependence, the aim of this study was to examine the allelic and haplotypic association of GABRA2 gene with alcohol dependence and related aggressive behavior in subjects of Eastern European (Croatian) origin. Genotyping of the 3 single nucleotide polymorphisms (SNPs) across the GABRA2 gene (rs567926, rs279858 and rs9291283) was performed in patients with alcohol dependence (N=654) and healthy control subjects (N=574). Alcohol-dependent participants were additionally subdivided according to the presence/absence of aggressive behavior and type of alcohol dependence according to the Cloninger's classification. The association of rs279858 with alcohol dependence yielded nominal significance level. Haplotype analysis revealed a high degree of linkage disequilibrium (LD) for rs567926 and rs279858, but not for rs9291283 polymorphism in the GABRA2 gene. In patients with alcohol dependence, the A-C (rs567926 and rs279858) haplotype carriers were more likely to demonstrate aggressive behavior. The same haplotype (present only in 1.6% of all subjects) was significantly more often present in patients with a combination of early onset alcohol abuse and aggression, corresponding to the Cloninger's type II alcoholism subgroup. These findings support the involvement of GABRA2 gene in alcohol dependence-related aggressive behavior.

  12. Mouse Mutants for the Nicotinic Acetylcholine Receptor ß2 Subunit Display Changes in Cell Adhesion and Neurodegeneration Response Genes

    PubMed Central

    Rubin, Carol M.; van der List, Deborah A.; Ballesteros, Jose M.; Goloshchapov, Andrey V.; Chalupa, Leo M.; Chapman, Barbara

    2011-01-01

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2−/− mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2−/− mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2−/− mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2−/− mutant strains reveals the effects of genetic background upon gene expression. PMID:21547082

  13. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter

    SciTech Connect

    Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei; Ishino, Ruri; Urahama, Norinaga; Hasegawa, Natsumi; Roeder, Robert G.; Ito, Mitsuhiro

    2013-10-11

    Highlights: •MED1 is a bona fide T3-dependent coactivator on TSHB promoter. •Mice with LxxLL-mutant MED1 have attenuated TSHβ mRNA and thyroid hormone levels. •MED1 activates TSHB promoter T3-dependently in cultured cells. •T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. •MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor β (TRβ) on the TSHβ gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSHβ gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSHβ gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSHβ gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSHβ gene promoter.

  14. Contribution of Variants in CHRNA5/A3/B4 Gene Cluster on Chromosome 15 to Tobacco Smoking: From Genetic Association to Mechanism.

    PubMed

    Wen, Li; Jiang, Keran; Yuan, Wenji; Cui, Wenyan; Li, Ming D

    2016-01-01

    Cigarette smoking is the major cause of preventable death and morbidity throughout the world. Many compounds are present in tobacco, but nicotine is the primary addictive one. Nicotine exerts its physiological and pharmacological roles in the brain through neuronal nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels consisting of five membrane-spanning subunits that can modulate the release of neurotransmitters, such as dopamine, glutamate, and GABA and mediate fast signal transmission at synapses. Considering that there are 12 nAChR subunits, it is highly likely that subunits other than α4 and β2, which have been intensively investigated, also are involved in nicotine addiction. Consistent with this hypothesis, a number of genome-wide association studies (GWAS) and subsequent candidate gene-based associated studies investigating the genetic variants associated with nicotine dependence (ND) and smoking-related phenotypes have shed light on the CHRNA5/A3/B4 gene cluster on chromosome 15, which encodes the α5, α3, and β4 nAChR subunits, respectively. These studies demonstrate two groups of risk variants in this region. The first one is marked by single nucleotide polymorphism (SNP) rs16969968 in exon 5 of CHRNA5, which changes an aspartic acid residue into asparagine at position 398 (D398N) of the α5 subunit protein sequence, and it is tightly linked SNP rs1051730 in CHRNA3. The second one is SNP rs578776 in the 3'-untranslated region (UTR) of CHRNA3, which has a low correlation with rs16969968. Although the detailed molecular mechanisms underlying these associations remain to be further elucidated, recent findings have shown that α5* (where "*" indicates the presence of additional subunits) nAChRs located in the medial habenulo-interpeduncular nucleus (mHb-IPN) are involved in the control of nicotine self-administration in rodents. Disruption of α5* nAChR signaling diminishes the aversive effects of nicotine on the mHb-IPN pathway

  15. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran

    PubMed Central

    Reaghi, Saber; Haghighi, Ali; Harandi, Majid Fasihi; Spotin, Adel; Arzamani, Kourosh; Rouhani, Soheila

    2016-01-01

    Aim: Fascioliasis is one of the most zoonotic diseases with global extension. As the epidemiological distribution of Fasciola may lead to various genetic patterns of the parasite, the aim of this study is to identify Fasciola hepatica based on spermatogenesis, and phylogenetic analysis using mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I [ND1] and cytochrome oxidase subunit I) gene marker. Materials and Methods: In this study, 90 F. hepatica collected from 30 cattle at slaughterhouse located in three different geographical locations in the North-East of Iran were evaluated based on spermatogenetic ability and internal transcribed spacer 1 gene restriction fragment length polymorphism pattern. Genetic diversity and phylogenetic relationship using mtDNA gene marker for the isolates from the North-East of Iran, and other countries were then analyzed. Results: Partial sequences of mtDNA showed eight haplotypes in both genes. The phylogenic analysis using neighbor joining as well as maximum likelihood methods showed similar topologies of trees. Pairwise fixation index between different F. hepatica populations calculated from the nucleotide data set of ND1 gene are statistically significant and show the genetic difference. Conclusion: F. hepatica found in this region of Iran has different genetic structures through the other Fasciola populations in the world. PMID:27733809

  16. Cloning of a yeast gene coding for the glutamate synthase small subunit (GUS2) by complementation of Saccharomyces cerevisiae and Escherichia coli glutamate auxotrophs.

    PubMed

    González, A; Membrillo-Hernández, J; Olivera, H; Aranda, C; Macino, G; Ballario, P

    1992-02-01

    A Saccharomyces cerevisiae glutamate auxotroph, lacking NADP-glutamate dehydrogenase (NADP-GDH) and glutamate synthase (GOGAT) activities, was complemented with a yeast genomic library. Clones were obtained which still lacked NADP-GDH but showed GOGAT activity. Northern analysis revealed that the DNA fragment present in the complementing plasmids coded for a 1.5kb mRNA. Since the only GOGAT enzyme so far purified from S. cerevisiae is made up of a small and a large subunit, the size of the mRNA suggested that the cloned DNA fragment could code for the GOGAT small subunit. Plasmids were purified and used to transform Escherichia coli glutamate auxotrophs. Transformants were only recovered when the recipient strain was an E. coli GDH-less mutant lacking the small GOGAT subunit. These data show that we have cloned the structural gene coding for the yeast small subunit (GUS2). Evidence is also presented indicating that the GOGAT enzyme which is synthesized in the E. coli transformants is a hybrid comprising the large E. coli subunit and the small S. cerevisiae subunit.

  17. Stress levels of glucocorticoids inhibit LHβ-subunit gene expression in gonadotrope cells.

    PubMed

    Breen, Kellie M; Thackray, Varykina G; Hsu, Tracy; Mak-McCully, Rachel A; Coss, Djurdjica; Mellon, Pamela L

    2012-10-01

    Increased glucocorticoid secretion is a common response to stress and has been implicated as a mediator of reproductive suppression upon the pituitary gland. We utilized complementary in vitro and in vivo approaches in the mouse to investigate the role of glucocorticoids as a stress-induced intermediate capable of gonadotrope suppression. Repeated daily restraint stress lengthened the ovulatory cycle of female mice and acutely reduced GnRH-induced LH secretion and synthesis of LH β-subunit (LHβ) mRNA, coincident with increased circulating glucocorticoids. Administration of a stress level of glucocorticoid, in the absence of stress, blunted LH secretion in ovariectomized female mice, demonstrating direct impairment of reproductive function by glucocorticoids. Supporting a pituitary action, glucocorticoid receptor (GR) is expressed in mouse gonadotropes and treatment with glucocorticoids reduces GnRH-induced LHβ expression in immortalized mouse gonadotrope cells. Analyses revealed that glucocorticoid repression localizes to a region of the LHβ proximal promoter, which contains early growth response factor 1 (Egr1) and steroidogenic factor 1 sites critical for GnRH induction. GR is recruited to this promoter region in the presence of GnRH, but not by dexamethasone alone, confirming the necessity of the GnRH response for GR repression. In lieu of GnRH, Egr1 induction is sufficient for glucocorticoid repression of LHβ expression, which occurs via GR acting in a DNA- and dimerization-independent manner. Collectively, these results expose the gonadotrope as an important neuroendocrine site impaired during stress, by revealing a molecular mechanism involving Egr1 as a critical integrator of complex formation on the LHβ promoter during GnRH induction and GR repression.

  18. Ethanol-induced Locomotor Sensitization in DBA/2J Mice is Associated with Alterations in GABAA Subunit Gene Expression and Behavioral Sensitivity to GABAA Acting Drugs

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2013-01-01

    Repeated exposure to ethanol may produce increased sensitivity to its acute locomotor stimulant actions, a process referred to as locomotor sensitization. Neuroadaptation within certain brain circuits, including those possessing GABAA receptors, may underlie locomotor sensitization to ethanol. Indeed, GABAA receptors are documented mediators of ethanol's cellular and behavioral actions. Moreover, because subunit composition of this receptor is predictive of its pharmacology, it is possible that alterations in subunit composition contribute to the expression of locomotor sensitization to ethanol. The goal of the present study was to determine if alterations in GABAA subunit composition are associated with the expression of locomotor sensitization in DBA/2J mice, a strain known to be particularly susceptible to the development of this behavioral phenomenon. Following a modified 14 day sensitization procedure (Phillips et al., 1994) relative changes in GABAA subunit gene expression were assessed in discrete mesolimbic brain regions. To determine if the observed changes in gene expression produced functional changes in the locomotor responses to drugs known to either preferentially or generally activate GABAA receptors normally possessing the significantly altered subunits, separate cohorts of animals were challenged with one of several low doses of zolpidem (α1-selective), etomidate (β2/3-selective), or flurazepam (γ2-directed) and assessed for locomotor alterations. Sensitized animals displayed increased expression of the α1, β2, and γ2 (v1) subunits in the Nucleus Accumbens (NAc) but not Ventral Tegmental Area (VTA). Additionally, sensitized animals displayed altered sensitivity to the locomotor actions of etomidate and flurazepam. These results support the hypothesis that neuroadaptive changes in GABAA subunit composition participate in the expression of locomotor sensitization. PMID:20219525

  19. Assignment of human genes for phosphorylase kinase subunits alpha (PHKA) to Xq12-q13 and beta (PHKB) to 16q12-q13.

    PubMed Central

    Francke, U; Darras, B T; Zander, N F; Kilimann, M W

    1989-01-01

    Phosphorylase kinase (PHK), the enzyme that activates glycogen phosphorylases in muscle, liver, and other tissues, is composed of four different subunits. Recently isolated rabbit muscle cDNAs for the larger two subunits, alpha and beta, have been used to map the location of their cognate sequences on human chromosomes. Southern blot analysis of rodent x human somatic cell hybrid panels, as well as in situ chromosomal hybridization, have provided evidence of single sites for both genes. The alpha subunit gene (PHKA) is located on the proximal long arm of the X chromosome in region Xq12-q13 near the locus for phosphoglycerate kinase (PGK1). X-linked mutations leading to PHK deficiency, known to exist in humans and mice, are likely to involve this locus. This hypothesis is consistent with the proximity of the Phk and Pgk-1 loci on the mouse X chromosome. In contrast, the beta subunit gene (PHKB) was found to be autosomal and was mapped to chromosome 16, region q12-q13 on the proximal long arm. Several different autosomally inherited forms of PHK deficiency for which the PHKB could be a candidate gene have been described in humans and rats. PMID:2757032

  20. Spurious Amplification of a Plasmodium vivax Small-Subunit RNA Gene by Use of Primers Currently Used To Detect P. knowlesi▿

    PubMed Central

    Imwong, Mallika; Tanomsing, Naowarat; Pukrittayakamee, Sasithon; Day, Nicholas P. J.; White, Nicholas J.; Snounou, Georges

    2009-01-01

    The PCR primers commonly used to detect Plasmodium knowlesi infections in humans were found to cross-react stochastically with P. vivax genomic DNA. A nested primer set that targets one of the P. knowlesi small-subunit rRNA genes was validated for specificity and for sensitivity of detection of <10 parasite genomes. PMID:19812279

  1. Analysis of the mitochondrial ATP synthase beta-subunit gene in Drosophilidae: structure, transcriptional regulatory features and developmental pattern of expression in Drosophila melanogaster.

    PubMed Central

    Peña, P; Ugalde, C; Calleja, M; Garesse, R

    1995-01-01

    We have cloned and determined the structure of the gene encoding the H(+)-ATP synthase beta subunit in two distantly related Drosophila species, D. melanogaster and D. virilis. The gene contains three exons that are extremely well conserved at the amino acid level, not only in the region encoding the mature protein but also in that encoding the leader peptide. Primer extension analysis indicates that the 5' untranslated region is extremely short, and reveals the presence of multiple initiation sites of transcription in both Drosophila species. The promoters of D. melanogaster and D. virilis H(+)-ATP synthase beta-subunit genes contain a conserved region surrounding the initiation transcription sites. Nucleotide sequence analysis has revealed the absence of canonical TATA and CCAAT boxes and the presence of several putative regulatory elements in both promoter regions, including GAGA, GATA and Ets binding sites. We have analysed the pattern of gene expression during D. melanogaster development. The mRNA is stored in oocytes, and activation of transcription takes place after 10 h of development. The expression of the nuclear-encoded H(+)-ATP synthase beta subunit is strictly coordinated with the expression of subunits 6 and 8 of the same complex that are encoded in the mitochondrial genome. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 PMID:8554535

  2. Genes encoding biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution

    USDA-ARS?s Scientific Manuscript database

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric ACCase that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin-carboxyl-carrier protein and CO2 to form carboxybiotin-carbo...

  3. Assignment of GUCIA2, the gene coding for the {alpha} 2 subunit of soluble guanylyl cyclase, to position 11q21-q22 on human chromosome 11

    SciTech Connect

    Yu, Fei; Warburton, D.; Danziger, R.S.; Wellington, S.

    1996-04-15

    This report describes the localization of the gene coding for the {alpha}2 subunit of soluble guanylyl cyclase, GUCIA2, to human chromosome 11q21-q22 using in situ hybridization and somatic cell hybrid analysis. 14 refs., 1 fig.

  4. Cloning and targeted mutations of G alpha 7 and G alpha 8, two developmentally regulated G protein alpha-subunit genes in Dictyostelium.

    PubMed Central

    Wu, L; Gaskins, C; Zhou, K; Firtel, R A; Devreotes, P N

    1994-01-01

    GTP-binding protein (G protein)-mediated signal transduction pathways play essential roles during the aggregation and differentiation process of Dictyostelium. In addition to the five known G protein alpha-subunit genes, we recently identified three novel alpha-subunit genes, G alpha 6, G alpha 7, and G alpha 8, using the polymerase chain reaction technique. We present here a more complete analysis of G alpha 7 and G alpha 8. The cDNAs of these two genes were cloned, and their complete nucleotide sequences were determined. Sequence analyses indicate that G alpha 8 possesses some unusual features. It lacks the "TCATDT" motif, a sequence of amino acids highly conserved among G alpha subunits, and has an additional 50 amino acids at its C-terminus consisting of long stretches of asparagine. Moreover, G alpha 8 is unusually resistant to protease digestion, which may indicate a slow GTP hydrolysis rate. The possible functions of these alpha-subunits were assessed by generating mutants lacking G alpha 7 or G alpha 8 by gene targeting through homologous recombination and by overexpressing G alpha 7 or G alpha 8 protein. Overexpression of G alpha 7 resulted in abnormal morphogenesis starting at the slug stage, whereas analysis of the other strains failed to reveal any obvious growth or developmental defects under either normal or stressful conditions. The implications of these results are discussed. Images PMID:7949425

  5. Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. Most of the LMW-GSs are encoded by a multi-gene family located on the short arms of the homoeologous group 1 chromosomes, at...

  6. ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization.

    PubMed

    Tindi, Jaafar O; Chávez, Andrés E; Cvejic, Svetlana; Calvo-Ochoa, Erika; Castillo, Pablo E; Jordan, Bryen A

    2015-06-17

    NMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded by ANKS1B, a gene recently linked to schizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca(2+)/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such as schizophrenia. Copyright

  7. Lower Gene Expression for KCNS3 Potassium Channel Subunit in Parvalbumin-Containing Neurons in the Prefrontal Cortex in Schizophrenia

    PubMed Central

    Georgiev, Danko; Arion, Dominique; Enwright, John F.; Kikuchi, Mitsuru; Minabe, Yoshio; Corradi, John P.; Lewis, David A.; Hashimoto, Takanori

    2013-01-01

    Objective In schizophrenia, alterations in markers of cortical GABA neurotransmission are prominent in parvalbumin-containing neurons. Parvalbumin neurons selectively express KCNS3, the gene encoding the Kv9.3 potassium channel α-subunit. Kv9.3 subunits are present in voltage-gated potassium channels that contribute to the precise detection of coincident excitatory synaptic inputs to parvalbumin neurons. This distinctive feature of parvalbumin neurons appears important for the synchronization of cortical neural networks in γ-oscillations. Because impaired prefrontal cortical γ-oscillations are thought to underlie the cognitive impairments in schizophrenia, the authors investigated whether KCNS3 mRNA levels are altered in the prefrontal cortex of schizophrenia subjects. Method KCNS3 mRNA expression was evaluated by in situ hybridization in 22 matched pairs of schizophrenia and comparison subjects and by microarray analyses of pooled samples of individually dissected neurons that were labeled with Vicia villosa agglutinin (VVA), a parvalbumin neuron-selective marker, in a separate cohort of 14 pairs. Effects of chronic antipsychotic treatments on KCNS3 expression were tested in the prefrontal cortex of antipsychotic-exposed monkeys. Results By in situ hybridization, KCNS3 mRNA levels were 23% lower in schizophrenia subjects. At the cellular level, both KCNS3 mRNA-expressing neuron density and KCNS3 mRNA level per neuron were significantly lower. By microarray, KCNS3 mRNA levels were lower by 40% in VVA-labeled neurons from schizophrenia subjects. KCNS3 mRNA levels were not altered in antipsychotic-exposed monkeys. Conclusions These findings reveal lower KCNS3 expression in prefrontal cortical parvalbumin neurons in schizophrenia, providing a molecular basis for compromised detection of coincident synaptic inputs to parvalbumin neurons that could contribute to altered γ-oscillations and impaired cognition in schizophrenia. PMID:24170294

  8. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.

    PubMed

    Hung, Rayjean J; McKay, James D; Gaborieau, Valerie; Boffetta, Paolo; Hashibe, Mia; Zaridze, David; Mukeria, Anush; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Chen, Chu; Goodman, Gary; Field, John K; Liloglou, Triantafillos; Xinarianos, George; Cassidy, Adrian; McLaughlin, John; Liu, Geoffrey; Narod, Steven; Krokan, Hans E; Skorpen, Frank; Elvestad, Maiken Bratt; Hveem, Kristian; Vatten, Lars; Linseisen, Jakob; Clavel-Chapelon, Françoise; Vineis, Paolo; Bueno-de-Mesquita, H Bas; Lund, Eiliv; Martinez, Carmen; Bingham, Sheila; Rasmuson, Torgny; Hainaut, Pierre; Riboli, Elio; Ahrens, Wolfgang; Benhamou, Simone; Lagiou, Pagona; Trichopoulos, Dimitrios; Holcátová, Ivana; Merletti, Franco; Kjaerheim, Kristina; Agudo, Antonio; Macfarlane, Gary; Talamini, Renato; Simonato, Lorenzo; Lowry, Ray; Conway, David I; Znaor, Ariana; Healy, Claire; Zelenika, Diana; Boland, Anne; Delepine, Marc; Foglio, Mario; Lechner, Doris; Matsuda, Fumihiko; Blanche, Helene; Gut, Ivo; Heath, Simon; Lathrop, Mark; Brennan, Paul

    2008-04-03

    Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.

  9. Cloning of the human skeletal muscle {alpha}{sub 1} subunit of the dihydropyridine-sensitive L-type calcium channel (CACNL1A3)

    SciTech Connect

    Hogan, K.; Powers, P.A.; Gregg, R.G.

    1994-12-01

    Skeletal muscle contraction is initiated by release of calcium stored in the sarcoplasmic reticulum in response to membrane depolarization transduced by the L-type voltage-dependent calcium channels (VDCCs) present in the transverse tubule. The L-type VDCC purified from rabbit skeletal muscle transverse tubules is a pentamer composed of {alpha}{sub 1}, {alpha}{sub 2}, {Beta},{delta}, and {gamma} subunits. Here, we report the sequence of the human {alpha}{sub 1} subunit. 8 refs., 1 fig.

  10. Non-SMC condensin I complex, subunit D2 gene polymorphisms are associated with Parkinson's disease: a Han Chinese study.

    PubMed

    Zhang, Ping; Liu, Ling; Huang, Jinsha; Shao, Liang; Wang, Hongcai; Xiong, Nian; Wang, Tao

    2014-05-01

    Previous studies have indicated that non-SMC condensin I complex, subunit D2 (NCAPD2), an important protein in chromosome condensation, gene polymorphisms are associated with Alzheimer's disease. But no study has shown the relationship between NCAPD2 polymorphisms and Parkinson's disease. Here, we conducted a case-control study to investigate the relationship between NCAPD2 polymorphisms and the risk of Parkinson's disease in a Han Chinese population. Two single nuclear polymorphisms (SNPs) of NCAPD2 (rs7311174 and rs2072374) showed significant p values (p = 0.046 and p = 0.043, respectively) in 265 patients and 267 controls. Further analysis showed an effect of age and gender on the relationship between the two SNPs and the risk for Parkinson's disease. The A allele of rs7311174 and the T allele of rs2072374 were protective in the male patients (p = 0.016 and p = 0.019, respectively). The frequencies of the T allele of rs7311174 and the C allele of rs2072374 were significantly associated with late-onset Parkinson's disease (p = 0.048 and p = 0.044, respectively). This research demonstrates a positive relationship between the NCAPD2 gene and the risk for Parkinson's disease in a Han Chinese population and provides a potential genetic marker for sporadic Parkinson's disease.

  11. Establishment of a continuous culture system for Entamoeba muris and analysis of the small subunit rRNA gene.

    PubMed

    Kobayashi, S; Suzuki, J; Takeuchi, T

    2009-06-01

    We established a culture system for Entamoeba muris (MG-EM-01 strain isolated from a Mongolian gerbil) using a modified Balamuth's egg yolk infusion medium supplemented with 4% adult bovine serum and Bacteroides fragilis cocultured with Escherichia coli. Further, encystation was observed in the culture medium. The morphological characteristics of E. muris are similar to those of Entamoeba coli (E. coli); moreover, the malic isoenzyme electrophoretic band, which shows species-specific electrophoretic mobility, of E. muris had almost the same mobility as that observed with the malic isoenzyme electrophorectic band of E. coli (UZG-EC-01 strain isolated from a gorilla). We determined the small subunit rRNA (SSU-rRNA) gene sequence of the MG-EM-01 strain, and this sequence was observed to show 82.7% homology with that of the UZG-EC-01 strain. Further, the resultant phylogenetic tree for molecular taxonomy based on the SSU-rRNA genes of the 21 strains of the intestinal parasitic amoeba species indicated that the MG-EM-01 strain was most closely related to E. coli.

  12. Pituitary control of branchial NCC, NKCC and Na(+), K (+)-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus.

    PubMed

    Breves, Jason P; Seale, Andre P; Moorman, Benjamin P; Lerner, Darren T; Moriyama, Shunsuke; Hopkins, Kevin D; Grau, E Gordon

    2014-05-01

    This study investigated endocrine control of branchial ionoregulatory function in Nile tilapia (Oreochromis niloticus) by prolactin (Prl188 and Prl177), growth hormone (Gh) and cortisol. Branchial expression of Na(+)/Cl(-) cotransporter (ncc) and Na(+)/K(+)/2Cl(-) cotransporter (nkcc) genes were employed as specific markers for freshwater- and seawater-type ionocytes, respectively. We further investigated whether Prl, Gh and cortisol direct expression of two Na(+), K(+)-ATPase (nka)-α1 subunit genes, denoted nka-α1a and nka-α1b. Tilapia transferred to fresh water following hypophysectomy failed to adequately activate gill ncc expression; ncc expression was subsequently restored by Prl replacement. Prl188 and Prl177 stimulated ncc expression in cultured gill filaments in a concentration-related manner, suggesting that ncc is regulated by Prl in a gill-autonomous fashion. Tilapia transferred to brackish water (23 ‰) following hypophysectomy exhibited a reduced capacity to up-regulate nka-α1b expression. However, Gh and cortisol failed to affect nka-α1b expression in vivo. Similarly, we found no clear effects of Gh or cortisol on nkcc expression both in vivo and in vitro. When considered with patterns previously described in euryhaline Mozambique tilapia (O. mossambicus), the current study suggests that ncc is a conserved target of Prl in tilapiine cichlids. In addition, we revealed contrasting dependencies upon the pituitary to direct nka-α1b expression in hyperosmotic environments between Nile and Mozambique tilapia.

  13. Investigation of the G protein subunit Gαolf gene (GNAL) in attention deficit/hyperactivity disorder

    PubMed Central

    Laurin, Nancy; Ickowicz, Abel; Pathare, Tejaswee; Malone, Molly; Tannock, Rosemary; Schachar, Russell; Kennedy, James L.; Barr, Cathy L.

    2016-01-01

    The dopamine system plays an important role in the regulation of attention and motor behavior, subsequently, several dopamine-related genes have been associated with Attention Deficit/Hyperactivity Disorder (ADHD). Among them are the dopamine receptors D1 and D5 that mediate adenylyl cyclase activation through coupling with Gs-like proteins. We thus hypothesized that the Gs-like subunit Gαolf, expressed in D1-rich areas of the brain, contributes to the genetic susceptibility of ADHD. To evaluate the involvement of the Gαolf gene, GNAL, in ADHD, we examined the inheritance pattern of 12 GNAL polymorphisms in 258 nuclear families ascertained through a proband with ADHD (311 affected children) using the transmission/disequilibrium test (TDT). Categorical analysis of individual marker alleles demonstrated biased transmission of one polymorphism in GNAL intron 3 (rs2161961; P = 0.011). We also observed significant relationships between rs2161961 and dimensional symptoms of inattention and hyperactivity/impulsivity (P = 0.003 and P = 0.008). In addition, because of recent evidence of imprinting at the GNAL locus, secondary analyses were split into maternal and paternal transmissions to assess a contribution of parental effects. We found evidence of strong maternal effect, with preferential transmission of maternal alleles for rs2161961A (P = 0.005) and rs8098539A (P = 0.035). These preliminary findings suggest a possible contribution of GNAL in the susceptibility to ADHD, with possible involvement of parent-of-origin effects. PMID:17166517

  14. Quantitative Analysis of Small-Subunit rRNA Genes in Mixed Microbial Populations via 5′-Nuclease Assays

    PubMed Central

    Suzuki, Marcelino T.; Taylor, Lance T.; DeLong, Edward F.

    2000-01-01

    Few techniques are currently available for quantifying specific prokaryotic taxa in environmental samples. Quantification of specific genotypes has relied mainly on oligonucleotide hybridization to extracted rRNA or intact rRNA in whole cells. However, low abundance and cellular rRNA content limit the application of these techniques in aquatic environments. In this study, we applied a newly developed quantitative PCR assay (5′-nuclease assay, also known as TaqMan) to quantify specific small-subunit (SSU) rRNA genes (rDNAs) from uncultivated planktonic prokaryotes in Monterey Bay. Primer and probe combinations for quantification of SSU rDNAs at the domain and group levels were developed and tested for specificity and quantitative reliability. We examined the spatial and temporal variations of SSU rDNAs from Synechococcus plus Prochlorococcus and marine Archaea and compared the results of the quantitative PCR assays to those obtained by alternative methods. The 5′-nuclease assays reliably quantified rDNAs over at least 4 orders of magnitude and accurately measured the proportions of genes in artificial mixtures. The spatial and temporal distributions of planktonic microbial groups measured by the 5′-nuclease assays were similar to the distributions estimated by quantitative oligonucleotide probe hybridization, whole-cell hybridization assays, and flow cytometry. PMID:11055900

  15. Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation.

    PubMed

    van Oevelen, Chris J C; van Teeffelen, Hetty A A M; Timmers, H T Marc

    2005-06-01

    Transcription activation in yeast (Saccharomyces cerevisiae) involves ordered recruitment of transcription factor complexes, such as TFIID, SAGA, and Mot1p. Previously, we showed that both Mot1p and Taf1p are recruited to the HXT2 and HXT4 genes, which encode hexose transporter proteins. Here, we show that SAGA also binds to the HXT2 and HXT4 promoters and plays a pivotal role in the recruitment of Mot1p and Taf1p. The deletion of either SPT3 or SPT8 reduces Mot1p binding to HXT2 and HXT4. Surprisingly, the deletion of GCN5 reduces Taf1p binding to both promoters. When GCN5 is deleted in spt3Delta or spt8Delta strains, neither Mot1p nor Taf1p binds, and this results in a diminished recruitment of TATA binding protein and polymerase II to the HXT4 but not the HXT2 promoter. This is reflected by the SAGA-dependent expression of HXT4. In contrast, SAGA-independent induction of HXT2 suggests a functional redundancy with other factors. A functional interplay of different SAGA subunits with Mot1p and Taf1p was supported by phenotypic analysis of MOT1 SAGA or TAF1/SAGA double mutant strains, which revealed novel genetic interactions between MOT1 and SPT8 and between TAF1 and GCN5. In conclusion, our data demonstrate functional links between SAGA, Mot1p, and TFIID in HXT gene regulation.

  16. Apparent selection intensity for the cytochrome oxidase subunit I gene varies with mode of reproduction in echinoderms.

