Science.gov

Sample records for a375 human malignant

  1. Proteomics analysis of A375 human malignant melanoma cells in response to arbutin treatment.

    PubMed

    Nawarak, Jiraporn; Huang-Liu, Rosa; Kao, Shao-Hsuan; Liao, Hsien-Hua; Sinchaikul, Supachok; Chen, Shui-Tein; Cheng, Sun-Long

    2009-02-01

    Although the toxicogenomics of A375 human malignant melanoma cells treated with arbutin have been elucidated using DNA microarray, the proteomics of the cellular response to this compound are still poorly understood. In this study, we performed proteomic analyses to investigate the anticancer effect of arbutin on the protein expression profile in A375 cells. After treatment with arbutin (8 microg/ml) for 24, 48 and 72 h, the proteomic profiles of control and arbutin-treated A375 cells were compared, and 26 differentially expressed proteins (7 upregulated and 19 downregulated proteins) were identified by MALDI-Q-TOF MS and MS/MS. Among these proteins, 13 isoforms of six identical proteins were observed. Bioinformatic tools were used to search for protein function and to predict protein interactions. The interaction network of 14 differentially expressed proteins was found to be correlated with the downstream regulation of p53 tumor suppressor and cell apoptosis. In addition, three upregulated proteins (14-3-3G, VDAC-1 and p53) and five downregulated proteins (ENPL, ENOA, IMDH2, PRDX1 and VIME) in arbutin-treated A375 cells were validated by RT-PCR analysis. These proteins were found to play important roles in the suppression of cancer development.

  2. Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line

    PubMed Central

    Merighi, Stefania; Varani, Katia; Gessi, Stefania; Cattabriga, Elena; Iannotta, Valeria; Ulouglu, Canan; Leung, Edward; Borea, Pier Andrea

    2001-01-01

    The present work characterizes, from a pharmacological and biochemical point of view, adenosine receptors in the human malignant melanoma A375 cell line. Adenosine receptors were detected by RT – PCR experiments. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 1.9±0.2 nM and Bmax of 23±7 fmol mg−1 of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 5.1±0.2 nM and a Bmax of 220±7 fmol mg−1 of protein. A3 receptors were studied with the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 3.3±0.7 nM and Bmax of 291±50 fmol mg−1 of protein. The pharmacological profile of radioligand binding on A375 cells was established using typical adenosine ligands which displayed a rank order of potency typical of the different adenosine receptor subtype. Thermodynamic data indicated that radioligand binding to adenosine receptor subtypes in A375 cells was entropy- and enthalpy-driven. In functional assays the high affinity A2A agonists HE-NECA, CGS 21680 and A2A – A2B agonist NECA were able to increase cyclic AMP accumulation in A375 cells whereas A3 agonists Cl-IB-MECA, IB-MECA and NECA were able to stimulate Ca2+ mobilization. In conclusion, all these data indicate, for the first time, that adenosine receptors with a pharmacological and biochemical profile typical of the A1, A2A, A2B and A3 receptor subtype are present on A375 melanoma cell line. PMID:11704641

  3. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin.

    PubMed

    Cheng, Sun-Long; Liu, Rosa Huang; Sheu, Jin-Nan; Chen, Shui-Tein; Sinchaikul, Supachok; Tsay, Gregory Jiazer

    2007-01-01

    Although arbutin is a natural product and widely used as an ingredient in skin care products, its effect on the gene expression level of human skin with malignant melanoma cells is rarely reported. We aim to investigate the genotoxic effect of arbutin on the differential gene expression profiling in A375 human malignant melanoma cells through its effect on tumorigenesis and related side-effect. The DNA microarray analysis provided the differential gene expression pattern of arbutin-treated A375 cells with the significant changes of 324 differentially expressed genes, containing 88 up-regulated genes and 236 down-regulated genes. The gene ontology of differentially expressed genes was classified as belonging to cellular component, molecular function and biological process. In addition, four down-regulated genes of AKT1, CLECSF7, FGFR3, and LRP6 served as candidate genes and correlated to suppress the biological processes in the cell cycle of cancer progression and in the downstream signaling pathways of malignancy of melanocytic tumorigenesis.

  4. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    PubMed Central

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  5. Triggering Apoptotic Death of Human Malignant Melanoma A375.S2 Cells by Bufalin: Involvement of Caspase Cascade-Dependent and Independent Mitochondrial Signaling Pathways

    PubMed Central

    Hsiao, Yu-Ping; Yu, Chun-Shu; Yu, Chien-Chih; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Huang, Hui-Ying; Tang, Nou-Ying; Yang, Jen-Hung; Huang, An-Cheng; Chung, Jing-Gung

    2012-01-01

    Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨm), intracellular Ca2+ release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨm and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways. PMID:22719785

  6. Effect of inhibition of aloe-emodin on N-acetyltransferase activity and gene expression in human malignant melanoma cells (A375.S2).

    PubMed

    Lin, Shuw-Yuan; Yang, Jen-Hung; Hsia, Te-Chun; Lee, Jau-Hong; Chiu, Tsan-Hung; Wei, Yau-Huei; Chung, Jing-Gung

    2005-12-01

    Arylamine carcinogens and drugs are N-acetylated by cytosolic N-acetyltransferase (NAT), which uses acetyl-coenzyme A as a cofactor. NAT plays an initial role in the metabolism of these arylamine compounds. 2-Aminofluorene is one of the arylamine carcinogens which have been demonstrated to undergo N-acetylation in laboratory animals and humans. Our previous study showed that human cancer cell lines (colon cancer, colo 205; liver cancer, Hep G2; bladder cancer, T24; leukemia, HL-60; prostate cancer, LNCaP; osteogenic sarcoma, U-2 OS; malignant melanoma, A375.S2) displayed NAT activity, which was affected by aloe-emodin in human leukemia cells. The purpose of this study was to determine whether aloe-emodin could affect the enzyme activity and gene expression of NAT at the mRNA and protein levels in malignant human melanoma A375.S2 cells. The results showed that aloe-emodin inhibited NAT1 activity (decreased N-acetylation of 2-aminofluorene) in intact cells in a dose-dependent manner. The effect of aloe-emodin on NAT1 at the protein level was determined by Western blotting and the mRNA levels were examined by polymerase chain reaction (PCR) and cDNA microarray. These results clearly indicate that aloe-emodin inhibits the mRNA expression and enzyme activity of NAT1 in A375.S2 cells.

  7. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  8. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated

    PubMed Central

    Berenstein, Ariel; Notcovich, Cintia; Cerda, María B.; Klamt, Fabio; Chernomoretz, Ariel; Durán, Hebe

    2016-01-01

    Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas. PMID:27206673

  9. RNA-interference-mediated downregulation of Pin1 suppresses tumorigenicity of malignant melanoma A375 cells.

    PubMed

    Jin, J; Zhang, Y; Li, Y; Zhang, H; Li, H; Yuan, X; Li, X; Zhou, W; Xu, B; Zhang, C; Zhang, Z; Zhu, L; Chen, X

    2013-01-01

    The peptidyl-prolyl isomerase Pin1 is overexpressed in many human cancers, including melanoma. To investigate its possible role in oncogenesis of melanoma and as a therapeutic target, we suppressed Pin1 expression in the human melanoma cell line A375 by microRNA (miRNA) interference technology. Two stable clones with suppressed Pin1 were established by stable transfection of miRNA plasmid targeting Pin1 into A375 cells. Both clones showed reduced proliferation and invasion in vitro and suppressed tumorigenic potential in athymic mice. Furthermore, Pin1 inhibition also resulted in decreased phosphorylation of Akt and repressed expression of C-Jun N-terminal kinase and pro-matrix metalloproteinase 2, which were associated closely with the development of melanoma. These findings indicate that Pin1 plays an important role in the tumorigenesis of melanoma and might serve as a promising therapeutic target.

  10. The Induction of Apoptosis in A375 Malignant Melanoma Cells by Sutherlandia frutescens

    PubMed Central

    van der Walt, Nicola B.; Zakeri, Zahra

    2016-01-01

    Sutherlandia frutescens is a medicinal plant indigenous to Southern Africa and is commonly known as the “cancer bush.” This plant has traditionally been used for the treatment of various ailments, although it is best known for its claims of activity against “internal” cancers. Here we report on its effect on melanoma cells. The aim of this study was to investigate whether an extract of S. frutescens could induce apoptosis in the A375 melanoma cell line and to outline the basic mechanism of action. S. frutescens extract induced apoptosis in A375 cells as evidenced by morphological features of apoptosis, phosphatidylserine exposure, nuclear condensation, caspase activation, and the release of cytochrome c from the mitochondria. Studies in the presence of a pan-caspase inhibitor allude to caspase-independent cell death, which appeared to be mediated by the apoptosis inducing factor. Taken together, the results of this study show that S. frutescens extract is effective in inducing apoptosis in malignant melanoma cells and indicates that further in vivo mechanistic studies may be warranted. PMID:27656236

  11. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells.

    PubMed

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed.

  12. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells

    PubMed Central

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M. Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary’s bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary’s anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed. PMID:26176704

  13. Synergistic Apoptosis-Inducing Effects on A375 Human Melanoma Cells of Natural Borneol and Curcumin

    PubMed Central

    Chen, Jianping; Li, Lin; Su, Jianyu; Li, Bing; Chen, Tianfeng; Wong, Yum-Shing

    2014-01-01

    This study was to investigate the synergistic effect of NB/Cur on growth and apoptosis in A375 human melanoma cell line by MTT assay, flow cytometry and Western blotting. Our results demonstrated that NB effectively synergized with Cur to enhance its antiproliferative activity on A375 human melanoma cells by induction of apoptosis, as evidenced by an increase in sub-G1 cell population, DNA fragmentation, PARP cleavage and caspase activation. Further mechanistic studies by Western blotting showed that after treatment of the cells with NB/Cur, up-regulation of the expression level of phosphorylated JNK and down-regulation of the expression level of phosphorylated ERK and Akt contributed to A375 cells apoptosis. Moreover, NB also potentiated Cur to trigger intracellular ROS overproduction and the DNA damage with up-regulation of the expression level of phosphorylated ATM, phosphorylated Brca1 and phosphorylated p53. The results indicate the combinational application potential of NB and Cur in treatments of cancers. PMID:24971451

  14. Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability.

    PubMed

    Badiola, Iker; Villacé, Patricia; Basaldua, Iratxe; Olaso, Elvira

    2011-10-01

    Discoidin domain receptors (DDR1 and DDR2) are tyrosine kinase receptors for fibrillar collagen implicated in postnatal development, tissue repair, and primary and metastatic cancer progression. While DDR1 has been described in tumor cells, DDR2 has been localized in the tumor stroma, but its presence in the tumor cells remains unknown. The aim of this study was to elucidate the role of DDR2 signaling in tumor cells during hepatic metastasis progression. DDR2 expression and phosphorylation in cultured human A375 melanoma cells was documented by Western blot analysis. A375 cells were stably transfected with a small interfering RNA (siRNA) against DDR2 and two clones were selected: A375R2-70 and A375R2-40, with 70 and 40% of the DDR2 protein expression respectively, compared to mock-transfected cells (A375R2-100). Development of experimental liver metastasis by intrasplenic inoculation of A375R2-70 and A37R2-40 clones was reduced by 60 and 75%, respectively, measured as tumor volume, compared to livers injected with A375R2-100 cells. Accordingly, A375R2-70 and A37R2-40 clones showed reduced in vitro gelatinase activity and JNK phosphorylation, compared to mock transfected cells, with maximal inhibition in A375R2-40. Additionally, A375 melanoma, SK-HEP hepatoma and HT-29 colon carcinoma human cell lines transiently transfected with siRNA against DDR2 also showed reduced proliferation and migration rates compared to mock-transfected ones. In conclusion, DDR2 promotes A375 melanoma metastasis to the liver and the underlying mechanism implicates regulation of metalloproteinase release, cell growth and chemotactic invasion of the host tissue.

  15. Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells.

    PubMed

    Hsu, Chia-Chun; Wu, Yang-Chang; Farh, Lynn; Du, Ying-Chi; Tseng, Wei-Kung; Wu, Chau-Chung; Chang, Fang-Rong

    2012-03-01

    Melanoma is a lethal form of skin cancer that can metastasize rapidly. While surgery and radiation therapy provide palliative therapy for local tumor growth, systemic therapy is the mainstay of treatment for metastatic melanoma. However, limited chemotherapeutic agents are available for melanoma treatment. In this study, we investigated the anti-melanoma effect of physalin B, the major active compound from a widely used herb medicine, Physalis angulata L. This study demonstrated that physalin B exhibits cytotoxicity towards v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma A375 and A2058 cells (the IC50 values are lower than 4.6 μg/ml). Cytotoxicity is likely resulted from apoptosis since the apoptotic marker phosphatidylserine are detected immediately under physalin B treatment and apoptotic cells formation. Further examination revealed that physalin B induces expression of the proapoptotic protein NOXA within 2 h and later triggers the expression of Bax and caspase-3 in A375 cells. These results indicate that physalin B can induce apoptosis of melanoma cancer cells via the NOXA, caspase-3, and mitochondria-mediated pathways, but not of human skin fibroblast cells and myoblastic cells. Thus, physalin B has the potential to be developed as an effective chemotherapeutic lead compound for the treatment of malignant melanoma.

  16. β- and γ-Actins in the nucleus of human melanoma A375 cells.

    PubMed

    Migocka-Patrzałek, Marta; Makowiecka, Aleksandra; Nowak, Dorota; Mazur, Antonina J; Hofmann, Wilma A; Malicka-Błaszkiewicz, Maria

    2015-11-01

    Actin is a highly conserved protein that is expressed in all eukaryotic cells and has essential functions in the cytoplasm and the nucleus. Nuclear actin is involved in transcription by all three RNA polymerases, chromatin remodelling, RNA processing, intranuclear transport, nuclear export and in maintenance of the nuclear architecture. The nuclear actin level and polymerization state are important factors regulating nuclear processes such as transcription. Our study shows that, in contrast to the cytoplasm, the majority of endogenous nuclear actin is unpolymerized in human melanoma A375 cells. Most mammalian cells express the two non-muscle β- and γ-actin isoforms that differ in only four amino acids. Despite their sequence similarity, studies analysing the cytoplasmic functions of these isoforms demonstrated that β- and γ-actins show differences in localization and function. However, little is known about the involvement of the individual actin isoforms in nuclear processes. Here, we used the human melanoma A375 cell line to analyse actin isoforms in regard to their nuclear localization. We show that both β- and γ-non-muscle actin isoforms are present in nuclei of these cells. Immunolocalization studies demonstrate that both isoforms co-localize with RNA polymerase II and hnRNP U. However, we observe differences in the ratio of cytoplasmic to nuclear actin distribution between the isoforms. We show that β-actin has a significantly higher nucleus-to-cytoplasm ratio than γ-actin.

  17. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line

    NASA Astrophysics Data System (ADS)

    Chakraborty, Ruchira; Basu, Tarakdas

    2017-03-01

    In two earlier communications (Chatterjee et al 2012 Nanotechnology 23 085103, Chatterjee et al 2014 Nanotechnology 25 135101), we reported the development of a simple and unique method of synthesizing highly stable metallic copper nanoparticles (Cu NPs) with high antibacterial activity. Here we report on the cytotoxic potency of the NPs against cancer cells. The value of the IC50 dose of the Cu NPs against human skin cancer cell A-375 was found to be 1.71 μg ml-1 only, which was much less than values reported so far, and this concentration had no cytotoxic effect on normal white blood cells. The NPs caused (i) lowering of cell membrane rigidity, (ii) DNA degradation, (iii) chromosomal condensation, (iv) cell cycle arrest in the G2/M phase, (v) depolarization of the mitochondrial membrane and (vi) apoptosis of cells. Cellular apoptosis occurred in the caspase-9-mediated intrinsic pathway. This study revealed that our Cu NPs had high anticancer properties by killing tumor cells through the apoptotic pathway. Since this particle has high antibacterial activity, our Cu NPs might be developed in future as a dual action drug—anticancer as well as antibacterial.

  18. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    SciTech Connect

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  19. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    PubMed

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Extracts of centipede Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in A375 human melanoma cells.

    PubMed

    Ma, Weina; Liu, Rui; Qi, Junpeng; Zhang, Yanmin

    2014-07-01

    Extracts from the centipede Scolopendra genus, have been used in traditional medicine for the treatment of various diseases and have been found to exhibit anticancer activity in tumor cells. To investigate the potential and associated antitumor mechanism of alcohol extracts of the centipede Scolopendra subspinipes mutilans (AECS), cell viability, cell cycle and cell apoptosis were studied and the results revealed that AECS inhibits A375 cell proliferation in a dose- and time-dependent manner. In addition, AECS was found to arrest the cell cycle of A375 cells at the S phase, which was accompanied by a marked increase in the protein levels of cyclin E and a decrease in the protein levels of cyclin D1. In a cell culture system, AECS markedly induced the apoptosis of A375 cells, which was closely associated with the effects on the Bcl-2 family, whereby decreased Bcl-2 and increased Bak, Bax and Bad expression levels were observed. The underlying mechanism of AECS inhibiting A375 cell proliferation was associated with the induction of cell cycle arrest and apoptosis, indicating that AECS may present as a potential therapeutic agent for administration in human melanoma cancer intervention.

  1. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie; Bai, Yan; Huang, Liang

    2008-11-15

    Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.

  2. Antiproliferative and apoptosis-inducing effects of lipophilic vitamins on human melanoma A375 cells in vitro.

    PubMed

    Ishibashi, Mai; Arai, Mariko; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2012-01-01

    The effects of six lipophilic vitamins: tretinoin (ATRA), vitamin D(3) (VD(3)), VE, VK(1), VK(3), and VK(5) on cell proliferation and apoptosis in human A375 melanoma cells were investigated. VD(3), VK(3), and VK(5) were found to inhibit cell proliferation significantly at concentration ranges of 10-100 μmol/L (p<0.01), while the other vitamins did not show inhibitory effects at 100 μmol/L. VK(3) and VK(5) showed the strongest effects with IC(50) values of less than 10 μmol/L. Dacarbazine slightly inhibited the proliferation of A375 cells at a concentration range of 25-100 μmol/L, but the effects were not statistically significant. VK(3) and VK(5) increased annexin-V positive apoptotic cells, as well as activating caspase-3, in A375 cells. Our findings showed that VD(3), VK(3,) and VK(5) inhibited the growth of dacarbazine resistant human melanoma cells, while ATRA, VE, and VK(1) had little effect on the cell growth. The effects of VK(3) and VK(5) were observed at concentrations lower than 10 μmol/L, which are suggested to have resulted from apoptosis-induction in the melanoma cells.

  3. AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Romanini, Antonella; Pellegrino, Mario; Adinolfi, Barbara; Podestà, Adriano; Costa, Barbara; Da Pozzo, Eleonora; Martini, Claudia; Breschi, Maria Cristina; Nieri, Paola

    2015-08-01

    Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.

  4. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line.

    PubMed

    Chakraborty, Ruchira; Basu, Tarakdas

    2017-03-10

    In two earlier communications (Chatterjee et al 2012 Nanotechnology 23 085103, Chatterjee et al 2014 Nanotechnology 25 135101), we reported the development of a simple and unique method of synthesizing highly stable metallic copper nanoparticles (Cu NPs) with high antibacterial activity. Here we report on the cytotoxic potency of the NPs against cancer cells. The value of the IC50 dose of the Cu NPs against human skin cancer cell A-375 was found to be 1.71 μg ml(-1) only, which was much less than values reported so far, and this concentration had no cytotoxic effect on normal white blood cells. The NPs caused (i) lowering of cell membrane rigidity, (ii) DNA degradation, (iii) chromosomal condensation, (iv) cell cycle arrest in the G2/M phase, (v) depolarization of the mitochondrial membrane and (vi) apoptosis of cells. Cellular apoptosis occurred in the caspase-9-mediated intrinsic pathway. This study revealed that our Cu NPs had high anticancer properties by killing tumor cells through the apoptotic pathway. Since this particle has high antibacterial activity, our Cu NPs might be developed in future as a dual action drug-anticancer as well as antibacterial.

  5. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    PubMed

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-03-19

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  7. Hyaluronan in human malignancies

    SciTech Connect

    Sironen, R.K.; Tammi, M.; Tammi, R.; Auvinen, P.K.; Anttila, M.; Kosma, V-M.

    2011-02-15

    Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

  8. In vitro antiproliferative effect of a water-soluble Laminaria japonica polysaccharide on human melanoma cell line A375.

    PubMed

    Peng, Zhenfei; Liu, Min; Fang, Zhexiang; Chen, Li; Wu, Jiulin; Zhang, Qiqing

    2013-08-01

    A water-soluble polysaccharide WPS-2-1, purified from Laminaria japonica, has been found to have antitumor activity. In this study, WPS-2-1 exhibited high anti-proliferative activity on A375 cells in a dosedependent manner. Further investigation indicated that WPS-2-1 induced A375 cells apoptosis. Moreover, WPS-2-1-induced apoptosis was associated with the alteration in expressions of Bcl-2 family proteins. Mitochonadrial apoptotic pathway was involved in WPS-2-1-induced apoptosis, which included the loss of mitochondrial membrane and activation of caspase-3/9. The results in this study suggested that WPS-2-1 could effectively inhibit proliferation of A375 cells in vitro and induce apoptosis via mitochondrial apoptotic pathway. It might serve as a potential antitumor agent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Antihyperglycemic drug Gymnema sylvestre also shows anticancer potentials in human melanoma A375 cells via reactive oxygen species generation and mitochondria-dependent caspase pathway.

    PubMed

    Chakraborty, Debrup; Ghosh, Samrat; Bishayee, Kausik; Mukherjee, Avinaba; Sikdar, Sourav; Khuda-Bukhsh, Anisur Rahman

    2013-09-01

    Ethanolic extract of Gymnema sylvestre (GS) leaves is used as a potent antidiabetic drug in various systems of alternative medicine, including homeopathy. The present study was aimed at examining if GS also had anticancer potentials, and if it had, to elucidate its possible mechanism of action. We initially tested possible anticancer potential of GS on A375 cells (human skin melanoma) through MTT assay and determined cytotoxicity levels in A375 and normal liver cells; we then thoroughly studied its apoptotic effects on A375 cells through protocols such as Hoechst 33258, H2DCFDA, and rhodamine 123 staining and conducted ELISA for cytochrome c, caspase 3, and PARP activity levels; we determined the mRNA level expression of cytochrome c, caspase 3, Bcl2, Bax, PARP, ICAD, and EGFR signaling genes through semiquantitative reverse transcriptase polymerase chain reaction and conducted Western blot analysis of caspase 3 and PARP. We also analyzed cell cycle events, determined reactive oxygen species accumulation, measured annexin V-FITC/PI and rhodamine 123 intensity by flow cytometry. Compared with both normal liver cells and drug-untreated A375, the mortality of GS-treated A375 cells increased in a dose-dependent manner. Additionally, GS induced nuclear DNA fragmentation and showed an increased level of mRNA expression of apoptotic signal related genes cytochrome c, caspase 3, PARP, Bax, and reduced expression level of ICAD, EGFR, and the anti-apoptotic gene Bcl2. Overall results indicate GS to have significant anticancer effect on A375 cells apart from its reported antidiabetic effect, indicating possibility of its palliative use in patients with symptoms of both the diseases.

  10. GLO1 Overexpression in Human Malignant Melanoma

    PubMed Central

    Bair, Warner B; Cabello, Christopher M; Uchida, Koji; Bause, Alexandra S; Wondrak, Georg T

    2010-01-01

    Glyoxalase I [lactoylglutathione lyase (EC 4.4.1.5) encoded by GLO1] is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. Based on the hypothesis that GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells, we examined GLO1 expression status in human melanoma tissue. Quantitative RT-PCR analysis of a cDNA tissue array containing 40 human melanoma tissues (stages III and IV) and 13 healthy controls revealed pronounced upregulation of GLO1 expression at the mRNA level. Immunohistochemical analysis of a melanoma tissue microarray confirmed upregulation of glyoxalase 1 protein levels in malignant melanoma tissue versus healthy human skin. Consistent with an essential role of GLO1 in melanoma cell defense against methylglyoxal cytotoxicity, siRNA interference targeting GLO1-expression (siGLO1) sensitized A375 and G361 human metastatic melanoma cells towards the antiproliferative, apoptogenic, and oxidative stress-inducing activity of exogenous methylglyoxal. Protein adduction by methylglyoxal was increased in siGLO1-transfected cells as revealed by immunodetection using a monoclonal antibody directed against the major methylglyoxal-derived epitope argpyrimidine that detected a single band of methylglyoxal-adducted protein in human LOX, G361, and A375 total cell lysates. Using 2D-proteomics followed by mass spectrometry the methylglyoxal-adducted protein was identified as heat shock protein 27 (Hsp27; HSPB1). Taken together, our data suggest a function of GLO1 in the regulation of detoxification and target-adduction by the glycolytic byproduct methylglyoxal in malignant melanoma. PMID:20093988

  11. Vanillin Analogues o-Vanillin and 2,4,6-Trihydroxybenzaldehyde Inhibit NFĸB Activation and Suppress Growth of A375 Human Melanoma.

    PubMed

    Marton, Annamária; Kúsz, Erzsébet; Kolozsi, Csongor; Tubak, Vilmos; Zagotto, Giuseppe; Buzás, Krisztina; Quintieri, Luigi; Vizler, Csaba

    2016-11-01

    Constitutive activation of nuclear factor kappa-B (NFĸB) is a hallmark of various cancer types, including melanoma. Chemotherapy may further increase tumour NFĸB activity, a phenomenon that, in turn, exacerbates drug resistance. This study aimed at preliminary screening of a panel of aromatic aldehydes, including vanillin, for cytotoxicity and suppression of tumour cell NFĸB activity. The cytotoxic and NFĸB-inhibitory effects of 10 aromatic aldehydes, including vanillin, were investigated in cultured A375 human melanoma cells. Each compound was assayed alone and in combination with the model NFĸB-activating drug doxorubicin. The most promising analogues were then tested alone and in combination with 4-hydroperoxycyclophosphamide in vitro, and with cyclophosphamide in mice bearing A375 xenografts. The vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde exhibited cytotoxicity against cultured A375 cells, and inhibited doxorubicin- and 4-hydroperoxycyclophosphamide-induced NFĸB activation. They also suppressed A375 cell growth in mice. o-vanillin and 2,4,6-trihydroxybenzaldehyde deserve further evaluation as potential anticancer drugs. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375.

