Science.gov

Sample records for a356 aluminum alloys

  1. Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants

    NASA Astrophysics Data System (ADS)

    de Cicco, Michael P.; Turng, Lih-Sheng; Li, Xiaochun; Perepezko, John H.

    2011-08-01

    Different types of nanoparticles in aluminum (Al) alloy A356 nanocomposites were shown to catalyze nucleation of the primary Al phase. Nanoparticles of SiC β, TiC, Al2O3 α, and Al2O3 γ were added to and dispersed in the A356 matrix as nucleation catalysts using an ultrasonic mixing technique. Using the droplet emulsion technique (DET), undercoolings in the nanocomposites were shown to be significantly reduced compared to the reference A356. None of the nanocomposites had a population of highly undercooled droplets that were observed in the reference samples. Also, with the exception of the A356/Al2O3 α nanocomposite, all nanocomposites showed a reduction in undercooling necessary for the onset of primary Al nucleation. The observed nanocomposite undercoolings generally agreed with the undercooling necessary for free growth. The atomic structure of the particles showed an influence on nucleation potency as A356/Al2O3 γ nanocomposites had smaller undercoolings than A356/Al2O3 α nanocomposites. The nucleation catalysis illustrates the feasibility of, and basis for, grain refinement in metal matrix nanocomposites (MMNCs).

  2. Modeling of Microporosity Size Distribution in Aluminum Alloy A356

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Cockcroft, Steve; Zhu, Jindong; Reilly, Carl

    2011-12-01

    Porosity is one of the most common defects to degrade the mechanical properties of aluminum alloys. Prediction of pore size, therefore, is critical to optimize the quality of castings. Moreover, to the design engineer, knowledge of the inherent pore population in a casting is essential to avoid potential fatigue failure of the component. In this work, the size distribution of the porosity was modeled based on the assumptions that the hydrogen pores are nucleated heterogeneously and that the nucleation site distribution is a Gaussian function of hydrogen supersaturation in the melt. The pore growth is simulated as a hydrogen-diffusion-controlled process, which is driven by the hydrogen concentration gradient at the pore liquid interface. Directionally solidified A356 (Al-7Si-0.3Mg) alloy castings were used to evaluate the predictive capability of the proposed model. The cast pore volume fraction and size distributions were measured using X-ray microtomography (XMT). Comparison of the experimental and simulation results showed that good agreement could be obtained in terms of both porosity fraction and size distribution. The model can effectively evaluate the effect of hydrogen content, heterogeneous pore nucleation population, cooling conditions, and degassing time on microporosity formation.

  3. Modeling of microporosity formation in A356 aluminum alloy casting

    NASA Astrophysics Data System (ADS)

    Zhu, J. D.; Cockcroft, S. L.; Maijer, D. M.

    2006-03-01

    A numerical model for predicting microporosity formation in aluminum castings has been developed, which describes the redistribution of hydrogen between solid and liquid phases, the transport of hydrogen in liquid by diffusion, and Darcy flow in the mushy zone. For simulating the nucleation of hydrogen pores, the initial pore radius is assumed to be a function of the secondary dendrite arm spacing, whereas pore growth is based on the assumption that hydrogen activity within the pore and the liquid are in equilibrium. One of the key features of the model is that it uses a two-stage approach for porosity prediction. In the first stage, the volume fraction of porosity is calculated based on the reduced pressure, whereas, in the second stage, at fractions solid greater than the liquid encapsulation point, the fraction porosity is calculated based on the volume of liquid trapped within the continuous solid network, which is estimated using a correlation based on the Niyama parameter. The porosity model is used in conjunction with a thermal model solved using the commercial finite-element package ABAQUS. The parameters influencing the formation of microporosity are discussed including a means to describe the supersaturation of hydrogen necessary for pore nucleation. The model has been applied to examine the evolution of porosity in a series of experimental samples cast using unmodified A356 in which the initial hydrogen content was varied from 0.048 to 0.137 (cc/100 g). A comparison between the model predictions and the experimental measurements indicates good agreement in terms of the variation in porosity with distance from the chill and the variation resulting from initial hydrogen content.

  4. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.

    2003-12-01

    The tensile properties and fracture behavior of cast aluminum alloys A356 and A357 strongly depend on secondary dendrite arm spacing (SDAS), Mg content, and, in particular, the size and shape of eutectic silicon particles and Fe-rich intermetallics. In the unmodified alloys, increasing the cooling rate during solidification refines both the dendrites and eutectic particles and increases ductility. Strontium modification reduces the size and aspect ratio of the eutectic silicon particles, leading to a fairly constant particle size and aspect ratio over the range of SDAS studied. In comparison with the unmodified alloys, the Sr-modified alloys show higher ductility, particularly the A356 alloy, but slightly lower yield strength. In the microstructures with large SDAS (>50 µm), the ductility of the Sr-modified alloys does not continuously decrease with SDAS as it does in the unmodified alloy. Increasing Mg content increases both the matrix strength and eutectic particle size. This decreases ductility in both the Sr-modified and unmodified alloys. The A356/357 alloys with large and elongated particles show higher strain hardening and, thus, have a higher damage accumulation rate by particle cracking. Compared to A356, the increased volume fraction and size of the Fe-rich intermetallics ( π phase) in the A357 alloy are responsible for the lower ductility, especially in the Sr-modified alloy. In alloys with large SDAS (>50 µm), final fracture occurs along the cell boundaries, and the fracture mode is transgranular. In the small SDAS (<30 µm) alloys, final fracture tends to concentrate along grain boundaries. The transition from transgranular to intergranular fracture mode is accompanied by an increase in the ductility of the alloys.

  5. Thixoforming of an ECAPed Aluminum A356 Alloy: Microstructure Evolution, Rheological Behavior, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Campo, Kaio Niitsu; Zoqui, Eugênio José

    2016-04-01

    Thixoforming depends upon three aspects: (a) solid to liquid transformation; (b) size and morphology of the remaining solid phase in the semisolid state, and (c) the effect of both input factors on rheology of the semisolid slurry. The aluminum A356 alloy presents an ideal solid to liquid transformation, but the solidification process generates coarse aluminum dendrites surrounded by eutectic. In this regard, Equal Channel Angular Pressing (ECAP) has great potential as a method for manufacturing thixotropic raw material due to its grain refining effect. Therefore, the microstructure evolution and rheological behavior in the semisolid state of an ECAPed aluminum A356 alloy were investigated. Samples were heated up to 853 K (580 °C) and held for 0, 30, 60, 90, 210, and 600 seconds at this temperature. The isothermal heat treatment caused the globularization of the solid phase without any significant microstructure coarsening. Compression tests were carried out at the same temperature and holding times using an instrumented mechanical press. Apparent viscosities values close to 250 Pa s were obtained, revealing the exceptional rheological behavior of the produced samples. The thixoformed material also presented good mechanical properties, with high yield and ultimate tensile strength values (YS = 110/122 MPa, UTS = 173/202), and good ductility (E = 6.9/7.5 pct). These results indicate that the production of the A356 alloy via the ECAP process increases its thixoformability.

  6. Effects of Solid-Liquid Mixing on Microstructure of Semi-Solid A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Guo, H. M.; Wang, L. J.; Wang, Q.; Yang, X. J.

    2014-08-01

    The desired starting material for semi-solid processing is the semi-solid slurry in which the solid phase is present as fine and globular particles. A modified solid-liquid mixing (SLM) is reported wherein semi-solid slurry can be produced by mixing a solid alloy block into a liquid alloy, and mechanical vibration is utilized to enhance the mixing. Effects such as liquid alloy temperature, mass ratio, and mixing intensity on the microstructure and the cooling curves during SLM were evaluated. 2D and 3D microstructure analysis of treated A356 aluminum alloy shows that microstructure can be refined significantly with a considerable morphology change in primary Al phase. It is critical that the temperature of mixture after mixing is lower than its liquidus temperature to obtain a valid SLM process. Specially, mixing intensity is identified as a primary factor for a favorable microstructure of semi-solid slurry.

  7. Damage by eutectic particle cracking in aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.; Caceres, C. H.; Griffiths, J. R.

    2003-12-01

    The strain dependence of particle cracking in aluminum alloys A356/357 in the T6 temper has been studied in a range of microstructures produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing and modification state. Large and elongated eutectic silicon particles in the unmodified alloys and large π-phase (Al9FeMg3Si5) particles in alloy A357 show the greatest tendency to cracking. In alloy A356, cracking of eutectic silicon particles dominates the accumulation of damage while cracking of Fe-rich particles is relatively unimportant. However, in alloy A357, especially with Sr modification, cracking of the large π-phase intermetallics accounts for the majority of damage at low and intermediate strains but becomes comparable with silicon particle cracking at large strains. Fracture occurs when the volume fraction of cracked particles (eutectic silicon and Fe-rich intermetallics combined) approximates 45 pct of the total particle volume fraction or when the number fraction of cracked particles is about 20 pct. The results are discussed in terms of Weibull statistics and existing models for dispersion hardening.

  8. Factors Affecting the Nucleation Kinetics of Microporosity Formation in Aluminum Alloy A356

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Cockcroft, Steve; Reilly, Carl; Zhu, Jindong

    2012-03-01

    Metal cleanliness is one of the most critical parameters affecting microporosity formation in aluminum alloy castings. It is generally acknowledged that oxide inclusions in the melt promote microporosity formation by facilitating pore nucleation. In this study, microporosity formation under different casting conditions, which aimed to manipulate the tendency to form and entrain oxide films in small directionally cast A356 samples was investigated. Castings were prepared with and without the aid of argon gas shielding and with a varying pour surface area. Two alloy variants of A356 were tested in which the main difference was Sr content. Porous disc filtration analysis was used to assess the melt cleanliness and identify the inclusions in the castings. The porosity volume fraction and size distribution were measured using X-ray micro-tomography analysis. The measurements show a clear increment in the volume fraction, number density, and pore size in a manner consistent with an increasing tendency to form and entrain oxide films during casting. By fitting the experimental results with a comprehensive pore formation model, an estimate of the pore nucleation population has been made. The model predicts that increasing the tendency to form oxide films increases both the number of nucleation sites and reduces the supersaturation necessary for pore nucleation in A356 castings. Based on the model predictions, Sr modification impacts both the nucleation kinetics and the pore growth kinetics via grain structure.

  9. Plastic deformation behavior of aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.

    2004-09-01

    The plastic deformation behavior of aluminum casting alloys A356 and A357 has been investigated at various solidification rates with or without Sr modification using monotonic tensile and multi-loop tensile and compression testing. The results indicate that at low plastic strains, the eutectic particle aspect ratio and matrix strength dominate the work hardening, while at large plastic strains, the hardening rate depends on secondary dendrite arm spacing (SDAS). For the alloys studied, the average internal stresses increase very rapidly at small plastic strains and gradually saturate at large plastic strains. Elongated eutectic particles, small SDAS, or high matrix strength result in a high saturation value. The difference in the internal stresses, due to different microstructural features, determines the rate of eutectic particle cracking and, in turn, the tensile instability of the alloys. The higher the internal stresses, the higher the damage rate of particle cracking and then the lower the Young’s modulus. The fracture strain of alloys A356/357 corresponds to the critical amount of damage by particle cracking locally or globally, irrespective of the fineness of the microstructure. In the coarse structure (large SDAS), this critical amount of damage is easily reached, due to the clusters of large and elongated particles, leading to alloy fracture before global necking. However, in the alloy with the small SDAS, the critical amount of damage is postponed until global necking takes place due to the small and round particles. Current models for dispersion hardening can be used to calculate the stresses induced in the particles. The calculations agree well with the results inferred from the experimental results.

  10. Multistage Fatigue Modeling of Cast A356-T6 and A380-F Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Burton, C. L.; Horstemeyer, M. F.; McDowell, D. L.; Berry, J. T.

    2007-08-01

    This article presents a microstructure-based multistage fatigue (MSF) model extended from the model developed by McDowell et al.[1,2] to an A380-F aluminum alloy to consider microstructure-property relations of descending order, signifying deleterious effects of defects/discontinuities: (1) pores or oxides greater than 100 μm, (2) pores or oxides greater than 50 μm near the free surface, (3) a high porosity region with an area greater than 200 μm, and (4) oxide film of an area greater than 10,000 μm2. These microconstituents, inclusions, or discontinuities represent different casting features that may dominate fatigue life at stages of fatigue damage evolutions. The incubation life is estimated using a modified Coffin Mansion law at the microscale based on the microplasticity at the discontinuity. The microstructurally small crack (MSC) and physically small crack (PSC) growth was modeled using the crack tip displacement as the driving force, which is affected by the porosity and dendrite cell size (DCS). When the fatigue damage evolves to several DCSs, cracks behave as long cracks with growth subject to the effective stress intensity factor in linear elastic fracture mechanics. Based on an understanding of the microstructures of A380-F and A356-T6 aluminum alloys, an engineering treatment of the MSF model was introduced for A380-F aluminum alloys by tailoring a few model parameters based on the mechanical properties of the alloy. The MSF model is used to predict the upper and lower bounds of the experimental fatigue strain life and stress life of the two cast aluminum alloys.

  11. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    SciTech Connect

    Kim, H. H.; Kang, C. G.

    2010-06-15

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  12. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Kang, C. G.

    2010-06-01

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  13. X-Ray Microtomographic Characterization of Porosity in Aluminum Alloy A356

    NASA Astrophysics Data System (ADS)

    Lashkari, Omid; Yao, Lu; Cockcroft, Steve; Maijer, Daan

    2009-04-01

    The presence of microporosity can, in certain circumstances, lead to a significant reduction in the mechanical properties of cast aluminum alloys. The size of the microporosity is especially crucial to the performance of castings in fatigue applications. The aim of this study is to investigate the effect of cooling rate and degassing time on the formation and evolution of microporosity in aluminum alloy A356 (Al-7Si-0.3Mg) castings using traditional metallography and X-ray microtomography (XMT) methods. The final results clearly confirm that increasing the cooling rate and degassing time yield lower microporosity within the microstructure. The XMT analysis enabled the calculation of the volume fraction and size distribution of microporosity. The XMT analysis revealed a bimodel distribution of pores with one population of small pores and a second population of large pores. The large population has been attributed to hydrogen gas solubility, whereas the smaller population is proposed to be linked to the localized entrapment of liquid metal occurring at the end of mass feeding.

  14. Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jordon, J. B.; Horstemeyer, M. F.; Yang, N.; Major, J. F.; Gall, K. A.; Fan, J.; McDowell, D. L.

    2010-02-01

    We examine the dependence of fatigue properties on the different size scale microstructural inclusions of a cast A356 aluminum alloy in order to quantify the structure-property relations. Scanning electron microscopy (SEM) analysis was performed on fatigue specimens that included three different dendrite cell sizes (DCSs). Where past studies have focused upon DCSs or pore size effects on fatigue life, this study includes other metrics such as nearest neighbor distance (NND) of inclusions, inclusion distance to the free surface, and inclusion type (porosity or oxides). The present study is necessary to separate the effects of numerous microstructural inclusions that have a confounding effect on the fatigue life. The results clearly showed that the maximum pore size (MPS), NND of gas pores, and DCS all can influence the fatigue life. These conclusions are presumed to be typical of other cast alloys with similar second-phase constituents and inclusions. As such, the inclusion-property relations of this work were employed in a microstructure-based fatigue model operating on the crack incubation and MSC with good results.

  15. Effects of the Delay Between Quenching and Aging on Hardness and Tensile Properties of A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ceschini, Lorella; Morri, Alessandro; Morri, Andrea

    2013-01-01

    The aim of the study was to evaluate the accuracy of heat treatment guidelines, generally followed in industrial practices, about the T6 heat treatment of A356 aluminum alloy. In particular, the effect of the delay between quenching and artificial aging (pre-aging time) on microstructure, hardness, and tensile behavior was studied using specimens extracted from different locations of a cylinder head, characterized by different cooling rates and, consequently, by different secondary dendrite arm spacing values. Hardness and tensile tests confirmed the detrimental effect of pre-aging with a 20% reduction in hardness and strength after approximately 1 h of pre-aging, both for samples with fine and large SDAS. Differential scanning calorimetry analyses on samples that were solutionized, quenched, and pre-aged between 0 and 96 h, suggested that the nature and composition of the clusters formed during pre-aging, rather than their size, influenced the subsequent precipitation process and the final mechanical properties of the alloy.

  16. Microstructure and fracture of SiC-particulate-reinforced cast A356 aluminum alloy composites

    SciTech Connect

    Lee, S.; Suh, D.; Kwon, D.

    1996-12-01

    A microstructural analysis of local microfracture of cast A356 Al-SiC{sub p} composites fabricated by permanent mold re-casting and squeeze-casting methods was made. Notch fracture toughness tests were conducted on these composites to identify critical fracture parameters using a stress-modified critical-strain criterion. The composite microstructure shows continuous networks of densely populated SiC and eutectic Si particles along the intercellular regions. Squeeze casting produces a more homogeneous structure and larger spacing of brittle particles and increases the tensile ductility and fracture toughness, while strength levels are almost identical to the re-casting case. The calculated values of the microstructurally characteristic distance l* for the re-cast and squeeze-cast composites are about 40 {micro}m, which is comparable to the average sizes of the intercellular network. However, the reference critical strain {bar {var_epsilon}}*{sub 0} for squeeze casting is larger than that for re-casting, showing a trend to higher ductility and fracture toughness.

  17. The Influence of ScF3 Nanoparticles on the Physical and Mechanical Properties of New Metal Matrix Composites Based on A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S.; Zhukov, I.; Promakhov, V.; Naydenkin, E.; Khrustalyov, A.; Vorozhtsov, A.

    2016-12-01

    The development of the aerospace and automotive industries demands the development of aluminum alloys and composites reinforced with new nanoparticles. In this work, metal matrix composites (MMC) with an A356 aluminum alloy matrix reinforced with 0.2 wt.% and 1 wt.% of ScF3 nanoparticles were produced by ultrasonic dispersion of nanoparticles in the melt followed by casting in a metallic mold. Structure as well as physical and mechanical properties of the cast samples were examined using electron and optical microscopy, hardness and tensile testing. It is shown that nanoparticles clusters are formed during the solidification at grain boundaries and silicon inclusions. Increasing nanoparticles content significantly reduced the grain size in the MMC and increased the mechanical properties—ultimate tensile strength, elongation and hardness. The contribution of different strengthening mechanisms is discussed. It is suggested that the coefficient of thermal expansion mismatch between the nanoparticles ScF3 and the aluminum matrix is a dominant strengthening mechanism.

  18. Mathematical modeling and experimental study of squeeze casting of magnesium alloy AM50A and aluminum alloy A356

    NASA Astrophysics Data System (ADS)

    Yu, Fang

    In recent years, the squeeze casting process has been widely used with various aluminum alloys to manufacture near-net shape automotive components. Preliminary research has also demonstrated technical feasibility potential of squeeze casting for magnesium. A better understanding of squeeze casting process is essential for applying the process for the production of large automotive components, such as engine block, using aluminum and magnesium. Meanwhile, simulation can help to achieve the analysis and optimization of the casting process. Unfortunately, for squeeze casting, no appropriate model is presently available. In this study, a mathematical model has been developed to simulate the transport phenomena and solidification occurring in squeeze casting process. The model was based on the control-volume finite difference approach and on an enthalpy method. An experimental system was developed capable of characterizing local in-cavity pressures, determining casting/die interfacial heat transfer, and observing pressurized solidification phenomena taking place in squeeze casting of aluminum and magnesium alloys. It was found that, during squeeze casting process, the local cavity pressure distribution was inhomogeneous. Experimental correlations of heat transfer coefficient were integrated into the model with local cavity pressures estimated by a force balance approach. Hence, instead of using static boundary condition, a dynamic boundary condition was established in the model. In order to minimize the deviation of calculation, experimental correlations between solidification temperatures and applied pressures were also integrated into the model. The predicted results, including cooling curves, solidification times, and local pressure cavity pressures, were compared with the experimental measurements and they were found to be in good agreement. The model was further advanced to predict shrinkage porosity during squeeze casting by a newly proposed criterion based on

  19. Investigation into the Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy-Based ZrO2-Particle-Reinforced Metal-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Abdizadeh, H.; Baghchesara, M. A.

    2013-11-01

    In the present study, an investigation has been carried out into the influence of ZrO2 content and casting temperature on the mechanical properties and fracture behavior of A356 Al/ZrO2 composites. A356 aluminum alloy matrix composites reinforced with 5, 10 and 15 vol.% ZrO2 were fabricated at 750, 850, and 95 0°C via the stir-casting method. Based on the results obtained, the optimum amount of reinforcement and casting temperature were determined by evaluating the density and mechanical properties of the composites through the use of hardness and tensile tests. The fracture surfaces of composite specimens were also studied to identify the main fracture mechanisms of the composites. The results obtained indicated that all samples fractured due to the interdendritic cracking of the matrix alloy. Reinforcing the Al matrix alloy with ZrO2 particles increased the hardness and ultimate tensile strength of the alloy to the maximum values of 70 BHN and 232 MPa, respectively. The best mechanical properties were obtained for the specimens with 15 vol.% of ZrO2 produced at 75 0°C.

  20. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    NASA Astrophysics Data System (ADS)

    Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.

    2014-08-01

    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.

  1. The Influence of Ni and V Trace Elements on High-Temperature Tensile Properties and Aging of A356 Aluminum Foundry Alloy

    NASA Astrophysics Data System (ADS)

    di Giovanni, Maria Teresa; Cerri, Emanuela; Casari, Daniele; Merlin, Mattia; Arnberg, Lars; Garagnani, Gian Luca

    2016-05-01

    High-temperature tensile properties of unmodified A356 alloy with and without the addition of Ni or V in traces (600 and 1000 ppm of Ni and V, respectively) were investigated by analyzing samples obtained from sand and permanent mold castings in the as-cast and T6 heat-treated conditions. Tensile tests were performed at 508 K (235 °C) at a crosshead speed of 1 mm/min. In addition, samples were subjected to artificial aging at 508 K (235 °C) for different times, and corresponding hardness curves were plotted. Microstructures and fracture surfaces, analyzed by FEG-SEM equipped with energy dispersive X-ray spectroscopy, showed that neither Ni nor V addition had a detrimental effect on high-temperature tensile properties. Aging curves showed a strong loss of hardness affecting the T6 class between 30-min and 1-h exposure time. After 6-h aging, no evidence of aging treatment persisted on hardness of the tested material. Hardness values did not reveal any significant difference between the reference alloy and the Ni- and V-containing alloys in both casting conditions, in complete analogy with the tensile properties. Unmodified eutectic silicon particles provided inhomogeneity in the α-Al matrix and acted as the principal source of stress concentration leading to fracture.

  2. Nd:YAG laser welding aluminum alloys

    SciTech Connect

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  3. Wear analysis of A356 alloy cast through rheometal process

    NASA Astrophysics Data System (ADS)

    Gupta, Robin; Sharma, Ashok; Pandel, Upender; Ratke, Lorenz

    2017-04-01

    In present investigation, correlation between microstructure, mechanical properties and wear analysis for the non-heat-treated and heat-treated A356 was observed. The rheometal process changed the dendritic morphology into globular morphology which improved the mechanical properties and wear resistance of the alloy. Mechanical properties of non-heat-treated and heat-treated A356 alloy were studied. Wear tests for the non-heat-treated and heat-treated samples were performed. The SEM analysis was employed for microstructural feature of worn surfaces. The results showed that the rheometal process along with the use of baffles, addition of grain refiner and T5 heat treatment showed better mechanical properties and wear resistance of A356 alloy as compared to other processing conditions.

  4. The New Heat Treatment Technology of A356 Aluminium Alloy Prepared by Ptc

    NASA Astrophysics Data System (ADS)

    Zhang, Lianyong; Jiang, Yanhua; Ma, Zhuang; Wang, Wenkui

    Phase Transition Cooling (PTC), using the absorbed latent heat during the melting of phase transition cooling medium to cool and solidify alloys in the process of casting, is a new casting technology. Specimens of A356 casting aluminum alloy were prepared by this method in the paper. The new heat treatment process (cast and then aging directly without solid solution) of A356 alloy was performed. For comparison, the conventional T6 heat treatment (solution and then aging treatment) was performed too. The mechanical properties of A356 alloy with different heat treatments were measured by tensile strength testing methods and microstructures of the alloy with different heat treatment process were investigated by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-rays diffraction (XRD) and transmission electron microscopy (TEM) too. The results show that ultimate tensile strength (UTS) of A356 alloy with the new heat treatment process is much higher than that with conventional heat treatment while the elongations with the two heat treatment processes are very close. This is due to the grain refinement obtained after PTC processing.

  5. Optimization of Drilling Parameters for Reducing the Burr Height in Machining the Silicon Carbide Particle (SiCp) Coated with Multi Wall Carbon Nano Tubes (MWCNT) Reinforced in Aluminum Alloy (A 356) Using Meta Modeling Approach

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Prakash, S.

    2017-05-01

    This paper explains the optimization of drilling parameters using meta modeling approach to reduce the burr height while machining Silicon Carbide Particle (SiCp) coated with Multi Wall Carbon Nano Tubes (MWCNT) and reinforced in aluminum alloy (A 356). The specimen is prepared by the combination of sonication and stir casting processes. The volume fraction of MWCNT used is 1.5% and the volume fraction of SiCp is 10%. The combination of input parameters for drilling the holes is designed using Taguchi experimental design technique. The input parameters chosen for drilling operations are spindle speed, feed rate and drill diameter. The ranges of input parameters are listed in Table 1. The tools used for drilling operation are made up of solid carbide drill bit. Meta model is a mathematical and statistical model whose second-order model can be fitted by factorial design. The optimization model can be improved significantly by the second-order model compared to the first-order model. Twenty-seven holes are drilled using vertical machining center in the prepared specimen (A 356/MWCNT coated SiCp). Desirability function shows the optimized values of input parameters to obtain minimum burr height. Meta modeling approach is used to design a model using input parameters and output response burr height. The residuals plot shows the predicted values are closer to the measured values. This plot explains that the Meta model is adequately used to predict the burr height. The optimized values of input parameters for obtaining minimum burr height are the combination of high speed, low feed and low drill diameter. The minimum value of burr height observed in this experiment is 0.002mm and it is obtained in the optimized combination of N3, f1 and d1.

  6. Damage Assessment of A356 Al Alloy Under Ratcheting-Creep Interaction

    NASA Astrophysics Data System (ADS)

    Mishra, Srimant Kumar; Roy, H.; Mondal, A. K.; Dutta, Krishna

    2017-06-01

    The aim of this report was to examine the influence of asymmetric cyclic stress on the ratcheting behavior of A356 Al alloy with special emphasis on its postratcheting creep behavior. A series of A356 alloy specimens were deformed under asymmetrical cyclic loading with different combinations of mean stress and stress amplitude. These tests were carried out up to 2000 cycles. Followed by ratcheting, the specimens were subjected to impression creep tests under varied stresses and temperatures. It is revealed from the ratcheting tests that strain accumulation increases with increasing stress amplitude or mean stress. However, total accumulated ratcheting strain of the investigated alloy was significantly low compared to that reported for some other aluminum alloys. The results of creep tests indicated that predominantly dislocation climb-assisted creep occurred for the alloy. Postratcheted specimens exhibited higher creep rates compared to that of the as-received A356 alloy; this fact was attributed to the work softening of the specimens during the impression creep test. The extent of work softening was minimum in the specimen that accumulated the highest strain during ratcheting, leading to its lowest creep rate.

  7. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  8. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  9. Impact properties of A356-T6 alloys

    NASA Astrophysics Data System (ADS)

    Shivkumar, S.; Wang, L.; Keller, C.

    1994-02-01

    The Charpy impact energy of A356 alloys has been measured. Instrumented Charpy impact tests have been conducted at 25,100,150, and 200 °C. The Charpy specimens were machined from plate castings ortapered cylindrical castings. The plates were produced in sand molds, and tapered cylinders were produced in water-cooled copper molds. Both unmodified and strontium-modified castings were tested. The results indicate that strontium modification improves the impact properties of sand and permanent mold castings. The impact energy increases with solution treatment time. Strontium modification reduces the solution treatment time for attaining a specific impact property level in the casting.

  10. The rheological behavior of semi-solid A356 alloy

    NASA Astrophysics Data System (ADS)

    Lashkari, Omid

    The semi-solid-metal, SSM, processing deals with semi solid slurries, in which non dendritic solid particles are dispersed in a liquid matrix with apparent viscosity values near to that of liquid. It is able to flow easily under pressure and fills complicated die cavities to manufacture sound as-cast products with high integrity. The SSM slurry is prepared through different methods. In the current study conventional casting and the SEED process were employed to produce SSM billets with different morphologies of primary alpha-Al phase in A356 Al-Si alloy. For conventional casting, a range of solid particle morphologies, microstructure, were realized through variation of pouring temperature while for the SEED billets, as a new patent of ALCAN international for semi solid casting, changes in the morphology were achieved by control of process parameters during solidification of the melt. In order to investigate the morphological evolution due to the effect of different process parameters, pouring temperature and swirling intensities, the SSM billets prepared by both methods were studied using quantitative metallography. The microstructure of SSM A356 alloy has also been characterized using an innovative method, parallel plate compression viscometry, where a correlation was made between the morphology and viscosity. The main objective of the current research was the implication of rheological principles to study the deformation behavior of A356 alloy at different morphologies and fraction of solid, while treating the SSM billets as Newtonian and Non-Newtonian fluids respectively. Furthermore, two empirical relationships were proposed to underline the correlation among the viscosity, and fraction solid and its morphology. In order to further confirm the reliability of the tests results in this research and to highlight that the sample size has no effect on the final deformation and viscosity values, a new series of tests were performed using two sets of specimens with

  11. The Effects of Molding Materials on Microstructure and Wear Behavior of A356 Alloy

    NASA Astrophysics Data System (ADS)

    Yildirim, Musa; Özyürek, Dursun; Tunçay, Tansel

    2017-05-01

    In this study, the effect of molding materials on microstructure and wear behavior of A356 alloy was investigated. Different microstructures were obtained by casting A356 alloy into the molds made from three different materials. Homogenization and aging heat treatments were applied as cast blocks. The aged samples were tested by pin-on-disk-type standard wear equipment. The results showed that casting into different mold materials resulted in different microstructures of A356 alloy. Microstructures of the Al-Si-Mg alloy differ depending on the mold materials. Secondary dendrite arm space (SDAS) decreased proportionally with increasing cooling rate. Based on the cooling rate, hardness values of the alloy also differ. As the cooling rate increased, hardness of the alloy increased. The SDAS increased due to the decreasing cooling rate. In wear tests, increasing weight loss was observed with decreasing cooling rate.