    PubMed

    Foltz, David W; Hrincevich, Adam W; Rocha-Olivares, Axayácatl

    2004-10-01

    When most amino acid substitutions in protein-coding genes are slightly deleterious rather than selectively neutral, life history differences can potentially modify the effective population size or the selective regime, resulting in altered ratios of non-synonymous to synonymous substitutions among taxa. We studied substitution patterns for the mitochondrial cytochrome oxidase subunit I (COI) gene in a sea star genus (Leptasterias spp.) with an obligate brood-protecting mode of reproduction and small-scale population genetic subdivision, and compared the results to available COI sequences in nine other genera of echinoderms with pelagic larvae: three sea stars, five sea urchins and one brittle star. We predicted that this life history difference would be associated with differences in the ratio of non-synonymous (dN) to synonymous (dS) substitution rates. Leptasterias had a significantly greater dN/dS ratio (both between species and within species), a significantly smaller transition/transversion rate ratio, and a significantly lower average nucleotide diversity within species, than did the non-brooding genera. Other explanations for the results, such as altered mutation rates or selective sweeps, were not supported by the data analysis. These findings highlight the potential influence of reproductive traits and other life history factors on patterns of nucleotide substitution within and between species.

  17. Initial analysis of the hemocyanin subunit type 1 (Hc1 gene) from Locusta migratoria manilensis.

    PubMed

    Yin, Hong; Guan, Ni; Dong, Lijun; Yue, Qiaoyun; Yin, Xiangchu; Zhang, Daochuan

    2012-03-01

    Hemocyanins are copper-containing (Cu(+)) proteins that transport oxygen in many arthropods hemolymph. We characterized Hc1 gene from the grasshopper species Locusta migratoria manilensis. In particular, we cloned and sequenced the corresponding cDNAs and studied their expression at different developmental stages. The cDNA of Hc1 gene (GenBank accession no.:HQ213937) is 2271 bp in length and the open reading frame is 2016 bp, which encodes a 672 amino acids protein with a calculated molecular mass of 77.9 kD and the isoelectric point of 6.06. Sequence alignment analysis result showed that this gene shares 94.7% identity with Schistocerca americana EHP. In addition, analysis of quantitative RT-PCR indicated that, LmiHc1 was expressed in the embyro (24, 39, 62, 86, 144, and 193 h after hatch), nymphs (1st instar, 2nd instar, 3rd instar, 4th instar and 5th instar) and in adult. These results showed that Hc1 plays an important role in grasshopper, which may be related to an enhanced oxygen supply. Phylogenetic analysis of insecta based on Hc1 are basically consistent with the morphology.

  18. Human GABAA receptor alpha 1 and alpha 3 subunits genes and alcoholism.

    PubMed

    Parsian, A; Cloninger, C R

    1997-05-01

    gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. GABA effects are largely mediated by binding to the postsynaptic GABAA receptor, causing the opening of an integral chloride-ion channel. The GABAA antagonists picrotoxin and bicuculline reduce some ethanol-induced behaviors, such as motor impairment, sedation, and hypnosis. The role of this receptor in alcoholism is further supported by effective alleviation of alcohol withdrawal symptoms by GABAA agonists. To determine the role of the GABAA receptor (GABR) genes in the development of alcoholism, we have used alpha 1 and alpha 3 simple sequence repeat polymorphisms in a sample of unrelated alcoholics, alcoholic probands with both parents, and psychiatrically normal controls. For the GABR alpha 1 gene, the differences between allele frequencies, when all alleles were compared together, were not significant between total alcoholics, subtypes of alcoholics, and normal controls. However, for GABR alpha 3, the differences between total alcoholics and normal controls were significant when all alleles were compared together. The differences between subtypes of alcoholics and normal controls were not significant. The results of haplotype relative risk analysis for both genes, GABR alpha 1 and GABR alpha 3, were also negative. It is possible that the sample size in the haplotype relative risk is too small to have power to detect the differences in transmitted versus nontransmitted alleles. There is a need for a replication study in a large family sample that will allow haplotype relative risk or affected sib-pair analysis.

  19. Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains.

    PubMed

    Bijlsma, I G; van Dijk, L; Kusters, J G; Gaastra, W

    1995-06-01

    Proteus mirabilis strains were isolated from dogs with urinary tract infection (UTI) and fimbriae were prepared from two strains. The N-terminal amino acid sequences of the major fimbrial subunits were determined and both sequences appeared identical to the N-terminal amino acid sequence of a urinary cell adhesin (UCA) (Wray, S. K., Hull, S. I., Cook, R. G., Barrish, J. & Hull, R. A., 1986, Infect Immun 54, 43-49). The genes of two different major fimbrial subunits were cloned using oligonucleotide probes that were designed on the basis of the N-terminal UCA sequence. Nucleotide sequencing revealed the complete ucaA gene of 540 bp (from strain IVB247) encoding a polypeptide of 180 amino acids, including a 22 amino acid signal sequence peptide, and the pmpA (P. mirabilis P-like pili) gene of 549 bp (from strain IVB219) encoding a polypeptide of 183 amino acids, including a 23 amino acid signal sequence. Hybridization experiments gave clear indications of the presence of both kinds of fimbriae in many UTI-related canine P. mirabilis isolates. However, the presence of these fimbriae could not be demonstrated in P. vulgaris or other Proteus-related species. Database analysis of amino acid sequences of major subunit proteins revealed that the UcaA protein shares about 56% amino acid identity with the F17A and F111A major fimbrial subunits from bovine enterotoxigenic Escherichia coli. In turn, the PmpA protein more closely resembled the pyelonephritis-associated pili (Pap)-like major subunit protein from UTI-related E. coli. The evolutionary relationship of UcaA, PmpA and various other fimbrial subunit proteins is presented in a phylogenetic tree.

  20. Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population

    PubMed Central

    Wang, Pengyun; Yang, Qinbo; Wu, Xiaofen; Yang, Yanzong; Shi, Lisong; Wang, Chuchu; Wu, Gang; Xia, Yunlong; Yang, Bo; Zhang, Rongfeng; Xu, Chengqi; Cheng, Xiang; Li, Sisi; Zhao, Yuanyuan; Fu, Fenfen; Liao, Yuhua; Fang, Fang; Chen, Qiuyun; Tu, Xin; Wang, Qing K.

    2010-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the clinic, and accounts for more than 15% of strokes. Mutations in cardiac sodium channel α, β1 and β2 subunit genes (SCN5A, SCN1B, and SCN2B) have been identified in AF patients. We hypothesize that mutations in the sodium channel β3 subunit gene SCN3B are also associated with AF. To test this hypothesis, we carried out a large scale sequencing analysis of all coding exons and exon-intron boundaries of SCN3B in 477 AF patients (28.5% lone AF) from the GeneID Chinese Han population. A novel A130V mutation was identified in a 46 year-old patient with lone AF, and the mutation was absent in 500 controls. Mutation A130V dramatically decreased the cardiac sodium current density when expressed in HEK293/Nav1.5 stable cell line, but did not have significant effect on kinetics of activation, inactivation, and channel recovery from inactivation. When co-expressed with wild type SCN3B, the A130V mutant SCN3B negated the function of wild type SCN3B, suggesting that A130V acts by a dominant negative mechanism. Western blot analysis with biotinylated plasma membrane protein extracts revealed that A130V did not affect cell surface expression of Nav1.5 or SCN3B, suggesting that mutant A130V SCN3B may not inhibit sodium channel trafficking, instead may affect conduction of sodium ions due to its malfunction as an integral component of the channel complex. This study identifies the first AF-associated mutation in SCN3B, and suggests that mutations in SCN3B may be a new pathogenic cause of AF. PMID:20558140

  1. Characterization of the mouse PA28 activator complex gene family: complete organizations of the three member genes and a physical map of the approximately 150-kb region containing the alpha- and beta-subunit genes.

    PubMed

    Kohda, K; Ishibashi, T; Shimbara, N; Tanaka, K; Matsuda, Y; Kasahara, M

    1998-05-15

    The proteasome is a multisubunit protease responsible for the generation of peptides loaded onto MHC class I molecules. Recent evidence indicates that binding of an IFN-gamma-inducible PA28 activator complex to the 20S proteasome enhances the generation of class I binding peptides. The alpha- and beta-subunits, which constitute the PA28 activator complex in the form of an (alphabeta)3 heterohexamer, show significant amino acid sequence similarity to a protein, designated Ki or the gamma-subunit, that is capable of binding to the 20S proteasome. In this study, we describe the complete nucleotide sequences of the mouse genes, Psme1, Psme2, and Psme3, coding for the alpha-, beta-, and gamma-subunits, respectively. The overall exon-intron organizations of the three Psme genes are virtually identical, thus providing evidence that they are descended from a single ancestral gene. The promoter regions of the Psme1 and Psme2 genes contain sequence motifs that qualify as IFN-stimulated response elements, consistent with the observation that their expression is induced strongly by IFN-gamma. The Psme1 and Psme2 genes are located approximately 6 kb apart with their 3'-ends pointing toward each other on bands C2 to D1 of mouse chromosome 14, supporting the idea that they emerged by tandem duplication.

  2. The genes encoding Arabidopsis ORC subunits are E2F targets and the two ORC1 genes are differently expressed in proliferating and endoreplicating cells.

    PubMed

    Diaz-Trivino, Sara; del Mar Castellano, María; de la Paz Sanchez, María; Ramirez-Parra, Elena; Desvoyes, Bénédicte; Gutierrez, Crisanto

    2005-01-01

    Initiation of eukaryotic DNA replication depends on the function of pre-replication complexes (pre-RC), one of its key component being the six subunits origin recognition complex (ORC). In spite of a significant degree of conservation among ORC proteins from different eukaryotic sources, the regulation of their availability varies considerably in different model systems and cell types. Here, we show that the six ORC genes of Arabidopsis thaliana are regulated at the transcriptional level during cell cycle and development. We found that Arabidopsis ORC genes, except AtORC5, contain binding sites for the E2F family of transcription factors. Expression of AtORC genes containing E2F binding sites peaks at the G1/S-phase. Analysis of AtORC gene expression in plants with reduced E2F activity, obtained by expressing a dominant negative version of DP, the E2F heterodimerization partner, and with increased E2F activity, obtained by inactivation of the retinoblastoma protein, led us to conclude that all AtORC genes, except AtORC5 are E2F targets. Interestingly, Arabidopsis contains two AtORC1 (a and b) genes, highly conserved at the amino acid level but with unrelated promoter sequences. AtORC1b expression is restricted to proliferating cells. However, AtORC1a is preferentially expressed in endoreplicating cells based on our analysis in endoreplicating tissues and in a mutant with altered endocycle pattern. This suggests a differential expression of the two ORC1 genes in Arabidopsis.

  3. E2F mediates induction of the Sp1-controlled promoter of the human DNA polymerase ɛ B-subunit gene POLE2

    PubMed Central

    Huang, Deqi; Jokela, Maarit; Tuusa, Jussi; Skog, Sven; Poikonen, Kari; Syväoja, Juhani E.

    2001-01-01

    The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase ɛ (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F–pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase α, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes. PMID:11433027

  4. Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle.

    PubMed

    Rosati, B; Pan, Z; Lypen, S; Wang, H S; Cohen, I; Dixon, J E; McKinnon, D

    2001-05-15

    Expression of four members of the KChIP family of potassium channel beta subunits was examined in canine heart. Only one member of the gene family, KChIP2, was expressed in heart. There was a steep gradient of KChIP2 mRNA expression across the canine ventricular free wall. KChIP2 mRNA was 25-fold more abundant in the epicardium than in the endocardium, and this gradient paralleled the gradient in transient outward current (Ito) expression. In contrast, Kv4.3 potassium channel alpha subunit mRNA was expressed at equal levels across the ventricular wall. There was no difference in the pharmacological sensitivity of epicardial and endocardial Ito channels to flecainide, suggesting that the current is produced by the same channel in the two tissues. A similar gradient of KChIP2 expression was found across the ventricular wall of human heart, but not rat heart. It is concluded that transcriptional regulation of the KChIP2 beta subunit gene, rather than the Kv4.3 [alpha] subunit gene, is the primary determinant regulating the transmural gradient of Ito expression in the ventricular free wall of canine and human heart.

  5. Identification of Genes, including the Gene Encoding p27Kip1, Regulated by Serine 276 Phosphorylation of the p65 Subunit of NF-κB

    PubMed Central

    Prasad, Ratna Chakraborty; Wang, Xiaohui L.; Law, Brian K.; Davis, Bradley; Green, Gail; Boone, Braden; Sims, Lauren; Law, Mary

    2009-01-01

    Phosphorylation of the p65 subunit of NF-κB is required for its transcriptional activity. Recent reports show that phosphorylation of p65 at serine 276 regulates only a subset of genes, such as those encoding IL-6, IL-8, Gro-β, and ICAM-1. In order to identify additional genes regulated by serine 276 phosphorylation, HepG2 hepatoma cells were infected with adenoviruses encoding either wild-type p65 or the S276A mutant of p65, followed by DNA microarray analysis. The results show that mutation of serine 276 affected the expression of several genes that encode proteins involved in cell cycle regulation, signal transduction, transcription, and metabolism. Notably, expression of S276A increased the mRNA and protein level of p27, a cell cycle inhibitory protein, which led to an increased association of p27 with cdk2, and inhibition of cdk2 activity. Furthermore, while wild-type NF-κB is known to increase cell proliferation in a number of different cancer cell lines, our data show that S276A inhibits cell proliferation. Evidence is mounting that NF-κB plays a pivotal role in oncogenesis. Therapeutic agents that regulate the phosphorylation of serine 276 and p27 gene expression, therefore, may be useful as anti-cancer agents in the future. PMID:19038492

  6. Cloning and characterization of genes encoding alpha and beta subunits of glutamate-gated chloride channel protein in Cylicocyclus nassatus.

    PubMed

    Tandon, Ritesh; LePage, Keith T; Kaplan, Ray M

    2006-11-01

    The invertebrate glutamate-gated chloride channels (GluCls) are receptor molecules and targets for the avermectin-milbemycin (AM) group of anthelmintics. Mutations in GluCls are associated with ivermectin resistance in the soil dwelling nematode Caenorhabditis elegans and the parasitic nematode Cooperia oncophora. In this study, full-length cDNAs encoding alpha and beta subunits of GluCl were cloned and sequenced in Cylicocyclus nassatus, a common and important cyathostomin nematode parasite of horses. Both genes possess the sequence characteristics typical of GluCls, and phylogenetic analysis confirms that these genes are evolutionarily closely related to GluCls of other nematodes and flies. Complete coding sequences of C. nassatus GluCl-alpha and GluCl-beta were subcloned into pTL1 mammalian expression vector, and proteins were expressed in COS-7 cells. Ivermectin-binding characteristics were determined by incubating COS-7 cell membranes expressing C. nassatus GluCl-alpha and GluCl-beta proteins with [(3)H]ivermectin. In competitive binding experiments, fitting the data to a one site competition model, C. nassatus GluCl-alpha was found to bind [(3)H]ivermectin with a high amount of displaceable binding (IC(50)=208 pM). Compared to the mock-transfected COS-7 cells, the means of [(3)H]ivermectin binding were significantly different for C. nassatus GluCl-alpha and the Haemonchus contortus GluCl (HcGluCla) (p=0.018 and 0.023, respectively) but not for C. nassatus GluCl-beta (p=0.370). This is the first report of orthologs of GluCl genes and in vitro expression of an ivermectin-binding protein in a cyathostomin species. These data suggest the likelihood of a similar mechanism of action of AM drugs in these parasites, and suggest that mechanisms of resistance may also be similar.

  7. NRF-1, and AP-1 regulate the promoter of the human calpain small subunit 1 (CAPNS1) gene.

    PubMed

    Asangani, Irfan A; Rasheed, Suhail A K; Leupold, Jörg H; Post, Stefan; Allgayer, Heike

    2008-02-29

    Ubiquitously expressed micro- and m-calpain are cysteine proteases with broad functions in cell spreading, migration, proliferation, apoptosis, and in tumor invasion. They are heterodimers, with a distinct large 80-kDa catalytic, and a common small 28-kDa regulatory subunit (Capn4/CAPNS1). CAPNS1 is required to maintain stability and activity of both calpains. Despite its biological importance, the transcriptional regulation of this gene has not been studied, and the CAPNS1 promoter has not yet been characterized. In this study, we identified the main transcriptional start site, and cloned and characterized the ~2.0 kb upstream region of the CAPNS1 gene. Deletion analysis identified the core promoter located within region -187/+174. Site-directed mutagenesis, EMSA- and supershift analysis identified Sp1-, NRF-1-, and AP-1-binding elements within the CAPNS1 core promoter. Binding of NRF-1, Sp1 and AP-1 to the natural core promoter was confirmed by chromatin immunoprecipitation (ChIP). Site-directed mutagenesis at the NRF-1 site in HeLa and MCF7 cells substantially reduced core promoter activity by 70%, whereas mutation of the AP-1-binding and Sp1-binding site reduced promoter activity by 50% and 30%, respectively. Double mutation of the NRF-1 and the AP-1 site reduced promoter activity by 90%. In Drosophila SL2 cells, ectopic expression of NRF-1 led to a significant induction of CAPNS1 promoter activity. Furthermore, an siRNA against NRF-1 substantially reduced promoter activity in HeLa cells, which was paralleled by a significant downregulation of CAPNS1 mRNA. These results reveal that especially NRF-1, along with AP-1 and, to a minor extent, an Sp1 site, is essential for human CAPNS1 promoter activity and gene expression.

  8. Association of AMPK subunit gene polymorphisms with growth, feed intake, and feed efficiency in meat-type chickens.

    PubMed

    Jin, Sihua; Moujahid, El Mostafa El; Duan, Zhongyi; Zheng, Jiawei; Qu, Lujiang; Xu, Guiyun; Yang, Ning; Chen, Sirui

    2016-07-01

    Investigations on regulatory genes of feed intake will provide a rational scientific basis to improve future selection indices for more efficient chickens. In the present study, we investigated the association of 13 previously reported SNPs in the chicken adenosine monophosphate activated protein kinase (AMPK) subunits PRKAB1, PRKAG2, and PRKAG3 genes with body weight (BW), body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) in two distinct yellow meat-type strains. Six SNPs with a very low minor allele frequency were removed by genotype quality control and data filtering. The experimental population comprised 796 pedigreed males from two strains with different genetic backgrounds, 335 chickens from N202 and 461 chickens from N301. BW at 49 (BW49) and 70 days of age (BW70) and FI (from 49 to 70 days of age) were determined individually. BWG and FCR were computed based on BW and FI in the interval between 49 to 70 days. The results indicated that PRKAB1 SNPs rs14094358 and rs14094362 were significantly associated with BW70, BWG, and FI in the N202 strain, and rs14094361 and rs14094363 were significantly associated with FI and FCR in the N301 strain (P < 0.05). In addition, the PRKAG2 SNP rs14133282 showed significant association with FI in N202, and rs13535812 was significantly associated with BW70 in N202 (P < 0.05). Moreover, the PRKAG3 SNP rs13595570 was significantly associated with BW in N202 (P < 0.05), and significantly associated with FI and FCR in N301 (P < 0.05). Additionally, a two-SNP haplotype comprising rs14094361 and rs14094362 in PRKAB1 was significantly associated with BWG in N202 (P < 0.05). Meanwhile, haplotypes based on two SNPs, rs14133282, and rs13535812, showed significant effects on FI in N202 (P < 0.05). Our findings therefore provide important evidence for association of AMPK subunits polymorphisms with body weight, feed intake, and feed efficiency that may be applied in meat-type chicken breeding programs.

  9. Cloning and characterization of the N-methyl-D-aspartate receptor subunit NR1 gene from chum salmon, Oncorhynchus keta (Walbaum, 1792).

    PubMed

    Yu, Jeong-Nam; Ham, Seung Hyub; Lee, Seung Il; Jin, Hyung-Joo; Ueda, Hiroshi; Jin, Deuk-Hee

    2014-01-01

    Here, we report the information about molecular and expression characterization of NR1 gene in chum salmon for the first time. The complete NR1 subunit showed a large open-reading frame of 2844 bp in the total length of 3193 bp, and this cDNA contained a coding region encoding 948 amino acids and a stop codon. The organization of the NR1 subunit of chum salmon were similar of most other fishes, except C' terminal. The expression of NR1 subunit was to show higher in the natal river near to the hatchery than near to the coast. We expect that the information reported herein may facilitate further investigations on the relationship between memory factors of natal rivers and homing mechanisms in Salmonidae.

  10. The primary structure of E. coli RNA polymerase, Nucleotide sequence of the rpoC gene and amino acid sequence of the beta'-subunit.

    PubMed Central

    Ovchinnikov YuA; Monastyrskaya, G S; Gubanov, V V; Guryev, S O; Salomatina, I S; Shuvaeva, T M; Lipkin, V M; Sverdlov, E D

    1982-01-01

    The primary structure of the E. coli rpoC gene (5321 base pairs) coding the beta'-subunit of RNA polymerase as well as its adjacent segment have been determined. The structure analysis of the peptides obtained by cleavage of the protein with cyanogen bromide and trypsin has confirmed the amino acid sequence of the beta'-subunit deduced from the nucleotide sequence analysis. The beta'-subunit of E. coli RNA polymerase contains 1407 amino acid residues. Its translation is initiated by codon GUG and terminated by codon TAA. It has been detected that the sequence following the terminating codon is strikingly homologous to known sequences of rho-independent terminators. PMID:6287430

  11. Analysis of the neurofilament heavy subunit (NFH) gene in familial amyotrophic lateral sclerosis

    SciTech Connect

    Rooke, K.; Rouleau, G.A.; Figlewicz, D.A.

    1994-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset, degenerative disorder of the motor neurons in the cortex, brainstem and spinal cord. Approximately 10% of ALS cases are familial (FALS) and are inherited as an age-dependent autosomal dominant trait. Mutations in the Cu/Zn superoxide dismutase (SOD-1) gene on chromosome 21 have been found in a subset of cases. However, for the remaining FALS cases, the etiology is unknown. The abnormal accumulation of neurofilaments in the cell body and proximal axon of motor neurons is a characteristic pathological finding in ALS. Furthermore, aberrant neuronal swellings that closely resemble those found in ALS have been reported in transgenic mice overexpressing NFH. The C-terminal region of NFH contains a unique functional domain with multiple repeats of the amino acids (Lys-Ser-Pro) (KSP) and forms the side-arms which appear, at the level of electron microscopy, to cross-link neurofilaments. Recently, deletions in the DSP repeat domain have been identified in five ALS patients diagnosed as sporadic cases of the disease. Based on these findings, we propose to analyze all 4 exons of the NFH gene for variation in FALS. DNA from 110 FALS cases has been amplified by the polymerase chain reaction (PCR) and analyzed by single strand conformation polymorphism (SSCP) analysis. Exon 2, exon 3 and the KSP repeat domain (part of exon 4) appear normal in all our FALS individuals under several different SSCP conditions. The analysis of exon 1 and the remainder of exon 4 has yet to be completed.

  12. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor β(2) subunit.

    PubMed

    Pun, F W; Zhao, C; Lo, W-S; Ng, S-K; Tsang, S-Y; Nimgaonkar, V; Chung, W S; Ungvari, G S; Xue, H

    2011-05-01

    Schizophrenia is a complex genetic disorder, the inheritance pattern of which is likely complicated by epigenetic factors yet to be elucidated. In this study, transmission disequilibrium tests with family trios yielded significant differences between paternal and maternal transmissions of the disease-associated single-nucleotide polymorphism (SNP) rs6556547 and its haplotypes. The minor allele (T) of rs6556547 was paternally undertransmitted to male schizophrenic offsprings, and this parent-of-origin effect strongly suggested that GABRB2 is imprinted. 'Flipping' of allelic expression in heterozygotes of SNP rs2229944 (C/T) in GABRB2 or rs2290732 (G/A) in the neighboring GABRA1 was compatible with imprinting effects on gene expression. Clustering analysis of GABRB2 mRNA expressions suggested that imprinting brought about the observed two-tiered distribution of expression levels in controls with heterozygous genotype at the disease-associated SNP rs1816071 (A/G). The deficit of upper-tiered expressions accounted for the lowered expression levels in the schizophrenic heterozygotes. The occurrence of a two-tiered distribution furnished support for imprinting, and also pointed to the necessity of differentiating between two kinds of heterozygotes of different parental origins in disease association studies on GABRB2. Bisulfite sequencing revealed hypermethylation in the neighborhood of SNP rs1816071, and methylation differences between controls and schizophrenia patients. Notably, the two schizophrenia-associated SNPs rs6556547 and rs1816071 overlapped with a CpG dinucleotide, thereby opening the possibility that CpG methylation status of these sites could have an impact on the risk of schizophrenia. Thus multiple lines of evidence pointed to the occurrence of imprinting in the GABRB2 gene and its possible role in the development of schizophrenia.

  13. Structure and expression of the gene coding for the alpha-subunit of DNA-dependent RNA polymerase from the chloroplast genome of Zea mays.

    PubMed Central

    Ruf, M; Kössel, H

    1988-01-01

    The rpoA gene coding for the alpha-subunit of DNA-dependent RNA polymerase located on the DNA of Zea mays chloroplasts has been characterized with respect to its position on the chloroplast genome and its nucleotide sequence. The amino acid sequence derived for a 39 Kd polypeptide shows strong homology with sequences derived from the rpoA genes of other chloroplast species and with the amino acid sequence of the alpha-subunit from E. coli RNA polymerase. Transcripts of the rpoA gene were identified by Northern hybridization and characterized by S1 mapping using total RNA isolated from maize chloroplasts. Antibodies raised against a synthetic C-terminal heptapeptide show cross reactivity with a 39 Kd polypeptide contained in the stroma fraction of maize chloroplasts. It is concluded that the rpoA gene is a functional gene and that therefore, at least the alpha-subunit of plastidic RNA polymerase, is expressed in chloroplasts. Images PMID:3399379

  14. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.

    PubMed

    Li, Xin-Min; Chao, Dai-Yin; Wu, Yuan; Huang, Xuehui; Chen, Ke; Cui, Long-Gang; Su, Lei; Ye, Wang-Wei; Chen, Hao; Chen, Hua-Chang; Dong, Nai-Qian; Guo, Tao; Shi, Min; Feng, Qi; Zhang, Peng; Han, Bin; Shan, Jun-Xiang; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-07-01

    Global warming threatens many aspects of human life, for example, by reducing crop yields. Breeding heat-tolerant crops using genes conferring thermotolerance is a fundamental way to help deal with this challenge. Here we identify a major quantitative trait locus (QTL) for thermotolerance in African rice (Oryza glaberrima), Thermo-tolerance 1 (TT1), which encodes an α2 subunit of the 26S proteasome involved in the degradation of ubiquitinated proteins. Ubiquitylome analysis indicated that OgTT1 protects cells from heat stress through more efficient elimination of cytotoxic denatured proteins and more effective maintenance of heat-response processes than achieved with OsTT1. Variation in TT1 has been selected for on the basis of climatic temperature and has had an important role in local adaptation during rice evolution. In addition, we found that overexpression of OgTT1 was associated with markedly enhanced thermotolerance in rice, Arabidopsis and Festuca elata. This discovery may lead to an increase in crop security in the face of the ongoing threat of global warming.

  15. Association of the Nicotinic Receptor α7 Subunit Gene (CHRNA7) with Schizophrenia and Visual Backward Masking.

    PubMed

    Bakanidze, George; Roinishvili, Maya; Chkonia, Eka; Kitzrow, Werner; Richter, Sarina; Neumann, Konrad; Herzog, Michael H; Brand, Andreas; Puls, Imke

    2013-01-01

    The nicotinic system is involved in the pathophysiology of schizophrenia. However, very little is known about its genetic basis and how it relates to clinical symptoms and potentially pharmacological intervention. Here, we investigated five single nucleotide polymorphisms (SNPs) [rs3826029] [rs2337506] [rs982574] [rs904952] [rs2337980] of the cholinergic nicotinic receptor gene, alpha 7 subunit (CHRNA7) and their association to schizophrenia. We found an association with rs904952 (p = 0.009) in a German sample of 224 schizophrenic patients and 224 healthy control subjects. The same trend was shown in an independent Georgian sample of 50 schizophrenic patients, 57 first order unaffected relatives, and 51 healthy controls. In addition, visual backward masking (VBM), a sensitive test for early visual information processing, was assessed in the Georgian sample. In line with prior studies, VBM performance deficits were much more pronounced in schizophrenic patients and their unaffected relatives compared to healthy controls (schizophrenic patients: 156 ms; unaffected relatives: 60 ms; healthy controls: 33 ms). VBM was strongly correlated with SNP rs904952 (H[2] = 7.3, p = 0.026). Our results further support the notion that changes in the nicotinic system are involved in schizophrenia and open the avenue for pharmacological intervention.

  16. Association of the Nicotinic Receptor α7 Subunit Gene (CHRNA7) with Schizophrenia and Visual Backward Masking

    PubMed Central

    Bakanidze, George; Roinishvili, Maya; Chkonia, Eka; Kitzrow, Werner; Richter, Sarina; Neumann, Konrad; Herzog, Michael H.; Brand, Andreas; Puls, Imke

    2013-01-01

    The nicotinic system is involved in the pathophysiology of schizophrenia. However, very little is known about its genetic basis and how it relates to clinical symptoms and potentially pharmacological intervention. Here, we investigated five single nucleotide polymorphisms (SNPs) [rs3826029] [rs2337506] [rs982574] [rs904952] [rs2337980] of the cholinergic nicotinic receptor gene, alpha 7 subunit (CHRNA7) and their association to schizophrenia. We found an association with rs904952 (p = 0.009) in a German sample of 224 schizophrenic patients and 224 healthy control subjects. The same trend was shown in an independent Georgian sample of 50 schizophrenic patients, 57 first order unaffected relatives, and 51 healthy controls. In addition, visual backward masking (VBM), a sensitive test for early visual information processing, was assessed in the Georgian sample. In line with prior studies, VBM performance deficits were much more pronounced in schizophrenic patients and their unaffected relatives compared to healthy controls (schizophrenic patients: 156 ms; unaffected relatives: 60 ms; healthy controls: 33 ms). VBM was strongly correlated with SNP rs904952 (H[2] = 7.3, p = 0.026). Our results further support the notion that changes in the nicotinic system are involved in schizophrenia and open the avenue for pharmacological intervention. PMID:24155726

  17. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    PubMed Central

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  18. Prevalent ciliate symbiosis on copepods: high genetic diversity and wide distribution detected using small subunit ribosomal RNA gene.

    PubMed

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally.