    PubMed

    Khuda-Bukhsh, Anisur Rahman; Bhattacharyya, Soumya Sundar; Paul, Saili; Boujedaini, Naoual

    2010-09-01

    We formulated nano-encapsulation of a naturally occurring coumarin-scopoletin (7-hydroxy-6-methoxy coumarin, HMC, C(10)H(8)O(4)), isolated from plant Gelsemium sempervirens having anticancer potentials, with a bio-adhesive agent -polylactic-co-glycolic acid (PLGA) and tested if its cellular uptake, bioavailability and apoptotic (anticancer) potentials could thus be increased vis-a-vis unencapsulated HMC. A375 melanoma cancer cells were used for testing cellular entry and anticancer potentials of HMC and nano-7-hydroxy-6-methoxy coumarin (NHMC) through several standard protocols. Characterization of NHMC was done by dynamic light scattering for determination of particle size, polydispersity index (PDI), and zeta potential. Surface morphology of nanoparticles was determined by scanning electron microscopy and atomic force microscopy. HMC was encapsulated with more than 85% entrapment efficiency, the average particle size of NHMC being less than 110 nm and a PDI 0.237, which resulted in enhanced cellular entry and greater bioavailability. NHMC showed a faster cellular uptake (15 min) than its unencapsulated counterpart (30 min). Study of signal molecules through mRNA expressions revealed that NHMC caused down-regulation of cyclin-D1, proliferating cell nuclear antigen (PCNA), survivin and Stat-3, and up-regulation of p53 and caspase-3, that in turn induced a greater number of apoptosis vis-a-vis unencapsulated HMC. The formulation yielded small-sized NHMC by biodegradable PLGA that took less time for cellular entry, and caused more apoptosis to cancer cells, but apparently had negligible cytotoxicity against normal skin cells. Nano-encapsulation of bioactive plant ingredients can be a strategy worth trying for designing effective chemopreventive drug products.

  13. 1,4-Diselenophene-1,4-diketone triggers caspase-dependent apoptosis in human melanoma A375 cells through induction of mitochondrial dysfunction.

    PubMed

    Luo, Yi; Li, Xiaoling; Huang, Xiaochun; Wong, Yum-Shing; Chen, Tianfeng; Zhang, Yibo; Zheng, Wenjie

    2011-01-01

    Epidemiological, preclinical and clinical studies have supported the role of selenocompounds as potential cancer chemopreventive and chemotherapeutic agents. In this study, a novel selenophene-based compound, 1,4-diselenophene-1,4-diketone (DSeD), has been synthesized by Double Friedel-Crafts reaction and identified as a potent antiproliferative agent against a panel of six human caner cell lines. Despite this potency, DSeD was relatively nontoxic toward human normal cells, HS68 fibroblasts and HK-2 kidney cells. These results suggest that DSeD possesses great selectivity between cancer and normal cells. Induction of apoptosis in human melanoma A375 cells by DSeD was evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Activation of caspase-9 and depletion of mitochondrial membrane potential indicated the initiation of the mitochondria-mediated apoptosis pathway. Pretreatment of cells with general caspase inhibitor z-VAD-fmk and caspase-9 inhibitor z-LEHD-fmk significantly suppressed the cell apoptosis, demonstrating the important roles of caspase and mitochondria in DSeD-induced apoptotic cell death. Furthermore, DSeD-induced apoptosis was found independent of reactive oxygen species generation. Taken together, our results suggest that DSeD induces caspase-dependent apoptosis in A375 cells through activation of mitochondria-mediated apoptosis pathway.

  14. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined.

  15. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells.

    PubMed

    Halder, Babli; Singh, Shruti; Thakur, Suman S

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells.

  16. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells

    PubMed Central

    Halder, Babli; Singh, Shruti; Thakur, Suman S.

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells. PMID:26334881

  17. Spine venom of crown-of-thorns starfish (Acanthaster planci) induces antiproliferation and apoptosis of human melanoma cells (A375.S2).

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hsieh, Cheng-Hong; Hwang, Deng-Fwu

    2014-12-01

    The crown-of-thorns starfish (Acanthaster planci) is a venomous starfish. In this study, the extraction of A. planci spine venom (ASV) was performed by phosphate saline buffer, followed by assaying the cytotoxicity on human normal and tumor cells. It was found that human melanoma cells (A375.S2) were the most sensitive to the ASV solution. The cells, after incubation with ASV, significantly appeared to decrease cell viability and increase lactate dehydrogenase (LDH) release with a dose-dependent relationship. The extract of spine promoted loss of mitochondrial membrane potential (ΔΨm) and induced inter-nucleosomal DNA fragmentation in human melanoma cells. The cells exhibited apoptosis by using propidium iodide (PI) staining of DNA fragmentation; it was then determined by flow cytometry (sub-G1 peak). The molecular cytotoxicity of ASV was tested through evaluation of the apoptosis/necrosis ratio by double staining with annexin V and PI assay. The A. planci spine venom showed significant antiproliferation. The human melanoma cells revealed apoptosis at low dose (1.25 μg/ml), and necrosis occurred at high dose (5 μg/ml). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. DNA damage protecting and free radical scavenging properties of mycosporine-2-glycine from the Dead Sea cyanobacterium in A375 human melanoma cell lines.

    PubMed

    Cheewinthamrongrod, Vipaporn; Kageyama, Hakuto; Palaga, Tanapat; Takabe, Teruhiro; Waditee-Sirisattha, Rungaroon

    2016-11-01

    Mycosporine-like amino acids (MAAs) are a group of natural sunscreen compounds that possess highly photoprotective properties. The most commonly found MAAs in marine organisms is shinorine, porphyra-334, and mycosporine-glycine. However, the halophilic species accumulate mycosporine-2-glycine (M2G) as the major MAA. In this study, we have investigated the protective effect of M2G against oxidative stress. In vitro radical scavenging activity revealed that M2G exhibited a significant inhibition with scavenging concentration (SC) 50 value of 22±1.4μM. In vivo analysis using the human melanoma A375 and a control cell line (NHSF) showed that M2G at low concentration (i.e. micromolar range) protected the cells against the oxidative stress (H2O2)-induced cell death. Comet assay to assess total DNA strand breaks demonstrated that M2G was not genotoxic and protected against the DNA damage by H2O2 treatment at the same level as ascorbic acid. To our knowledge, this is the first evidence demonstrating potential protective role of the natural sunscreen compound M2G against oxidative stress-induced DNA damage in human cell lines. The potent antioxidant activity combined with DNA protection ability of M2G may support its endorsement as a potential natural sunscreen with antioxidant property. These findings provide important clues for possible use of M2G in pharmaceutical and biotechnological applications.

  19. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis.

    PubMed

    Bhui, Kulpreet; Tyagi, Shilpa; Srivastava, Amit Kumar; Singh, Madhulika; Roy, Preeti; Singh, Richa; Shukla, Yogeshwer

    2012-03-01

    Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy.

  20. MicroRNA-21 regulates the ERK/NF-κB signaling pathway to affect the proliferation, migration, and apoptosis of human melanoma A375 cells by targeting SPRY1, PDCD4, and PTEN.

    PubMed

    Mao, Xu-Hua; Chen, Min; Wang, Yan; Cui, Pan-Gen; Liu, Si-Bian; Xu, Zei-Yong

    2017-03-01

    This study aims to explore the effects of microRNA-21 (miR-21) and ERK/NF-κB signaling pathway on human melanoma A375 cells. The melanoma tissues and adjacent normal tissues were obtained from 45 melanoma patients. qRT-PCR was conducted to quantify the expression of miR-21 and the gene mRNA expressions. Human melanoma A375 cells were divided into the Mock, negative control (NC), miR-21 inhibitors, miR-21 inhibitors + siRNA-SPRY1, miR-21 inhibitors + siRNA-PDCD4, and miR-21 inhibitors + siRNA-PTEN groups. Western blotting was used to determine protein expressions. CCK8 assay and Transwell assay were performed to evaluate the proliferation, migration, and invasion of A375 cells. Annexin V/propidium iodide double staining was adopted to detect cell apoptosis. MiR-21 expression was higher in melanoma tissues than in adjacent tissues, while the mRNA and protein expressions of SPRY1, PDCD4, and PTEN were lower in melanoma tissues than in adjacent tissues. Compared with the Mock and NC groups, the miR-21 inhibitors group exhibited increased expressions of SPRY1, PDCD4, and PTEN and decreased expressions of ERK, p-ERK, NF-κB p65, and p-NF-κB p65. After transfection of miR-21 inhibitors, the proliferation, migration, and invasion of A375 cells were inhibited, while the apoptosis of A375 cells was promoted. However, the effects of miR-21 inhibitors on the growth, migration, invasion, and apoptosis of A375 cells were reversed after transfection of siRNA-SPRY1, siRNA-PDCD4, or siRNA-PTEN. MiR-21 can promote the proliferation, migration, and inhibit the apoptosis of human melanoma A375 cells by inhibiting SPRY1, PDCD4, and PTEN via ERK/NF-κB signaling pathway. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo.

    PubMed

    Shiue, Yin-Wen; Lu, Chi-Cheng; Hsiao, Yu-Ping; Liao, Ching-Lung; Lin, Jing-Pin; Lai, Kuang-Chi; Yu, Chien-Chih; Huang, Yi-Ping; Ho, Heng-Chien; Chung, Jing-Gung

    2016-01-01

    Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a

  2. Novel GHRH antagonists suppress the growth of human malignant melanoma by restoring nuclear p27 function

    PubMed Central

    Szalontay, Luca; Schally, Andrew V; Popovics, Petra; Vidaurre, Irving; Krishan, Awtar; Zarandi, Marta; Cai, Ren-Zhi; Klukovits, Anna; Block, Norman L; Rick, Ferenc G

    2014-01-01

    Malignant melanoma is the deadliest form of skin cancer; the treatment of advanced and recurrent forms remains a challenge. It has recently been reported that growth hormone-releasing hormone (GHRH) receptor is involved in the pathogenesis of melanoma. Therefore, we investigated the effects of our new GHRH antagonists on a human melanoma cancer cell line. Antiproliferative effects of GHRH antagonists, MIA-602, MIA-606 and MIA-690, on the human melanoma cell line, A-375, were studied in vitro using the MTS assay. The effect of MIA-690 (5 μg/day 28 d) was further evaluated in vivo in nude mice bearing xenografts of A-375. Subcellular localization of p27 was detected with Western blot and immunofluorescent staining. MIA-690 inhibited the proliferation of A-375 cells in a dose-dependent manner (33% at 10 μM, and 19.2% at 5 μM, P < 0 .05 vs. control), and suppressed the growth of xenografted tumors by 70.45% (P < 0.05). Flow cytometric analysis of cell cycle effects following the administration of MIA-690 revealed a decrease in the number of cells in G2/M phase (from 19.7% to 12.9%, P < 0.001). Additionally, Western blot and immunofluorescent studies showed that exposure of A-375 cells to MIA-690 triggered the nuclear accumulation of p27. MIA-690 inhibited tumor growth in vitro and in vivo, and increased the translocation of p27 into the nucleus thus inhibiting progression of the cell cycle. Our findings indicate that patients with malignant melanoma could benefit from treatment regimens, which combine existing chemotherapy agents and novel GHRH-antagonists. PMID:25486366

  3. Expression of Cellular Oncogenes in Human Malignancies

    NASA Astrophysics Data System (ADS)

    Slamon, Dennis J.; Dekernion, Jean B.; Verma, Inder M.; Cline, Martin J.

    1984-04-01

    Cellular oncogenes have been implicated in the induction of malignant transformation in some model systems in vitro and may be related to malignancies in vivo in some vertebrate species. This article describes a study of the expression of 15 cellular oncogenes in fresh human tumors from 54 patients, representing 20 different tumor types. More than one cellular oncogene was transcriptionally active in all of the tumors examined. In 14 patients it was possible to study normal and malignant tissue from the same organ. In many of these patients, the transcriptional activity of certain oncogenes was greater in the malignant than the normal tissue. The cellular fes (feline sarcoma) oncogene, not previously known to be transcribed in mammalian tissue, was found to be active in lung and hematopoietic malignancies.

  4. IL-1-induced ERK1/2 activation up-regulates p21{sup Waf1/Cip1} protein by inhibition of degradation via ubiquitin-independent pathway in human melanoma cells A375

    SciTech Connect

    Arakawa, Tomohiro; Hayashi, Hidetoshi; Itoh, Saotomo; Takii, Takemasa; Onozaki, Kikuo

    2010-02-12

    IL-1 inhibits the proliferation of human melanoma cells A375 by arresting the cell cycle at G0/G1 phase, which accompanies the increase of p21{sup Waf1/Cip1} (p21) protein. Here, we demonstrate that IL-1 induces the stabilization of p21 protein via ERK1/2 pathway. The degradation of p21 was inhibited by IL-1, however the ubiquitination level of p21 was not affected. In addition, the degradation of non-ubiquitinated form of lysine less mutant p21-K6R was also inhibited by IL-1, suggesting that IL-1 stabilized p21 protein via ubiquitin-independent pathway. Furthermore, the inhibition of p21 protein degradation was prevented by a selective inhibitor of ERK1/2 pathway, PD98059. These results suggest that IL-1-induced ERK1/2 activation leads to the up-regulation of p21 by inhibiting degradation via ubiquitin-independent pathway in human melanoma cells A375.

  5. Evaluating the cytotoxic effects of the water extracts of four anticancer herbs against human malignant melanoma cells

    PubMed Central

    Ling, Binbing; Michel, Deborah; Sakharkar, Meena Kishore; Yang, Jian

    2016-01-01

    Malignant melanoma (MM) is the most dangerous type of skin cancer, killing more than 1,100 people each year in Canada. Prognosis for late stage and recurrent MM is extremely poor due to insensitivity to chemotherapy drugs, and thus many patients seek complementary and alternative medicines. In this study, we examined four commonly used anticancer herbs in traditional Chinese medicine, Hedyotis diffusa, Scutellaria barbata, Lobelia chinensis, and Solanum nigrum, for their in vitro antitumor effects toward human MM cell line A-375. The crude water extract of S. nigrum (1 g of dry herb in 100 mL water) and its 2-fold dilution caused 52.8%±13.0% and 17.3%±2.7% cytotoxicity in A-375 cells, respectively (P<0.01). The crude water extract of H. diffusa caused 11.1%±12.4% cytotoxicity in A-375 cells with no statistical significance (P>0.05). Higher concentrated formulation might be needed for H. diffusa to exert its cytotoxic effect against A-375 cells. No cytotoxicity was observed in A-375 cells treated with crude water extract of S. barbata and L. chinensis. Further high performance liquid chromatography-tandem mass spectroscopy analysis of the herbal extracts implicated that S. nigrum and H. diffusa might have adopted the same bioactive components for their cytotoxic effects in spite of belonging to two different plant families. We also showed that the crude water extract of S. nigrum reduced intracellular reactive oxygen species generation in A-375 cells, which may lead to a cytostatic effect. Furthermore, synergistic effect was achieved when crude water extract of S. nigrum was coadministered with temozolomide, a chemotherapy drug for skin cancer. PMID:27843296

  6. Semi-preparative HPLC purification of δ-tocotrienol (δ-T3) from Elaeis guineensis Jacq. and Bixa orellana L. and evaluation of its in vitro anticancer activity in human A375 melanoma cells.

    PubMed

    Beretta, Giangiacomo; Gelmini, Fabrizio; Fontana, Fabrizio; Moretti, Roberta Manuela; Montagnani Marelli, Marina; Limonta, Patrizia

    2017-04-24

    In this work, we report a rapid and convenient HPLC-UV-DAD method for the isolation of δ-T3 on semi-preparative scale from two different vitamin E rich processed, commercially available products obtained from the fruits of Elaeis guineensis Jacq. (oil palm) and from the seeds of Bixa orellana L. (achiote tree). Chromatography was run using reverse phase (RP) C-18 columns and HPLC-grade acetonitrile as mobile phase. The purity of the isolated δ-T3, assessed by GC-MS and (1)H NMR was above 98%. The δ-T3 cytotoxic activity found in vitro against the proliferation of human A375 melanoma cells compared to that of the other δ-T3 free tocols mixture suggest its primary role in the experimental anticancer activity observed for palm oil derived products. Taken altogether, the results of this study highlight the importance of the application of suitable purification systems for the preparations of tocotrienols prior to their experimental or clinical testing.

  7. Cholesteryl esters in human malignant neoplasms.

    PubMed

    Tosi, M R; Bottura, G; Lucchi, P; Reggiani, A; Trinchero, A; Tugnoli, V

    2003-01-01

    Cholesteryl esters (CholE) were detected in human malignant neoplasms by means of in vitro nuclear magnetic resonance spectroscopy. Spectroscopic analysis of the total lipid extracts obtained from cerebral tumors revealed appreciable amount of esterified cholesterol in high grade gliomas such as glioblastomas and anaplastic oligodendrogliomas, characterized by prominent neovascularity. The finding that no CholE were detected in the healthy brain and in low grade and benign tumors supports a possible correlation between this class of lipids and histological vascular proliferation. Compared with high grade gliomas, renal cell carcinomas show higher levels of CholE, absent in the healthy renal parenchyma and in benign oncocytomas. In nefro-carcinomas, cytoplasmic lipid inclusions and prominent vascularization contribute to the increased levels of CholE present mainly as oleate. CholE are discussed as potential biochemical markers of cancer and as a target for new therapeutic strategies.

  8. Human malignant melanoma heterotransplanted to nude mice.

    PubMed

    Tropé, C; Johnsson, J E; Alm, P; Landberg, T; Olsson, H; Wennerberg, J

    1981-01-01

    Five different human malignant melanoma were heterotransplanted subcutaneously to nude mice. When small tissue pieces were used 3 out of 5 tumors grew. Subcutaneous injections of suspended tumor cells were also made, but all failed to take. Metastatic or infiltrative growth was never seen in the mice observed for up to 2.5 months. The successful grafts largely retained the original morphologicaL features. The three successfully transplanted tumors could all be serially transferred with 100% tumor take. In one case passage time was reduced from 40 days to 15 days. As measured with 3H-thymidine incorporation the proliferation rate increased during the passages. These changes might be due to a selection of more rapidly growing tumor cells in the nudes.

  9. Immunoprevention of human papillomavirus-associated malignancies

    PubMed Central

    Wang1, Joshua W.; Hung, Chein-fu; Huh, Warner K.; Trimble, Cornelia L.; Roden, Richard B.S.

    2014-01-01

    Persistent infection by one of fifteen high risk human papillomavirus (hrHPV) types is a necessary but not sufficient cause of 5% of all human cancers. This provides a remarkable opportunity for cancer prevention via immunization. Since Harald zur Hausen’s pioneering identification of hrHPV types 16 and 18, found in ~50% and ~20% of cervical cancers respectively, two prophylactic HPV vaccines containing virus-like particles (VLP) of each genotype have been widely licensed. These vaccines are beginning to impact infection and HPV-associated neoplasia rates after immunization campaigns in adolescents. Here we review recent progress and opportunities to better prevent HPV-associated cancers, including: broadening immune-protection to cover all hrHPV types, reducing the cost of HPV vaccines especially for developing countries that have the highest rates of cervical cancer, and immune-based treatment of established HPV infections. Screening based upon George Papanicolaou’s cervical cytology testing, and more recently detection of hrHPV DNA/RNA, followed by ablative treatment of high grade cervical intraepithelial neoplasia (CIN2/3) have substantially reduced cervical cancer rates, and we examine their interplay with immune-based modalities for the prevention and eventual elimination of cervical cancer and other HPV-related malignancies. PMID:25488410

  10. Cytotoxic and apoptotic activities of the plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) on A375.S2 cells.

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hwang, Deng-Fwu

    2015-04-01

    This study reports on a cytotoxic toxin derived from the venom of the crown-of-thorns starfish Acanthaster planci (CAV). The protein toxin was isolated through both ion-exchange and gel-filtration chromatography, and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrum analyzes. The CAV was identified as plancitoxin I protein. The mechanistic role of the CAV toxin was explored in human malignant melanoma A375.S2 cell death. The results indicated that after incubation with CAV toxin, cells significantly decreased in A375.S2 cell viability and increased in the lactate dehydrogenase (LDH) level in a dose-dependent manner. The assays indicated that CAV toxin promoted reactive oxygen species (ROS) production, induced nitric oxide (NO) formation, lost mitochondrial membrane potential (ΔΨm) and induced inter-nucleosomal DNA fragmentation in A375.S2 cells. The molecular cytotoxicity of the CAV toxin was tested through evaluation of the apoptosis/necrosis ratio by double staining with annexin V-FITC and a propidium iodide (PI) assay. The results suggested that CAV toxin induced a cytotoxic effect in A375.S2 cells via the apoptotic procedure, and may be associated with the regulation of the p38 pathways. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Evaluation of Melanogenesis in A-375 Cells in the Presence of DMSO and Analysis of Pyrolytic Profile of Isolated Melanin

    PubMed Central

    Chodurek, Ewa; Orchel, Arkadiusz; Orchel, Joanna; Kurkiewicz, Sławomir; Gawlik, Natalia; Dzierżewicz, Zofia; Stępień, Krystyna

    2012-01-01

    The increase of a skin malignant melanoma (melanoma malignum) incidence in the world has been observed in recent years. The tumour, especially in advanced stadium with metastases, is highly resistant to conventional treatment. One of the strategies is to modulate melanogenesis using chemical compounds. In this study, the processes of differentiation and melanogenesis induced by dimethylsulfoxide (DMSO) in human melanoma cells (A-375) were investigated. Natural melanin isolated from A-375 melanoma cell line treated with 0.3% DMSO was analyzed by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) method. The products derived from pheomelanin have not been stated in the pyrolytic profile of analyzed melanin. Within all products derived from eumelanins, 1,2-benzenediol has been predominated. It has been shown that in the melanoma cells stimulated with 0.3% and 1% DMSO, the increase of transcriptional activity of the tyrosinase gene took place. It was accompanied by the rise of tyrosinase activity and an accumulation of melanin in the cells. The better knowledge about the structure of melanins can contribute to establish the uniform criteria of malignant melanoma morbidity risk. PMID:22654640

  12. Human herpesvirus 6 in hematological malignancies.

    PubMed

    Ogata, Masao

    2009-11-01

    Pathogenetic roles of human herpesvirus (HHV)-6 in lymphoproliferative diseases have been of continued interest. Many molecular studies have tried to establish a pathogenic role for HHV-6 in lymphoid malignancies. However, whether HHV-6 plays a role in these pathologies remains unclear, as positive polymerase chain reaction results for HHV-6 in those studies may reflect latent infection or reactivation rather than presence of HHV-6 in neoplastic cells. A small number of studies have investigated HHV-6 antigen expression in pathologic specimens. As a result, the lack of HHV-6 antigen expression on neoplastic cells argues against any major pathogenic role of HHV-6. The role of HHV-6 in childhood acute lymphoblastic leukemia (ALL) has also been of interest but remains controversial, with 2 studies documenting higher levels of HHV-6 antibody in ALL patients, and another 2 large-scale studies finding no significant differences in HHV-6 seroprevalences between ALL patients and controls. Alternatively, HHV-6 is increasingly recognized as an important opportunistic pathogen. HHV-6 reactivation is common among recipients of allogeneic stem cell transplantation (SCT), and is linked to various clinical manifestations. In particular, HHV-6 encephalitis appears to be significant, life-threatening complication. Most HHV-6 encephalitis develops in patients receiving transplant from an unrelated donor, particularly cord blood, typically around the time of engraftment. Symptoms are characterized by short-term memory loss and seizures. Magnetic resonance imaging typically shows limbic encephalitis. Prognosis for HHV-6 encephalitis is poor, but appropriate prophylactic measures have not been established. Establishment of preventive strategies against HHV-6 encephalitis represents an important challenge for physicians involved with SCT.

  13. Reprogramming A375 cells to induced-resembled neuronal cells by structured overexpression of specific transcription genes

    PubMed Central

    Zhang, Hengzhu; Wei, Min; Jiang, Yangyang; Wang, Xiaodong; She, Lei; Yan, Zhengcun; Dong, Lun; Pang, Lujun; Wang, Xingdong

    2016-01-01

    Induced-resembled neuronal cells (irNCs) are generated by reprogramming human melanoma cells through the introduction of key transcription factors, providing novel concepts in the treatment of malignant tumor cells and making it possible to supply neural cells for laboratory use. In the present study, irNCs were derived from A375 cells by inducing the 'forced' overexpression of specific genes, including achaete-scute homolog 1 (Ascl1), neuronal differentiation factor 1 (Neurod1), myelin transcription factor 1 (Myt1), brain protein 2 (Brn2, also termed POU3F2) and human brain-derived neurotrophic factor (h-BDNF). irNCs induced from A375 cells express multiple neuronal markers and fire action potentials, exhibiting properties similar to those of motor neurons. The reprogramming procedure comprised reverse transcription-polymerase chain reaction and immunofluorescence staining; furthermore, electrophysiological profiling demonstrated the characteristics of the induced-resembled neurons. The present study obtained a novel type of human irNC from human melanoma, which secreted BDNF continuously, providing a model for neuron-like cells. Thus, irNCs offer promise in investigating various neural diseases by using neural-like cells derived directly from the patient of interest. PMID:27510459

  14. Intercellular crosstalk in human malignant melanoma.

    PubMed

    Dvořánková, Barbora; Szabo, Pavol; Kodet, Ondřej; Strnad, Hynek; Kolář, Michal; Lacina, Lukáš; Krejčí, Eliška; Naňka, Ondřej; Šedo, Aleksi; Smetana, Karel

    2017-05-01

    Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.