  12. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    SciTech Connect

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  13. Brazing dissimilar aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dalalian, H.

    1979-01-01

    Dip-brazing process joins aluminum castings to aluminum sheet made from different aluminum alloy. Process includes careful cleaning, surface preparation, and temperature control. It causes minimum distortion of parts.

  14. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  15. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  16. Impact Behavior of A356 Foundry Alloys in the Presence of Trace Elements Ni and V

    NASA Astrophysics Data System (ADS)

    Casari, Daniele; Ludwig, Thomas H.; Merlin, Mattia; Arnberg, Lars; Garagnani, Gian Luca

    2015-02-01

    In the present work, the impact behavior of unmodified A356 alloys with the addition of Ni or V in as-cast and T6 heat-treated conditions was assessed. Charpy V-notched specimens obtained from sand and permanent mold casting showed low total absorbed energy average values ( W t < 2 J). SEM analysis of fracture profiles and surfaces indicated a Si-driven crack propagation with a predominant transgranular fracture mode. Occasionally, intergranular contributions to fracture were detected in the permanent mold cast alloys due to the locally finer microstructure. Concurrent mechanisms related to the chemical composition, solidification conditions and heat treatment were found to control the impact properties of the alloys. While the trace element Ni exerted only minor effects on the impact toughness of the A356 alloy, V had a strong influence: (i) V-containing sand cast alloys absorbed slightly higher impact energies compared to the corresponding A356 base alloys; (ii) in the permanent mold cast alloys, V in solid solution led to a considerable loss of ductility, which in turn decreased the total absorbed energy.

  17. Effects of casting conditions and deformation processing on A356 aluminum and A356-20 vol. pct SiC composites

    NASA Technical Reports Server (NTRS)

    Rozak, G. A.; Lewandowski, J. J.; Wallace, J. F.; Altmisoglu, A.

    1992-01-01

    The effects of casting conditions and deformation processing on the mechanical properties of unreinforced A356 aluminum and A356-20 vol pct SiC composite were investigated by tensile properties in these compounds fabricated by either sand casting or squeeze casting techniques followed by hot working to 33, 50, 90, and 95 percent reductions. The evolution of the microstructure and values of tensile properties were evaluated for the cast materials in each of the hot worked conditions. It was found that, while the deformation processing of the sand-cast composite resulted in banding of the Al and SiC particles within the microstructure, such features were not observed in the squeeze-cast microstructure. The tensile strengths of the squeeze cast materials was found to be higher than those of the sand cast materials, for both the unreinforced and composite samples, while increased amounts of deformation were found to improve the ductility of the composite.

  18. Effects of casting conditions and deformation processing on A356 aluminum and A356-20 vol. pct SiC composites

    NASA Technical Reports Server (NTRS)

    Rozak, G. A.; Lewandowski, J. J.; Wallace, J. F.; Altmisoglu, A.

    1992-01-01

    The effects of casting conditions and deformation processing on the mechanical properties of unreinforced A356 aluminum and A356-20 vol pct SiC composite were investigated by tensile properties in these compounds fabricated by either sand casting or squeeze casting techniques followed by hot working to 33, 50, 90, and 95 percent reductions. The evolution of the microstructure and values of tensile properties were evaluated for the cast materials in each of the hot worked conditions. It was found that, while the deformation processing of the sand-cast composite resulted in banding of the Al and SiC particles within the microstructure, such features were not observed in the squeeze-cast microstructure. The tensile strengths of the squeeze cast materials was found to be higher than those of the sand cast materials, for both the unreinforced and composite samples, while increased amounts of deformation were found to improve the ductility of the composite.

  19. Solid fraction evolution characteristics of semi-solid A356 alloy and in-situ A356-TiB2 composites investigated by differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Deepak Kumar, S.; Mandal, A.; Chakraborty, M.

    2015-04-01

    The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature relationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356- xTiB2 ( x = 2.5wt% and 5wt%) composites using differential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2°C and 3°C in liquidus temperatures and a variation of 3°C and 5°C in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction ( f s) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.

  20. Microbial corrosion of aluminum alloy.

    PubMed

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  1. Semi-Solid Forming of A356 Alloy by Rapid Slurry Forming Process

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sharma, A.; Kumar, S.

    Rapid Slurry Forming (RSF) is a relatively new technique of semi-solid forming. RSF process has been used for A356, A356+Ti+B (grain refiner) and A356+Ti+B+Sr (grain refiner and modifier) Al alloys in the present investigation. All the three alloys were held at 597°C, at which about 30% solid fraction is obtained in the semi-solid slurry, for 0, 5, 10 and 15 minutes. After each holding time, the slurry was quenched in water to preserve the semi-solid microstructure. Microstructure of all the three alloys at each stage was examined and hardness was measured. A globular microstructure was obtained for the RSF-processed alloys. The globularity of a-grains increased but grain size also increased and hardness decreased with increase in holding time. The optimum hold time appeared to be 5 minutes. The grain refiner and modifier did not seem to have any effect on the formation of semi solid slurry. The coarsening kinetics of the globular a-grains was found to be faster than that predicted by the LSW theory.

  2. EBSD and DTA Characterization of A356 Alloy Deformed by ECAP During Reheating and Partial Re-melting

    NASA Astrophysics Data System (ADS)

    Moradi, Marzyeh; Nili-Ahmadabadi, Mahmoud; Poorganji, Behrang; Heidarian, Bashir; Furuhara, Tadashi

    2013-11-01

    Recrystallization and partial re-melting processes have been developed for producing semi-solid feedstock in a solid state in which a globular microstructure is obtained by plastic deformation followed by reheating. In this research, to induce strain, a cast- and solution-treated Aluminum A356 (7 wt pct Si) alloy was subjected to a repetitive equal channel angular pressing process using a 90 deg die, up to a total accumulated strain of approximately 8 in route A (increasing strain through a sequence of passes with no rotation of the sample after each pass) at ambient temperature. The microstructural evolutions of deformed and reheated materials were studied by optical microscopy, scanning electron microscopy, and electron back-scattered diffraction analysis. In addition, the influences of pre-deformation on the recrystallization mechanism and liquid formation of A356 alloy were presented and discussed. The results are also supported by differential thermal analysis experiments. Evaluation of the observations indicated that the average cell boundary misorientation increased with increasing strain, so this increased misorientation accelerated the mobility of boundaries and recrystallization kinetics. Therefore, the recrystallization mechanism and kinetics affected by deformation, reheating condition, and intrinsic material properties determined the particle size in the semi-solid state.

  3. Mechanical behaviour of A356 alloy reinforced with high strength alloy particulate metallic composites

    NASA Astrophysics Data System (ADS)

    Krishna Mallarapu, Gopi; Kancharla, Praveen Kumar; Rao, J. B.; Bhargava, N. R. M. R.

    2017-08-01

    In the present investigation, work has been carried out to fabricate composites with high strength and good ductility by maximizing a uniform and smooth interface for effective transfer of load, and minimizing reinforcement cracking, agglomerations, and pull outs. A high-strength alloy (ternary) in particulate (HSA(P)) form was used as reinforcement in 356 aluminium. A 356-HSA(P) composite was prepared using the stir casting technique by dispersing an average particle size of 125 µm for reinforcement with various weight fractions varying between 5% and 15%. Secondary processing was done using the hot extrusion process to obtain 14 mm Ø rods (extrusion ratio of 18:1) and homogenized in an industrial furnace for 24 h. A decrease in reinforcement size was observed with increments in particulate content. The hardness of the composites was improved compared to the existing matrix. Mechanical properties such as UTS, yield strength, modulus of elasticity and ductility reveal superior specific properties than that of the alloy.

  4. Effect of Oxide Level on Pore Formation in A356 Alloy by X-Ray Imaging and Directional Solidification Technology

    NASA Astrophysics Data System (ADS)

    Liao, Hengcheng; Song, Wan; Wang, Qigui; Zhao, Lei; Fan, Ran

    Effect of oxide level on porosity formation in an A356 alloy was investigated using micro-focus X-ray imaging and directional solidification technology. The increase of oxide level in liquid aluminum was achieved by violently stirring molten metal at elevated temperature. During solidification, the increased oxide content in melt significantly increases the amount of active nucleation sites for porosity and thus raises the nucleation temperature of pores. The fast growth of those early formed pores further restrains the succeeding nucleation operations of new pores in local regions and results in a considerable reduction in pore density. It was also found that the melt with high oxide content shows less dependency of growth rate reduction with local temperature.

  5. The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy

    NASA Astrophysics Data System (ADS)

    Tunçay, Tansel; Bayoğlu, Samet

    2017-01-01

    In the present study, microstructure and mechanical properties of A356 alloy including various amounts (0.2 to 1.2 wt pct) of iron were investigated. The alloys were produced by conventional gravity sand casting method. In order to determine the effect of iron addition to A356, optical and scanning electron microscopes (SEM/EDS) were used for microstructural examinations, and X-ray diffraction (XRD) analysis was carried out for phase characterization. Tensile tests were also conducted in order to determine effect of the Fe content on mechanical properties. It was found that as the Fe content of A356 was increased, the secondary dendrite arm spacing (SDAS) was decreased and the morphology of Al-Si eutectic became finer. From XRD examinations, different iron-based intermetallic compounds (β-Al5FeSi and α-Al8Fe2Si) formations were observed. It was also observed that as iron content increased, α-Al8Fe2Si intermetallic was transformed into β-Al5FeSi intermetallic. The tensile test results revealed that tensile strength and elongation values were reduced by increasing Fe content. It was also determined that β-Al5FeSi intermetallics were more negatively effective on tensile strength than α-Al8Fe2Si intermetallics.

  6. The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy

    NASA Astrophysics Data System (ADS)

    Tunçay, Tansel; Bayoğlu, Samet

    2017-04-01

    In the present study, microstructure and mechanical properties of A356 alloy including various amounts (0.2 to 1.2 wt pct) of iron were investigated. The alloys were produced by conventional gravity sand casting method. In order to determine the effect of iron addition to A356, optical and scanning electron microscopes (SEM/EDS) were used for microstructural examinations, and X-ray diffraction (XRD) analysis was carried out for phase characterization. Tensile tests were also conducted in order to determine effect of the Fe content on mechanical properties. It was found that as the Fe content of A356 was increased, the secondary dendrite arm spacing (SDAS) was decreased and the morphology of Al-Si eutectic became finer. From XRD examinations, different iron-based intermetallic compounds ( β-Al5FeSi and α-Al8Fe2Si) formations were observed. It was also observed that as iron content increased, α-Al8Fe2Si intermetallic was transformed into β-Al5FeSi intermetallic. The tensile test results revealed that tensile strength and elongation values were reduced by increasing Fe content. It was also determined that β-Al5FeSi intermetallics were more negatively effective on tensile strength than α-Al8Fe2Si intermetallics.

  7. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  8. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  9. A comparative assessment of crystallite size and lattice strain in differently cast A356 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Roy, H.; Lohar, A. K.; Samanta, S. K.; Tiwari, S.; Dutta, K.

    2015-02-01

    In this investigation, A356 aluminium alloy has been prepared by different routes viz. gravity casting, rheo pressure die casting (RPDC) and RPDC with T6 heat treatment. X-ray diffraction studies of these samples have been done in the scanning range of 20 - 90°. X-ray peak broadening analysis has been used to estimate the crystallite size and lattice stain, in all the samples. The sample prepared by RPDC with T6 treatment has comparatively smaller crystallite size and lesser lattice strain than gravity cast and RPDC samples.

  10. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  11. Aluminum Alloy 7068 Mechanical Characterization

    DTIC Science & Technology

    2009-08-01

    strength of 99 ksi (2). The commonly specified material properties for extruded 7068 aluminum are shown in table 1, along with 7050 and 7075 aluminum ...alloys for comparison (3). Table 1. Mechanical property comparison of high-strength aluminum alloys. Property Alloy 7068 7075 7050 Elastic... Aluminum Alloy 7068 Mechanical Characterization by Michael Minnicino, David Gray, and Paul Moy ARL-TR-4913 August 2009

  12. Processing and Microstructure Characteristics of As-Cast A356 Alloys Manufactured via Ultrasonic Cavitation during Solidification

    NASA Astrophysics Data System (ADS)

    Xuan, Yang; Jia, Shian; Nastac, Laurentiu

    2017-04-01

    Recent studies have showed that the microstructure and mechanical properties of A356 alloy can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because during the fabrication of A356 castings, ultrasonic cavitation processing plays an important role in degassing and refining the as-cast microstructure. In the present study, A356 alloy and Al2O3/SiC nanoparticles are used as the matrix alloy and the reinforcements, respectively. Nanoparticles are injected into the molten alloy and dispersed by ultrasonic cavitation. Ultrasonic cavitation was also applied during solidification of these nanocomposites. The microstructure and nanoparticle distribution of the cast samples have been investigated in detail. The current experimental results indicated that ultrasonic cavitation during solidification will greatly improve the microstructure of the samples. Al2O3 and SiC nanoparticle reinforced nanocomposites have different nanoparticle distributions in the matrix.

  13. Influence of Initial Microstructure on Microstructural Stability and Mechanical Behavior of Cryorolled A356 Alloy Subjected to Annealing

    NASA Astrophysics Data System (ADS)

    Immanuel, R. J.; Panigrahi, S. K.

    2017-08-01

    In the present work, various heat treatment cycles are imposed on an A356 aluminum alloy to develop two different base microstructures, one with supersaturated aluminum matrix and the other with coarse and uniformly distributed precipitates. Both the developed materials are subjected to cryorolling and then isochronally annealed for 1 hour at various temperatures ranging from 373 K to 673 K (100 °C to 400 °C). The overall strength is maximum for the cryorolled material with supersaturated base microstructure due to the dominant dislocation strengthening and precipitation strengthening mechanisms. However, the cryorolled material with precipitated base microstructure is found to have superior microstructural stability with retained ultrafine-grained (UFG) microstructure up to the annealing temperature of 473 K (200 °C) due to effective grain boundary pinning by the precipitates. Also, the material retains about 85 pct of as-cryorolled strength with enhanced ductility even after annealing at 473 K (200 °C). A detailed investigation on the microstructural evolution of the material at various annealing temperatures along with their mechanical behavior is presented in this article.

  14. Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy

    SciTech Connect

    Zhang, B.; Poirier, D.R.; Chen, W.

    1999-10-01

    The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of {minus}1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, the authors observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than {approximately}25 to 28{micro}m, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than {approximately}25 to 28{micro}m, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size.

  15. Effect of TiN-Coated Al Powders on the Microstructure and Mechanical Properties of A356 Alloy

    NASA Astrophysics Data System (ADS)

    Hu, Jiaoyu; Liu, Jun; Wang, Chunxia; Tang, Xin

    2017-01-01

    The core/shell nano-TiN-coated Al powders (TiN/Al) were prepared and added into A356 alloy by ultrasonic-assisted casting method in this work. The results show that TiN/Al has a better dispersion in A356 matrix and a stronger strengthening effect than TiN without the core/shell structure. With the addition of TiN/Al, most of the coarse primary α-Al dendrites of A356 turn into equiaxial. After T6 heat treatment, it is found that eutectic silicon in A356 with TiN/Al becomes columnar or globular in shape and smaller in size, which causes a greatly enhanced elongation of 11.7%. The results also suggest that the addition of nanoparticles can affect the precipitation behaviors and change the shapes and sizes of the precipitation.

  16. Deformation behaviour of Rheocast A356 Al alloy at microlevel considering approximated RVEs

    NASA Astrophysics Data System (ADS)

    Islam, Sk. Tanbir; Das, Prosenjit; Das, Santanu

    2015-03-01

    A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.

  17. Interdiffusion between U(Mo,Pt) or U(Mo,Zr) and Al or Al A356 alloy

    NASA Astrophysics Data System (ADS)

    Komar Varela, C.; Mirandou, M.; Aricó, S.; Balart, S.; Gribaudo, L.

    2009-12-01

    Solid state reactions in chemical diffusion couples U-7 wt.%Mo-0.9 wt.%Pt/Al at 580 °C and U-7 wt.%Mo-0.9 wt.%Pt/Al A356 alloy, U-7 wt.%Mo-1 wt.%Zr/Al and U-7 wt.%Mo-1 wt.%Zr/Al A356 alloy at 550 °C were characterized. Results were obtained from optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The UAl 3, UAl 4 and Al 20Mo 2U phases were identified in the interaction layers of γU(Mo,Pt)/Al and γU(Mo,Zr)/Al diffusion couples. Al 43Mo 4U 6 ternary compound was also identified in γU(Mo,Zr)/Al due to the decomposition of γU(Mo,Zr) phase. The U(Al,Si) 3 and U 3Si 5 phases were identified in the interaction layers of γU(Mo,Pt)/Al A356 and γU(Mo,Zr)/Al A356 diffusion couples. These phases are formed due to the migration of Si to the interaction layer. In the diffusion couple U(Mo,Zr)/Al A356, Zr 5Al 3 phase was also identified in the interaction layer. The use of synchrotron radiation at Brazilian Synchrotron Light Laboratory (LNLS, CNPq, Campinas, Brazil) was necessary to achieve a complete crystallographic characterization.

  18. Investigation on Formation Mechanism of Irregular Shape Porosity in Hypoeutectic Aluminum Alloy by X-Ray Real Time Observation

    NASA Astrophysics Data System (ADS)

    Liao, Hengcheng; Zhao, Lei; Wu, Yuna; Fan, Ran; Wang, Qigui; Pan, Ye

    2012-08-01

    The formation mechanism of irregular shape porosity in hypoeutectic aluminum silicon alloy (A356) was investigated by X-ray real time observation on porosity evolution during solidification and re-melting. Porosity in the hypoeutectic aluminum A356 alloy with high hydrogen content (>0.3 mL/100 g Al) first forms in the liquid as small spherical gas bubbles, then expands along with the pressure drop in the mushy zone due to shrinkage and lack of feeding, and finally deforms into irregular morphology by the impingement of aluminum dendrite network. Degassing is a key to eliminate porosity in aluminum alloy castings.

  19. A Model for Gas Microporosity in Aluminum and Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Felicelli, Sergio D.; Wang, Liang; Pita, Claudio M.; Escobar de Obaldia, Enrique

    2009-04-01

    A quantitative prediction of the amount of gas microporosity in aluminum and magnesium-alloy castings is performed with a continuum model of dendritic solidification. The distribution of the pore volume fraction and pore size is calculated from a set of conservation equations that solves the transport phenomena during solidification at the macroscale and the hydrogen diffusion into the pores at the microscale. A technique based on a pseudo-alloy solute that is transported by the melt is used to determine the potential sites of pore growth, subject to considerations of mechanical and thermodynamic equilibrium. The modeling results for aluminum alloy A356 are found to agree well with published studies. In view of the limited availability of experimental data for Mg-alloy gravity-poured castings, the formation of porosity in AZ91 is studied qualitatively, assuming that casting conditions are similar to A356. In particular, the minimum initial hydrogen content that leads to the formation of gas porosity was compared for both alloys. It is found that the initial hydrogen content necessary for forming porosity is much higher in AZ91 than in A356. This is attributed to significant differences in the solubility of the hydrogen in both alloys.

  20. Corrosion of aluminum and aluminum alloys

    SciTech Connect

    Davis, J.R.

    1999-01-01

    This new handbook presents comprehensive coverage of the corrosion behavior of aluminum and aluminum alloys, with emphasis on practical information about how to select and process these materials in order to prevent corrosion attack. Described are the characteristics of these materials and the influences of composition, mechanical working, heat treatment, joining methods, microstructure, and environmental variables on their corrosion.

  1. Bonding of Aluminum Alloys in Compound Casting

    NASA Astrophysics Data System (ADS)

    Feng, Jian; Ye, Bing; Zuo, Lijie; Wang, Qudong; Wang, Qigui; Jiang, Haiyan; Ding, Wenjiang

    2017-10-01

    The influence of the coating materials, coating thickness, and casting process on the interfacial microstructure and mechanical properties of the overcast A6061 bars with aluminum A356 and A6061 alloys was studied by OM, SEM/EDS, and mechanical testing. Results indicate that Ni coating has better thermal stability than Cu coating that heavily reacts with liquid Al alloy and forms a reaction zone around 130-150 μm during gravity casting. In the gravity casting, coarse and cracked Al3Ni phase distributes along the interfacial region and degrades the mechanical properties of the overcast joints. In squeeze casting, however, fine and dispersed Ni-rich strengthening phases form uniformly in the interfacial zone and improve the metallurgical bonding of the joints. The heat transition and application of pressure during solidification are two key factors in determining the integrity and mechanical properties of the overcast joints.

  2. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  3. Aluminum alloys for aerostructures

    SciTech Connect

    Staley, J.T.; Liu, J.; Hunt, W.H. Jr.

    1997-10-01

    Demands on the airframe industry have shifted over the years, but they have always moved in the direction of lower weight, higher damage tolerance, and longer-term durability. Up to the 1960s, the greatest need was for high strength to reduce weight. In the 1970s, higher fracture toughness and corrosion resistance were sought for enhanced damage tolerance and durability. In the early 1980s, the requirement for reduced weight was renewed, but by the late 1980s and early 1990s, durability became a concern again. Today`s focus is on materials that can help achieve low-cost manufacturing without sacrificing performance; future needs are likely to include both affordability and higher performance. This article describes the development of high-strength aluminum alloy materials that have satisfied past and current requirements, and identifies possible aluminum-intensive approaches that combine alternate design concepts and emerging materials technologies for low-cost, low-weight, damage-tolerant, and durable airframe structures of the future.

  4. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  5. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  6. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  7. Development Program for Natural Aging Aluminum Casting Alloys

    SciTech Connect

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  8. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  9. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  10. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    microstructure of the Al - Zn -Mg- Cu alloys was similar to the as-cast microstructure ...Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing complex castings with...wrought 2519 alloy . Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing

  11. Modification Performance of WC Nanoparticles in Aluminum and an Al-Si Casting Alloy

    NASA Astrophysics Data System (ADS)

    Borodianskiy, Konstantin; Zinigrad, Michael

    2016-04-01

    The influence of a modifier based on tungsten carbide (WC) nanoparticles is investigated first using 1 kg of bulk aluminum and then in a real industrial process using a commercial Al-Si casting alloy. The modifier is prepared by two different approaches, and its influence is investigated in pure aluminum and in commercial aluminum alloy A356. Microstructural studies show that the mean grain size in pure aluminum is reduced by 11.5 pct. Such a change usually causes an improvement in the mechanical properties of metals. Accordingly, the mechanical properties of the A356 alloy modified with WC nanoparticles are determined after T6 heat treatment and compared with unmodified specimens of the same alloy. The results obtained in the modified A356 alloy reveal unusual behavior of the mechanical properties, where the elongation of the alloys improved by 32 to 64 pct, while the tensile strength and yield strength remained unchanged. This behavior is attributable to a grain-size strengthening mechanism, where strengthening occurs due to the high concentration of grain boundaries, which act as obstacles to the motion of dislocations in the lattice.

  12. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  13. Production of Gas-Solid Structures in Aluminum and Nickel Alloys by Gasar Processing

    SciTech Connect

    Apprill, J.M.; Baldwin, M.D.; Maguire, M.C.; Miszkiel, M.E.; Shapovalov, V.I.

    1999-01-06

    Experimental data on directional and bulk solidification of hydrogen-charged samples of aluminum alloy A356 and nickel alloy Inconel 718 are discussed. The solidification structure of the porous zone is shown to be dependent on many process variables. Of these variables, hydrogen content in the melt prior to solidification, and furnace atmospheric pressure during solidification play the decisive role. Also important are the furnace atmosphere composition, the solidification velocity, and the temperature distribution of the liquid metal inside the mold.

  14. Hot ductility and strength of SiC{sub p}/A356 Al composite and matrix alloy by torsion testing

    SciTech Connect

    McQueen, H.J.; Sakaris, P.; Bowles, J.

    1993-12-31

    Torsion testing was conducted on a metal-matrix composite (MMC, 15 v% SiC{sub p}A356 Al) and its matrix alloy over the range 300 to 540{degree}C and 0.1 to 5.0 s{sup {minus}1}. Comparison of flow stress ductility and other hot working parameters is presented. Flow stresses of the A356 MMC were found to be generally higher than A356 alloy but the difference was quite small at higher temperatures. Flow stresses were found to depend on the strain rate through a sinh function and on temperature through an Arrhenius term with activation energies of 263 kJ/mol for the composite and 161 kJ/mol for the matrix; the increased value for the composite suggests that the SiC particles force the matrix to undergo additional strain hardening. Dynamic recovery seems to be predominant in A356; however, dynamic recrystallization likely nucleates in the vicinity of silicon carbide particles in 15 v% SiC{sub p}/A356 Al. Ductility of the composite, about 25% below that of the alloy, rose by a factor of 4 between 400 and 500{degree}C to become higher than many wrought alloy composites. The low ductility of A356 was shown to result from linking up of the cracks nucleated at Si particles, whereas linkage of the decohesion voids at the SiC was associated with more plastic flow in the matrix which had much finer Si particles than the bulk alloy.

  15. Assessment of refining effectiveness of self-prepared nano-(TiNb)C/(NbTi)/Al complex powder inoculation on A356 alloy

    NASA Astrophysics Data System (ADS)

    Qiao, Gui-ying; Wu, Da-yong; Wei, Teng-fei; Liao, Bo; Xiao, Fu-ren

    2017-07-01

    Inoculation plays an effective role to refine the microstructure of as-cast aluminium alloys, which strongly depend on the effectiveness of the inoculants. In this work, a new concept of nano-(TiNb)C/(NbTi)/Al complex powder as an inoculant for refining the as-cast aluminium alloys was proposed, and the nano-(TiNb)C/(NbTi)/Al complex powder was prepared by mechanical alloying (MA) method, furthermore, the refining effectiveness of inoculation on A356 alloy was investigated. Results show that the nano-(TiNb)C/(NbTi)/Al complex powder consists of three phases of α-Al, nano-(TiNb)C and (NbTi) solid solution. The nano-(TiNb)C/(NbTi)/Al complex powder as an inoculant have higher refining effectiveness as well as good recyclability on the microstructure of cast A356 alloy, and improve the mechanical properties, especially the ductility.

  16. Aluminum Alloys--Industrial Deformable, Sintered and Light Aluminum Alloys

    DTIC Science & Technology

    1974-10-30

    thin film on the particles of the highly dispersed aluminum powder when it is ground in spherical mills in a nitrogen atmosphere in which the...principal elements, certain small admixtures are introduced into the alloys, which have a considerable effect on the decay kinetics of the oversaturated...strengthened by the insoluble dispersed alumina particles. Fine grinding of the original powder provides the dispersion of the oxide films and particles

  17. Aluminum Alloy 7050 Extrusions.

    DTIC Science & Technology

    1977-03-01

    Artificial Aging Conditions 250 A-l Fatigue Crack Growth Data for C5A Extruded Panel, 7050-T7351X, L-T Orientation, R=0.1 254 A-2 Fatigue...cooldd aluminum and steel bottom blocks (Figure 2) were fabricated for use with this tooling. Metal was melted in a 10,000-lb capacity open- hearth ...time factor, effects of heating through this temperature range to the maximum artificial agirg temperature are additive. The solution of the

  18. Superplasticity in aluminum alloys

    SciTech Connect

    Nieh, T. G.

    1997-12-01

    We have characterized in the Al-Mg system the microstructure and mechanical properties of a cold-rolled Al-6Mg-0.3Sc alloy. The alloy exhibited superplasticity at relatively high strain rates (about 10-2 s-1). At a strain rate of 10-2 s-1 there exists a wide temperature range (475-520`C) within which the tensile elongation is over 1000%. There also exists a wide strain rate range (10-3 - 10-1 s-1) within which the tensile elongation is over 500%. The presence of Sc in the alloy results in a uniform distribution of fine coherent Al3SC precipitates which effectively pin grain and subgrain boundaries during static and continuous recrystallization. As a result, the alloy retains its fine grain size (about 7 micron), even after extensive superplastic deformation (>1000%). During deformation, dislocations Mg with a high Schmidt factor slip across subgrains but are trapped by subgrain boundaries, as a result of the strong pining of Al3Sc. This process leads to the conversion of low-angled subgrain boundaries to high-angled grain boundaries and the subsequent grain boundary sliding, which produces superelasticity. A model is proposed to describe grain boundary sliding accommodated by dislocation glide across grains with a uniform distribution of coherent precipitates. The model predictions is consistent with experimental observations.

  19. Welding high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Parks, P. G.; Hoppes, R. V.; Hasemeyer, E. A.; Masubuchi, K.

    1974-01-01

    Handbook has been published which integrates results of 19 research programs involving welding of high-strength aluminum alloys. Book introduces metallurgy and properties of aluminum alloys by discussing commercial alloys and heat treatments. Several current welding processes are reviewed such as gas tungsten-arc welding and gas metal-arc welding.

  20. Characterization of tribological behaviour of graphitic aluminum matrix composites, grey cast iron, and aluminum silicon alloys

    NASA Astrophysics Data System (ADS)

    Riahi, Ahmad Reza

    In recent years a number of aluminum-silicon alloys and some graphitic aluminum matrix composites have been fabricated for potential tribological applications in the automotive industry, in particular for lightweight high efficiency internal combustion engines to replace conventional uses of cast iron. This study provides a systematic investigation for wear mechanisms in dry sliding of the graphitic aluminum-matrix composites (A356 Al-10%SiC-4%Gr and A356 Al-5%Al2O3-3%Gr) developed for cylinder liner applications. Two eutectic Al-Si alloys (modified with rare earth elements) developed for wear resistant engine blocks were also studied. The tribological behavior of grey cast iron (ASTM A30), which is a traditional material for engine components, was also investigated as reference. For graphitic aluminum matrix composites, a wear mapping approach has been adopted. Three main regimes: ultra mild, mild and severe wear regions were determined in the maps; additionally, a scuffing region was observed. In the ultra mild wear regime the wear resistance was primarily due to the hard particles supporting the load. It was shown that the onset of severe wear in graphitic composites occurred at considerably higher loads compared to A356 aluminum alloy and A356 Al-20% SiC composite. At the onset of severe wear, the surface temperatures and coefficient of friction of the graphitic composites was lower than that of A356 Al-20% SiC. At all testing conditions in the mild wear regime, a protective tribo-layer was formed, which by increasing the speed and load became more continuous, more compact, smoother, and harder. The tribo-layers were removed at the onset of severe wear. An experimental wear map of grey cast iron was constructed; it consisted of three wear regimes: ultra mild, mild and severe wear. In the ultra mild regime a compacted fine iron oxide powder formed on the contact. The onset of severe wear was started with local material transfer to the steel counterface, and

  1. Interplay among Coating Thickness, Strip Size, and Thermal and Solidification Characteristics in A356 Lost Foam Casting Alloy

    NASA Astrophysics Data System (ADS)

    Shabestari, S. G.; Divandari, M.; Ghoncheh, M. H.; Jamali, V.