  19. Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene

    PubMed Central

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally. PMID:23024768

  20. Mutations in Two Genes Encoding Different Subunits of a Receptor Signaling Complex Result in an Identical Disease Phenotype

    PubMed Central

    Paloneva, Juha; Manninen, Tuula; Christman, Grant; Hovanes, Karine; Mandelin, Jami; Adolfsson, Rolf; Bianchin, Marino; Bird, Thomas; Miranda, Roxana; Salmaggi, Andrea; Tranebjærg, Lisbeth; Konttinen, Yrjö; Peltonen, Leena

    2002-01-01

    Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), also known as “Nasu-Hakola disease,” is a globally distributed recessively inherited disease leading to death during the 5th decade of life and is characterized by early-onset progressive dementia and bone cysts. Elsewhere, we have identified PLOSL mutations in TYROBP (DAP12), which codes for a membrane receptor component in natural-killer and myeloid cells, and also have identified genetic heterogeneity in PLOSL, with some patients carrying no mutations in TYROBP. Here we complete the molecular pathology of PLOSL by identifying TREM2 as the second PLOSL gene. TREM2 forms a receptor signaling complex with TYROBP and triggers activation of the immune responses in macrophages and dendritic cells. Patients with PLOSL have no defects in cell-mediated immunity, suggesting a remarkable capacity of the human immune system to compensate for the inactive TYROBP-mediated activation pathway. Our data imply that the TYROBP-mediated signaling pathway plays a significant role in human brain and bone tissue and provide an interesting example of how mutations in two different subunits of a multisubunit receptor complex result in an identical human disease phenotype. PMID:12080485

  1. Molecular characterization of Echinococcus granulosus from Peru by sequencing of the mitochondrial cytochrome C oxidase subunit 1 gene.

    PubMed

    Sánchez, Elizabeth; Cáceres, Omar; Náquira, César; Garcia, David; Patiño, Gladys; Silvia, Herrera; Volotão, Aline C; Fernandes, Octavio

    2010-09-01

    Echinococcus granulosus, the etiologic agent of cystic echinococcosis (CE) in humans and other animal species, is distributed worldwide. Ten intra-specific variants, or genotypes (G1-G10), have been defined based on genetic diversity. To determine the genotypes present in endemic areas of Peru, samples were collected from cattle (44), sheep (41) and humans (14) from Junín, Puno Huancavelica, Cusco, Arequipa and Ayacucho. DNA was extracted from protoscolex and/or germinal layers derived from 99 E. granulosus isolates and used as templates to amplify the mitochondrial cytochrome C oxidase subunit 1 gene. The resulting polymerase chain reaction products were sequenced and further examined by sequence analysis. All isolates, independent of the host, exhibited the G1 genotype. Phylogenetic analysis showed that three isolates from Ayacucho shared the same cluster with microvariant G1(4). The G1 genotype is considered the most widespread and infectious form of E. granulosus worldwide and our results confirm that the same patterns apply to this country. Therefore, these findings should be taken into consideration in developing prevention strategies and control programs for CE in Peru.

  2. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana.

    PubMed

    Hurtado, Lidia; Farrona, Sara; Reyes, Jose C

    2006-09-01

    Arabidopsis thaliana BRAHMA (BRM, also called AtBRM) is a SNF2 family protein homolog of Brahma, the ATPase of the Drosophila SWI/SNF complex involved in chromatin remodeling during transcription. Here we show that, in contrast to its Drosophila counterpart, BRM is not an essential gene. Thus, homozygous BRM loss of function mutants are viable but exhibit numerous defects including dwarfism, altered leaf and root development and several reproduction defects. The analysis of the progeny of self-fertilized heterozygous brm plants and reciprocal crosses between heterozygous and wild type plants indicated that disruption of BRM reduced both male and female gametophyte transmission. This was consistent with the presence of aborted ovules in the self-fertilized heterozygous flowers that contained arrested embryos predominantly at the two terminal cells stage. Furthermore, brm homozygous mutants were completely sterile. Flowers of brm loss-of-function mutants have several developmental abnormalities, including homeotic transformations in the second and third floral whorls. In accordance with these results, brm mutants present reduced levels of APETALA2, APETALA3, PISTILLATA and NAC-LIKE, ACTIVATED BY AP3/PI. We have previously shown that BRM strongly interacts with AtSWI3C. Now we extend our interaction studies demonstrating that BRM interacts weakly with AtSWI3B but not with AtSWI3A or AtSWI3D. In agreement with these results, the phenotype described in this study for brm plants is very similar to that previously described for the AtSWI3C mutant plants, suggesting that both proteins participate in the same genetic pathway or form a molecular complex.

  3. The effects of quercetin on the gene expression of the GABAA receptor α5 subunit gene in a mouse model of kainic acid-induced seizure.

    PubMed

    Moghbelinejad, Sahar; Alizadeh, Safar; Mohammadi, Ghazaleh; Khodabandehloo, Fatemeh; Rashvand, Zahra; Najafipour, Reza; Nassiri-Asl, Marjan

    2017-03-01

    The flavonoid quercetin has recently been reported to have neuroprotective effects, and the role of the gamma-aminobutyric acid A alpha 5 subunit (GABAA α5) receptor has been determined in some nervous system disorders. The aim of this study was to identify the molecular mechanism of the effect of quercetin administered at anticonvulsive doses on the expression of the GABAA α5 receptor gene in kainic acid (KA)-induced seizures in mice. The experimental animals were divided into four groups: control, KA, and KA + quercetin at 50 or 100 mg/kg, respectively. The results showed a dose-dependent reduction in the behavioral seizure score with quercetin pre-treatment in the KA mouse model. Two hours after the end of the 7-day treatment regimen, expression of the GABAA α5 receptor gene in the hippocampus was found to be increased in the KA group, but this increase was reduced in the KA + quercetin 50 or 100 mg/kg treatment groups. These results suggest that expression of the GABAA α5 receptor could be a mechanism for reducing seizure severity or may be a marker of seizure severity. Further studies are necessary to clarify quercetin's mechanism of action and the relation of GABAA α5 receptor gene expression to seizure severity.

  4. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer

    PubMed Central

    Improgo, Ma. Reina D.; Scofield, Michael D.; Tapper, Andrew R.; Gardner, Paul D.

    2010-01-01

    More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer. PMID:20685379

  5. Differential Requirement of SAGA Subunits for Mot1p and Taf1p Recruitment in Gene Activation†

    PubMed Central

    van Oevelen, Chris J. C.; van Teeffelen, Hetty A. A. M.; Timmers, H. T. Marc

    2005-01-01

    Transcription activation in yeast (Saccharomyces cerevisiae) involves ordered recruitment of transcription factor complexes, such as TFIID, SAGA, and Mot1p. Previously, we showed that both Mot1p and Taf1p are recruited to the HXT2 and HXT4 genes, which encode hexose transporter proteins. Here, we show that SAGA also binds to the HXT2 and HXT4 promoters and plays a pivotal role in the recruitment of Mot1p and Taf1p. The deletion of either SPT3 or SPT8 reduces Mot1p binding to HXT2 and HXT4. Surprisingly, the deletion of GCN5 reduces Taf1p binding to both promoters. When GCN5 is deleted in spt3Δ or spt8Δ strains, neither Mot1p nor Taf1p binds, and this results in a diminished recruitment of TATA binding protein and polymerase II to the HXT4 but not the HXT2 promoter. This is reflected by the SAGA-dependent expression of HXT4. In contrast, SAGA-independent induction of HXT2 suggests a functional redundancy with other factors. A functional interplay of different SAGA subunits with Mot1p and Taf1p was supported by phenotypic analysis of MOT1 SAGA or TAF1/SAGA double mutant strains, which revealed novel genetic interactions between MOT1 and SPT8 and between TAF1 and GCN5. In conclusion, our data demonstrate functional links between SAGA, Mot1p, and TFIID in HXT gene regulation. PMID:15923605

  6. Cytochrome oxidase subunit 2 gene allows simultaneous detection and typing of Trypanosoma rangeli and Trypanosoma cruzi.

    PubMed

    de Sá, Amanda Regina Nichi; Steindel, Mário; Demeu, Lara Maria Kalempa; Lückemeyer, Débora Denardin; Grisard, Edmundo Carlos; Neto, Quirino Alves de Lima; de Araújo, Silvana Marques; Toledo, Max Jean de Ornelas; Gomes, Mônica Lúcia

    2013-12-23

    The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist.

  7. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    PubMed Central

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  8. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    PubMed

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis.

  9. The subunit gene Ldα1 of nicotinic acetylcholine receptors plays important roles in the toxicity of imidacloprid and thiamethoxam against Leptinotarsa decemlineata.

    PubMed

    Qu, Yang; Chen, Jinhua; Li, Chenge; Wang, Qiang; Guo, Wenchao; Han, Zhaojun; Jiang, Weihua

    2016-02-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ACh-gated ion channels. It is believed that nAChRs composed of different subunits may vary in their function and toxicological characteristics. Neonicotinoids are activators of nAChRs and important insecticides that are extensively used for crop protection and resistance has been developed by some pests. They are also major insecticides for the control of Leptinotarsa decemlineata, which is a destructive defoliator pest that invaded the Xinjiang region of China in the 1990s. However, little is known about the constitution or subunits of the target in this pest. In this study, the full-length cDNAs encoding four new nAChR subunits (named Ldα3, Ldα6, Ldα10, and Ldβ1) were cloned from L. decemlineata. These genes encode 822-, 753-, 672-, and 759-amino acid proteins, respectively, which share typical features of insect nAChRs subunits and closely resemble the corresponding subunits of the nAChRs from Tribolium castaneum. Temporal and spatial expression analyses showed that these genes, as well as the previously identified Ldα1, Ldα2, and Ldα8 genes, are widely expressed in all developmental stages, including eggs, larvae of various instars, pupae, and adults. All genes monitored were expressed at higher levels in the head than in the thorax and abdomen, except for Ldα10. Dietary ingestion of double-stranded RNA bacterially expressed for Ldα1 (dsLdα1) significantly reduced the mRNA level of Ldα1 in treated larvae and adults by 48.0% and 78.6%, respectively. Among the non-target genes, Ldα3, Ldα9, and Ldβ1 were significantly up-regulated in larvae. A toxicity bioassay showed that dsLdα1 treatment greatly decreased the sensitivity to imidacloprid and thiamethoxam in adults. The larval susceptibility to thiamethoxam but not to imidacloprid was also reduced because of the lower down-regulation of Ldα1. Thus, our results suggest that Ldα1 encodes a subunit of a functional nAChR that mediates the

  10. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    SciTech Connect

    Riess, O.; Weber, B.; Hayden, M.R. ); Noerremoelle, A. ); Musarella, M.A. )

    1992-10-01

    The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic and two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.

  11. Polymorphisms in COL4A3 and COL4A4 genes associated with keratoconus

    PubMed Central

    Štabuc-Šilih, Mirna; Ravnik-Glavač, Metka; Glavač, Damjan; Hawlina, Marko

    2009-01-01

    Purpose Alterations in collagen type IV, alpha-3 (COL4A3) and collagen type IV, alpha-4 (COL4A4) genes may be responsible for a decrease in collagen types I and III, a feature often detected in keratoconus (KC). To evaluate the significance of alterations in COL4A3 and COL4A4 genes in KC patients, we screened both genes and estimated the significance of polymorphisms in Slovenian patients with KC. Methods The study included 104 unrelated patients with KC and 157 healthy blood donors. Diagnosis was established by clinical examination, electronic refractometry, and keratometry. DNA was extracted from blood, and gene exons were amplified by PCR. Non-isotopic high-resolution single-stranded conformation analysis (SSCA) was used to screen COL4A3 and COL4A4 genes, and migration shifts detected by SSCA were subsequently sequenced. For statistical evaluation, control blood donors were chosen according to age, sex, and not having blood relationship. Neither patients nor control blood donors chosen for statistical analysis were in blood relationship. We used Fisher’s exact test for statistical evaluation, with p<0.05 considered significant. Results We detected eight polymorphisms in the COL4A3 gene and six in the COL4A4 gene. Allele differences in D326Y in COL4A3 and M1237V and F1644F in COL4A4 are significantly distinctive of KC patients (Fisher’s exact test, p<0.05). When analyzing different genotypes under three models (dominant, recessive, and additive), we established that P141L, D326Y, and G895G in COL4A3 and P482S, M1327V, V1516V, and F1644F in COL4A4 have significant differences in genotype distribution between KC patients and the control group. Conclusions This is the first mutational screening of COL4A3 and COL4A4 genes in KC patients to establish the status of these genes and compare them to a control population. Analysis of COL4A3 and COL4A4 revealed no mutations related to KC patients, but specific genotypes of seven previously described polymorphisms are

  12. Interaction of nuclear factors with the upstream region of the alpha-subunit gene of chicken muscle acetylcholine receptor: variations with muscle differentiation and denervation.

    PubMed Central

    Piette, J; Klarsfeld, A; Changeux, J P

    1989-01-01

    The region lying between nucleotides (nt) -110 and -45 of chicken acetylcholine receptor alpha-subunit gene 5' upstream sequence confers developmental control of expression in primary cultures of chicken myotubes. This region interacts with several nuclear factors present in muscle cells as shown by DNase I footprinting and gel-retardation experiments. An Sp1-like factor and a guanine stretch-binding protein were found to bind to overlapping sites immediately upstream of the TATA box. Several factors interacting in the same region with a domain similar to the SV40 enhancer core appeared during in vitro differentiation of myoblasts into myotubes. The concentration of some of these factors increased also after denervation of leg muscle in newborn chickens. The specific interaction of nuclear factors with this domain may thus play a critical role in the regulation of alpha-subunit gene expression by muscle differentiation and electrical activity. Images PMID:2721497

  13. Synthetic lethal screen of NAA20, a catalytic subunit gene of NatB N-terminal acetylase in Saccharomyces cerevisiae.

    PubMed

    Lee, Kang-Eun; Ahn, Jun-Young; Kim, Jeong-Mok; Hwang, Cheol-Sang

    2014-10-01

    The Saccharomyces cerevisiae NatB N-terminal acetylase contains a catalytic subunit Naa20 and an auxiliary subunit Naa25. To elucidate the cellular functions of the NatB, we utilized the Synthetic Genetic Array to screen for genes that are essential for cell growth in the absence of NAA20. The genome-wide synthetic lethal screen of NAA20 identified genes encoding for serine/threonine protein kinase Vps15, 1,3-beta-glucanosyltransferase Gas5, and a catabolic repression regulator Mig3. The present study suggests that the catalytic activity of the NatB N-terminal aceytase is involved in vacuolar protein sorting and cell wall maintenance.

  14. Transcription organization and mRNA levels of the genes for all 12 subunits of the fission yeast RNA polymerase II.

    PubMed

    Sakurai, H; Ishihama, A

    2001-01-01

    The RNA polymerase II (Pol II) of eukaryotes is composed of 12 subunits, of which five are shared among Pol I, Pol II and Pol III. At present, however, little is known about the regulation of synthesis and assembly of the 12 Pol II subunits. To obtain an insight into the regulation of synthesis of these 12 Pol II subunits, Rpb1 to Rpb12, in the fission yeast Schizosaccharomyces pombe, we analysed the transcriptional organization of the rpb genes by use of the oligo capping method, and determined mRNA levels by quantitative competitive PCR assay. The intracellular concentrations of the 12 Rpb subunits in growing S. pombe cells are different, within a range of 15-fold difference between the least abundant Rpb3 and the most abundant Rpb12. The transcription of one group of genes including rpb3, rpb4, rpb5, rpb6, rpb7 and rpb10 is mainly initiated at a single site, while that of the other group of genes for rpb1, rpb2, rpb8, rpb9, rpb11 and rpb12 is initiated at multiple sites. The promoters of the first group of genes contain the TATA box sequence between -26 and -62, while the second group of genes carry TATA-less promoters. Several common sequence segments, tentatively designated 'Rpb motifs', were identified in the promoter regions of the rpb genes. Competitive PCR analysis indicated that mRNAs for Rpb1, Rpb3, Rpb7 and Rpb9 were among the group which had a low abundance, while the levels of Rpb6 and Rpb10 mRNAs were about fivefold, and that of Rpb2 mRNA was about 40-fold higher than the Rpb3 mRNA level. The levels of rpb mRNAs do not correlate with those of Rpb proteins. The protein-to-mRNA ratio or the translation efficiency is low for the rpb1, rpb2, rpb3 and rpb11 genes, encoding the homologues of subunits beta', beta, alpha and alpha, respectively, of the prokaryotic RNA polymerase core enzyme.

  15. Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3

    PubMed Central

    Pattamaprapanont, Pattarawan; Garde, Christian; Fabre, Odile; Barrès, Romain

    2016-01-01

    Exercise training triggers numerous positive adaptations through the regulation of genes controlling muscle structure and function. Epigenetic modifications, including DNA methylation, participate in transcriptional activation by allowing the recruitment of the transcription machinery to gene promoters. Exercise induces dynamic DNA demethylation at gene promoters; however, the contribution of the demethylation precursor hydroxymethylcytosine is unknown. Given the evanescent nature of hydroxymethylcytosine, a muscle contraction model that allows for the collection of samples that are repeatedly stimulated over time is required to determine whether contraction-induced demethylation is preceded by changes in the hydroxymethylcytosine level. Here, we established an acute skeletal muscle contraction model to mimic the effects of acute exercise on gene expression. We used this model to investigate the effect of muscle contraction on DNA demethylation and hydroxymethylation. First, we performed an acute exercise study in healthy humans to identify an exercise-responsive gene that we could study in culture. We identified the nuclear receptor subfamily 4 group A member 3 (Nr4a3) gene with the highest fold-expression increase after acute exercise. We then refined an electrical pulse stimulation (EPS) protocol that could induce expression of the Nr4a3 gene in C2C12 myotubes. Using targeted bisulfite sequencing, we found that in response to EPS, a region of the Nr4a3 promoter is rapidly demethylated at 60 min and re-methylated at 120 min. Of interest, hydroxymethylation of the differentially methylated region of Nr4a3 promoter after EPS was elevated immediately after EPS, with lowest levels reached at 60 min after EPS. In conclusion, we have established a cell culture-based protocol to mimic the acute transcriptional responses to exercise. Furthermore, we provide insight into the mechanism by which the exercise-responsive gene Nr4a3 is demethylated after muscle

  16. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene.

    PubMed Central

    Kurtzman, C P; Robnett, C J

    1997-01-01

    Clinically important species of Candida and related organisms were compared for extent of nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA (rDNA) gene. This rDNA region is sufficiently variable to allow reliable separation of all known clinically significant yeast species. Of the 204 described species examined, 21 appeared to be synonyms of previously described organisms. Phylogenetic relationships among the species are presented. PMID:9114410

  17. Cloning of the Genes for AF/R1 Pili from Rabbit Enteroadherent Escherichia coli RDEC-1 and DNA Sequence of the Major Structural Subunit

    DTIC Science & Technology

    1990-04-01

    genes for lac promoter from the vector since bacteria carrying pUCI9 synthesis and assembly of pili and have minor subunits that expressed the Lac ...vivo pap pilus operon , 20 of 30 bases beginning at base 461 colonization and infectivity. Infect. Immun. 28:1019-1027. (including 11 of 13 bases...beginning at base 475) matched a 11. deGraaf, F. K., B. E. Krenn, and P. Klaasen. 1984. Organization sequence from the pap pilus operon that has been

  18. Correlation between protein kinase catalytic subunit alpha-1 gene rs13361707 polymorphism and gastric cancer susceptibility in asian populations.

    PubMed

    Ni, Jianfeng; Shen, Nan; Tang, Jilei; Ren, Kewei

    2017-09-15

    A single nucleotide polymorphism (SNP) of the protein kinase catalytic subunit alpha-1 gene (PRKAA1) that confers susceptibility to gastric cancer (GC) was identified by genome-wide association in several case-control studies. However, the results remained controversial and ambiguous. Therefore, we performed a larger meta-analysis to confirm this association. We searched the PubMed, Embase, WanFang, and CNKI databases, without any restriction on language, covering all papers published until Feb 22, 2017. Overall, 14 case-control studies with 14,485 cases and 14,792 controls were retrieved based on the search criteria. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantify the strength of the association. Publication bias was assessed by Egger's and Begg's tests. We found that the PRKAA1 rs13361707 C/T polymorphism had no association with GC risk in any of the pooled genetic models (for example, the T-allele vs. C-allele allelic contrast model yielded the following estimates: OR = 0.87, 95% CI = 0.73-1.05, Pheterogeneity = 0.000). Furthermore, in analyses stratified by either source of control or geographical origin of subjects, a statistically significant inverse relationship was detected between PRKAA1 rs13361707 C/T polymorphism and GC risk. No obvious evidence of publication bias was detected in the pooled meta-analysis. Furthermore, we observed that individuals carrying T-allele (TT or TC) genotypes had a lower expression of PRKAA1. Our present study indicated that PRKAA1 rs13361707 C/T was not significantly associated with GC risk, despite few positive results in the subgroups.

  19. Characterization of Choristoneura fumiferana genes of the sixth subunit of the origin recognition complex: CfORC6.

    PubMed

    Wang, Xaiochun; Carstens, Eric B; Feng, Qili

    2006-11-30

    A new protein was cloned and identified as the sixth subunit of Choristoneura fumiferana origin recognition complex (CfORC6). The newly identified 43 kDa protein CfORC6 is much bigger than DmORC6 (25.7 kDa) and HsORC6 (28.1 kDa), though itos 23.85% identical to DmORC6 and 23.81% identical to HsORC6. Although the molecular weight of CfORC6 is close to ScORc6 (50 kDa), CfORC6 is only 14.03% identical to ScORC6. By alignment, it was found that the N-terminal of CfORC6 has about 30% identities with other ORC6s, but about 100aa of C-terminal of CfORC6 has no identity with other ORC6s. Like ScORC6, CfORC6 has many potential phosphorylation sites, (S/T)PXK. Like DmORC6, CfORC6 has leucine-rich region in the relevant site. Northern Blot showed that CfORC6 mRNA is about 2,000nt. Southern Blot confirmed that there is one copy of CfORC6 gene in spruce budworm genome. Western blot showed that infection of Cf124T cells with CfMNPV didnot affect the expression levels of CfORC6, at least up to 26 hr post infection.

  20. The bacteriophage P1 hot gene, encoding a homolog of the E. coli DNA polymerase III theta subunit, is expressed during both lysogenic and lytic growth stages.

    PubMed

    Chikova, Anna K; Schaaper, Roel M

    2007-11-01

    The bacteriophage P1 hot gene product is a homolog of the theta subunit of E. coli DNA polymerase III. Previous studies with hot cloned on a plasmid have shown that Hot protein can substitute for theta, as evidenced by its stabilizing effect on certain dnaQ mutator mutants carrying an unstable pol III proofreading subunit (epsilon subunit). These results are consistent with Hot, like theta, being a replication protein involved in stabilizing the intrinsically unstable epsilon proofreading function. However, the function of hot for the viral life cycle is less clear. In the present study, we show that the hot gene is not essential. Based on its promoter structure, hot has been previously classified as a "late" phage gene, a property that is not easily reconciled with a presumed replication function. Here, we clarify this issue by demonstrating that P1 hot is actively expressed both during the lysogenic state and in the early stages of a lytic induction, in addition to its expression in the late stage of phage development. The results indicate that P1 hot has a complex expression pattern, compatible with a model in which Hot may affect the host replication machinery to benefit overall phage replication.

  1. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia.

    PubMed Central

    Escayg, A; De Waard, M; Lee, D D; Bichet, D; Wolf, P; Mayer, T; Johnston, J; Baloh, R; Sander, T; Meisler, M H

    2000-01-01

    Inactivation of the beta4 subunit of the calcium channel in the mouse neurological mutant lethargic results in a complex neurological disorder that includes absence epilepsy and ataxia. To determine the role of the calcium-channel beta4-subunit gene CACNB4 on chromosome 2q22-23 in related human disorders, we screened for mutations in small pedigrees with familial epilepsy and ataxia. The premature-termination mutation R482X was identified in a patient with juvenile myoclonic epilepsy. The R482X protein lacks the 38 C-terminal amino acids containing part of an interaction domain for the alpha1 subunit. The missense mutation C104F was identified both in a German family with generalized epilepsy and praxis-induced seizures and in a French Canadian family with episodic ataxia. These coding mutations were not detected in 255 unaffected control individuals (510 chromosomes), and they may be considered candidate disease mutations. The results of functional tests of the truncated protein R482X in Xenopus laevis oocytes demonstrated a small decrease in the fast time constant for inactivation of the cotransfected alpha1 subunit. Further studies will be required to evaluate the in vivo consequences of these mutations. We also describe eight noncoding single-nucleotide substitutions, two of which are present at polymorphic frequency, and a previously unrecognized first intron of CACNB4 that interrupts exon 1 at codon 21. PMID:10762541

  2. Molecular Analysis by Gene Expression of Mitochondrial ATPase Subunits in Papillary Thyroid Cancer: Is ATP5E Transcript a Possible Early Tumor Marker?

    PubMed Central

    Hurtado-López, Luis Mauricio; Fernández-Ramírez, Fernando; Martínez-Peñafiel, Eva; Ruiz, José Damián Carrillo; González, Norma Estela Herrera

    2015-01-01

    Background Cancer development involves an “injury” to the respiratory machinery (Warburg effect) due to decreased or impaired mitochondrial function. This circumstance results in a down regulation of some of the ATPase subunits of the malignant tissue. The objective of this work was to assess and compare the relative expression of mRNA of mitochondrial ATPase subunits between samples of thyroid cancer and benign nodules. Material/Methods Samples from 31 patients who had an operation for PTC at the General Hospital of Mexico were snap-frozen and stored at −70°C. Thirty-five patients who had an operation for benign tumors were also included in the study. mRNA expression levels of alpha, beta, gamma, and epsilon subunits of F1 and “c12” of subunit Fo were determined by real-time RT-PCR (by duplicate), in order to determine if abnormal expression of these genes could partially explain the Warburg effect in papillary thyroid cancer (PTC). Results ATP5E transcript alteration (down-expression) was highly associated to PTC diagnosis OR=11.76 (95% confidence interval, 1.245–237.98; p=0.04). Conclusions Relative down-expression of ATP5E transcript was highly associated with PTC diagnosis. This transcript alteration may be used as a tumoral marker in papillary thyroid cancer. PMID:26079849

  3. Dominant-negative mutation in the beta2 and beta6 proteasome subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage.

    PubMed

    Schweisguth, F

    1999-09-28

    In Drosophila, dominant-negative mutations in the beta2 and beta6 proteasome catalytic subunit genes have been identified as dominant temperature-sensitive (DTS) mutations. At restrictive temperature, beta2 and beta6 DTS mutations confer lethality at the pupal stage. I investigate here the role of proteasome activity in regulating cell fate decisions in the sense organ lineage at the early pupal stage. Temperature-shift experiments in beta2 and beta6 DTS mutant pupae occasionally resulted in external sense organs with two sockets and no shaft. This double-socket phenotype was strongly enhanced in conditions in which Notch signaling was up-regulated. Furthermore, conditional overexpression of the beta6 dominant-negative mutant subunit led to shaft-to-socket and to neuron-to-sheath cell fate transformations, which are both usually associated with increased Notch signaling activity. Finally, expression of the beta6 dominant-negative mutant subunit led to the stabilization of an ectopically expressed nuclear form of Notch in imaginal wing discs. This study demonstrates that mutations affecting two distinct proteasome catalytic subunits affect two alternative cell fate decisions and enhance Notch signaling activity in the sense organ lineage. These findings raise the possibility that the proteasome targets an active form of the Notch receptor for degradation in Drosophila.

  4. Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides).

    PubMed

    Xu, S S; Khan, K; Klindworth, D L; Faris, J D; Nygard, G

    2004-05-01

    The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat ( T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum- T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome

  5. [The relationship between the polymorphism of glutamate cysteine ligase modulatory subunit gene and the susceptibility to chronic obstructive pulmonary disease].

    PubMed

    Hu, Rui-cheng; Tan, Shuang-xiang; Dai, Ai-guo

    2006-02-01

    To investigate whether glutamate cysteine ligase modulatory (GCLM) subunit gene polymorphism is associated with susceptibility to chronic obstructive pulmonary disease (COPD), and to study the relationship between polymorphism of GCLM gene with plasma gamma-glutamylcysteine synthetase (gamma-GCS) activity. Blood samples of 104 stable phase COPD smokers (COPD group), 124 healthy smokers (C group) and 132 healthy never-smokers (H group) were collected, and then the genotypes of GCLM -588C/T and GCLM -23C/T polymorphism sites were detected by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP). The plasma gamma-GCS activity was measured by coupled enzyme procedure. (1) The distribution of -588CC, -588CT, -588TT genotypes were corresponding to -23GG, -23GT, -23TT respectively in all of the individuals. (2) The frequencies of -588CC genotype and -588 C allele were significantly lower in COPD group (62.3% and 79.2%) than in C group (84.7% and 91.9%) and H group (78.8% and 89.0%, P < 0.01). (3) In smokers, GCLM -588 T allele carried a higher risk to COPD, the odds ratio (OR value) to C allele was 3.0, and with a 95% confidence interval 1.7 - 5.3. (4) The plasma gamma-GCS activity was increased in C group [(282 +/- 58) U/mg.prot] and COPD group [(224 +/- 54) U/mg.prot] as compared with H group [(157 +/- 26) U/mg.prot, P < 0.01], and were higher in healthy smokers than in COPD smokers (P < 0.01). (5) The smokers with -588CC genotype had higher gamma-GCS activity than CT or TT genotype [(292 +/- 54), (225 +/- 45) U/mg.prot, P < 0.01 in C group and (245 +/- 52), (188 +/- 36) U/mg.prot, P < 0.01 in COPD group], but the difference did not exist in H group [(158 +/- 27), (153 +/- 25) U/mg.prot, P > 0.05]. The polymorphism of GCLM -588C/T and -23G/T sites were associated with susceptibility to COPD, and were associated with plasma gamma-GCS activity.

  6. Discrimination between Gyrodactylus salaris, G. derjavini and G. truttae (Platyhelminthes: Monogenea) using restriction fragment length polymorphisms and an oligonucleotide probe within the small subunit ribosomal RNA gene.

    PubMed

    Cunningham, C O; McGillivray, D M; MacKenzie, K; Melvin, W T

    1995-07-01

    The small subunit ribosomal RNA (srRNA) gene was amplified from Gyrodactylus salaris using the polymerase chain reaction (PCR), cloned, and the complete gene sequence of 1966 bp determined. The V4 region of the srRNA gene was identified and amplified from single specimens of G. salaris, G. derjavini and G. truttae. Comparison of the V4 sequences from these three species revealed sequence differences from which restriction fragment length polymorphisms (RFLPs) were predicted and an oligonucleotide probe (GsV4) specific to G. salaris designed. Digestion of the amplified V4 region of the srRNA gene with Hae III and either Alw I, BstY I, Dde I or Mbo I provided a means of discriminating between G. salaris, G. derjavini and G. truttae. The GsV4 probe was used to detect the srRNA gene from G. salaris in Southern and dot blots of the amplified V4 region.