  15. Hypomethylation of DNA from Benign and Malignant Human Colon Neoplasms

    NASA Astrophysics Data System (ADS)

    Goelz, Susan E.; Vogelstein, Bert; Hamilton, Stanley R.; Feinberg, Andrew P.

    1985-04-01

    The methylation state of DNA from human colon tissue displaying neoplastic growth was determined by means of restriction endonuclease analysis. When compared to DNA from adjacent normal tissue, DNA from both benign colon polyps and malignant carcinomas was substantially hypomethylated. With the use of probes for growth hormone, γ -globin, α -chorionic gonadotropin, and γ -crystallin, methylation changes were detected in all 23 neoplastic growths examined. Benign polyps were hypomethylated to a degree similar to that in malignant tissue. These results indicate that hypomethylation is a consistent biochemical characteristic of human colonic tumors and is an alteration in the DNA that precedes malignancy.

  16. Infrared absorption spectra of human malignant tumor tissues

    NASA Astrophysics Data System (ADS)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  17. HDAC-inhibitor (S)-8 disrupts HDAC6-PP1 complex prompting A375 melanoma cell growth arrest and apoptosis

    PubMed Central

    Balliu, Manjola; Guandalini, Luca; Romanelli, Maria Novella; D'Amico, Massimo; Paoletti, Francesco

    2015-01-01

    Histone deacetylase inhibitors (HDACi) are agents capable of inducing growth arrest and apoptosis in different tumour cell types. Previously, we reported a series of novel HDACi obtained by hybridizing SAHA or oxamflatin with 1,4-benzodiazepines. Some of these hybrids proved effective against haematological and solid cancer cells and, above all, compound (S)-8 has emerged for its activities in various biological systems. Here, we describe the effectiveness of (S)-8 against highly metastatic human A375 melanoma cells by using normal PIG1 melanocytes as control. (S)-8 prompted: acetylation of histones H3/H4 and α-tubulin; G0/G1 and G2/M cell cycle arrest by rising p21 and hypophos-phorylated RB levels; apoptosis involving the cleavage of PARP and caspase 9, BAD protein augmentation and cytochrome c release; decrease in cell motility, invasiveness and pro-angiogenic potential as shown by results of wound-healing assay, down-regulation of MMP-2 and VEGF-A/VEGF-R2, besides TIMP-1/TIMP-2 up-regulation; and also intracellular accumulation of melanin and neutral lipids. The pan-caspase inhibitor Z-VAD-fmk, but not the antioxidant N-acetyl-cysteine, contrasted these events. Mechanistically, (S)-8 allows the disruption of cytoplasmic HDAC6-protein phosphatase 1 (PP1) complex in A375 cells thus releasing the active PP1 that dephosphorylates AKT and blocks its downstream pro-survival signalling. This view is consistent with results obtained by: inhibiting PP1 with Calyculin A; using PPP1R2-transfected cells with impaired PP1 activity; monitoring drug-induced HDAC6-PP1 complex re-shuffling; and, abrogating HDAC6 expression with specific siRNA. Altogether, (S)-8 proved very effective against melanoma A375 cells, but not normal melanocytes, and safe to normal mice thus offering attractive clinical prospects for treating this aggressive malignancy. PMID:25376115

  18. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  19. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.

  20. A comparison of vitamin D activity in paired non-malignant and malignant human breast tissues.

    PubMed

    Suetani, Rachel J; Ho, Kristen; Jindal, Shalini; Manavis, Jim; Neilsen, Paul M; Pishas, Kathleen I; Rippy, Elisabeth; Bochner, Melissa; Kollias, James; Gill, P Grantley; Morris, Howard A; Callen, David F

    2012-10-15

    Links between a low vitamin D status and an increased risk of breast cancer have been observed in epidemiological studies. These links have been investigated in human tissue homogenates and cultured cell lines. We have used non-malignant, malignant and normal reduction mammoplasty breast tissues to investigate the biological and metabolic consequences of the application of vitamin D to intact ex vivo human breast tissue. Tissues were exposed to 1α,25(OH)(2)D(3) (1,25D; active metabolite) and 25(OH)D (25D; pre-metabolite). Changes in mRNA expression and protein expression after vitamin D exposure were analysed. Results indicate that while responses in normal and non-malignant breast tissues are similar between individuals, different tumour tissues are highly variable with regards to their gene expression and biological response. Collectively, malignant breast tissue responds well to active 1,25D, but not to the inactive pre-metabolite 25D. This may have consequences for the recommendation of vitamin D supplementation in breast cancer patients.

  1. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines

    PubMed Central

    Piotrowska, Anna; Wierzbicka, Justyna; Nadkarni, Sharmin; Brown, Geoffrey; Kutner, Andrzej; Żmijewski, Michał A.

    2016-01-01

    Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. PMID:26760999

  2. Benzene and lymphohematopoietic malignancies in humans.

    PubMed

    Hayes, R B; Songnian, Y; Dosemeci, M; Linet, M

    2001-08-01

    Quantitative evaluations of benzene-associated risk for cancer have relied primarily on findings from a cohort study of highly exposed U.S. rubber workers. An epidemiologic investigation in China (NCI/CAPM study) extended quantitative evaluations of cancer risk to a broader range of benzene exposures, particularly at lower levels. We review the evidence implicating benzene in the etiology of hematopoietic disorders, clarify methodologic aspects of the NCI/CAPM study, and examine the study in the context of the broader literature on health effects associated with occupational benzene exposure. Quantitative relationships for cancer risk from China and the U.S. show a relatively smooth increase in risk for acute myeloid leukemia and related conditions over a broad dose range of benzene exposure (below 200 ppm-years mostly from the China study and above 200 ppm-years mostly from the U.S. study). Risks of acute myeloid leukemia and other malignant and nonmalignant hematopoietic disorders associated with benzene exposure in China are consistent with other information about benzene exposure, hematotoxicity, and cancer risk, extending evidence for hematopoietic cancer risks to levels substantially lower than had previously been established. Published 2001 Wiley-Liss, Inc.

  3. Relevance of lipids to heterotransplantation of human malignancies.

    PubMed

    Perez, R L; Mitchell, J R; Lozzio, B B

    1982-01-01

    Although the transplantation of human neoplasms in immunodeficient mice is now a well-established procedure, the majority of primary malignancies cannot be successfully maintained for long periods of time in adult athymic (nude) and asplenic-athymic (lasat) mice. Various lipids such as cholesterol, cholesterol oleate, stearic and palmitic acid esters markedly depress the RES phagocytic activity and immunocompetence of mammals. In view of the immunosuppressive properties of certain lipids and in order to graft and grow as many tumors as possible, further studies into the effects of lipids on the growth of heterotransplanted human tumors is warranted. Lipids may enhance local growth and facilitate the development of metastases rarely seen in nude and lasat mice bearing xenogeneic cancer cells. Lipids may accelerate human malignant cell proliferation in mice by both depressing further the defense of host and modifying the cancer cell membrane. The relationship of lipids to the onset and progression of 'spontaneous' tumors in humans is not known.

  4. DNA content and chromosomal composition of malignant human gliomas.

    PubMed

    Bigner, S H; Bjerkvig, R; Laerum, O D

    1985-11-01

    A short review is given on DNA aberrations and chromosomal composition of malignant human gliomas. By flow cytometric DNA analysis, a wide range of different ploidies has been reported in biopsied gliomas, from diploid to strongly aneuploid nuclear DNA. However, with the preparation and analysis methods used so far, no clear relationship between the type of ploidy and histology or prognosis has been established. A high proportion of glioblastomas is near-diploid, indicating a high degree of biologic malignancy is not necessarily connected to aberration of the nuclear DNA content. It is possible that improved methods giving a higher degree of resolution will allow separation of the near-diploid populations of malignant human gliomas from normal diploid cells and permit the detection of subpopulations with small differences from the dominant DNA mode. Chromosomal studies of malignant gliomas have confirmed that the majority of them have near-diploid stemlines. These populations are seldom normal diploid, however, as both numerical and structural abnormalities are usually present. In addition, chromosomal analyses have shown that when gliomas are bimodal, the polyploid populations are usually doubled versions of the near-diploid ones. In contrast to the near-diploid populations that characterize biopsied malignant gliomas, both FCM studies and karyotyping have demonstrated that permanent cultured cell lines derived from malignant gliomas are usually near-triploid or near-tetraploid. Sequential karyotypic studies of these tumors from biopsy through establishment in vitro have shown an evolutionary pattern consisting of doubling of the original stemline, followed by gains or losses of individual chromosomes with new marker formation in late culture. Evaluation of biopsied malignant gliomas by karyotyping has also demonstrated that subgroups of them are characterized by specific numerical and structural deviations. These groupings may prove useful in predicting prognosis

  5. HCG variants, the growth factors which drive human malignancies

    PubMed Central

    Cole, Laurence A

    2012-01-01

    The term human chorionic gonadotropin (hCG) refers to a group of 5 molecules, each sharing the common amino acid sequence but each differing in meric structure and carbohydrate side chain structure. The 5 molecules are each produced by separate cells and each having separate biological functions. hCG and sulfated hCG are hormones produced by placental syncytiotrophoblast cells and pituitary gonadotrope cells. Hyperglycosylated hCG is an autocrine produced by placental cytotrophoblast cells. Hyperglycosylated hCG drives malignancy in placental cancers, and in testicular and ovarian germ cell malignancies. hCGβ and hyperglycosylated hCGβ are autocrines produce by most advanced malignancies. These molecules, particularly the malignancy promoters are presented in this review on hCG and cancer. hCGβ and hyperglycosylated hCGβ are critical to the growth and invasion, or malignancy of most advanced cancers. In many ways, while hCG may appear like a nothing, a hormone associated with pregnancy, it is not, and may be at the center of cancer research. PMID:22206043

  6. CD147 interacts with NDUFS6 in regulating mitochondrial complex I activity and the mitochondrial apoptotic pathway in human malignant melanoma cells.

    PubMed

    Luo, Z; Zeng, W; Tang, W; Long, T; Zhang, J; Xie, X; Kuang, Y; Chen, M; Su, J; Chen, X

    2014-01-01

    Malignant melanoma (MM) is one of the most lethal tumors and is characterized by high invasiveness, frequent metastasis, and resistance to chemotherapy. The risk of metastatic MM is accompanied by disordered energy metabolism involving the oxidative phosphorylation (OXPHOS) process, which is largely carried out in mitochondrial complexes. Complex I is the first and largest mitochondrial enzyme complex associated with this process. CD147 is a transmembrane glycoprotein mainly expressed on the cell surface, and also appears in the cytoplasm in some tumors. We found that CD147 is often translocated to the cytoplasm in metastatic MM specimens as compared to primary MM. We also demonstrated high expression of CD147 in isolated mitochondrial fractions of A375 cells. The yeast two-hybrid (Y2H) assay identified NDUFS6 (which encodes a subunit of mitochondrial respiratory chain complex I) as a candidate that interacts with CD147 and depletion of CD147 in A375 cells significantly decreased complex I enzyme activity. We also showed that CD147 increased the viability of A375 cells exposed to berberine-induced mitochondrial damage, and protected them from apoptosis through a mitochondrial-dependent pathway. This finding was confirmed by adding exogenous Bcl-2 to A375 cell cultures. In summary, our results identify the existence of CD147 in human melanoma cell mitochondria. They indicate that CD147 appears to regulate complex I activity and apoptosis in MM by interacting with mitochondrial NDUFS6. Our findings provide new insight into the function of CD147 and identify it as a promising therapeutic target in melanoma through disruption of the energy metabolism.

  7. Parasite Infection, Carcinogenesis and Human Malignancy.

    PubMed

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Localisation of malignant glioma by a radiolabelled human monoclonal antibody.

    PubMed Central

    Phillips, J; Alderson, T; Sikora, K; Watson, J

    1983-01-01

    Human monoclonal antibodies were produced by fusing intratumoral lymphocytes from patients with malignant gliomas with a human myeloma line. One antibody was selected for further study after screening for binding activity to glioma cell lines. The patient from whom it was derived developed recurrent glioma. 1 mg of antibody was purified, radiolabelled with 131I, and administered intravenously. The distribution of antibody was determined in the blood, CSF and tumour cyst fluid and compared with that of a control human monoclonal immunoglobulin. Antibody localisation in the tumour was observed and confirmed by external scintiscanning. Images PMID:6101173

  9. Eliminating malignant contamination from therapeutic human spermatogonial stem cells

    PubMed Central

    Dovey, Serena L.; Valli, Hanna; Hermann, Brian P.; Sukhwani, Meena; Donohue, Julia; Castro, Carlos A.; Chu, Tianjiao; Sanfilippo, Joseph S.; Orwig, Kyle E.

    2013-01-01

    Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4–contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC–/CD49e– (putative spermatogonia) and EpCAM–/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC–/CD49e– fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to–nude mouse xenotransplantation. The EpCAM–/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression. PMID:23549087

  10. Percoll density gradient separation of cells from human malignant effusions.

    PubMed Central

    Hamburger, A. W.; Dunn, F. E.; White, C. P.

    1985-01-01

    A simple method is described for the separation of cells derived from effusions of patients with adenocarcinomas in discontinuous density gradients of Percoll. After separation, cells from different fractions were analyzed by morphologic, histochemical and immunologic criteria. Total cell recovery from 27 experiments was 67 +/- 4%. Macrophages (82%) were recovered in the intermediate density fraction (1.056-1.067 g ml-1) with a purity of 90%. Recovered lymphocytes (98%) were found in the high density fraction (1.067-1.077 g ml-1) with a purity of 92%. The majority of the lymphocytes recovered were T cells. Malignant adenocarcinoma cells (90%) were recovered in the lowest density fractions (up to 1.056 g ml-1) with a purity of 79%. Use of effective cell separation procedures should facilitate the analysis of the functional capacities of both normal and neoplastic cells derived from human malignant effusions. PMID:2981542

  11. [Expression and significance of ABCG2 in human malignant glioma].

    PubMed

    Chu, Liang; Huang, Qiang; Zhai, De-Zhong; Zhu, Qing; Huo, Hong-Mei; Dong, Jun; Qian, Zhi-Yuan; Wang, Ai-Dong; Lan, Qing; Gao, Yi-Lu

    2007-10-01

    ATP-binding cassette transporter protein ABCG2 is a marker derived from hematopoietic stem cells. However, its role in tumorigenesis and malignant progression of glioma is unclear. This study was to investigate the expression and significance of ABCG2 in gliomas of different malignant grades. A microarray chip containing glioma tissues of different malignant grades, implanted glioma xenografts in nude mice, spheroids of glioma cell lines and glioma stem cells was prepared and examined for the expression of ABCG2 with immunohistochemical staining. The positive rate of ABCG2 was 26.8% in the 71 specimens of human glioma tissues, with 11.1% in grade I gliomas, 8% in grade II gliomas, 43.5% in grade III gliomas, and 42.9% in grade IV gliomas; it was significantly higher in grade III-IV gliomas than in grade I-II gliomas (chi2=10.710, P=0.001). The positive rate of ABCG2 was 100% in implanted glioma xenografts in nude mice, gliomas stem cells, and neural stem cells. It was also expressed in some normal tissues. The positive cells surrounded and invaded into vessels in glioma tissues. ABCG2 is overexpressed in glioma stem cells, glioma tissues of higher grades, and implanted glioma xenografts. The positive cells distribute around vessels in glioma tissues.

  12. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells.

  13. The Role of Osteopontin in the Malignancy of Human Breast Carcinoma

    DTIC Science & Technology

    1997-07-01

    DAMD17-96-1-6075 TITLE: The Role of Osteopontin in the Malignancy of Human Breast Carcinoma PRINCIPAL INVESTIGATION: Dr. Frances O’Malley Alan B. Tuck...1997 Annual (I Jun 96 - 31 May 97) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS The Role of Osteopontin in the Malignancy of Human Breast Carcinoma DAMD17...OPN in the malignancy of human breast cancer will be of potential importance not only in the interpretation of prognostic information gained through

  14. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    PubMed Central

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  15. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth.

  16. The role of human papilloma virus in urological malignancies.

    PubMed

    Heidegger, Isabel; Borena, Wegene; Pichler, Renate

    2015-05-01

    Human papillomavirus (HPV) is associated with cancer of the cervix uteri, penis, vulva, vagina, anus and oropharynx. However, the role of HPV infection in urological tumors is not yet clarified. HPV appears not to play a major causative role in renal and testicular carcinogenesis. However, HPV infection should be kept in mind regarding cases of prostate cancer, as well as in a sub-group of patients with bladder cancer with squamous differentiation. Concerning the role of HPV in penile cancer incidence, it is a recognized risk factor proven in a large number of studies. This short review provides an update regarding recent literature on HPV in urological malignancies, thereby, also discussing possible limitations on HPV detection in urological cancer.

  17. Raman spectroscopic identification of normal and malignant human stomach cells

    NASA Astrophysics Data System (ADS)

    Yang, Jipeng; Guo, Jianyu; Wu, Liangping; Sun, Zhenrong; Cai, Weiying; Wang, Zugeng

    2005-12-01

    Micro-Raman spectroscopy is employed to identify the normal and malignant human stomach cells. For the cancer cell, the reduced intensity of the Raman peak at 1250 cm^(-1) indicates that the protein secondary structure transforms from ?-sheet or disordered structures to ?-helical, while the increased intensity of the symmetric PO2 stretching vibration mode at 1094 cm^(-1) shows the increased DNA content. The ratio of the intensity at 1315 cm^(-1) to that at 1340 cm^(-1) reduces from 1.8 for the normal cell to 1.1 for the cancer cell in the course of canceration, and the ratio of the intensity at 1655 cm^(-1) to that at 1450 cm^(-1) increases from 1.00 for the cancer cell to 1.26 for the normal cell which indicates that the canceration of stomach cell may induce saturation of the lipid chain.

  18. Mitotic Arrest-Associated Apoptosis Induced by Sodium Arsenite in A375 Melanoma Cells Is BUBR1-Dependent

    PubMed Central

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2009-01-01

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr161 phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic’s chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity. PMID:18501396

  19. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent

    SciTech Connect

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2008-08-15

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr{sup 161} phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.

  20. Radiosensitization effect of zidovudine on human malignant glioma cells

    SciTech Connect

    Zhou Fuxiang; Liao Zhengkai; Dai Jing; Xiong Jie; Xie CongHua; Luo Zhiguo; Liu Shiquan; Zhou Yunfeng . E-mail: yfzhouwhu@163.com

    2007-03-09

    Telomeres are shortened with each cell division and play an important role in maintaining chromosomal integrity and function. Telomerase, responsible for telomere synthesis, is activated in 90% of human tumor cells but seldom in normal somatic cells. Zidovudine (AZT) is a reverse transcriptase inhibitor. In this study, we have investigated the effects of {gamma}-radiation in combination with AZT on telomerase activity (TA), telomere length, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and the changes in radiosensitivity of human malignant glioma cell line U251. The results showed that the TA was suppressed by AZT but enhanced by irradiation, resulting in a deceleration of restored rate of shortened telomere, decreased repair rate of DNA strand breaks, and increased radiosensitivity of U251 cells. Our results suggested that telomerase activity and telomere length may serve as markers for estimating the efficacy of cancer radiotherapy and reverse transcriptase inhibitors, such as AZT, may be used clinically as a new radiosensitizer in cancer radiotherapy.

  1. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  2. Involvement of NANOG upregulation in malignant progression of human cells.

    PubMed

    Li, Yang; Higashiyama, Shinji; Shimakage, Misuzu; Kawahara, Kunimitsu; Yutsudo, Masuo; Watari, Akihiro

    2013-03-01

    Previously, we isolated cell lines that display various degrees of transformed phenotypes from a single-cell population of human diploid fibroblasts (RB) containing a large deletion (13q14-22) in one copy of chromosome 13. They included a cell line transfected with SV40 early genes (RBSV), an immortalized cell line (RBI), an anchorage-independent cell line (RBS), and a tumorigenic cell line (RBT). Here, we analyzed gene expression profiles in these cell lines and showed that expression of some fibroblast-specified or mesenchyme-specified genes were downregulated, and those of stem cell-specified genes, including NANOG, were upregulated during malignant progression. When NANOG expression was knocked down with a short hairpin NANOG expression vector (shNANOG vector) in the RBS and RBT cells, the anchorage independency and tumorigenicity were repressed. We next examined various cancer cell lines for NANOG expression and showed that some cancer cell lines expressed a high level of normal and/or variant NANOG proteins. Overexpression of NANOG mRNA in lung adenocarcinoma was also shown by in situ hybridization. All these data indicate the involvement of NANOG in tumorigenesis.

  3. Metabolomics of Human Cerebrospinal Fluid Identifies Signatures of Malignant Glioma*

    PubMed Central

    Locasale, Jason W.; Melman, Tamar; Song, Susan; Yang, Xuemei; Swanson, Kenneth D.; Cantley, Lewis C.; Wong, Eric T.; Asara, John M.

    2012-01-01

    Cerebrospinal fluid is routinely collected for the diagnosis and monitoring of patients with neurological malignancies. However, little is known as to how its constituents may change in a patient when presented with a malignant glioma. Here, we used a targeted mass-spectrometry based metabolomics platform using selected reaction monitoring with positive/negative switching and profiled the relative levels of over 124 polar metabolites present in patient cerebrospinal fluid. We analyzed the metabolic profiles from 10 patients presenting malignant gliomas and seven control patients that did not present malignancy to test whether a small sample size could provide statistically significant signatures. We carried out multiple unbiased forms of classification using a series of unsupervised techniques and identified metabolic signatures that distinguish malignant glioma patients from the control patients. One subtype identified contained metabolites enriched in citric acid cycle components. Newly diagnosed patients segregated into a different subtype and exhibited low levels of metabolites involved in tryptophan metabolism, which may indicate the absence of an inflammatory signature. Together our results provide the first global assessment of the polar metabolic composition in cerebrospinal fluid that accompanies malignancy, and demonstrate that data obtained from high throughput mass spectrometry technology may have suitable predictive capabilities for the identification of biomarkers and classification of neurological diseases. PMID:22240505

  4. Idiotype vaccines for human B-cell malignancies.

    PubMed

    Inoges, S; de Cerio, A Lopez-Diaz; Soria, E; Villanueva, H; Pastor, F; Bendandi, M

    2010-01-01

    After twenty years of use in humans, customized idiotypic vaccination yet remains a non-approved, experimental therapeutic option for patients with lymphoma and myeloma. Potentially applicable to all B-cell malignancies whose cells express a clonal immunoglobulin or its epitopes on their surface, this treatment is designed to prevent disease recurrence or progression. Mostly used in follicular lymphoma patients so far, idiotype vaccines have clearly shown biological efficacy, clinical efficacy and clinical benefit in this setting, although no study aiming at regulatory approval of the procedure has been able to meet its main clinical endpoints. In mantle cell lymphoma, only biological efficacy has been proven for idiotypic vaccination, while in multiple myeloma a limited number of studies support the notion of biological and perhaps even clinical efficacy, although no credible evidence of clinical benefit has still emerged. Idiotype vaccines have been produced and administered in a number of substantially different manners. Therefore, the results of most clinical trials cannot be easily compared, and even less pooled together in meaningful meta-analyses. A more creative and yet scientifically sound way to design clinical trials of customized active immunotherapies will be key to the future development of idiotype vaccines, particularly considering that we currently lack any clinical or biological indicator to possibly predict which patients are more likely to respond to idiotypic vaccination from an immunologic point of view. This review aims at summarizing the multifaceted success achieved by idiotype vaccines, as well as at outlining the challenges awaiting them in the near future: how to improve feasibility, immunogenicity and efficacy, as well as how to confirm benefit and gain regulatory approval.

  5. Role of human papillomavirus and its detection in potentially malignant and malignant head and neck lesions: updated review

    PubMed Central

    Chaudhary, Ajay Kumar; Singh, Mamta; Sundaram, Shanthy; Mehrotra, Ravi

    2009-01-01

    Head and neck malignancies are characterized by a multiphasic and multifactorial etiopathogenesis. Tobacco and alcohol consumption are the most common risk factors for head and neck malignancy. Other factors, including DNA viruses, especially human papilloma virus (HPV), may also play a role in the initiation or development of these lesions. The pathways of HPV transmission in the head and neck mucosal lesions include oral-genital contact, more than one sexual partner and perinatal transmission of HPV to the neonatal child. The increase in prevalence of HPV infection in these lesions may be due to wider acceptance of oral sex among teenagers and adults as this is perceived to be a form of safe sex. The prevalence of HPV in benign lesions as well as malignancies has been assessed by many techniques. Among these, the polymerase chain reaction is the most sensitive method. Review of literature reveals that HPV may be a risk factor for malignancies, but not in all cases. For confirmation of the role of HPV in head and neck squamous cell carcinoma, large population studies are necessary in an assortment of clinical settings. Prophylactic vaccination against high-risk HPV types eventually may prevent a significant number of cervical carcinomas. Of the two vaccines currently available, Gardasil® (Merck & Co., Inc.) protects against HPV types 6, 11, 16 and 18, while the other vaccine, Cervarix® (GlaxoSmithKline, Rixensart, Belgium) protects against HPV types 16 and 18 only. However, the HPV vaccine has, to the best of our knowledge, not been tried in head and neck carcinoma. The role of HPV in etiopathogenesis, prevalence in benign and malignant lesions of this area and vaccination strategies are briefly reviewed here. PMID:19555477

  6. Microenvironment-dependent growth of pre-neoplastic and malignant plasma cells in humanized mice

    PubMed Central

    Das, Rituparna; Strowig, Till; Verma, Rakesh; Koduru, Srinivas; Hafemann, Anja; Hopf, Stephanie; Kocoglu, Mehmet H.; Borsotti, Chiara; Zhang, Lin; Branagan, Andrew; Eynon, Elizabeth; Manz, Markus G.; Flavell, Richard A.; Dhodapkar, Madhav V.