    2017-07-01

    The aim of this research was evaluation of the solidification parameters of A356 alloy, e.g., dendrite arm spacing (DAS), correlation between cooling rate (CR) and DAS, hot tearing, and microstructural analysis at different coating thicknesses and strip sizes during the lost foam casting process (LFC). To achieve this goal, the DAS was measured at six coating thicknesses and six different strip sizes. In addition, thermal characteristics, such as the CR, temperatures of start and finish points of solidification, recalescence undercooling, and hot tearing susceptibility (HCSC), at five coating thicknesses were recognized from the cooling curves and their first derivative and the solid fraction curves, which have been plotted through the thermal analysis technique. The pouring temperature and strip size were fixed at 1063 K (790 °C) and 12 mm, respectively. Besides, to derive a numerical equation to predict the CR by measuring the DAS in this alloy, a microstructural evaluation was carried out on samples cast through 12-mm strip size. The results showed that both coating thickness and strip size had similar influences on the DAS, in which, by retaining one parameter at a constant value and simultaneous enhancement in the other parameter, the DAS increased significantly. Furthermore, at thinner coating layer, the higher amount of the CR was observed, which caused reduction in the temperatures of both the start and finish points of solidification. Also, increasing the CR caused a nonlinear increase in both the recalescence undercooling and the HCSC.

  2. Interplay among Coating Thickness, Strip Size, and Thermal and Solidification Characteristics in A356 Lost Foam Casting Alloy

    NASA Astrophysics Data System (ADS)

    Shabestari, S. G.; Divandari, M.; Ghoncheh, M. H.; Jamali, V.

    2017-10-01

    The aim of this research was evaluation of the solidification parameters of A356 alloy, e.g., dendrite arm spacing (DAS), correlation between cooling rate (CR) and DAS, hot tearing, and microstructural analysis at different coating thicknesses and strip sizes during the lost foam casting process (LFC). To achieve this goal, the DAS was measured at six coating thicknesses and six different strip sizes. In addition, thermal characteristics, such as the CR, temperatures of start and finish points of solidification, recalescence undercooling, and hot tearing susceptibility (HCSC), at five coating thicknesses were recognized from the cooling curves and their first derivative and the solid fraction curves, which have been plotted through the thermal analysis technique. The pouring temperature and strip size were fixed at 1063 K (790 °C) and 12 mm, respectively. Besides, to derive a numerical equation to predict the CR by measuring the DAS in this alloy, a microstructural evaluation was carried out on samples cast through 12-mm strip size. The results showed that both coating thickness and strip size had similar influences on the DAS, in which, by retaining one parameter at a constant value and simultaneous enhancement in the other parameter, the DAS increased significantly. Furthermore, at thinner coating layer, the higher amount of the CR was observed, which caused reduction in the temperatures of both the start and finish points of solidification. Also, increasing the CR caused a nonlinear increase in both the recalescence undercooling and the HCSC.

  3. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  4. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    PubMed

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion.

  5. Process capability improvement through DMAIC for aluminum alloy wheel machining

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra

    2017-07-01

    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  6. About Alloying of Aluminum Alloys with Transition Metals

    NASA Astrophysics Data System (ADS)

    Zakharov, V. V.

    2017-05-01

    An attempt is made to advance Elagin's principles of alloying of aluminum alloys with transition metals (TM) such as Mn, Cr, Zr, Ti, V with allowance for the ternary equilibrium and metastable Al - TM - TM phase diagrams. The key moments in the analysis of the phase diagrams are the curves (surfaces) of joint solubility of TM in aluminum, which bound the range of the aluminum solid solution. It is recommended to use combinations of such TM (two and more), the introduction of which into aluminum alloys widens the phase range of the aluminum solid solution.

  7. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  8. Production of semi-solid feedstock of A356 alloy and A356-5TiB2 in-situ composite by cooling slope casting

    NASA Astrophysics Data System (ADS)

    Kumar, S. Deepak; Acharya, Mihira; Mandal, A.; Chakraborty, M.

    2015-02-01

    Cooling Slope casting process has gained significant importance for manufacturing of semi-solid feedstock Al alloys and composites which find applications in automotive and aerospace industries. The primary objective of this research is to generate the semi-solid feedstock suitable for thixoforming process. The current work discusses the phenomena involved in the evolution of microstructure of the semi-solid feed stock by Cooling Slope casting process and the effect of various parameters. The process parameters like the angle and length of inclined plate affect the size and morphology of α-Al phase. The Cooling slope process resulted in the formation of fine grain size of about 38 μm of α-Al phase, compared to that of 98 μm processed conventionally. Further, the pouring temperature played a crucial role in the generation of semi-solid microstructures in case of both the alloy and composites. Moreover, fine TiB2 particles of size 0.2-0.5 μm are uniformly distributed in the almost spherical α-Al grains and at the grain boundaries in the composite feed stock. Cooling slope casting route is a suitable and economical route for semi-solid slurry generation by effectively varying the process parameters.

  9. Application of modern aluminum alloys to aircraft

    NASA Astrophysics Data System (ADS)

    Starke, E. A., Jr.; Staley, J. T.

    Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Although polymer matrix composites are being used extensively in high-performance military aircraft and are being specified for some applications in modern commercial aircraft, aluminum alloys are the overwhelming choice for the fuselage, wing, and supporting structure of commercial airliners and military cargo and transport. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in aluminum alloys that will ensure their use in significant quantities for the rest of this century and likely well into the next one. But most significantly, there have been major advances in aluminum aircraft alloys that continue to keep them in a competitive position. In the early years aluminum alloys were developed by trial and error, but over the past thirty years there have been significant advances in our understanding of the relationships among composition, processing, microstructural characteristics and properties. This knowledge base has led to improvements in properties that are important to aircraft applications. This review covers the performance and property requirements for airframe components in current aircraft and describes aluminum alloys and product forms which meet these requirements. It also discusses the structure/property relationships of aluminum aircraft alloys and describes the background and drivers for the development of modern aluminum alloys to improve performance. Finally, technologies under development for future aircraft are discussed.

  10. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles

  11. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  12. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  13. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    DOE PAGES

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...

    2017-03-06

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less

  14. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-05-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  15. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-03-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  16. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  17. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  18. Solution Potentials Indicate Aluminum-Alloy Tempers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Report discusses use of solution potential as measure of temper of aluminum alloys. Technique based on fact that different tempers or heat treatments exhibit different solution potentials as function of aging time.

  19. DYNAMIC TESTS OF STRUCTURAL ALUMINUM ALLOYS.

    DTIC Science & Technology

    A series of dynamic tests was conducted on three grades of structural aluminum alloys: (a) 6061-T6, (b) 6063 - T5 , and (c) 5456-H321. The effects of...at the maximum test rates. The 6063 - T5 aluminum shoed no change in yield stress and a 5.8% increase in tensile strength at the maximum test rate

  20. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  1. Major and Minor Constituents of Aluminum Alloys

    DTIC Science & Technology

    1986-03-01

    sample alloys obtained by both techniques. Keywords: Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP-AES).... absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy are used for the determination of major magnesium, lithium, copper, zinc...An accurate analysis of aluminum alloys is required for quality control and characterization purposes. The two analytical techniques atomic

  2. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  3. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  4. Precipitation hardening in aluminum alloy 6022

    SciTech Connect

    Miao, W.F.; Laughlin, D.E.

    1999-03-05

    Although the precipitation process in Al-Mg-Si alloys has been extensively studied, the understanding of the hardening process is still incomplete, since any change in composition, processing and aging practices, etc., could affect the precipitation hardening behavior. In this paper, hardness measurements, differential scanning calorimetry and transmission electron microscopy have been utilized to study the precipitation hardening behavior in aluminum alloy 6022.

  5. Materials data handbook: Aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 6061 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  6. Materials data handbook: Aluminum alloy 5456

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 5456 is presented. The scope of the information includes physical and mechanical property data at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  7. Materials data handbook: Aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information on aluminum alloy 7075 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  8. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  9. Processing of 2090 Aluminum Alloy for Superplasticity

    DTIC Science & Technology

    1988-06-01

    behavior has now been extensively documented in Al-Mg alloys, with elongations in excess of 1,000 percent obtained in many cases in these alloys. The...crucial. Characteristics of superplastic behavior include a fine grain size (two to five microns), a strain rate sensitivity coefficient m > 0.3, 1 I| and...seven to eight percent less and demonstrates ten percent higher stiffness than 7075 aluminum, an alloy it was designed to replace. This is due to the

  10. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  11. Grain Refiner Effect on the Microstructure and Mechanical Properties of the A356 Automotive Wheels

    NASA Astrophysics Data System (ADS)

    Aguirre-De la Torre, E.; Afeltra, U.; Gómez-Esparza, C. D.; Camarillo-Cisneros, J.; Pérez-Bustamante, R.; Martínez-Sánchez, R.

    2013-12-01

    A356 aluminum alloy automotive wheels, 17 inch in diameter, were produced by low-pressure die casting. Contents of Al-5Ti-B (ATB) master alloy were added from 0 to 0.79 wt.%. Microstructural and mechanical properties were evaluated under industrial casting process conditions. The obtained results from mechanical testing provide evidence that additions of 0.13 and 0.27 wt.% of ATB have an improvement on the mechanical performance of the automotive wheels. This can be compared with the use of a grain refiner's higher concentrations, leading to a significant reduction in the cost-benefit ratio for the manufacturing of A356 automotive wheels.

  12. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  13. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  14. Nondestructive determination of mechanical properties. [aluminum alloys

    NASA Technical Reports Server (NTRS)

    Schneider, E.; Chu, S. L.; Salma, K.

    1984-01-01

    Aluminum alloys of types 1100, 3003, 5052, 6061, and 2024 were used to study the sensitivity of the acousto-elastic constant to changes in the microstructure. Results show that there is a strong relationship between the acousto-elastic constants and the yield strength and hardness. This relationship depends on whether the alloy is strain hardened or precipitation hardened. In strain hardened alloys, the constants increase as the amount of solid solution is decreased, while the behavior is the opposite in precipitation hardened alloys.

  15. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  16. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part II: Mechanical and thermal properties

    DOE PAGES

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...

    2017-03-08

    The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systemsmore » (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.« less

  17. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  18. Aluminum-lithium alloys with hafnium

    SciTech Connect

    Rioja, R.J.; Bretz, P.E.; Jacoby, J.

    1989-09-26

    This patent describes an aluminum base alloy suitable for forming into a wrought product having improved combinations of strength and fracture toughness. The alloy consisting essentially of 0.2 to 5.0 wt % Li, 0.05 to 6.0 wt % Mg, 0.2 to 5.0 wt % Cu, 0 to 2.0 wt % Mn, 0 to 1.0 wt, % Zr, 0.05 to 12.0 wt. % Zn, 0.05 to 1.0 wt. % Hf, 0.5 wt.% Fe, 0.5 wt. % max. Si, the balance aluminum and incidental impurities.

  19. Mechanical Properties of Aluminum-alloy Rivets

    NASA Technical Reports Server (NTRS)

    Brueggeman, Wm C

    1936-01-01

    The development of metal construction for aircraft has created a need for accurate and detailed information regarding the strength of riveted joints in aluminum-alloy structures. To obtain this information the National Bureau of Standards in cooperation with the National Advisory Committee for Aeronautics is investigating the strength of riveted joints in aluminum alloys. The strength of riveted joints may be influenced by the form of the head, the ratio of the rivet diameter to the sheet thickness, the driving stress, and other factors. This note gives the results of tests to develop the riveting technique for test specimens and to determine the effects of these factors.

  20. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    DTIC Science & Technology

    2012-01-01

    strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration...structural components made of high strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material...rate sensitivity, Johnson - Cook , constitutive model. PACS: 62.20 .Dc, 62.20..Fe, S 62.50. +p, 83.60.La INTRODUCTION Aluminum 7075 alloys are

  1. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  2. Cryogenic properties of aluminum alloys and composites

    SciTech Connect

    Hill, M.A.; Rollett, A.D.; Jacobson, L.A.; Borch, N.R.; Gibbs, W.S.; Patterson, R.A.; Carter, D.H.

    1989-01-01

    Several aluminum-based materials have been evaluated for possible application at cryogenic temperatures. These included the Al-Li alloy 2090, a high purity mechanically alloyed Al, SiC whisker reinforced Al 2124, and SiC particulate reinforced Al 6061. Mechanical properties, thermal properties and electrical properties were measured for these materials. Their performance in a radio frequency cavity was also determined. 4 refs., 6 figs.

  3. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  4. Welding the four most popular aluminum alloys

    SciTech Connect

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  5. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  6. Technology of welding aluminum alloys-II

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Step-by-step procedures were developed for high integrity manual and machine welding of aluminum alloys. Detailed instructions are given for each step with tables and graphs to specify materials and dimensions. Throughout work sequence, processing procedure designates manufacturing verification points and inspection points.

  7. Numerical Modeling of the Dispersion of Ceramic Nanoparticles during Ultrasonic Processing of A356-based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Daojie; Nastac, Laurentiu

    The metal-matrix-nano-composite in this study consist of a A356 alloy matrix reinforced with 1.0 wt.% SiC-nanoparticles dispersed within the matrix via ultrasonic cavitation system, available in the Solidification Laboratory at The University of Alabama. The required ultrasonic parameters to achieve cavitation for adequate degassing and refining of the A356 alloy as well as the fluid flow and solidification characteristics for uniform dispersion of the nanoparticles into the aluminum alloy matrix are being investigated via CFD ultrasonic cavitation modeling. The multiphase CFD model for nanoparticle dispersion accounts for turbulent fluid flow, heat transfer and solidification as well as the complex interaction between the molten alloy and nanoparticles by using the Ansys's Fluent DDPM model. The modeling parametric study includes the effects of ultrasonic probe location, the fluid flow intensity, and the initial location where the nanoparticles are released into the molten alloy.

  8. Effects of Post-Fabrication Processing on the Tensile Properties of Centrifugally Cast SiC Particulate Reinforced Aluminum Composites

    DTIC Science & Technology

    1993-09-01

    number) A centrifugally cast A356 aluminum -matrix composite reinforced with silicon carbide (SiC) particles was themo-mechanically processed by rolling and...Advisor Alan G. Fox, Second Reader Matthewn Department of Mechanical Engineering ii ABSTRACT A centrifugally cast A356 aluminum -matrix composite...used in this research, was commercial grade A356 Aluminum alloy. The material was supplied by Naval Surface Warefare Center, White Oak. The material

  9. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  10. Characterization of the interaction layer grown by interdiffusion between U-7wt%Mo and Al A356 alloy at 550 and 340 °C

    NASA Astrophysics Data System (ADS)

    Mirandou, M.; Aricó, S.; Rosenbusch, M.; Ortiz, M.; Balart, S.; Gribaudo, L.

    2009-02-01

    U(Mo) alloys are under study to get a low-enriched U fuel for research and test reactors. Qualification experiments of dispersion fuel elements have shown that the interaction layer between the U(Mo) particles and the Al matrix behaves unsatisfactorily. The addition of Si to Al seems to be a good solution. The goal of this work is to identify the phases constituting the interaction layer for out-of-pile interdiffusion couples U(Mo)/Al(Si). Samples γU-7wt%Mo/Al A356 alloy (7.1 wt%Si) made by Friction Stir Welding were annealed at 550 and 340 °C. Results from metallography, microanalysis and X-ray diffraction, indicate that the interaction layer at 550 °C is formed by the phases U(Al,Si) 3, U 3Si 5 and Al 20Mo 2 U, while at 340 °C it is formed by U(Al,Si) 3 and U 3Si 5. X-ray diffraction with synchrotron radiation showed that the Si-rich phase, previously reported in the interaction layer at 550 °C near U(Mo) alloy, is U 3Si 5.

  11. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  12. Deposition of Amorphous Aluminum Alloys as a Replacement for Aluminum Cladding

    DTIC Science & Technology

    2009-02-05

    1 DEPOSITION OF AMORPHOUS ALUMINUM ALLOYS AS A REPLACEMENT FOR ALUMINUM CLADDING US Army Corrosion Summit February 3-5, 2009 Clearwater, FL Ben...REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Depostion of Amorphous Aluminum Alloys as a Replacement for Aluminum ...Tantalum for gun barrel applications WC-Co-Cr for landing gear ID Co-Cr-Al-Y bond coat for thermal barrier system Pure aluminum for Cd replacement

  13. Dimensional control of quasisingle crystals of aluminum alloy in production

    SciTech Connect

    Radchenko, A.I.; Karuskevich, M.V.; Naim, V.R.

    1995-01-01

    The article deals with a method of controlling the dimensions of quasisingle crystal grains of an aluminum alloy used instead of single crystal specimens in static fatigue tests with the object of substantiating a discrete probabilistic model of the fatigue of metals and alloys. We obtained a mathematical model of dimensional control of quasisingle crystals of the aluminum alloy.

  14. A Combined Numerical-Experimental Approach to Quantify the Thermal Contraction of A356 During Solidification

    NASA Astrophysics Data System (ADS)

    Macht, J. P.; Maijer, D. M.; Phillion, A. B.

    2017-07-01

    A process for generating thermal contraction coefficients for use in the solidification modeling of aluminum castings is presented. Sequentially coupled thermal-stress modeling is used in conjunction with experimentation to empirically generate the thermal contraction coefficients for a strontium-modified A356 alloy. The impact of cooling curve analysis on the modeling procedure is studied. Model results are in good agreement with experimental findings, indicating a sound methodology for quantifying the thermal contraction. The technique can be applied to other commercially relevant aluminum alloys, increasing the utility of solidification modeling in the casting industry.

  15. Diffusion bonding of superplastic aluminum alloys

    SciTech Connect

    Sunwoo, A.J.

    1993-12-01

    Ability to diffusion bond aluminum alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Concurrent diffusion bonding (DB)-SPF is considered to be an energy-saving manufacturing process since it simplifies the production of complex components. Moreover, because of increased design flexibility, overall manufacturing cost and component weight are significantly reduced. Diffusion bonding is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is imperative in the bond area. The process utilizes either the solid state or transient liquid phase (TLP) bonding to produce a bond with microstructure continuity in the joint. In addition, there is no localized thermal gradient present to induce distortion or to create residual stresses in the component, thereby increasing structural integrity.

  16. The Delayed Fracture of Aluminum Alloys.

    DTIC Science & Technology

    1981-01-01

    if necessary and Identify by block number) aluminum alloys, stress - corrosion cracking, oxide film, Auger electron spectroscopy, Auger depth profiling...revere Ide If r ecester’ nd Ientify by block number). b -. ,h 0 unJaInenta mechanZsm of stress - corrosion cracking (SCC) has been studied for high-purity...these specimens is not intergranular. Fracture appears to have originated through pitting corrosion , which caused local stress concentration leading to

  17. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  18. Superplasticity in Thermomechanically Processed High Magnesium Aluminum-Magnesium Alloys.

    DTIC Science & Technology

    1984-03-01

    California DTIC EECTE JL I 1984 THESIS SUPERPLASTICITY IN THERMOMECHANICALLY PROCESSED HIGH MAGNESIUM ALUMINUM-MAGNESIUM ALLOYS C:L by CD) John J. Becker...High Magnesium Aluminum- March 1984 Magnesium Alloys S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(&) John J. Becker 9...magnesium, aluminum-magnesium alloys were investigated. The thermomechanical processing itself included warm rolling at 300°C to 94% reduction

  19. Mechanical properties of laser welded aluminum alloys

    SciTech Connect

    Douglass, D.M.; Mazumder, J.

    1996-12-31

    The demand for lighter weight vehicles has prompted accelerated development in processing aluminum alloys for automobile structural applications. One of the current research initiatives centers on laser beam welding of aluminum alloys. Autogenous butt welds have been performed on Al 3003, 5754, 6111, and 6061-T6 plates with a 6 kW CO2 laser. For 6061, tensile data indicate about 60% of the base metal strength was attained in the as-welded condition, with a brittle fracture occurring through the weld. A post-weld heat treatment to the T6 condition resulted in a recovery of original ultimate tensile strengths, although these also failed in the weld. Hardness measurements of the post-weld T6 reveal a uniform hardness across the HAZ and fusion zone that is comparable to the original hardness. All 3003 welds fractured in the parent material in a ductile fashion. A high quality bead was consistently achieved with the 3003 alloy, whereas the other alloys demonstrated bead irregularities. SEM photographs reveal large, spherical pores, suggesting that they were formed by gas entrapment rather than by shrinkage.

  20. Melt Conditioned Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Scamans, Geoff; Li, Hu-Tian; Fan, Zhongyun

    High shear melt conditioning of aluminum alloy melts disperses oxide films and provides potent nuclei to promote non-dendritic solidification leading to refined as cast microstructures for shape castings, semis or continuously cast product forms. A new generation of high shear melt conditioning equipment has been developed based on a dispersive mixer that can condition either a batch melt or can provide a continuous melt feed. Most significantly the melt conditioner can be used directly in the sump of a DC caster where it has a dramatic effect on the cast microstructure. The present goals are to expand the castable alloy range and to increase the tolerance of alloys used in transport applications to impurities to increase the use of recycled metal. The paper will review the current status of the melt conditioning technology across the range of casting options and will highlight development opportunities.

  1. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  2. Bismuth alloy potting seals aluminum connector in cryogenic application

    NASA Technical Reports Server (NTRS)

    Flower, J. F.; Stafford, R. L.

    1966-01-01

    Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

  3. Influences of Nickel and Vanadium Impurities on Microstructure of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Suming; Yao, Ji-Yong; Sweet, Lisa; Easton, Mark; Taylor, John; Robinson, Paul; Parson, Nick

    2013-05-01

    In recent years, the deterioration in the available coke quality for anode production has led to increased levels of metal impurities such as nickel and vanadium in primary aluminum. There is growing concern from the industry with regard to the impact of increased Ni and V levels on the downstream properties of Al alloy products. This article presents a detailed investigation of the influences of Ni and V impurities on microstructure of three common Al alloys, i.e., AA6063, AA3102, and A356, in both as-cast and heat-treated conditions. The characterization techniques employed include scanning electron microscopy, electron backscattered diffraction, energy-dispersive x-ray spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. It is shown that the phase constituents of AA6063 are not altered by Ni additions up to 0.05% or V additions up to 0.04%. Whereas there is no change in phase constituents with increasing Ni up to 0.015% for AA3102, the addition of 0.05% Ni seems to have significant influence on the microstructure. For A356, Ni additions up to 0.02% do not seem to have significant influence on the microstructure, but a new phase with significantly high Ni content is formed when the Ni impurity level is increased to 0.05%. The deep insight obtained in this work should be helpful to understand the influences of Ni and V impurities on properties of Al alloys.

  4. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling industry to adopt Dry or near Dry Machining, with the aim of eliminating or significantly reducing the use of metal working fluids. Pending EPA regulations on metal cutting, dry machining is becoming a hot topic of research and investigation both in industry and federal research labs. Although the need for dry machining may be apparent, most of the manufacturers still consider dry machining to be impractical and even if possible, very expensive. This perception is mainly due to lack of appropriate cutting tools that can withstand intense heat and Built-up-Edge (BUE) formation during dry machining. The challenge of heat dissipation without coolant requires a completely different approach to tooling. Special tooling utilizing high-performance multi-layer, multi-component, heat resisting, low friction coatings could be a plausible answer to the challenge of dry machining. In pursuit of this goal Argonne National Labs has introduced Nano-crystalline near frictionless carbon (NFC) diamond like coatings (DLC), while industrial efforts have led to the introduction of composite coatings such as titanium aluminum nitride (TiAlN), tungsten carbide/carbon (WC/C) and others. Although, these coatings are considered to be very promising, they have not been tested either from tribological or from dry machining applications point of view. As such a research program in partnership with federal labs and industrial sponsors has started with the goal of exploring the feasibility of dry machining using the newly developed coatings such as Near Frictionless Carbon Coatings (NFC), Titanium Aluminum Nitride (TiAlN), and multi-layer multicomponent nano coatings such as TiAlCrYN and TiAlN/YN. Although various coatings are under investigation as part of the overall dry machinability program, this extended abstract deals with a systematic investigation of dry

  5. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  6. Grain Nucleation Parameters for Aluminum Alloys: Experimental Determination and Model Validation

    NASA Astrophysics Data System (ADS)

    Ahmadein, M.; Pustal, B.; Berger, R.; Subašić, E.; Bührig-Polaczek, A.

    2009-03-01

    A statistical grain nucleation model was implemented as a part of a multiphase flow and solidification simulation code for metallic alloys. Three characteristic parameters control the solution accuracy of the nucleation model: the total grain density, the mean undercooling, and the standard deviation of the undercooling. These parameters were obtained experimentally for grain-refined (GR) A356, GR AlCu4, and unrefined (UR) AlCu4 aluminum alloys. An apparatus was constructed and equipped with a cooling system to provide different cooling rates throughout the cast sample. The local grain density related to each cooling rate and undercooling was determined. The model parameters were obtained via statistical tools and were used to perform a simulation for the solidification of the cast sample. Calculated results were compared to experimental results, and the model exhibited good agreement with the experiments.

  7. Corrosion behavior of aluminum-lithium alloys

    SciTech Connect

    Garrard, W.N. )

    1994-03-01

    Corrosion behavior of three aluminum-lithium (Al-Li) alloys was investigated in aerated 0.5 M sodium sulfate (Na[sub 2]SO[sub 4]), deaerated 3.5% sodium chloride (NaCl), and aerated 3.5% NaCl. Corrosion behavior of the Aluminum Association (AA) alloys 2090-T8E41 (UNS A92090, sheet), AA 8090-T851 (UNS A98090, sheet), and AA 8090-T82551 (UNS A98090, bar) was compared to behavior of the conventional AA 7075-T6 (UNS A97075, sheet). Uniform corrosion was the predominant form of attack in aerated Na[sub 2]SO[sub 4] and deaerated NaCl, although some localized attack resulted from corrosion of intermetallics on specimen surfaces. Pitting was the main form of attack in aerated NaCl. In all three media, the sheet materials corroded at a similar rate, but the bar form of AA 8090 corroded at a lower rate. Pretreatment of the alloys by immersion in a cerium (Ce) solution inhibited pitting in aerated NaCl but only for a short period.

  8. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  9. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  10. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  11. Analysis of Dendritic Primary Al Grain Ripening and Solid Fraction Measurement in A356 Alloy Semi-Solid Slurry Using Segregation Sensitive Reagent

    NASA Astrophysics Data System (ADS)

    Gao, Li; Harada, Yohei; Kumai, Shinji

    Ripening of dendritic primary Al grain in semi-solid state has been paid much attention to since it is the most economical way to produce semi-solid slurry containing spheroidal Al grains for thixocasting. Also, solid fraction is the key factor in all the semi-solid processes. A segregation sensitive reagent (Weck's reagent) can help to study both the two topics, revealing the inner-primary Al grain's optical microstructure evolution during semi-solid heat treatments (partial re-melting) of small A356 alloy samples cut from both as-DC cast and compressed ingots (Recrystallization and partial re-melting process). With the help of this etching technique, the influence of induced strain on the ripening mechanism of primary Al grains was investigated precisely. Furthermore, the peripheral part of the primary Al grain grown during water quenching was distinguished by the reagent. Therefore we could exclude this area when measuring the solid fraction and avoid overestimation by image analysis.

  12. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  13. Hot deformation of aluminum alloys 2

    SciTech Connect

    Bieler, T.R. ); Lalli, L.A. ); MacEwen, S.R. )

    1998-01-01

    This volume is the proceedings of the second symposium addressing scientific and modeling issues that are important for prediction of hot deformation of aluminum and its alloys. This symposium focuses more on the processing route itself, and it explores new techniques for characterizing microstructures, laboratory testing to emulate industrial processing, and perhaps most importantly, the emergence of mathematical modeling as a reliable, validated tool to simulate not only processing strain paths, but also the evolution of properties during forming. Separate abstracts were prepared for all 35 papers in this volume.

  14. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Porter, Wallace D.; Shyam, Amit

    2017-03-01

    The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systems (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.

  15. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Porter, Wallace D.; Shyam, Amit

    2017-05-01

    The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systems (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.

  16. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  17. Welding of Aluminum Alloys to Steels: An Overview

    DTIC Science & Technology

    2013-08-01

    joining techniques for the dissimilar materials. 2. Recent technologies for joining aluminum alloys to steels ...2012) 143-147. UNCLASSIFIED 33 UNCLASSIFIED [19] J. Bruckner, Considering thermal processes for dissimilar metals- joining steel to aluminum in...Murakami, K. Nakata, H. Tong, M. Ushio, Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire, ISIJ Int. 43 (10)

  18. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  19. Investigation of Superplastic Behavior in FSP 5083 Aluminum Alloy

    DTIC Science & Technology

    2007-06-01

    Mishra, M. Mahoney, “Microstructural investigation of friction stir welded 7050 -T651 aluminum .” Acta Materialia. Vol. 51 (2007...SUPERPLASTIC BEHAVIOR IN FSP 5083 ALUMINUM ALLOY by Marc Thompson Bland June 2007 Thesis Advisor: Terry R. McNelley Co-Advisor...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Investigation of Superplastic Behavior in FSP 5083 Aluminum Alloy 6. AUTHOR(S) Marc Thompson Bland

  20. The Elastic Constants for Wrought Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  1. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  2. Stress corrosion in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  3. Aluminum alloy welding and stress-corrosion testing. Final report

    SciTech Connect

    Gates, W.G.; Jimenez, E.

    1981-04-01

    The weldability, strength, and corrosion resistance of four 5XXX aluminum alloys electron beam welded to 6061-T6 aluminum alloy without a filler metal were evaluated. Adding filler metal raises weld energy requirements and makes the process more difficult to control. In this study, instead of using a filler metal, a high-magnesium 5XXX alloy was welded to the 6061 alloy. The four 5XXX alloys used (5456-H321, 5052-H34, 5086-H323, and 5083-H32) were selected for their high magnesium content which reduces weld crack sensitivity.

  4. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

  5. Fabrication of Porous Aluminum Using Gases Intrinsically Contained in Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Utsunomiya, Takao

    2009-06-01

    Closed-cell porous aluminum was fabricated using gases intrinsically contained in aluminum alloy die castings without using a blowing agent. By incorporating the friction stir processing technique, porous aluminum with a porosity of more than 50 pct was successfully obtained at a holding temperature of 923 to 948 K and a holding time of 10 minutes. This proposed die-casting route has high potential for fabricating porous aluminum at a low cost by a higher productivity process.