  7. Cloning and gene expression of a cDNA for the chicken follicle-stimulating hormone (FSH)-beta-subunit.

    PubMed

    Shen, San-Tai; Yu, John Yuh-Lin

    2002-02-15

    Follicle-stimulating hormone (FSH) is a member of pituitary glycoprotein hormones that are composed of two dissimilar subunits, alpha and beta. Very little information is available regarding the nucleotide and amino acid sequence of FSH-beta in avian species. For better understanding of the phylogenic diversity and evolution of FSH molecule, we have isolated and sequenced the complete complementary DNA (cDNA) encoding chicken FSH-beta precursor molecule by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) methods. The cloned chicken FSH-beta cDNA consists of 2457-bp nucleotides, including 44-bp nucleotides of the 5'-untranslated region (UTR), 396 bp of the open reading frame, and an extraordinarily long 3'-UTR of 2001-bp nucleotides followed by a poly(A)((16)) tail. It encodes a 131-amino-acid precursor molecule of FSH-beta-subunit with a signal peptide of 20 amino acids followed by a mature protein of 111 amino acids. Twelve cysteine residues, forming six disulfide bonds within beta-subunit and two putative asparagine-linked glycosylation sites, are also conserved in the chicken FSH-beta-subunit. Four proline residues, presumably responsible for changing the backbone direction of protein structure, are conserved in chicken FSH-beta-subunit as well. The nucleotide sequence of chicken FSH-beta cDNA shows high homology with quail FSH-beta cDNA, 97% homology in the open reading frame, and 85% homology in the 3'-UTR. The deduced amino acid sequence of chicken FSH-beta-subunit shows a remarkable similarity to other avian FSH-beta-subunits, 98% homology with quail, and 93% homology with ostrich, whereas a lower similarity (66 to 70%) is noted when compared with mammalian FSH-beta-subunits. By contrast, when comparing with the beta-subunits of chicken luteinizing hormone and thyroid-stimulating hormone, the homologies are as low as 37 and 40%, respectively. FSH-beta mRNA was only expressed in pituitary gland out of various

  8. Cloning and characterization of subunit genes of ribonucleotide reductase, a cell-cycle-regulated enzyme, from Plasmodium falciparum.

    PubMed Central

    Chakrabarti, D; Schuster, S M; Chakrabarti, R

    1993-01-01

    Ribonucleotide reductase (EC 1.17.4.1; RNR), a cell-cycle-regulated enzyme, catalyzes the rate-limiting step in the de novo synthesis of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. The important role of the RNR in DNA synthesis and cell division makes this enzyme an excellent target for chemotherapy. However, nothing is known about this enzyme from the malaria parasite Plasmodium falciparum. We have isolated cDNA clones encoding both the large and small RNR subunits. The sequences of full-length clones of the large and small RNR subunits revealed an open reading frame encoding 806 and 349 amino acids, respectively, and showed significant identity with other RNR sequences in the data base. RNA blot analysis showed that the size of the large and small RNR subunit transcripts are 5.4 kb and 2.2 kb, respectively. Both the RNR subunit transcripts fluctuate in level during the cell cycle, reaching a peak preceding maximal DNA synthesis activity. An oligodeoxynucleotide phosphorothioate that is complementary to sequences around the translational initiation codon of the small RNR subunit showed significant inhibition of growth, as measured by the inhibition in DNA synthesis. Images Fig. 2 PMID:8265664

  9. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    SciTech Connect

    Doi, Nobutaka; Ogawa, Ryohei; Cui, Zheng-Guo; Morii, Akihiro; Watanabe, Akihiko; Kanayama, Shinji; Yoneda, Yuko; Kondo, Takashi

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  10. Transcriptional Activity of Gene Encoding Subunits R1 and R2 of Interferon Gamma Receptor in Peripheral Blood Mononuclear Cells in Patients with Slow Coronary Flow

    PubMed Central

    Faramarz-Gaznagh, Sanaz; Khadem-Ansari, Mohammad-Hasan; Seyed-Mohammadzad, Mir-Hossein; Bagheri, Morteza; Nemati, Mohadeseh; Shirpoor, Alireza; Saboori, Ehsan

    2016-01-01

    Summary Background Slow coronary flow (SCF) is a coronary artery disorder characterized with delayed opacification of epicardial coronary arteries without obstructive coronary disease. The pathophysiological mechanisms of SCF remain unclear. One of the possible mechanisms that may participate in the pathology of SCF is endothelial dysfunction related to the inflammatory process. Interferon gamma (IFN-γ) is an inflammatory cytokine that acts through its specific receptor composed of two subunits, IFN-γR1 and IFN-γR2. Transcriptional activity of the gene encoding these subunits influences IFN-γ activity. This study aimed to investigate the gene expression of IFN-γ receptor subunits in peripheral blood mononuclear cells (PBMC) from patients with SCF. Methods The study was performed with 30 patients (22 male/8 female) aged 35–76 (52.8±11.7 years) with SCF and 15 sex- (11 male/4 female), Body Max Index (BMI)- and age-matched (54.73±9.42 years) healthy subjects. Total mRNA was extracted from PBMC and was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The relative expression values (2-ΔΔCt) between control and case groups were determined and the Mann-Whitney U test was used for statistical analysis. Results There was a significant increase in the gene expression of IFN-γR1 in PBMC from SCF patients vs. controls (P< 0.0001); but the differences in IFN-γR2 gene expression were statistically insignificant between patient and control groups (P= 0.853). Conclusions It can be concluded that IFN-γ gene expression may influence the function of microvasculature and thereby contribute to the pathophysiology of SCF.

  11. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    PubMed

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.

  12. Molecular cloning and characterization of the gonadotropin subunits GPα, FSHβ, and LHβ genes in the stinging catfish Heteropneustes fossilis: phylogeny, seasonal expression and pituitary localization.

    PubMed

    Acharjee, Arup; Chaube, Radha; Joy, Keerikkattil Paily

    2015-10-01

    Gonadotropins are heterodimeric glycoproteins secreted by the pituitary, and consist of a common glycoprotein hormone alpha (GPα) and the function-specific follicle-stimulating hormone beta subunit (FSHβ) or luteinizing hormone beta subunit (LHβ). In the present study, the subunit protein genes were cloned and characterized from the pituitary of the catfish Heteropneustes fossilis. Full-length cDNAs of GPα, FSHβ, and LHβ are 511 base pairs (bp), 659 bp and 660 bp long, and encode 92, 108, and 112 aminoacids long mature proteins, respectively. GPα has 10 cysteines with 2 N-linked glycosylation sites while LHβ contains 12 cysteines with a single N-linked glycosylation site. In contrast, FSHβ has 13 cysteines, 1 additional over the conserved 12 cysteines of other vertebrates, and a single glycosylation site between Cys 3 and Cys 4. Phylogenetic analyses of the deduced proteins confirm their homology and relationships with the respective gonadotropin subunit proteins of gnathostome vertebrates. Tissue expression analysis by semi-quantitative RT-PCR shows that GPα mRNA is expressed only in the pituitary while both FSHβ and LHβ mRNA are expressed in extra-pituitary sites. The subunit mRNAs show both seasonal and sex dimorphic variations especially in the expression of FSHβ and LHβ transcripts. In the sexually quiescent phase, the transcript expression is low while in the recrudescent phase, the expressions are differential, high, and varied with regard to sex and reproductive phase. In situ hybridization of the mRNAs gave positive signals in gonadotropes in the pars distalis of the pituitary, which exhibited seasonal variation in staining intensity and numbers. © 2015 Wiley Periodicals, Inc.

  13. Selective expression of a dominant-negative type Iα PKA regulatory subunit in striatal medium spiny neurons impairs gene expression and leads to reduced feeding and locomotor activity.

    PubMed

    Yang, Linghai; Gilbert, Merle L; Zheng, Ruimao; McKnight, G Stanley

    2014-04-02

    Striatal medium spiny neurons (MSNs) mediate many of the physiological effects of dopamine, including the regulation of feeding and motor behaviors. Dopaminergic inputs from the midbrain modulate MSN excitability through pathways that involve cAMP and protein kinase A (PKA), but the physiological role of specific PKA isoforms in MSN neurons remains poorly understood. One of the major PKA regulatory (R) subunit isoforms expressed in MSNs is RIIβ, which localizes the PKA holoenzyme primarily to dendrites by interaction with AKAP5 and other scaffolding proteins. However, RI (RIα and RIβ) subunits are also expressed in MSNs and the RI holoenzyme has a weaker affinity for most scaffolding proteins and tends to localize in the cell body. We generated mice with selective expression of a dominant-negative RI subunit (RIαB) in striatal MSNs and show that this dominant-negative RIαB localizes to the cytoplasm and specifically inhibits type I PKA activity in the striatum. These mice are normal at birth; however, soon after weaning they exhibit growth retardation and the adult mice are hypophagic, lean, and resistant to high-fat diet-induced hyperphagia and obesity. The RIαB-expressing mice also exhibit decreased locomotor activity and decreased dopamine-regulated CREB phosphorylation and c-fos gene expression in the striatum. Our results demonstrate a critical role for cytoplasmic RI-PKA holoenzyme in gene regulation and the overall physiological function of MSNs.

  14. Transcriptional regulation by activation and repression elements located at the 5'-noncoding region of the human alpha9 nicotinic receptor subunit gene.

    PubMed

    Valor, Luis M; Castillo, Mar; Ortiz, José A; Criado, Manuel

    2003-09-26

    The alpha9 subunit is a component of the neuronal nicotinic acetylcholine receptor gene superfamily that is expressed in very restricted locations. The promoter of the human gene has been analyzed in the human neuroblastoma SH-SY5Y, where alpha9 subunit expression was detected, and in C2C12 cells that do not express alpha9. A proximal promoter region (from -322 to +113) showed maximal transcriptional activity in SH-SY5Y cells, whereas its activity in C1C12 cells was much lower. Two elements unusually located at the 5'-noncoding region exhibited opposite roles. A negative element located between +15 and +48 appears to be cell-specific because it was effective in C2C12 but not in SH-SY5Y cells, where it was counterbalanced by the presence of the promoter region 5' to the initiation site. An activating element located between +66 and +79 and formed by two adjacent Sox boxes increased the activity of the alpha9 promoter about 4-fold and was even able to activate other promoters. This element interacts with Sox proteins, probably through a cooperative mechanism in which the two Sox boxes are necessary. We propose that the Sox complex provides an initial scaffold that facilitates the recruiting of the transcriptional machinery responsible for alpha9 subunit expression.

  15. Purification of the integration host factor homolog of Rhodobacter capsulatus: cloning and sequencing of the hip gene, which encodes the beta subunit.

    PubMed Central

    Toussaint, B; Delic-Attree, I; De Sury D'Aspremont, R; David, L; Vinçon, M; Vignais, P M

    1993-01-01

    We describe a method for rapid purification of the integration host factor (IHF) homolog of Rhodobacter capsulatus that has allowed us to obtain microgram quantities of highly purified protein. R. capsulatus IHF is an alpha beta heterodimer similar to IHF of Escherichia coli. We have cloned and sequenced the hip gene, which encodes the beta subunit. The deduced amino acid sequence (10.7 kDa) has 46% identity with the beta subunit of IHF from E. coli. In gel electrophoretic mobility shift DNA binding assays, R. capsulatus IHF was able to form a stable complex in a site-specific manner with a DNA fragment isolated from the promoter of the structural hupSL operon, which contains the IHF-binding site. The mutated IHF protein isolated from the Hup- mutant IR4, which is mutated in the himA gene (coding for the alpha subunit), gave a shifted band of greater mobility, and DNase I footprinting analysis has shown that the mutated IHF interacts with the DNA fragment from the hupSL promoter region differently from the way that the wild-type IHF does. Images PMID:8407826

  16. Purification of the integration host factor homolog of Rhodobacter capsulatus: cloning and sequencing of the hip gene, which encodes the beta subunit.

    PubMed

    Toussaint, B; Delic-Attree, I; De Sury D'Aspremont, R; David, L; Vinçon, M; Vignais, P M

    1993-10-01

    We describe a method for rapid purification of the integration host factor (IHF) homolog of Rhodobacter capsulatus that has allowed us to obtain microgram quantities of highly purified protein. R. capsulatus IHF is an alpha beta heterodimer similar to IHF of Escherichia coli. We have cloned and sequenced the hip gene, which encodes the beta subunit. The deduced amino acid sequence (10.7 kDa) has 46% identity with the beta subunit of IHF from E. coli. In gel electrophoretic mobility shift DNA binding assays, R. capsulatus IHF was able to form a stable complex in a site-specific manner with a DNA fragment isolated from the promoter of the structural hupSL operon, which contains the IHF-binding site. The mutated IHF protein isolated from the Hup- mutant IR4, which is mutated in the himA gene (coding for the alpha subunit), gave a shifted band of greater mobility, and DNase I footprinting analysis has shown that the mutated IHF interacts with the DNA fragment from the hupSL promoter region differently from the way that the wild-type IHF does.

  17. Mapping of the glutamate-cysteine ligase catalytic subunit gene (GLCLC) to human chromosome 6p12 and mouse chromosome 9D-E and of the regulatory subunit gene (GLCLR) to human chromosome 1p21-p22 and mouse chromosome 3H1-3

    SciTech Connect

    Tsuchiya, K.; Disteche, C.M.; Reid, L.L.

    1995-12-10

    Glutamate-cysteine ligase (EC 6.3.2.2, GLCL), formerly called {gamma}-glutamylcysteine synthetase (GCS), is the rate-limiting enzyme in the de novo synthesis of the antioxidant tripeptide glutathione. GLCL consists of a heavy subunit, which possesses catalytic activity and is the site of glutathione feedback inhibition, and a light subunit, which has a regulatory function. Glutathione is ubiquitous in mammalian tissues and performs a variety of functions, including protection from reactive oxygen species through antioxidant properties; detoxification of xenobiotics, organic peroxides, and heavy metals; and maintenance of sulfhydryl groups of other molecules. Increased intracellular levels of glutathione have also been found in tumor cells resistant to chemotherapeutic agents. Increased expression of GLCL in melphalan-resistant myeloma and prostate carcinoma cells and cisplatinum-resistant ovarian carcinoma cells suggests that this enzyme may be involved in glutathione-associated drug resistance. Moreover, GLCL has been shown to be induced by phenolic antioxidants and heavy metals. Recently, Mulcahy and Gipp have shown that the GLCL catalytic subunit gene (GLCLC) contains a putative antioxidant regulatory element, which may explain the responsiveness of this gene to agents that induce oxidative stress. To further our understanding of GLCL, which is linked to such a wide variety of metabolic and physiological functions through its role in glutathione synthesis, we have mapped both the catalytic and regulatory subunit genes (GLCLC and GLCLR) to human and mouse chromosomes by fluorescence in situ hybridization (FISH). 16 refs., 1 fig.

  18. Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice.

    PubMed

    Yoshimatsu, Hiroki; Yonezawa, Atsushi; Yamanishi, Kaori; Yao, Yoshiaki; Sugano, Kumiko; Nakagawa, Shunsaku; Imai, Satoshi; Omura, Tomohiro; Nakagawa, Takayuki; Yano, Ikuko; Masuda, Satohiro; Inui, Ken-Ichi; Matsubara, Kazuo

    2016-06-08

    Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout (Slc52a3-/-) mice. Most Slc52a3-/- mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3-/- mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3-/- fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency.

  19. Disruption of Slc52a3 gene causes neonatal lethality with riboflavin deficiency in mice

    PubMed Central

    Yoshimatsu, Hiroki; Yonezawa, Atsushi; Yamanishi, Kaori; Yao, Yoshiaki; Sugano, Kumiko; Nakagawa, Shunsaku; Imai, Satoshi; Omura, Tomohiro; Nakagawa, Takayuki; Yano, Ikuko; Masuda, Satohiro; Inui, Ken-ichi; Matsubara, Kazuo

    2016-01-01

    Homeostasis of riboflavin should be maintained by transporters. Previous in vitro studies have elucidated basic information about riboflavin transporter RFVT3 encoded by SLC52A3 gene. However, the contribution of RFVT3 to the maintenance of riboflavin homeostasis and the significance in vivo remain unclear. Here, we investigated the physiological role of RFVT3 using Slc52a3 knockout (Slc52a3−/−) mice. Most Slc52a3−/− mice died with hyperlipidemia and hypoglycemia within 48 hr after birth. The plasma and tissue riboflavin concentrations in Slc52a3−/− mice at postnatal day 0 were dramatically lower than those in wild-type (WT) littermates. Slc52a3−/− fetuses showed a lower capacity of placental riboflavin transport compared with WT fetuses. Riboflavin supplement during pregnancy and after birth reduced neonatal death and metabolic disorders. To our knowledge, this is the first report to indicate that Rfvt3 contributes to placental riboflavin transport, and that disruption of Slc52a3 gene caused neonatal mortality with hyperlipidemia and hypoglycemia owing to riboflavin deficiency. PMID:27272163

  20. The Chlamydomonas Dhc1 gene encodes a dynein heavy chain subunit required for assembly of the I1 inner arm complex.

    PubMed Central

    Myster, S H; Knott, J A; O'Toole, E; Porter, M E

    1997-01-01

    Multiple members of the dynein heavy chain (Dhc) gene family have been recovered in several organisms, but the relationships between these sequences and the Dhc isoforms that they encode are largely unknown. To identify Dhc loci and determine the specific functions of the individual Dhc isoforms, we have screened a collection of motility mutants generated by insertional mutagenesis in Chlamydomonas. In this report, we characterize one strain, pf9-3, in which the insertion event was accompanied by a deletion of approximately 13 kb of genomic DNA within the transcription unit of the Dhc1 gene. Northern blot analysis confirms that pf9-3 is a null mutation. Biochemical and structural studies of isolated axonemes demonstrate that the pf9-3 mutant fails to assemble the I1 inner arm complex, a two-headed dynein isoform composed of two Dhcs (1 alpha and 1 beta) and three intermediate chains. To determine if the Dhc1 gene product corresponds to one of the Dhcs of the I1 complex, antibodies were generated against a Dhc1-specific peptide sequence. Immunoblot analysis reveals that the Dhc1 gene encodes the 1 alpha Dhc subunit. These studies thus, identify the first inner arm Dhc locus to be described in any organism and further demonstrate that the 1 alpha Dhc subunit plays an essential role in the assembly of the I1 inner arm complex. Images PMID:9247642

  1. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction.

    PubMed

    Weiss, Robert B; Baker, Timothy B; Cannon, Dale S; von Niederhausern, Andrew; Dunn, Diane M; Matsunami, Nori; Singh, Nanda A; Baird, Lisa; Coon, Hilary; McMahon, William M; Piper, Megan E; Fiore, Michael C; Scholand, Mary Beth; Connett, John E; Kanner, Richard E; Gahring, Lorise C; Rogers, Scott W; Hoidal, John R; Leppert, Mark F

    2008-07-11

    People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction-measured by the Fagerstrom Test of Nicotine Dependence-in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight alpha and three beta nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p = 2.0x10(-5); odds ratio = 1.82; 95% confidence interval 1.39-2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC = 17%, AA versus CC = 27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.

  2. Flour Quality and Related Molecular Characterization of High Molecular Weight Glutenin Subunit Genes from Wild Emmer Wheat Accession TD-256.

    PubMed

    Zhang, Da-Le; He, Ting-Ting; Liang, Hui-Hui; Huang, Lu-Yu; Su, Ya-Zhong; Li, Yu-Ge; Li, Suo-Ping

    2016-06-22

    To clarify the effect of high molecular weight glutenin subunit (HMW-GS) from wild emmer wheat on flour quality, which has the same mobility as that from common wheat, the composition and molecular characterization of HMW-GS from wild emmer wheat accession TD-256, as well as its flour quality, were intensively analyzed. It is found that the mobilities of Glu-A1 and Glu-B1 subunits from TD-256 are consistent with those of bread wheat cv. 'XiaoYan 6'. Nevertheless, dough rheological properties of TD-256 reveal its poor flour quality. In the aspect of molecular structure from HMW-GS, only two conserved cysteine residues can be observed in the deduced protein sequence of 1Bx14* from TD-256, while most Glu-1Bx contain four conserved cysteine residues. In addition, as can be predicted from secondary structure, the quantity both of α-helixes and their amino acid residues of the subunits from TD-256 is fewer than those of common wheat. Though low molecular weight glutenin subunit (LMW-GS) and gliadin can also greatly influence flour quality, the protein structure of the HMW-GS revealed in this work can partly explain the poor flour quality of wild emmer accession TD-256.

  3. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton specie...

  4. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    ERIC Educational Resources Information Center

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT…

  5. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    ERIC Educational Resources Information Center

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT…

  6. Molecular characterization and sequence diversity of genes encoding the large subunit of the ADP-glucose pyrophosphorylase in wheat (Triticum aestivum L.).

    PubMed

    Rose, Meghan K; Huang, Xiu-Qiang; Brûlé-Babel, Anita

    2016-02-01

    The large subunit of ADP glucose pyrophosphorylase (AGPase), the rate limiting enzyme in starch biosynthesis in Triticum aestivum L., is encoded by the ADP glucose pyrophosphorylase large subunit (AGP-L) gene. This was the first report on the development of three genome-specific primer sets for isolating the complete genomic sequence of all three homoeologous AGP-L genes on group 1 chromosomes. All three AGP-L genes consisted of 15 introns and 15 exons. The lengths of the structural genes from start to stop codon were 3334 bp for AGP-L-A1, 3351 bp for AGP-L-B1, and 3340 bp for AGP-L-D1. The coding region was 1569 bases long in all three genomes. All three AGP-L genes encoded 522 amino acid residues including the transit peptide sequences with 62 amino acid residues and the mature protein with 460 amino acid residues. The mature protein of three AGP-L genes was highly conserved. Three AGP-L genes were sequenced in 47 diverse spring and winter wheat genotypes. One and two haplotypes were found for AGP-L-D1 and AGP-L-A1, respectively. In total, 67 SNPs (single nucleotide polymorphisms) and 13 indels (insertions or deletions) forming five haplotypes were identified for AGP-L-B1. All 13 indels and 58 of the 67 SNPs among the 47 genotypes were located in the non-coding regions, while the remaining nine SNPs were synonymous substitutions in the coding region. Significant LD was found among the 45 SNPs and ten indels located from intron 2 to intron 3. Association analysis indicated that four SNPs were strongly associated with seed number per spike and thousand kernel weight.

  7. GABRA2 alcohol dependence risk allele is associated with reduced expression of chromosome 4p12 GABAA subunit genes in human neural cultures

    PubMed Central

    Lieberman, Richard; Kranzler, Henry R.; Joshi, Pujan; Shin, Dong-Guk; Covault, Jonathan

    2015-01-01

    Background Genetic variation in a region of chromosome 4p12 that includes the GABAA-subunit gene GABRA2 has been reproducibly associated with alcohol dependence (AD). However, the molecular mechanisms underlying the association are unknown. This study examined correlates of in vitro gene expression of the AD-associated GABRA2 rs279858*C-allele in human neural cells using an induced pluripotent stem cell (iPSC) model system. Methods We examined mRNA expression of chromosome 4p12 GABAA subunit genes (GABRG1, GABRA2, GABRA4, and GABRB1 in 36 human neural cell lines differentiated from iPSCs using quantitative PCR and Next Generation RNA Sequencing. mRNA expression in adult human brain was examined using the BrainCloud and Braineac datasets. Results We found significantly lower levels of GABRA2 mRNA in neural cell cultures derived from rs279858*C-allele carriers. Levels of GABRA2 RNA were correlated with those of the other three chromosome 4p12 GABAA genes, but not other neural genes. Cluster analysis based on the relative RNA levels of the four chromosome 4p12 GABAA genes identified two distinct clusters of cell lines, a low-expression cluster associated with rs279858*C-allele carriers and a high-expression cluster enriched for the rs279858*T/T genotype. In contrast, there was no association of genotype with chromosome 4p12 GABAA gene expression in post-mortem adult cortex in either the BrainCloud or Braineac datasets. Conclusions AD-associated variation in GABRA2 is associated with differential expression of the entire cluster of GABAA subunit genes on chromosome 4p12 in human iPSC-derived neural cell cultures. The absence of a parallel effect in post-mortem human adult brain samples suggests that AD-associated genotype effects on GABAA expression, although not present in mature cortex, could have effects on regulation of the chromosome 4p12 GABAA cluster during neural development. PMID:26250693

  8. The CHRNA5-A3-B4 gene cluster in nicotine addiction.

    PubMed

    Berrettini, W H; Doyle, G A

    2012-09-01

    Nicotine addiction (NA) is a common and devastating disease, such that the annual number of deaths (world-wide) from tobacco-related diseases will double from 5 million in the year 2000 to 10 million in 2020. Nicotine is the only substance in tobacco which animals and humans will self-administer. NA, as a lifetime diagnosis, has been assessed in various approaches, including the concept of cigarettes per day (CPD). Other assessments of NA are somewhat more comprehensive, such as the Fagerstrom Test for Nicotine Dependence or the American Psychiatric Association's Diagnostic and Statistical Manual (fourth edition) diagnosis of nicotine dependence. These different measures have moderate agreement with one another. Twin, family and adoption studies have shown that these different assessments of NA have substantial heritability (that fraction of risk attributable to genetic factors). The heritability of NA has been estimated at 50-75%, depending on the definition and the population under study. DNA-based studies of NA have been somewhat successful in identifying a common haplotype, which increases risk for NA among European-origin populations. This haplotype explains a small amount of variance, accounting for ∼1 CPD, and it includes the α5 and the α3 nicotinic receptor subunit genes (CHRNA5 and CHRNA3). The review will focus on this implicated region. In this risk region, there is a common (among European-origin people) mis-sense single-nucleotide polymorphism in the CHRNA5 gene (D398N), which changes a conserved amino acid from aspartic acid to asparagine. The risk allele (398N) confers decreased calcium permeability and more extensive desensitization, according to in vitro cellular studies, raising the possibility that a positive allosteric modulator of the (α4β2)(2)α5 type of nicotinic receptor might have therapeutic potential in NA. There are other genetic influences on NA in this region, apart from the mis-sense variant, and additional biological

  9. The gene encoding p44, a subunit of the transcription factor TFIIH, is involved in large-scale deletions associated with Werdnig-Hoffmann disease.

    PubMed Central

    Bürglen, L; Seroz, T; Miniou, P; Lefebvre, S; Burlet, P; Munnich, A; Pequignot, E V; Egly, J M; Melki, J

    1997-01-01

    Mutations of the survival motor neurone gene (SMN) are associated with spinal muscular atrophy (SMA), a frequent lethal autosomal recessive disorder. In spite of this, no phenotype-genotype correlation was observed, since the SMN gene is lacking in the majority of patients affected with either the severe form (type I) or the milder forms (types II and III). Here, we show that the gene encoding p44, a subunit of the basal transcription factor TFIIH, is duplicated in the SMA region and that the p44 gene products (p44t and p44c) differ by three amino acid changes. Gene analysis of a total of 94 unrelated SMA patients revealed that the p44t gene is involved in large-scale deletions associated with Werdnig-Hoffmann disease (type I). The TFIIH polypeptide composition as well as transcription and DNA repair activities are normal in patients lacking the p44t gene on both mutant chromosomes, suggesting that the p44t gene is not critical for the development of SMA. Images Figure 1 Figure 2 PMID:8981949

  10. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH).

    PubMed

    Schulze Gronover, Christian; Schorn, Corinna; Tudzynski, Bettina

    2004-05-01

    The Galpha subunit BCG1 plays an important role during the infection of host plants by Botrytis cinerea. Delta bcg1 mutants are able to conidiate, penetrate host leaves, and produce small primary lesions. However, in contrast to the wild type, the mutants completely stop invasion of plant tissue at this stage; secondary lesions have never been observed. Suppression subtractive hybridization (SSH) was used to identify fungal genes whose expression on the host plant is specifically affected in bcg1 mutants. Among the 22 differentially expressed genes, we found those which were predicted to encode proteases, enzymes involved in secondary metabolism, and others encoding cell wall-degrading enzymes. All these genes are highly expressed during infection in the wild type but not in the mutant. However, the genes are expressed in both the wild type and the mutant under certain conditions in vitro. Most of the BCG1-controlled genes are still expressed in adenylate cyclase (bac) mutants in planta, suggesting that BCG1 is involved in at least one additional signaling cascade in addition to the cAMP-depending pathway. In a second SSH approach, 1,500 clones were screened for those that are specifically induced by the wild type during the infection of bean leaves. Of the 22 BCG1-controlled genes, 11 also were found in the in planta SSH library. Therefore, SSH technology can be successfully applied to identify target genes of signaling pathways and differentially expressed genes in planta.

  11. Determination of the relative expression levels of rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends.

    PubMed

    Yoon, M; Putterill, J J; Ross, G S; Laing, W A

    2001-04-15

    Multigene families are common in higher organisms. However, due to the close similarities between members, it is often difficult to assess the individual contribution of each gene to the overall expression of the family. In Arabidopsis thaliana, there are four genes encoding the small subunits (SSU) of ribulose-1.5-bisphosphate carboxylase oxygenase (rubisco) whose nucleotide sequences are up to 98.4% identical. In order to overcome the technical limitations associated with gene-specific probes (or primers) commonly used in existing methods, we developed a new gene expression assay based on the RACE (rapid amplification of cDNA ends) technique with a single pair of primers. With this RACE gene expression assay, we were able to determine the relative transcript levels between four Arabidopsis SSU genes. We found that the relative SSU gene expression differed significantly between plants grown at different temperatures. Our observation raises the possibility that an adaptation of rubisco to the environment may be achieved through the specific synthesis of the SSU proteins, which is determined by the relative expression levels between the SSU genes.