    2016-01-01

    Most human cancers including myeloma are preceded by a precursor state. There is an unmet need for in vivo models to study the interaction of human preneoplastic cells in the bone marrow microenvironment with non-malignant cells. Here, we genetically humanized mice to permit the growth of primary human pre-neoplastic and malignant plasma cells together with non-malignant cells in vivo [?]. Growth was largely restricted to the bone marrow, mirroring the pattern in patients. Xenografts captured the genomic complexity of parental tumors and revealed additional somatic changes. Moreover, xenografts from patients with preneoplastic gammopathy showed progressive growth, suggesting that the clinical stability of these lesions may in part be due to growth controls extrinsic to tumor cells. These data demonstrate a new approach to investigate the entire spectrum of human plasma cell neoplasia and illustrate the utility of humanized models for understanding the functional diversity of human tumors [?]. PMID:27723723

  7. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  8. Oncolytic virotherapy for human malignant mesothelioma: recent advances

    PubMed Central

    Boisgerault, Nicolas; Achard, Carole; Delaunay, Tiphaine; Cellerin, Laurent; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2015-01-01

    Cancer virotherapy is an attractive alternative to conventional treatments because it offers a wide range of antitumor effects due to 1) the diversity of the oncolytic viruses that are now available and 2) their multifaceted activities against both tumor cells and tumor vessels, in addition to their ability to induce antitumor immune responses. In this review, we summarize preclinical and clinical data regarding the targeting of malignant mesothelioma (MM) by oncolytic viruses. We also discuss the potential of other oncolytic viruses that have already shown antitumor effects against several malignancies in advanced clinical trials but are yet to be tested against MM cells. Finally, we review how the activation of the immune system and combinations with other types of anticancer treatments could support the development of oncolytic virotherapy for the treatment of MM. PMID:27512676

  9. Oncolytic virotherapy for human malignant mesothelioma: recent advances.

    PubMed

    Boisgerault, Nicolas; Achard, Carole; Delaunay, Tiphaine; Cellerin, Laurent; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2015-01-01

    Cancer virotherapy is an attractive alternative to conventional treatments because it offers a wide range of antitumor effects due to 1) the diversity of the oncolytic viruses that are now available and 2) their multifaceted activities against both tumor cells and tumor vessels, in addition to their ability to induce antitumor immune responses. In this review, we summarize preclinical and clinical data regarding the targeting of malignant mesothelioma (MM) by oncolytic viruses. We also discuss the potential of other oncolytic viruses that have already shown antitumor effects against several malignancies in advanced clinical trials but are yet to be tested against MM cells. Finally, we review how the activation of the immune system and combinations with other types of anticancer treatments could support the development of oncolytic virotherapy for the treatment of MM.

  10. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human

    PubMed Central

    Kushwah, Rahul; Guezguez, Borhane; Lee, Jung Bok; Hopkins, Claudia I; Bhatia, Mickie

    2014-01-01

    The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation. PMID:25252682

  11. Giving AXL the axe: targeting AXL in human malignancy.

    PubMed

    Gay, Carl M; Balaji, Kavitha; Byers, Lauren Averett

    2017-02-14

    The receptor tyrosine kinase AXL, activated by a complex interaction between its ligand growth arrest-specific protein 6 and phosphatidylserine, regulates various vital cellular processes, including proliferation, survival, motility, and immunologic response. Although not implicated as an oncogenic driver itself, AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine kinases, is overexpressed in several haematologic and solid malignancies, including acute myeloid leukaemia, non-small cell lung cancer, gastric and colorectal adenocarcinomas, and breast and prostate cancers. In the context of malignancy, evidence suggests that AXL overexpression drives wide-ranging processes, including epithelial to mesenchymal transition, tumour angiogenesis, resistance to chemotherapeutic and targeted agents, and decreased antitumor immune response. As a result, AXL is an attractive candidate not only as a prognostic biomarker in malignancy but also as a target for anticancer therapies. Several AXL inhibitors are currently in preclinical and clinical development. This article reviews the structure, regulation, and function of AXL; the role of AXL in the tumour microenvironment; the development of AXL as a therapeutic target; and areas of ongoing and future investigation.

  12. Giving AXL the axe: targeting AXL in human malignancy

    PubMed Central

    Gay, Carl M; Balaji, Kavitha; Byers, Lauren Averett

    2017-01-01

    The receptor tyrosine kinase AXL, activated by a complex interaction between its ligand growth arrest-specific protein 6 and phosphatidylserine, regulates various vital cellular processes, including proliferation, survival, motility, and immunologic response. Although not implicated as an oncogenic driver itself, AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine kinases, is overexpressed in several haematologic and solid malignancies, including acute myeloid leukaemia, non-small cell lung cancer, gastric and colorectal adenocarcinomas, and breast and prostate cancers. In the context of malignancy, evidence suggests that AXL overexpression drives wide-ranging processes, including epithelial to mesenchymal transition, tumour angiogenesis, resistance to chemotherapeutic and targeted agents, and decreased antitumor immune response. As a result, AXL is an attractive candidate not only as a prognostic biomarker in malignancy but also as a target for anticancer therapies. Several AXL inhibitors are currently in preclinical and clinical development. This article reviews the structure, regulation, and function of AXL; the role of AXL in the tumour microenvironment; the development of AXL as a therapeutic target; and areas of ongoing and future investigation. PMID:28072762

  13. In vitro measurements of ultraweak luminescence of human malignant tumors and healthy tissues

    NASA Astrophysics Data System (ADS)

    Chwirot, B. W.; Chwirot, S.; Jedrzejczyk, W.; Pozniak, V.; Dziczek, D.; Michniewicz, Z.; Jackowski, M.; Raczynska, A. M.; Winczakiewicz, J.

    2001-07-01

    In vitro measurements of levels of ultraweak luminescence were carried out using healthy and malignant tissues obtained from 63 patients undergoing surgical operations for cancers of colon, stomach and breast. The results obtained support recent reports that there is a difference in mean intensities of the ultraweak luminescence emitted from healthy and malignant tissues. This work demonstrates, however, that because of a large scatter among the intensities detected for samples obtained from different patients the differences found for the mean intensities cannot serve as a parameter for differentiating between the malignant and normal human tissues.

  14. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2017-02-14

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  15. REIC/Dkk-3 induces cell death in human malignant glioma.

    PubMed

    Mizobuchi, Yoshifumi; Matsuzaki, Kazuhito; Kuwayama, Kazuyuki; Kitazato, Keiko; Mure, Hideo; Kageji, Teruyoshi; Nagahiro, Shinji

    2008-06-01

    The progression of glioma to more malignant phenotypes results from the stepwise accumulation of genetic alterations and the consequent disruption of the apoptotic pathway and augmentation of survival signaling. REIC/Dkk-3, a member of the human Dickkopf (Dkk) family, plays a role as a suppressor of the growth of several human cancers; however, to date it has not been identified in brain tumors. We compared the gene and protein expression of REIC/Dkk-3 in human malignant glioma and normal brain tissues using quantitative real-time PCR, Western blotting, and immunohistochemistry. We also performed small interfering REIC/Dkk-3 (siREIC/Dkk-3) knockdown and REIC/Dkk-3 overexpression experiments to examine the role of REIC/Dkk-3 in human malignant glioma cells in vitro. In brain tissue from patients with malignant glioma, the gene and protein expression of REIC/Dkk-3 was lower than in normal brain tissue and was related to the malignancy grade. In the primary glioblastoma cell line, REIC/Dkk-3 transfection led to apoptosis owing to the activation of phosphorylated JUN, caspase-9, and caspase-3 and the reduction of beta-catenin; in REIC/Dkk-3 knockdown experiments, cell growth was augmented. Our results suggest that REIC/Dkk-3 regulates the growth and survival of these cells in a caspase-dependent and -independent way via modification of the Wnt signaling pathway. Our work is the first documentation that the gene and protein expression of REIC/Dkk-3 is down-regulated in human malignant glioma. Our demonstration of the mechanisms underlying REIC/Dkk-3-induced cell death indicates that REIC/Dkk-3 plays a pivotal role in the biology of human malignant glioma and suggests that REIC/Dkk-3 is a promising candidate for molecular target therapy.

  16. CHIP: A new modulator of human malignant disorders

    PubMed Central

    Shao, Qianqian; Yang, Gang; Zheng, Lianfang; Zhang, Taiping; Zhao, Yupei

    2016-01-01

    Carboxyl terminus of Hsc70-interacting protein (CHIP) is known as a chaperone-associated E3 for a variety of protein substrates. It acts as a link between molecular chaperones and ubiquitin–proteasome system. Involved in the process of protein clearance, CHIP plays a critical role in maintaining protein homeostasis in diverse conditions. Here, we provide a comprehensive review of our current understanding of CHIP and summarize recent advances in CHIP biology, with a focus on CHIP in the setting of malignancies. PMID:27007160

  17. CHIP: A new modulator of human malignant disorders.

    PubMed

    Cao, Zhe; Li, Guanqiao; Shao, Qianqian; Yang, Gang; Zheng, Lianfang; Zhang, Taiping; Zhao, Yupei

    2016-05-17

    Carboxyl terminus of Hsc70-interacting protein (CHIP) is known as a chaperone-associated E3 for a variety of protein substrates. It acts as a link between molecular chaperones and ubiquitin-proteasome system. Involved in the process of protein clearance, CHIP plays a critical role in maintaining protein homeostasis in diverse conditions. Here, we provide a comprehensive review of our current understanding of CHIP and summarize recent advances in CHIP biology, with a focus on CHIP in the setting of malignancies.

  18. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    SciTech Connect

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  19. AR-Signaling in Human Malignancies: Prostate Cancer and Beyond

    PubMed Central

    Schweizer, Michael T.; Yu, Evan Y.

    2017-01-01

    In the 1940s Charles Huggins reported remarkable palliative benefits following surgical castration in men with advanced prostate cancer, and since then the androgen receptor (AR) has remained the main therapeutic target in this disease. Over the past couple of decades, our understanding of AR-signaling biology has dramatically improved, and it has become apparent that the AR can modulate a number of other well-described oncogenic signaling pathways. Not surprisingly, mounting preclinical and epidemiologic data now supports a role for AR-signaling in promoting the growth and progression of several cancers other than prostate, and early phase clinical trials have documented preliminary signs of efficacy when AR-signaling inhibitors are used in several of these malignancies. In this article, we provide an overview of the evidence supporting the use of AR-directed therapies in prostate as well as other cancers, with an emphasis on the rationale for targeting AR-signaling across tumor types. PMID:28085048

  20. AR-Signaling in Human Malignancies: Prostate Cancer and Beyond.

    PubMed

    Schweizer, Michael T; Yu, Evan Y

    2017-01-11

    In the 1940s Charles Huggins reported remarkable palliative benefits following surgical castration in men with advanced prostate cancer, and since then the androgen receptor (AR) has remained the main therapeutic target in this disease. Over the past couple of decades, our understanding of AR-signaling biology has dramatically improved, and it has become apparent that the AR can modulate a number of other well-described oncogenic signaling pathways. Not surprisingly, mounting preclinical and epidemiologic data now supports a role for AR-signaling in promoting the growth and progression of several cancers other than prostate, and early phase clinical trials have documented preliminary signs of efficacy when AR-signaling inhibitors are used in several of these malignancies. In this article, we provide an overview of the evidence supporting the use of AR-directed therapies in prostate as well as other cancers, with an emphasis on the rationale for targeting AR-signaling across tumor types.

  1. Combined cord blood and bone marrow transplantation from the same human leucocyte antigen-identical sibling donor for children with malignant and non-malignant diseases.

    PubMed

    Tucunduva, Luciana; Volt, Fernanda; Cunha, Renato; Locatelli, Franco; Zecca, Marco; Yesilipek, Akif; Caniglia, Maurizio; Güngör, Tayfun; Aksoylar, Serap; Fagioli, Franca; Bertrand, Yves; Addari, Maria Carmen; de la Fuente, Josu; Winiarski, Jacek; Biondi, Andrea; Sengeloev, Henrik; Badell, Isabel; Mellgren, Karin; de Heredia, Cristina Díaz; Sedlacek, Petr; Vora, Ajay; Rocha, Vanderson; Ruggeri, Annalisa; Gluckman, Eliane

    2015-04-01

    Umbilical cord blood (UCB) from an human leucocyte antigen (HLA)-identical sibling can be used for transplantation of patients with malignant and non-malignant diseases. However, the low cellular content of most UCB units represents a limitation to this approach. An option to increase cell dose is to harvest bone marrow (BM) cells from the same donor and infuse them along with the UCB. We studied 156 children who received such a combined graft between 1992 and 2011. Median age was 7 years and 78% of patients (n = 122) were transplanted for non-malignant diseases, mainly haemoglobinopathies. Acute leukaemia (n = 26) was the most frequent malignant diagnosis. Most patients (91%) received myeloablative conditioning. Median donor age was 1·7 years, median infused nucleated cell dose was 24·4 × 10(7) /kg and median follow-up was 41 months. Sixty-days neutrophil recovery occurred in 96% of patients at a median of 17 d. The probabilities of grade-II-IV acute and chronic graft-versus-host disease (GVHD) were 19% and 10%, respectively. Four-year overall survival was 90% (68% malignant; 97% non-malignant diseases) with 3% probability of death. In conclusion, combined UCB and BM transplantation from an HLA-identical sibling donor is an effective treatment for children with malignant and non-malignant disorders with high overall survival and low incidence of GVHD.

  2. Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma.

    PubMed

    Ochs, Katharina; Sahm, Felix; Opitz, Christiane A; Lanz, Tobias V; Oezen, Iris; Couraud, Pierre-Olivier; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2013-12-15

    Malignant gliomas are primary brain tumors characterized by profound local immunosuppression. While the remarkable plasticity of perivascular cells - resembling mesenchymal stem cells (MSC) - in malignant gliomas and their contribution to angiogenesis is increasingly recognized, their role as potential mediators of immunosuppression is unknown. Here we demonstrate that FACS-sorted malignant glioma-derived pericytes (HMGP) were characterized by the expression of CD90, CD248, and platelet-derived growth factor receptor-β (PDGFR-β). HMGP shared this expression profile with human brain vascular pericytes (HBVP) and human MSC (HMSC) but not human cerebral microvascular endothelial cells (HCMEC). CD90+PDGFR-β+perivascular cells distinct from CD31+ endothelial cells accumulated in human gliomas with increasing degree of malignancy and negatively correlated with the presence of blood vessel-associated leukocytes and CD8+ T cells. Cultured CD90+PDGFR-β+HBVP were equally capable of suppressing allogeneic or mitogen-activated T cell responses as human MSC. HMGP, HBVP and HMSC expressed prostaglandin E synthase (PGES), inducible nitric oxide synthase (iNOS), human leukocyte antigen-G (HLA-G), hepatocyte growth factor (HGF) and transforming growth factor-β (TGF-β). These factors but not indoleamine 2,3-dioxygenase-mediated conversion of tryptophan to kynurenine functionally contributed to immunosuppression of immature pericytes. Our data provide evidence that human cerebral CD90+ perivascular cells possess T cell inhibitory capability comparable to human MSC and suggest that these cells, besides their critical role in tumor vascularization, also promote local immunosuppression in malignant gliomas and possibly other brain diseases.

  3. Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal.

    PubMed

    Ray, M; Basu, N; Ray, S

    1997-12-01

    The effect of methylglyoxal on the activity of glyceraldehyde-3-phosphate dehydrogenase (GA3PD) of several normal human tissues and benign and malignant tumors has been tested. Methylglyoxal inactivated GA3PD of all the malignant cells (47 samples) and the degree of inactivation was in the range of 25-90%, but it had no inhibitory effect on this enzyme from several normal cells (24 samples) and benign tumors (13 samples). When the effect of methylglyoxal on other two dehydrogenases namely glucose 6-phosphate dehydrogenase (G6PD) and L-lactic dehydrogenase (LDH) of similar cells was tested as controls it has been observed that methylglyoxal has some inactivating effect on G6PD of all the normal, benign and malignant samples tested, whereas, LDH remained completely unaffected. These studies indicate that the inactivating effect of methylglyoxal on GA3PD specifically of the malignant cells may be a common feature of all the malignant cells, and this phenomenon can be used as a simple and rapid device for the detection of malignancy.

  4. Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid.

    PubMed

    Chodurek, Ewa; Orchel, Arkadiusz; Orchel, Joanna; Kurkiewicz, Sławomir; Gawlik, Natalia; Dzierżewicz, Zofia; Stępień, Krystyna

    2012-12-01

    Malignant melanoma (melanoma malignum) is one of the most dangerous types of tumor. It is very difficult to cure. In recent years, a lot of attention has been given to chemoprevention. This method uses natural and synthetic compounds to interfere with and inhibit the process of carcinogenesis. In this study, a new treatment strategy was proposed consisting of a combination of 5,7-dimethoxycoumarin (DMC), an activator of melanogenesis, and valproic acid (VPA), a well-known drug that is one of the histone deacetylase inhibitors (HDACis). In conjunction with 1 mM VPA, all of the tested concentrations of DMC (10-150 μM) significantly decreased the proliferation of A-375 cells. VPA and DMC also induced the synthesis of melanin and the formation of dendrite and star-shaped cells. Tyrosinase gene expression and tyrosinase activity significantly increased in response to VPA treatment. Pyrolysis with gas chromatography and mass spectrometry (Py-GC/MS) was used to investigate the structure of the isolated melanin. This showed that the quantitative and qualitative components of melanin degradation products are dependent on the type of applied melanogenesis inductor. Products derived from eumelanin were detected in the pyrolytic profile of melanin isolated from A-375 cells stimulated with DMC. Thermal degradation of melanin isolated from melanoma cells after exposure to VPA or a mixture of VPA and DMC revealed the additional presence of products derived from pheomelanin.

  5. Human immunodeficiency virus infection and female lower genital tract malignancy.

    PubMed

    Kuhn, L; Sun, X W; Wright, T C

    1999-02-01

    The risk of lower genital tract neoplasia is increased in women infected with HIV. This has been best demonstrated in cervical squamous intraepithelial lesions, but has also been observed in vulvar and perianal intraepithelial lesions in some studies. Alterations in the prevalence and natural history of human papillomavirus infections of the lower genital tract appear to account for much of the increase. HIV-infected women are approximately four times more likely to be infected with human papillomavirus (including infection with high oncogenic risk human papillomavirus types) than are HIV-uninfected women, and these infections are more likely to be persistent. Human papilomavirus-associated lesions may be more difficult to treat in HIV-infected women. These data highlight the need to develop effective cervical cancer prevention programs for HIV-infected women.

  6. Patient-Derived Xenograft Establishment from Human Malignant Pleural Mesothelioma.

    PubMed

    Wu, Licun; Allo, Ghassan; John, Thomas; Li, Ming; Tagawa, Tetsuzo; Opitz, Isabelle; Anraku, Masaki; Yun, Zhihong; Pintilie, Melania; Pitcher, Bethany; Liu, Geoffrey; Feld, Ron; Johnston, Michael R; de Perrot, Marc; Tsao, Ming-Sound

    2017-02-15

    Purpose: Malignant pleural mesothelioma (MPM) is a rare but aggressive disease with few therapeutic options. The tumor-stromal interface is important in MPM, but this is lost in cell lines, the main model used for preclinical studies. We sought to characterize MPM patient-derived xenografts (PDX) to determine their suitability as preclinical models and whether tumors that engraft reflect a more aggressive biological phenotype.Experimental Design: Fresh tumors were harvested from extrapleural pneumonectomy, decortication, or biopsy samples of 50 MPM patients and implanted subcutaneously into immunodeficient mice and serially passaged for up to five generations. We correlated selected mesothelioma biomarkers between PDX and patient tumors, and PDX establishment with the clinical pathologic features of the patients, including their survival. DNA of nine PDXs was profiled using the OncoScan FFPE Express platform. Ten PDXs were treated with cisplatin and pemetrexed.Results: A PDX was formed in 20 of 50 (40%) tumors implanted. Histologically, PDX models closely resembled the parent tumor. PDX models formed despite preoperative chemotherapy and radiotherapy. In multivariable analysis, patients whose tumors formed a PDX had significantly poorer survival when the model was adjusted for preoperative treatment (HR, 2.46; 95% confidence interval, 1.1-5.52; P = 0.028). Among 10 models treated with cisplatin, seven demonstrated growth inhibition. Genomic abnormalities seen in nine PDX models were similar to that previously reported.Conclusions: Patients whose tumors form PDX models have poorer clinical outcomes. MPM PDX tumors closely resemble the genotype and phenotype of parent tumors, making them valuable models for preclinical studies. Clin Cancer Res; 23(4); 1060-7. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Myosin VI contributes to malignant proliferation of human glioma cells

    PubMed Central

    Xu, Rong; Fang, Xu-hao

    2016-01-01

    Previously characterized as a backward motor, myosin VI (MYO6), which belongs to myosin family, moves toward the minus end of the actin track, a direction opposite to all other known myosin members. Recent researches have illuminated the role of MYO6 in human cancers, particularly in prostate cancer. However, the role of MYO6 in glioma has not yet been determined. In this study, to explore the role of MYO6 in human glioma, lentivirus-delivered short hairpin RNA (shRNA) targeting MYO6 was designed to stably down-regulate its endogenous expression in glioblastoma cells U251. Knockdown of MYO6 signifi cantly inhibited viability and proliferation of U251 cells in vitro. Moreover, the cell cycle of U251 cells was arrested at G0/G1 phase with the absence of MYO6, which could contribute to the suppression of cell proliferation. In conclusion, we firstly identified the crucial involvement of MYO6 in human glioma. The inhibition of MYO6 by shRNA might be a potential therapeutic method in human glioma. PMID:26937209

  8. Malignant Transformation of Hymenolepis nana in a Human Host.

    PubMed

    Muehlenbachs, Atis; Bhatnagar, Julu; Agudelo, Carlos A; Hidron, Alicia; Eberhard, Mark L; Mathison, Blaine A; Frace, Michael A; Ito, Akira; Metcalfe, Maureen G; Rollin, Dominique C; Visvesvara, Govinda S; Pham, Cau D; Jones, Tara L; Greer, Patricia W; Vélez Hoyos, Alejandro; Olson, Peter D; Diazgranados, Lucy R; Zaki, Sherif R

    2015-11-05

    Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer.

  9. Nuclear magnetic resonance in cancer, XII: Application of NMR malignancy index to human lung tumours.

    PubMed Central

    Goldsmith, M.; Koutcher, J. A.; Damadian, R.

    1977-01-01

    Sixty specimens of human lung tissue from 52 individuals were inspected at 22.5 MHz by proton magnetic resonance techniques. The purpose of the study was to evaluate the diagnostic capabilities of the nuclear magnetic resonance (NMR) technique for the diagnosis of malignancy. The combination of two NMR parameters (spin-lattice (T1) and spin-spin (T2) relaxation times) into a malignancy index yielded 3 cases of overlap between the two populations of tissue. The mean and standard deviations obtained were 1.966 +/- 0.262 for normal tissue, and 2.925 +/- 0.864 for malignant specimens. In addition, analysis of the electrolyte and water content of the tissues confirm that factors other than specimen water content influence the relaxation time. PMID:911662

  10. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis.

    PubMed

    Lazarov, Mirella; Kubo, Yoshiaki; Cai, Ti; Dajee, Maya; Tarutani, Masahito; Lin, Qun; Fang, Min; Tao, Shiying; Green, Cheryl L; Khavari, Paul A

    2002-10-01

    Ras acts with other proteins to induce neoplasia. By itself, however, strong Ras signaling can suppress proliferation of normal cells. In primary epidermal cells, we found that oncogenic Ras transiently decreases cyclin-dependent kinase (CDK) 4 expression in association with cell cycle arrest in G1 phase. CDK4 co-expression circumvents Ras growth suppression and induces invasive human neoplasia resembling squamous cell carcinoma. Tumorigenesis is dependent on CDK4 kinase function, with cyclin D1 required but not sufficient for this process. In facilitating escape from G1 growth restraints, Ras and CDK4 alter the composition of cyclin D and cyclin E complexes and promote resistance to growth inhibition by INK4 cyclin-dependent kinase inhibitors. These data identify a new role for oncogenic Ras in CDK4 regulation and highlight the functional importance of CDK4 suppression in preventing uncontrolled growth.

  11. Confocal reflectance imaging of excised malignant human bladder biopsies

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri I.; Kastein, Albrecht; Koenig, Frank; Sachs, Markus; Schnorr, Dietmar; Al-Shukri, Salman; Loening, Stefan A.

    2004-08-01

    To evaluate the potential of reflectance confocal scanning laser microscopy (CM) for rapid imaging of non-processed freshly excised human bladder biopsies and cystectomy specimens. Freshly excised bladder tumors from three cystectomy specimens and random biopsies from twenty patients with a history of superficial bladder tumors were imaged with CM. Additional acetic acid washing prior to CM imaging was performed in some of the samples. Confocal images were compared to corresponding routine histologic sections. CM allows imaging of unprocessed bladder tissue at a subcellular resolution. Urothelial cell layers, collagen, vessels and muscle fibers can be rapidly visualized, in native state. In this regard, umbrella cells, basement membrane elucidated. Besides obvious limitations partly due to non-use of exogenous dyes, CM imaging offers several advantages: rapid imaging of the tissue in its native state like the basement membrane, normally seen only by using immunohistopathology. Reflectance CM opens a new avenue for imaging bladder cancer.

  12. p120 GAP requirement in normal and malignant human hematopoiesis

    PubMed Central

    1993-01-01

    There is evidence to suggest that the p120 GAP (GAP), originally described as an inhibitor of p21ras, may also serve as a downstream effector of ras-regulated signal transduction. To determine whether GAP expression is required for the growth of human normal and leukemic hematopoietic cells, we used GAP antisense oligodeoxynucleotides to inhibit it and analyzed the effects of this inhibition on the colony- forming ability of nonadherent, T lymphocyte-depleted mononuclear cells and of highly purified progenitors (CD34+ MNC) obtained from the bone marrow and peripheral blood of healthy volunteers or chronic myeloid leukemia (CML, bcr-abl-positive) patients. The acute myelogenous leukemia cell line MO7, the Philadelphia BV173 cell line, and the acute promyelocytic leukemia NB4 and HL-60 cell lines were similarly examined. GAP antisense treatment inhibited colony formation from normal myelo-, erythro-, and megakaryopoietic progenitor cells as well as from CML progenitor cells. Proliferation of MO7 (growth factor- dependent) and BV173 (bcr-abl-dependent) cells, but not that of NB4 and HL-60 (growth factor-independent) cells, was also inhibited, even though a specific downregulation of GAP was observed in each cell line, as analyzed by either or both mRNA and protein expression. Stimulation of MO7 cells with hematopoietic growth factors increased the expression of GAP as well as the levels of active GTP-bound p21ras. Stimulation of GAP expression was inhibited upon GAP antisense treatment. These data indicate that p120 GAP is involved in human normal and leukemic hemopoiesis and strongly suggest that GAP is not only a p21ras inhibitor (signal terminator), but also a positive signal transducer. PMID:8245773

  13. O6.09PROSTAGLANDIN E RECEPTOR-4 ACTIVATION REGULATES TRYPTOPHAN METABOLISM IN HUMAN MALIGNANT GLIOMAS

    PubMed Central

    Ochs, K.; Ott, M.; Rauschenbach, K.J.; Sahm, F.; Opitz, C.A.; von Deimling, A.; Wick, W.; Platten, M.