  6. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  7. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  8. Thermotransport in liquid aluminum-copper alloys

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A thermotransport study was made on a series of liquid aluminum-copper alloys which contained from trace amounts to 33 weight percent copper. The samples in the form of narrow capillaries were held in known temperature gradient of thermotransport apparatus until the stationary state was reached. The samples were analyzed for the concentration of copper along the length. Copper was observed to migrate to the colder regions in all the samples. The heat of transport, Q*, was determined for each composition from a plot of concentration of copper versus reciprocal absolute temperature. The value of Q* is the highest at trace amounts of copper (4850 cal/gm-atom), but decreases with increasing concentration of copper and levels off to 2550 cal/gm-atom at about 25 weight percent copper. The results are explained on the basis of electron-solute interaction and a gas model of diffusion.

  9. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  10. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  11. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  12. Simulating weld-fusion boundary microstructures in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios D.; Lippold, John C.

    2004-02-01

    A fundamental study of weld-fusion boundary microstructure evolution in aluminum alloys was conducted in an effort to understand equiaxed grain zone formation and fusion boundary nucleation and growth phenomena. In addition to commercial aluminum alloys, experimental Mg-bearing alloys with Zr and Sc additions were studied along with the widely used Cu- and Licontaining alloy 2195-T8. This article describes work conducted to clarify the interrelation among composition, base metal substrate, and temperature as they relate to nucleation and growth phenomena at the fusion boundary.

  13. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  14. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  15. Paint-Bonding Improvement for 2219 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  16. Measurement of Thermodynamic Properties of Titanium Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Mehrotra, Gopal

    1995-01-01

    This final report is a summary of the work done by Professor Mehrotra at NASA Lewis Research Center. He has worked extensively on the measurement of thermodynamic properties of titanium aluminum alloys over the past six years.

  17. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  18. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  19. Friction Stir-Welded Dissimilar Aluminum Alloys: Microstructure, Mechanical Properties, and Physical State

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Husain, Md. M.; Kumar, K.; Kailas, S. V.

    2013-12-01

    A356 and 6061 aluminum alloys were joined by friction stir welding at constant tool rotational rate with different tool-traversing speeds. Thermomechanical data of welding showed that increment in tool speed reduced the pseudo heat index and temperature at weld nugget (WN). On the other hand, volume of material within extrusion zone, strain rate, and Zenner Hollomon parameter were reduced with decrease in tool speed. Optical microstructure of WN exhibited nearly uniform dispersion of Si-rich particles, fine grain size of 6061 Al alloy, and disappearance of second phase within 6061 Al alloy. With enhancement in welding speed, matrix grain size became finer, yet size of Si-rich particles did not reduce incessantly. Size of Si-rich particles was governed by interaction time between tool and substrate. Mechanical property of WN was evaluated. It has been found that the maximum joint efficiency of 116% with respect to that of 6061 alloy was obtained at an intermediate tool-traversing speed, where matrix grain size was significantly fine and those of Si-rich particles were substantially small.

  20. Friction Stir Welding of Aluminum and Titanium Alloys

    DTIC Science & Technology

    2007-11-02

    What is this? Jata/US Air Force Typical FSW Tools W-Re tool in collet- style tool holder. Used for welding steels and Ti alloys 3-piece self...Friction Stir Welding of Aluminum and Titanium alloys NATO Advanced Research Workshop Metallic Materials with High Structural Efficiency Kyiv...valid OMB control number. 1. REPORT DATE 18 MAR 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Friction Stir Welding of Aluminum

  1. Brazing of Stainless Steel to Various Aluminum Alloys in Air

    NASA Astrophysics Data System (ADS)

    Liu, Shuying; Suzumura, Akio; Ikeshoji, Toshi-Taka; Yamazaki, Takahisa

    Brazing of a stainless steel to various aluminum alloys was carried out using an Al-Si filler metal and a fluoride-active flux in air. The brazeability was remarkably different by the aluminum alloys and the brazing conditions. It was considered that the differences were originated with the compositions of base metals and the filler metal, the solidus temperature and the partially melting behavior of the aluminum alloys, and the behavior of the surface oxide film layers of both base metals. On the other hand, the obstruction of brazeability was identified as the rapid reaction between the aluminum alloys and the brazing filler metal, which makes the molten brazing filler metal disappear at the joining interface before the wetting occurs to the stainless steel. Taking this phenomena into consideration, it was attempted to make previous wetting of the brazing filler to the stainless steel before brazing to the aluminum alloys. This method provided the successful brazed joints for the most combinations of the stainless steel and the aluminum alloys.

  2. An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  3. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  4. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  5. Evaluation of 8090 and Weldalite-049 Aluminum-Lithium Alloys

    DTIC Science & Technology

    1992-09-01

    AD-A258 121 MTL TR 92-59 , ’"-AD EVALUATION OF 8090 AND WELDALITE-049 ALUMINUM -LITHIUM ALLOYS THOMAS M. HOLMES and ERNEST S. C. CHIN MATERIALS...EVALUATION OF 8090 AND WELDALITE-049 ALUMINUM -LITHIUM ALLOYS 6- PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 4. CONTRACT OR GRANT NUMBERt’) Thomas M...in &lack 20,. it dlihl-., im R.port) 1. SUPPLEMENTARY NOTES It. KEY WORDS (Contfnuoe on reverse side it nereaary and identity by black number) Aluminum

  6. Calcium metal as a scavenger for antimony from aluminum alloys

    SciTech Connect

    Bonsignore, P.V.; Daniels, E.J.; Wu, C.T.

    1994-10-04

    Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.

  7. Materials data handbook: Aluminum alloy 2014, 2nd edition

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A revised edition of the materials data handbook on the aluminum alloy 2014 is presented. The scope of the information presented includes physical and mechanical property data at cryogenic, ambient and elevated temperatures, supplemented with useful information in such areas as material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication and joining techniques. Design data are presented, as available, and these data are complemented with information on the typical behavior of the alloy.

  8. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  9. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  10. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  11. Preparation of cast aluminum alloy-mica particle composites

    NASA Technical Reports Server (NTRS)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  12. Elevated temperature crack growth in aluminum alloys: Tensile deformation of 2618 and FVS0812 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Leng, Yang; Gangloff, Richard P.

    1990-01-01

    Understanding the damage tolerance of aluminum alloys at elevated temperatures is essential for safe applications of advanced materials. The objective of this project is to investigate the time dependent subcritical cracking behavior of powder metallurgy FVS0812 and ingot metallurgy 2618 aluminum alloys at elevated temperatures. The fracture mechanics approach was applied. Sidegrooved compact tension specimens were tested at 175, 250, and 316 C under constant load. Subcritical crack growth occurred in each alloy at applied stress intensity levels (K) of between about 14 and 25 MPa/m, well below K (sub IC). Measured load, crack opening displacement and displacement rate, and crack length and growth rate (da/dt) were analyzed with several continuum fracture parameters including, the C-integral, C (sub t), and K. Elevated temperature growth rate data suggest that K is a controlling parameter during time dependent cracking. For FVS0812, da/dt is highest at 175 C when rates are expressed as a function of K. While crack growth rate is not controlled by C (sub t) at 175 C, da/dt appears to better correlate with C (sub t) at higher temperatures. Creep brittle cracking at intermediate temperatures, and perhaps related to strain aging, is augmented by time dependent transient creep plasticity at higher temperatures. The C (sub t) analysis is, however, complicated by the necessity to measure small differences in the elastic crack growth and creep contributions to the crack opening displacement rate. A microstructural study indicates that 2618 and FVS0812 are likely to be creep brittle materials, consistent with the results obtained from the fracture mechanics study. Time dependent crack growth of 2618 at 175 C is characterized by mixed transgranular and intergranular fracture. Delamination along the ribbon powder particle boundaries occurs in FVS0812 at all temperatures. The fracture mode of FVS0812 changes with temperature. At 175 C, it is characterized as dimpled rupture

  13. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    SciTech Connect

    Abdala, M.R.W.S.; Garcia de Blas, J.C. Acselrad, O.

    2008-03-15

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy.

  14. Work hardening behavior in aluminum alloy 2090

    SciTech Connect

    Tseng, Carol

    1993-12-01

    An investigation into the work hardening behavior of an aluminum alloy 2090-T81 Al-3.05Cu-2.16Li-0.12Zr at various test temperatures, heat treatment conditions and microstructures was conducted. One microstructure consisted of unrecrystallized, highly textured grains, and the other microstructure was composed of recrystallized grains. Microstructural effects on work hardening were divided into two levels of contribution: the grain structure level, which consisted of the grain size and shape, subgrains and texture, and the microconsistent level, which included the precipitates and solutes. Two heat treatments were studied: the as-received, peak-aged condition, and the solution heat treated condition where the as-received plate was resolutionized. Observations of the deformed surface of both as-received grain structures at various prestrains indicated that there was no correlation between an increase in slip homogeneity and an increase in work hardening. The increase in out-of-plane grain rotation at lower temperatures was not primarily responsible for the increase in work hardening. In addition, the fully plastic deformation microstructure for the unrecrystallized microstructure appeared very inhomogeneous as the grains deformed in bands; there were also bands of grains that had very little to no deformation. From the work hardening plots it was found that an unrecrystallized, (110)<112> textured grain structure with a homogeneous distribution of subgrains produced the highest rate of work hardening between 300 K and 77 K. When the microconstituents are added to both grain structures, both the work hardening rate in the elastic-plastic and fully plastic regimes and the level of work hardening at which the elastic-plastic to fully plastic transition occurred were affected.

  15. Heat Treatment of Closed-Cell A356 + 4 wt.%Cu + 2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Mirbagheri, S. M. H.; Vali, H.; Soltani, H.

    2017-01-01

    In this investigation, aluminum-silicon alloy foam is developed by adding certain amounts of copper and calcium elements in A356 alloy. Addition of 4 wt.%Cu + 2 wt.%Ca to the melt changed bubbles morphology from ellipsoid to spherical by decreasing Reynolds number and increasing Bond number. Compression behavior and energy absorption of the foams are assessed before and after aging. Solid solution treatment and aging lead to the best mechanical properties with 170% enhancement in yield strength and 185% improvement in energy absorption capacity as compared to non-heat-treated foams. The metallographic observations showed that bubbles geometry and structure in the A356 + 4wt.% Cu + 2 wt.%Ca foam are more homogeneous than the A356 foam.

  16. Influence of Process Parameters on Laser Weld Characteristics in Aluminum Alloys

    DTIC Science & Technology

    1988-08-01

    1 1󈧚 , 4 4 2.1.2 Alloying Element Vaporization Alloying elements added to aluminum for improving the mechanical properties and corrosion...effects the properties of the base metal surrounding the weld zone called the heat affected zone (HAZ). In the non-heat treatable aluminum alloys in the...Hydrogen in Aluminum . Magnesium, Copper, and Their Alloys . Int. Metall. Reviews, Review 201, 20:166-184. 31. Hatch, J.E. 1984. Aluminum , Properties and

  17. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  18. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  19. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured From Detailed Military Specifications

    DTIC Science & Technology

    2012-07-01

    elements was eventually designated 17S ( 2017 ) and is the progenitor of the 2 series of aluminum alloys . Alcoa obtained the rights to produce...Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured From Detailed Military Specifications by Kevin Doherty...International Conference on Aluminum Alloys (ICAA13), pp. 541–546, Pittsburgh, PA, 3–7 June 2012. Approved for public

  20. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  1. Improved thermal treatment of aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  2. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  3. Phases in lanthanum-nickel-aluminum alloys. Part 2

    SciTech Connect

    Mosley, W.C.

    1992-08-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  4. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    NASA Technical Reports Server (NTRS)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  5. The effects of aluminum alloy compositions in DIMOX process

    SciTech Connect

    Kim, Chang Wook; Kim, Cheol Soo

    1996-12-31

    Al{sub 2}O{sub 3}-Al composites have been produced by the directed oxidation of binary and ternary aluminum alloys. The Mg, Si, Zn, Sn, Cu, Ni, Ca and Ce have been investigated as alloying elements. The oxidation amount of Al-1wt%Mg alloy was more than that of Al-3wt%Mg alloy. The ternary systems such as Al-Mg-(Si, Sn) alloys were fabricated in the form of porous composites with large amount of oxidation. The amount of oxidation in Al-Mg-(Cu, Ni) was relatively less than that in Al-Mg-(Si, Sn) with some micro pores. Al{sub 2}O{sub 3}-Al composite is always locally growing in Al-xMg-xZn alloys at 1200{degrees}C.

  6. Aluminum alloy 6013 sheet for new U. S. Navy aircraft

    SciTech Connect

    Kaneko, R.S.; Bakow, L.; Lee, E.W. Naval Air Development Center, Warminster, PA )

    1990-05-01

    The recently developed aluminum alloy 6013-T6 has been selected for the fuselage skin and other applications on the U.S. Navy's P-7A airplane, in place of the traditional 2024-T3 clad sheet. Alloy 6013-T6 is naturally corrosion resistant, like the well-established alloy 6061, and hence is used unclad. Its fatigue strength, fatigue crack growth and fracture toughness compare favorably with 2024-T3. Replacement of alloy 2024 with alloy 6013 also reduces manufacturing costs for formed parts, because 6013 is readily formed in the T4 temper, then simply aged to T6, thus avoiding the costly heat treatments and straightening required for alloy 2024. 5 refs.

  7. Fundamental Studies on the Aluminum-Lithium-Beryllium Alloy System,

    DTIC Science & Technology

    1985-07-01

    in recognition of the overriding importance of low density in weight savings in aerospace structures ,is the development of low density and high...successful PM alloys have also been producedf’ jIn order to take further advantage of density decreases in aluminum alloys, it * is not possible simply to...and ductility. In the search for other elements that can * decrease density it is important to note that associated decreases in modulus * are not

  8. Environment assisted degradation mechanisms in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  9. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Soler, Lluís; Macanás, Jorge; Muñoz, Maria; Casado, Juan

    Production of hydrogen using aluminum and aluminum alloys with aqueous alkaline solutions is studied. This process is based on aluminum corrosion, consuming only water and aluminum which are cheaper raw materials than other compounds used for in situ hydrogen generation, such as chemical hydrides. In principle, this method does not consume alkali because the aluminate salts produced in the hydrogen generation undergo a decomposition reaction that regenerates the alkali. As a consequence, this process could be a feasible alternative for hydrogen production to supply fuel cells. Preliminary results showed that an increase of base concentration and working solution temperature produced an increase of hydrogen production rate using pure aluminum. Furthermore, an improvement of hydrogen production rates and yields was observed varying aluminum alloys composition and increasing their reactive surface, with interesting results for Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use hydrides as raw material for hydrogen production.

  10. Materials data handbooks prepared for aluminum alloys 2014, 2219, and 5456, and stainless steel alloy 301

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Materials data handbooks summarize all presently known properties of commercially available structural aluminum alloys 2014, 2219, and 5456 and structural stainless steel alloy 301. The information includes physical and mechanical property data and design data presented in tables, illustrations, and text.

  11. On the Formation of Lightweight Nanocrystalline Aluminum Alloys by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Hilty, Robert D.; Masur, Lawrence J.

    2017-08-01

    New nanocrystalline aluminum alloys have been fabricated by electrodeposition. These are thermodynamically stable alloys of Al-Mn and Al-Zr with grain sizes <100 nm. Al-Mn and Al-Zr alloys are characterized here showing high strength (up to 1350 MPa) and hardness (up to 450 HVN) while maintaining the specific gravity of Al. Smooth and dense deposits plated from ionic liquids, such as EMIM:Cl (1-Ethyl-3-methylimidazolium chloride), can develop to thicknesses of 1 mm or more.

  12. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  13. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  14. Current Technologies for the Removal of Iron from Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Damoah, Lucas N.

    In the current paper, the Fe-rich phases in and their detrimental effect on aluminum alloys are summarized. The existence of brittle platelet ß-Fe-rich phases lowers the mechanical properties of aluminum alloys. The methods to neutralize the detrimental effect of iron are discussed. The use of high cooling rate, solution heat treatment and addition of elements such as Mn, Cr, Be, Co, Mo, Ni, V, W, Cu, Sr, or the rare earth elements Y, Nd, La and Ce are reported to modify the platelet Fe-rich phases in aluminum alloys. The mechanism of the modification is briefly described. Technologies to remove iron from aluminum are extensively reviewed. The precipitation and removal of Fe-rich phases (sludge) are discussed. The dense phases can be removed by methods such as gravitational separation, electromagnetic separation, and centrifuge. Other methods include electrolysis, electro-slag refining, fractional solidification, and fluxing refining. The expensive three-layer cell electrolysis process is the most successful technique to remove iron from aluminum so far.

  15. Interpretation of aluminum-alloy weld radiography

    NASA Technical Reports Server (NTRS)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  16. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  17. Characteristics of aluminum alloy microplastic deformation in different structural states

    SciTech Connect

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  18. Study made of ductility limitations of aluminum-silicon alloys

    NASA Technical Reports Server (NTRS)

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  19. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  20. Plane-strain tension tests on aluminum alloy sheet

    SciTech Connect

    Taha, F.; Hosford, W.; Graf, A.

    1995-04-01

    A simple way of making plane-strain tension tests on sheet specimens has been developed. This method was used to test sheets of aluminum alloy 2008 T4 and the results were analyzed in terms of a high exponent yield criterion and isotropic hardening. Experimentally measured forces agreed with those calculated from strain measurements using uniaxial tension test curves.

  1. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  2. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  3. Tin soldering of aluminum and its alloys

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1921-01-01

    A method is presented for soldering aluminum to other metals. The method adopted consists of a galvanic application to the surface of the light-metal parts to be soldered, of a layer of another metal, which, without reacting electrolytically on the aluminum, adheres strongly to the surface to which it is applied, and is, on the other hand, adapted to receive the soft solder. The metal found to meet the criteria best was iron.

  4. The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance

    SciTech Connect

    J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

    2003-06-30

    the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

  5. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  6. The Effect of Alloy Additions on Superplasticity in Thermomechanically Processed High Magnesium Aluminum-Magnesium Alloys.

    DTIC Science & Technology

    1984-12-01

    AD-Ri55 142 THE EFFECT OF ALLOY ADDITIONS ON SUPERPLASTICITY IN I/2 THERMOMECHANICALLY PR-.(U) NAVAL POSTGRADUATE SCHOOL UNCLSSIIED MONTEREY CA R J...Ln Monterey, California DTr J U N 1985 * THESIS THE EFFECT OF ALLOY ADDITIONS ON SUPERPLASTICITY IN THERMOMECHANICALLY PROCESSED HIGH MAGNESIUM *0...ALUMINUM-MAGNESIUM ALLOYS >by 0 (Richard J. Self December 1984 C-31 Thesis Advisor: Terry McNelley Approved for public release; distribution is unlimited

  7. Cryogenic mechanical properties of low density superplastic aluminum alloys

    SciTech Connect

    Verzasconi, S.L.

    1989-05-01

    Two alloy systems, mainly Al-Li-Cu and Al-Mg-Sc, were studied in this work. Both of these systems have been shown to be superplastically formable in the conditions chosen, and both provide a significant density reduction over a currently used aluminum cryogenic fuel tankage material, 2219. The Al-Mg-Sc alloy provides over 50 percent of the density reduction of 2090 over 2219. In addition to lower density, Al-Li alloys have a higher elastic modulus (stiffness) than conventional aerospace alloys. The main purpose of this work is to characterize the cryogenic strength and toughness of several Al-Cu-Li and Al-Mg-Sc alloys. In addition, the microstructures and fracture surfaces are characterized and related to these properties where possible. 43 refs.

  8. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  9. Aluminum(3)(scandium, zirconium) dispersoids in aluminum alloys: Coarsening and recrystallization control

    NASA Astrophysics Data System (ADS)

    Riddle, Yancy Willard

    2000-10-01

    With proper metallurgical techniques, the addition of scandium and/or zirconium to aluminum will form recrystallization inhibitors in wrought product called "dispersoids". Zirconium forms Al3Zr dispersoids with aluminum, which is currently the most potent dispersoid in commercial use. However, scandium forms Al3Sc dispersoids with aluminum, which have been shown to surpass the effectiveness of Al3Zr in some cases. Scandium is not currently a common addition to commercial Al alloys as little is known about its performance compared to Al-Zr. In this work, recrystallization and dispersoid coarsening are systematically studied as an effect of Sc and Zr content in Al. Comparison is made between the performance of wrought experimental Al alloys containing Al3Zr, Al3Sc, and Al3(Sc, Zr) dispersoids. Effectiveness of Al3Sc is limited to dispersoids less than 25nm radius, the point at which Al3Sc transforms from coherent to non-coherent. Alloys containing Al3(Sc, Zr) more effectively control recrystallization through combined volume fraction and thermal stability effects compared to alloys containing Al3Sc. Scandium shifts the recrystallization mechanism of A1 and Al-Zr alloys from nucleation-and-growth of new grains to boundary migration pinned by dispersoids. During annealing of cold rolled alloys, impinging boundaries dissociate coherent Al3Sc for which a disordering mechanism is proposed. As a practical measure, Sc and/or excess Zr are added to 7050 for comparison with the experimental alloys. The performance of modified 7050 alloys resembles the trends of the experimental alloys. In summary, the Al3(Sc, Zr) dispersoid is a more effective recrystallization inhibitor than any other dispersoid currently in use.

  10. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    SciTech Connect

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  11. Grain size control and superplasticity in 6013-type aluminum alloys

    NASA Astrophysics Data System (ADS)

    Troeger, Lillianne Plaster Whitelock

    Aluminum alloys have been the material of choice for aircraft construction since the 1930's. Currently, the automotive industry is also showing an increasing interest in aluminum alloys as structural materials. 6xxx aluminum alloys possess a combination of strength and formability which makes them attractive to both industries. In addition, 6xxx alloys are highly weldable, corrosion resistant, and low in cost as compared with the 2xxx and 7xxx aluminum alloys. Superplastic forming (SPF) is a manufacturing process which exploits the phenomenon of superplasticity in which gas pressure is used to form complex-shaped parts in a single forming operation. This reduces part counts and the need for fasteners and connectors, resulting in reduced product weight. Reduced product/vehicle weight improves fuel economy. Most alloys must be specially processed for superplasticity. Much research effort has been directed at the development of thermomechanical processes for the grain refinement of aluminum alloys by static or dynamic recrystallization. to induce superplasticity. While large numbers of studies have been conducted on 2xxx, 5xxx, 7xxx, and 8xxx aluminum alloys, very few studies have been focused on the grain refinement of 6xxx aluminum alloys for superplasticity. The current research describes a new thermomechanical process for application to 6xxx aluminum alloys for grain refinement and superplasticity. The process is shown to successfully refine and induce superplasticity in an Al-Mg-Si-Cu alloy which falls within the compositional limits of both 6013 and 6111. The grain refinement is by particle-stimulated nucleation of recrystallization. The microstructural evolution during the thermomechanical processing is characterized in terms of precipitate size, shape, distribution and composition; texture; recrystallization; and grain size, shape, and thermal stability. The new process produces a statically-stable, weakly-textured, equiaxed grain structure with an average

  12. Microstructural and superplastic characteristics of friction stir processed aluminum alloys

    NASA Astrophysics Data System (ADS)

    Charit, Indrajit

    Friction stir processing (FSP) is an adapted version of friction stir welding (FSW), which was invented at The Welding Institute (TWI), 1991. It is a promising solid state processing tool for microstructural modification at localized scale. Dynamic recrystallization occurs during FSP resulting in fine grained microstructure. The main goal of this research was to establish microstructure/superplasticity relationships in FSP aluminum alloys. Different aluminum alloys (5083 Al, 2024 Al, and Al-8.9Zn-2.6Mg-0.09Sc) were friction stir processed for investigating the effect of alloy chemistry on resulting superplasticity. Tool rotation rate and traverse speeds were controlled as the prime FSP parameters to produce different microstructures. In another study, lap joints of 7475 Al plates were also studied to explore the possibility of developing FSW/superplastic forming route. Microstructures were evaluated using optical, scanning and transmission electron microscopy, orientation imaging microscopy and differential scanning calorimetry. Mechanical properties were evaluated using tensile testing. FSP 2024 Al (3.9 mum grain size) exhibited an optimum ductility of 525% at a strain rate of 10-2 s-1 and 430°C. Grain boundary sliding mechanism was found to be the dominant mode of deformation in this alloy. In 5083 Al alloy, it was found that changing the process parameters, grain sizes in the range of 3.5--8.5 mum grain size could be obtained. Material processed with colder processing parameters showed a decrease in ductility due to microstructural instability, and followed solute drag dislocation glide mechanism. On the other hand, materials processed with hotter parameter combinations showed mode of deformation related to grain boundary sliding mechanism. FSP of as-cast Al-Zn-Mg-Sc alloy resulted in ultrafine grains (0.68 mum) with attractive combination of high strain rate and low temperature superplasticity. This also demonstrated that superplastic microstructures could be

  13. Nitrate reduction in water by aluminum alloys particles.

    PubMed

    Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin

    2017-07-01

    Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L)(1.5)/min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L)(1.5)/min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Technology of welding aluminum alloys-III

    NASA Technical Reports Server (NTRS)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.

    1978-01-01

    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  15. Technology of welding aluminum alloys-I

    NASA Technical Reports Server (NTRS)

    Harrison, J. R.; Korb, L. J.; Oleksiak, C. E.

    1978-01-01

    Systems approach to high-quality aluminum welding uses square-butt joints, kept away from sharp contour changes. Intersecting welds are configured for T-type intersections rather than crossovers. Differences in panel thickness are accommodated with transition step areas where thickness increases or decreases within weld, but never at intersection.

  16. Hydrogen interactions in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Scully, J. R.

    1991-01-01

    A program is described which seeks to develop an understanding of the effects of dissolved and trapped hydrogen on the mechanical properties of selected Al-Li-Cu-X alloys. A proposal is made to distinguish hydrogen (H2) induced EAC from aqueous dissolution controlled EAC, to correlate H2 induced EAC with mobile and trapped concentrations, and to identify significant trap sites and hydride phases (if any) through use of model alloys and phases. A literature review shows three experimental factors which have impeded progress in the area of H2 EAC for this class of alloys. These are as listed: (1) inter-subgranular fracture in Al-Li alloys when tested in the S-T orientation in air or vacuum make it difficult to readily detect H2 induced fracture based on straight forward changes in fractography; (2) the inherently low H2 diffusivity and solubility in Al alloys is further compounded by a native oxide which acts as a H2 permeation barrier; and (3) H2 effects are masked by dissolution assisted processes when mechanical testing is performed in aqueous solutions.

  17. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  18. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  19. Approaches for mechanical joining of 7xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Jäckel, M.; Grimm, T.; Landgrebe, D.

    2016-10-01

    This paper shows a numerical and experimental analysis of the different problems occurring during or after the conventional self-pierce riveting with semi-tubular and solid rivets of the high strength aluminum alloy EN AW-7021 T4. Furthermore this paper describes different pre-process methods by which the fracture in the high strength aluminum, caused by the self-pierce riveting processes, can be prevented and proper joining results are achieved. On this basis, the different approaches are compared regarding joint strength.

  20. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  1. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  2. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  3. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  4. A356 Reinforced with Nanoparticles: Numerical Analysis of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mazahery, Ali; Shabani, Mohsen Ostad

    2012-02-01

    Commercial casting Al-Si (A356)-based composites reinforced with different volume fractions of alumina (Al2O3) nanoparticulates (average particle size 50 nm) were synthesized in this study. Particle distribution, hardness, and tensile properties in the as-cast condition were experimentally investigated. The A356 alloy composite showed an increase in hardness, elastic modulus, and tensile strength compared with monolithic alloys. Finally, a combination of an artificial neural network and the finite element method (FEM) was implemented to predict the microstructure and mechanical properties including grain size, length of silicon rods, amount of porosity, hardness, tensile yield stress, ultimate tensile stress, and elongation percentage.

  5. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  6. Chromate Conversion Coating of Aluminum Alloys

    DTIC Science & Technology

    1975-07-10

    a sodium sulfate-nitric acid solution sometimes used to clean aluminum prior to spotwelding. Immersion times were varied in the chromate-sulfate...Good results were also obtained with sodium sulfate-nitric acid and an 8 minute treatment in one non-chromete proprietary solution. Average resis...molybdate or tungstate salts with the ferricyanide ion considered to be the most effective accelerator. Water for Bath Make-Up and Rinsing It is very

  7. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  8. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, Lynn; Malone, Tina; Gentz, Steven J. (Technical Monitor)

    2000-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  9. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, L.; Malone, T.

    2001-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  10. Investigation on the Mechanical Properties of A356 Alloy Reinforced AlTiB/SiCp Composite by Semi-Solid Stir Casting Method

    NASA Astrophysics Data System (ADS)

    Bhiftime, E. I.; Gueterres, N. F. D. S.

    2017-05-01

    Employing the semi-solid stir casting method to strengthen MMCs by SiCp particle was the simplest way in the casting process. The strength and toughness of a composite material can be obtained through a combination of the A356 / Al7Si composites and SiCp particle. The purpose of this study was to investigate the difference in the mechanical properties of Al7Si1Mg/SiCp and Al7Si1Mg1.5TiB/SiCp composites, as well as the changing effects on the extra level of SiCp particle. Al7Si was used as matrix strengthened by SiCp with the percentage variations of 10, 15, 20 wt%. The additional level of 1.5 wt% AlTiB aimed for increasing the matrix grain refinement. The semi-solid stir casting method was performed to spread the SiCp particles evenly in the liquid matrix. The results of the study were the tensile strength value of as much as 143 MPa or the increase of 22.16%. The biggest yield strength on the Al7Si1Mg1.5TiB/SiCp composite was averagely as much as 106 MPa. The highest impact toughness was averagely amounted to 4.74 J/mm2. The lowest porosity value was averagely 2.10%. The morphology of the composite between the reinforcing particle and the matrix was able to unite and to be dispersed evenly. The present study was conducted through density test, tensile test, impact test, microstructure test, and SEM.

  11. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  12. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  13. The analysis of aluminum alloy structure beams under static load

    NASA Astrophysics Data System (ADS)

    Ho, Minghsiung; Wang, Pinning; Yeh, Jungpeng

    2017-04-01

    The Aluminum alloy had been applications in many areas. In this study, the models with four type's cross-section were designed and analyzed. Analyses of the use of aluminum alloy materials are 5086-H32, 6061-T6, 7005-T6 and 7075-T6. The materials selected are based on the recommendations of the casting plant. The boundary conditions are set according to the actual conditions of use. Force and torsion are used to apple on models under different conditions. The results of stress and deformation are discussed. The stress results were shown that 40x80 model with hollow cross-section under two end fixed middle beam load had the highest stresses of 41.177 MPa nearby fixed end position. The beam model of 40x80 hollow cross-section under boundary condition of one end fixed and one end force load like a cantilever beam has the maximum deformation 1.587 mm.