  12. A missense mutation in the sodium channel β2 subunit reveals SCN2B as a new candidate gene for Brugada syndrome.

    PubMed

    Riuró, Helena; Beltran-Alvarez, Pedro; Tarradas, Anna; Selga, Elisabet; Campuzano, Oscar; Vergés, Marcel; Pagans, Sara; Iglesias, Anna; Brugada, Josep; Brugada, Pedro; Vázquez, Francisco M; Pérez, Guillermo J; Scornik, Fabiana S; Brugada, Ramon

    2013-07-01

    Brugada Syndrome (BrS) is a familial disease associated with sudden cardiac death. A 20%-25% of BrS patients carry genetic defects that cause loss-of-function of the voltage-gated cardiac sodium channel. Thus, 70%-75% of patients remain without a genetic diagnosis. In this work, we identified a novel missense mutation (p.Asp211Gly) in the sodium β2 subunit encoded by SCN2B, in a woman diagnosed with BrS. We studied the sodium current (INa ) from cells coexpressing Nav 1.5 and wild-type (β2WT) or mutant (β2D211G) β2 subunits. Our electrophysiological analysis showed a 39.4% reduction in INa density when Nav 1.5 was coexpressed with the β2D211G. Single channel analysis showed that the mutation did not affect the Nav 1.5 unitary channel conductance. Instead, protein membrane detection experiments suggested that β2D211G decreases Nav 1.5 cell surface expression. The effect of the mutant β2 subunit on the INa strongly suggests that SCN2B is a new candidate gene associated with BrS.

  13. Complete nucleotide sequence and mRNA-mapping of the large subunit gene of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Chlamydomonas moewusii.

    PubMed

    Yang, R C; Dove, M; Seligy, V L; Lemieux, C; Turmel, M; Narang, S A

    1986-01-01

    Nucleotide (nt) sequence of the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase/oxygenase from the green alga, Chlamydomonas moewusii, and mapping of transcription ends was achieved by two new strategies. The deduced LS sequence of 475 amino acid residues was compared with similar genes from six other species; cyanobacteria, land plants and a related alga (C. reinhardtii). The most conserved regions are the three ribulose bisphosphate binding sites and the CO2 activator site. The nt sequence conservation outside the coding region is limited to only three segments within the 5'-flanking region: a region of tandem repeats, TATAA box and ribosome-binding site. Termination point of transcription is an 'A' residue 3' to the first of two 18-nt inverted repeats, which has the potential to form a stem-loop hairpin structure. The possible role of these potential regulatory features for transcription and translation, and similar structures in other LS genes is presented.

  14. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.

    2001-01-01

    Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.

  15. Silencing of SlFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants.

    PubMed

    Lim, Chan Ju; Kim, Woong Bom; Lee, Bok-Sim; Lee, Ha Youn; Kwon, Tae-Ho; Park, Jeong Mee; Kwon, Suk-Yoon

    2010-09-03

    As a heterodimeric protein, ferredoxin:thioredoxin reductase (FTR) catalyses the light-dependant activation of several photosynthetic enzymes. The active site of the catalytic subunit of FTR contains a redox-active disulfide and a [4Fe-4S] center. We isolated the catalytic subunit gene of FTR, designated SlFTR-c, from tomato (Solanum lycopersicum L.). SlFTR-c transcripts were detected in all tissues examined, including roots, leaves, flowers, fruits, and seeds. Interestingly, virus-induced gene silencing (VIGS) of SlFTR-c resulted in necrotic lesions with typical cell death symptoms and reactive oxygen species (ROS) production in tomato leaves. Moreover, these SlFTR-c-silenced plants displayed enhanced disease resistance against bacterial pathogens, specifically Pseudomonas syringae pv. tomato DC3000, by the induction of defense-related genes (SlPR-1, SlPR-2, SlPR-5, SlGlucA, SlChi3, and SlChi9). Taken together, it seems that SlFTR-c works as a regulator of programmed cell death (PCD) and pathogen resistance in tomato plants.

  16. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  17. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.

    2001-01-01

    Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.

  18. ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway

    PubMed Central

    1996-01-01

    AChR-inducing activity (ARIA)/heregulin, a ligand for erbB receptor tyrosine kinases (RTKs), is likely to be one nerve-supplied signal that induces expression of acetylcholine receptor (AChR) genes at the developing neuromuscular junction. Since some RTKs act through Ras and phosphatidylinositol 3-kinase (PI3K), we investigated the role of these pathways in ARIA signaling. Expression of activated Ras or Raf mimicked ARIA-induction of AChR epsilon subunit genes in muscle cells; whereas dominant negative Ras or Raf blocked the effect of ARIA. ARIA rapidly activated erk1 and erk2 and inhibition of both erks also abolished the effect of ARIA. ARIA stimulated association of PI3K with erbB3, expression of an activated PI3K led to ARIA-independent AChR epsilon subunit expression, and inhibition of PI3K abolished the action of ARIA. Thus, synaptic induction of AChR genes requires activation of both Ras/MAPK and PI3K signal transduction pathways. PMID:8707830

  19. The discovery of the two types of small subunit ribosomal RNA gene in Eimeria mitis contests the existence of E. mivati as an independent species.

    PubMed

    Vrba, Vladimir; Poplstein, Martin; Pakandl, Michal

    2011-12-29

    Although the validity of the coccidian species, Eimeria mivati, has been questioned by many researchers for a long time there has not been any molecular analysis that would help resolve this issue. Here we report on the discovery of the two types of small ribosomal subunit (18S) gene within the Eimeria mitis genome that correspond to the known 18S sequences of E. mitis and E. mivati, and this is in conflict with the existence of E. mivati as an independent species. We have carried out five single oocyst isolations to obtain five single-oocyst-derived strains of E. mitis and these were analyzed by the sequencing of 18S and mitochondrial cytochrome c oxidase subunit I genes. The two types of 18S gene were found to be present in each strain in roughly equal ratios. This indicates that if the strains carrying only one or the other 18S type exist, they will likely cross-breed and still represent a single species. However, the more probable explanation is that all strains of E. mitis contain two types of 18S gene and that the occasional detection of only one or the other type by sequencing might be caused by insufficient sampling. This is also the first report of the two types of 18S gene in Eimeria, which has already been described in some other apicomplexan species, most notably Plasmodium. We also found that these two types of ribosomal RNA differ significantly in their secondary structure. The biological significance of the two 18S gene variants in E. mitis is not known, however, we hypothesize that these variants might be used in different stages of the parasite's life-cycle as it is in other apicomplexan species investigated so far.

  20. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element

    SciTech Connect

    Friling, R.S.; Bensimon, A.; Tichauer, Y.; Daniel, V. )

    1990-08-01

    Glutathione S-transferase (GST) Ya subunit gene expression is induced in mammalian tissues by two types of chemical agents: (i) planar aromatic compounds (e.g., 3-methylcholanthrene, {beta}-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and (ii) electrophiles (e.g., trans-4-phenyl-3-buten-2-one and dimethyl fumarate) or compounds easily oxidized to electrophiles (e.g., tert-butylhydroquinone). To study the mechanism of this induction, the authors have introduced deletions in the 5{prime} flanking region of a mouse GST Ya subunit gene, fused it to the coding sequence for chloramphenicol acetyltransferase (CAT) activity, and transfected the Ya-CAT genes for expression into hepatoma cells. They show that a single cis-regulatory element, between nucleotides {minus}754 and {minus}713 from the start of transcription, is responsible for the induction by both planar aromatic and electrophilic compounds. Using murine hepatoma cell mutants defective in either the Ah-encoded aryl hydrocarbon receptor (BP{sup r}c1 mutant) or in cytochrome P{sub 1}-450 gene (c1 mutant), they show that induction by planar aromatic but not by electrophilic inducers requires a functional Ah receptor and cytochrome P{sub 1}-450 activity. From this it is concluded that Ya gene activation by planar aromatic compounds involves metabolism of these inducers by the phase I xenobiotic-metabolizing cytochrome P{sub 1}-450 system into electrophilic compounds. Therefore, the regulatory sequence of the Ya gene should be considered an electrophile-responsive element (EpRE) activated exclusively by inducers containing an electrophilic center.

  1. Sequences related to the major subunit gene fedA of F107 fimbriae in porcine Escherichia coli strains that express adhesive fimbriae.

    PubMed

    Imberechts, H; Van Pelt, N; De Greve, H; Lintermans, P

    1994-06-15

    Porcine Escherichia coli strains isolated from cases of postweaning diarrhea or edema disease were analysed for the presence of fedA, the major subunit gene of F107 fimbriae. The E. coli isolates were known to contain colonisation factor '8813', or to express F107, 2134P or other fimbriae, different from F4, F5, F6, and F41. PCR with fedA-specific primers, restriction enzyme digestion of the PCR product, and nucleotide sequence analysis demonstrated that 2134P pili, colonisation factor '8813' and fimbriae identified on Australian strains of the O141 serotype belong to one family of F107 fimbrial antigens.

  2. Phylogenetic relationship of psychoactive fungi based on the rRNA gene for a large subunit and their identification using the TaqMan assay.

    PubMed

    Maruyama, Takuro; Yokoyama, Kazumasa; Makino, Yukiko; Goda, Yukihiro

    2003-06-01

    "Magic mushrooms" (MMs) are psychoactive fungi containing the and Psychotropics Control Law in Japan. Because there are many kinds of MMs and they are often sold even as dry powders in local markets, it is very difficult to identify the original species of the MMs by morphological observation. Therefore, we investigated the rRNA gene for a large subunit (LSU) of several MMs to classify them by a genetic approach. In this paper, we described the phylogeny of species of MMs based on the partial sequence (about 970 bp) of the LSU and the rapid identification of MMs using the TaqMan PCR assay.

  3. Phylogenetic relationship of psychoactive fungi based on rRNA gene for a large subunit and their identification using the TaqMan assay (II).

    PubMed

    Maruyama, Takuro; Kawahara, Nobuo; Yokoyama, Kazumasa; Makino, Yukiko; Fukiharu, Toshimitsu; Goda, Yukihiro

    2006-11-10

    "Magic mushroom (MM)" is the name most commonly given to psychoactive fungi containing the hallucinogenic components: psilocin (1) and psilocybin (2). We investigated the rRNA gene (internal transcribed spacer (ITS) and large subunit (LSU)) of two Panaeolus species and four Psilocybe species fungi (of these, two are non-psilocybin species). On the basis of sequence alignment, we improved the identification system developed in our previous study. In this paper, we describe the new system capable of distinguishing MMs from non-psilocybin Psilocybe species, its application data and the phylogeny of MM species.

  4. Evolution of CpG island promoter function underlies changes in KChIP2 potassium channel subunit gene expression in mammalian heart.

    PubMed

    Yan, Qinghong; Masson, Rajeev; Ren, Yi; Rosati, Barbara; McKinnon, David

    2012-01-31

    Scaling of cardiac electrophysiology with body mass requires large changes in the ventricular action potential duration and heart rate in mammals. These changes in cellular electrophysiological function are produced by systematic and coordinated changes in the expression of multiple ion channel and transporter genes. Expression of one important potassium current, the transient outward current (I(to)), changes significantly during mammalian evolution. Changes in I(to) expression are determined, in part, by variation in the expression of an obligatory auxiliary subunit encoded by the KChIP2 gene. The KChIP2 gene is expressed in both cardiac myocytes and neurons and transcription in both cell types is initiated from the same CpG island promoter. Species-dependent variation of KChIP2 expression in heart is mediated by the evolution of the cis-regulatory function of this gene. Surprisingly, the major locus of evolutionary change for KChIP2 gene expression in heart lies within the CpG island core promoter. The results demonstrate that CpG island promoters are not simply permissive for gene expression but can also contribute to tissue-selective expression and, as such, can function as an important locus for the evolution of cis-regulatory function. More generally, evolution of the cis-regulatory function of voltage-gated ion channel genes appears to be an effective and efficient way to modify channel expression levels to optimize electrophysiological function.

  5. The Mitochondrial Cytochrome Oxidase Subunit I Gene Occurs on a Minichromosome with Extensive Heteroplasmy in Two Species of Chewing Lice, Geomydoecus aurei and Thomomydoecus minor

    PubMed Central

    Pietan, Lucas L.; Spradling, Theresa A.

    2016-01-01

    In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589

  6. Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism.

    PubMed

    de Carvalho Aguiar, Patricia; Sweadner, Kathleen J; Penniston, John T; Zaremba, Jacek; Liu, Liu; Caton, Marsha; Linazasoro, Gurutz; Borg, Michel; Tijssen, Marina A J; Bressman, Susan B; Dobyns, William B; Brashear, Allison; Ozelius, Laurie J

    2004-07-22

    Rapid-onset dystonia-parkinsonism (RDP, DYT12) is a distinctive autosomal-dominant movement disorder with variable expressivity and reduced penetrance characterized by abrupt onset of dystonia, usually accompanied by signs of parkinsonism. The sudden onset of symptoms over hours to a few weeks, often associated with physical or emotional stress, suggests a trigger initiating a nervous system insult resulting in permanent neurologic disability. We report the finding of six missense mutations in the gene for the Na+/K+ -ATPase alpha3 subunit (ATP1A3) in seven unrelated families with RDP. Functional studies and structural analysis of the protein suggest that these mutations impair enzyme activity or stability. This finding implicates the Na+/K+ pump, a crucial protein responsible for the electrochemical gradient across the cell membrane, in dystonia and parkinsonism.

  7. Ribosomal proteins L7 and L8 function in concert with six A3 assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits

    PubMed Central

    Jakovljevic, Jelena; Ohmayer, Uli; Gamalinda, Michael; Talkish, Jason; Alexander, Lisa; Linnemann, Jan; Milkereit, Philipp; Woolford, John L.

    2012-01-01

    Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA3 to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA3 pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A3 assembly factors and for proper assembly of the neighborhoods containing domains I and II. PMID:22893726

  8. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis.

    PubMed

    Berriri, Souha; Gangappa, Sreeramaiah N; Kumar, S Vinod

    2016-07-06

    Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+ -inorganic pyrophosphatase, H+ -ATPase subunit A, and Na+/H+ antiporter in barley.

    PubMed

    Fukuda, Atsunori; Tanaka, Yoshiyuki

    2006-01-01

    We analyzed the effects of ABA, auxin, and gibberellin on the expression of two genes (HVP1 and HVP10) for vacuolar H(+)-inorganic pyrophosphatase (EC 3.6.1.1) and one (HvVHA-A) for the catalytic subunit (subunit A) of vacuolar H(+)-ATPase (EC 3.6.1.3) by quantification of the transcript levels, to identify the hormones responsible for regulating the expression of these genes in barley (Hordeum vulgare L.) in response to environmental changes such as salt stress. ABA markedly induced the expression of HVP1 and slightly increased the expression of HVP10 and HvVHA-A. In contrast, 2,4-D only increased the expression of HVP1, and GA(3) had no significant effects on any gene. The maximum level of HVP1 transcripts in response to these hormones was also much higher than the levels of HVP10 and HvVHA-A transcripts. In addition, we also analyzed the expression of one gene (HvNHX1) for vacuolar Na(+)/H(+) antiporter, and HvNHX1 expression changed in a pattern similar to that of the HVP1 expression. Furthermore, treatment with ABA and 2,4-D increased Na(+)/H(+) antiport activity and proton-translocating activities by H(+)-PPase and H(+)-ATPase in tonoplast vesicles, and treatment with ABA also increased the amount of V-PPase protein of tonoplast vesicles. These results suggest that the hormones ABA and 2,4-D regulate the expression of the H(+)-pump and Na(+)/H(+) antiporter genes and are thus important effectors that regulate the expression of HVP1and HvNHX1.

  10. Proteus mirabilis fimbriae: N-terminal amino acid sequence of a major fimbrial subunit and nucleotide sequences of the genes from two strains.

    PubMed

    Bahrani, F K; Cook, S; Hull, R A; Massad, G; Mobley, H L

    1993-03-01

    Proteus mirabilis, a common cause of urinary tract infection in hospitalized and catheterized patients, produces mannose-resistant/klebsiella-like (MR/K) and mannose-resistant/proteus-like (MR/P) hemagglutinins. The gene encoding the major structural subunit of a fimbria, possibly MR/K, was identified in two strains. A degenerate oligonucleotide probe based on the N terminus of the Proteus uroepithelial cell adhesin and antiserum raised against the denatured polypeptide were used to screen a cosmid gene bank of strain HU1069. A cosmid clone that reacted with the probe and antiserum was identified, and a fimbria-like open reading frame was determined by nucleotide sequencing. The predicted N-terminal amino acid sequence of the processed polypeptide, ENETPAPKVSSTKGEIQLKG (residues 23 to 42), did not match the uroepithelial cell adhesin N terminus but, rather, matched exactly the N-terminal amino acid sequence of a polypeptide with an apparent molecular size of 19.5 kDa isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of a fimbrial preparation from strain HI4320 expressing MR/K hemagglutinin. By using an oligonucleotide from the HU1069 open reading frame, the fimbrial gene was isolated and sequenced from a cosmid gene bank clone of strain HI4320. A 552-bp open reading frame predicts a 184-amino-acid polypeptide including a 22-amino-acid hydrophobic leader sequence. The unprocessed polypeptide is predicted to be 18,921 Da; the processed polypeptide is predicted to be 16,749 Da. The predicted amino acid sequence of the polypeptide encoded by the gene, designated pmfA, displayed 36% exact matches with the mannose-resistant fimbrial subunit encoded by smfA of Serratia marcescens but only 15% exact matches with the predicted sequence encoded by mrkA of Klebsiella pneumoniae.

  11. Isolation and characterization of BetaM protein encoded by ATP1B4 - a unique member of the Na,K-ATPase {beta}-subunit gene family

    SciTech Connect

    Pestov, Nikolay B.; Zhao, Hao; Basrur, Venkatesha; Modyanov, Nikolai N.

    2011-09-09

    Highlights: {yields} Structural properties of BetaM and Na,K-ATPase {beta}-subunits are sharply different. {yields} BetaM protein is concentrated in nuclear membrane of skeletal myocytes. {yields} BetaM does not associate with a Na,K-ATPase {alpha}-subunit in skeletal muscle. {yields} Polypeptide chain of the native BetaM is highly sensitive to endogenous proteases. {yields} BetaM in neonatal muscle is a product of alternative splice mRNA variant B. -- Abstract: ATP1B4 genes represent a rare instance of the orthologous gene co-option that radically changed functions of encoded BetaM proteins during vertebrate evolution. In lower vertebrates, this protein is a {beta}-subunit of Na,K-ATPase located in the cell membrane. In placental mammals, BetaM completely lost its ancestral role and through acquisition of two extended Glu-rich clusters into the N-terminal domain gained entirely new properties as a muscle-specific protein of the inner nuclear membrane possessing the ability to regulate gene expression. Strict temporal regulation of BetaM expression, which is the highest in late fetal and early postnatal myocytes, indicates that it plays an essential role in perinatal development. Here we report the first structural characterization of the native eutherian BetaM protein. It should be noted that, in contrast to structurally related Na,K-ATPase {beta}-subunits, the polypeptide chain of BetaM is highly sensitive to endogenous proteases that greatly complicated its isolation. Nevertheless, using a complex of protease inhibitors, a sample of authentic BetaM was isolated from pig neonatal skeletal muscle by a combination of ion-exchange and lectin-affinity chromatography followed by SDS-PAGE. Results of the analysis of the BetaM tryptic digest using MALDI-TOF and ESI-MS/MS mass spectrometry have demonstrated that native BetaM in neonatal skeletal muscle is a product of alternative splice mRNA variant B and comprised of 351 amino acid residues. Isolated BetaM protein was

  12. Characterization of a vacuolar H(+)-ATPase G subunit gene from Juglans regia (JrVHAG1) involved in mannitol-induced osmotic stress tolerance.

    PubMed

    Xu, Zhenggang; Zhao, Yunlin; Ge, Yu; Peng, Jiao; Dong, Meng; Yang, Guiyan

    2017-03-01

    JrVHAG1 is an important candidate gene for plant osmotic tolerance regulation. Vacuolar H(+)-ATPase (V-ATPase) is important for plant responses to abiotic stress; the G subunit is a vital part of V-ATPase. In this study, a G subunit of V-ATPase was cloned from Juglans regia (JrVHAG1) and functionally characterized. JrVHAG1 transcription was induced by mannitol that increasing 17.88-fold in the root at 12 h and 19.16-fold in the leaf at 96 h compared to that under control conditions. JrVHAG1 was overexpressed in Arabidopsis and three lines (G2, G6, and G9) with highest expression levels were selected for analysis. The results showed that under normal conditions, the transgenic and wild-type (WT) plants displayed similar germination, biomass accumulation, reactive oxygen species (ROS) level, and physiological index. However, when treated with mannitol, the fresh weight, root length, water-holding ability, and V-ATPase, superoxide dismutase, and peroxidase activity of G2, G6, and G9 were significantly higher than those of WT. In contrast, the ROS and cell damage levels of the transgenic seedlings were lower than those of WT. Furthermore, the transcription levels of V-ATPase subunits, ABF, DREB, and NAC transcription factors (TFs), all of which are factors of ABA signaling pathway, were much higher in JrVHAG1 transgenic plants than those in WT. The positive induction of JrVHAG1 gene under abscisic acid (ABA) treatments in root and leaf tissues indicates that overexpression of JrVHAG1 improves plant tolerance to osmotic stress relating to the ABA signaling pathway, which is transcriptionally activated by ABF, DREB, and NAC TFs, and correlated to ROS scavenging and V-ATPase activity.

  13. Efficiency and Safety of AAV-Mediated Gene Delivery of the Human ND4 Complex I Subunit in the Mouse Visual System

    PubMed Central

    Guy, John; Qi, Xiaoping; Koilkonda, Rajeshwari D.; Arguello, Tania; Chou, Tsung-Han; Ruggeri, Marco; Porciatti, Vittorio; Lewin, Alfred S.; Hauswirth, William W.

    2009-01-01

    PURPOSE To evaluate the efficiency and safety of AAV-mediated gene delivery of a normal human ND4 complex I subunit in the mouse visual system. METHODS A nuclear encoded human ND4 subunit fused to the ATPc mitochondrial targeting sequence and FLAG epitope were packaged in AAV2 capsids that were injected into the right eyes of mice. AAV-GFP was injected into the left eyes. One month later, pattern electroretinography (PERG), rate of ATP synthesis, gene expression, and incorporation of the human ND4 subunit into the murine complex I were evaluated. Quantitative analysis of ND4FLAG-injected eyes was assessed compared with green fluorescent protein (GFP)-injected eyes. RESULTS Rates of ATP synthesis and PERG amplitudes were similar in ND4FLAG- and GFP-inoculated eyes. PERG latency was shorter in eyes that received ND4FLAG. Immunoprecipitated murine complex I gave the expected 52-kDa band of processed human ND4FLAG. Confocal microscopy revealed perinuclear expression of FLAG colocalized with mitochondria-specific fluorescent dye. Transmission electron microscopy revealed FLAG immunogold within mitochondria. Compared with Thy1.2-positive retinal ganglion cells (RGCs), quantification was 38% for FLAG-positive RGCs and 65% for GFP-positive RGCs. Thy1.2 positive-RGC counts in AAV-ND4FLAG were similar to counts in control eyes injected with AAV-GFP. CONCLUSIONS Human ND4 was properly processed and imported into the mitochondria of RGCs and axons of mouse optic nerve after intravitreal injection. Although it had approximately two-thirds the efficiency of GFP, the expression of normal human ND4 in murine mitochondria did not induce the loss of RGCs, ATP synthesis, or PERG amplitude, suggesting that allotopic ND4 may be safe for the treatment of patients with Leber hereditary optic neuropathy. PMID:19387075

  14. Immunoreactivity of gonadotrophs (FSH and LH Cells) and gonadotropin subunit gene expression in the male chub mackerel Scomber japonicus pituitary during the reproductive cycle.

    PubMed

    Nyuji, Mitsuo; Selvaraj, Sethu; Kitano, Hajime; Shiraishi, Tetsuro; Yamaguchi, Akihiko; Shimizu, Akio; Matsuyama, Michiya

    2012-09-01

    The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are heterodimers composed of a common α subunit (GPα) and a unique β subunit (FSHβ or LHβ); they are synthesized in and secreted from gonadotrophs (FSH and LH cells) in the pituitary. Little is known about the roles of FSH and LH during spermatogenesis in perciform fishes. In this study, we examined immunoreactive changes in FSH and LH cells, and changes in the gene expression of the three gonadotropin subunits in the pituitary of male chub mackerel Scomber japonicus during testicular development. FSHβ-immunoreactive (ir) and LHβ-ir cell area were measured immuno-histochemically based on the FSH and LH cell-occupying area in the proximal pars distalis. The FSHβ-ir cell area increased significantly during spermiation, while FSHβ mRNA levels, already high at the beginning of spermatogenesis, increased further, peaking during spermiation. In contrast, LHβ-ir cell area and LHβ mRNA levels, which were low at the beginning of spermatogenesis, increased significantly during late spermatogenesis, peaking during spermiation. For both FSH and LH, GtHβ-ir cell area and GtHβ mRNA levels decreased until gonadal resting. GPα mRNA levels showed similar changes to LHβ mRNA levels. These results suggest that in the chub mackerel, FSH may play an important role in the early and late phases of spermatogenesis, and that LH may play a role during late spermatogenesis and spermiation. Moreover, our results demonstrate that changes in GtHβ-ir cell area were accompanied by similar changes in the expression of the FSHβ and LHβ genes, both of which increased during testicular development.

  15. The Something About Silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAFII30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)–FACT complex

    PubMed Central

    John, Sam; Howe, LeAnn; Tafrov, Stefan T.; Grant, Patrick A.; Sternglanz, Rolf; Workman, Jerry L.

    2000-01-01

    We have purified and characterized a Gcn5-independent nucleosomal histone H3 HAT complex, NuA3 (Nucleosomal Acetyltransferase of histone H3). Peptide sequencing of proteins from the purified NuA3 complex identified Sas3 as the catalytic HAT subunit of the complex. Sas3 is the yeast homolog of the human MOZ oncogene. Sas3 is required for both the HAT activity and the integrity of the NuA3 complex. In addition, NuA3 contains the TBP- associated factor, yTAFII30, which is also a component of the TFIID, TFIIF, and SWI/SNF complexes. Sas3 mediates interaction of the NuA3 complex with Spt16 both in vivo and in vitro. Spt16 functions as a component of the yeast CP (Cdc68/Pob3) and mammalian FACT (facilitates chromatin transcription) complexes, which are involved in transcription elongation and DNA replication. This interaction suggests that the NuA3 complex might function in concert with FACT–CP to stimulate transcription or replication elongation through nucleosomes by providing a coupled acetyltransferase activity. PMID:10817755

  16. Interactions among rice ORC subunits.

    PubMed

    Tan, Deyong; Lv, Qundan; Chen, Xinai; Shi, Jianghua; Ren, Meiyan; Wu, Ping; Mao, Chuanzao

    2013-08-01

    The origin recognition complex (ORC) is composed of six subunits and plays an important role in DNA replication in all eukaryotes. The ORC subunits OsORC6 as well as the other five ORC subunits in rice were experimentally isolated and sequenced. It indicated that there also exist six ORC subunits in rice. Results of RT-PCR indicated that expression of all the rice ORC genes are no significant difference under 26°C and 34°C. Yeast two hybridization indicated that OsORC2, -3, -5 interact with each other. OsORC5 can then bind OsORC4 to form the OsORC2, -3,-4,-5 core complex. It suggested that the basic interactions have been conserved through evolution. No binding of OsORC1 and OsORC6 with the other subunits were observed. A model of ORC complex in rice is proposed.

  17. Assignment of the human casein kinase II [alpha][prime] subunit gene (CSNK2A1) to chromosome 16p13. 2-p13. 3

    SciTech Connect

    Yang-Feng, T.L. ); Naiman, T.; Kopatz, I.; Eli, D.; Dafni, N.; Canaani, D. )

    1994-01-01

    The authors have previously mapped the CK II-[beta] gene (CSNK2B) to chromosome 6p12-p21 and the CK II-[alpha] sequence to two sites, chromosomes 11p15.5-p15.4 and 20p13, the latter having been verified by other investigators. The sequencing of a genomic human DNA fragment has shown that the CK II-[alpha] gene (CSNK2A) localized to chromosome 11 is a processed (pseudo) gene and therefore the active gene is presumably on chromosome 20. The other catalytic subunit gene CK II-[alpha][prime] was localized to chromosome 16 by somatic cell hybrid analysis. The authors now report the regional mapping of the CK II-[alpha][prime] gene (CSNK2A1) to chromosome 16p13.2-p13.3. The probe used was a 414-bp fragment from the 3[prime] nontranslated region of the human CK II-[alpha][prime] cDNA. Chromosomal localization was carried out by in situ hybridization as previously described. Of 128 grains scored in 75 cells, 13 (10.2%) were located on the distal short arm of chromosome 16, bands p13.2-p13.3. No other sites were labeled above background. 7 refs., 1 fig.

  18. ATP25, a New Nuclear Gene of Saccharomyces cerevisiae Required for Expression and Assembly of the Atp9p Subunit of Mitochondrial ATPase

    PubMed Central

    Zeng, Xiaomei; Barros, Mario H.; Shulman, Theodore

    2008-01-01

    We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F0. Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure. PMID:18216280

  19. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions.

    PubMed

    Utsunomiya, Yuzuko; Samejima, Chihiro; Takayanagi, Yoshiyuki; Izawa, Yuki; Yoshida, Takahisa; Sawada, Yuka; Fujisawa, Yukiko; Kato, Hisaharu; Iwasaki, Yukimoto

    2011-09-01

    In the present study, we investigated the function of the heterotrimeric G protein β-subunit (Gβ) gene (RGB1) in rice. RGB1 knock-down lines were generated in the wild type and d1-5, a mutant deficient for the heterotrimeric G protein α-subunit (Gα) gene (RGA1). Both transgenic lines showed browning of the lamina joint regions and nodes that could be attributed to a reduction of RGB1 function, as the abnormality was not observed in d1-5. The RGB1 knock-down lines generated in d1-5 were shorter, suggesting RGB1 to be a positive regulator of cellular proliferation, in addition to RGA1. The number of sterile seeds also increased in both RGB1 knock-down lines. These results suggest that Gβγ and Gα cooperatively function in cellular proliferation and seed fertility. We discuss the potential predominant role of RGB1 in G protein signaling in rice. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  20. Cyclin-dependent Kinase 8 Module Expression Profiling Reveals Requirement of Mediator Subunits 12 and 13 for Transcription of Serpent-dependent Innate Immunity Genes in Drosophila*

    PubMed Central

    Kuuluvainen, Emilia; Hakala, Heini; Havula, Essi; Sahal Estimé, Michelle; Rämet, Mika; Hietakangas, Ville; Mäkelä, Tomi P.