    2014-01-01

    Malignant gliomas generate a local immunosuppressive microenvironment as well as systemic immunosuppression. Tryptophan-2,3-dioxygenase (TDO)-mediated tryptophan metabolism and the production of immunosuppressive prostaglandins relevantly contribute to this inhibition of anti-glioma immune responses. We now connect these two critical immunosuppressive pathways by demonstrating that prostaglandins enhance TDO expression and enzymatic activity in malignant gliomas via activation of prostaglandin E receptor-4 (EP4). Stimulation with prostaglandin E2 (PGE2) concentration-dependently upregulates TDO-mediated kynurenine release in human glioma cell lines, while knockdown of the PGE2 receptor EP4 inhibits TDO expression and activity. In tissue of human malignant gliomas expression of the PGE2-producing enzyme cyclooxygenase-2 (COX-2) and its receptor EP4 are associated with TDO expression both on transcript and protein level. Of clinical relevance, high expression of EP4 correlates with poor survival in patients with gliomas of the WHO grades III and IV. Importantly, treatment of glioma cells with an EP4 inhibitor decreased TDO expression and activity. In summary targeting EP4 may inhibit both immunosuppressive COX-2 signaling as well as tryptophan degradation and thus could provide a novel immunotherapeutic avenue for the treatment of malignant gliomas.

  14. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine.

    PubMed

    Bedia, Carmen; Casas, Josefina; Andrieu-Abadie, Nathalie; Fabriàs, Gemma; Levade, Thierry

    2011-08-12

    Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma.

  15. Human rgr: transforming activity and alteration in T-cell malignancies.

    PubMed

    Leonardi, Peter; Kassin, Ezra; Hernandez-Muñoz, Inmaculada; Diaz, Roberto; Inghirami, Giorgio; Pellicer, Angel

    2002-08-01

    We have previously identified the oncogene rgr (ralGDS related) in DNA derived from a rabbit squamous cell carcinoma. Here we describe the identification of the human orthologue of the rabbit rgr gene termed hrgr (human ralGDS related). Four alternatively spliced full-length hrgr transcripts were isolated from normal human testes and liver libraries. Truncation of hrgr confers transforming ability to its cDNA. Using a RT-PCR assay we have been able to detect the expression of an abnormally truncated transcript in several human T-cell lymphoma lines, and in fresh tissue samples of patients with T-cell malignancies. In the DHL cell line, an Anaplastic Large Cell Lymphoma (ALCL) line, a DNA rearrangement was detected within the hrgr gene region. We propose that these T-cell lymphomas, at least in part, owe their malignant phenotypes to genetic alterations of the hrgr gene. These findings also raise the possibility that mutations in the hrgr gene are involved in other malignancies.

  16. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    NASA Astrophysics Data System (ADS)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  17. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  18. Modeling normal and malignant human hematopoiesis in vivo through newborn NSG xenotransplantation.

    PubMed

    Ishikawa, Fumihiko

    2013-12-01

    Various strains of immune-compromised mice have been developed to investigate human normal and malignant stem cells in vivo. NOD/SCID mice harboring complete null mutation of Il2rg (NSG mice) lack T cells, B cells, and NK cells, and support high levels of engraftment by human cord blood hematopoietic stem cells (CB HSCs) and acute myeloid leukemia stem cells (AML LSCs). In addition to achieving high levels of human hematopoietic cell engraftment, use of newborn NSG mice as recipients has enabled the investigation into how human CB HSCs generate mature immune subsets in vivo. Moreover, through establishing an in vivo model of human primary AML by xenotransplantation of human LSCs into newborn NSG mice, functional properties of human AML such as cell cycle, location, and self-renewal capacity can be examined in vivo. Newborn NSG xenogeneic transplantation model may facilitate the understanding of human normal and malignant hematopoiesis and contribute to the development of novel therapies against hematologic diseases.

  19. Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype.

    PubMed

    Benbrahim-Tallaa, Lamia; Tokar, Erik J; Diwan, Bhalchandra A; Dill, Anna L; Coppin, Jean-François; Waalkes, Michael P

    2009-12-01

    Breast cancer has recently been linked to cadmium exposure. Although not uniformly supported, it is hypothesized that cadmium acts as a metalloestrogenic carcinogen via the estrogen receptor (ER). Thus, we studied the effects of chronic exposure to cadmium on the normal human breast epithelial cell line MCF-10A, which is ER-negative but can convert to ER-positive during malignant transformation. Cells were continuously exposed to low-level cadmium (2.5 muM) and checked in vitro and by xenograft study for signs of malignant transformation. Transformant cells were molecularly characterized by protein and transcript analysis of key genes in breast cancer. Over 40 weeks of cadmium exposure, cells showed increasing secretion of matrix metalloproteinase-9, loss of contact inhibition, increased colony formation, and increasing invasion, all typical for cancer cells. Inoculation of cadmium-treated cells into mice produced invasive, metastatic anaplastic carcinoma with myoepithelial components. These cadmium-transformed breast epithelial (CTBE) cells displayed characteristics of basal-like breast carcinoma, including ER-alpha negativity and HER2 (human epidermal growth factor receptor 2) negativity, reduced expression of BRCA1 (breast cancer susceptibility gene 1), and increased CK5 (cytokeratin 5) and p63 expression. CK5 and p63, both breast stem cell markers, were prominently overexpressed in CTBE cell mounds, indicative of persistent proliferation. CTBE cells showed global DNA hypomethylation and c-myc and k-ras overexpression, typical in aggressive breast cancers. CTBE cell xenograft tumors were also ER-alpha negative. Cadmium malignantly transforms normal human breast epithelial cells-through a mechanism not requiring ER-alpha-into a basal-like cancer phenotype. Direct cadmium induction of a malignant phenotype in human breast epithelial cells strongly fortifies a potential role in breast cancer.

  20. The softening of human bladder cancer cells happens at an early stage of the malignancy process

    PubMed Central

    Ramos, Jorge R; Pabijan, Joanna

    2014-01-01

    Summary Various studies have demonstrated that alterations in the deformability of cancerous cells are strongly linked to the actin cytoskeleton. By using atomic force microscopy (AFM), it is possible to determine such changes in a quantitative way in order to distinguish cancerous from non-malignant cells. In the work presented here, the elastic properties of human bladder cells were determined by means of AFM. The measurements show that non-malignant bladder HCV29 cells are stiffer (higher Young’s modulus) than cancerous cells (HTB-9, HT1376, and T24 cell lines). However, independently of the histological grade of the studied bladder cancer cells, all cancerous cells possess a similar level of the deformability of about a few kilopascals, significantly lower than non-malignant cells. This underlines the diagnostic character of stiffness that can be used as a biomarker of bladder cancer. Similar stiffness levels, observed for cancerous cells, cannot be fully explained by the organization of the actin cytoskeleton since it is different in all malignant cells. Our results underline that it is neither the spatial organization of the actin filaments nor the presence of stress fibers, but the overall density and their 3D-organization in a probing volume play the dominant role in controlling the elastic response of the cancerous cell to an external force. PMID:24778971

  1. Fourier component imaging of water resonance in the human breast provides markers for malignancy

    NASA Astrophysics Data System (ADS)

    Medved, Milica; Newstead, Gillian M.; Fan, Xiaobing; Du, Yiping P.; Olopade, Olufunmilayo I.; Shimauchi, Akiko; Zamora, Marta A.; Karczmar, Gregory S.

    2009-10-01

    The purpose of this paper is to demonstrate that voxels with inhomogeneously broadened water resonances, as revealed by high spectral and spatial resolution (HiSS) MRI, correlate with underlying tumor pathology findings, and thus carry diagnostically useful information. Thirty-four women with mammographically suspicious breast lesions were imaged at 1.5 T, using high-resolution echo-planar spectroscopic imaging. Fourier component images (FCIs) of the off-peak spectral signal were generated, and clusters of voxels with significant inhomogeneous broadening (broadened clusters) were identified and correlated to biopsy results. Inhomogeneously broadened clusters were found significantly more frequently in malignant than in benign lesions. A larger percentage of broadened cluster voxels were found inside the malignant versus benign lesions. The high statistical significance for separation of benign and malignant lesions was robust over a large range of post-processing parameters, with a maximum ROC area under curve of 0.83. In the human breast, an inhomogeneously broadened water resonance can serve as a correlate marker for malignancy and is likely to reflect the underlying anatomy or physiology.

  2. Regulatory landscape and clinical implication of MBD3 in human malignant glioma

    PubMed Central

    Weng, Ling; Wirbisky, Sara E.; Freeman, Jennifer L.; Liu, Jingping; Liu, Qing; Yuan, Xianrui; Irudayaraj, Joseph

    2016-01-01

    In this article we inspect the roles and functions of the methyl-CpG-binding domain protein 3 (MBD3) in human malignant glioma, to assess its potential as an epigenetic biomarker for prognosis. The regulatory effects of MBD3 on glioma transcriptome were first profiled by high-throughput microarray. Our results indicate that MBD3 is involved in both transcriptional activation and repression. Furthermore, MBD3 fine-controls a spectrum of proteins critical for cellular metabolism and proliferation, thereby contributing to an exquisite anti-glioma network. Specifically, the expression of MHC class II molecules was found to positively correlate with MBD3, which provides new insight into the immune escape of gliomagenesis. In addition, MBD3 participates in constraining a number of oncogenic non-coding RNAs whose over-activation could drive cells into excessive growth and higher malignancy. Having followed up a pilot cohort, we noted that the survival of malignant glioma patients was proportional to the content of MBD3 and 5-hydroxymethylcytosine (5hmC) in their tumor cells. The progression-free survival (PFS) and overall survival (OS) were relatively poor for patients with lower amount of MBD3 and 5hmC in the tissue biopsies. Taken together, this work enriches our understanding of the mechanistic involvement of MBD3 in malignant glioma. PMID:27835581

  3. The softening of human bladder cancer cells happens at an early stage of the malignancy process.

    PubMed

    Ramos, Jorge R; Pabijan, Joanna; Garcia, Ricardo; Lekka, Malgorzata

    2014-01-01

    Various studies have demonstrated that alterations in the deformability of cancerous cells are strongly linked to the actin cytoskeleton. By using atomic force microscopy (AFM), it is possible to determine such changes in a quantitative way in order to distinguish cancerous from non-malignant cells. In the work presented here, the elastic properties of human bladder cells were determined by means of AFM. The measurements show that non-malignant bladder HCV29 cells are stiffer (higher Young's modulus) than cancerous cells (HTB-9, HT1376, and T24 cell lines). However, independently of the histological grade of the studied bladder cancer cells, all cancerous cells possess a similar level of the deformability of about a few kilopascals, significantly lower than non-malignant cells. This underlines the diagnostic character of stiffness that can be used as a biomarker of bladder cancer. Similar stiffness levels, observed for cancerous cells, cannot be fully explained by the organization of the actin cytoskeleton since it is different in all malignant cells. Our results underline that it is neither the spatial organization of the actin filaments nor the presence of stress fibers, but the overall density and their 3D-organization in a probing volume play the dominant role in controlling the elastic response of the cancerous cell to an external force.

  4. TRPM7 channel inhibition mediates midazolam-induced proliferation loss in human malignant glioma.

    PubMed

    Chen, Jingkao; Dou, Yunling; Zheng, Xiaoke; Leng, Tiandong; Lu, Xiaofang; Ouyang, Ying; Sun, Huawei; Xing, Fan; Mai, Jialuo; Gu, Jiayu; Lu, Bingzheng; Yan, Guangmei; Lin, Jun; Zhu, Wenbo

    2016-11-01

    The melastatin-like transient receptor potential 7 (TRPM7) has been implicated in proliferation or apoptosis of some cancers, indicating the potential of TRPM7 as an anti-anaplastic target. Here, we identified the characteristic TRPM7 channel currents in human malignant glioma MGR2 cells, which could be blocked by a pharmacologic inhibitor Gd(3+). We mined the clinical sample data from Oncomine Database and found that human malignant glioma tissues expressed higher TRPM7 mRNA than normal brain ones. Importantly, we identified a widely used clinical anesthetic midazolam as a TRPM7 inhibitor. Midazolam treatment for seconds suppressed the TRPM7 currents and calcium influx, and treatment for 48 h inhibited the TRPM7 expression. The inhibitory effect on TRPM7 accounts for the proliferation loss and G0/G1 phase cell cycle arrest induced by midazolam. Our data demonstrates that midazolam represses proliferation of human malignant glioma cells through inhibiting TRPM7 currents, which may be further potentiated by suppressing the expression of TRPM7. Our result indicates midazolam as a pharmacologic lead compound with brain-blood barrier permeability for targeting TRPM7 in the glioma.

  5. Enhancement of drug sensitivity of human malignancies by epidermal growth factor.

    PubMed Central

    Kröning, R.; Jones, J. A.; Hom, D. K.; Chuang, C. C.; Sanga, R.; Los, G.; Howell, S. B.; Christen, R. D.

    1995-01-01

    We have previously shown that epidermal growth factor (EGF) enhances the in vitro and in vivo sensitivity of human ovarian carcinoma 2008 cells to cisplatin. EGF was found to enhance selectively the in vivo toxicity of cisplatin to 2008 cell xenografts without altering the toxicity of cisplatin to non-malignant target tissues such as the kidney or bone marrow. We now show that recombinant human EGF (rhEGF) enhances the cisplatin sensitivity of cell lines representative of many other types of malignancies in addition to ovarian carcinoma, including cancers of the head and neck, cervix, colon, pancreas and prostate, as well as non-small-cell carcinoma of the lung. In addition, rhEGF was found to sensitise cells to other platinum-containing drugs and several other classes of chemotherapeutic agents. rhEGF sensitised 2008 cells not only to cisplatin, but also to carboplatin and tetraplatin, as well as taxol, melphalan and 5-fluorouracil. We conclude that modulation of drug sensitivity by rhEGF is observed in cell lines representative of many human malignancies and for multiple classes of chemotherapeutic agents, indicating that it alters one or more components of the cellular damage response that are both common between cell lines and classes of drugs and fundamental to survival. Images Figure 2 PMID:7669570

  6. Overabundance of Putative Cancer Stem Cells in Human Skin Keratinocyte Cells Malignantly Transformed by Arsenic

    PubMed Central

    Sun, Yang; Tokar, Erik J.; Waalkes, Michael P.

    2012-01-01

    Arsenic is a human skin carcinogen. Cancer is probably a disease driven by stem cells (SCs), and SCs are likely a key target during arsenic oncogenesis. In utero arsenic exposure predisposes mice to skin cancers that overproduce cancer SCs (CSCs) and have distorted CSC signaling and population dynamics. Therefore, we hypothesized CSC accumulation may occur during arsenic-induced malignant transformation in vitro of human skin keratinocytes. Thus, the HaCaT cell line, malignantly transformed by arsenite (100nM, 30 weeks; termed As-TM cells) in prior work, was further studied for the quantity and nature of SCs after this transformation. SCs were isolated from passage-matched control and As-TM cells by a magnetic bead system that enriches for CD34-positive cells. There were 2.5 times more SCs isolated from As-TM cells than control. Holoclone production from As-TM putative CSCs was 2.5-fold higher by 1 week and 3.5-fold higher by 2 weeks than control SCs. Potential malignant phenotype was assessed in isolated SC/CSCs. Transcript level of SC/CSC markers were elevated in both isolated As-TM CSCs and control SCs compared with parental cells, but compared with control SCs, As-TM putative CSCs had elevated CD34, K5, K14, K15, and K19 transcripts and dramatically stronger staining for p63, Rac1, K5, Notch1, and K19. As-TM putative CSCs also showed markedly elevated MMP-9 secretion and colony formation, indicators of cancer phenotype, even compared with total population of As-TM cells. Thus, malignant phenotype is particularly pronounced in CSCs after arsenic-induced transformation of human skin cells and occurs concurrently with a potential overproduction of these cells. PMID:22011395

  7. Dielectric spectroscopy of normal and malignant human lung cells at ultra-high frequencies.

    PubMed

    Egot-Lemaire, S; Pijanka, J; Sulé-Suso, J; Semenov, S

    2009-04-21

    Microwave techniques for biomedical applications aimed at cancer treatment or diagnosis, either by imaging or spectroscopy, are promising. Their use relies on knowledge of the dielectric properties of tissues, especially on a detectable difference between malignant and normal tissues. As most studies investigated the dielectric properties of ex vivo tissues, there is a need for better biophysical understanding of human tissues in their living state. As an essential component of tissues, cells represent valuable objects of analysis. The approach developed in this study is an investigation at cell level. Its aim was to compare human lung normal and malignant cells by dielectric spectroscopy in the beginning of the microwave range, where such information is of substantial biomedical importance. These cells were embedded in small and low-conductivity agarose hydrogels and laid on an open-ended coaxial probe connected to a vector network analyser operated from 200 MHz to 2 GHz. The comparison between normal and malignant cells was drawn using the variation of measured dielectric properties and fitting the measurements using the Maxwell-Wagner equation. Both methods revealed slight differences between the two cell lines, which were statistically significant regarding conductivities of composite gels and cells.

  8. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming

    2008-02-01

    Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.

  9. The Sodium Iodide Symporter (NIS) and Potential Regulators in Normal, Benign and Malignant Human Breast Tissue

    PubMed Central

    Ryan, James; Curran, Catherine E.; Hennessy, Emer; Newell, John; Morris, John C.; Kerin, Michael J.; Dwyer, Roisin M.

    2011-01-01

    Introduction The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro. Methods Human breast tissue specimens (malignant n = 75, normal n = 15, fibroadenoma n = 10) were analysed by RQ-PCR targeting NIS, receptors for retinoic acid (RARα, RARβ), oestrogen (ERα), thyroid hormones (THRα, THRβ), and also phosphoinositide-3-kinase (PI3K). Breast cancer cells were treated with Retinoic acid (ATRA), Estradiol and Thyroxine individually and in combination followed by analysis of changes in NIS expression. Results The lowest levels of NIS were detected in normal tissue (Mean(SEM) 0.70(0.12) Log10 Relative Quantity (RQ)) with significantly higher levels observed in fibroadenoma (1.69(0.21) Log10RQ, p<0.005) and malignant breast tissue (1.18(0.07) Log10RQ, p<0.05). Significant positive correlations were observed between human NIS and ERα (r = 0.22, p<0.05) and RARα (r = 0.29, p<0.005), with the strongest relationship observed between NIS and RARβ (r = 0.38, p<0.0001). An inverse relationship between NIS and PI3K expression was also observed (r = −0.21, p<0.05). In vitro, ATRA, Estradiol and Thyroxine individually stimulated significant increases in NIS expression (range 6–16 fold), while ATRA and Thyroxine combined caused the greatest increase (range 16–26 fold). Conclusion Although NIS expression is significantly higher in malignant compared to normal breast tissue, the highest level was detected in fibroadenoma. The data presented supports a role for retinoic acid and estradiol in mammary NIS regulation in vivo, and also highlights potential thyroidal regulation of mammary NIS mediated by thyroid hormones. PMID:21283523

  10. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    PubMed

    Ryan, James; Curran, Catherine E; Hennessy, Emer; Newell, John; Morris, John C; Kerin, Michael J; Dwyer, Roisin M

    2011-01-19

    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro. Human breast tissue specimens (malignant n = 75, normal n = 15, fibroadenoma n = 10) were analysed by RQ-PCR targeting NIS, receptors for retinoic acid (RARα, RARβ), oestrogen (ERα), thyroid hormones (THRα, THRβ), and also phosphoinositide-3-kinase (PI3K). Breast cancer cells were treated with Retinoic acid (ATRA), Estradiol and Thyroxine individually and in combination followed by analysis of changes in NIS expression. The lowest levels of NIS were detected in normal tissue (Mean(SEM) 0.70(0.12) Log(10) Relative Quantity (RQ)) with significantly higher levels observed in fibroadenoma (1.69(0.21) Log(10)RQ, p<0.005) and malignant breast tissue (1.18(0.07) Log(10)RQ, p<0.05). Significant positive correlations were observed between human NIS and ERα (r = 0.22, p<0.05) and RARα (r = 0.29, p<0.005), with the strongest relationship observed between NIS and RARβ (r = 0.38, p<0.0001). An inverse relationship between NIS and PI3K expression was also observed (r =  0.21, p<0.05). In vitro, ATRA, Estradiol and Thyroxine individually stimulated significant increases in NIS expression (range 6-16 fold), while ATRA and Thyroxine combined caused the greatest increase (range 16-26 fold). Although NIS expression is significantly higher in malignant compared to normal breast tissue, the highest level was detected in fibroadenoma. The data presented supports a role for retinoic acid and estradiol in mammary NIS regulation in vivo, and also highlights potential thyroidal regulation of mammary NIS mediated by thyroid hormones.

  11. High prevelance of human parvovirus infection in patients with malignant tumors

    PubMed Central

    LI, YASHA; DONG, YANMING; JIANG, JUN; YANG, YONGBO; LIU, KAIYU; LI, YI

    2012-01-01

    It is well known that the immunity of patients with malignant tumors decreases significantly. An increased parvovirus B19 (B19) infection rate has been observed in immunocompromised hosts. However, only a small amount of literature regarding the risk of human parvovirus infection in patients with malignant tumors is available. To evaluate the correlation of human parvovirus infection with malignant tumors, 288 serum samples from patients with malignant tumors were screened for B19 DNA by nested-PCR. The serum samples, 156 of which were from known clinicopathological cancer patients, were subjected to analysis of the seropositive rate of human bocavirus (HBoV), hepatitis B virus (HBV) and transfusion transmitted virus (TTV) by PCR. A total of 800 normal population sera and 941 aspirate samples from children with respiratory tract infections were used as controls for the detection of B19 and HBoV, respectively. Pairwise comparison between cancerous serum and control samples, and the correlation between parvovirus infection and clinicopathological variables, including gender and cancer type, were evaluated using the χ2 test, Fisher’s exact test or the t-test. P<0.05 was considered to indicate a statistically significant difference. The overall prevalence of B19 DNA in cancer patients was 50.69% (146/288), which was significantly higher than that of the healthy controls with 4.5% (36/800) (χ2 test, P<0.0001). Similar results were obtained for HBoV with a 39.74% (62/156) prevalence in cancer patients. However, the infection prevalence of HBV and TTV in the cancer patients was 5.13 (8/156) and 6.41% (10/156), respectively (P<0.0001), which was much less than that of B19 and HBoV. These results revealed that a high risk of B19 and HBoV infection occurred in cancer patients, and a potential correlation exists between parvovirus infection and occurrence of malignant tumors. PMID:22740966

  12. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas

    SciTech Connect

    Yamaguchi, F.; Saya, H.; Bruner, J.M.; Morrison, R.S. )

    1994-01-18

    Malignant astrocytomas, which are highly invasive, vascular neoplasms, compose the majority of nervous system tumors in humans. Elevated expression of fibroblast growth factors (FGFs) in astrocytomas has implicated the FGF family of mitogens in the initiation and progression of astrocyte-derived tumors. In this study, the authors demonstrated that human astrocytomas undergo parallel changes in FGF-receptor (FGFR) expression during their progression from a benign to a malignant phenotype. FGFR type 2 (BEK) expression was abundant in normal white matter and in all low-grade astrocytomas but was not seen in malignant astrocytomas. Conversely, FGFR type 1 (FLG) expression was absent or barely detectable in normal white matter but was significantly elevated in malignant astrocytomas. Malignant astrocytomas also expressed an alternatively spliced form of FGFR-1 (FGFR-1[beta]) containing two immunoglobulin-like disulfide loops, whereas normal human adult and fetal brains expressed a receptor form (FGFR-1[alpha]) containing three immunoglobulin-like disulfide loops. Intermediate grades of astrocytic tumors exhibited a gradual loss of FGFR-2 and a shift in expression from FGFR-1[alpha] to FGFR-2 and a shift in expression from FGFR-1[alpha] to FGFR-1[beta] as they progressed from benign to malignant phenotype. These results suggest that differential expression and alternative splicing of FGFRs may be critical in the malignant progression of astrocytic tumors.

  13. Association of human papilloma virus with atypical and malignant oral papillary lesions.

    PubMed

    McCord, Christina; Xu, Jing; Xu, Wei; Qiu, Xin; Muhanna, Nidal; Irish, Jonathan; Leong, Iona; McComb, Richard John; Perez-Ordonez, Bayardo; Bradley, Grace

    2014-06-01

    This study aimed to examine atypical and malignant papillary oral lesions for low- and high-risk human papillomavirus (HPV) infection and to correlate HPV infection with clinical and pathologic features. Sections of 28 atypical papillary lesions (APLs) and 14 malignant papillary lesions (MPLs) were examined for HPV by in situ hybridization and for p16 and MIB-1 by immunohistochemistry; 24 conventional papillomas were studied for comparison. Low-risk HPV was found in 10 of 66 cases, including 9 APLs and 1 papilloma. All low-risk HPV-positive cases showed suprabasilar MIB-1 staining, and the agreement was statistically significant (P < .0001). Diffuse p16 staining combined with high-risk HPV was not seen in any of the cases. A subset of HPV(-) APLs progressed to carcinoma. Oral papillary lesions are a heterogeneous group. Low-risk HPV infection is associated with a subset of APLs with a benign clinical course. Potentially malignant APLs and MPLs are not associated with low- or high-risk HPV. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Expression of cyclin D1 correlates with malignancy in human ovarian tumours.