  14. Structure/property relations of aluminum under varying rates and stress states

    SciTech Connect

    Tucker, Matthew T; Horstemeyer, Mark F; Whittington, Wilburn R; Solanki, Kiran N

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  15. A Fundamental Study of Fatigue in Powder Metallurgy Aluminum Alloys.

    DTIC Science & Technology

    1981-08-01

    Rearick (20) have confirmed the beneficial effect of material flow during densification; endurance limits in rotating bend on P/M processed compositions...INTRODUCTION Recent studies on aluminum alloys have shown that lateral flow during consolidation, aimed at eliminating porosity and the fragmentation of surface...removed from each forging. Slices cut from the forgings were solution treated at a temperature of 488C (910*F) for two hours and water quenched. The

  16. Deformation behavior of submicrocrystalline aluminum alloys during dynamic loading

    NASA Astrophysics Data System (ADS)

    Brodova, I. G.; Petrova, A. N.; Razorenov, S. V.; Plekhov, O. P.; Shorokhov, E. V.

    2016-04-01

    The structure and the mechanical properties of aluminum V95 and AMts alloys with various grain sizes (from micron to submicron) are studied in a wide range of strain rates (from 10-3 to 105 s-1). Submicrocrystalline (200-600 nm) materials are formed by dynamic channel-angular pressing at a strain rate of 105 s-1 using a pulsed power source.

  17. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Park, In-Jun; Kim, Jung-Gu

    2017-07-01

    This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

  18. Corrosion of Aluminum Alloys by IRFNA

    DTIC Science & Technology

    1990-02-24

    and electropolishing and anodising, have been studied. aNeither had a significant long term effect on the corrosion rate of 2014 alumninium alloy in... steel spatula. (iv) The cell was assembled and raw eghed, the charge of galled Acid being determined by difference. Two additional bottom-working...The anodiuing solution was 1swt% sulphuric acid And the conditions were 25oC, 1 Mwm, 12V. The anodic oxide film waS scaled in delonised water (30

  19. The Development of Aluminum-Lithium Alloys.

    DTIC Science & Technology

    1980-07-31

    Metallurgy Sander A. Levy, Director Department of Metallurgical Services and Ingot Casting Technology __j: Grant E. Spangle $, Gereral Director bd...of the Aqeinq Mechanism of the Alloy Al-Li," translated from Fiz. Metal Metalloved., V. 42, N. 3, 1976 , pp. 546-556. [8] B. Noble and G. E. Thompson...34 translated from Fiz. Metal Metalloved., 42, N. 5, 1976 , pp. 1021-1028. -159- [19] Z. A. Sviderskaya, E. S. Kadaner, N. I. Turkina, and V. I

  20. Modeling aluminum-lithium alloy welding characteristics

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  1. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  2. Investigation of surface oxides on aluminum alloys by valence band photoemission

    NASA Astrophysics Data System (ADS)

    Claycomb, Gregory D.; Sherwood, Peter M. A.

    2002-07-01

    Core level and valence band x-ray photoelectron spectroscopy are used to study the chemical composition of the surface films on aluminum alloys. Certain alloying elements may preferentially migrate to the surface of an alloy, thereby altering the composition and consequently the chemistry of the surface. The behavior of a 6061 aluminum alloy is compared with that of pure aluminum. It is shown that the type of magnesium film formed at the alloy surface can be determined by comparing the valence band spectra of the aluminum alloy surface with that of known magnesium and aluminum compounds. The experimental valence band spectra of these compounds are supported by spectra generated from band structure calculations. The effect of boiling water on the surface film is discussed, with significant differences in surface chemistry being seen for the metal and the alloy. copyright 2002 American Vacuum Society.

  3. Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro

    DTIC Science & Technology

    2011-09-01

    Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro by John F. Chinella and Zhanli Guo...ARL-TR-5660 September 2011 Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro John F...Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  4. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    DTIC Science & Technology

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg, Clara Hofmeister...Ground, MD 21005-5069 ARL-TR-7208 February 2015 Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free...4. TITLE AND SUBTITLE Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent 5a. CONTRACT

  5. Diffusion bonding of Al7075 alloy to titanium aluminum vanadate alloy

    NASA Astrophysics Data System (ADS)

    Alhazaa, Abdulaziz Nasser

    The aluminum alloy (Al7075) and titanium alloy (Ti-6Al-4V) are used in a variety of applications in the aerospace industry. However, the high cost of Ti-6Al-4V alloy has been a major factor which has limited its use and therefore, the ability to join Al7075 alloy to Ti-6Al-4V alloy can provide a product that is less costly, but retains the high strength and light weight properties necessary for the transport industry. However, the large difference in the physical properties between these two alloys prevents the use of conventional joining techniques such as fusion welding to join these dissimilar alloys. Therefore, the diffusion bonding technique was used to join Al7075 alloy to Ti-6Al-4V alloy with the objective of minimizing microstructural changes of the two alloys during the bonding process. In this thesis, solid state and liquid phase bonding processes were undertaken. Solid state bonding was employed without interlayers and was successful at 510°C and 7 MPa. The bond interface showed an absence of the oxides due to the dissolution of oxygen into the titanium solution. Bonds made using copper interlayers at a temperature sufficient enough to form eutectic liquid formation between copper and aluminum were produced. The intermetallics theta(Al2Cu), S(Al2CuMg) and T(Al2Mg3Zn3) were identified at the aluminum interface while Cu3Ti2 intermetallic was identified at the titanium interface. Bonds made using tin based alloys interlayers and copper coatings were successful and gave the highest shear strength. The eutectic formation on the Al7075 alloy was responsible for joint formation at the aluminum interface while the formation of Sn3Ti5 intermetallic was responsible for the joint formation at titanium interface. The corrosion rate of the bonds decreased with increasing bonding time for joints made using the tin based interlayer in 3% NaCl solution. However, the presence of copper within the joint increased the corrosion rate of the bonds and this was attributed to

  6. Russian aluminum-lithium alloys for advanced reusable spacecraft

    NASA Astrophysics Data System (ADS)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO2) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO2 cryotank was successfully demonstrated in DC-XA flight tests.

  7. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  8. Characteristics of laser surface melted aluminum alloys.

    PubMed

    Weinman, L S; Kim, C; Tucker, T R; Metzbower, E A

    1978-03-15

    Specimens of Al-Fe 1-4 w/o, 2024 and 6061 Al have been surface melted with a pulsed Nd-glass laser. A TEM and SEM study showed that the dendrite spacings were from 2500 A to 4000 A which corresponds to a cooling rate of over 10(6) degrees C/sec. Melt depths obtained were in the range of 30-100 microm. No significant surface vaporization was observed at energy densities up to 440 J/cm(2). Fracture surfaces of the commerical alloys demonstrated elongated porosity in the melt areas, probably due to internal hydrogen.

  9. Pretreatment of Al and Mg Alloys - Structural and Electronic

    DTIC Science & Technology

    2007-05-17

    casting materials Aluminum Alloys Structural and components 6061 7075 ( 7050 ) 2024 (22219,2124), LiAl (2219,2195) 3 , 5 A356, A380 CrCC used for...Barrier coating important for corrosion protection Aluminum cold spray or electroplate for protection and galvanic protection? – By design – Process used...inhibitors for Mg and barrier – Damage resistant coating Powder coat? “panther grip” + barrier system? Aluminum on Magnesium by design High strength aluminum

  10. Enhancement of superplastic formability in a high strength aluminum alloy

    NASA Technical Reports Server (NTRS)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  11. Elevated temperature fracture of RS/PM aluminum alloy 8009

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Yang, Leng; Gangloff, Richard P.

    1991-01-01

    The fracture behavior of advanced powder metallurgy Al-Fe-V-Si alloy 8009 (previously called FVS0812) is being characterized under monotonic loads, as a function of temperature. Particular attention is focused on contributions to the fracture mechanism from the fine grained dispersoid strengthened microstructure, dissolved solute from rapid solidification, and the moist air environment. Time-dependent crack growth is characterized in advanced aluminum alloys at elevated temperatures with the fracture mechanics approach, and cracking mechanisms are examined with a metallurgical approach. Specific tasks were to obtain standard load crack growth experimental information from a refined testing system; to correlate crack growth kinetics with the j-integral and time dependent C(sub t)(t); and to investigate the intermediate temperature embrittlement of 8009 alloy in order to understand crack growth mechanisms.

  12. Microstructural issues in a friction-stir-welded aluminum alloy

    SciTech Connect

    Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C.

    1998-02-03

    Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

  13. An investigation to the effect of deformation-heat treatment cycle on the eutectic morphology and mechanical properties of a Thixocast A356 alloy

    SciTech Connect

    Haghshenas, M.; Zarei-Hanzaki, A.; Jahazi, M.

    2009-08-15

    The influences of deformation, heat treatment temperature and holding time on morphology and size distribution of Si containing eutectic phases of Thixocast Al-7Si-0.4 Mg alloy were investigated. The novel thermo-mechanical treatment consisted of initial cold working practice followed by a solution heat treatment at 540 deg. C for durations ranging from 2 min to 120 min followed by water quenching. Optical and scanning electron microscopes were used to study the influence of process parameters on microstructure evolution. Also, final mechanical properties were investigated using hardness test. The results indicate that, under appropriate conditions it is possible to achieve an ultrafine grain microstructure with the eutectic Si fibers fragmented and spheroidized in the entire microstructure. It was also found that, an agglomeration of sphrodized particles occurs and is governed by Ostwald ripening mechanism.

  14. Mechanical properties of anodized coatings over molten aluminum alloy.

    PubMed

    Grillet, Anne M; Gorby, Allen D; Trujillo, Steven M; Grant, Richard P; Hodges, V Carter; Parson, Ted B; Grasser, Thomas W

    2008-01-01

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. We have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen or argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Machining marks were not found to significantly affect the strength.

  15. Controlled Quenching of Aluminum Alloys in Flexible Spray Fields

    NASA Astrophysics Data System (ADS)

    Rose, Andrea; Schuettenberg, Sven; Hornig, Nils; von Hehl, Axel; Fritsching, Udo

    During heat treatment of age hardenable aluminum alloys, the resulting mechanical properties are particularly influenced by the quenching process. To achieve the required strength, a high quenching rate after solution annealing is necessary, otherwise a homogeneous distribution of quenching intensity should be realized in order to avoid distortion. Controlled quenching within the heat treatment process of aluminum components can be realized by flexible spray fields. Suitable heat transfer conditions of the component are achievable by adjusted flexible flow fields (local and/or temporal) based on simulation of heat transfer by Computational Fluid Dynamics (CFD). By the use of gas-(air), spray-(water/air) or jet-(water) flow fields, it is possible to adapt the quenching intensity to the part geometry and/or to the load profile in order to influence the mechanical properties as well as the distortion after heat treatment. For this purpose, a flexible spray nozzle field was integrated into heat treatment process for age hardening of different wrought-, cast-, and spray-formed aluminum alloys.

  16. Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-02-01

    The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.

  17. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  18. Aluminum rich alloys for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Choi, Go

    The recent environmental problem and depletion of natural power resources have intensified the search for clean and renewable energy which has become one of the major issues of the Twenty-first century. Furthermore, global demand for freshwater has been increasing, raising concerns for water insufficiency. The goal of this research is to seek and introduce a viable technology that could potentially solve both energy and water crises. It has been investigated that Al-Ga-In-Sn quaternary system alloys can split water and produce hydrogen and heat. This paper focuses on the aluminum-rich Al-Ga-In-Sn quaternary system alloys, exploring the mystery behind the mechanism. As the paper will show, this technology can be applied to both salt water and sea water, and is thus a potential solution for marine applications and desalination. However, it has been shown that the alloy reacts differently depending on the fabrication method and environmental conditions. Various experiments were conducted to understand this phenomenon. This paper discusses several different reactions caused by various cooling rates and compositions, which effectively changes the crystal structure of the alloy and its liquid phase. Characteristics of the liquid phase define the alloy and determine its applications.

  19. Fundamental studies on electrochemical production of dendrite-free aluminum and titanium-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata

    A novel dendrite-free electrorefining of aluminum scrap was investigated by using AlCl3-1-Ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte. Electrodeposition of aluminum were conducted on copper/aluminum cathodes at voltage of 1.5 V, temperatures (50-110°C), stirring rate (0-120 rpm), molar ratio (MR) of AlCl3:EMIC (1.25-2.0) and electrode surface modification (modified/unmodified). The study was focused to investigate the effect of process variables on deposit morphology, cathode current density and their role in production of dendrite-free aluminum. The deposits were characterized using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Modified electrodes and stirring rate (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential (etacrt≈ -0.54 V) for dendrite formation. Pure aluminum (>99%) was deposited with current efficiency of 84-99%. Chronoamperometry study was conducted using AlCl3-EMIC and AlCl3-1-Butyl-3-methyl-imidazolium chloride (BMIC) (MR = 1.65:1) at 90°C to understand the mechanism of aluminum electrodeposition and find out diffusion parameter of electroactive species Al2C 7-. It was concluded that electrodeposition of aluminum is a diffusion controlled instantaneous nucleation process and diffusion coefficient of Al2C7- was found to be 5.2-6.9 x 10-11 m2/s and 2.2 x 10-11 m2/s for AlCl3-EMIC and AlCl3-BMIC, respectively. A novel production route of Ti-Al alloys was investigated using AlCl 3-BMIC-TiCl4 (MR = 2:1:0.019) and AlCl3-BMIC (MR = 2:1) electrolytes at constant voltages of 1.5-3.0 V and temperatures (70-125°C). Ti sheet was used as anode and cathode. Characterization of electrodeposited Ti-Al alloys was carried out using SEM, EDS, XRD and inductively coupled plasma-optical emission spectrometer (ICP-OES). Effect of voltage and temperature on cathode current density, current efficiency, composition and morphology of Ti

  20. Direct-soldering 6061 aluminum alloys with ultrasonic coating.

    PubMed

    Ding, Min; Zhang, Pei-lei; Zhang, Zhen-yu; Yao, Shun

    2010-02-01

    In this study, the authors applied furnace soldering with ultrasonic coating method to solder 6061 aluminum alloy and investigated the effects of both coating time and soldering temperature on its properties. The following results were obtained: firstly, the solder region mainly composed of four kinds of microstructure zones: rich Sn zone, rich-Pb zone, Sn-Pb eutectic phase and rich Al zone. Meanwhile, the microanalysis identified a continuous reaction product at the alumina-solder interface as a rich-Pb zone. Therefore, the joint strength changed with soldering time and soldering temperature. Secondly, the tensile data had significantly greater variability, with values ranging from 13.99MPa to 24.74MPa. The highest value was obtained for the samples coated with Sn-Pb-Zn alloy for 45s. Fractures occurred along the solder-alumina interface for the 6061 aluminum alloy with its surface including hybrid tough fracture of dimple and tear ridge. The interface could initially strip at the rich Bi zone with the effect of shear stress.

  1. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  2. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  3. Textures, microstructures, anisotropy and formability of aluminum-manganese-magnesium and aluminum-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jiantao

    In this dissertation work, the microstructure and texture evolution of continuous cast (CC) and direct chill (DC) cast Al-Mn-Mg (AA 3105 and AA 3015) and Al-Mg (AA 5052) alloys during cold rolling and annealing are systematically investigated. Macrotexture analyses were based on three-dimensional orientation distribution functions (ODFs) calculated from incomplete pole figures from X-ray diffraction by using arbitrarily defined cell (ADC) and series expansion methods. A new technique, electron backscatter diffraction (EBSD), was adopted for microtexture and mesotexture investigation. The anisotropy and formability of Al-Mn-Mg and Al-Mg alloys are correlated to the texture results. For aluminum alloys studied in this work, a stronger Cube orientation is observed in DC hot band than in CC hot band after complete recrystallization. alpha and beta fibers become well developed beyond 50% cold rolling in both CC and DC aluminum alloys. The highest intensity along the beta fiber (skeleton line) is located between the Copper and the S orientations in both materials after high cold rolling reductions. In both CC and DC aluminum alloys, a cell structure develops with the indication of increasing CSL Sigma1 boundaries during the early stages of cold rolling. There is no evidence of the development of twin boundaries (Sigma3, Sigma9, Sigma27a & 27b) in either CC or DC aluminum alloys when the cold rolling reductions are less than 40%. The R and Cube textures are dominant recrystallization texture components in CC and DC AA 5052 alloys. The volume fraction of the Cube component is increased by increasing cold rolling reduction and annealing temperature but not by increasing annealing time while the volume fraction of the R component is only increased by increasing cold rolling reduction. Stronger Cube and R orientations are found at the surface layer than at half-thickness layer of cold rolled hot bands after annealing. The Cube and P textures are dominant recrystallization

  4. Chromate-free talc chemical conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Stoner, G.E.

    1993-10-01

    We have found that aluminum alloys exhibit unusual passivity when exposed to alkaline Li-salt solutions. Observed passivity is due to the formation of a polycrystalline Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O film on the aluminum surface. This film is persistent in aggressive environments and provides a significant degree of corrosion protection. On this basis, we have developed a simple non-electrolytic method of forming corrosion resistant coatings in alkaline Li-salt solution. This process is procedurally similar to traditional conversion coating methods, offers desirable properties, and has a low toxic hazard. In this paper, coating methods, coating characterization, and coating properties are presented. Results from parallel test performed with a commercial chromate conversion coatings are presented for comparison.

  5. Fatigue damage study in aluminum-2024 T3 alloys

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1992-01-01

    The grain structure of aluminum 2024, a commonly used commercial alloy is investigated, and these findings are correlated with the fatigue property of the material. Samples of aluminum 2024 were polished and etched in different reagents. Optical micrographs (at 500X) of samples etched in Keller's reagent revealed grain boundaries as well as some particles present in the microstructure. Normal x-ray scans of samples etched for different intervals of time in Keller's reagent indicate no significant variations in diffraction peak positions; however, the width of the rocking curve increased with the time of etching. These results are consistent with the direct dependence of the width of the rocking curve on the range of grain orientation. Etching removes the preferred orientation layer of the sample produced by polishing; thereby, causing the width to increase.

  6. Chromate-free corrosion resistant conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Martinez, M.A.; Stoner, G.E.

    1995-03-01

    Inorganic polycrystalline hydrotalcite, Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O, coatings can be formed on aluminum and aluminum alloys by exposure to alkaline lithium carbonate solutions. This process is conducted using methods similar to traditional chromate conversion coating procedures, but does not use or produce toxic chemicals. The coating provides anodic protection and delays the onset of pitting during anodic polarization. Cathodic reactions are also inhibited which may also contribute to corrosion protection. Recent studies have shown that corrosion resistance can be increased by sealing hydrotalcite coated surfaces to transition metal salt solutions including Ce(NO{sub 3}){sub 3}, KMnO{sub 4} and Na{sub 2}MoO{sub 4}. Results from these studies are also reported.

  7. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  8. Investigation of High Speed Friction Test for Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ooki, K.; Takahashi, S.

    2016-08-01

    To shorten the development stage of automobiles, FEM simulation has been applied. It was important to increase the accuracy of the sheet metal simulation results. The friction coefficient between the sheet metal and dies the greatly affected the simulation results. Therefore, apparatus for measuring the friction coefficient with a specific press forming speed (300 mm/s) has been developed. The materials of the sheet metals and dies were aluminum alloys and die steel respectively. It was found that the friction was affected by the difference between the velocity of the sheet metal and that of the dies.

  9. Effects of Machining on the Microstructure of Aluminum Alloy 7075

    NASA Astrophysics Data System (ADS)

    Tabei, A.; Liang, S. Y.; Garmestani, H.

    Experimental investigations show that depending on the parameters, aggressive machining of aluminum alloy 7075 can trigger several microstructural phenomena including recrystallization, grain growth and crystallographic texture modifications below the machined surface. Increasing the depth of cut will lead to a significant recrystallization and consequently grain refinement. On the other hand, increasing the feed rate will result into development of a unique crystallographic texture. The mechanical and thermal loads imposed to the material experiences by machining leads to such microstructural phenomena. Finite element analysis is used to determine these loads.

  10. Thermodynamics of iron-aluminum alloys at 1573 K

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Mehrotra, Gopal M.

    1993-01-01

    The activities of iron and aluminum were measured in Fe-Al alloys at 1573 K, using the ion-current-ratio technique in a high-temperature Knudsen cell mass spectrometer. The Fe-Al solutions exhibited negative deviations from ideality over the entire composition range. The activity coefficients gamma(Fe), and gamma(Al) are given by six following equations as a function of mole fraction, X(Fe), X(Al). The results show good agreement with those obtained from previous investigations at other temperatures by extrapolation of the activity data to 1573 K.

  11. Low-Distortion Quenching of Aluminum Alloys in Polymer Media

    NASA Astrophysics Data System (ADS)

    Senatorova, O. G.; Mikhailova, I. F.; Ivanov, A. L.; Mitasov, M. M.; Sidel'nikov, V. V.

    2016-03-01

    The cooling capacity of the Aqua-Quench 260 quenching medium with different concentrations of polyalkylene glycol (12, 15, 22 and 30%) is studied. Cooling curves and dependences of the cooling rate on the temperature of the polymer medium are plotted. The mechanical and corrosion properties of pilot pressings from the most widely used aluminum forging alloys V95pch, AK4-1ch, AK6ch and 1933 quenched in a solution of Aqua-Quench 260 with an additive of polyalkylene glycol are determined in comparison with quenching in hot and cold water.

  12. Mathematical Model of Dynamic Recrystallization of Aluminum Alloy 3003

    NASA Astrophysics Data System (ADS)

    Chen, Guiqing; Fu, Gaosheng; Yan, Wenduan; Cheng, Chaozeng; Zou, Zechang

    2013-07-01

    Aluminum alloy 3003 is studied after isothermal compression in a Gleeble-1500 machine at a rate of 0.01 - 10 sec - 1 in the temperature range of 300 - 500°C. The curves plotted in the coordinates "strain hardening rate - strain" are used to determine the critical strain ɛc and the static strain ɛs for dynamic recrystallization, and the curve of the dynamic recrystallization is plotted. A mathematical model describing the kinetics of the dynamic recrystallization as a function of the treatment parameters is suggested.

  13. Mechanism of Intergranular Penetration of Ga in an Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ding, Boxiong; Hoagland, Richard

    1998-03-01

    The intergranular penetration rates of gallium in 7050-T74 aluminum alloy were examined at temperatures from 25C to 180C under stress free condition. The results provide an estimate of activation energy of the penetration process. The penetration of Ga is observed to occur along the grain boundary and also spread over the surface, but much more slowly. Experiments were also performed at 23C involving solid Ga. These results together with mechanism controlling the intergranular penetration of Ga in Al will be discussed. This work was supported by DARPA.

  14. FRICTION STIR SPOT WELDING OF 6016 ALUMINUM ALLOY

    SciTech Connect

    Mishra, Rajiv S.; Webb, S.; Freeney, T. A.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.; Herling, Darrell R.

    2007-01-08

    Friction stir spot welding (FSSW) of 6016 aluminum alloy was evaluated with conventional pin tool and new off-center feature tools. The off-center feature tool provides significant control over the joint area. The tool rotation rate was varied between 1000 and 2500 rpm. Maximum failure strength was observed in the tool rotation range of 1200-1500 rpm. The results are interpreted in the context of material flow in the joint and influence of thermal input on microstructural changes. The off-center feature tool concept opens up new possibilities for plunge-type friction stir spot welding.

  15. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  16. Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

  17. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  18. Column and Plate Compressive Strength of Extruded XB75S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Heimerl, George J.; Roy, J. Albert

    1944-01-01

    Results are presented of tests to determine the column and plate compressive strength of extruded XB75S-T aluminum alloy, and comparative values are shown for 24S-T aluminum-alloy sheet. Stress-strain curves are also given,

  19. Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Bonakdar, A.; Wang, F.; Williams, J. J.; Chawla, N.

    2012-08-01

    The fatigue behavior of aluminum alloys is greatly influenced by the environmental conditions. In this article, fatigue crack growth rates were measured for 7075-T651 Al alloy under ultrahigh vacuum (UHV, ~10-10 Torr), dry air, and water vapor. Standard compact tension (CT) specimens were tested along the L-T orientation under various load ratios of 0.1, 0.5, and 0.8. Fracture surfaces and crack morphologies were studied using scanning electron microscopy and crack deflection analysis. The crack growth behavior under vacuum was affected by friction and possible rewelding of crack surfaces, causing an asymmetry in the crack growth behavior, from load shedding to constant load. The enhancement of crack growth at higher moisture levels was observed and is discussed in terms of moisture decreasing friction between the crack faces. The effect of crack deflection as a function of R ratio and environment is also presented.

  20. Laser beam welding of 5182 aluminum alloys sheet.

    SciTech Connect

    Leong, K. H.; Sabo, K. R.; Altshuller, B.; Wilkinson, T. L.; Albright, C. E.; Technology Development; Alcan International Limited; Reynolds Metals Co.; Ohio State Univ.

    1999-06-01

    Conditions were determined for consistent coupling of a CO{sub 2} laser beam to weld 5182 aluminum alloy sheet. Full penetration butt and bead-on-plate welds on 0.8 and 1.8 mm sheets were performed. Process conditions examined included beam mode, spot size and irradiance, shielding gas flow, and edge quality and fitup. The observed weld quality variations with the different process parameters were consistent with physical phenomena and a threshold irradiance model. Optimal conditions were determined for obtaining consistent welds on 5182 alloy sheets. Formability and tensile tests were performed on the welded samples. All test failures occurred in the fusion zone. Reduction in formability and tensile strength of the welded samples are discussed with respect to weld profiles and process parameters.

  1. Serrated flow and surface markings in aluminum alloys

    SciTech Connect

    Li, M., Lege, D.J.

    1998-01-01

    Serrated flow and associated progressive surface markings severely restrict the application of some aluminum sheet alloys for automotive body exteriors. This paper attempts to approach the phenomenon from the localization theory of continuum mechanics as well as from the classical atomistic and dislocation considerations. Plane strain tension tests were conducted for a commercial Al-Mg alloy (5182-O) at different strain rates and temperatures, and the local temperature changes were measured by an infrared thermal imaging system. Continuum mechanics analysis provided the insight into the myth that band surface markings never appear under biaxial tension strain states. In addition, continuum mechanics analysis shed light on the observation that PLC bands were not seen on the surface of plane strain tension specimens even though the stress-strain curves exhibited serrations. Finally, it is emphasized that only by combining the efforts of continuum mechanics at the macroscale and materials science at the microscale, can a complete understanding of the phenomenon be reached.

  2. The Weathering of Aluminum Alloy Sheet Materials Used in Aircraft

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard

    1935-01-01

    This report presents the results of an investigation of the corrosion of aluminum alloy sheet materials used in aircraft. It has for its purpose to study the causes of corrosion embrittlement in duralumin-type alloys and the development of methods for its elimination. The report contains results, obtained in an extensive series of weather-exposure tests, which reveal the extent to which the resistance of the materials to corrosion was affected by variable factors in their heat treatment and by the application of various surface protective coatings. The results indicate that the sheet materials are to be regarded as thoroughly reliable, from the standpoint of their permanence in service, provided proper precautions are taken to render them corrosion-resistant.

  3. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Varma, S. K.; Andrews, S.; Vasquez, G.

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  4. Metallurgical aspects in laser welding of steels and aluminum alloys

    SciTech Connect

    Kutsuna, Muneharu

    1996-12-31

    Rapid cooled microstructures, solid state transformation, hardness distribution, porosity formation, hot cracking and crack susceptibility are discussed as the metallurgical aspects in laser welding of carbon steels, stainless steels and aluminum alloys in the present paper. In the cases of CO{sub 2} and YAG laser welding, the thermal cycles during welding of carbon steels showed a rapid heating rate of 10{sup 5} K/s and a rapid cooling rate of 10{sup 4} K/s. The solid state transformations during the thermal cycle are different from that in steel welds by arc. The microstructure in heat affected zone consists of ferrite band or matrix and hard martensite colonies with high carbon. It seems a kind of composite materials. The hardness distribution of steel welds by laser is different from that of arc welds in which the location of maximum hardness is coarse grain zone. However, it is the center of fusion zone or near the base metal in laser welds of carbon steel. Even in ultra low carbon steel welds, the hardness of weld metal is higher than 200 Hv and the microstructure is bainitic ferrite and low carbon martensite which have a low cold crack susceptibility. In addition, two mechanisms of porosity formation in laser welding of aluminum alloys including A3003, A5052, A5083, A5182 and A6061 alloys were investigated using the fundamental knowledge and the solidification crack susceptibility in laser welding of A5052, A5083, A6061 and A7NO1 alloys were studied for the application of laser welding in industries.

  5. Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

    SciTech Connect

    Katsura Kajihara; Yasuhiro Aruga; Jun Shimojo; Hiroaki Taniuchi; Tsutomu Takeda; Masatosi Sasaki

    2002-07-01

    New enriched borated aluminum alloys manufactured by melting process are developed, which resulted in supplying structural basket materials for spent nuclear fuel packagings. In this process, the borated aluminum alloys were melted in a vacuum induction furnace at elevated temperature than that of ordinary aluminum melting processes. Boron dissolves into the matrix at the temperature of 1273 K or more, and fine aluminum diboride is precipitated and uniformly dispersed upon cooling rapidity. It is confirmed that boron is homogeneously dispersed with the fine particles of approximate 5 in average size in the product. Tensile strength and creep property at elevated temperature in 1 mass-%B 6061-T651 plate and 1 mass-%B 3004 extruded rectangular pipe as structural materials are examined. It is confirmed that the both of borated aluminum alloys have stable strength and creep properties that are similar to those of ordinary aluminum alloys. (authors)

  6. Intergranular corrosion of an aluminum-magnesium-silicon-copper alloy

    SciTech Connect

    Burleigh, T.D.; Ludwiczak, E.; Petri, R.A.

    1995-01-01

    The intergranular (intercrystalline) corrosion (IGC) of a heat-treated aluminum-magnesium-silicon-copper alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM revealed that tall chimneys of corrosion product formed on the surface above the pits during oxygenated salt water immersion. It was postulated that pitting corrosion occurred first and that the corrosion chimneys maintained the acidic, chloride pit environment that subsequently caused IGC (preferential dissolution of the region adjacent to the grain boundaries). TEM foils of the same alloy were immersed in a model pit solution (dilute hydrochloric acid) and showed IGC identical to the corrosion attack seen in the bulk samples. Potentiodynamic polarization in the dilute HCl solution verified that pure Al corroded many times faster than the bulk alloy. These results indicated IGC of this alloy occurred because the depleted region adjacent to the grain boundaries corroded rapidly in acidic solutions. The presence of pits with corrosion chimneys, or some type of occluded cells, must have maintained the acidic environment, which caused IGC.