    2014-01-01

    The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity. PMID:24778181

  1. The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development.

    PubMed

    García-Rico, Ramón O; Martín, Juan F; Fierro, Francisco

    2007-06-01

    The pga1 gene of Penicillium chrysogenum NRRL 1951 has been cloned and shown to participate in the developmental program of this fungus. It encodes a protein showing a high degree of identity to group I alpha subunits of fungal heterotrimeric G proteins, presenting in its sequence all the distinctive characteristics of this group. Northern analysis revealed that pga1 is highly expressed in a constitutive manner in submerged cultures, while its expression changes during development on solid media cultures; it is higher during vegetative growth and decreases significantly at the time of conidiogenesis. Attenuation of pga1 gene expression by antisense RNA, and mutations of pga1 resulting in a constitutively activated (pga1G42R allele) or constitutively inactivated (pga1G203R allele) Pga1 alpha subunit were used to study the function of Pga1 in P. chrysogenum. The phenotype of transformants expressing the antisense construction and the mutant alleles showed substantial morphological differences in colony diameter and conidiation, indicating that Pga1 controls apical extension and negatively regulates conidiogenesis on solid medium, but has no effect on submerged cultures. Pga1 is also functional in Penicillium roqueforti, controlling the same processes.

  2. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.

  3. Sequences of the cytochrome C oxidase subunit I (COI) gene are suitable for species identification of Korean Calliphorinae flies of forensic importance (Diptera: Calliphoridae).

    PubMed

    Park, Seong Hwan; Zhang, Yong; Piao, Huguo; Yu, Dong Ha; Jeong, Hyun Ju; Yoo, Ga Young; Jo, Tae-Ho; Hwang, Juck-Joon

    2009-09-01

    Calliphorinae fly species are important indicators of the postmortem interval especially during early spring and late fall in Korea. Although nucleotide sequences of various Calliphorinae fly species are available, there has been no research on the cytochrome c oxidase subunit I (COI) nucleotide sequences of Korean Calliphorinae flies. Here, we report the full-length sequences of the COI gene of four Calliphorinae fly species collected in Korea (five individuals of Calliphora vicina, five Calliphora lata, four Triceratopyga calliphoroides and three Aldrichina grahami). Each COI gene was amplified by polymerase chain reaction and directly sequenced and the resulting nucleotide sequences were aligned and analyzed by MEGA4 software. The results indicate that COI nucleotide sequences can be used to distinguish between these four species. Our phylogenetic result coincides with recent taxonomic views on the subfamily Calliphorinae in that the genera Aldrichina and Triceratopyga are nested within the genus Calliphora.

  4. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids.

  5. Salt shock enhances the expression of ZrATP2, the gene for the mitochondrial ATPase beta subunit of Zygosaccharomyces rouxii.

    PubMed

    Watanabe, Yasuo; Hirasaki, Masataka; Tohnai, Naoko; Yagi, Kohsaku; Abe, Shunnosuke; Tamai, Youichi

    2003-01-01

    In the course of a study of cell wall proteins from the salt-tolerant yeast Zygosaccharomyces rouxii, a protein that increased its expression as the NaCl concentration of the culture medium increased was identified. Several degenerate primers were constructed based on partial amino acid sequences of this protein and were used in PCR amplification of a gene termed ZrATP2. The amino acid sequence deduced from nucleotide sequence of the gene revealed that ZrATP2 encodes the beta subunit of mitochondrial F1 ATPase. Northern blot analysis demonstrated that NaCl shock induced an elevation in ZrATP2 expression, which corresponded with the resumption of Z. rouxii cell growth after salt shock.

  6. Neurotransmitter release: vacuolar ATPase V0 sector c-subunits in possible gene or cell therapies for Parkinson's, Alzheimer's, and psychiatric diseases.

    PubMed

    Higashida, Haruhiro; Yokoyama, Shigeru; Tsuji, Chiharu; Muramatsu, Shin-Ichi

    2017-01-01

    We overview the 16-kDa proteolipid mediatophore, the transmembrane c-subunit of the V0 sector of the vacuolar proton ATPase (ATP6V0C) that was shown to mediate the secretion of acetylcholine. Acetylcholine, serotonin, and dopamine (DA) are released from cell soma and/or dendrites if ATP6V0C is expressed in cultured cells. Adeno-associated viral vector-mediated gene transfer of ATP6V0C into the caudate putamen enhanced the depolarization-induced overflow of endogenous DA in Parkinson-model mice. Motor impairment was ameliorated in hemiparkinsonian model mice when ATP6V0C was expressed with DA-synthesizing enzymes. The review discusses application in the future as a potential tool for gene therapy, cell transplantation therapy, and inducible pluripotent stem cell therapy in neurological diseases, from the view point of recent findings regarding vacuolar ATPase.

  7. [Alternating hemiplegia of childhood: ATP1A3 gene analysis in 16 patients].

    PubMed

    Ulate-Campos, Adriana; Fons, Carmen; Campistol, Jaume; Martorell, Loreto; Cancho-Candela, Ramón; Eiris, Jesús; López-Laso, Eduardo; Pineda, Mercedes; Sans, Anna; Velázquez, Ramón

    2014-07-07

    Alternating hemiplegia in childhood (AHC) is a disease characterized by recurrent episodes of hemiplegia, tonic or dystonic crisis and abnormal ocular movements. Recently, mutations in the ATP1A3 gene have been identified as the causal mechanism of AHC. The objective is to describe a series of 16 patients with clinical and genetic diagnosis of AHC. It is a descriptive, retrospective, multicenter study of 16 patients with clinical diagnosis of AHC in whom mutations in ATP1A3 were identified. Six heterozygous, de novo mutations were found in the ATP1A3 gene. The most frequent mutation was G2401A in 8 patients (50%) followed by G2443A in 3 patients (18.75%), G2893A in 2 patients (12.50%) and C2781G, G2893C and C2411T in one patient, respectively (6.25% each). In the studied population with AHC, de novo mutations were detected in 100% of patients. The most frequent mutations were D801N y la E815K, as reported in other series. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  8. bchFNBH bacteriochlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants.

    PubMed

    Burke, D H; Alberti, M; Hearst, J E

    1993-04-01

    We present the nucleotide and deduced amino acid sequences of four contiguous bacteriochlorophyll synthesis genes from Rhodobacter capsulatus. Three of these genes code for enzymes which catalyze reactions common to the chlorophyll synthesis pathway and therefore are likely to be found in plants and cyanobacteria as well. The pigments accumulated in strains with physically mapped transposon insertion mutations are analyzed by absorbance and fluorescence spectroscopy, allowing us to assign the genes as bchF, bchN, bchB, and bchH, in that order. bchF encodes a bacteriochlorophyll alpha-specific enzyme that adds water across the 2-vinyl group. The other three genes are required for portions of the pathway that are shared with chlorophyll synthesis, and they were expected to be common to both pathways. bchN and bchB are required for protochlorophyllide reduction in the dark (along with bchL), a reaction that has been observed in all major groups of photosynthetic organisms except angiosperms, where only the light-dependent reaction has been clearly established. The purple bacterial and plant enzymes show 35% identity between the amino acids coded by bchN and chlN (gidA) and 49% identity between the amino acids coded by bchL and chlL (frxC). Furthermore, bchB is 33% identical to ORF513 from the Marchantia polymorpha chloroplast. We present arguments in favor of the probable role of ORF513 (chlB) in protochlorophyllide reduction in the dark. The further similarities of all three subunits of protochlorophyllide reductase and the three subunits of chlorin reductase in bacteriochlorophyll synthesis suggest that the two reductase systems are derived from a common ancestor.

  9. Mapping of the {beta}{sub 2} subunit gene (GABRB2) to microdissected human chromosome 5q34-q35 defines a gene cluster for the most abundant GABA{sub A} receptor isoform

    SciTech Connect

    Russek, S.J.; Farb, D.H. |

    1994-10-01

    The {gamma}-aminobutyric acid receptor (GABA{sub A}R) is a multisubunit Cl{sup -} channel that mediates most fast inhibitory synaptic transmission in the central nervous system. Molecular evolution has given rise to many genetic variants of GABA{sub A}R subunits, including {alpha}{sub 1-6}, {beta}{sub 1-4}, {gamma}{sub 1-4}, {sigma}, and {rho}{sub 1-2}, suggesting that an enormous number of combinations of subunits are possible. Here we report that the {beta}{sub 2} gene is located on chromosome 5q34-q35, defining a cluster comprising {alpha}{sub 1}, {beta}{sub 2}, and {gamma}{sub 2} genes that together code for the most abundant GABA{sub A}R isoform. The fact that intron position is conserved in the {beta}{sub 1-3} genes, taken together with the observation that chromosomes 4 and 15 also contain distinct {alpha}-{beta}-{gamma} gene clusters, strongly suggests that an ancestral {alpha}-{beta}-{gamma} cluster was duplicated and translocated to at least two different chromosomes. This organization of GABA{sub A}R gene clusters may have been preserved as linkage provides a mechanism for facilitating coordinate gene expression. 34 refs., 5 figs., 1 tab.

  10. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    PubMed

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  11. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root.

    PubMed

    Tan, Xiaoyun; Feng, Yihong; Liu, Yulong; Bao, Yiqun

    2016-09-01

    Polar auxin transport, which is critical for land plant pattern formation and directional growth, is largely depended on asymmetric distribution of PIN proteins at the plasma membrane (PM). Endocytosis and recycling processes play important roles in regulating PIN protein distribution and abundance at the PM. Two subunits (SEC8, EXO70A1) of exocyst, an octameric vesicle-tethering complex, have been reported to be involved in PIN protein recycling in Arabidopsis. However, the function of exocyst complex in PIN protein recycling and polar auxin transport remains incompletely understood. In this study, we utilized two SEC6 down-regulation mutants (PRsec6-1 and PRsec6-2) to investigate the role of exocyst subunit SEC6 in the primary root development, polar auxin transport and PIN proteins recycling. We found that in PRsec6 mutants: 1. Primary root growth was retarded, and lateral root initiation were compromised. 2. Primary roots were sensitive to exogenous auxin 1-napthalene acetic acid (NAA) but not 2,4-dichlorophenoxy (2.4-D). 3. Recycling of PIN1 and PIN2 proteins from the Brefeldin A (BFA) compartment to the PM was delayed. 4. Vesicles accumulated in the primary root tip cells, especially accumulated in the cytosol closed to the PM. These results further demonstrated that the exocyst complex plays an important role in PIN protein recycling and polar auxin transport in Arabidopsis primary root. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin discovery.

    PubMed

    van der Wielen, Paul W J J

    2006-06-01

    Partial sequences of the form I (cbbL) and form II (cbbM) of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit genes were obtained from the brine and interface of the MgCl2-dominated deep hypersaline anoxic basin Discovery. CbbL and cbbM genes were found in both brine and interface of the Discovery Basin but were absent in the overlying seawater. The diversity of both genes in the brine and interface was low, which might caused by the extreme saline conditions in Discovery of approximately 5 M MgCl2. None of the retrieved sequences were closely related to sequences deposited in the GenBank database. A phylogenetic analysis demonstrated that the cbbL sequences were affiliated with a Thiobacillus sp. or with one of the RuBisCO genes from Hydrogenovibrio marinus. The cbbM sequences clustered with thiobacilli or formed a new group with no close relatives. The results implicate that bacteria with the potential for carbon dioxide fixation and chemoautotrophy are present in the Discovery Basin. This is the first report demonstrating that RuBisCO genes are present under hypersaline conditions of 5 M MgCl2.

  13. Analysis of the Type IV Fimbrial-Subunit Gene fimA of Xanthomonas hyacinthi: Application in PCR-Mediated Detection of Yellow Disease in Hyacinths

    PubMed Central

    van Doorn, J.; Hollinger, T. C.; Oudega, B.

    2001-01-01

    A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280–1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222

  14. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A) Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease.

    PubMed

    Marcsa, Boglárka; Dénes, Réka; Vörös, Krisztina; Rácz, Gergely; Sasvári-Székely, Mária; Rónai, Zsolt; Törő, Klára; Keszler, Gergely

    2015-01-01

    Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.). The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360) and age-matched controls (n=300). Five single nucleotide polymorphisms (SNPs) from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2) that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351). A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio = 1.455). None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association.

  15. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) Gene

    PubMed Central

    Dorshorst, Ben; Henegar, Corneliu; Liao, Xiaoping; Sällman Almén, Markus; Rubin, Carl-Johan; Ito, Shosuke; Wakamatsu, Kazumasa; Stothard, Paul; Van Doormaal, Brian; Plastow, Graham; Barsh, Gregory S.; Andersson, Leif

    2015-01-01

    Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele. PMID:26042826

  16. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA) Gene.

    PubMed

    Dorshorst, Ben; Henegar, Corneliu; Liao, Xiaoping; Sällman Almén, Markus; Rubin, Carl-Johan; Ito, Shosuke; Wakamatsu, Kazumasa; Stothard, Paul; Van Doormaal, Brian; Plastow, Graham; Barsh, Gregory S; Andersson, Leif

    2015-01-01

    Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  17. A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A) Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease

    PubMed Central

    Marcsa, Boglárka; Dénes, Réka; Vörös, Krisztina; Rácz, Gergely; Sasvári-Székely, Mária; Rónai, Zsolt; Törő, Klára; Keszler, Gergely

    2015-01-01

    Cardiac death remains one of the leading causes of mortality worldwide. Recent research has shed light on pathophysiological mechanisms underlying cardiac death, and several genetic variants in novel candidate genes have been identified as risk factors. However, the vast majority of studies performed so far investigated genetic associations with specific forms of cardiac death only (sudden, arrhythmogenic, ischemic etc.). The aim of the present investigation was to find a genetic marker that can be used as a general, powerful predictor of cardiac death risk. To this end, a case-control association study was performed on a heterogeneous cohort of cardiac death victims (n=360) and age-matched controls (n=300). Five single nucleotide polymorphisms (SNPs) from five candidate genes (beta2 adrenergic receptor, nitric oxide synthase 1 adaptor protein, ryanodine receptor 2, sodium channel type V alpha subunit and transforming growth factor-beta receptor 2) that had previously been shown to associate with certain forms of cardiac death were genotyped using sequence-specific real-time PCR probes. Logistic regression analysis revealed that the CC genotype of the rs11720524 polymorphism in the SCN5A gene encoding a subunit of the cardiac voltage-gated sodium channel occurred more frequently in the highly heterogeneous cardiac death cohort compared to the control population (p=0.019, odds ratio: 1.351). A detailed subgroup analysis uncovered that this effect was due to an association of this variant with cardiac death in chronic ischemic heart disease (p=0.012, odds ratio = 1.455). None of the other investigated polymorphisms showed association with cardiac death in this context. In conclusion, our results shed light on the role of this non-coding polymorphism in cardiac death in ischemic cardiomyopathy. Functional studies are needed to explore the pathophysiological background of this association. PMID:26146998

  18. Genomics and genetics of gonadotropin beta-subunit genes: Unique FSHB and duplicated LHB/CGB loci

    PubMed Central

    Nagirnaja, Liina; Rull, Kristiina; Uusküla, Liis; Hallast, Pille; Grigorova, Marina; Laan, Maris

    2010-01-01

    The follicle stimulating hormone (FSH), luteinizing hormone (LH) and chorionic gonadotropin (HCG) play a critical role in human reproduction. Despite the common evolutionary ancestry and functional relatedness of the gonadotropin hormone beta (GtHB) genes, the single-copy FSHB (at 11p13) and the multi-copy LHB/CGB genes (at 19q13.32) exhibit locus-specific differences regarding their genomic context, evolution, genetic variation and expressional profile. FSHB represents a conservative vertebrate gene with a unique function and it is located in a structurally stable gene-poor region. In contrast, the primate-specific LHB/CGB gene cluster is located in a gene-rich genomic context and demonstrates an example of evolutionary young and unstable genomic region. The gene cluster is shaped by a constant balance between selection that acts on specific functions of the loci and frequent gene conversion events among duplicons. As the transcription of the GtHB genes is rate-limiting in the assembly of respective hormones, the genomic and genetic context of the FSHB and the LHB/CGB genes largely affects the profile of the hormone production. PMID:20488225

  19. Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti.

    PubMed

    Yang, Zhongxia; Statler, Bethanie-Michelle; Calkins, Travis L; Alfaro, Edna; Esquivel, Carlos J; Rouhier, Matthew F; Denton, Jerod S; Piermarini, Peter M

    2017-02-01

    Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Mutations in the Drosophila condensin subunit dCAP-G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase.

    PubMed

    Dej, Kimberley J; Ahn, Caroline; Orr-Weaver, Terry L

    2004-10-01

    Chromosomes are dynamic structures that are reorganized during the cell cycle to optimize them for distinct functions. SMC and non-SMC condensin proteins associate into complexes that have been implicated in the process of chromosome condensation. The roles of the individual non-SMC subunits of the complex are poorly understood, and mutations in the CAP-G subunit have not been described in metazoans. Here we elucidate a role for dCAP-G in chromosome condensation and cohesion in Drosophila. We illustrate the requirement of dCAP-G for condensation during prophase and prometaphase; however, we find that alternate mechanisms ensure that replicated chromosomes are condensed prior to metaphase. In contrast, dCAP-G is essential for chromosome condensation in metaphase of single, unreplicated sister chromatids, suggesting that there is an interplay between replicated chromatids and the condensin complex. In the dcap-g mutants, defects in sister-chromatid separation are also observed. Chromatid arms fail to resolve in prophase and are unable to separate at anaphase, whereas sister centromeres show aberrant separation in metaphase and successfully move to spindle poles at anaphase. We also identified a role for dCAP-G during interphase in regulating heterochromatic gene expression.

  1. Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants

    PubMed Central

    Dhingra, Amit; Portis, Archie R.; Daniell, Henry

    2004-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a key enzyme that converts atmospheric carbon to food and supports life on this planet. Its low catalytic activity and specificity for oxygen leads to photorespiration, severely limiting photosynthesis and crop productivity. Consequently, Rubisco is a primary target for genetic engineering. Separate localization of the genes in the nuclear and chloroplast genomes and a complex assembly process resulting in a very low catalytic activity of hybrid Rubisco enzymes have rendered several earlier attempts of Rubisco engineering unsuccessful. Here we demonstrate that the RbcS gene, when integrated at a transcriptionally active spacer region of the chloroplast genome, in a nuclear RbcS antisense line and expressed under the regulation of heterologous (gene 10) or native (psbA) UTRs, results in the assembly of a functional holoenzyme and normal plant growth under ambient CO2 conditions, fully shortcircuiting nuclear control of gene regulation. There was ≈150-fold more RbcS transcript in chloroplast transgenic lines when compared with the nuclear RbcS antisense line, whereas the wild type has 7-fold more transcript. The small subunit protein levels in the gene 10/RbcS and psbA/RbcS plants were 60% and 106%, respectively, of the wild type. Photosynthesis of gene 10/RbcS plants was approximately double that of the antisense plants, whereas that of psbA/RbcS plants was restored almost completely to the wild-type rates. These results have opened an avenue for using chloroplast engineering for the evaluation of foreign Rubisco genes in planta that eventually can result in achieving efficient photosynthesis and increased crop productivity. PMID:15067115

  2. Cloning and characterization of the 5′-upstream sequence governing the cell cycle-dependent transcription of mouse DNA polymerase α 68 kDa subunit gene

    PubMed Central

    Nishikawa, Naoko S.; Izumi, Masako; Uchida, Hiroshi; Yokoi, Masayuki; Miyazawa, Hiroshi; Hanaoka, Fumio

    2000-01-01

    We have isolated and determined the structure of the gene encoding the 68 kDa subunit (p68) of the mouse DNA polymerase α–primase complex. The p68 gene consists of four exons and the p68 promoter region lacks TATA and CAAT boxes, but contains a GC-rich sequence, two palindrome sequences and two putative E2F-binding sites. A series of transient expression assays using a luciferase reporter gene indicated that a region from nucleotide position –89 to –30 (–89/–30) with respect to the transcription initiation site is crucial for basal transcription of the p68 gene in proliferating NIH 3T3 cells. In particular, part of the GC-rich sequence (–57/–46) and the palindrome (–81/–62) elements were necessary for promoter activity, both of which share homology with the E-box sequence. Gel mobility shift assays using NIH 3T3 nuclear extracts revealed that the upstream stimulatory factor, known as an E-box-binding protein, binds to these sites. Moreover, we observed binding of E2F to two sites near the transcription initiation site (–11/–3 and +9/+16). A transient luciferase expression assay using synchronized NIH 3T3 cells in G0 phase revealed that these E2F sites are essential for transcription induction of the p68 gene after serum stimulation, but are dispensable for basal transcription. These results indicate that growth-dependent regulation of transcription of the mouse p68 and p180 genes is mediated by a common factor, E2F; however, basal transcription of the genes, interestingly, is regulated by different transcription factors. PMID:10710418

  3. Functional analysis of the rod photoreceptor cGMP phosphodiesterase alpha-subunit gene promoter: Nrl and Crx are required for full transcriptional activity.

    PubMed

    Pittler, Steven J; Zhang, Youwen; Chen, Shiming; Mears, Alan J; Zack, Donald J; Ren, Zhiyong; Swain, Prabodh K; Yao, Suxia; Swaroop, Anand; White, J Brandon

    2004-05-07

    To understand the factors controlling expression of the cGMP phosphodiesterase type 6 (PDE6) genes, we have characterized the promoter of the human PDE6A gene that encodes the catalytic alpha-subunit. In vivo DNase I hypersensitivity assays revealed two sites immediately upstream of the PDE6A core promoter region. Transient transfection assay in Y79 cells of constructs containing varying lengths of the promoter region showed a decrease in promoter activity with increasing length. The most active segment contained a 177-bp upstream sequence including apparent Crx and Nrl transcription factor binding sites. Both Crx and Nrl transactivated the PDE6A promoter in HEK293 cells and showed a >100-fold increase when coexpressed. Coexpression of a dominant negative inhibitor of Nrl abolished Nrl transactivation but had no effect on Crx. DNase I footprinting assays identified three potential Crx binding sites within a 55-bp segment beginning 29 bp upstream of the transcription start point. Mutation of two of these sites reduced reporter gene activity by as much as 69%. Gel shifts showed that all three Crx sites required a TAAT sequence for efficient binding. Consistent with a requirement for Crx and Nrl in Pde6a promoter activity, Pde6a mRNA is reduced by 87% in the retina of Crx(-/-) mice and is undetectable in Nrl(-/-) mice at postnatal day 10. These results establish that both Nrl and Crx are required for full transcriptional activity of the PDE6A gene.

  4. Mutation in the beta subunit of F ATPase allows Kluyveromyces lactis to survive the disruption of the KlPGS1 gene.

    PubMed

    Patrásová, Mária; Kost'anová-Poliaková, Daniela; Simocková, Mária; Sabová, L'udmila

    2010-09-01

    The petite-negative yeast Kluyveromyces lactis does not tolerate the loss of phosphatidylglycerol (PG). We demonstrate that the lethality of PG loss is suppressed in strains carrying a mutation in the beta subunit of F(1) ATPase (mgi1-1). Phenotypic characterization shows that the strain lacking the phosphatidylglycerolphosphate synthase gene (KlPGS1) is able to grow only on glucose, but significantly more slowly and to substantially lower densities than the parental mgi1-1 strain. In addition, oxygen consumption in the DeltaKlpgs1 strain is <1% of the parental strain. Western blot analysis of mitochondrial membrane proteins shows that the amounts of some proteins are substantially decreased or even not detectable in this mutant. However, overexpression of the KlPGS1 gene under the inducible GAL1 promoter does not restore the ability of DeltaKlpgs1 cells to grow on galactose, indicating the presence of some other mutations and/or deletions in genes involved in oxidative phosphorylation. We also demonstrate that DeltaKlpgs1 cells do not spontaneously lose mtDNA, but are able to survive its loss after ethidium bromide mutagenesis. Deletion of the cardiolipin synthase gene (KlCLS1) in mgi1-1 has only a minimal effect on mitochondrial physiology, and additional experiments show that this deletion is also viable in wild-type K. lactis.

  5. Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils.

    PubMed

    Xiao, Ke-Qing; Bao, Peng; Bao, Qiong-Li; Jia, Yan; Huang, Fu-Yi; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-01-01

    The Calvin cycle is known to be the major pathway for CO2 fixation, but our current understanding of its occurrence and importance in paddy soils is poor. In this study, the diversity of three ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbLG, cbbLR, cbbM) was investigated by clone library, T-RFLP, qPCR, and enzyme assay in five paddy soils in China. The cbbLG sequences revealed a relatively low level of diversity and were mostly related to the sequences of species from Thiobacillus. In contrast, highly diverse cbbLR and cbbM sequences were dispersed on the phylogenetic trees, and most of them were distantly related to known sequences, even forming separate clusters. Abundances of three cbbL genes ranged from 10(6) to 10(9) copies g(-1) soil, and cbbLR outnumbered cbbM and cbbLG in all soil samples, indicating that cbbLR may play a more important role than other two cbbL genes. Soil properties significantly influenced cbbL diversity in five paddy soils, of which clay content, C/N ratio, CEC, pH, and SOC correlated well with variations in microbial composition and abundance. In summary, this study provided a comparison of three cbbL genes, advancing our understanding of their role in carbon sequestration and nutrient turnover in the paddy soil.

  6. Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: A potential case of cytonuclear cointrogression

    PubMed Central

    Beck, Emily A.; Thompson, Aaron C.; Sharbrough, Joel; Brud, Evgeny; Llopart, Ana

    2015-01-01

    Introgression is the effective exchange of genetic information between species through natural hybridization. Previous genetic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear‐encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS cointrogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear‐ and mitochondrial‐encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum‐likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial‐encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression. PMID:26155926

  7. Increase of AMPA receptor glutamate receptor 1 subunit and B-cell receptor-associated protein 31 gene expression in hippocampus of fatigued mice.

    PubMed

    Kamakura, Masaki; Tamaki, Keisuke; Sakaki, Toshiyuki; Yoneda, Yukio

    2005-10-14

    Central fatigue is an indispensable biosignal for maintaining life, but the neuronal and molecular mechanisms involved remain unclear. In this study, we searched for genes differentially expressed in the hippocampus of fatigued mice to elucidate the mechanisms underlying fatigue. Mice were forced to swim in an adjustable-current water pool, and the maximum swimming time (endurance) until fatigue was measured thrice. Fatigued and nonfatigued mice with equal swimming capacity and body weight were compared. We found that the genes of GluR1 and B-cell receptor-associated protein 31 (Bap31), which acts as a transport molecule in the secretory pathway or as a mediator of apoptosis, were upregulated in the hippocampus of fatigued mice, and increases of GluR1 and Bap31 were confirmed by Northern blotting and real-time PCR. No change of gene expression of AMPA receptor subunits other than GluR1 was observed. These results suggest that a compositional change of AMPA receptor (increase of GluR1) and upregulation of the Bap31 gene may be implicated in fatigue in mice.

  8. Mutations in a gene encoding the. cap alpha. subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling

    SciTech Connect

    Jahng, K.Y.; Ferguson, J.; Reed, S.I.

    1988-06-01

    Mutations which allowed conjugation by Saccharomyces cerevisiae cells lacking a mating pheromone receptor gene were selected. One of the genes defined by such mutations was isolated from a yeast genomic library by complementation of a temperature-sensitive mutation and is identically to the gene GPA1 (also known as SCG1), recently shown to be highly homologous to gene encoding the ..cap alpha.. subunits of mammalian G proteins. Physiological analysis of temperature-sensitive gpal mutations suggests that the encoded G protein is involved in signaling in response to mating pheromones. Mutational disruption of G-protein activity causes cell-cycle arrest in G/sub 1/, deposition of mating-specific cell surface aggultinins, and induction of pheromone-specific mRNa, all of which are responses to pheromone in wild-type cells. In addition, mutants can conjugate without the benefit of mating pheromone or pheromone receptor. A model is presented where the activated G protein has a negative impact on a constitutive signal which normally keeps the pheromone response repressed.

  9. Evaluation of the DNA-dependent RNA polymerase ß-subunit gene (rpoB) for phytoplasma classification and phylogeny

    USDA-ARS?s Scientific Manuscript database

    Phytoplasmas are classified into 16Sr groups, subgroups, and ‘Candidatus Phytoplasma’ species, largely or entirely based on analysis of 16S rRNA gene sequences. Yet, distinctions among closely related ‘Candidatus Phytoplasma’ species and strains based on 16S rRNA gene sequences alone has limitation...

  10. Characterization of the proteasome ß2 subunit gene and its mutant allele in the tephritid fruit fly pest, Anastrepha suspensa

    USDA-ARS?s Scientific Manuscript database

    Conditional lethal release (CLR) is a proposed variation of the sterile insect technique (SIT) for the biological control of pest insects that would result from the release of transgenic insects carrying dominant conditional lethal genes. After mating with pest insects in the field, lethal gene exp...

  11. Three genes coding for subunits of the membrane sector (F0) of the Escherichia coli adenosine triphosphatase complex.

    PubMed Central

    Downie, J A; Cox, G B; Langman, L; Ash, G; Becker, M; Gibson, F

    1981-01-01

    Two mutant unc alleles, unc-469 and unc-476, have been characterized as affecting a previously undescribed gene, designated uncF. The uncF gene is part of the unc operon (with the gene order being uncBFEAGDC), although some uncertainty remains as to the relative order of the uncF and uncE genes. Mutant strains carrying the uncF469 or uncF476 allele lack the 18,000-molecular-weight component of the F0 sector of the adenosine triphosphatase in the cell membrane but retain the dicyclohexylcarbodiimide-binding protein (molecular weight, 8,400). Conversely, strains carrying mutations in the uncE gene lack the dicyclohexylcarbodiimide-binding protein but retain the 18,000-molecular-weight protein in the cell membrane. Strains carrying mutations in the uncB gene have both the 18,000-molecular-weight protein and the dicyclohexylcarbodiimide-binding protein present in the cell membranes. The three proteins of the F0 portion of the adenosine triphosphatase, viz., 24,000, 18,000, and 8,400 molecular weights, became membrane associated after in vitro transcription-translation with plasmid pAN51 as template. Plasmids carrying deletions which affected the UncBFE region were isolated from plasmid pAN51 and characterized genetically. A comparison of the genes that were absent from the various deletion plasmids with the membrane-associated products formed after in vitro transcription-translation indicated that the uncB gene coded for the 24,000-molecular-weight protein and that the gene order was probably uncBFE. A correlation between length of deoxyribonucleic acid, genes present, and their products is presented in relation to plasmid pAN51. Images PMID:6450744

  12. SNP detection in Na/K ATP-ase gene α1 subunit of bisexual and parthenogenetic Artemia strains by RFLP screening.

    PubMed

    Manaffar, R; Zare, S; Agh, N; Abdolahzadeh, N; Soltanian, S; Sorgeloos, P; Bossier, P; Van Stappen, G

    2011-01-01

    In order to find a marker for differentiating between a bisexual and a parthenogenetic Artemia strain, Exon-7 of the Na/K ATPase α(1) subunit gene was screened by RFLP technique. The results revealed a constant synonymous SNP (single nucleotide polymorphism) in digestion by the Tru1I enzyme that was consistent with these two types of Artemia. This SNP was identified as an accurate molecular marker for discrimination between bisexual and parthenogenetic Artemia. According to the Nei's genetic distance (1973), the lowest genetic distance was found between individuals from Artemia urmiana Günther 1890 and parthenogenetic populations, making the described marker the first marker to easily distinguish between these two cooccurring species. © 2010 Blackwell Publishing Ltd.