    PubMed Central

    Barbieri, F.; Cagnoli, M.; Ragni, N.; Pedullà, F.; Foglia, G.; Alama, A.

    1997-01-01

    Cyclin D1 is a cell cycle regulator of G1 progression that has been suggested to play a relevant role in the pathogenesis of several human cancer types. In the current study, the expression of cyclin D1 has been investigated in a series of 33 patients, with benign (10 patients), borderline (five patients) and malignant (18 patients) ovarian disease. Cyclin D1 protein and mRNA content were analysed by Western blotting and reverse transcriptase polymerase chain reaction respectively. The levels of cyclin D1 protein were undetectable in patients with benign disease, detectable in the majority of patients with borderline disease and elevated in those with ovarian carcinomas, being significantly related to the degree of malignancy (carcinoma vs benign, P = 0.0001; benign vs borderline, P = 0.0238). A significant relationship between cyclin D1 expression and tumour proliferative activity was also found (P = 0.000001). Moreover, eight benign lesions, two borderline tumours and 11 carcinomas proved to be suitable for the analysis of cyclin D1 transcript, and emerging data demonstrated significant agreement between protein abundance and mRNA expression. Results from the current study suggest that cyclin D1 expression is associated with the degree of transformation and most probably plays a role in the early development of ovarian malignancy. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:9155044

  15. Malignancies and infection due to the human immunodeficiency virus. Are these emerging diseases?

    PubMed

    Valencia Ortega, M E

    2017-09-02

    Since the start of the human immunodeficiency virus (HIV) epidemic, tumour disease among patients has been significant. The collection of malignancies can be divided primarily into 2 groups: those associated with HIV (all of which are related to viral diseases) and those not associated with HIV (only some of which are associated with viral diseases). The origin of these malignancies is multifactorial, and the main causes that have led to an increase in tumour disease are immunosuppression, coinfection with oncogenic viruses and life prolongation secondary to the use of antiretroviral therapy. Establishing the general characteristics of the undiagnosed AIDS tumours is difficult, mainly because they are a highly heterogeneous group formed by malignancies of a diverse nature. The treatments do not differ from those used in the general population, although the management can be more difficult due to the late diagnosis, drug interactions and associated comorbidities. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  16. Dynamic holographic endoscopy--ex vivo investigations of malignant tumors in the human stomach.

    PubMed

    Avenhaus, Wolfgang; Kemper, Björn; Knoche, Sabine; Domagk, Dirk; Poremba, Christopher; von Bally, Gert; Domschke, Wolfram

    2005-01-01

    Laser holographic interferometry is based on the superimposition of the holograms of different motional states of an object on a single holographic storing medium. Using a combination of holographic interferometry and endoscopic imaging, we tried to detect areas of focally disturbed tissue elasticity in gastric cancer preparations. By connecting a mobile electronic speckle pattern interferometry (ESPI) camera system (light source: double frequency Nd:YAG laser, lambda = 532 nm) to different types of endoscopes, ex vivo experiments were performed on ten formalin fixed human stomachs, nine containing adenocarcinomas and one with a gastric lymphoma. Linking the endoscopic ESPI camera complex to a fast image processing system, the method of double pulse exposure image subtraction was applied at a video frame rate of 12.5 Hz. Speckle correlation patterns and corresponding phase difference distributions resulting from gastric wall deformation by gentle touch with a guide wire were analyzed. Tumor-free gastric areas showed high-contrast concentric fringes around the point of stimulation. In contrast, fringe patterns and filtered phase difference distributions corresponding to the areas of malignancy in all the cases were characterized by largely parallel lines, indicating that stimulation of rigid tumor tissue primarily led to tilting. Our ex vivo investigations of malignant gastric tumors show that the application of dynamic holographic endoscopy makes it possible to distinguish areas of malignancy from surrounding healthy tissue based on the differences in tissue elasticity.

  17. Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations

    PubMed Central

    Sato, Mitsuo; Larsen, Jill E.; Lee, Woochang; Sun, Han; Shames, David S.; Dalvi, Maithili P.; Ramirez, Ruben D.; Tang, Hao; DiMaio, J. Michael; Gao, Boning; Xie, Yang; Wistuba, Ignacio I.; Gazdar, Adi F.; Shay, Jerry W.; Minna, John D.

    2013-01-01

    We used CDK4/hTERT-immortalized normal human bronchial epithelial cells (HBECs) from several individuals to study lung cancer pathogenesis by introducing combinations of common lung cancer oncogenic changes (p53, KRAS, MYC) and followed the stepwise transformation of HBECs to full malignancy. This model demonstrated that: 1) the combination of five genetic alterations (CDK4, hTERT, sh-p53, KRASV12, and c-MYC) is sufficient for full tumorigenic conversion of HBECs; 2) genetically-identical clones of transformed HBECs exhibit pronounced differences in tumor growth, histology, and differentiation; 3) HBECs from different individuals vary in their sensitivity to transformation by these oncogenic manipulations; 4) high levels of KRASV12 are required for full malignant transformation of HBECs, however prior loss of p53 function is required to prevent oncogene-induced senescence; 5) over-expression of c-MYC greatly enhances malignancy but only in the context of sh-p53+KRASV12; 6) growth of parental HBECs in serum-containing medium induces differentiation while growth of oncogenically manipulated HBECs in serum increases in vivo tumorigenicity, decreases tumor latency, produces more undifferentiated tumors, and induces epithelial-to-mesenchymal transition (EMT); 7) oncogenic transformation of HBECs leads to increased sensitivity to standard chemotherapy doublets; 8) an mRNA signature derived by comparing tumorigenic vs. non-tumorigenic clones was predictive of outcome in lung cancer patients. Collectively, our findings demonstrate this HBEC model system can be used to study the effect of oncogenic mutations, their expression levels, and serum-derived environmental effects in malignant transformation, while also providing clinically translatable applications such as development of prognostic signatures and drug response phenotypes. PMID:23449933

  18. Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations.

    PubMed

    Sato, Mitsuo; Larsen, Jill E; Lee, Woochang; Sun, Han; Shames, David S; Dalvi, Maithili P; Ramirez, Ruben D; Tang, Hao; DiMaio, John Michael; Gao, Boning; Xie, Yang; Wistuba, Ignacio I; Gazdar, Adi F; Shay, Jerry W; Minna, John D

    2013-06-01

    We used CDK4/hTERT-immortalized normal human bronchial epithelial cells (HBEC) from several individuals to study lung cancer pathogenesis by introducing combinations of common lung cancer oncogenic changes (p53, KRAS, and MYC) and followed the stepwise transformation of HBECs to full malignancy. This model showed that: (i) the combination of five genetic alterations (CDK4, hTERT, sh-p53, KRAS(V12), and c-MYC) is sufficient for full tumorigenic conversion of HBECs; (ii) genetically identical clones of transformed HBECs exhibit pronounced differences in tumor growth, histology, and differentiation; (iii) HBECs from different individuals vary in their sensitivity to transformation by these oncogenic manipulations; (iv) high levels of KRAS(V12) are required for full malignant transformation of HBECs, however, prior loss of p53 function is required to prevent oncogene-induced senescence; (v) overexpression of c-MYC greatly enhances malignancy but only in the context of sh-p53+KRAS(V12); (vi) growth of parental HBECs in serum-containing medium induces differentiation, whereas growth of oncogenically manipulated HBECs in serum increases in vivo tumorigenicity, decreases tumor latency, produces more undifferentiated tumors, and induces epithelial-to-mesenchymal transition (EMT); (vii) oncogenic transformation of HBECs leads to increased sensitivity to standard chemotherapy doublets; (viii) an mRNA signature derived by comparing tumorigenic versus nontumorigenic clones was predictive of outcome in patients with lung cancer. Collectively, our findings show that this HBEC model system can be used to study the effect of oncogenic mutations, their expression levels, and serum-derived environmental effects in malignant transformation, while also providing clinically translatable applications such as development of prognostic signatures and drug response phenotypes. ©2013 AACR.

  19. Prognostic significance of AMPK in human malignancies: A meta-analysis

    PubMed Central

    Cheng, Ji; Shuai, Xiaoming; Gao, Jinbo; Cai, Ming; Wang, Guobin; Tao, Kaixiong

    2016-01-01

    Background AMPK is a well-investigated kinase mediating cellular metabolism and stress responses. However, its indicative role in survival prognosis remains ill-defined. Therefore we performed this meta-analysis in order to clarify the prognostic impact of AMPK expression in human malignancies. Methods Literatures were retrieved via searching databases of PubMed, Web of Science, Embase and Cochrane Library. Studies comparing the prognostic significance between different AMPK levels among human malignancies were included into the pooled analysis. The statistical procedures were conducted by Review Manager 5.3 and the effect size was displayed by model of odds ratio. Subgroup analyses were additionally implemented to disclose the potential confounding elements. The outcome stability was examined by sensitivity analysis, and both Begg's test and Egger's test were utilized to detect the publication bias across the included studies. Results 21 retrospective cohorts were eventually obtained with a total sample-size of 9987 participants. Patients with higher AMPK expression had better outcomes of 3-year overall survival (P<0.0001), 5-year overall survival (P<0.0001), 10-year overall survival (P<0.0001), 3-year disease free survival (P<0.0001), 5-year disease free survival (P=0.002) and 10-year disease free survival (P=0.0004). Moreover, the majority of subgroup results also verified the favorably prognostic significance of AMPK over-expression. The outcome stability was confirmed by sensitivity analysis. Results of Begg's (P=0.76) and Egger's test (P=0.09) suggested that there was no publication bias within the included trials. Conclusions Higher expression of AMPK significantly indicates better prognosis in human malignancies. PMID:27716618

  20. Isolation and Characterization of Fast-Migrating Human Glioma Cells in the Progression of Malignant Gliomas.

    PubMed

    Adamski, Vivian; Schmitt, Anne Dorothée; Flüh, Charlotte; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-03-13

    Gliomas are the most common primary brain tumors. The most malignant form, the glioblastoma multiforme (GBM; WHO IV), is characterized by an invasive phenotype, which enables the tumor cells to infiltrate into adjacent brain tissue. When investigating GBM migration and invasion properties in vitro, in most cases GBM cell lines were analyzed. Comprehensive investigations focusing on progression-dependent characteristics of migration processes using fresh human glioma samples of different malignancy grades do not exist. Thus, we isolated fast-migrating tumor cells from fresh human glioma samples of different malignancy grades (astrocytomas WHO grade II, grade III, GBM, and GBM recurrences) and characterized them with regard to the transcription of genes involved in the migration and invasion, tumor progression, epithelial-to-mesenchymal transition, and stemness. In addition, we transferred our results to GBM cell lines and glioma stem-like cells and examined the influence of temozolomide on the expression of the above-mentioned genes in relation to migratory potential. Our results indicate that "evolutionary-like" expression alterations occur during glioma progression when comparing slow- and fast-migrating cells of fresh human gliomas. Furthermore, a close relation between migratory and stemness properties seems to be most likely. Variations in gene expression were also identified in GBM cell lines, not only when comparing fast- and slow-migrating cells but also regarding temozolomide-treated and untreated cells. Moreover, these differences coincided with the expression of stem cell markers and their migratory potential. Expression of migration-related genes in fast-migrating glioma cells is not only regulated in a progression-dependent manner, but these cells are also characterized by specific stem cell-like features.

  1. Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3.

    PubMed

    Shibuya, Hidenobu; Hamamura, Kazunori; Hotta, Hiroshi; Matsumoto, Yasuyuki; Nishida, Yoshihiro; Hattori, Hisashi; Furukawa, Keiko; Ueda, Minoru; Furukawa, Koichi

    2012-09-01

    The expression and implications of gangliosides in human osteosarcomas have not been systematically analyzed. In this study, we showed that gangliosides GD3 and GD2 are highly expressed in the majority of human osteosarcoma cell lines derived from oral cavity regions. Introduction of GD3 synthase cDNA into a GD3/GD2-negative (GD3/GD2-) human osteosarcoma subline resulted in the establishment of GD3/GD2+ transfectant cells. They showed increased cell migration and invasion activities in wound healing and Boyden chamber invasion assays, respectively, compared to the control cells. When treated with serum, GD3/GD2+ cells showed stronger tyrosine phosphorylation of p130Cas, focal adhesion kinase, and paxillin than GD3/GD2- cells. In particular, paxillin underwent much stronger phosphorylation, suggesting its role in cell motility. Furthermore, we tried to dissect the roles of GD3 and GD2 in the malignant properties of the transfectant cells by establishing single ganglioside-expressing cells, that is, either GD3 or GD2. Although GD3/GD2+ cells showed the most malignant properties, GD2+ cells showed almost equivalent levels to GD3/GD2+ cells in invasion and migration activities, and in the intensities of tyrosine phosphorylation of paxillin. Among Src family kinases, Lyn was expressed predominantly, and was involved in the invasion and motility of GD3- and/or GD2-expressing transfectants. Furthermore, it was elucidated by gene silencing that Lyn was located in a different pathway from that of FAK to eventually lead paxillin activation. These results suggested that GD2/GD3 are responsible for the enhancement of the malignant features of osteosarcomas, and might be candidate targets in molecular-targeted therapy. © 2012 Japanese Cancer Association.

  2. Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model

    PubMed Central

    Hillegass, Jedd M.; Shukla, Arti; Lathrop, Sherrill A.; MacPherson, Maximilian B.; Beuschel, Stacie L.; Butnor, Kelly J.; Testa, Joseph R.; Pass, Harvey I.; Carbone, Michele; Steele, Chad; Mossman, Brooke T.

    2010-01-01

    Asbestos fibers cause chronic inflammation that may be critical to the development of malignant mesothelioma (MM). Two human MM cell lines (Hmeso, PPM Mill) were used in a SCID mouse xenograft model to assess time-dependent patterns of inflammation and tumor formation. After intraperitoneal (IP) injection of MM cells, mice were euthanized at 7, 14, and 30 days, and peritoneal lavage fluid (PLF) was examined for immune cell profiles and human and mouse cytokines. Increases in human MM-derived IL-6, IL-8, bFGF, and VEGF were observed in mice at 7 days postinjection of either MM line, and a striking neutrophilia was observed at all time points. Free-floating tumor spheroids developed in mice at 14 days, and both spheroids and adherent MM tumor masses occurred in all mice at 30 days. Results suggest that inflammation and cytokine production precede and may be critical to the development of MMs. PMID:20716277

  3. Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells

    PubMed Central

    Mezzapelle, Rosanna; Rrapaj, Eltjona; Gatti, Elena; Ceriotti, Chiara; Marchis, Francesco De; Preti, Alessandro; Spinelli, Antonello E.; Perani, Laura; Venturini, Massimo; Valtorta, Silvia; Moresco, Rosa Maria; Pecciarini, Lorenza; Doglioni, Claudio; Frenquelli, Michela; Crippa, Luca; Recordati, Camilla; Scanziani, Eugenio; de Vries, Hilda; Berns, Anton; Frapolli, Roberta; Boldorini, Renzo; D’Incalci, Maurizio; Bianchi, Marco E.; Crippa, Massimo P.

    2016-01-01

    Malignant Mesothelioma is a highly aggressive cancer, which is difficult to diagnose and treat. Here we describe the molecular, cellular and morphological characterization of a syngeneic system consisting of murine AB1, AB12 and AB22 mesothelioma cells injected in immunocompetent BALB/c mice, which allows the study of the interplay of tumor cells with the immune system. Murine mesothelioma cells, like human ones, respond to exogenous High Mobility Group Box 1 protein, a Damage-Associated Molecular Pattern that acts as a chemoattractant for leukocytes and as a proinflammatory mediator. The tumors derived from AB cells are morphologically and histologically similar to human MM tumors, and respond to treatments used for MM patients. Our system largely recapitulates human mesothelioma, and we advocate its use for the study of MM development and treatment. PMID:26961782

  4. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  5. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells.

    PubMed

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-04-01

    To estimate electroporation (EP) influence on malignant and normal cells. Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  6. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    PubMed Central

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-01-01

    Objective To estimate electroporation (EP) influence on malignant and normal cells. Methods Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). Results In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. Conclusions We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells. PMID:23569735

  7. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors

    PubMed Central

    2013-01-01

    Background It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of Tamarix aucheriana and was shown to possess proteasome inhibitory activity. Methods Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives: benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl 3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and 3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores, synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant melanoma cells as well as normal human fibroblast cells. Results Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2

  8. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells

    PubMed Central

    Ogawa, Hisataka; Wu, Xin; Kawamoto, Koichi; Nishida, Naohiro; Konno, Masamitsu; Koseki, Jun; Matsui, Hidetoshi; Noguchi, Kozou; Gotoh, Noriko; Yamamoto, Tsuyoshi; Miyata, Kanjiro; Nishiyama, Nobuhiro; Nagano, Hiroaki; Yamamoto, Hirofumi; Obika, Satoshi; Kataoka, Kazunori; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-01-01

    Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors. PMID:25970424

  9. Expression of p21/sup ras/ in normal and malignant human tissues: lack of association with proliferation and malignancy

    SciTech Connect

    Chesa, P.G.; Rettig, W.J.; Melamed, M.R.; Old, L.J.; Niman, H.L.

    1987-05-01

    Proteins encoded by cellular ras oncogenes (p21/sup ras) are expressed in a wide variety of malignant tumors, including carcinomas, lymphomas, and neuroectodermal tumors. The function of p21/sup ras/ in these tumors and the distribution and role of p21/sup ras/ in corresponding normal tissues are unclear. This immunohistochemical study examined the relationship between p21/sup ras/ expression and malignant transformation, cellular differentiation, and proliferative activity in vivo. p21/sup ras/ was found to be widely expressed in normal tissues, but within those tissues expression was often sharply restricted to cells at specific stages of differentiation; terminally differentiated cells generally showed stronger reactivity with antibodies to p21/sup ras/ than did rapidly proliferating cells. Fetal and adult tissues had corresponding patterns of p21/sup ras/ expression, and the distribution of p21/sup ras/ in neoplasms paralleled the pattern in normal tissue from which they were derived. Thus, p21/ras/ seems to play a role in many fully differentiated cell types, and levels of p21/sup ras/ expression do not correlate with proliferative activity in normal cells or, in contrast to past reports, with the transformed phenotype.

  10. Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Shinzawa, Hideyuki; Takenaka, Tatsuji; Furihata, Chie; Sato, Hidetoshi

    2010-01-01

    The Raman spectroscopic technique enables the observation of intracellular molecules without fixation or labeling procedures in situ. Raman spectroscopy is a promising technology for diagnosing cancers-especially lung cancer, one of the most common cancers in humans-and other diseases. The purpose of this study was to find an effective marker for the identification of cancer cells and their malignancy using Raman spectroscopy. We demonstrate a classification of cultured human lung cancer cells using Raman spectroscopy, principal component analysis (PCA), and linear discrimination analysis (LDA). Raman spectra of single, normal lung cells, along with four cancer cells with different pathological types, were successfully obtained with an excitation laser at 532 nm. The strong appearance of bands due to cytochrome c (cyt-c) indicates that spectra are resonant and enhanced via the Q-band near 550 nm with excitation light. The PCA loading plot suggests a large contribution of cyt-c in discriminating normal cells from cancer cells. The PCA results reflect the nature of the original cancer, such as its histological type and malignancy. The five cells were successfully discriminated by the LDA.

  11. Overexpression of leucine aminopeptidase 3 contributes to malignant development of human esophageal squamous cell carcinoma.

    PubMed

    Zhang, Shu; Yang, Xiaojing; Shi, Hui; Li, Mei; Xue, Qun; Ren, Hanru; Yao, Li; Chen, Xueyu; Zhang, Jianguo; Wang, Huijie

    2014-06-01

    Leucine aminopeptidases (LAPs) were associated with tumor cell proliferation, invasion and/or angiogenesis. We aimed to examine the biological function of LAP3 in esophageal squamous cell carcinoma (ESCC). LAP3 expressions were examined in human ESCC tissue and cell lines ECA109 and TE1 cells. Recombinant pSilencer4.1-LAP3-shRNA was transfected into ECA109 cells to silence LAP3 expression. The effects of LAP3 silencing on ECA109 cell proliferation in vitro were evaluated. Flow cytometry profiling was used to detect the differentiate cell cycle distribution in LAP3-silenced ECA109 cells. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in LAP3-silenced ECA109 cells. We overexpressed LAP3 in TE1 cells to find out the corresponding results. LAP3 expression level was abundance in ESCC tissue. LAP3 silencing significantly reduced ECA109 cell proliferation and colony formation. The knockdown of LAP3 resulted in cell cycle arrest at G1-phase. Moreover, over expression of LAP3 favors TE1 cell proliferation and invasiveness which also confirms its contribution in malignant development. We came to the conclusion that LAP3 contributed to ESCC progression by overcoming cell cycle arrest. The proliferative and migration effects of LAP3 might contribute to malignant development of human ESCC.

  12. Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells

    PubMed Central

    Shishkin, Sergey; Eremina, Lidia; Pashintseva, Natalya; Kovalev, Leonid; Kovaleva, Marina

    2016-01-01

    Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs. PMID:28025492

  13. Cyclooxygenase-2 is associated with malignant phenotypes in human lung cancer

    PubMed Central

    Li, Weiying; Yue, Wentao; Wang, Hui; Lai, Baitang; Yang, Xuehui; Zhang, Chunyan; Wang, Yue; Gu, Meng

    2016-01-01

    The objective of the present study was to investigate whether cyclooxygenase-2 (COX-2) is associated with malignancy, and to investigate its molecular mechanisms in human lung cancer tumor malignancy. The present study used RNA interference (RNAi) methodology and celecoxib, a COX-2 inhibitor, to investigate the effect of COX-2 knockdown on the proliferation and invasion abilities of lung cancer cells and the molecular mechanisms involved. Human lung adenocarcinoma A549-si10 and LTEP-A2 cells transfected with a specific small interfering RNA (A549-si10 and LTEP-A2-si10, respectively) grew more slowly compared with parental cell lines and cells transfected with pU6. The colony formation of A549-si10 and LTEP-A2-si10 cells was also reduced. In addition, A549-si10 and LTEP-A2-si10 cells were characterized by decreased metastatic and invasive abilities. The proliferation and invasive potential of parental A549 and LTEP-A2 cells was inhibited following treatment with celecoxib. In vivo, a COX-2 knockdown resulted in a decrease of proliferation and reduction of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and endothelial growth factor receptor (EGFR) expression in A549 xenografts. In conclusion, the present study revealed that COX-2 plays a extremely important role in tumor growth, infiltration and metastasis via the regulation of VEGF, MMP-2 and EGRF expression. Therefore, COX-2 is a potential therapeutic target for lung cancer. PMID:27895738

  14. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro.

    PubMed

    Kloskowski, Tomasz; Gurtowska, Natalia; Nowak, Monika; Joachimiak, Romana; Bajek, Anna; Olkowska, Joanna; Drewa, Tomasz

    2011-01-01

    Ciprofloxacin is a chemotherapeutic agent mainly used in the treatment of the pulmonary and urinary tract infections but is also known for its anticancer properties. The aim of these study was to check the anticancer effect of ciprofloxacin on selected five cell lines. Human non-small cell lung cancer line A549, human hepatocellular carcinoma line HepG2, human and mouse melanoma lines (A375.S2 and B16) and rat glioblastoma line C6 were used for evaluation of cytotoxic properties of ciprofloxacin (in concentration range: 10-1000 microg/mL). Viability was established using trypan blue assay and MTT. Ciprofloxacin induced morphological changes and decreased viability of A549 cells in a concentration and time dependent manner. In case of A375.S2 and B16 cell lines, cytotoxicyty of ciprofloxacin was observed but we were not able to eradicate all cells from A375.S2 and B16 cultures. HepG2 line was sensitive to ciprofloxacin, but this effect was independent from concentration and incubation time. The C6 cells were insensitive to ciprofloxacin. Our results showed that ciprofloxacin can be potentially used for the experimental adjunctive therapy of lung cancer.

  15. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines.

    PubMed

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-08-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy.

  16. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines

    PubMed Central

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-01-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy. PMID:26206198

  17. The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts.

    PubMed

    McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F

    2010-04-01

    Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.

  18. Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy.

    PubMed

    Lou, Meng; Liu, Qian; Ren, Guoping; Zeng, Jiling; Xiang, Xueping; Ding, Yongfeng; Lin, Qinghui; Zhong, Tingting; Liu, Xia; Zhu, Lijun; Qi, Hongyan; Shen, Jing; Li, Haoran; Shao, Jimin

    2017-04-14

    Ribonucleotide reductase (RR) is the rate-limiting enzyme in DNA synthesis by catalyzing the reduction of ribonucleotides to deoxyribonucleotides. During each enzymatic turnover, reduction of the active site disulfide in the catalytic large subunit is performed by a pair of shuttle cysteine residues in its C-terminal tail. Thioredoxin (Trx) and Glutaredoxin (Grx) are ubiquitous redox proteins, catalyzing thiol-disulfide exchange reactions. Here, immunohistochemical examination of clinical colorectal cancer (CRC) specimens revealed that human thioredoxin1 (hTrx1), but not human glutaredoxin1 (hGrx1), was upregulated along with human RR large subunit (RRM1) in cancer tissues, and the expression levels of both proteins were correlated with cancer malignancy stage. Ectopically expressed hTrx1 significantly increased RR activity, DNA synthesis, and cell proliferation and migration. Importantly, inhibition of both hTrx1 and RRM1 produced a synergistic anti-cancer effect in CRC cells and xenograft mice. Furthermore, hTrx1 rather than hGrx1 was the efficient reductase for RRM1 regeneration. We also observed a direct protein-protein interaction between RRM1 and hTrx1 in CRC cells. Interestingly, besides the known two conserved cysteines, a third one (Cys779) in the RRM1 C-terminus was essential for RRM1 regeneration and binding to hTrx1, while both Cys32 and Cys35 in hTrx1 played a counterpart role. Our findings suggest that the upregulated RRM1 and hTrx1 in CRC directly interact with each other and promote RR activity, resulting in enhanced DNA synthesis and cancer malignancy. We propose that the RRM1-hTrx1 interaction might be a novel potential therapeutic target for cancer treatment.