  7. Super High Strength Aluminum Alloy Processed by Mechanical Alloying and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Zheng, Ruixiao; Yang, Han; Wang, Zengjie; Wen, Shizhen; Liu, Tong; Ma, Chaoli

    Nanostructure strengthened aluminum alloy was prepared by powder metallurgic technology. The rapid solidification Al-Cu-Mg alloy powder was used in this study. To obtain nanostructure, the commercial powder was intensely milled under certain ball milling conditions. The milled powder was compacted first by cold isostatic pressing (CIP) at a compressive pressure of 300MPa, and then extruded at selected temperature for several times to obtain near full density material. Microstructure and mechanical properties of the extruded alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical tests. It is revealed that the compressive strength of extruded alloy is higher than 800MPa. The strengthening mechanism associated with the nanostructure is discussed.

  8. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  9. Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods

    NASA Technical Reports Server (NTRS)

    Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.

    1959-01-01

    The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.

  10. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    273 7906. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural 791Investigation of Friction Stir Welded 7050 -T651 Aluminum , Acta 792Mater...REPORT Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...During Friction Stir Welding of AA5059 Aluminum Alloys Report Title ABSTRACT Workpiece material flow and stirring/mixing during the friction stir welding

  11. Microstructure Evolution and Mechanical Properties of Severely Plastically Deformed (SPD) Aluminum Alloys

    DTIC Science & Technology

    2007-05-31

    TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microstructure Evolution and Mechanical Properties of Severely Plastically Deformed (SPD) Aluminum Alloys 5b...modeling study has been carried out to characterize the structure and mechanical properties of severely plastically deformed (SPD) aluminum and its...these routes is the expectation that since the fracture toughness of precipitation hardened aluminum alloys is known to be degraded by grain boundary

  12. Hip Consolidation of Aluminum-Rich Intermetallic Alloys and Their Composites

    DTIC Science & Technology

    1992-02-03

    AD-A251 429 Report No. NAWCADWAR-92003-60 HIP CONSOLIDATION OF ALUMINUM -RICH INTERMETALLIC ALLOYS AND THEIR COMPOSITES William E. Frazier, Ph.D. and...DATES COVERED 3 Februar 1992 Final 9/0 - 9/91 4. TITLE AND SUBTITLE S. FUNDING NUMBERS HIP CONSOLIDATION OF ALUMINUM -RICH INTERMETALLIC ALLOYS AND THEIR...crystallographic symmetry. This paper describes preliminary work directed towards utilizing HIP technology to consolidate aluminum -rich intermetallics

  13. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  14. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  15. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  16. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  17. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  18. Laser shocking of 2024 and 7075 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.; Slater, J. E.

    1977-01-01

    The effect of laser generated stress waves on the microstructure, hardness, strength and stress corrosion resistance of 2024 and 7075 aluminum alloys was investigated. Pulsed CO2 and neodymium-glass lasers were used to determine the effect of wavelength and pulse duration on pressure generation and material property changes. No changes in material properties were observed with CO2 laser. The strength and hardness of 2024-T351 and the strength of 7075-T73 aluminum alloys were substantially improved by the stress wave environments generated with the neodymium-glass laser. The mechanical properties of 2024-T851 and 7075-T651 were unchanged by the laser treatment. The correlation of the laser shock data with published results of flyer plate experiments demonstrated that a threshold pressure needed to be exceeded before strengthening and hardening could occur. Peak pressures generated by the pulsed laser source were less than 7.0 GPa which was below the threshold pressure required to change the mechanical properties of 2024-T851 and 7075-T651. Corrosion studies indicated that laser shocking increased the resistance to local attack in 2024-T351 and 7075-T651.

  19. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa.

  20. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  1. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  2. Mechanical Properties of Squeeze-Cast A356 Composites Reinforced With B4C Particulates

    NASA Astrophysics Data System (ADS)

    Mazahery, Ali; Ostad Shabani, Mohsen

    2012-02-01

    In this study, different volume fractions of B4C particles were incorporated into the aluminum alloy by a mechanical stirrer, and squeeze-cast A356 matrix composites reinforced with B4C particles were fabricated. Microstructural characterization revealed that the B4C particles were distributed among the dendrite branches, leaving the dendrite branches as particle-free regions in the material. It also showed that the grain size of aluminum composite is smaller than that of monolithic aluminum. X-ray diffraction studies also confirmed the existence of boron carbide and some other reaction products such as AlB2 and Al3BC in the composite samples. It was observed that the amount of porosity increases with increasing volume fraction of composites. The porosity level increased, since the contact surface area was increased. Tensile behavior and the hardness values of the unreinforced alloy and composites were evaluated. The strain-hardening behavior and elongation to fracture of the composite materials appeared very different from those of the unreinforced Al alloy. It was noted that the elastic constant, strain-hardening and the ultimate tensile strength (UTS) of the MMCs are higher than those of the unreinforced Al alloy and increase with increasing B4C content. The elongation to fracture of the composite materials was found very low, and no necking phenomenon was observed before fracture. The tensile fracture surface of the composite samples was indicative of particle cracking, interface debonding, and deformation constraint in the matrix and revealed the brittle mode of fracture.

  3. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2016-12-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  4. Anisotropic effects on constitutive model parameters of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter S.; Joshi, Vasant S.

    2012-03-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.

  5. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  6. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  7. Upgrading scrap automotive aluminum alloys with the impulse atomization and quench technique

    SciTech Connect

    Olsen, K.; Sterzik, G.; Henein, H.

    1995-12-31

    As aluminum alloy usage in automobiles grows, there are increasing demands on recycling processes and facilities to deal with mixed alloy automotive aluminum scrap. These processes and facilities strive to produce near virgin aluminum stock, which can be relatively costly and difficult. One alternative is to use physical processing methods to upgrade the scrap properties instead of chemically refining the scrap. The Impulse Atomization Process (IAP, patent pending) is a new process for making metallic and ceramic powders. It can produce fine homogeneous microstructures in scrap aluminum alloys due to high undercooling and rapid solidification. The particles have a very narrow size distribution and are in a convenient form for consolidation. This paper compares and contrasts the microstructural features of Impulse Atomized and quenched Impulse Atomized powders, for both AL6061 and a scrap aluminum alloy composition.

  8. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  9. High-strength laser welding of aluminum-lithium scandium-doped alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  10. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  11. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  12. Micromechanical models of delamination in aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Messner, Mark Christian

    Aluminum lithium (Al-Li) alloys are lighter, stiffer, and tougher than conventional aerospace aluminum alloys. Replacing conventional aluminums with Al-Li could substantially decrease the weight and cost of aerospace structures. However, Al-Li alloys often fracture intergranularly via a mechanism called delamination cracking. While secondary delamination cracks can improve the effective toughness of a component, no current model accurately predicts the initiation and growth of intergranular cracks. Since simulations cannot incorporate delamination into a structural model, designers cannot quantify the effect of delamination cracking on a particular component. This uncertainty limits the application of Al-Li alloys. Previous experiments identify microstructural features linked to delamination. Fractography of failed surfaces indicates plastic void growth triggers intergranular failure. Furthermore, certain types of soft/stiff grain boundaries tend to localize void growth and nucleate delamination cracks. This dissertation develops a mechanism for the initiation of delamination on the microscale that accounts for these experimental observations. Microscale simulations of grain boundaries near a long primary crack explore the delamination mechanism on the mesoscale. In these simulations, a physically-based crystal plasticity (CP) model represents the constitutive response of individual grains. This CP model incorporates plastic voriticity correction terms into a standard objective stress rate integration, to accurately account for the kinematics of lattice deformation. The CP model implements slip system hardening with a modular approach to facilitate quick testing and calibration of different theories of hardening. The microscale models reveal soft/stiff grain boundaries develop elevated mean stress and plastic strain as a consequence of the mechanics of the interface. These elevated stresses and strain drive plastic void growth. The results indicate plastic void

  13. Tribological Behavior of A356/Al2O3 Surface Nanocomposite Prepared by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Karimzadeh, F.; Enayati, M. H.

    2014-04-01

    Surface A356 aluminum alloy matrix composites containing micro and nanosized Al2O3 are prepared by a new approach utilizing high-velocity oxy-fuel spraying and friction stir processing (FSP). Optical and scanning electron microscopy, microhardness, and wear tests were used to characterize the surface composites. Results indicated that, the presence of Al2O3 in matrix can improve the mechanical properties of specimens. The microhardness of surface composites containing micro and nanosized Al2O3 were 89.8 ± 2.6 HV and 109.7 ± 2.5 HV, respectively, which were higher than those for the as-received (79.6 ± 1.1 HV) and the FSPed A356-T6 with no alumina powder (66.8 ± 0.9 HV). Surface composites revealed low friction coefficients and wear rates, which were significantly lower than those obtained for substrate. The wear mass losses of the as-received, the FSPed, and surface micro and nanocomposite specimens after 500-m sliding distance were 50.5, 55.6, 31, and 17.2 mg, respectively. Scanning electron microscopy tests revealed different wear mechanisms on the surface of the wear test specimens.

  14. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  15. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1991-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  16. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  17. Selection of Aluminum Alloys for U.S. Army Vehicles Using Multi-Attribute Utility Analysis

    DTIC Science & Technology

    1989-01-01

    maker’s preferences, it was determined that a n aluminum alloy, 2519-T87 (conforming to MIL-A-46192) shows great promisse-for replacing the currently used...MTLTR89- AD-A204 018 AD SELECTION OF ALUMINUM ALLOYS FOR U.S. ARMY VEHICLES USING MULTI-ATTRIBUTE UTILITY ANALYSIS STEVEN A. GEDEON and CHARLES T...TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED SELECTION OF ALUMINUM ALLOYS FOR U.S. ARMY Final Report VEHICLES USING MULTI-ATTRIBUTE UTILITY

  18. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics.

    PubMed

    Jakse, N; Pasturel, A

    2014-09-07

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  19. Butt weld of aluminum alloy plates 6063 and LY12 by laser beam

    NASA Astrophysics Data System (ADS)

    Xia, Jin'an; Cheng, Zhaogu; Xu, Guoliang; Li, Xianqin

    2000-02-01

    By means of a transverse flow 5 kW CO2 laser with low- order mode laser beam output, 1 - 4 mm thick aluminum alloy plates 6063 and LY12 were successfully butt welded. The result shows that the butt weldability and the weld quality of the aluminum alloy plates are mainly dependent on incident laser power density, laser beam defocused distance and shielding gas. The relationship between the weld quality of the aluminum alloy plates and the welding parameters is discussed. The macrostructure and microstructure of the welded seams are analyzed. The mechanical properties of the welded seams are discussed.

  20. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  1. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  2. Evaluation of the StressWave Cold Working (SWCW) Process on High-Strength Aluminum Alloys for Aerospace

    DTIC Science & Technology

    2009-02-01

    Aluminum Alloys, Fatigue Life Enhancement, Short Transverse Cracking, 70S5 Aluminum , 7050 Aluminum , Spectrum Crack Growth, Compressive Residual...to better understand the mechanisms that produce cracks at holes in certain high- strength aluminum alloys (2297/2397-T87 and 7050 -T7451) when using...consisted of room temperature constant amplitude fatigue testing on open hole zero load transfer coupons made from 7085 and 7050 aluminum plate, in the

  3. Threshold for fatigue macrocrack propagation in some aluminum alloys

    NASA Astrophysics Data System (ADS)

    McKittrick, J.; Liaw, P. K.; Kwun, S. I.; Fine, M. E.

    1981-08-01

    Measurement of the threshold for fatigue macrocrack propagation, ΔKo, in a number of aluminum alloys has shown an increase with grain size and decrease with increase in strength as with steels. The results are not primarily due to environmental enhancement of fatigue crack growth because an even larger variation in ΔKo with microstructural change is noted at 77 K than at 300 K. In particular, ΔKo of high purity 2124-T4 increases much more on cooling from 300 to 77 K than does ΔKo of 2024-T4. It is suggested that ΔKo is determined by the stress necessary to operate a dislocation source near the crack tip. A Frank-Read type source is proposed for 2024-T4 with constituent particles acting as pinning points while double cross-slip, a thermally activated process, is proposed for the source in high purity 2124-T4.

  4. Mechanisms of pressure filtration of liquid aluminum alloys

    NASA Astrophysics Data System (ADS)

    Cao, X.

    2006-12-01

    The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

  5. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  6. Formability analysis of aluminum alloys through deep drawing process

    NASA Astrophysics Data System (ADS)

    Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram

    2016-09-01

    Deep drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. Deep drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using deep drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on deep drawing process observed for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for deep drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The deep drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also observed. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are observed. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.

  7. Recent Developments in the Formability of Aluminum Alloys

    SciTech Connect

    Banabic, Dorel; Paraianu, Liana; Jurco, Paul; Cazacu, Oana

    2005-08-05

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.

  8. Laser-initiated combustion studies of selected aluminum, copper, iron, and nickel alloys

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Clark, A. F.

    1981-01-01

    The results of combustion studies at atmospheric pressure on ten metal alloys are presented. The alloys studied were aluminum alloys 1100, 2219, 6061, and tensile-50; 304, 347 and 21-6-9 stainless steel; inconel 600; beryllium copper and a bronze. It was found that once ignition was achieved all alloys would generally burn to completion. The overall combustion process appears to obey a first order rate process. Preliminary conclusions are presented along with recommendations for future work.

  9. Factors Influencing Fracture Toughness and Other Properties of Aluminum- Lithium Alloys

    DTIC Science & Technology

    1979-06-14

    tramp elements sodium, potassium and sulfuir presumably segregated in the grain boundaries. Furthermore, the hydrogen content of the alloys was also shown...tion of these elements at grain boundaries is worth noting. Furthermore, the hydrogen content of the Al-Li and A1-Mg-Li alloys is significantly higher...than the hydrogen content of typical commerical high strength aluminum alloys. Fatigue Crack Growth (FCG) The FCG performance of the Al-Cu-Li alloy

  10. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    PubMed

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.

  11. High-temperature corrosion of iron-aluminum and iron-aluminum-yttrium alloys

    NASA Astrophysics Data System (ADS)

    Insoo, Kim

    The high-temperature corrosion behavior of Fe3Al alloy has been investigated by conducting two studies: (1) corrosion of Fe 3Al and Fe3Al-Y alloys in oxidizing atmosphere and (2) corrosion of Fe3Al in mixed chlorine/oxygen environments. In the first study, oxidation of the two alloys, Fe-14.3 wt% Al and Fe-14.1 wt% Al-0.3 wt% Y, was carried out in the temperature range of 800 to 1100°C to investigate the general oxidation behavior of Fe3Al and the effect of yttrium on the oxidation of Fe3Al in terms of oxidation kinetics, oxide scale adhesion and microstructure. At lower temperatures (<1000°C), the oxidation rate of the two alloys was nearly identical, and the parabolic rate constant obtained as a function of temperature was Kp = 5128 exp[--39500 (cal/mol)/RT] mg2/cm4 h. At higher temperatures, however, yttrium-added Fe3Al alloy exhibited lower oxidation rate and much more improved oxide adhesion. The lower oxidation rate observed in Fe3Al-Y alloy seems to be due to the followings: (1) a decrease in aluminum diffusion through alumina scale and (2) modification of the scale growth mechanism from simultaneous countercurrent diffusion of aluminum and oxygen to predominant inward diffusion of oxygen, which generates less growth stress and thus prevents the formation of fast diffusion paths such as microcracks. The adhesion improvement of alumina scale formed on the Fe3Al-Y was attributed to the modification of alumina growth mechanism by the addition of Y to the Fe3Al alloy. The change of growth mechanism leads to the formation of pegs, decrease of the oxide growth stress, and decrease of voids formation, which enhances the adhesion of alumina scale to the Fe3Al alloy. The second study has focused on the corrosion of Fe3Al in the temperature range of 600--800°C in Cl2-Ar gas mixtures containing traces of oxygen as an impurity. Weight gain was observed during the corrosion of Fe3Al at 600°C in 0.25% Cl2-Ar, which is due to the formation of Fe2O3, while continuous

  12. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  13. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  14. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  15. Thermal cycling of silicon carbide whisker/aluminum alloy composite

    SciTech Connect

    Patterson, W.G.

    1988-01-01

    There are many aspects of the mechanical behavior of whisker reinforced alloys that are not well understood. The effects of thermal fatigue, for example, have been extensively studied for continuous-fiber composites but not for whisker composites. A model was developed here for thermal-fatigue damage in whisker-reinforced metal-matrix composites, taking into account both metallurgical transformations and thermal-stress damage. Also, thermal-cycling tests were performed on 2124-T6 aluminum alloy reinforced with a 15% volume fraction of SiC whiskers. The microstructure and mechanical properties of the composite were evaluate before and thermal cycling. Unlike metal-matrix composites with continuous fibers, the only thermal-stress damage sustained by SiC{sub w}/Al were changes in dimensions as large as 7.4%. There were no indications of matrix or fiber cracking, void formation, interfacial debonding, or concentrated plastic flow. Thermal-stress deformation appears to have been balanced by recovery and recrystallization. The effects of thermal cycling on composite strength were determined to be primarily due to overaging of matrix precipitates. The whiskers accelerated overaging, and may have increased the extent to which overaging could occur.

  16. A Summary of Results of Various Investigations of the Mechanical Properties of Aluminum Alloys at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Hartmann, E C; Sharp, W H

    1942-01-01

    The available sources of data on the mechanical properties of aluminum alloys at low temperatures are listed and a summary of the material to be found in each source is given. There is included a discussion of the results of recent tests of aluminum alloys at low temperatures made at the Aluminum Research Laboratories.

  17. Microstructure of aluminum-iron alloys subjected to severe plastic deformation

    SciTech Connect

    Senkov, O.N.; Froes, F.H.; Stolyarov, V.V.; Valiev, R.Z.; Liu, J.

    1998-04-14

    The present paper describes detailed experiments on structure and phase characterization carried out on aluminum-iron alloys after intense torsion straining. The equilibrium solubility of iron in the aluminum lattice at room temperature has been reported to be 0.025 at.%. Alloying of aluminum with iron can increase the high-temperature strength due to a dispersion of second-phase particles. This effect can be enhanced by increasing the solid solubility extension of iron in the aluminum matrix and producing non-equilibrium phases by techniques such as RS, MA or even a laser treatment. In the present work, the severe plastic deformation approach has been used to extend the iron solubility in aluminum and to produce a nano-grained structure in several Al-Fe alloys.

  18. Minimum quantity lubrication machining of aluminum and magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sukanta

    2011-12-01

    The use of minimum quantity lubrication (MQL) machining, i.e. drilling and tapping of aluminum and magnesium alloys using very low quantities of cutting fluids was studied and the MQL machining performance was compared to dry and conventional flooded conditions. An experimental drilling station with an MQL system was built to measure torque and thrust force responses. Uncoated and diamond-like carbon (DLC) coated HSS drills were tested against 319 Al and AZ91 alloys using 10--50 ml/h of distilled water (H 2O-MQL) and a fatty acid based MQL agent (FA-MQL). The results indicated that H2O-MQL used in conjunction with non-hydrogenated DLC (NH-DLC) coatings reduced the average torque and thrust-force compared to dry cutting and achieved a performance comparable with conventional flooded drilling. At least 103 holes could be drilled using NH-DLC in H2O-MQL and uncoated HSS in FA-MQL in drilling of both 319 Al and AZ91. MQL drilling and tapping provided a stable machining performance, which was evident from the uniform torque and force patterns and also resulted in desirable hole surface, thread quality and chip segments. The maximum temperature generated in the workpiece during MQL machining was lower than that observed in dry drilling and tapping, and comparable to flooded conditions. The mechanical properties of the material adjacent to drilled holes, as evaluated through plastic strain and hardness measurements, revealed a notable softening in case of dry drilling, with magnesium alloys exhibiting a recrystallized grain zone, but not for MQL drilling. Softened aluminum and magnesium promoted adhesion to the tools resulted built-up edge formation and consequently high torques and thrust-forces were generated. NH-DLC coatings' low COF in H 2O-MQL against 319 Al (0.10) and AZ91 (0.12) compared to uncoated HSS (0.63 and 0.65) limited the temperature increase during NH-DLC in H2 O-MQL drilling and hence both torques and thrust forces were effectively reduced.

  19. The mechanism of stress-corrosion cracking in 7075 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Jacobs, A. J.

    1970-01-01

    Various aspects of stress-corrosion cracking in 7075 aluminum alloy are discussed. A model is proposed in which the continuous anodic path along which the metal is preferentially attacked consists of two phases which alternate as anodes.

  20. Cryogenic Fracture Toughness Evaluation of an Investment Cast Aluminum-Beryllium Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne; McGill, Preston

    2006-01-01

    This document is a viewgraph presentation that details the fracture toughness of Aluminum-Beryllium Alloy for use in structures at cryogenic temperatures. Graphs and charts are presented in the presentation

  1. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  2. Study to determine peening stress profile of rod peened aluminum structural alloys versus shot peened material

    NASA Technical Reports Server (NTRS)

    Rosas, R. E.; Calfin, B. G.

    1976-01-01

    The objective of this program was to determine the peening stress profiles of rod peened aluminum structural alloys versus shot peened material to define the effective depth of the compressed surface layer.

  3. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOEpatents

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  4. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-17

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  5. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-01

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  6. Study of Henna (Lawsonia inermis) as Natural Corrosion Inhibitor for Aluminum Alloy in Seawater

    NASA Astrophysics Data System (ADS)

    Nik, W. B. Wan; Zulkifli, F.; Sulaiman, O.; Samo, K. B.; Rosliza, R.

    2012-09-01

    Commercial henna (Lawsonia inermis) was investigated to inhibit the corrosion of aluminum alloy through immersion in seawater. The aluminum alloy (5083) was prepared in size of 25mm × 25mm × 3mm. The immersion test was conducted in seawater with different concentration of henna, 100ppm, 300ppm, 500ppm for duration of 60 days. Four characterizations were performed in this study which was weight loss study, Fourier Transform Infrared (FTIR), Electrochemical Impedance Spectroscopy (EIS) and adsorption isotherm. The results indicated that henna has major constituents of lawsone which contributed to the chemisorptions or adsorption process by forming an isolation layers on the aluminum alloy surface which follows the Langmuir adsorption isotherm. It was found that the protection layer attached on metal was not permanent and precipitation occurred as the time increases. The highest inhibition efficiency was found at 88% (500ppm). This research found that henna is an excellent natural inhibitor for aluminum alloy in seawater.

  7. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  8. Review and Study of Physics Driven Pitting Corrosion Modeling in 2024-T3 Aluminum Alloys (Postprint)

    DTIC Science & Technology

    2015-05-01

    AFRL-RX-WP-JA-2015-0218 REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) Lingyu...2014 – 1 April 2015 4. TITLE AND SUBTITLE REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) 5a...12.2086274. 14. ABSTRACT Material degradation due to corrosion and corrosion fatigue has been recognized to significantly affect the airworthiness of

  9. Effect of Chromate and Chromate-Free Organic Coatings on Corrosion Fatigue of an Aluminum Alloy

    DTIC Science & Technology

    2012-02-20

    the vicinity. Bentonite is hydrated alumino silicate clay primarily composed of the smectite class mineral montmorillonite [73]. The ideal formula for...used as inhibitors. It was studied also bentonite clay , which contains 99% of montmorillonite. The reason of choosing bentonite as aluminum alloy...natural bentonite , natural zeolite and Ca-ion exchanged and Zn-ion exchanged zeolites were studied as aluminum alloy corrosion inhibitors in organic

  10. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  11. Fretting Wear-Resistant, Micro-Arc Oxidation Coatings for Aluminum and Titanium Alloy Bearings (Preprint)

    DTIC Science & Technology

    2007-03-01

    AFRL-ML-WP-TP-2007-443 FRETTING WEAR-RESISTANT, MICRO-ARC OXIDATION COATINGS FOR ALUMINUM AND TITANIUM ALLOY BEARINGS (PREPRINT) K.J. Choppy...COATINGS FOR ALUMINUM AND TITANIUM ALLOY BEARINGS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 65502F 5d. PROJECT NUMBER 3005 5e. TASK NUMBER ML...PERFORMING ORGANIZATION Infoscitex Corporation 303 Bear Hill Road Waltham, MA 02451 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  12. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  13. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  14. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens.

    PubMed

    Tsujino, Jiromaru; Hidai, Kazuaki; Hasegawa, Atsushi; Kanai, Ryoichi; Matsuura, Hisanori; Matsushima, Kaoru; Ueoka, Tetsugi

    2002-05-01

    Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration.

  15. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  16. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  17. Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl

    2013-12-01

    A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.

  18. Laser fusing of HVOF thermal sprayed alloy 625 on nickel-aluminum bronze

    SciTech Connect

    Brenna, R.T.; Pugh, J.L.; Denney, P.E.

    1994-12-31

    A preliminary study has been conducted to determine the feasibility of laser fusing alloy 625 onto nickel-aluminum-bronze base metal. Laser fusing was performed by melting a pre-coated surface of alloy 625 that had been applied by the high velocity oxyfuel (HVOF) thermal spray process. The laser fusing was successful in producing a metallurigical bond between alloy 625 and the substrate. Minor modification to the heat-affected zone of the base metal was observed by microhardness measurements, and defect-free interfaces were produced between alloy 625 and nickel-aluminum-bronze by the process. The laser is a high energy density source that can be used for precise thermal processing of materials including surface modification. Laser fusing is the full or partial melting of a coating material that has been previously applied in some fashion to the substrate. Thermal spray coating of nickel-aluminum-bronze material with alloy 625 was conducted at the David Taylor Research Center. Nickel-aluminum-bronze specimens 2 x 3-in. by 1/2-in. thick were coated with alloy 25 utilizing the HVOF equipment. Coating thicknesses of approximately 0.014-in. (0.3 mm) were produced for subsequent laser fusing experiments. A preliminary study has been conducted to determine the feasibility of laser fusing a HVOF thermal sprayed alloy 625 coating onto nickel-aluminum-bronze base metal. Conclusions of this investigation were as follows: (1) Laser fusing was successful in producing a metallurgical bond between HVOF thermal sprayed alloy 625 and the nickel-aluminum-bronze. (2) Only minor microstructural modification to the heat-affected zone of the base metal ws observed by microhardness measurements. (3) Defect-free interfaces were produced between thermal sprayed alloy 625 and nickel-aluminum-bronze by laser fusing.

  19. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  20. Oxidation resistance of aluminum-coated Fe-20Cr alloys containing rare earths or yttrium

    SciTech Connect

    Sigler, D.R. )

    1993-10-01

    Aluminum-coated Fe-20Cr (rare earth or yttrium) alloy foils were developed with oxidation resistance equivalent or superior to Fe-20Cr-5Al (rare earth or yttrium) alloy foils. The coated foils were made by dipping Fe-20Cr sheet into a salt-covered aluminum bath and then rolling the sheet to foil. Oxidation resistance of the coated foil was enhanced by adding rare earths or yttrium to the Fe-20Cr substrate alloys to insure oxide adherence. Test results indicate that only sufficient addition to tie up sulfur as a stable sulfide is needed in the Fe-20Cr alloy. Aluminum-coated foils show lower oxide growth rates than similar Fe-Cr-Al alloys, most likely the result of fewer impurities (particularly Fe) is the coated foils' growing oxide scale. 31 refs., 18 figs., 2 tabs.

  1. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Gui-bo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  2. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    SciTech Connect

    Chen, Y.C.; Feng, J.C.; Liu, H.J.

    2009-06-15

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  3. Brazing process using'al-Si filler alloy reliably bonds aluminum parts

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Johnson, W. R.

    1966-01-01

    Brazing process employs an aluminum-silicon filler alloy for diffusion bonding of aluminum parts in a vacuum or inert gas atmosphere. This process is carried out at temperatures substantially below those required in conventional process and produces bonds of greater strength and reliability.

  4. Wear of aluminum and hypoeutectic aluminum-silicon alloys in boundary-lubricated pin-on disk sliding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Brainard, W. A.

    1979-01-01

    The friction and wear of pure aluminum and a number of hypoeutectic aluminum-silicon alloys (with 3 to 12 wt %Si) were studied with a pin-on-disk apparatus. The contacts were lubricated with mineral oil and sliding was in the boundary-lubrication regime at 2.6 cm/sec. Surfaces were analyzed with photomicrographs, scanning electron microscopy, X-ray dispersive analysis, and diamond pyramid hardness measurements. There were two wear regimes for the alloys - high and low - whereas pure aluminum exhibited a high wear rate throughout the test period. Wear rate decreased and the transition stress from high to low wear increased with increasing hardness. There was no correlation between friction coefficient and hardness. A least squares curve fit indicated a wear-rate dependence greater than the inverse first power of hardness. The lower wear rates of the alloys may be due to the composites of silicon platelets in aluminum resulting in increased hardness and thus impairing the shear of the aluminum.

  5. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  6. Lightweight materials for automotive applications/topic 2: Wear resistant aluminum alloy

    SciTech Connect

    Viswanathan, S.

    1997-01-31

    The replacement of cast iron by aluminum alloys in automotive engine blocks and heads represents a significant weight reduction in automobiles. The primary hurdle to the widespread use of aluminum alloy engine blocks in the North American automobile industry was high cost. The lack of wear resistance in most aluminum alloys added to manufacturing cost, since expensive procedures such as the incorporation of cast iron liners or special coatings were needed to achieve the required wear properties. The project targeted the development of a wear resistant aluminum alloy, as well as tools and the knowledge-base required to design the casting process, to allow it to be cast economically into engine blocks without the use of a cast iron liner or special coating, thereby providing benefits to both the material and manufacturing aspects of the process. The project combined the alloy development, wear and microstructural characterization, and casting modeling capabilities of the laboratory with the partners extensive alloy and casting process development and manufacturing experience to develop a suitable wear resistant aluminum alloy and casting process.

  7. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys.