  13. Upregulation of N-methyl-D-aspartate receptor subunits and c-Fos expressing genes in PC12D cells by nobiletin.

    PubMed

    Kimura, Junko; Nemoto, Kiyomitsu; Degawa, Masakuni; Yokosuka, Akihito; Mimaki, Yoshihiro; Shimizu, Kosuke; Oku, Naoto; Ohizumi, Yasushi

    2014-01-01

    The N-methyl-D-aspartate (NMDA) receptor plays a key role in learning and memory. Our recent studies have shown that nobiletin from citrus peels activates the cAMP response element-binding protein (CREB) signaling pathway and ameliorates NMDA receptor antagonist-induced learning impairment by activating extracellular signal-regulated kinase. For the first time, we have shown that nobiletin significantly upregulated mRNA expression of the NMDA receptor subunits NR1, NR2A, and NR2B in PC12D cells. Furthermore, c-Fos mRNA expression also increased due to the action of nobiletin. Our results indicate that nobiletin modulates the expression of essential genes for learning and memory by activating the CREB signaling pathway, and suggest that this action mechanism of nobiletin plays a crucial role in improving NMDA receptor antagonist-induced learning impairment in model animals with dementia.

  14. Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences.

    PubMed

    Carreno, R A; Martin, D S; Barta, J R

    1999-11-01

    The phylogenetic placement of gregarine parasites (Apicomplexa: Gregarinasina) within the Apicomplexa was derived by comparison of small-subunit ribosomal RNA gene sequences. Gregarine sequences were obtained from Gregarina niphandrodes Clopton, Percival, and Janovy, 1991, and Monocystis agilis Stein, 1848 (Eugregarinorida Léger 1900), as well as from Ophriocystis elektroscirrha McLaughlin and Myers, 1970 (Neogregarinorida Grassé 1953). The sequences were aligned with several other gregarine and apicomplexan sequences from GenBank and the resulting data matrix analyzed by parsimony and maximum-likelihood methods. The gregarines form a monophyletic clade that is a sister group to Cryptosporidium spp. The gregarine/ Cryptosporidium clade is separate from the other major apicomplexan clade containing the coccidia, adeleids, piroplasms, and haemosporinids. The trees indicate that the genus Cryptosporidium has a closer phylogenetic affinity with the gregarines than with the coccidia. These results do not support the present classification of the Cryptosporidiidae in the suborder Eimerioirina Léger, 1911.

  15. An MLL/COMPASS subunit functions in the C. elegans dosage compensation complex to target X chromosomes for transcriptional regulation of gene expression

    PubMed Central

    Pferdehirt, Rebecca R.; Kruesi, William S.; Meyer, Barbara J.

    2011-01-01

    Here we analyze the essential process of X-chromosome dosage compensation (DC) to elucidate mechanisms that control the assembly, genome-wide binding, and function of gene regulatory complexes that act over large chromosomal territories. We demonstrate that a subunit of Caenorhabditis elegans MLL/COMPASS, a gene activation complex, acts within the DC complex (DCC), a condensin complex, to target the DCC to both X chromosomes of hermaphrodites for chromosome-wide reduction of gene expression. The DCC binds to two categories of sites on X: rex (recruitment element on X) sites that recruit the DCC in an autonomous, sequence-dependent manner, and dox (dependent on X) sites that reside primarily in promoters of expressed genes and bind the DCC robustly only when attached to X. We find that DC mutations that abolish rex site binding greatly reduce dox site binding but do not eliminate it. Instead, binding is diminished to the low level observed at autosomal sites in wild-type animals. Changes in DCC binding to these non-rex sites occur throughout development and correlate directly with transcriptional activity of adjacent genes. Moreover, autosomal DCC binding is enhanced by rex site binding in cis in X-autosome fusion chromosomes. Thus, dox and autosomal sites have similar binding potential but are distinguished by linkage to rex sites. We propose a model for DCC binding in which low-level DCC binding at dox sites is dictated by intrinsic properties correlated with high transcriptional activity. Sex-specific DCC recruitment to rex sites then enhances the magnitude of DCC binding to dox sites in cis, which lack high affinity for the DCC on their own. We also show that the DCC balances X-chromosome gene expression between sexes by controlling transcription. PMID:21363964

  16. Activation of Antibiotic Biosynthesis by Specified Mutations in the rpoB Gene (Encoding the RNA Polymerase β Subunit) of Streptomyces lividans

    PubMed Central

    Hu, Haifeng; Zhang, Qin; Ochi, Kozo

    2002-01-01

    We found that the biosynthesis of actinorhodin (Act), undecylprodigiosin (Red), and calcium-dependent antibiotic (CDA) are dramatically activated by introducing certain mutations into the rpoB gene that confer resistance to rifampin to Streptomyces lividans 66, which produces less or no antibiotics under normal growth conditions. Activation of Act and/or Red biosynthesis by inducing mutations in the rpoB gene was shown to be dependent on the mutation's position and the amino acid species substituted in the β-subunit of the RNA polymerase. Mutation analysis identified 15 different kinds of point mutations, which are located in region I, II, or III of the rpoB gene and, in addition, two novel mutations (deletion of nucleotides 1287 to 1289 and a double substitution at nucleotides 1309 and 1310) were also found. Western blot analyses and S1 mapping analyses demonstrated that the expression of actII-ORF4 and redD, which are pathway-specific regulatory genes for Act and Red, respectively, was activated in the mutants able to produce Act and Red. The ActIV-ORF1 protein (an enzyme for Act biosynthesis) and the RedD protein were produced just after the upregulation of ActII-ORF4 and RedZ, respectively. These results indicate that the mutation in the rpoB gene of S. lividans, resulting in the activation of Act and/or Red biosynthesis, functions at the transcription level by activating directly or indirectly the key regulatory genes, actII-ORF4 and redD. We propose that the mutated RNA polymerase may function by mimicking the ppGpp-bound form in activating the onset of secondary metabolism in Streptomyces. PMID:12081971

  17. The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene.

    PubMed

    Guo, Weiwei; Yang, Hua; Liu, Yongqiang; Gao, Yujiao; Ni, Zhongfu; Peng, Huiru; Xin, Mingming; Hu, Zhaorong; Sun, Qixin; Yao, Yingyin

    2015-10-01

    Glutenin proteins in wheat (Triticum aestivum L.) flour confer unique viscoelastic properties to dough products and, therefore, the concentration and composition of the glutenin proteins determine its end-use value. However, the mechanisms governing the glutenin gene expression remain elusive. In this study, we report that wheat TaGAMyb activates the high-molecular-weight glutenin subunit genes (TaGLU) through recruiting the histone acetyltransferase GCN5. By sequencing the promoters of TaGLU-1 genes from 40 modern wheat cultivars, we identified eight types of TaGAMyb binding motifs and verified these by electrophoretic mobility shift assays. The number of TaGAMyb binding motifs in TaGLU-1 genes is correlated with the abundance of glutenin in different cultivars. Chromatin immunoprecipitation plus polymerase chain reaction (ChIP-PCR) analysis reveals that TaGCN5 directly targets the promoters of TaGLU-1 genes in wheat endosperm. We find that TaGAMyb physically interacts with the wheat histone acetyltransferase TaGCN5 and also interacts with Arabidopsis thaliana AtGCN5. TaGAMyb ectopically expressed in Arabidopsis binds to the TaGLU-1Dy promoter on a TaGLU-1Dy transgene and activates its expression. AtGCN5 also targets the TaGLU-1Dy transgene and is involved in the establishment of acetylation at H3K9 and H3K14. These results demonstrate that TaGAMyb plays a dual role in activating expression of glutenin gene by directly binding to the TaGLU promoter and by recruiting GCN5 to modulate histone acetylation during wheat endosperm development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  18. Succession of Microbial Communities during Hot Composting as Detected by PCR–Single-Strand-Conformation Polymorphism-Based Genetic Profiles of Small-Subunit rRNA Genes

    PubMed Central

    Peters, Sabine; Koschinsky, Stefanie; Schwieger, Frank; Tebbe, Christoph C.

    2000-01-01

    A cultivation-independent technique for genetic profiling of PCR-amplified small-subunit rRNA genes (SSU rDNA) was chosen to characterize the diversity and succession of microbial communities during composting of an organic agricultural substrate. PCR amplifications were performed with DNA directly extracted from compost samples and with primers targeting either (i) the V4–V5 region of eubacterial 16S rRNA genes, (ii) the V3 region in the 16S rRNA genes of actinomycetes, or (iii) the V8–V9 region of fungal 18S rRNA genes. Homologous PCR products were converted to single-stranded DNA molecules by exonuclease digestion and were subsequently electrophoretically separated by their single-strand-conformation polymorphism (SSCP). Genetic profiles obtained by this technique showed a succession and increasing diversity of microbial populations with all primers. A total of 19 single products were isolated from the profiles by PCR reamplification and cloning. DNA sequencing of these molecular isolates showed similarities in the range of 92.3 to 100% to known gram-positive bacteria with a low or high G+C DNA content and to the SSU rDNA of γ-Proteobacteria. The amplified 18S rRNA gene sequences were related to the respective gene regions of Candida krusei and Candida tropicalis. Specific molecular isolates could be attributed to different composting stages. The diversity of cultivated bacteria isolated from samples taken at the end of the composting process was low. A total of 290 isolates were related to only 6 different species. Two or three of these species were also detectable in the SSCP community profiles. Our study indicates that community SSCP profiles can be highly useful for the monitoring of bacterial diversity and community successions in a biotechnologically relevant process. PMID:10698754

  19. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  20. The Archipelago Ubiquitin Ligase Subunit Acts in Target Tissue to Restrict Tracheal Terminal Cell Branching and Hypoxic-Induced Gene Expression

    PubMed Central

    Mortimer, Nathan T.; Moberg, Kenneth H.

    2013-01-01

    The Drosophila melanogaster gene archipelago (ago) encodes the F-box/WD-repeat protein substrate specificity factor for an SCF (Skp/Cullin/F-box)-type polyubiquitin ligase that inhibits tumor-like growth by targeting proteins for degradation by the proteasome. The Ago protein is expressed widely in the fly embryo and larva and promotes degradation of pro-proliferative proteins in mitotically active cells. However the requirement for Ago in post-mitotic developmental processes remains largely unexplored. Here we show that Ago is an antagonist of the physiologic response to low oxygen (hypoxia). Reducing Ago activity in larval muscle cells elicits enhanced branching of nearby tracheal terminal cells in normoxia. This tracheogenic phenotype shows a genetic dependence on sima, which encodes the HIF-1α subunit of the hypoxia-inducible transcription factor dHIF and its target the FGF ligand branchless (bnl), and is enhanced by depletion of the Drosophila Von Hippel Lindau (dVHL) factor, which is a subunit of an oxygen-dependent ubiquitin ligase that degrades Sima/HIF-1α protein in metazoan cells. Genetic reduction of ago results in constitutive expression of some hypoxia-inducible genes in normoxia, increases the sensitivity of others to mild hypoxic stimulus, and enhances the ability of adult flies to recover from hypoxic stupor. As a molecular correlate to these genetic data, we find that Ago physically associates with Sima and restricts Sima levels in vivo. Collectively, these findings identify Ago as a required element of a circuit that suppresses the tracheogenic activity of larval muscle cells by antagonizing the Sima-mediated transcriptional response to hypoxia. PMID:23459416

  1. An upstream initiator caspase 10 of snakehead murrel Channa striatus, containing DED, p20 and p10 subunits: molecular cloning, gene expression and proteolytic activity.

    PubMed

    Arockiaraj, Jesu; Gnanam, Annie J; Muthukrishnan, Dhanaraj; Pasupuleti, Mukesh; Milton, James; Singh, Arun

    2013-02-01

    Caspase 10 (CsCasp10) was identified from a constructed cDNA library of freshwater murrel (otherwise called snakehead) Channa striatus. The CsCasp10 is 1838 base pairs (bp) in length and it is encoding 549 amino acid (aa) residues. CsCasp10 amino acid contains two death effector domains (DED) in the N-terminal at 2-77 and 87-154 and it contains caspase family p20 domain (large subunit) and caspase family p10 domain (small subunit) in the C-terminal at 299-425 and 449-536 respectively. Pairwise analysis of CsCasp10 showed the highest sequence similarity (79%) with caspase 10 of Paralichthys olivaceus. Moreover, the phylogenetic analysis showed that CsCasp10 is clustered together with other fish caspase 10, formed a sister group with caspase 10 from other lower vertebrates including amphibian, reptile and birds and finally clustered together with higher vertebrates such as mammals. Significantly (P < 0.05) highest CsCasp10 gene expression was noticed in gills and lowest in intestine. Furthermore, the CsCasp10 gene expression in C. striatus was up-regulated in gills by fungus Aphanomyces invadans and bacteria Aeromonas hydrophila induction. The proteolytic activity was analyzed using the purified recombinant CsCasp10 protein. The results showed the proteolytic activity of CsCasp10 for caspase 10 substrate was 2.5 units per μg protein. Moreover, the proteolytic activities of CsCasp10 in kidney and spleen induced by A. invadans and A. hydrophila stimulation were analyzed by caspase 10 activity assay kit. All these results showed that CsCasp10 are participated in immunity of C. striatus against A. invadans and A. hydrophila infection.

  2. Characterization of Rice Anthranilate Synthase α-Subunit Genes OASA1 and OASA2. Tryptophan Accumulation in Transgenic Rice Expressing a Feedback-Insensitive Mutant of OASA11

    PubMed Central

    Tozawa, Yuzuru; Hasegawa, Hisakazu; Terakawa, Teruhiko; Wakasa, Kyo

    2001-01-01

    Anthranilate synthase (AS) is a key enzyme in the synthesis of tryptophan (Trp), indole-3-acetic acid, and indole alkaloids. Two genes, OASA1 and OASA2, encoding AS α-subunits were isolated from a monocotyledonous plant, rice (Oryza sativa cv Nipponbare), and were characterized. A phylogenetic tree of AS α-subunits from various species revealed a close evolutionary relationship among OASA1 and Arabidopsis ASA2, Ruta graveolens ASα2, and tobacco ASA2, whereas OASA2, Arabidopsis ASA1, and R. graveolens ASα1 were more distantly related. OASA1 is expressed in all tissues tested, but the amount of its mRNA was greater in panicles than in leaves and roots. The abundance of OASA2 transcripts is similar among tissues and greater than that of OASA1 transcripts; furthermore, OASA2 expression was induced by a chitin heptamer, a potent elicitor, suggesting that OASA2 participates in secondary metabolism. Expression of wild-type OASA1 or OASA2 transgenes did not affect the Trp content of rice calli or plants. However, transformed calli and plants expressing a mutated OASA1 gene, OASA1(D323N), that encodes a protein in which aspartate-323 is replaced with asparagine manifested up to 180- and 35-fold increases, respectively, in Trp accumulation. These transgenic calli and plants were resistant to 300 μm 5-methyl-Trp, and AS activity of the calli showed a markedly reduced sensitivity to Trp. These results show that OASA1 is important in the regulation of free Trp concentration, and that mutation of OASA1 to render the encoded protein insensitive to feedback inhibition results in accumulation of Trp at high levels. The OASA1(D323N) transgene may prove useful for the generation of crops with an increased Trp content. PMID:11500548

  3. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes.

    PubMed

    Waeschenbach, Andrea; Webster, Bonnie L; Bray, Rodney A; Littlewood, D T J

    2007-10-01

    The addition of large subunit ribosomal DNA (lsrDNA) to small subunit ribosomal DNA (ssrDNA) has been shown to add resolution to phylogenies at various taxonomic levels for a diversity of phyla. We added nearly complete lsrDNA (4057-4593bp) sequences to ssrDNA (1940-2228bp) for 26 ingroup and 3 outgroup taxa in an attempt to provide an improved ordinal phylogeny for the Cestoda. Ten lsrDNA and seven ssrDNA sequences were generated from new taxa and 13 existing partial lsrDNA sequences were sequenced to completion. The majority of phylogenetic signal in the combined analysis came from lsrDNA (69.6% of parsimonious informative sites, as opposed to 30.4% obtained from ssrDNA), resulting in almost identical topologies for lsrDNA and lsr+ssrDNA (pairwise symmetric distance=6) in model-based analyses. Topology testing found trees based on partial lsrDNA (domains D1-D3)+ssrDNA and complete lsr+ssrDNA to differ significantly; the addition of lsrDNA domains D4-D12 had a significant effect on topology. Overall nodal support was greatest in the combined analysis and weakest for ssrDNA only. Our molecular phylogenies differed significantly from those based on morphology alone. Acetabulate lineages form a monophyletic group, with the Tetraphyllidea being paraphyletic. Support for the combined data was high for the following topology: (Litobothriidea (Lecanicephalidea (Rhinebothrium/Rhodobothrium (Clistobothrium (Pachybothrium(Acanthobothrium Proteocephalidea) (Mesocestoididae, Nippotaeniidea, Cyclophyllidea, Tetrabothriidea)))))); all genus names refer to tetraphyllidean lineages. Although the interrelationships among the four most derived taxa remain uncertain, overall ambiguity of the acetabulate interrelationships was reduced. The Pseudophyllidea were recovered as polyphyletic, with support for a sister-group relationship between Diphyllobothriidae and Haplobothriidea. The monophyly of the Trypanorhyncha was recovered for the first time based on molecular data. The positions

  4. The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica – and the first record for a putative Atpase subunit 8 gene in marine bivalves

    PubMed Central

    Dreyer, Hermann; Steiner, Gerhard

    2006-01-01

    Background Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of Acanthocardia tuberculata and Hiatella arctica, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference. Results The size of the mt-genome in Acanthocardia tuberculata is 16.104 basepairs (bp), and in Hiatella arctica 18.244 bp. The Acanthocardia mt-genome contains 12 of the typical protein coding genes, lacking the Atpase subunit 8 (atp8) gene, as all published marine bivalves. In contrast, a complete atp8 gene is present in Hiatella arctica. In addition, we found a putative truncated atp8 gene when re-annotating the mt-genome of Venerupis philippinarum. Both mt-genomes reported here encode all genes on the same strand and have an additional trnM. In Acanthocardia several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In Hiatella, the 3' end of the NADH dehydrogenase subunit (nad)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of Hiatella is markedly different from all other known molluscan mt-genomes, that of Acanthocardia shows few identities with the Venerupis philippinarum. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of Acanthocardia and Venerupis. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves. Conclusion The two mt

  5. Serum Amyloid A3 Gene Expression in Adipocytes is an Indicator of the Interaction with Macrophages

    PubMed Central

    Sanada, Yohei; Yamamoto, Takafumi; Satake, Rika; Yamashita, Akiko; Kanai, Sumire; Kato, Norihisa; van de Loo, Fons AJ; Nishimura, Fusanori; Scherer, Philipp E.; Yanaka, Noriyuki

    2016-01-01

    The infiltration of macrophages into adipose tissue and their interaction with adipocytes are essential for the chronic low-grade inflammation of obese adipose tissue. In this study, we identified the serum amyloid A3 (Saa3) gene as a key adipocyte-derived factor that is affected by interaction with macrophages. We showed that the Saa3 promoter in adipocytes actually responds to activated macrophages in a co-culture system. Decreasing C/EBPβ abundance in 3T3-L1 adipocytes or point mutation of C/EBPβ elements suppressed the increased promoter activity in response to activated macrophages, suggesting an essential role of C/EBPβ in Saa3 promoter activation. Bioluminescence based on Saa3 promoter activity in Saa3-luc mice was promoted in obese adipose tissue, showing that Saa3 promoter activity is most likely related to macrophage infiltration. This study suggests that the level of expression of the Saa3 gene could be utilized for the number of infiltrated macrophages in obese adipose tissue. PMID:27929048

  6. Physical and Functional Interaction between the Bloom's Syndrome Gene Product and the Largest Subunit of Chromatin Assembly Factor 1

    PubMed Central

    Jiao, Renjie; Bachrati, Csanád Z.; Pedrazzi, Graziella; Kuster, Patrick; Petkovic, Maja; Li, Ji-Liang; Egli, Dieter; Hickson, Ian D.; Stagljar, Igor

    2004-01-01

    Bloom's syndrome (BS) is a genomic instability disorder characterized by cancer susceptibility. The protein defective in BS, BLM, belongs to the RecQ family of DNA helicases. In this study, we found that BLM interacts with hp150, the largest subunit of chromatin assembly factor 1 (CAF-1), in vitro and in vivo. Colocalization of a proportion of the cellular complement of these two proteins is found at specific nuclear foci coinciding with sites of DNA synthesis in the S phase. This colocalization increases in the presence of agents that damage DNA or inhibit DNA replication. In support of a functional interaction between BLM and CAF-1, we show that BLM inhibits CAF-1-mediated chromatin assembly during DNA repair in vitro. Although CAF-1 activity is not altered in BLM-deficient cells, the absence of BLM does impair the ability of CAF-1 to be mobilized within the nucleus in response to hydroxyurea treatment. Our results provide the first link between BLM and chromatin assembly coupled to DNA repair and suggest that BLM and CAF-1 function in a coordinated way to promote survival in response to DNA damage and/or replication blockade. PMID:15143166

  7. Genetic diversity among Clostridium botulinum strains harboring bont/A2 and bont/A3 genes.

    PubMed

    Lúquez, Carolina; Raphael, Brian H; Joseph, Lavin A; Meno, Sarah R; Fernández, Rafael A; Maslanka, Susan E

    2012-12-01

    Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE.

  8. A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae.

    PubMed

    Gao, Caiqiu; Wang, Yucheng; Jiang, Bo; Liu, Guifeng; Yu, Lili; Wei, Zhigang; Yang, Chuanping

    2011-02-01

    Plant vacuolar H(+)-ATPase (V-ATPase) plays an important role in response to different adverse environmental conditions. In the present study, we cloned and characterized a V-ATPase c subunit gene (ThVHAc1) from Tamarix hispida. The deduced ThVHAc1 amino acid sequence lacks a signal peptide and ThVHAc1 is a highly hydrophobic protein with four transmembrane regions. A transient expression assay showed that the ThVHAc1-GFP fusion protein is expressed on onion epidermal endomembrane cells. Real-time RT-PCR demonstrated that ThVHAc1 gene expression was induced by NaCl, NaHCO(3), PEG and CdCl(2) stress in T. hispida roots, stems and leaves. Exogenous application of abscisic acid (ABA) also stimulated ThVHAc1 transcript levels in the absence of stress, suggesting that ThVHAc1 is involved in ABA-dependent stress signaling pathway. Furthermore, the transgenic yeast expressing ThVHAc1 increased salt, drought, ultraviolet (UV), oxidative, heavy metal, cold and high temperature tolerance. Our results suggested that the ThVHAc1 gene from T. hispida serves a stress tolerance role in the species.

  9. Phylogenetic relationships within Taenia taeniaeformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene.

    PubMed

    Okamoto, M; Bessho, Y; Kamiya, M; Kurosawa, T; Horii, T

    1995-01-01

    Nucleotide sequence variations in a region of the mitochondrial cytochrome c oxidase subunit I (COI) gene (391 bp) were examined within seven species of the genus Taenia and two species of the genus Echinococcus, including ten isolates of T. taeniaeformis and six isolates of E. multilocularis. More than a 12% rate of nucleotide differences between taeniid species was found, allowing the species to be distinguished. In E. multilocularis, no sequence variation was observed among isolates, regardless of the host (gray red-backed vole, tundra vole, pig, Norway rat) or area (Japan, Alaska) from which each metacestode had been isolated. In contrast, six distinct sequences were detected among the ten T. taeniaeformis isolates examined. The level of nucleotide variation in the COI gene within T. taeniaeformis isolates except for one isolate from the gray red-backed vole (TtACR), which has been proposed as a distinct strain or a different species, was about 0.3%-4.1%, whereas the COI gene sequence for TtACR differed from those of the other isolates, with levels being 9.0%-9.5%. Phylogenetic trees were then inferred from these sequence data using two different algorithms.

  10. Molecular cloning, structural analysis and tissue expression of protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene in Tianfu goat muscle.

    PubMed

    Wan, Lu; Ma, Jisi; Xu, Gangyi; Wang, Daihua; Wang, Nianlu

    2014-02-07

    Calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase, plays a critical role in controlling skeletal muscle fiber type. However, little information is available concerning the expression of calcineurin in goat. Therefore, protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene, also called calcineurin Aα, was cloned and its expression characterized in Tianfu goat muscle. Real time quantitative polymerase chain reaction (RT-qPCR) analyses revealed that Tianfu goat PPP3CA was detected in cardiac muscle, biceps femoris muscle, abdominal muscle, longissimus dors muscle, and soleus muscle. High expression levels were found in biceps femoris muscle, longissimus muscle and abdominal muscle (p < 0.01), and low expression levels were seen in cardiac muscle and soleus muscle (p > 0.05). In addition, the spatial-temporal mRNA expression levels showed different variation trends in different muscles with the age of the goats. Western blotting further revealed that PPP3CA protein was expressed in the above-mentioned tissues, with the highest level in biceps femoris muscle, and the lowest level in soleus muscle. In this study, we isolated the full-length coding sequence of Tianfu goat PPP3CA gene, analyzed its structure, and investigated its expression in different muscle tissues from different age stages. These results provide a foundation for understanding the function of the PPP3CA gene in goats.

  11. The gene for replication factor C subunit 2 (RFC2) is within the 7q11.23 Williams syndrome deletion

    SciTech Connect

    Peoples, R.; Perez-Jurado, L.; Francke, U.; Yu-Ker Wang; Kaplan, P.

    1996-06-01

    Williams syndrome (WS) is a developmental disorder with multiple system manifestations, including supraval var aortic stenosis (SVAS), peripheral pulmonic stenosis, connective tissue abnormalities, short stature, characteristic personality profile and cognitive deficits, and variable hypercalcemia in infancy. It is caused by heterozygosity for a chromosomal deletion of part of band 7q11.23 including the elastin locus (ELN). Since disruption of the ELN gene causes autosomal dominant SVAS, it is assumed that ELN haploinsufficiency is responsible for the cardiovascular features of WS. The deletion that extends from the ELN locus in both directions is {ge}200 kb in size, although estimates of {ge}2 Mb are suggested by high-resolution chromosome banding and physical mapping studies. We have searched for additional dosage-sensitive genes within the deletion that may be responsible for the noncardiovascular features. We report here that the gene for replication factor C subunit 2 (RFC2) maps within the WS deletion region and was found to be deleted in all of 18 WS patients studied. The protein product of RFC2 is part of a multimeric complex involved in DNA elongation during replication. 14 refs., 3 figs.

  12. TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression

    PubMed Central

    Martianov, Igor; Velt, Amandine; Davidson, Guillaume; Choukrallah, Mohamed-Amin; Davidson, Irwin

    2016-01-01

    Mammalian genomes encode two genes related to the TATA-box binding protein (TBP), TBP-related factors 2 and 3 (TRF2 and TRF3). Male Trf2−/− mice are sterile and characterized by arrested spermatogenesis at the transition from late haploid spermatids to early elongating spermatids. Despite this characterization, the molecular function of murine Trf2 remains poorly characterized and no direct evidence exists to show that it acts as a bona fide chromatin-bound transcription factor. We show here that Trf2 forms a stable complex with TFIIA or the testis expressed paralogue ALF chaperoned in the cytoplasm by heat shock proteins. We demonstrate for the first time that Trf2 is recruited to active haploid cell promoters together with Tbp, Taf7l and RNA polymerase II. RNA-seq analysis identifies a set of genes activated in haploid spermatids during the first wave of spermatogenesis whose expression is down-regulated by Trf2 inactivation. We therefore propose that Trf2 is recruited to the preinitiation complex as a testis-specific subunit of TFIIA/ALF that cooperates with Tbp and Taf7l to promote haploid cell gene expression. PMID:27576952

  13. A potential role for RNA turnover in the light regulation of plant gene expression: ribulose-1,5-bisphosphate carboxylase small subunit in soybean.

    PubMed Central

    Shirley, B W; Meagher, R B

    1990-01-01

    Post-transcriptional regulation of the genes encoding the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase was examined in soybean seedlings. Substantial discrepancies were detected between relative in vitro transcription rates and steady-state RNA levels in light- and dark-grown seedling leaves, indicating that rbcS RNA may be degraded more rapidly in light than in darkness. Additional data imply that the turnover mechanism is rapidly induced by light, maintained for some time in darkness, and that it may be negatively controlled by far-red light. The proposed RNA turnover system does not affect all RNAs equally since a soybean actin gene showed equivalent in vitro transcription rates and RNA levels in light and darkness. Soybean rbcS genes may be subject to a novel mode of control in which light-induced expression is accompanied by an increased rate of RNA degradation. Models for the specific regulation of rbcS RNA stability in response to light are presented. Images PMID:2356127

  14. Photocontrol of the expression of genes encoding chlorophyll a/b binding proteins and small subunit of ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (L. ) and Nicotiana tabacum (L. )

    SciTech Connect

    Wehmeyer, B. Albert-Ludwigs-Universitaet, Freiburg ); Cashmore, A.R. ); Schaefer, E. )

    1990-07-01

    Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light. These distinct expression characteristics are shown to reflect differences at the level of transcription.

  15. RNA differential display of scarless wound healing in fetal rabbit indicates downregulation of a CCT chaperonin subunit and upregulation of a glycophorin-like gene transcript.