  19. Intracellular ionized calcium concentration in muscles from humans with malignant hyperthermia.

    PubMed

    López, J R; Alamo, L; Caputo, C; Wikinski, J; Ledezma, D

    1985-06-01

    Ca2+ selective microelectrodes have been used to determine the free myoplasmic [Ca2+] in human skeletal muscle obtained from patients who had developed early signs associated with malignant hyperthermia (MH) during anesthesia. Intercostal muscle biopsies were performed under local anesthesia in four MH patients 15 days to 4 months after developing the MH crisis and in three control subjects. We used only microelectrodes that showed a Nernstian response between pCa3 and pCa7 (30.5 mV per decade at 37 degrees C). Membrane resting potential (V(m)) and calcium potential (V(Ca)) were obtained from superficial fibers. The free cytosolic [Ca2+] was 0.39 +/- 0.1 microM (mean +/- SEM, n = 18) in muscle fibers obtained from malignant hyperthermic patients, whereas in control subjects it was 0.11 +/- 0.02 microM (n = 10). These results suggest that this syndrome might be related to an abnormally high myoplasmic free resting calcium concentration, probably due to a defective function of the plasma membrane or the sarcoplasmic reticulum.

  20. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease

    PubMed Central

    Hieken, Tina J.; Chen, Jun; Hoskin, Tanya L.; Walther-Antonio, Marina; Johnson, Stephen; Ramaker, Sheri; Xiao, Jian; Radisky, Derek C.; Knutson, Keith L.; Kalari, Krishna R.; Yao, Janet Z.; Baddour, Larry M.; Chia, Nicholas; Degnim, Amy C.

    2016-01-01

    Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention. PMID:27485780

  1. P16INK4a MEDIATED SUPPRESSION OF TELOMERASE IN NORMAL AND MALIGNANT HUMAN BREAST CELLS

    PubMed Central

    Bazarov, Alexey V.; van Sluis, Marjolein; Hines, Curtis; Bassett, Ekaterina; Beliveau, Alain; Campeau, Eric; Mukhopadhyay, Rituparna; Lee, Won Jae; Melodyev, Sonya; Zaslavsky, Yuri; Lee, Leonard; Rodier, Francis; Chicas, Agustin; Lowe, Scott W.; Benhattar, Jean; Ren, Bing; Campisi, Judith; Yaswen, Paul

    2010-01-01

    Summary The cyclin-dependent kinase inhibitor p16INK4a (CDKN2A) is an important tumor-suppressor gene frequently inactivated in human tumors. p16 suppresses the development of cancer by triggering an irreversible arrest of cell proliferation termed cellular senescence. Here, we describe another anti-oncogenic function of p16 in addition to its ability to halt cell cycle progression. We show that transient expression of p16 stably represses the hTERT gene, encoding the catalytic subunit of telomerase, in both normal and malignant breast epithelial cells. Short-term p16 expression increases the amount of histone H3 trimethylated on lysine 27 (H3K27) bound to the hTERT promoter, resulting in transcriptional silencing, likely mediated by polycomb complexes. Our results indicate that transient p16 exposure may prevent malignant progression in dividing cells by irreversible repression of genes, such as hTERT, whose activity is necessary for extensive self-renewal. PMID:20569236

  2. Global Variation of Human Papillomavirus Genotypes and Selected Genes Involved in Cervical Malignancies.

    PubMed

    Husain, R S Akram; Ramakrishnan, V

    2015-01-01

    Carcinoma of the cervix is ranked second among the top 5 cancers affecting women globally. Parallel to other cancers, it is also a complex disease involving numerous factors such as human papillomavirus (HPV) infection followed by the activity of oncogenes and environmental factors. The incidence rate of the disease remains high in developing countries due to lack of awareness, followed by mass screening programs, various socioeconomic issues, and low usage of preventive vaccines. Over the past 3 decades, extensive research has taken place in cervical malignancy to elucidate the role of host genes in the pathogenesis of the disease, yet it remains one of the most prevalent diseases. It is imperative that recent genome-wide techniques be used to determine whether carcinogenesis of oncogenes is associated with cervical cancer at the molecular level and to translate that knowledge into developing diagnostic and therapeutic tools. The aim of this study was to discuss HPV predominance with their genotype distribution worldwide, and in India, as well as to discuss the newly identified oncogenes related to cervical cancer in current scenario. Using data from various databases and robust technologies, oncogenes associated with cervical malignancies were identified and are explained in concise manner. Due to the advent of recent technologies, new candidate genes are explored and can be used as precise biomarkers for screening and developing drug targets. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Human pregnane X receptor compromises the function of p53 and promotes malignant transformation

    PubMed Central

    Robbins, D; Cherian, M; Wu, J; Chen, T

    2016-01-01

    The pregnane X receptor (PXR) is well established as a nuclear receptor that has a central role in xenobiotic metabolism and disposition. However, emerging evidence suggests that PXR is also a regulator of apoptosis, promoting a malignant phenotype both in vitro and in vivo. The tumor suppressor p53 can be activated in the presence of DNA damage and induce cell cycle arrest to allow for DNA repair or, ultimately, apoptosis to suppress tumor formation. We previously identified p53 as a novel PXR-associated protein by using a mass spectrometric approach. In the current study, we identified a novel inhibitory effect of PXR on p53, revealing an anti-apoptotic function of PXR in colon carcinogenesis. PXR expression reduced p53 transactivation and the expression of its downstream target genes involved in cell cycle arrest and apoptosis by decreasing p53 recruitment to the promoter regions of these genes. Consistent with the inhibitory effect of PXR on p53, elevated PXR levels decreased doxorubicin- or nutlin-3a-mediated toxicity and promoted malignant transformation in colon cancer cells. Our findings show for the first time that PXR expression modulates p53 target gene promoter binding and contributes to the downregulation of p53 function in human colon cancer cells. These results define the functional significance of PXR expression in modulating p53-mediated mechanisms of tumor suppression. PMID:27547448

  4. p16(INK4a) -mediated suppression of telomerase in normal and malignant human breast cells.

    PubMed

    Bazarov, Alexey V; Van Sluis, Marjolein; Hines, William C; Bassett, Ekaterina; Beliveau, Alain; Campeau, Eric; Mukhopadhyay, Rituparna; Lee, Won Jae; Melodyev, Sonya; Zaslavsky, Yuri; Lee, Leonard; Rodier, Francis; Chicas, Agustin; Lowe, Scott W; Benhattar, Jean; Ren, Bing; Campisi, Judith; Yaswen, Paul

    2010-10-01

    The cyclin-dependent kinase inhibitor p16(INK4a) (CDKN2A) is an important tumor suppressor gene frequently inactivated in human tumors. p16 suppresses the development of cancer by triggering an irreversible arrest of cell proliferation termed cellular senescence. Here, we describe another anti-oncogenic function of p16 in addition to its ability to halt cell cycle progression. We show that transient expression of p16 stably represses the hTERT gene, encoding the catalytic subunit of telomerase, in both normal and malignant breast epithelial cells. Short-term p16 expression increases the amount of histone H3 trimethylated on lysine 27 (H3K27) bound to the hTERT promoter, resulting in transcriptional silencing, likely mediated by polycomb complexes. Our results indicate that transient p16 exposure may prevent malignant progression in dividing cells by irreversible repression of genes, such as hTERT, whose activity is necessary for extensive self-renewal.

  5. Expression of metalloprotease insulin-degrading enzyme (insulysin) in normal and malignant human tissues

    PubMed Central

    Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred

    2013-01-01

    Background Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and in breast cancer tissue (Radulescu et al., Int J Oncol 30:73; 2007). Materials and Methods Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Results Applying the four IDE-directed antibodies, we demonstrate IDE expression at the protein level, both by means of immunoblotting and immunocytochemistry, in all of the tumor cell lines analyzed. Besides, IDE protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in all of the cell lines and tissues assessed. Conclusions We performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells and thus extend knowledge about cellular and tissue distribution of IDE, an enzyme which so far has mainly been studied in connection with Alzheimer’s disease and diabetes but not in cancer. PMID:18813847

  6. Comparison of multiple assays for detecting human antibodies directed against surface antigens on normal and malignant human tissue culture cells.

    PubMed

    Rosenberg, S A; Schwarz, S; Anding, H; Hyatt, C; Williams, G M

    1977-01-01

    Four separate assays of human antibody reactivity to four separate normal and malignant human tissue culture cell lines from two patients have been evaluated using a single highly-reactive allogeneic serum. The visual and end-point cytolysis assay and the 51Chromium release assay were equally sensitive in measuring complement mediated antibody cytoxicity and both were far more sensitive than a trypan blue dye exclusion assay. The assay of antibody reactivity by hemadsorption technique was about 10 times more sensitive than any of the cytotoxicity assays. This latter assay measures only IgG antibody however. These assays showed that cell lines from different patients may differ greatly in 'reactivity' to an allogeneic serum and emphasized the importance of utilizing tumor and normal cells from the same patient when using tissue culture cells to search for tumor specific reactivity. These observations emphasize the importance of utilizing multiple assays against paired normal and malignant cells from the same patient to be certain of the specificity and magnitude of the measured antibody.

  7. Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies

    PubMed Central

    Viswanathan, Srinivas R.; Powers, John T.; Einhorn, William; Hoshida, Yujin; Ng, Tony; Toffanin, Sara; O'Sullivan, Maureen; Lu, Jun; Philips, Letha A.; Lockhart, Victoria L.; Shah, Samar P.; Tanwar, Pradeep S.; Mermel, Craig H.; Beroukhim, Rameen; Azam, Mohammad; Teixeira, Jose; Meyerson, Matthew; Hughes, Timothy P.; Llovet, Josep M; Radich, Jerald; Mullighan, Charles G.; Golub, Todd R.; Sorensen, Poul H.; Daley, George Q.

    2009-01-01

    Multiple members of the let-7 family of miRNAs are often repressed in human cancers1,2, thereby promoting oncogenesis by de-repressing the targets K-Ras, c-Myc, and HMGA2 3,4. However, the mechanism by which let-7 miRNAs are coordinately repressed is unclear. The RNA-binding proteins Lin28 and Lin28B block let-7 precursors from being processed to mature miRNAs5–8, suggesting that over-expression of Lin28/Lin28B might promote malignancy via repression of let-7. Here we show that LIN28 and LIN28B are over-expressed in primary human tumors and human cancer cell lines (overall frequency ∼15%), and that over-expression is linked to repression of let-7 family miRNAs and de-repression of let-7 targets. Lin28/Lin28B facilitate cellular transformation in vitro, and over-expression is associated with advanced disease across multiple tumor types. Our work provides a mechanism for the coordinate repression of let-7 miRNAs observed in a subset of human cancers, and associates activation of LIN28/LIN28B with poor clinical prognosis. PMID:19483683

  8. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse

    PubMed Central

    Clappier, Emmanuelle; Gerby, Bastien; Sigaux, François; Delord, Marc; Touzri, Farah; Hernandez, Lucie; Ballerini, Paola; Baruchel, André

    2011-01-01

    Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA–mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle– and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse. PMID:21464223

  9. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse.

    PubMed

    Clappier, Emmanuelle; Gerby, Bastien; Sigaux, François; Delord, Marc; Touzri, Farah; Hernandez, Lucie; Ballerini, Paola; Baruchel, André; Pflumio, Françoise; Soulier, Jean

    2011-04-11

    Genomic studies in human acute lymphoblastic leukemia (ALL) have revealed clonal heterogeneity at diagnosis and clonal evolution at relapse. In this study, we used genome-wide profiling to compare human T cell ALL samples at the time of diagnosis and after engraftment (xenograft) into immunodeficient recipient mice. Compared with paired diagnosis samples, the xenograft leukemia often contained additional genomic lesions in established human oncogenes and/or tumor suppressor genes. Mimicking such genomic lesions by short hairpin RNA-mediated knockdown in diagnosis samples conferred a selective advantage in competitive engraftment experiments, demonstrating that additional lesions can be drivers of increased leukemia-initiating activity. In addition, the xenograft leukemias appeared to arise from minor subclones existing in the patient at diagnosis. Comparison of paired diagnosis and relapse samples showed that, with regard to genetic lesions, xenograft leukemias more frequently more closely resembled relapse samples than bulk diagnosis samples. Moreover, a cell cycle- and mitosis-associated gene expression signature was present in xenograft and relapse samples, and xenograft leukemia exhibited diminished sensitivity to drugs. Thus, the establishment of human leukemia in immunodeficient mice selects and expands a more aggressive malignancy, recapitulating the process of relapse in patients. These findings may contribute to the design of novel strategies to prevent or treat relapse.

  10. The bone morphogenetic protein antagonist Gremlin is overexpressed in human malignant mesothelioma.

    PubMed

    Wang, Dian-Jun; Zhi, Xiu-Yi; Zhang, Shu-Cai; Jiang, Miao; Liu, Peng; Han, Xing-Peng; Li, Jun; Chen, Zhao; Wang, Chang-Li

    2012-01-01

    Gremlin is a member of the bone morphogenetic protein (BMP) antagonist family and its antagonistic effect is likely through direct binding to BMP proteins. As an antagonist of BMP, Gremlin plays a role in regulating organogenesis, body patterning and tissue differentiation. Recent studies have shown a deregulation of Gremlin in several types of human cancers. However, the role of Gremlin in human malignant mesothelioma (MM) is still unknown. In this study, we investigated the expression of Gremlin in human MM. We found that Gremlin mRNA and protein were both overexpressed in the majority of primary MM tissue samples that we examined. We also observed high level expression of the Gremlin gene in 4 of the 6 MM cell lines. Consistently, we found that the Gremlin promoter activity was significantly elevated in those MM cell lines expressing the Gremlin gene. On the other hand, no activity of the Gremlin promoter was detected in the two MM cell lines lacking Gremlin expression. Moreover, to examine the functional significance of the Gremlin overexpression in MM, we used shRNA to knock down Gremlin expression in MM cell lines expressing Gremlin and found that inhibition of Gremlin expression significantly suppressed proliferation of those MM cells. Taken together, our results suggest that the BMP antagonist Gremlin is overexpressed in MM and that aberrant activation of Gremlin may play a critical role in the tumorigenesis of human MM.

  11. Elevated expression of serine/threonine phosphatase type 5 correlates with malignant proliferation in human osteosarcoma.

    PubMed

    Han, Kun; Gan, Zhihua; Lin, Shuchen; Hu, Haiyan; Shen, Zan; Min, Daliu

    2017-01-01

    Osteosarcoma is the most common primary malignant bone tumor in adolescents and young adults. However, the involvement of serine/threonine phosphatase type 5 (PP5) in osteosarcoma remains unclear. The aim of this study was to evaluate the functional role of PP5 in osteosarcoma cells. Firstly, we found that PP5 is widely expressed in several human osteosarcoma cell lines. Then we used lentivirus-delivered siRNA to silence PP5 expression in Saos-2 and U2OS cell lines. Knockdown of endogenous PP5 expression by shRNA-expressing lentivirus significantly decreased the viability and proliferation of the osteosarcoma cells. Moreover, FACS analysis showed that knockdown of PP5 expression induced a significant arrest in the G0/G1 phase of the cell cycle, which was associated with the inhibition of cell proliferation. Therefore, knockdown of PP5 is likely to provide a novel alternative to targeted therapy of osteosarcoma and deserves further investigation.

  12. FTIR microscopic comparative study on normal, premalignant, and malignant tissues of human intenstine

    NASA Astrophysics Data System (ADS)

    Mordechai, Shaul; Argov, Shmuel; Salman, Ahmad O.; Cohen, Beny; Ramesh, Jagannathan; Erukhimovitch, Vitaly; Goldstein, Jed; Sinelnikov, Igor

    2000-07-01

    Fourier-Transform Infrared Spectroscopy (FTIR) employs a unique approach to optical diagnosis of tissue pathology based on the characteristic molecular vibrational spectra of the tissue. The architectural changes in the cellular and sub-cellular levels developing in abnormal tissue, including a majority of cancer forms, manifest themselves in different optical signatures, which can be detected in infrared spectroscopy. The biological systems we have studied include normal, premalignant (polyp) and malignant human colonic tissues from three patients. Our method is based on microscopic infrared study (FTIR-microscopy) of thin tissue specimens and a direct comparison with normal histopathological analysis, which serves as a `gold' reference. The normal intestine tissue has a stronger absorption than polyp and cancerous types over a wide region in all three cases. The detailed analysis showed that there is a significant decrease in total phosphate and creatine contents for polyp and cancerous tissue types in comparison to the controls.

  13. Frequency analysis of multispectral photoacoustic images for differentiating malignant region from normal region in excised human prostate

    NASA Astrophysics Data System (ADS)

    Sinha, Saugata; Rao, Navalgund A.; Valluru, Keerthi S.; Chinni, Bhargava K.; Dogra, Vikram S.; Helguera, Maria

    2014-03-01

    Frequency domain analysis of the photoacoustic (PA) radio frequency signals can potentially be used as a tool for characterizing microstructure of absorbers in tissue. This study investigates the feasibility of analyzing the spectrum of multiwavelength PA signals generated by excised human prostate tissue samples to differentiate between malignant and normal prostate regions. Photoacoustic imaging at five different wavelengths, corresponding to peak absorption coefficients of deoxyhemoglobin, whole blood, oxyhemoglobin, water and lipid in the near infrared (NIR) (700 nm - 1000 nm) region, was performed on freshly excised prostate specimens taken from patients undergoing prostatectomy for biopsy confirmed prostate cancer. The PA images were co-registered with the histopathology images of the prostate specimens to determine the region of interest (ROI) corresponding to malignant and normal tissue. The calibrated power spectrum of each PA signal from a selected ROI was fit to a linear model to extract the corresponding slope, midband fit and intercept parameters. The mean value of each parameter corresponding to malignant and adjacent normal prostate ROI was calculated for each of the five wavelengths. The results obtained for 9 different human prostate specimens, show that the mean values of midband fit and intercept are significantly different between malignant and normal regions. In addition, the average midband fit and intercept values show a decreasing trend with increasing wavelength. These preliminary results suggest that frequency analysis of multispectral PA signals can be used to differentiate malignant region from the adjacent normal region in human prostate tissue.

  14. Six1 promotes epithelial–mesenchymal transition and malignant conversion in human papillomavirus type 16-immortalized human keratinocytes

    PubMed Central

    Creek, Kim E.

    2014-01-01

    Six1, a member of the Six family of homeodomain transcription factors, is overexpressed in various human cancers, and SIX1 overexpression is associated with tumor progression and metastasis. Six1 messenger RNA levels increase during in vitro progression of human papillomavirus type 16 (HPV16)-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we show that HKc/DR-overexpressing Six1 exhibited a more mesenchymal phenotype, as characterized by a fibroblastic appearance and increased invasion. We utilized Whole Human Genome Microarrays to explore the gene expression changes associated with Six1 overexpression in HKc/DR. We found that overexpression of Six1 downregulated epithelial-related genes and upregulated mesenchymal-related genes, which suggests that Six1 overexpression induces epithelial–mesenchymal transition (EMT). Pathway analysis of the microarray data showed alterations in the transforming growth factor-beta (TGF-β) pathway, including enhanced expression of the TGF-β receptor type II (TβRII), and activation of the mitogen-activated protein kinase (MAPK) pathway in HKc/DR-overexpressing Six1, suggesting that Smad-independent pathways of TGF-β signaling may be involved in Six1-mediated EMT. p38 MAPK activation was required for sustained Six1-induced EMT and TβRII overexpression. Finally, we determined that Six1 overexpression in HKc/DR resulted in malignant conversion and increased the cancer stem cell (CSC)-like population. Thus, Six1 overexpression promotes EMT, CSCs properties and malignant conversion in HKc/DR through MAPK activation, which supports the possible use of p38-TβRII inhibitors for the treatment of cancers overexpressing Six1. PMID:24574515

  15. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells

    PubMed Central

    Lorenzo, Daniela; Duarte, Alejandra; Mundiñano, Juliana; Berguer, Paula; Nepomnaschy, Irene; Piazzon, Isabel

    2016-01-01

    B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed. PMID:27603942

  16. Expression of a-disintegrin and metalloproteinase 10 correlates with grade of malignancy in human glioma.

    PubMed

    Qu, Min; Qiu, B O; Xiong, Wende; Chen, Dong; Wu, Anhua

    2015-05-01

    The aim of the present study was to determine the expression of a-disintegrin and metalloproteinase 10 (ADAM10) in human glioma tissues from surgical specimens and discuss its possible significance in glioma biology. A total of 43 glioma specimens obtained from patients between 2007 and 2010 were collected and a series of assays were performed. Of these, 22 cases were low-grade gliomas, while 21 cases were high-grade gliomas. In addition, 20 cases of meningioma were used as the control group. Reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis and immunohistochemistry were used to determine the mRNA and protein expression levels of ADAM10. Besides the quantitative analysis, histological observations were also performed to localize ADAM10 expression in glioma cells. The RT-PCR and western blot analysis results demonstrated increased ADAM10 expression in the low-grade glioma samples compared with the control (P<0.05), while ADAM10 expression was further increased in the high-grade glioma samples (P<0.01 vs. control; P<0.05 vs. low-grade glioma), indicating that the mRNA and protein expression levels of ADAM10 were malignancy-dependent. The immunohistochemical analysis revealed that the ADAM10 protein was located on both the tumor cell membrane and blood vessel walls within tumor tissues. In conclusion, these results indicated that ADAM10 expression correlates with the grade of malignancy in human glioma from surgical specimens. In addition, the fact that ADAM10 protein was expressed on cell membranes and blood vessel walls within tumor tissues, indicates that its expression may be associated with invasive tumor growth and peritumoral edema formation.

  17. Role of malignant ascites on human mesothelial cells and their gene expression profiles

    PubMed Central

    2014-01-01

    Background Malignant ascites is often present at diagnostic in women with advanced ovarian cancer (OC) and its presence is associated with a worse outcome. Human peritoneal mesothelial cells (HPMCs) are key components of malignant ascites. Although the interplay between HPMCs and OC cells is believed to be critical for tumor progression, it has not been well characterized. The purpose of this study was to assess the effect of ascites on HPMCs and clarify the role of HPMCs in OC progression. Methods Human OC ascites and benign peritoneal fluids were assessed for their ability to stimulate HPMC proliferation. Conditioned medium from ascites- and benign fluid-stimulated HPMCs were compared for their ability to attenuate apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL). We conducted a comparative analysis of global expression changes in ascites-stimulated HPMCs using Agilent oligonucleotide microarrays. Results As compared to benign peritoneal fluids, malignant ascites stimulated the proliferation of HPMCs. TRAIL-induced apoptosis was attenuated in OC cells exposed to conditioned medium from ascites-stimulated HPMCs as compared to OC cells exposed to conditioned medium from benign fluid-stimulated HPMCs. A total of 649 genes were differentially expressed in ascites-stimulated HPMCs. Based on a ratio of more than 1.5-fold and a P < 0.05, 484 genes were up-regulated and 165 genes were down-regulated in ascites-exposed HPMCs. Stimulation of HPMCs with OC ascites resulted in differential expression of genes mainly associated with the regulation of cell growth and proliferation, cell death, cell cycle and cell assembly and organization, compared to benign peritoneal fluids. Top networks up-regulated by OC ascites included Akt and NF-κB survival pathways whereas vascular endothelial growth factor (VEGF) pathway was down-regulated. Conclusions The results of this study not only provide evidence supporting the importance of the interplay between cancer

  18. Prevalence of human papillomavirus in archival samples obtained from patients with cervical pre-malignant and malignant lesions from Northeast Brazil

    PubMed Central

    2010-01-01

    Background Human Papillomavirus (HPV) is considered as a necessary, but not sufficient, cause of cervical cancer. In this study, we aimed to assess the prevalence of HPV in a series of pre-malignant and malignant cervical lesion cases, to identify the virus genotypes, and to assess their distribution pattern according to lesion type, age range, and other considered variables. The samples were submitted to histopathological revision examination and analysed by polymerase chain reaction (PCR) for the presence of HPV DNA, followed by HPV typing by dot blot hybridisation. Findings Of the analysed samples, 53.7% showed pre-malignant cervical lesions, and 46.3% presented with cervical cancer. Most cancer samples (84.1%) were classified as invasive carcinoma. The mean age of these cancer patients was 47.3 years. The overall HPV prevalence was 82.4% in patients with pre-malignant lesions and 92.0% in the cancer patients. HPV 16 was the most prevalent type, followed by HPV 18 and 58, including both single and double infections. Double infection was detected in 11.6% of the samples, and the most common combination was HPV 16+18. Conclusions Cervical cancer appears to occur in women in a lower age range in the studied area, compared to the situation in other Brazilian regions. Furthermore, among the patients with CIN 3 and those with cancer, we observed a higher proportion of married women, women with more than one sexual partner, smokers, and individuals with less than an elementary education, relative to their counterparts. Findings The overall HPV prevalence was 82.4% in patients with pre-malignant lesions and 92.0% in the cervical cancer patients from Northeast Brazil. HPV 16 was the most prevalent type, followed by HPV 18 and 58. The most common double infection was HPV 16+18. Cervical cancer appears to occur in women in a lower age range in the Northeast Brazil. Among the patients with CIN 3 and those with cancer, we observed a higher proportion of married women, women

  19. Syntenic Relationships between Genomic Profiles of Fiber-Induced Murine and Human Malignant Mesothelioma

    PubMed Central

    Jean, Didier; Thomas, Emilie; Manié, Elodie; Renier, Annie; de Reynies, Aurélien; Lecomte, Céline; Andujar, Pascal; Fleury-Feith, Jocelyne; Galateau-Sallé, Françoise; Giovannini, Marco; Zucman-Rossi, Jessica; Stern, Marc-Henri; Jaurand, Marie-Claude

    2011-01-01

    Malignant mesothelioma (MM) is an aggressive tumor with a poor prognosis mainly linked to past asbestos exposure. Murine models of MM based on fiber exposure have been developed to elucidate the mechanism of mesothelioma formation. Genomic alterations in murine MM have now been partially characterized. To gain insight into the pathophysiology of mesothelioma, 16 murine and 35 human mesotheliomas were characterized by array-comparative genomic hybridization and were screened for common genomic alterations. Alteration of the 9p21 human region, often by biallelic deletion, was the most frequent alteration in both species, in agreement with the CDKN2A/CDKN2B locus deletion in human disease and murine models. Other shared aberrations were losses of 1p36.3–p35 and 13q14–q33 and gains of 5p15.3–p13 regions. However, some differences were noted, such as absence of recurrent alterations in mouse regions corresponding to human chromosome 22. Comparison between altered recurrent regions in asbestos-exposed and non–asbestos-exposed patients showed a significant difference in the 14q11.2–q21 region, which was also lost in fiber-induced murine mesothelioma. A correlation was also demonstrated between genomic instability and tumorigenicity of human mesothelioma xenografts in nude mice. Overall, these data show similarities between murine and human disease, and contribute to the understanding of the influence of fibers in the pathogenesis of mesothelioma and validation of the murine model for preclinical testing. PMID:21281820

  20. Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells.