    PubMed

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-05-08

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg₂Al₃. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  8. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    PubMed Central

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  9. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  10. Measurement and control of ice adhesion to aluminum 6061 alloy

    NASA Astrophysics Data System (ADS)

    Archer, Paul; Gupta, Vijay

    1998-10-01

    A new experimental strategy for measuring the tensile strength of ice coatings to structural surfaces is presented. In this experiment, a laser-induced compressive stress pulse travels through a 1 mm-thick substrate disc that has a layer of ice grown on its front surface. The compressive stress pulse reflects into a tensile wave from the free surface of the ice and pulls the iceinterface apart, given a sufficient amplitude. The interface strength was calculated by recording the free surface velocity of an Al substrate using a Doppler interferometer and calculating the stress at the interface using a finite-difference elastic wave mechanics simulation with the free surface velocity as an input. The test procedure was used to study ice adhesion on 6061 aluminum alloy sheets. It was found that the adhesion strength of ice to unpolished aluminum substrates was 274 MPa at -10°C. This value decreased with temperature, down to 179 MPa at -40°C. Interestingly, this decrement in the tensile strength could be directly related to the existence of a liquid-like layer that is known to exist on the surface of solid ice till -30°C. The interface strength was also shown to decrease by polishing the Al substrate surface or by adding thin polymer coatings on the unpolished Al substrate. The sensitivity of the technique to such microstructural changes in the interfacial region is indicative of the experiments ability to provide basic adhesion data, which in turn, can be used to solve the deicing problem from a fundamental standpoint. 1998 Elsevier Science Ltd.

  11. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  12. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    SciTech Connect

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi

    2015-01-15

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  13. A method for studying weld fusion boundary microstructure evolution in aluminum alloys

    SciTech Connect

    Kostrivas, A.; Lippold, J.C.

    2000-01-01

    Aluminum alloys may exhibit a variety of microstructures within the fusion zone adjacent to the fusion boundary. Under conventional weld solidification conditions, epitaxial nucleation occurs off grains in the heat-affected zone (HAZ) and solidification proceeds along preferred growth directions. In some aluminum alloys, such as those containing Li and Zr, a nondendritic equiaxed grain zone (EQZ) has been observed along the fusion boundary that does not nucleate epitaxially from the HAZ substrate. The EQZ has been the subject of considerable study because of its susceptibility to cracking during initial fabrication and repair. The motivation of this investigation was to develop a technique that would allow the nature and evolution of the fusion boundary to be studied under controlled thermal conditions. A melting technique was developed to simulate the fusion boundary of aluminum alloys using the Gleeble{reg{underscore}sign} thermal simulator. Using a steel sleeve to contain the aluminum, samples wee heated to incremental temperatures above the solidus temperature of a number of alloys. In Alloy 2195, a 4Cu-1Li alloy, an EQZ could be formed by heating in the temperature range approximately from 630--640 C. At temperatures above 640 C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in Alloys 5454-H34, 6061-T6 and 2219-T8. Nucleation in these alloys was observed to be epitaxial. Details of the technique and its effectiveness for performing controlled melting experiments at incremental temperatures above the solidus are described.

  14. Exploratory Development for Design Data on Structural Aluminum Alloys in Representative Aircraft Environments

    DTIC Science & Technology

    1977-07-01

    Alloy," Final Report under Naval Air Systems Command Contract N00019-69- C-0292, January 1970. 6. D. J. Brownhill, C. F. Babilon , G. E. Nordmark and D. 0...34Further Development of Aluminum Alloy X7050," Final Report under Naval Air Systems Command Contract N00019- 71-C-0131, May 1972. 9. C. F. Babilon , R

  15. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H. W.; Farahmand, B.; Rioja, R.

    2003-01-01

    This viewgraph report presents an examination of the fracture toughness of aluminum-lithium alloy C458 for use in cryotank structures. Topics cover include: cryogenics, alloy composition, strengthing precipitates in C458, cryogenic fracture toughness improvements, design of experiments for measuring aging optimization of C458 plate and effects of aging of properties of C458 plate.

  16. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H. W.; Farahmand, B.; Rioja, R.

    2003-01-01

    This viewgraph report presents an examination of the fracture toughness of aluminum-lithium alloy C458 for use in cryotank structures. Topics cover include: cryogenics, alloy composition, strengthing precipitates in C458, cryogenic fracture toughness improvements, design of experiments for measuring aging optimization of C458 plate and effects of aging of properties of C458 plate.

  17. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  18. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  19. Explosion bonding: aluminum-magnesium alloys bonded to austenitic stainless steel

    SciTech Connect

    Patterson, R.A.

    1982-01-01

    The explosion bonding of 5000 series aluminum alloys to 300 series stainless steel alloys is summarized. The process technique involves a parallel gap arrangement with copper or aluminum bonding aids. Successful bonds have been achieved using either a single shot process for joining the trilayer clad or a sequential shot technique for each metal component. Bond success is monitored through a combined metallographic and tensile strength evaluation. Tensile properties are shown to be strongly dependent upon process parameters and the amount of intermetallic formation at the aluminum bond interface. Empirical data has been compared with experimental and destructive test results to determine the optimum procedures.

  20. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  1. On the growth of small fatigue cracks in aluminum-lithium alloy 2090

    SciTech Connect

    Venkatesward-Rao, K.T.; Yu, W.; Ritchie, R.O.

    1986-01-01

    It is the objective of this article to examine the behavior of small (2 to 1000 ..mu..m) fatigue cracks in a commercial Al-Li-Cu-Zr alloy, and to compare results with those determined on conventional long (greater than or equal to 20 mm) crack samples. The development of ultra-lightweight aluminum-lithium alloys has aroused much interest in the aerospace industry with the prospect of the design of aircraft with alloys of lower density and increased modulus. Moreover, although Li additions can cause low ductility and toughness properties, Al-Li-X alloys generally show far superior fatigue crack growth resistance to traditional aluminum alloys, such as 2124 and 7050. However, the latter observations are based exclusively on long (greater than or equal to 10 mm) crack studies; to date little information is available on the behavior of small fatigue cracks in these alloys.

  2. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    Stir Welded 7050 -T651 Aluminum , Acta 903 Mater., 2003, 51, p 713–729 904 14. O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction...REPORT Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys 14. ABSTRACT 16. SECURITY...is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys selected are AA5083

  3. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    SciTech Connect

    Hamilton, M.L.; Edwards, D.J.; Toloczko, M.B.

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  4. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  5. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  6. Accelerated Corrosion Testing of Graphite/Epoxy Composites and Aluminum Alloy Mechanically-Fastened Joints

    DTIC Science & Technology

    1985-06-20

    45/02/90)4/±,45/0)s and aluminum alloy plates ( 2124 -T851) were fabricated using either titanium (NAS1154V4) or A-286 CRES (HS 21140) fasteners. The... 2124 -T851, which is sup- posed to be a more corrosive resistant ahuminum alloy than the 2024 seri~es. Also the substructure was chromic acid anodized...AFWAL-TR-84--3115 ACCELERATED CORROSION TESTING OF GRAPHITE/EPOXY COMPOSITES AND ALUMINUM ALLOY MECHANICALLY-FASTENED JOINTS Rlk S. D. Thompson, SJB

  7. Synthesis and Properties of Elevated Temperature P/M Aluminum Alloys.

    DTIC Science & Technology

    1985-11-30

    7D-A±164 086 SYNTHESIS ND PROPERTIES OF ELEVTED TEMPERATRE PIN L/2ALUMINU" ALLOYS(U) NORTHMEST RN UNIV EVANSTON IL DEPT OF MATERIALS SCIENCE AND E...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Report SYNTHESIS AND PROPERTIES OF ELEVATED 10/1/81 - 9/30/85 TEMPERATURE P/M ALUMINUM ALLOYS 6...v. --- -r .v ’AFOSR -rR, FINAL REPORT -. on SYNTHESIS AND PROPERTIES OF ELEVATED TEMPERATURE P/M ALUMINUM ALLOYS covering period 1 October

  8. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  9. Electrochemical test for predicting microbiologically influenced corrosion of aluminum and AA 7005 alloy

    SciTech Connect

    Ayllon, E.S. ); Rosales, B.M. )

    1994-08-01

    The susceptibility of pure aluminum (Al) and Aluminum Association (AA) 7005 alloy (UNS A97005) to pitting by microbiologically influenced corrosion (MIC) in an integral jet fuel tank was determined through polarization measurements. Usually, the most corrosive reported species is the fungus Hormonconis resinae. The effect of its proliferation on pure Al and AA 7005-T6 alloy was studied through anodic and cathodic potentiodynamic polarization. The type and relative amount of corrosion damage to the metal were determined. Morphology of the attack was analyzed by scanning electron microscopy (SEM). Distribution of the alloying elements was determined using energy dispersive x-ray analysis (EDXA).

  10. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  11. Numerical simulation of high speed incremental forming of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  12. Chemical conditions inside occluded regions on corroding aircraft aluminum alloys.

    PubMed

    Lewis, K S; Yuan, J; Kelly, R G

    1999-07-30

    Corrosion of aluminum alloy structures costs the US Air Force in the order of US$1 x 10(9) annually. Corrosion develops in areas of overlap such as aircraft lap-splice joints and under protective organic coatings. Capillary electrophoresis (CE) has been used to determine the local chemistries at these corrosion sites of solutions that were extracted using a microsampling system. Analysis of the local solution within lap-splice joints from aircraft has been performed in two ways: rehydration of corrosion products and direct microsampling. The solutions collected were analyzed with CE to quantitatively determine the species present during corrosion. The most common ions detected were Cl-, NO2-, NO3-, HCO3-, K+, Al3+, Ca2+, Na+ and Mg2+. Studies of the solution chemistry under local coating defects are required to understand coating failure and develop more durable coatings. A microsampling system and micro pH sensor were developed to extract solution from and measure pH in defects with diameters as small as 170 microns. Actively corroding defects contained high concentrations of Cl-, Al3+, Mg2+, Mn2+ and Cu2+ whereas only trace levels of Mg2+ were found in repassivated defects. The effects of these species on initiation and propagation of corrosion are discussed.

  13. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  14. Ultrasonic measurement of residual stress in shot peened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-04-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to non-destructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper addresses issues encountered in near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth inversely related to the excitation frequency, by making measurements at different frequencies, the method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity from 4A-16A. Several factors were found to contribute to the measured responses: surface roughness, near surface texture change, dislocation density increase and residual stress. In this paper, the contributions of residual stress, dislocation density and surface roughness to the overall effect are separately estimated. It is shown that the experimentally observed velocity change in shot peened samples is dominated by the effect of surface roughness while the role of residual stress is much smaller.

  15. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  16. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  17. Predicting the Effect of Pouring Temperature on the Crystallite Density, Remelting, and Crystal Growth Kinetics in the Solidification of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Tabandeh-Khorshid, Meysam; Mantas, John C.; Rohatgi, Pradeep K.; Cho, Kyu; Kim, Chang-Soo

    2014-08-01

    In the present work, we developed an analytical model to describe the effect of pouring temperature on the crystallite density, remelting, growth kinetics, and the resultant final grain size for aluminum (Al)-based alloys synthesized using gravity casting. The model predicts that there are three regimes of pouring temperature/grain size-related behavior: (i) at low superheats, grain size is small and relatively constant; (ii) at intermediate levels of superheat, there appears to be a transitional behavior where grain size increases in a rapid, non-linear fashion; and (iii) at high superheats, grain size increases linearly with increasing temperature. This general pattern is expected to be shifted upward as distance from the bottom of the casting increases, which is likely a result of the slower cooling rates and/or longer solidification times with increasing distance from the bottom of the casting. To validate the model, a set of experiments has been conducted using Al-Cu and Al-Si alloys ( i.e., Al-3.0 wt pct Cu, Al-4.5 wt pct Cu, and Al-A356.2 alloys), and the experimental measurements showed consistent results with theoretical predictions.

  18. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  19. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    SciTech Connect

    Bochkareva, Anna Lunev, Aleksey; Barannikova, Svetlana; Gorbatenko, Vadim; Shlyakhova, Galina; Zuev, Lev

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  20. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.

  1. Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate strength while minimizing residual stresses and machining distortion.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    This report provides strategies for minimizing machining distortion in future designs of aluminum alloy satellite boxes, based in part on key findings from this investigation. The report outlines types of aluminum alloys and how they are heat treated, how residual stresses develop during heat treatment of age hardening alloys, ways residual stresses can be minimized, and the design of machining approaches to minimize distortion in parts that contain residual stresses. Specific recommendations are made regarding alloy selection, heat treatment, stress relieving, and machining procedures for boxes requiring various strength levels with emphasis on 6061 and 7075 aluminum alloys.

  2. Aluminum base alloy powder metallurgy process and product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G. (Inventor)

    1986-01-01

    A metallurgical method including cooling molten aluminum particles and consolidating resulting solidified particles into a multiparticle body, wherein the improvement comprises the provision of greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn. Aluminum containing greater than 0.15% of a metal which diffuses in the aluminum solid state at a rate less than that of Mn.

  3. Behavior and Microstructure in Cryomilled Aluminum alloy Containing Diamondoids Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hanna, Walid Magdy

    Aluminum (Al) alloys have been the materials of choice for both civil and military aircraft structure. Primary among these alloys are 6061 Al and 5083 Al, which have used for several structural applications including those in aerospace and automobile industry. It is desirable to enhance strength in Al alloys beyond that achieved via traditional techniques such as precipitation hardening. Recent developments have indicated strengthening via grain refinement is an effective approach since, according the Hall-Petch relation, as grain size decreases strength significantly increases. The innovate techniques of severe plastic deformation, cryomilling, are successful in reefing grain size. These techniques lead to a minimum grain size that is the result of a dynamic balance between the formation of dislocation structure and its recovery by thermal processes. According to Mohamed's model, each metal is characterized by a minimum grain size that is determined by materials parameters such as the stacking faulty energy and the activation energy for diffusion. In the present dissertation, 6061 Al and 5083 Al were synthesized using cryomilling. Microstructural characterization was extensively carried out to monitor grain size changes. A close examination of the morphology of the 6061 Al powder particles revealed that in the early milling stages, the majority of the particles changed from spheres to thin disk-shaped particles. This change was attributed to the high degree of plastic deformation generated by the impact energy during ball-powder-ball collisions. Both transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to monitor the change in grain size as a function of milling time. The results of both techniques demonstrated a close agreement with respect to two observations: (a) during cryomilling, the grain size of 6061 Al decreased with milling time, and (b) after 15 h of milling, the grain size approached a minimum value of about 22 nm, which is in

  4. A study on the surface shape and roughness of aluminum alloy for heat exchanger using ball end milling

    NASA Astrophysics Data System (ADS)

    Lee, E.; Kim, Y.; jeong, H.; Chung, H.

    2015-09-01

    Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball end milling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball end milling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

  5. The role of hydrogen in hot-salt stress corrosion cracking of titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Ondrejcin, R. S.

    1971-01-01

    Additional support is presented for the previously proposed role of hydrogen as an embrittling agent in hot-salt stress corrosion cracking of titanium-aluminum alloys. The main source of hydrogen formed during the reactions of titanium alloys with hot salt was identified as water associated with the salt. Hydrogen is produced by the reaction of an intermediate (hydrogen halide) with the alloy rather than from metal-water reactions. The fracture mode of precracked tensile specimens was ductile when the specimens were tested in air, and brittle when tests were made in high-pressure hydrogen. Stressed titanium-aluminum alloys also were cracked by bombardment with hydrogen ions produced in a proton accelerator. The approximate concentrations of the hydrogen ions in the alloys were calculated.

  6. Emerging Development in Al-Alloy Recycling for Nontraditional Aluminum Metal Matrix Composites Processing

    NASA Astrophysics Data System (ADS)

    Rabeeh, Bakr Mohamed

    Growing demands for new emerging materials are aimed at introducing nontraditional processes. However, Direct metal oxidation, DIMOX, as applied to Al-alloys recycling has prompted production processes to be more cost efficient. Aluminum alloy scrap is heated to different temperatures, 950°C, 1000°C, and 1050°C for various holding times (15 to 90 minutes) and then poured into metallic molds. The formation of hybrid composite is introduced by alloying elements additions (α -Fe, and Si). Ceramic alumina phase with intermetallic fibers or whiskers are established in an aluminum matrix. Functionally gradient materials, FGM, are also produced after prolonged holding time (90 min. at 1050°C). Scanning electron microscopy with energy dispersive X-ray spectroscopy EDX is utilized for microstructural characterization. 3-point tests are applied on another group of samples. The application of DIMOX on recycled Al-alloy with the addition of alloying elements has a dominant effect on composite microstructure.

  7. Effect of oxide layer formation on deformation of aluminum alloys under fire conditions

    SciTech Connect

    Yilmaz, Nadir; Vigil, Francisco M.; Tolendino, Greg; Gill, Walt; Donaldson, A. Burl

    2015-05-14

    The purpose of this study is to investigate the structural behavior of aluminum alloys used in the aerospace industry when exposed to conditions similar to those of an accident scenario, such as a fuel fire. This study focuses on the role that the aluminum oxide layer plays in the deformation and the strength of the alloy above melting temperature. To replicate some of the thermal and atmospheric conditions that the alloys might experience in an accident scenario, aluminum rod specimens were subjected to temperatures near to or above their melting temperature in air, nitrogen, and vacuum environments. The characteristics of their deformation, such as geometry and rate of deformation, were observed. Tests were conducted by suspending aluminum rods vertically from an enclosure. This type of experiment was performed in two different environments: air and nitrogen. The change in environments allowed the effects of the oxide layer on the material strength to be analyzed by inhibiting the growth of the oxide layer. Observations were reported from imaging taken during the experiment showing creep behavior of aluminum alloys at elevated temperatures and time to failure. In addition, an example of tensile load–displacement data obtained in air and vacuum was reported to understand the effect of oxide layer on aluminum deformation and strength.

  8. Effect of oxide layer formation on deformation of aluminum alloys under fire conditions

    DOE PAGES

    Yilmaz, Nadir; Vigil, Francisco M.; Tolendino, Greg; ...

    2015-05-14

    The purpose of this study is to investigate the structural behavior of aluminum alloys used in the aerospace industry when exposed to conditions similar to those of an accident scenario, such as a fuel fire. This study focuses on the role that the aluminum oxide layer plays in the deformation and the strength of the alloy above melting temperature. To replicate some of the thermal and atmospheric conditions that the alloys might experience in an accident scenario, aluminum rod specimens were subjected to temperatures near to or above their melting temperature in air, nitrogen, and vacuum environments. The characteristics ofmore » their deformation, such as geometry and rate of deformation, were observed. Tests were conducted by suspending aluminum rods vertically from an enclosure. This type of experiment was performed in two different environments: air and nitrogen. The change in environments allowed the effects of the oxide layer on the material strength to be analyzed by inhibiting the growth of the oxide layer. Observations were reported from imaging taken during the experiment showing creep behavior of aluminum alloys at elevated temperatures and time to failure. In addition, an example of tensile load–displacement data obtained in air and vacuum was reported to understand the effect of oxide layer on aluminum deformation and strength.« less

  9. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  10. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy

    PubMed Central

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-01-01

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found. PMID:28773536

  11. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  12. Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.

    PubMed

    Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos

    2016-05-25

    The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10(-1) pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.

  13. An experimental investigation of fatigue damage in aluminum 2024-T3 alloys

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1993-01-01

    Aluminum alloys are finding increasing use in the aerospace and automobile industries due to their attractive low density-high modulus and low density-high strength characteristics. Unfortunately, cyclic stress-strain deformation alters the microstructure of the material. These structural changes can lead to fatigue damage and ultimately service failure. Therefore, in order to assess the integrity of the alloy, a correlation between fatigue damage and a measurable microstructural property is needed. Aluminum 2024-T3, a commonly used commercial alloy, contains many grains (individual crystals) of various orientations. The sizes and orientations of these grains are known to affect the strength, hardness, and magnetic permeability of polycrystalline alloys and metals; therefore, perhaps a relationship between a grain property and the fatigue state can be established. Tension-compression cycling in aluminum alloys can also induce changes in their dislocation densities. These changes can be studied from measurements of the electrical resistivities of the materials. Consequently, the goals of this investigation were: to study the grain orientation of aluminum 2024-T3 and to seek a correlation between the grain orientation and the fatigue state of the material; and to measure the electrical resistivities of fatigued samples of aluminum 2024-T3 and to interpret the findings.

  14. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan

    2014-12-01

    Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

  15. Odontologic use of copper/aluminum alloys: mitochondrial respiration as sensitive parameter of biocompatibility.

    PubMed

    Rodrigues, Luiz Erlon A; Carvalho, Antônio A V F; Azevedo, Antônio L M; Cruz, Cecília B B V; Maia, Antônio Wanderley C

    2003-01-01

    Copper/aluminum alloys are largely utilized in odontological restorations because they are less expensive than gold or platinum. However, tarnishing and important corrosion in intrabuccal prostheses made with copper/aluminum alloys after 28 days of use have been reported. Several kinds of food and beverage may attack and corrode these alloys. Copper is an essential component of several important enzymes directly involved in mitochondrial respiratory metabolism. Aluminum, in contrast, is very toxic and, when absorbed, plasma values as small as 1.65 to 21.55 microg/dl can cause severe lesions to the nervous system, kidneys, and bone marrow. Because mitochondria are extremely sensitive to minimal variation of cellular physiology, the direct relationship between the mitocondrial respiratory chain and cell lesions has been used as a sensitive parameter to evaluate cellular aggression by external agents. This work consisted in the polarographic study of mitochondrial respiratory metabolism of livers and kidneys of rabbits with femoral implants of titanium or copper/aluminum alloy screws. The experimental results obtained did not show physiological modifications of hepatic or renal mitochondria isolated from animals of the three experimental groups, which indicate good biocompatibility of copper/ aluminum alloys and suggest their odontological use.

  16. Impurity control and corrosion resistance of magnesium-aluminum alloy

    SciTech Connect

    Liu, M.; Song, GuangLing

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  17. Evaluation of Vitreous and Devitrifying Enamels as Hot Forming Lubricants for Aluminum AA5083 Alloy

    NASA Astrophysics Data System (ADS)

    Riahi, A. R.; Morales, A. T.; Alpas, A. T.

    2008-06-01

    The adhesion of aluminum to tool surfaces during the hot forming of sheet aluminum alloys presents challenging tribological problems. Graphite and boron nitride are commonly used as aluminum adhesion mitigating solid lubricants for hot forming processes, but lubricant breakdown in high-stress areas, such as corners and bends, remains an issue compromising the quality of the formed parts as well as the tool life. Low-melting temperature enamels may provide an affordable and easy to apply alternative. In this study, vitreous (amorphous glass) and devitrifying (two phase crystalline glass) layers were deposited on the surface of sheet aluminum samples with a sedimentation technique. Enamel lubrication was effective in preventing aluminum transfer to the steel counterface. Hence, the prospect exists for the use of these enamels as aluminum workpiece lubricants in hot forming operations.

  18. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  19. Effect of Intensive Plastic Deformation on Microstructure and Mechanical Properties of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Uazyrkhanova, Gulzhaz; Myakinin, Alexandr; Uazyrkhanova, Zhuldyz

    2016-08-01

    In work it was studied the influence of intensive plastic deformation on structure and mechanical properties of aluminum alloys. Intensive plastic deformation was carried out by using equal-channel angular extrusion. It is shown that the most efficient angle of intersection of the channels is the angle of Φ=120°, which ensures defect-free parts at the highest possible level of accumulated strain (e=8). It is established that the intensive milling grain structures in aluminum alloys AMG6 and AMC occurs at ECAE-12 passes, while the intersection angle of the channels of 120°. After ECAE-12 in aluminum alloys the grain refinement reaches to the size of ∼⃒1.0-1.5 gm. It is determined that as a result of equal channel angular pressing, the microhardness of alloy AMG6 increases almost 4 times in comparison with the initial state, the microhardness of alloy AMC increases by almost 4.5 times in comparison with the initial state. It is shown that ECAE-12 mass loss is reduced to 5.4 and 5.6 mg, which shows an increase in wear-resistance of aluminum alloys AMG6 and AMC 13-14 %.

  20. Dielectric properties of aluminum silver alloy thin films in optical frequency range

    SciTech Connect

    Yang Guang; Sun Jingbo; Zhou Ji

    2011-06-15

    The dielectric properties of direct current (dc) magnetron sputtering aluminum silver alloy films in optical frequency have been quantitatively studied by variable angle spectroscopic ellipsometry. The structure and surface topography of the alloy films were characterized using scanning probe microscopy and x-ray diffraction. The Drude-Lorentz model was used to simulate the dielectric function of Al-Ag alloy films. Meanwhile, the effective medium theory has been utilized for the treatment of surface roughness. We found that the interband transition around 1.5 eV can be shifted through a variable annealing temperature and a changeable silver percentage of Al-Ag alloys.

  1. Elements loss analysis based on spectral diagnosis in laser-arc hybrid welding of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Hui; Zhu, Minhao; Yang, Tao; Shen, Lin

    2017-07-01

    Aluminum alloy has been widely used in automobiles, high-speed trains, aerospace and many other fields. The loss of elements during welding process causes welding defects and affects the microstructure and properties of the joints. This paper discusses the correlation between welding process, spectral intensity and loss of elements in laser-arc hybrid welding of Al alloys. The results show that laser power and arc current have a significant impact on the spectral intensity and loss of elements. Compared with the base metal, the contents of alloying elements in the weld area are lower. The burning losses of alloy elements increase with the welding heat input.

  2. Surface and interface characterization for low temperature plasma interface engineering of aluminum alloy surfaces

    NASA Astrophysics Data System (ADS)

    Moffitt, Christopher Edward

    2000-10-01

    High strength aluminum alloys owe their improved structural integrity to the addition of alloying elements to an aluminum matrix. In the highest strength alloys, these additions have the unfortunate effect of decreasing the corrosion resistance of the alloy, as compared to pure aluminum. Costs associated with the corrosion of structural materials greatly affect the world's economies, forcing the early replacement or failure of infrastructure components, industrial products, and military weapons systems, to name a few crucial example areas. Current methods for the protection of structural aluminum alloys employ hexavalent chromium as a corrosion inhibitor and surface passivating agent. This form of chromium is now known to be carcinogenic and it has come under great scrutiny as of late, due to pollution and remediation costs associated with its use. Research toward the development of more environmentally benign corrosion resistant coatings using plasma polymers, as intermediary adhesion and barrier layers on aluminum alloys, is showing great promise as an alternative protection method. These plasma polymer films also exhibit characteristics, in combination with certain conventional polymer coatings, that may lead to the development of long service-life coatings systems. The integrity of interfaces between each successive coating layer is the most critical factor in the overall performance of any system, given that the coatings themselves are stable. It is therefore necessary to more fully understand the specific chemistry of the surfaces under consideration. Electron spectroscopies allow for the investigation of surface chemistry and, when combined with inert ion sputtering, have the ability to characterize the chemistry throughout an entire film and its interface with a particular substrate. X-ray photoelectron spectroscopy has been employed to investigate the alloy surface modifications from various chemical and plasma pretreatments, the surface and bulk film

  3. A study on friction stir welding of 12mm thick aluminum alloy plates

    NASA Astrophysics Data System (ADS)

    Kumar, Deepati Anil; Biswas, Pankaj; Tikader, Sujoy; Mahapatra, M. M.; Mandal, N. R.

    2013-12-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  4. A Study on the Susceptibility to SCC of 7050 Aluminum Alloy by DCB Specimens

    PubMed Central

    Qi, Xing; Jin, Jirong; Dai, Chunli; Qi, Wenjuan; He, Wangzhao; Song, Renguo

    2016-01-01

    The stress corrosion cracking (SCC) of different aging states for 7050 aluminum alloy in 3.5% sodium chloride aqueous solution has been studied by means of double cantilever beam (DCB) specimens, cathodic polarization, scanning electron microscope (SEM), transmission electron microscope (TEM) and time-of-flying second ion mass spectrometer (ToF-SIMS). The results showed that the susceptibility to SCC (Iscc) of 7050 aluminum alloy decreases with increasing the aging time. When a cathodic polarization potential of −1100 mV was applied to DCB specimens, the ion current intensity of hydrogen (IH+) near the crack tip and Iscc increased obviously, thus the degree of the diffusion of hydrogen into the grain boundary become more serious. The observation of microstructure indicated that the precipitates on the grain boundary become coarse and are sparsely distributed with increasing the aging time of 7050 aluminum alloy. PMID:28774004

  5. Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM

    SciTech Connect

    Huang Shiquan; Yi Youping; Zhang Yuxun

    2010-06-15

    Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. From an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.

  6. Effects of laser shock processing on the fatigue life of 2024-T62 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Lu, Boliang; Zhang, Shuren; Tang, Yaxin; Yu, Chengye

    1996-09-01

    Laser shock processing (LSP) is a new technology for strengthening the materials. The feasibility of using a high energy, pulsed beam to shock-harden the localized stress concentration zone, i.e. small holes in 2024-T62 aluminum alloy was investigated in this paper. Confining plasma technique was used in our study. In order to generate the pressure which is required to exceed the dynamic yield strength of 2024-T62 aluminum alloy, laser parameters were optimized. The fatigue life of specimens was studied before and after laser shocking. The fatigue tests showed that the fatigue life of 2024-T62 aluminum alloy treated by LSP had been improved significantly. With 95 percent confidence, the median fatigue life of shocked specimens was 1.9 to 2.5 times that of unshocked ones. It is expected that LSP will e used as a good treatment for improving the fatigue life of aviation structures.

  7. Monte Carlo Modeling of Gamma Ray Backscattering for Crack Identification in the Aluminum alloy Plate

    NASA Astrophysics Data System (ADS)

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Gunawan, H.; Kim, H. J.

    2017-01-01

    A Monte Carlo simulation study has been conducted of the Cs-37 gamma ray backscattering in the aluminum alloy plate. This simulation was performed in order to identify the existence of the crack in the aluminum alloy plate, the correlation between the backscattering peak and the crack width. We are able to analyze the absorbed energy distribution in the NaI(Tl) scintillation detector. For the experimental measurement, we are using 5 μCi of a Cs-137 gamma source and 2 in. x 2in. NaI(Tl) scintillation detector with the PMT. The aluminum alloy dimension is about 8 cm x 6 cm x 1 cm. The crack model is represented by the slit with the varying width (1 mm, 2 mm, 4 mm, and 6 mm). The existence of a crack is identified by the decreasing intensity of the gamma backscattering energy peak. These predicted results have a good agreement with the experimental measurement.

  8. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    NASA Astrophysics Data System (ADS)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  9. Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM

    NASA Astrophysics Data System (ADS)

    Shi-Quan, Huang; You-Ping, Yi; Yu-Xun, Zhang

    2010-06-01

    Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. From an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.

  10. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  11. The effect of pre-existing corrosion on the fatigue cracking behavior of aluminum alloys

    SciTech Connect

    Hagerdorn, E.L.; Koch, G.H.

    1996-10-01

    In order to assess the effect of preexisting corrosion on the fatigue crack behavior of aluminum alloys 2024-T3 and 7074-T6 crack initiation and growth data were obtained using fracture mechanics specimens. These specimens incorporated mechanically thinned areas and areas that had been preexposed to environments which produced various degrees of pitting or exfoliation corrosion. The data obtained from these laboratory experiments indicate that specific corrosive was most pronounced in the fatigue cracking behavior of aluminum alloys. The effect of preexisting corrosion was most pronounced in the fatigue crack initiation stage. Based on the results of this study, it was concluded that the effect of preexisting corrosion on the fatigue cracking behavior of both aluminum alloys 2024-T3 and 7075-T6 is a combination of stress concentrations as a result of material loss, and altered material properties, possible as a result of hydrogen entry into the lattice.