    PubMed

    Darden, D L; Hu, F Z; Ehrlich, M D; Gorry, M C; Dressman, D; Li, H S; Whitcomb, D C; Hebda, P A; Dohar, J E; Ehrlich, G D

    2000-03-01

    wound than in the other 3 tissues. A transcript that was downregulated in fetal wound showed very high sequence homology to part of the human gene for the eta subunit of the hetero-oligomeric particle CCT (the chaperonin containing T-complex polypeptide 1 or TCP-1). An upregulated amplimer showed significant DNA sequence homology to glycophorins A and B. One sequence was identified as 28S rRNA. The remaining 4 candidate sequences showed no significant homology to known genes, but 1 had high homology to expressed sequence tags of unknown function. With careful experimental design and proper controls and verifications, differential display of RNA expression is a potentially powerful method of finding genes that specifically regulate a particular physiological process such as fetal wound healing. No a priori knowledge of what genes might be involved, or why, is necessary. This study indicates that downregulation of a gene that codes for a chaperonin subunit and upregulation of several other genes may be involved in the striking scarless character of wound healing in the mammalian fetus. Results suggest the hypothesis that downregulation of the CCT chaperonin in fetal wound may inhibit the formation of myofibroblasts, a cell type that correlates highly with scarring in postnatal wound healing, by preventing the folding of sufficient alpha-smooth muscle actin to form the stress fibers characteristic of these cells.

  16. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.

    PubMed

    Li, Zhi-Guo; Yin, Wei-Bo; Song, Li-Ying; Chen, Yu-Hong; Guan, Rong-Zhan; Wang, Jing-Qiao; Wang, Richard R-C; Hu, Zan-Min

    2011-03-01

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric acetyl-CoA carboxylase (ACCase) that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin carboxyl carrier protein, and CO2 to form carboxybiotin carboxyl carrier protein. In this study, we cloned four genes encoding BC from Brassica napus L. (namely BnaC.BC.a, BnaC.BC.b, BnaA.BC.a, and BnaA.BC.b), and two were cloned from each of the two parental species Brassica rapa L. (BraA.BC.a and BraA.BC.b) and Brassica oleracea L. (BolC.BC.a and BolC.BC.b). Sequence analyses revealed that in B. napus the genes BnaC.BC.a and BnaC.BC.b were from the C genome of B. oleracea, whereas BnaA.BC.a and BnaA.BC.b were from the A genome of B. rapa. Comparative and cluster analysis indicated that these genes were divided into two major groups, BnaC.BC.a, BnaA.BC.a, BraA.BC.a, and BolC.BC.a in group-1 and BnaC.BC.b, BnaA.BC.b, BraA.BC.b, and BolC.BC.b in group-2. The divergence of group-1 and group-2 genes occurred in their common ancestor 13-17 million years ago (MYA), soon after the divergence of Arabidopsis and Brassica (15-20 MYA). This time of divergence is identical to the previously reported triplicated time of paralogous subgenomes of diploid Brassica species and the divergence date of group-1 and group-2 genes of α-carboxyltransferase, another subunit of heteromeric ACCase, in Brassica. Reverse transcription PCR revealed that the expression level of group-1 and group-2 genes varied in different organs, and the expression patterns of the two groups of genes were similar in different organs, except in flower. However, two paralogs of group-2 BC genes from B. napus could express differently in mature plants tested by generating BnaA.BC.b and BnaC.BC.b promoter-β-glucuronidase (GUS) fusions. The amino acid sequences of proteins encoded by these genes were highly conserved, except the sequence encoding

  17. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis

    PubMed Central

    Tamirisa, Srinath; Vudem, Dashavantha R.; Khareedu, Venkateswara R.

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene (CKS) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS (CcCKS) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS-transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that CcCKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants. PMID:28239388

  18. Cloning and characterization of the 5'-upstream sequence governing the cell cycle-dependent transcription of mouse DNA polymerase alpha 68 kDa subunit gene.

    PubMed

    Nishikawa, N S; Izumi, M; Uchida, H; Yokoi, M; Miyazawa, H; Hanaoka, F

    2000-04-01

    We have isolated the genomic DNA fragment spanning the 5-end and the first four exons encoding the 68 kDa subunit (p68) of the mouse DNA polymerase alpha-primase complex [corrected]. The p68 promoter region lacks TATA and CAAT boxes, but contains a GC-rich sequence, two palindrome sequences and two putative E2F-binding sites [corrected]. A series of transient expression assays using a luciferase reporter gene indicated that a region from nucleotide position -89 to -30 (-89/-30) with respect to the transcription initiation site is crucial for basal transcription of the p68 gene in proliferating NIH 3T3 cells. In particular, part of the GC-rich sequence (-57/-46) and the palindrome (-81/-62) elements were necessary for promoter activity, both of which share homology with the E-box sequence. Gel mobility shift assays using NIH 3T3 nuclear extracts revealed that the upstream stimulatory factor, known as an E-box-binding protein, binds to these sites. Moreover, we observed binding of E2F to two sites near the transcription initiation site (-11/-3 and +9/+16). A transient luciferase expression assay using synchronized NIH 3T3 cells in G(0)phase revealed that these E2F sites are essential for transcription induction of the p68 gene after serum stimulation, but are dispensable for basal transcription. These results indicate that growth-dependent regulation of transcription of the mouse p68 and p180 genes is mediated by a common factor, E2F; however, basal transcription of the genes, interestingly, is regulated by different transcription factors.

  19. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis.

    PubMed

    Tamirisa, Srinath; Vudem, Dashavantha R; Khareedu, Venkateswara R

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene (CKS) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS (CcCKS) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS-transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that CcCKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants.

  20. Analysis of the cytochrome c oxidase subunit 1 (COX1) gene reveals the unique evolution of the giant panda.

    PubMed

    Hu, Yao-Dong; Pang, Hui-Zhong; Li, De-Sheng; Ling, Shan-Shan; Lan, Dan; Wang, Ye; Zhu, Yun; Li, Di-Yan; Wei, Rong-Ping; Zhang, He-Min; Wang, Cheng-Dong

    2016-11-05

    As the rate-limiting enzyme of the mitochondrial respiratory chain, cytochrome c oxidase (COX) plays a crucial role in biological metabolism. "Living fossil" giant panda (Ailuropoda melanoleuca) is well-known for its special bamboo diet. In an effort to explore functional variation of COX1 in the energy metabolism behind giant panda's low-energy bamboo diet, we looked at genetic variation of COX1 gene in giant panda, and tested for its selection effect. In 1545 base pairs of the gene from 15 samples, 9 positions were variable and 1 mutation leaded to an amino acid sequence change. COX1 gene produces six haplotypes, nucleotide (pi), haplotype diversity (Hd). In addition, the average number of nucleotide differences (k) is 0.001629±0.001036, 0.8083±0.0694 and 2.517, respectively. Also, dN/dS ratio is significantly below 1. These results indicated that giant panda had a low population genetic diversity, and an obvious purifying selection of the COX1 gene which reduces synthesis of ATP determines giant panda's low-energy bamboo diet. Phylogenetic trees based on the COX1 gene were constructed to demonstrate that giant panda is the sister group of other Ursidae.

  1. Congenital Central Hypothyroidism Caused by a Novel Thyroid-Stimulating Hormone-Beta Subunit Gene Mutation in Two Siblings.

    PubMed

    Özhan, Bayram; Boz Anlaş, Özlem; Sarıkepe, Bilge; Albuz, Burcu; Semerci Gündüz, Nur

    2017-09-01

    Congenital central hypothyroidism (CCH) is a very rare disease. Alterations in pituitary development genes as well as mutations of immunoglobulin superfamily member 1 and transducin β-like protein 1 can result in CCH and multiple pituitary hormone deficiencies. However, mutations of the thyrotropin-releasing hormone receptor or thyroid-stimulating hormone-beta (TSHB) gene are responsible for isolated CCH. In this paper, we present the cases of two siblings with a novel mutation of TSHB. Direct sequencing of the coding regions and exon/intron boundaries of the TSHB gene revealed two homozygous nucleotides changes. One of them was c.40A>G (rs10776792) which is a very common variation that is also seen in healthy individuals, the other was c.94G>A at codon 32 of exon 2 which resulted in a change from glutamic acid to lysine (p.E32K). Both patients were homozygous and the parents were heterozygous.

  2. A novel Y243S mutation in the pyruvate dehydrogenase El alpha gene subunit: correlation with thiamine pyrophosphate interaction.

    PubMed

    Benelli, C; Fouque, F; Redonnet-Vernhet, I; Malgat, M; Fontan, D; Marsac, C; Dey, R

    2002-08-01

    We identified a new Y243S mutation in the X-linked E1 alpha-PDH gene in a patient with pyruvate dehydrogenase complex (PDHc) deficiency. The activity in cultured fibroblasts was very low even in the presence of high thiamine pyrophosphate (TPP) concentrations, indicating that the defect could be due to decreased affinity of PDHc for TPP.

  3. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice

    PubMed Central

    2016-01-01

    Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time polymerase chain reaction (PCR) in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP) there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain. PMID:27896032

  4. Molecular cloning and expression analysis of a new bilin lyase: the cpcT gene encoding a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the β-subunit of phycocyanin in Arthrospira platensis FACHB314.

    PubMed

    Zhang, Ran; Feng, Xiao-Ting; Wu, Fei; Ding, Yan; Zang, Xiao-Nan; Zhang, Xue-Cheng; Yuan, Ding-Yang; Zhao, Bing-Ran

    2014-07-10

    To study the assembly of phycocyanin β subunit, the gene cpcT was first cloned from Arthrospira platensis FACHB314. To explore the function of cpcT, the DNA of phycocyanin β subunit and cpcT were transformed into Escherichia coli BL21 with the plasmid pET-hox1-pcyA, which contained the genes hemeoxygenase 1 (Hox1) and ferredoxin oxidoreductase (PcyA) needed to produce phycocyanobilin. The transformed strains showed specific phycocyanin fluorescence, and the fluorescence intensity was stronger than the strains with only phycocyanin β subunit, indicating that CpcT can promote the assembly of phycocyanin to generate fluorescence. To study the possible binding sites of apo-phycocyanin and phycocyanobilin, the Cys-82 and Cys-153 of the β subunit were individually mutated, giving two kinds of mutants. The results show that Cys-153 maybe the active site for β subunit binding to phycocyanobilins, which is catalyzed by CpcT in A. platensis FACHB314.

  5. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes

    SciTech Connect

    Yamano, Shigeru; Tatsuno, Jun; Gonzalez, F.J. )

    1990-02-06

    Three cDNAs, designated IIA3, IIA3v, and IIA4, coding for P450s in the CYP2A gene subfamily were isolated from a {lambda}gt11 library prepared from human hepatic mRNA. Only three nucleotide differences and a single amino acid difference, Leu{sup 160}{yields}His, were found between IIA3 and IIA3v, indicating that they are probably allelic variants. IIA4 displayed 94% amino acid similarity with IIA3 and IIA3v. The three cDNAs were inserted into vaccinia virus, and recombinant viruses were used to infect human hepatoma Hep G2 cells. Only IIA3 was able to produce an enzyme that had a reduced CO-bound spectrum with a {lambda}{sub max} at 450 nm. This expressed enzyme was able to carry out coumarin 7-hydroxylation and ethoxycoumarin O-deethylation. cDNA-expressed IIA3v and IIA4 failed to incorporate heme and were enzymatically inactive. Analysis of IIA proteins in human liver microsomes, using antibody against rat IIA2, revealed two proteins of 49 and 50 kDa, the former of which appeared to correlate with human microsomal coumarin 7-hydroxylase activity. A more striking correlation was found between IIa mRNA and enzyme activity. The rat antibody was able to completely abolish coumarin 7-hydroxylase activity in 12 liver samples. These data establish that the CYP2A3 gene product is primarily responsible for coumarin 7-hydroxylase activity in human liver. The level of expression of this activity varied up to 40-fold between livers. Levels of IIA mRNA also varied significantly between liver specimens, and three specimens had no detectable mRNA.

  6. A vacuolar-type proton (H+) translocating ATPase alpha subunit encoded by the Hc-vha-6 gene of Haemonchus contortus.

    PubMed

    Hu, Min; He, Li; Campbell, Bronwyn E; Zhong, Weiwei; Sternberg, Paul W; Gasser, Robin B

    2010-08-01

    In the present study, a full-length cDNA (designated Hc-vha-6) inferred to encode an alpha subunit of a vacuolar-type proton translocating adenosine triphosphatase (V-ATPase) was isolated from the parasitic nematode Haemonchus contortus, and characterized. The transcript for Hc-vha-6 was detected in all developmental stages and both sexes of H. contortus. Elements, including two TATA box (TATAA), two inverted CAAT box (ATTGG), five E box (CANNTG) and six GATA as well as five inverse GATA (TTATC) transcription factor motifs, were identified in the non-coding region upstream of Hc-vha-6. The open reading frame (ORF) of 2601 nucleotides encoded a protein (Hc-VHA-6) of 866 amino acids and a molecular weight of approximately 98.7 kDa. Comparison with a published protein sequence for a homologue (VPH1P) from yeast showed that Hc-VHA-6 had nine transmembrane domains and the 14 essential amino acid residues associated with enzyme activity, assembly, intracellular and/or membrane targeting. Phylogenetic analyses of selected amino acid sequence data revealed Hc-VHA-6 to be most closely related to VHA-6 of Caenorhabditis elegans. A predictive network analysis inferred that vha-6 interacts with at least seven other genes encoding V-ATPase subunits and a small Rab GTPase. This study provides the first insight into a V-ATPase of parasitic nematodes and a sound basis for future functional genomic work. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior

    PubMed Central

    Glass, Michael J.; Robinson, Danielle C.; Waters, Elizabeth; Pickel, Virginia M.

    2013-01-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is co-expressed not only with the dopamine D1 receptor (D1R), but also with the μ-opioid receptor (μ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition (PPI) to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing μ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and μ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking and reduction in AS, but also plays an independent role in controling social behaviors that are impaired in multiple psychiatric disorders. PMID:23345061

  8. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior.

    PubMed

    Glass, Michael J; Robinson, Danielle C; Waters, Elizabeth; Pickel, Virginia M

    2013-06-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is coexpressed not only with the dopamine D1 receptor (D1R), but also with the µ-opioid receptor (µ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing µ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and µ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking, as well as auditory startle and social behaviors that are impaired in multiple psychiatric disorders. Copyright © 2013 Wiley Periodicals, Inc.

  9. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish.

    PubMed

    Klausen, Christian; Booth, Morgan; Habibi, Hamid R; Chang, John P

    2008-08-01

    The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish.

  10. Targeted Disruption of the Gene Encoding the Murine Small Subunit of Carboxypeptidase N (CPN1) Causes Susceptibility to C5a Anaphylatoxin-Mediated Shock1

    PubMed Central

    Mueller-Ortiz, Stacey L.; Wang, Dachun; Morales, John E.; Li, Li; Chang, Jui-Yoa; Wetsel, Rick A.

    2015-01-01

    Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits (CPN1) and two large subunits (CPN2) that protect the protein from degradation. Historically, CPN has been implicated as a major regulator of inflammation by its enzymatic cleavage of functionally important arginine and lysine amino acids from potent phlogistic molecules, such as the complement anaphylatoxins C3a and C5a. Because of no known complete CPN deficiencies, the biological impact of CPN in vivo has been difficult to evaluate. Here, we report the generation of a mouse with complete CPN deficiency by targeted disruption of the CPN1 gene. CPN1−/− mice were hypersensitive to lethal anaphylactic shock due to acute complement activation by cobra venom factor. This hypersensitivity was completely resolved in CPN1−/−/C5aR−/− but not in CPN1−/−/C3aR−/− mice. Moreover, CPN1−/− mice given C5a i.v., but not C3a, experienced 100% mortality. This C5a-induced mortality was reduced to 20% when CPN1−/− mice were treated with an antihistamine before C5a challenge. These studies describe for the first time a complete deficiency of CPN and demonstrate 1) that CPN plays a requisite role in regulating the lethal effects of anaphylatoxin-mediated shock, 2) that these lethal effects are mediated predominantly by C5a-induced histamine release, and 3) that C3a does not contribute significantly to shock following acute complement activation. PMID:19414808

  11. Gene expression of subunits of the IL-12 family cytokines in moDCs derived in vitro from the cord blood of children of healthy and allergic mothers.

    PubMed

    Hrdý, J; Novotná, O; Kocourková, I; Prokešová, L

    2014-01-01

    The incidence of allergic diseases is steadily increasing an urgent need to clarify the immunologic processes which occur early in life and signal an increased risk of possible future allergy development. The ratio and maturation state of DCs together with the cytokine environment are important in directing and modulating immune responses. The maturation state (presence of CD83) of cord blood monocyte-derived dendritic cells (moDCs) of 52 children of healthy mothers and 58 children of allergic mothers was estimated by flow cytometry. The capacity of moDCs to express genes for subunits of IL-12 family cytokines was monitored using real-time PCR and protein secretion in cell culture supernatants by ELISA. The percentage of CD83+ moDCs was significantly higher in the allergic group after LPS stimulation (43.11 ± 4.41) in comparison to the healthy group (24.85 ± 3.37). Significantly higher gene expression of subunits of IL-12 family members was observed in moDCs of children of allergic mothers, in comparison with children of healthy mothers. The differences were evident mainly after LPS stimulation of moDCs (healthy group: p19: 3.05 ± 1.24; p28: 14.8 ± 6.8; p35: 1.8 ± 0.6; p40: 8.0 ± 3.5; EBI3: 3.0 ± 1.2; allergic group: p19: 6.1 ± 2.7; p28: 61.4 ± 22.2; p35: 14.9 ± 6.5; p40: 36.4 ± 18.8; EBI3: 11.3 ± 3.2), with the exception of p28, whose expression was significantly higher in the allergic group even without stimulation (healthy group: 0.28 ± 0.12, allergic group: 0.87 ± 0.62). No significant difference between the healthy and allergic groups was found at the protein level. The observation of both increased presence of cell surface activation marker on moDCs and higher IL-12 family gene expression in LPS-stimulated moDCs of children of allergic mothers indicates a higher reactivity of these cells.

  12. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex

    PubMed Central

    Ahmadi, Shamseddin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2016-01-01

    Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels in rat striatum and prefrontal cortex (PFC) after induction of morphine tolerance. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: The results showed that long-term morphine a administration induces tolerance to analgesic effect of the opioid, as revealed by a significant decrease in morphine-induced analgesia on day 8 compared to day 1 of the injections (P<0.001). The results also showed that the NR1 gene expression at mRNA level in rats tolerant to morphine was significantly increased in the striatum (P<0.01) but decreased in the PFC (P<0.001). Conclusion: Therefore, changes in the NR1 gene expression in rat striatum and PFC have a region-specific association with morphine-induced analgesic tolerance. PMID:27563417

  13. New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius.

    PubMed

    Hiller, A; Henninger, T; Schäfer, G; Schmidt, C L

    2003-04-01

    The soxL gene from Sulfolobus acidocaldarius (DSM 639) encodes a Rieske iron-sulfur protein. In this study we report the identification of two open reading frames in its downstream region. The first one, named soxN, codes for a membrane protein bearing a resemblance to the b-type cytochromes of the cytochrome bc1 and b6f complexes. The protein is predicted to contain at least 10 transmembrane helices and features the two conserved histidine pairs coordinating the heme groups of these cytochromes. The second open reading frame, named odsN, encodes a soluble protein of unknown function. The genomic region displays a complex transcription pattern. Northern blot and RT-PCR analyses revealed the presence of mono- and bi-cistronic transcripts as well as a tri-cistronic transcript of soxL and cbsAB, encoding the mono-heme cytochrome b558/566. Phylogenetic analyses of the genes of the soxLN pair and of other archaeal gene pairs encoding Rieske iron-sulfur proteins and b-type cytochromes revealed an identical branching patterns for both protein families, suggesting an evolutionary link of these genes provided by the functional interaction of the proteins. On the basis of the findings of this study and the previously studied properties of the soxL and cbsA proteins, we propose the occurrence of a novel cytochrome bc1-analogous complex in the membranes of Sulfolobus, consisting of the cytochrome b homolog soxN, the Rieske protein soxL, the high potential cytochrome cbsA, as well as the non-redox-active subunits cbsB and odsN.

  14. Differential transcription profiles in Trypanosoma cruzi associated with clinical forms of Chagas disease: Maxicircle NADH dehydrogenase subunit 7 gene truncation in asymptomatic patient isolates.

    PubMed

    Baptista, Cassio S; Vêncio, Ricardo Z N; Abdala, Sarah; Carranza, Julio César; Westenberger, Scott J; Silva, Marcelo N; Pereira, Carlos A de B; Galvão, Lúcia M C; Gontijo, Eliane D; Chiari, Egler; Sturm, Nancy R; Zingales, Bianca

    2006-12-01

    The majority of individuals in the chronic phase of Chagas disease are asymptomatic (indeterminate form). Every year 2-3% of these individuals develop severe clinical manifestations (cardiac and digestive forms). In this study a Trypanosoma cruzi DNA microarray was used to compare the transcript profiles of six human isolates: three from asymptomatic and three from cardiac patients. Seven signals were expressed differentially between the two classes of isolates, including tryparedoxin, surface protease GP63, cyclophilin, some hypothetical proteins and the pre-edited maxicircle gene NADH dehydrogenase subunit 7 (ND7). The approximately 30-fold greater signal in cardiac strains for ND7 was the most pronounced of the group, and differential levels of pre-edited ND7 transcript confirmed the microarray analysis. The ND7 gene from asymptomatic isolates showed a deletion of 455bp from nt 222 to nt 677 relative to ND7 of the CL Brener reference strain. The ND7 gene structure correlated with disease manifestation for 20 isolates from clinically characterised, chronic phase patients. The ND7 lesion produces a truncated product that could impair the function of mitochondrial complex I. Possible links between the integrity of the electron transport chain and symptom presentation are discussed. We propose that ND7 and other genes of the pathway constitute valuable targets for PCR assays in the differential diagnosis of the infective T. cruzi strain. While this hypothesis requires validation by the examination of additional recent parasite isolates from patients with defined pathologies, the identification of specific molecular markers represents a promising advance in the association between parasite genetics and disease pathology.

  15. A G alpha subunit gene is essential for conidiation and potassium efflux but dispensable for pathogenicity of Alternaria alternata on citrus.

    PubMed

    Wang, Nan-Yi; Lin, Ching-Hsuan; Chung, Kuang-Ren

    2010-02-01

    Heterotrimeric G proteins play a profound role in the recognition and transduction of extracellular signals in eukaryotic cells. We characterized the AaG alpha1 gene, encoding a fungal Class I G alpha subunit of the GTP-binding protein, in Alternaria alternata of citrus. Interruption of AaG alpha1 with a marker gene resulted in fungal transformants producing fewer conidia, becoming hypersensitive to KCl, and displaying elevated lipolytic and pectolytic activities. Expression of a functional copy of AaG alpha1 in a null mutant restored all altered phenotypes to the wild type. The AaG alpha1 mutants, whose conidia germinate normally, caused necrotic lesions on citrus indistinguishable from wild type. Application of cAMP, its inhibitors (atropine and theophylline), or 3-isobutyl-1-methylxanthine (IBMX) decreased conidiation in the fungal strains carrying a functional AaG alpha1. In contrast, conidial formation in the null mutants was restored by dibutyryl-cAMP or by a low concentration of cAMP or theophylline (1 mM). Unlike the oxidative stress-responsive AaAP1 transcription activator or the AaFUS3 mitogen-activated protein kinase (MAPK), AaG alpha1 is not required for cellular resistance to oxidative, osmotic, or chemical stress. AaFUS3 has also been demonstrated to be essential for conidial formation, suggesting a possible interaction between AaG alpha1 and AaFUS3 during conidiation even though expression of AaG alpha1 was not affected by AaFUS3 and vice versa. Inactivation of AaG alpha1 suppressed accumulation of transcripts of the AaAP1 gene and the AaHSK1 gene encoding a histidine kinase. These are novel features that have not been previously characterized to be associated with the GTP-binding protein.

  16. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae.

    PubMed

    Springer, E; Sachs, M S; Woese, C R; Boone, D R

    1995-07-01

    Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.

  17. The error-prone DNA polymerase zeta catalytic subunit (Rev3) gene is ubiquitously expressed in normal and malignant human tissues.

    PubMed

    Kawamura, K; O-Wang, J; Bahar, R; Koshikawa, N; Shishikura, T; Nakagawara, A; Sakiyama, S; Kajiwara, K; Kimura, M; Tagawa, M

    2001-01-01

    Mutagenesis induced by UV light and chemical agents in yeast is largely dependent on the function of Rev3, the catalytic subunit of DNA polymerase zeta that carries out translesion DNA synthesis. Human and mouse homologues of the yeast Rev3 gene have recently been identified, and inhibition of Rev3 expression in cultured human fibroblasts by Rev3 anti-sense was shown to reduce UV-induced mutagenesis, indicating that Rev3 also plays a crucial role in mutagenesis in mammalian cells. A common variant transcript with an insertion of 128-bp between nucleotides +139 and +140 is found in both human and mouse Rev3 cDNAs, but its biological significance has not been defined. We show here that the insertion variant is not translatable either under in vitro or in vivo conditions. We also found that the translational efficiency of Rev3 gene is enhanced by the 5' untranslated region that contains a putative stem-loop structure postulated to inhibit the translation. Since the human Rev3 gene is localized to chromosome 6q21, a region previously shown to contain genes involved in tumor suppression and cellular senescence, we examined its expression in various normal and malignant tissues. Rev3 and its insertion variant transcripts were ubiquitously detected in all 27 normal human tissues studied, with an additional variant species found in tissues with relatively high levels of Rev3 expression. Levels of Rev3 transcripts were similar in lung, gastric, colon and renal tumors compared to normal tissue counterparts. The data indicate that Rev3 expression is ubiquitous and is not dysregulated in malignancies.

  18. Foxa2 and MafA Regulate Islet-specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein (IGRP/G6PC2) Gene Expression

    PubMed Central

    Martin, Cyrus C.; Flemming, Brian P.; Wang, Yingda; Oeser, James K.; O’Brien, Richard M.

    2008-01-01

    Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP/G6PC2) is a major autoantigen in both mouse and human type 1 diabetes. IGRP is selectively expressed in islet beta cells and polymorphisms in the IGRP gene have recently been associated with variations in fasting blood glucose levels and cardiovascular-associated mortality in humans. Chromatin immunoprecipitation (ChIP) assays have shown that the IGRP promoter binds the islet-enriched transcription factors Pax-6 and BETA2. We show here, again using ChIP assays, that the IGRP promoter also binds the islet-enriched transcription factors MafA and Foxa2. Single binding sites for these factors were identified in the proximal IGRP promoter, mutation of which resulted in decreased IGRP fusion gene expression in βTC-3, HIT and Min6 cells. ChiP assays have shown that the islet-enriched transcription factor Pdx-1 also binds the IGRP promoter but mutational analysis of four Pdx-1 binding sites in the proximal IGRP promoter revealed surprisingly little effect of Pdx-1 binding on IGRP fusion gene expression in βTC-3 cells. In contrast, in both HIT and Min6 cells mutation of these four Pdx-1 binding sites resulted in an ~50% reduction in fusion gene expression. These data suggest that the same group of islet-enriched transcription factors, namely Pdx-1, Pax-6, MafA, BETA2 and Foxa2 directly or indirectly regulate expression of the two major autoantigens in type 1 diabetes. PMID:18753309

  19. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae

    NASA Technical Reports Server (NTRS)

    Springer, E.; Sachs, M. S.; Woese, C. R.; Boone, D. R.

    1995-01-01

    Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.

  20. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae

    NASA Technical Reports Server (NTRS)

    Springer, E.; Sachs, M. S.; Woese, C. R.; Boone, D. R.

    1995-01-01

    Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.

  1. Developmental regulation of {beta}-hexosaminidase {alpha}- and {beta}-subunit gene expression in the rat reproductive system

    SciTech Connect

    Trasler, J.M.; Wakamatsu, N.; Gravel, R.A.; Benoit, G.

    1994-09-01

    {beta}-Hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the G{sub M2} gangliosidoses. Enzyme activity for {beta}-hexosaminidase is many fold higher in the epididymis than in other tissues, is present in sperm and is postulated to be required for mammalian fertilization. To better understand how {beta}-hexosaminidase is regulated in the reproductive system, we quantitated the mRNA expression of the {alpha}- and {beta}-subunits (Hex {alpha} and Hex {beta}) of the enzyme in the developing rat testis and epididymis. Hex {alpha} mRNA was differentially expressed and abundant in adult rat testis and epididymis, 13- and 2-fold brain levels, respectively. In contrast, Hex {beta} mRNA levels in the testis and epididymis were .3- and 5-fold brain levels. Within the epididymis both Hex {alpha} and Hex {beta} mRNA concentrations were highest in the corpus, 1.5-fold and 9-fold initial segment values, respectively. During testis development from 7-91 days of age, testis levels of Hex {alpha} mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium. In isolated male germ cells, Hex {alpha} expression was most abundant in haploid round spermatids. Hex {alpha} mRNA was undetectable after hypophysectomy and returned to normal after testosterone administration and the return of advanced germ cells to the testis. Hex {beta} mRNA was expressed at constant low levels throughout testis development. In the caput-corpus and cauda regions of the epididymis Hex {alpha} mRNA levels increased 2-fold between 14 and 91 days; during the same developmental period epididymal Hex {beta} mRNA levels increased dramatically, by 10-20 fold. In summary, Hex {alpha} and Hex {beta} mRNAs are differentially and developmentally expressed at high levels in the rat testis and epididymis and augur for an important role for {beta}-hexosaminidase in normal male reproductive function.

  2. Gene Splicing of an Invertebrate Beta Subunit (LCavβ) in the N-Terminal and HOOK Domains and Its Regulation of LCav1 and LCav2 Calcium Channels

    PubMed Central

    Dawson, Taylor F.; Boone, Adrienne N.; Senatore, Adriano; Piticaru, Joshua; Thiyagalingam, Shano; Jackson, Daniel; Davison, Angus; Spafford, J. David

    2014-01-01

    The accessory beta subunit (Cavβ) of calcium channels first appear in the same genome as Cav1 L-type calcium channels in single-celled coanoflagellates. The complexity of this relationship expanded in vertebrates to include four different possible Cavβ subunits (β1, β2, β3, β4) which associate with four Cav1 channel isoforms (Cav1.1 to Cav1.4) and three Cav2 channel isoforms (Cav2.1 to Cav2.3). Here we assess the fundamentally-shared features of the Cavβ subunit in an invertebrate model (pond snail Lymnaea stagnalis) that bears only three homologous genes: (LCav1, LCav2, and LCavβ). Invertebrate Cavβ subunits (in flatworms, snails, squid and honeybees) slow the inactivation kinetics of Cav2 channels, and they do so with variable N-termini and lacking the canonical palmitoylation residues of the vertebrate β2a subunit. Alternative splicing of exon 7 of the HOOK domain is a primary determinant of a slow inactivation kinetics imparted by the invertebrate LCavβ subunit. LCavβ will also slow the inactivation kinetics of LCav3 T-type channels, but this is likely not physiologically relevant in vi