  12. Evolution of aluminum iron silicide intermetallic particles during homogenization of aluminum alloy 6063

    NASA Astrophysics Data System (ADS)

    Claves, Steven R.

    As-cast 6xxx aluminum alloys contain beta-Al9Fe2Si 2 intermetallic particles that form at grain boundaries and interdendritic regions during solidification. This secondary phase has a considerable negative influence on the workability of the material during subsequent deformation processing; e.g. it has been linked to the extrusion pick-up defect. To lessen its deleterious effects, beta-Al9Fe2Si2 is transformed to alpha-Al8Fe2Si during the homogenization process, a typical heat treatment cycle at 540--580°C for 6--8 hours. The scientific objective of this Ph.D. research was to increase the understanding of morphological, chemical, and crystallographic aspects of the beta- to alpha-AlFeSi phase transformation. The two AlFeSi phases differ in size, shape, color, chemical composition, crystal structure, and bonding strength with the surrounding aluminum matrix. Various microscopy (optical and electron) techniques have been employed to examine these particle characteristics. This research investigates the particles' evolution during intermediate heat treatment conditions. Light optical microscopy was used to study the size, color, and two-dimensional shapes of AlFeSi particles. As homogenization progresses, microstructures contain long, charcoal-colored needles (beta-Al9Fe2Si 2), which slowly transform to shorter, gray spheroids (alpha-Al 8Fe2Si). Backscatter electron imaging in the scanning electron microscope was used for higher magnification micrographs and more detailed particle measurements. Due to the complex morphologies of the AlFeSi particles, planar imaging was insufficient to accurately describe their shape. Three-dimensional microstructures were obtained via serial sectioning performed on a dual-beam focused ion beam instrument. Particle-matrix interfaces from sequential images were extracted and compiled into isosurfaces. alpha-spheroids possess much lower surface area-to-volume ratios than beta-platelets. For intermediate homogenization times, the alpha

  13. The Cleaning of OAB Universal Covers - An Origin of Smut in Aluminum Alloys

    SciTech Connect

    Shen, T

    2002-05-14

    The smut that appeared on the universal covers after the OAB cleaning process consists of sub-micron size aluminum particles originating from the machining of these parts prior to cleaning. The rigorous gross and precision cleanings with Brulin in the OAB cleaning process could not completely wash these fine particles away from the surfaces. However, applying a phosphoric acid etch before the cleaning helped to remove these fine aluminum particles. Experimental results again showed that an acid etching before cleaning is essential in preventing the occurrence of smut in aluminum alloy after gross/precision cleaning. A mechanism, based on the electrostatic {zeta}-potential, is proposed to explain the occurrence of smut that is often encountered during the cleaning of aluminum alloys.

  14. Protective Coatings for Aluminum Alloy Based on Hyperbranched 1,4-Polytriazoles.

    PubMed

    Armelin, Elaine; Whelan, Rory; Martínez-Triana, Yeimy Mabel; Alemán, Carlos; Finn, M G; Díaz, David Díaz

    2017-02-01

    Organic polymers are widely used as coatings and adhesives to metal surfaces, but aluminum is among the most difficult substrates because of rapid oxidative passivation of its surface. Poly(1,4-disubstituted 1,2,3-triazoles) made by copper-catalyzed azide-alkyne cycloaddition form strongly bonded interfaces with several metal substrates. In this work, a variety of alkyne and azide monomers were explored as precursors to anticorrosion coatings for a standard high-strength aluminum-copper alloy. Monomers of comparatively low valency (diazide and trialkyne) were found to act as superior barriers for electrolyte transfer to the aluminum surface. These materials showed excellent resistance to corrosive pitting due to the combination of three complementary properties: good formation of highly cross-linked films, as observed by Fourier transform infrared spectroscopy and differential scanning calorimetry; good adhesion to the aluminum alloy substrate, as shown by pull-off testing; and excellent impermeability, as demonstrated by electrochemical impedance spectroscopy.

  15. A rapid stress-corrosion test for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Helfrich, W. J.

    1968-01-01

    Stressed alloy specimens are immersed in a salt-dichromate solution at 60 degrees C. Because of the minimal general corrosion of these alloys in this solution, stress corrosion failures are detected by low-power microscopic examination.

  16. Numerical analysis of thermal effect in aluminum alloy by monopulse laser

    NASA Astrophysics Data System (ADS)

    Gu, Xiuying; Chen, Guibo; Jin, Guangyong; Zhang, Wei; Li, Mingxin

    2014-12-01

    A spatial axisymmetric finite element model is established to investigate the distribution characteristics of temperature field that monopulse millisecond laser act on aluminum alloy. The thermal process of laser acting on aluminum alloy (melting, gasification and temperature drop) is simulated. Using the specific quivalent heat capacity method to simulate the solid-liquid, liquid-gas phase transition of aluminum alloy, and considering the differences of thermal physical parameters between different states (solid-liquid, liquid-gas) of aluminum alloy in the process of numerical simulation. The distribution of temperature field of aluminum alloy caused by the change of energy density, pulse width and spot radius of monopulse millisecond laser are investigated systematically by using numerical simulation model. The numerical results show that the temperature of target no longer rises after reaching the target gasification. Given the pulse width and spot radius, the temperature of target rise as the energy density increases, the laser intensity distribution is gaussian, so the temperature distribution of the target surface also shows Gaussian. The energy absorption mechanism of aluminum alloy is surface absorption mechanism, the temperature gradient in axial of the target is much lager than the temperature gradient in radial of the target surface, so the temperature rise in axial only exists a thin layer of target surface. Given the energy density and spot radius, as the pulse width increases, the power density of laser decreases, therefore the temperature of target center point decreases as the pulse width increases, and the temperature difference becomes small. As the pulse width decreases, the heat transfer in axial reduce, the deposition of energy enhances on the surface. Given the energy density and pulse width, the distribution of the temperature is enlarged as the spot radius increases, but the distribution of the temperature in axial is independent of the spot

  17. Magnesium Rich Primer for Chrome Free Protection of Aluminum Alloys (Preprint)

    DTIC Science & Technology

    2007-12-01

    Pourbaix diagram for aluminum (FIGURE 3), as well as the pH dependence on...passivating layer on the alloy surface. FIGURE 3 – Aluminum Pourbaix diagram from Jones7 (pg. 53), which shows the pH dependence on passivation...76th Ed., CRC Press, 1995 7. Jones, D. A. “Principles and Prevention of Corrosion”, 2nd Ed., Prentice Hall, 1996. 8. Pourbaix , M. “Atlas of Electrochemical Equilibria in Aqueous Solutions”, NACE, 1974. 16

  18. The effect of retrogression and reaging on the properties of the 7249 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Es-Said, Omar S.; Frazier, William E.; Lee, Eui W.

    2003-01-01

    The retrogression and reaging (RRA) heat-treatment process and recent developments in high-strength 7xxx series aluminum alloys are summarized in this article. The results of experimental work indicate that RRA 7249 aluminum has the strength equivalent to or greater than 7249-T6 and superior corrosion resistance. This work is the result of collaborative efforts between the U.S. Navy and Loyola Marymount University.

  19. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  20. On Microstructural Control of Near-Threshold Fatigue Crack Growth in 7000-Series Aluminum Alloys.

    DTIC Science & Technology

    1982-04-02

    crack growth rate behavior for different microstruc - tural conditions in aluminum alloys is also in quantitative agreement with the predictions of the...34 .. . -~ Introduction ! A number of recent studies have been conducted to ascertain the influence of microstructure on fatigue crack growth behavior in aluminum...161. The da/dN data, obtained over a very broad spectrum of ,K, characterize the near-threshold growth-rate behavior unusually well. Predictions of

  1. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  2. Violent oxidation of lithium-containing aluminum alloys in liquid oxygen

    NASA Astrophysics Data System (ADS)

    Dalins, Ilmars; Karimi, Majid; Ila, Daryush

    1991-06-01

    A strong exothermic and quite well known thermite reaction involving aluminum, oxygen and transition metals (Fe, Cr, Ni, etc.) has apparently been initiated during impact testing of Alcoa aluminum alloy #2090 in liquid oxygen at NASA-MSFC. In some instances, this reaction, essentially an oxidation process, has been so intense that the Inconel 718 cup containing the aluminum alloy disk and associated impacter has melted raising certain safety concerns in the use of this alloy. Reaction products as well as the test specimen surfaces have been studied with surface science techniques like XPS/ESCA, SIMS and AES. Typically, in order to initiate the thermite reaction a temperature of approximately 1000°C is necessary. The mechanism responsible for this oxidation is of great interest. The analysis of the reaction products together with a theoretical analysis, including digital modeling has been pursued. There is strong evidence that the large relaxation energy of the aluminum oxide coating, formed during the aluminum alloy cleaning process, is causing a highly localized energy release during fracture or lattice deformation which is enhancing the oxidation process to a runaway condition. The presence of alkali atoms (Li) enhances the likelihood and intensity of the oxidation reaction. The details of the surface studies will be discussed.

  3. The Variability of Fatigue Crack Growth Life of Aluminum Casting Alloy A357-T6

    DTIC Science & Technology

    1986-07-01

    34,FWAL-TR-86-4115 . A THE VARIABILITY OF FATIGUE CRACK GROWTH LIFE OF ALUMINUM CASTING ALLOY A357 -T6 .D. TIRPAK, CAPT, USAF Materials Engineering...Fatigue Crack Growth Life of Aluminum Casting Alloy A357 -T6 17 COSATI CODES 18. SUBJECT 1%iRMS (Continue on reverse if necessary and identify by...fContinue on reverse if necessary and identify by block number) "This investigation considers the variability of fatigue crack growth (FCG) life of A357 -T6

  4. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  5. Effect of Two-Stage Aging on Microstructure of 7075 Aluminum Alloys

    DTIC Science & Technology

    1981-04-01

    34Indaqini Sui Cicli Di Invecchiamento Artificiale a Due Stade die Leghe Commerciali -.-. Al-Zn-Mg-Cu-Cr," Aluminio ; Vol 42, No. 1, p 40, 1973. Ř. Alum...Siemenson, "An Electron Microscope Investi- gation of the Microstructure in an Aluminum - Zinc - Magnesium Alloy," Acta Met, Vol 18, p 881, 1970. 9...Japan Inst of Metals, Vol 9, p 24, 1968. 17. K. Asano and K. Hirano, "Two-Step Aging in an Aluminum 5 wt% Zinc - 1 wt% Magnesium alloy," Trans Japan Inst

  6. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  7. Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding

    SciTech Connect

    Qiu Ranfeng; Shi Hongxin; Zhang Keke; Tu Yimin; Iwamoto, Chihiro; Satonaka, Shinobu

    2010-07-15

    The interfacial characteristics of resistance spot welded steel-aluminum alloy joint have been investigated using electron microscopy. The results reveal that reaction product FeAl{sub 3} is generated in the peripheral region of the weld while a reaction layer consisting of Fe{sub 2}Al{sub 5} adjacent to steel and FeAl{sub 3} adjacent to aluminum alloy forms in the central region of the weld, and that the morphology and thickness of the reaction layer vary with the position at the welding interface.

  8. Fatigue Behavior of P/M 7091 and I/M 7475 Aluminum Alloys

    DTIC Science & Technology

    1989-10-01

    properties, fatigue behavior , microstruc - ture, and fractograph. TENSILE PROPERTIES Tensile test results of P/M 7091-T7E69 and l/M 7475-T7351...REPORT NO. NADC-89090-60 •1! <-.< (_ FATIGUE BEHAVIOR OF P/M 7091 AND l/M 7475 ALUMINUM ALLOYS A PA -221 79® ( Eun U. Lee . Air Vehicle and... Behavior of P/M 7091 and I/M 7475 Aluminum Alloys 12. PERSONAL AUTHOR(S) Eun U. Lee 13a. TYPE OF REPORT Phase 13b. TIME COVERED FROM TO 14. DATE

  9. Corrosion characterization of aluminum alloys treated with a new sealing process -- Part 2

    SciTech Connect

    Banerjee, G.; Miller, A.E.; Vasanth, K.L.

    1999-07-01

    Continuing an earlier investigation a new sealing solution that contains catalytic amount of chromium (1--10{micro}g) was developed. Aluminum alloys 2024-T6 and 6061-T6 coupons were anodized and sealed with the new sealing formulation. Passivation characteristics of these samples were evaluated using potentiodynamic anodic polarization tests. Al 6061-T6 coupons were further subjected to prohesion tests. In this paper, the results obtained from these tests are compared to those obtained by aluminum alloy treated with standard chromate conversion coating.

  10. The triggering of steam explosions of single drops of pure and alloyed molten aluminum

    SciTech Connect

    Nelson, L.S.; Fuketa, T.; Eatough, M.J.; Vigil, F.J. )

    1990-06-01

    When a hot liquid (fuel) comes into contact with a cold liquid (coolant), a variety of different fuel/coolant interactions (FCIs) can occur. For certain research on production reactors, the coolant of interest is water (either H{sub 2}O or D{sub 2}O), while the fuel is a molten alloy based mainly on aluminum and uranium. Aluminum-based melts have been shown to be explosive in many experiments performed by the aluminum industry and in several reactor experiments and accidents including NRX, SPERT, BORAX, etc. In the aluminum industry, steam explosions continue to result in property damage, personal injuries, and deaths. It is also known that certain alloying components, notably lithium, can enhance the strength of the explosions as well as the probability of their occurrence. To obtain quantitative information relating to the FCIs that might occur with uranium-aluminum fuel, a laboratory-scale experimental scoping study was begun at Sandia National Laboratories. The overall objective of this research program is to provide an understanding of the mechanism of steam explosions with the melt compositions expected in various hypothetical core meltdown accident scenarios in production reactors. In this program, it has been demonstrated that reproducible triggering of steam explosions with pure and alloyed aluminum can be achieved with both focused and unfocused shock waves generated with underwater electrical discharges.

  11. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    SciTech Connect

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  12. Effects of Stress Relaxation Aging with Electrical Pulses on Microstructures and Properties of 2219 Aluminum Alloy

    PubMed Central

    Tan, Jingsheng; Zhan, Lihua; Zhang, Jiao; Yang, Zhan; Ma, Ziyao

    2016-01-01

    To realize the high-efficiency and high-performance manufacture of complex high-web panels, this paper introduced electric pulse current (EPC) into the stress relaxation aging forming process of 2219 aluminum alloy and systematically studied the effects of EPC, stress, and aging time upon the microstructure and properties of 2219 aluminum alloy. It is discovered that: (a) EPC greatly enhanced the mechanical properties after stress relaxation aging and reduced the sensitivity of the yield strength for the initial stress under the aging system of 165 °C/11 h; (b) compared with general aging, stress relaxation aging instead delayed the aging process of 2219 aluminum alloy and greatly increased the peak strength value; (c) EPC accelerated the aging precipitation behavior of 2219 aluminum alloy and reduced transgranular and grain-boundary energy difference, thus leading to a more diffused distribution of the transgranular precipitated phase and the absence of a significant precipitation-free zone (PFZ) and grain-boundary stable phase in the grain boundary, further improving the mechanical properties of the alloy. PMID:28773660

  13. Effects of Stress Relaxation Aging with Electrical Pulses on Microstructures and Properties of 2219 Aluminum Alloy.

    PubMed

    Tan, Jingsheng; Zhan, Lihua; Zhang, Jiao; Yang, Zhan; Ma, Ziyao

    2016-07-01

    To realize the high-efficiency and high-performance manufacture of complex high-web panels, this paper introduced electric pulse current (EPC) into the stress relaxation aging forming process of 2219 aluminum alloy and systematically studied the effects of EPC, stress, and aging time upon the microstructure and properties of 2219 aluminum alloy. It is discovered that: (a) EPC greatly enhanced the mechanical properties after stress relaxation aging and reduced the sensitivity of the yield strength for the initial stress under the aging system of 165 °C/11 h; (b) compared with general aging, stress relaxation aging instead delayed the aging process of 2219 aluminum alloy and greatly increased the peak strength value; (c) EPC accelerated the aging precipitation behavior of 2219 aluminum alloy and reduced transgranular and grain-boundary energy difference, thus leading to a more diffused distribution of the transgranular precipitated phase and the absence of a significant precipitation-free zone (PFZ) and grain-boundary stable phase in the grain boundary, further improving the mechanical properties of the alloy.

  14. Microstructural Evolution of Semisolid 6063 Aluminum Alloy Prepared by Recrystallization and Partial Melting Process

    NASA Astrophysics Data System (ADS)

    Wang, Yongfei; Zhao, Shengdun; Zhang, Chenyang

    2017-08-01

    Radial forging (RF) was proposed as a novel deformation method to prepare semisolid 6063 aluminum alloy in the recrystallization and partial melting (RAP) process. The effects of area reduction rate, isothermal holding temperature and time on the microstructural evolution of RF-deformed 6063 aluminum alloy were investigated. Results showed that RF can be successfully introduced in RAP process to prepare large semisolid 6063 aluminum alloy bar. With the increase of the area reduction rate, the average grain size firstly decreased and then no significant change occurred. Meanwhile, the spheroidization degree of solid grains firstly increased rapidly, and then increased slowly. The effects of isothermal holding temperature and time are similar, with the increase of the isothermal holding temperature or time, the average grain size initially decreased but then increased; and the spheroidization degree of solid grains gradually increased. High-quality semisolid 6063 aluminum alloy can be prepared with 70% area reduction rate and subsequent semisolid isothermal treatment (SSIT) at 630 °C for 10 min. The coarsening rate constant was 5185.2 µm3/s at 630 °C. Additionally, a strong deformation texture was created in the RF-deformed alloy with 70% area reduction rate, which was transformed to a weakened texture following the SSIT process.

  15. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  16. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  17. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  18. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  19. Evaluation of Aluminum Alloy 2050-T84 Microstructure Mechanical Properties at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable the designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320 F. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  20. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  1. Thermodynamic analysis of contamination by alloying elements in aluminum recycling.

    PubMed

    Nakajima, Kenichi; Takeda, Osamu; Miki, Takahiro; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2010-07-15

    In previous studies on the physical chemistry of pyrometallurgical processing of aluminum scrap, only a limited number of thermodynamic parameters, such as the Gibbs free energy change of impurity reactions and the variation of activity of an impurity in molten aluminum, were taken into account. In contrast, in this study we thermodynamically evaluated the quantitative removal limit of impurities during the remelting of aluminum scrap; all relevant parameters, such as the total pressure, the activity coefficient of the target impurity, the temperature, the oxygen partial pressure, and the activity coefficient of oxidation product, were considered. For 45 elements that usually occur in aluminum products, the distribution ratios among the metal, slag, and gas phases in the aluminum remelting process were obtained. Our results show that, except for elements such as Mg and Zn, most of the impurities occurred as troublesome tramp elements that are difficult to remove, and our results also indicate that the extent to which the process parameters such as oxygen partial pressure, temperature, and flux composition can be changed in aluminum production is quite limited compared to that for iron and copper production, owing to aluminum's relatively low melting point and strong affinity for oxygen. Therefore, the control of impurities in the disassembly process and the quality of scrap play important roles in suppressing contamination in aluminum recycling.

  2. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  3. Influence of diamond smoothing on corrosion fatigue resistance of aluminum alloy

    SciTech Connect

    Tolstaya, M.A.; Khokhlacheva, N.M.; Khuorostokhin, L.A.; Logvinenko, V.V.

    1985-07-01

    This paper compares the influence of diamond smoothing and mechanic polishing on the corrosion fatigue strength of the aluminum alloy D16T. The authors recommend diamond smoothing for wider application as an advanced method of surface finishing of components made of alloy D16T; other conditions being the same, it should improve their service reliability in a humid atmosphere under sign-changing loads and vibrations.

  4. Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds

    SciTech Connect

    DebRoy, T.

    2000-11-17

    The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

  5. The Effect of Microstructure on the Properties of High Strength Aluminum Alloys

    DTIC Science & Technology

    1980-02-01

    Stress Corrosion Cracking Studies........ . . . . . . 13 III . Alloy Development in Aluminum Lithium System ......... . 18 Professional Personnel and...sensitive; Reglme II, which is considered microstructurally insensitive; and, Regime III , which is again microstructurally sensitive. Ii Data published...However, no data was collected close to the fracture toughness or under plane stress--i.e., in Regime III --fcr these alloys. The K values for the 7.4 mm

  6. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Lados, Diana A.

    2017-04-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  7. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Lados, Diana A.

    2017-01-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  8. Processing, microstructure evolution and properties of nanoscale aluminum alloys

    NASA Astrophysics Data System (ADS)

    Han, Jixiong

    In this project, phase transformations and precipitation behavior in age-hardenable nanoscale materials systems, using Al-Cu alloys as model materials, were first studied. The Al-Cu nanoparticles were synthesized by a Plasma Ablation process and found to contain a 2˜5 nm thick adherent aluminum oxide scale, which prevented further oxidation. On aging of the particles, a precipitation sequence consisting of, nearly pure Cu precipitates to the metastable theta' to equilibrium theta was observed, with all three forming along the oxide-particle interface. The structure of theta' and its interface with the Al matrix has been characterized in detail. Ultrafine Al-Cu nanoparticles (5˜25 nm) were also synthesized by inert gas condensation (IGC) and their aging behavior was studied. These particles were found to be quite stable against precipitation. Secondly, pure Al nanoparticles were prepared by the Exploding Wire process and their sintering and consolidation behavior were studied. It was found that nanopowders of Al could be processed to bulk structures with high hardness and density. Sintering temperature was found to have a dominant effect on density, hardness and microstructure. Sintering at temperatures >600°C led to breakup of the oxide scale, leading to an interesting nanocomposite composed of 100˜200 nm Al oxide dispersed in a bimodal nanometer-micrometer size Al matrix grains. Although there was some grain growth, the randomly dispersed oxide fragments were quite effective in pinning the Al grain boundaries, preventing excessive grain growth and retaining high hardness. Cold rolling and hot rolling were effective methods for attaining full densification and high hardness. Thirdly, the microstructure evolution and mechanical behavior of Al-Al 2O3 nanocomposites were studied. The composites can retain high strength at elevated temperature and thermal soaking has practically no detrimental effect on strength. Although the ductility of the composite remains

  9. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg- 0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300 F for 24 hours. In this study, a two-step aging treatment was developed through a comprehensive 24 full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175 F and 250 F. The second step aging temperatures was

  10. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Rioja, R.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 (Al-1.0 Li-4.0 Cu-0.4 Mg-0.4 Ag-0.12 Zr) for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. These newer alloys generally have lithium content less than 2 wt. % and their composition and processing have been carefully tailored to increase the toughness and reduce the mechanical property anisotropy of the earlier generation alloys such 2090 and 8090. Alloy processing, particularly the aging treatment, has a significant influence on the strength-toughness combinations and their dependence on service environments for aluminum-lithium alloys. Work at NASA Marshall Space Flight Center on alloy 2195 has shown that the cryogenic toughness can be improved by employing a two-step aging process. This is accomplished by aging at a lower temperature in the first step to suppress nucleation of the strengthening precipitate at sub-grain boundaries while promoting nucleation in the interior of the grains. Second step aging at the normal aging temperature results in precipitate growth to the optimum size. A design of experiments aging study was conducted for plate. To achieve the T8 temper, Alloy C458 (Al-1.8 Li-2.7 Cu-0.3 Mg- 0.08 Zr-0.3 Mn-0.6 Zn) is typically aged at 300 F for 24 hours. In this study, a two-step aging treatment was developed through a comprehensive 24 full factorial design of experiments study and the typical one-step aging used as a reference. Based on the higher lithium content of C458 compared with 2195, the first step aging temperature was varied between 175 F and 250 F. The second step aging temperatures was

  11. Measurements of degree of sensitization (DoS) in aluminum alloys using EMAT ultrasound.

    PubMed

    Li, Fang; Xiang, Dan; Qin, Yexian; Pond, Robert B; Slusarski, Kyle

    2011-07-01

    Sensitization in 5XXX aluminum alloys is an insidious problem characterized by the gradual formation and growth of beta phase (Mg(2)Al(3)) at grain boundaries, which increases the susceptibility of alloys to intergranular corrosion (IGC) and intergranular stress-corrosion cracking (IGSCC). The degree of sensitization (DoS) is currently quantified by the ASTM G67 Nitric Acid Mass Loss Test, which is destructive and time consuming. A fast, reliable, and non-destructive method for rapid detection and the assessment of the condition of DoS in AA5XXX aluminum alloys in the field is highly desirable. In this paper, we describe a non-destructive method for measurements of DoS in aluminum alloys with an electromagnetic acoustic transducer (EMAT). AA5083 aluminum alloy samples were sensitized at 100°C with processing times varying from 7days to 30days. The DoS of sensitized samples was first quantified with the ASTM 67 test in the laboratory. Both ultrasonic velocity and attenuation in sensitized specimens were then measured using EMAT and the results were correlated with the DoS data. We found that the longitudinal wave velocity was almost a constant, independent of the sensitization, which suggests that the longitudinal wave can be used to determine the sample thickness. The shear wave velocity and especially the shear wave attenuation are sensitive to DoS. Relationships between DoS and the shear velocity, as well as the shear attenuation have been established. Finally, we performed the data mining to evaluate and improve the accuracy in the measurements of DoS in aluminum alloys with EMAT. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Development and Processing Improvement of Aerospace Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  13. The Delayed Fracture of Aluminum Alloys, End of Year Report.

    DTIC Science & Technology

    1982-03-01

    these commercial alloys is not significantly influenced by the composition of the oxide. In these 7 alloys, the insoluble constituent particles...boundary microstructure, but not to oxide film composition . Accession For 14TTS ’& DTIC T’B ju-tific i ’ Distributon/ Availability Codns *Avi! anl/or * I...Mg-free film for commercial 7 alloys. This latter work was undertaken to further elucidate the effect of film composition on SCC initiation and to

  14. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    NASA Astrophysics Data System (ADS)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  15. Superplastic behavior in a commercial 5083 aluminum alloy

    SciTech Connect

    Vetrano, J.S.; Lavender, C.A.; Smith, M.T.; Bruemmer, S.M. ); Hamilton, C.H. . Dept. of Mechanical and Materials Engineering)

    1994-03-01

    When considering the forming and post-forming properties required of a superplastic material, attractive candidates are commercial Al-Mg-Mn weldable alloys such as AA5083. There have been several investigations of hot deformation of 5083-type alloys in the literature. Only two studies evaluated commercial-purity 5083 and they achieved tensile elongations of 150% and 200%. Alloy modification has produced improved behavior in three 5083-type alloys developed specifically for SPF. Two were deemed high-purity 5083 (low Fe and Si) and achieved elongations of 450% and 630%. Engineering strains up to 700% were measured by Watanabe et al. in a 5083-based alloy with the addition of 0.6% Cu as a grain refiner. These results suggest that alloy modifications such as reduced Fe and Si contents or Cu additions may be required to improve superplastic response. Unfortunately, specific SPF-grade 5083 alloys are substantially more expensive than the commercial grade, and the addition of Cu decreases the corrosion resistance of the base material. The purpose of this work is to examine the effect of prior degrees of cold work on the SPF behavior of a standard-grade 5083 alloy. Superplastic behavior of this material at 510[degree]C is assessed and compared to published results for the SPF-grade alloys.

  16. Fundamental research regarding the ultrasonic stirring effects on the microstructure of A356 castings

    NASA Astrophysics Data System (ADS)

    Jia, Shian

    Ultrasonic stirring treatment (UST) of molten metal has significant effects on the solidification microstructure of A356 alloy, which includes grain structure, distribution of inclusions, refinement of secondary phases, etc. The primary causes are due to ultrasonic cavitation, acoustic streaming and propagation of ultrasound waves in media. However, the mechanism of how those effects happen are not fully understood and quantified. In this research, molten A356 alloy was treated with high power ultrasound at a frequency of 18 kHz, and then at relatively high superheat, the melt was cast into a permanent metal mold which complies with ASTM B108-02. The UST processing system was custom built to perform the present UST study. The relatively high superheat condition is similar to the one used in the standard foundry practice, which will assist in the scale up of practical application of ultrasonic stirring technology. The selected parameters for the ultrasonic stirring technology (UST) were determined by using an UST modeling software tool that was recently developed and validated. The UST modeling software tool is capable of modeling and simulating the acoustic streaming and ultrasonic cavitation as well as the microstructure evolution during the solidification of cast alloys. Since the UST was preceded in the molten alloy, no dendrites are growing during the UST processing. Besides, more energy is required for homogeneous nucleation to occur. Consequently, the dominant mechanism of nucleation in this research is heterogeneous nucleation. The microstructure and mechanical properties of the A356 alloy processed with and without UST were analyzed and compared in detail in this study. It was demonstrated that the ultrasonically-stirred A356 alloy shows superior microstructure characteristics with very low micro-porosity levels and improved tensile properties when compared with the standard A356 alloy.

  17. Transmission electron microscopy characterization of microstructural features in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Larson, L. A.; Pizzo, P. P.

    1984-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitaton events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significantly alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  18. A microstructural study of flash welded and aged 6061 and 6013 aluminum alloys

    SciTech Connect

    Barbosa, C.; Dille, J.; Delplancke, J.-L.; Rebello, J.M.A.

    2006-09-15

    Extruded, flash welded and artificially aged 6061 and 6013 aluminum alloys were analyzed with the use of techniques such as transmission electron microscopy (TEM) imaging, selected area electron diffraction (SAD) and X-ray energy-dispersive spectroscopy (EDS) in order to identify the precipitates present in both alloys. Vickers microindentation hardness measurements were performed at different distances from the weld interface. The results show a small decrease in hardness near the 6013 alloy weld interface. On the other hand, there is an important hardness drop near the 6061 weld interface. This drop can be explained by a lack of fine structural precipitation during the aging treatment in the 6061 weld interface zone.

  19. Transmission electron microscopy characterization of microstructural features in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Larson, L. A.; Pizzo, P. P.

    1984-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitaton events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significantly alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  20. Advantages of Oxide Films as Bases for Aluminum Pigmented Surface Coatings for Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Buzzard, R W; Mutchler, W H

    1931-01-01

    Both laboratory and weather-exposure corrosion tests showed conclusively that the protection afforded by aluminum pigmented spar varnish coatings applied to previously anodized aluminum surfaces was greatly superior to that afforded by the same coatings applied to surfaces which had simply been cleaned free from grease and not anodized.