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hsieh, Cheng-Hong; Hwang, Deng-Fwu

    2015-08-01

    The crown-of-thorns starfish Acanthaster planci is a venomous starfish whose venom provokes strong cytotoxicity. In the present study, the purified cytotoxic toxin of A. planci venom (CAV) was identified as plancitoxin I protein by mass spectrum analyses. This study aims to investigate the molecular mechanism underlying the cytotoxicity function of plancitoxin I by focusing on the oxidative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress pathway in human melanoma A375.S2 cells. The results indicated that after being treated with CAV toxin, A375.S2 cells significantly decreased viability in a dose-dependent manner. The CAV was found to reduce the cellular antioxidant enzymes such as SOD and CAT, and there was a significant decrease in total thiol level and mtDNA integrity, and it enhanced the lipid peroxidation. In addition, CAV increased cytosolic Ca(2+) concentration, and enhanced the expression of the ER molecular chaperones GRP78 and CHOP in a dose-dependent manner. CAV significantly elevated the activity of caspase-3, -8 and -9, and reduced the ratio of Bcl-2/Bax. The cells exhibited apoptosis were determined by using propidium iodide (PI) staining of DNA fragmentation (sub-G1 peak). In summary, the results demonstrated that plancitoxin I inhibits the proliferation of A375.S2 cells through induction of oxidative stress, mitochondrial dysfunction and ER stress associated apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Malignant progression of an SV40-transformed human epidermal keratinocyte cell line.

    PubMed Central

    Brown, K. W.; Gallimore, P. H.

    1987-01-01

    Human foetal keratinocytes were transfected with a recombinant plasmid (pSV6-1) which contained an origin defective SV40 genome. The resulting transformed cell line had many properties in common with previously described SV40-transformed keratinocytes, including expression of simple epithelial-type keratins. It was non-tumourigenic in nude mice at early passages, forming small benign cysts, however, after approximately 46 in vitro passages, these transformed keratinocytes formed invasive squamous cell carcinomas in athymic nude mice. Several in vitro changes were associated with this acquisition of tumourigenicity (a) an alteration in cellular morphology, (b) development of a cytogenetically marked clone and (c) loss of cell surface fibronectin. The loss of fibronectin was also observed in vivo; cysts formed by SV6-1 Bam/HFK produced human fibronectin whereas tumours did not, although both tumours and cysts were laminin- and keratin-positive. These results indicate that the spontaneous development of secondary events in immortalised human cells may lead to the acquisition of a malignant phenotype. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:2447927

  2. Gene expression profiling of mouse p53-deficient epidermal carcinoma defines molecular determinants of human cancer malignancy

    PubMed Central

    2010-01-01

    Background The epidermal specific ablation of Trp53 gene leads to the spontaneous development of aggressive tumors in mice through a process that is accelerated by the simultaneous ablation of Rb gene. Since alterations of p53-dependent pathway are common hallmarks of aggressive, poor prognostic human cancers, these mouse models can recapitulate the molecular features of some of these human malignancies. Results To evaluate this possibility, gene expression microarray analysis was performed in mouse samples. The mouse tumors display increased expression of cell cycle and chromosomal instability associated genes. Remarkably, they are also enriched in human embryonic stem cell gene signatures, a characteristic feature of human aggressive tumors. Using cross-species comparison and meta-analytical approaches, we also observed that spontaneous mouse tumors display robust similarities with gene expression profiles of human tumors bearing mutated TP53, or displaying poor prognostic outcome, from multiple body tissues. We have obtained a 20-gene signature whose genes are overexpressed in mouse tumors and can identify human tumors with poor outcome from breast cancer, astrocytoma and multiple myeloma. This signature was consistently overexpressed in additional mouse tumors using microarray analysis. Two of the genes of this signature, AURKA and UBE2C, were validated in human breast and cervical cancer as potential biomarkers of malignancy. Conclusions Our analyses demonstrate that these mouse models are promising preclinical tools aimed to search for malignancy biomarkers and to test targeted therapies of prospective use in human aggressive tumors and/or with p53 mutation or inactivation. PMID:20630075

  3. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment

    PubMed Central

    Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-01-01

    The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells. PMID:28068409

  4. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment.

    PubMed

    Zhou, Shufeng; Abdouh, Mohamed; Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-01-01

    The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells.

  5. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  6. Influence of zinc deficiency on AKT-MDM2-P53 signaling axes in normal and malignant human prostate cells

    USDA-ARS?s Scientific Manuscript database

    With prostate being the highest zinc-accumulating tissue before the onset of cancer, the effects of physiologic levels of zinc on Akt-Mdm2-p53 and Akt-p21 signaling axes in human normal prostate epithelial cells (PrEC) and malignant prostate LNCaP cells were examined. Cells were cultured for 6 d in...

  7. Peroxisome proliferator-activated receptor- gamma expression in human malignant and normal brain, breast and prostate-derived cells.

    PubMed

    Nwankwo, J O; Robbins, M E

    2001-01-01

    The constitutive and gamma -linolenic acid (GLA)-induced expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) immunoreactive protein in a panel of human malignant brain (U87MG, T98G); breast (MCF-7, MB MDA-231, MB MDA 435) and prostate (ALVA, DU-145, LNCaP, PC3) cell lines have been compared with those for their normal cell counterparts, the human normal astrocyte (NHA), mammary epithelial (HMEC) and prostate epithelial (PrEC) cells, respectively. Constitutive levels of expression for PPAR gamma protein were significantly higher in the malignant cell lines relative to their normal cells. GLA supplementation did not affect the protein expression in malignant cells but caused 6- and 3-fold increases in normal breast and prostate cells, respectively. Since activation of PPAR gamma protein in some human malignant cell lines has been demonstrated to induce tumour cell death, these findings signal the need to exploit the significantly elevated expression of this protein in the therapy of human cancer. Copyright 2001 Harcourt Publishers Ltd.

  8. Preclinical studies identify novel targeted pharmacological strategies for treatment of human malignant pleural mesothelioma

    PubMed Central

    Favoni, Roberto E; Daga, Antonio; Malatesta, Paolo; Florio, Tullio

    2012-01-01

    The incidence of human malignant pleural mesothelioma (hMPM) is still increasing worldwide. hMPM prognosis is poor even if the median survival time has been slightly improved after the introduction of the up-to-date chemotherapy. Nevertheless, large phase II/III trials support the combination of platinum derivatives and pemetrexed or raltitrexed, as preferred first-line schedule. Better understanding of the molecular machinery of hMPM will lead to the design and synthesis of novel compounds targeted against pathways identified as crucial for hMPM cell proliferation and spreading. Among them, several receptors tyrosine kinase show altered activity in subsets of hMPM. This observation suggests that these kinases might represent novel therapeutic targets in this chemotherapy-resistant disease. Over these foundations, several promising studies are ongoing at preclinical level and novel molecules are currently under evaluation as well. Yet, established tumour cell lines, used for decades to investigate the efficacy of anticancer agents, although still the main source of drug efficacy studies, after long-term cultures tend to biologically diverge from the original tumour, limiting the predictive potential of in vivo efficacy. Cancer stem cells (CSCs), a subpopulation of malignant cells capable of self-renewal and multilineage differentiation, are believed to play an essential role in cancer initiation, growth, metastasization and relapse, being responsible of chemo- and radiotherapy refractoriness. According to the current carcinogenesis theory, CSCs represent the tumour-initiating cell (TIC) fraction, the only clonogenic subpopulation able to originate a tumour mass. Consequently, the recently described isolation of TICs from hMPM, the proposed main pharmacological target for novel antitumoural drugs, may contribute to better dissect the biology and multidrug resistance pathways controlling hMPM growth. PMID:22289125

  9. Human beta-defensin-2 controls cell cycle in malignant epithelial cells: in vitro study.

    PubMed

    Zhuravel, E; Shestakova, T; Efanova, O; Yusefovich, Yu; Lytvin, D; Soldatkina, M; Pogrebnoy, P

    2011-09-01

    In the present research we analyze the mechanism of human beta-defensin-2 (hBD-2) influence on cultured malignant epithelial cell growth. The analysis of a concentration-dependent effect of recombinant hBD-2 (rec-hBD-2) on cell growth patterns and cell cycle distribution has been performed in vitro with 2 cell lines (human lung adenocarcinoma A549 cells and human epidermoid carcinoma A431 cells) using MTT test, flow cytometry and direct cell counting. To study intracellular localization of hBD-2 immunocytofluorescent and immunocytochemical analyses were applied, and effect of hBD-2 on signal cascades involved in cell cycle regulation has been studied by Western blotting. According to our data, rec-hBD-2 exerts a concentration-dependent effect on the viability of cultured A549 and A431 cells. It causes proproliferative effect at concentrations below 1 nM, significant suppression of cell proliferation at concentration range from 10 nM to 1 μM (p<0.05), and cell death at higher concentrations. Using flow cytometry we have demonstrated that hBD-2 dependent growth suppression is realized via cell cycle arrest at G1/S phase (p<0.05). Also, we have registered significant activation of pRB and decreased expression of Cyclin D1 in cells treated with the defensin compared to untreated control cells, while the expression of p53 remains unaffected. The study of intracellular localization of hBD-2 in these cells has revealed that exogeneously added defensin molecules enter the cells, are distributed throughout the cytoplasm and could be detected in cell nuclei. The model study using A549 cells treated with 1,25-(OH)(2)D(3) has shown similar cell growth suppression effect of native endogenously produced hBD-2. The results of our study suggest that in malignant epithelial cells hBD-2 may control cell growth via arrest of G1/S transition and activation of pRB.

  10. Involvement of F-BOX proteins in progression and development of human malignancies.

    PubMed

    Uddin, Shahab; Bhat, Ajaz A; Krishnankutty, Roopesh; Mir, Fayaz; Kulinski, Michal; Mohammad, Ramzi M

    2016-02-01

    The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.

  11. Ectopic over-expression of oncogene Pim-2 induce malignant transformation of nontumorous human liver cell line L02.

    PubMed

    Ren, Ke; Duan, Wentao; Shi, Yujun; Li, Bo; Liu, Zuojin; Gong, Jiangping

    2010-07-01

    In order to prove that ectopic over-expression of Pim-2 could induce malignant transformation of human liver cell line L02, three groups of cells were set up including human liver cell line L02 (L02), L02 cells transfected with Pim-2 gene (L02/Pim-2) and L02 cells transfected with empty-vector (L02/Vector). Pim-2 expression levels were detected. The morphology, proliferation level, apoptosis rate and migration ability of the cells were detected respectively. Then the cells were subcutaneously inoculated into athymic mice and the microstructures of the neoplasm were observed. Compared with the controls, Pim-2 expression levels were significantly higher in L02/Pim-2 cells (P<0.05), and their morphology had obvious malignant changes. They also showed a significantly increased proliferation rate (P<0.05) and migration capacity (P<0.05), as well as a significantly decreased apoptosis rate (P<0.05). Only the athymic mice inoculated with L02/Pim-2 cells could generate neoplasm, and the morphology of the neoplasm coincided with that of the hepatoma. The results manifest that ectopic Pim-2 gene could be stably expressed in L02/Pim-2 cells. Both the morphological and biological changes of L02/Pim-2 cells demonstrate the trend of malignant transformation. L02/Pim-2 cells could generate hepatoma in athymic mice. In conclusion, Pim-2 could induce malignant transformation of human liver cell line L02.

  12. Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject

    SciTech Connect

    Fishkin, J.B.; Coquoz, O.; Anderson, E.R.; Brenner, M.; Tromberg, B.J. |

    1997-01-01

    A 1-GHz multifrequency, multiwavelength frequency-domain photon migration instrument is used to measure quantitatively the optical absorption ({mu}{sub a}) and effective optical scattering ({mu}{sub s}{sup {prime}}) of normal and malignant tissues in a human subject. Large ellipsoidal ({approximately}10-cm major axis, {approximately}6-cm minor axes) subcutaneous malignant lesions were compared with adjacent normal sites in the abdomen and back. Absorption coefficients recorded at 674, 811, 849, and 956 nm were used to calculate tissue hemoglobin concentration (oxyhemoglobin, deoxyhemoglobin, and total), water concentration, hemoglobin oxygen saturation, and blood volume fraction {ital in vivo}. Our results show that the normal and the malignant tissues measured in the patient have clearly resolvable optical and physiological property differences that may be broadly useful in identifying and characterizing tumors.{copyright} 1997 Optical Society of America

  13. Single-chain antibody-delivered Livin siRNA inhibits human malignant melanoma growth in vitro and in vivo.

    PubMed

    Wang, Hao; Yang, Yifei; Wang, Wei; Guan, Bing; Xun, Meng; Zhang, Hai; Wang, Ziling; Zhao, Yong

    2017-05-01

    Although gene therapy has brought new insights into the treatment of malignant melanoma, targeting delivery of nucleic acid which targets critical oncogene/anti-oncogene in vivo is still a bottleneck in the therapeutic application. Our previous in vitro studies have found that the oncogene Livin could serve as a potential molecular target by small interfering RNA for gene therapy of malignant melanoma. However, how to transport Livin small interfering RNA into malignant melanoma cells specifically and efficiently in vivo needs further investigation. Cumulative evidence has suggested that single-chain antibody-mediated small interfering RNA targeted delivery is an effective way to silence specific genes in human cancer cells. Indeed, this study designed a protamine-single-chain antibody fusion protein, anti-MM scFv-tP, to deliver Livin small interfering RNA into LiBr cells. Further experiments confirmed the induction of cell apoptosis and suppression of cell proliferation by anti-MM scFv-tP in LiBr cells, along with efficient silence of Livin gene both in vitro and in vivo. Altogether, our findings provide a feasible approach to transport Livin small interfering RNA to malignant melanoma cells which would be a new therapeutic strategy for combating malignant melanoma.

  14. Emerging Role and Targeting of Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) in Human Malignancies

    PubMed Central

    Johnson, Benny; Mahadevan, Daruka

    2015-01-01

    Background: Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is a member of the CEA family of cell adhesion proteins that belong to the immunoglobulin superfamily. CEACAM6 is normally expressed on the surface of myeloid (CD66c) and epithelial surfaces. Stiochiomertic expression of members of the CEA family (CEACAM1, 5, 6, 7) on epithelia maintains normal tissue architecture through homo-and hetero-philic interactions. Dysregulated over-expression of CEACAM6 is oncogenic, is associated with anoikis resistance and an invasive phenotype mediated by excessive TGFβ, AKT, FAK and SRC signaling in human malignancies. Methods: Extensive literature review through PubMed was conducted to identify relevant preclinical and clinical research publications regarding CEACAM6 over the last decade and was summarized in this manuscript. Results: CEACAM5 and 6 are over-expressed in nearly 70% of epithelial malignancies including colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDA), hepatobiliary, gastric, breast, non-small cell lung and head/neck cancers. Importantly, CEACAM6 is a poor prognostic marker in CRC, while its expression correlates with tumor stage, metastasis and post-operative survival in PDA. CEACAM6 appears to be an immune checkpoint suppressor in hematologic malignancies including acute lymphoblastic leukemia and multiple myeloma. Several therapeutic monoclonal antibodies or antibody fragments targeting CEACAM6 have been designed and developed as a targeted therapy for human malignancies. A Llama antibody targeting CEACAM6 is being evaluated in early phase clinical trials. Conclusion: This review focuses on the role of CEACAM6 in the pathogenesis and signaling of the malignant phenotype in solid and hematologic malignancies and highlights its potential as a therapeutic target for anti-cancer therapy. PMID:27595061

  15. Clinical Significance of EphB4 and EphB6 Expression in Human Malignant and Benign Thyroid Lesions.

    PubMed

    Giaginis, Constantinos; Alexandrou, Paraskevi; Poulaki, Elpida; Delladetsima, Ioanna; Troungos, Constantinos; Patsouris, Efstratios; Theocharis, Stamatios

    2016-04-01

    Ephrin receptors (Ephs) are frequently overexpressed in a wide variety of human malignant tumors, being associated with tumor growth, invasion, angiogenesis and metastasis. The present study aimed to evaluate the clinical significance of EphB4 and EphB6 protein expression in human malignant and benign thyroid lesions. EphB4 and EphB6 protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 127 patients with benign (n = 71) and malignant (n = 56) thyroid lesions. Enhanced EphB4 and EphB6 expression was more frequently observed in malignant compared to benign thyroid lesions (p = 0.0508 and p = 0.0006, respectively). EphB4 and EphB6 expression also provided a distinct discrimination between papillary carcinoma and hyperplastic nodules (p = 0.0302 and p = 0.0013, respectively). In malignant thyroid lesions, enhanced EphB4 expression was significantly associated with larger tumor size (p = 0.0366). Enhanced EphB6 expression was significantly associated with larger tumor size (p = 0.0366), the presence of lymph node metastases (p = 0.0023), the presence of capsular (p = 0.0038), lymphatic (p = 0.0053) and vascular invasion (p = 0.0018) and increased risk of recurrence rate (p = 0.0038). The present study supported evidence that EphB4 and mainly EphB6 may participate in the malignant thyroid transformation, reinforcing their utility as useful biomarkers and possible therapeutic targets in this type of neoplasia.

  16. On the growth rates of human malignant tumors: implications for medical decision making.

    PubMed

    Friberg, S; Mattson, S

    1997-08-01

    Testicular carcinomas, pediatric tumors, and some mesenchymal tumors are examples of rapidly proliferating cell populations, for which the tumor volume doubling time (TVDT) can be counted in days. Cancers from the breast, prostate, and colon are frequently slow-growing, displaying a TVDT of months or years. Irrespective of their growth rates, most human tumors have been found: to start from one single cell, to have a long subclinical period, to grow at constant rates for long periods of time, to start to metastasize often even before the primary is detected, and to have metastases that often grow at approximately the same rate as the primary tumor. The recognition of basic facts in tumor cell kinetics is essential in the evaluation of important present-day strategies in oncology. Among the facts emphasized in this review are: (1) Screening programs. Most tumors are several years old when detectable by present-day diagnostic methods. This makes the term "early detection" questionable. (2) Legal trials. The importance of so-called doctor's delay is often discussed, but the prognostic value of "early" detection is overestimated. (3) Analyses of clinical trials. Such analysis may be differentiated depending on the growth rates of the type of tumor studied. Furthermore, uncritical analysis of survival data may be misleading if the TVDT is not taken into consideration. (4) Analyses of epidemiological data. If causes of malignant tumors in humans are searched for, the time of exposure must be extended far back in the subject's history. (5) Risk estimations by insurance companies. For the majority of human cancers, the 5-year survival rate is not a valid measurement for cure. Thus, basic knowledge of tumor kinetics may have important implications for political health programs, legal trials, medical science, and insurance policies.

  17. Lack of Decorin Expression by Human Bladder Cancer Cells Offers New Tools in the Therapy of Urothelial Malignancies

    PubMed Central

    Lund, Riikka; Vuorikoski, Sanna; Boström, Pia; Laato, Matti; Boström, Peter J.; Järveläinen, Hannu

    2013-01-01

    Decorin, a multifunctional small leucine-rich extracellular matrix proteoglycan, has been shown to possess potent antitumour activity. However, there is some uncertainty whether different cancer cells express decorin in addition to non-malignant stromal cells. In this study we clarified decorin expression by human bladder cancer cells both in vivo and in vitro. In addition, the effect of adenovirus-mediated decorin expression on human bladder cancer cells in vitro was examined. We first demonstrated using the publicly available GeneSapiens databank that decorin gene expression is present in both normal and malignant human bladder tissues. However, when we applied in situ hybridization with digoxigenin-labeled RNA probes for decorin on human bladder carcinoma tissue samples derived from a large radical cystectomy patient cohort (n = 199), we unambiguously demonstrated that invasive and non-invasive bladder carcinoma cells completely lack decorin mRNA. The cancer cells were also negative for decorin immunoreactivity. Instead, decorin expression was localized solely to original non-malignant stromal areas of bladder tissue. In accordance with the aforementioned results, human bladder cancer cells in vitro were also negative for decorin expression as shown by RT-qPCR analyses. The lack of decorin expression by bladder cancer cells was shown not to be due to the methylation of the proximal promoter region of the decorin gene. When bladder cancer cells were transfected with a decorin adenoviral vector, their proliferation was significantly decreased. In conclusion, we have shown that human bladder cancer cells are totally devoid of decorin expression. We have also shown that adenovirus-mediated decorin gene transduction of human bladder cancer cell lines markedly inhibits their proliferation. Thus, decorin gene delivery offers new potential therapeutic tools in urothelial malignancies. PMID:24146840

  18. Involvement of human beta-defensin-2 in regulation of malignant potential of cultured human melanoma cells.

    PubMed

    Gerashchenko, O; Zhuravel, E; Skachkova, O; Khranovska, N; Pushkarev, V; Pogrebnoy, P; Soldatkina, M

    2014-03-01

    Human beta-defensin-2 (hBD-2) is an antimicrobial cationic peptide capable to control human carcinoma cell growth via cell cycle regulation. The present study was aimed on determination of hBD-2 influence on the growth patterns and malignant potential of cultured human melanoma cells. The study was performed on cultured human melanoma cells of mel Z and mel Is lines treated with recombinant hBD-2 (rec-hBD-2); cell viability, proliferation, cell cycle distribution, and anchorage-independent growth were analyzed using MTT test, direct cell counting, flow cytometry, and colony forming assay respectively. Expression and/or phosphorylation levels of proteins involved in cell cycle control were evaluated by Western blotting. The treatment of mel Z and mel Is cells with rec-hBD-2 in a concentration range of 100-1000 nM resulted in a concentration-dependent suppression of cell proliferation, viability, and colony forming activity. It has been shown that rec-hBD-2 exerts its growth suppression effects via significant downregulation of B-Raf expression, activation of pRB and upregulation of p21(WAF1) expression, downregulation of cyclin D1 and cyclin E resulting in cell cycle arrest at G1/S checkpoint. According to obtained results, hBD-2 exerts its growth suppression effect toward human melanoma cells via downregulation of B-Raf, cyclin D1 and cyclin E expression, upregulation of p21(WAF1) expression and activation of pRB.

  19. Malignant mesothelioma

    PubMed Central

    Moore, Alastair J; Parker, Robert J; Wiggins, John

    2008-01-01

    Malignant mesothelioma is a fatal asbestos-associated malignancy originating from the lining cells (mesothelium) of the pleural and peritoneal cavities, as well as the pericardium and the tunica vaginalis. The exact prevalence is unknown but it is estimated that mesotheliomas represent less than 1% of all cancers. Its incidence is increasing, with an expected peak in the next 10–20 years. Pleural malignant mesothelioma is the most common form of mesothelioma. Typical presenting features are those of chest pain and dyspnoea. Breathlessness due to a pleural effusion without chest pain is reported in about 30% of patients. A chest wall mass, weight loss, sweating, abdominal pain and ascites (due to peritoneal involvement) are less common presentations. Mesothelioma is directly attributable to occupational asbestos exposure with a history of exposure in over 90% of cases. There is also evidence that mesothelioma may result from both para-occupational exposure and non-occupational "environmental" exposure. Idiopathic or spontaneous mesothelioma can also occur in the absence of any exposure to asbestos, with a spontaneous rate in humans of around one per million. A combination of accurate exposure history, along with examination radiology and pathology are essential to make the diagnosis. Distinguishing malignant from benign pleural disease can be challenging. The most helpful CT findings suggesting malignant pleural disease are 1) a circumferential pleural rind, 2) nodular pleural thickening, 3) pleural thickening of > 1 cm and 4) mediastinal pleural involvement. Involvement of a multidisciplinary team is recommended to ensure prompt and appropriate management, using a framework of radiotherapy, chemotherapy, surgery and symptom palliation with end of life care. Compensation issues must also be considered. Life expectancy in malignant mesothelioma is poor, with a median survival of about one year following diagnosis. PMID:19099560

  20. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells

    PubMed Central

    Kluz, Thomas; Cohen, Lisa; Shen, Steven S.; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress. PMID:27186882

  1. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells.

    PubMed

    Cartularo, Laura; Kluz, Thomas; Cohen, Lisa; Shen, Steven S; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress.

  2. Preliminary micro-Raman images of normal and malignant human skin cells

    NASA Astrophysics Data System (ADS)

    Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Chen, Michael X.

    2006-02-01

    Micro-Raman spectroscopy covering a frequency range from 200 to 4000 cm -1 was used to image human skin melanocytes and keratinocytes with a spatial resolution of 0.5 μm. The cells were either cultivated on glass microscope slides or were located within thin sections of skin biopsies mounted on low fluorescence BaF II. A commercially available system was used to obtain the spectra utilizing a x100 long working distance objective with a numerical aperture of 0.8, and a cooled CCD. Both 633 and 515 nm excitations were tried, although the latter proved to be more effcient at producing Raman emission mostly due to the 1/λ 4 dependence in light scattering. Fluorescence emission from the cells was surprisingly low. The excitation power at the sample was kept below about 2 mW to avoid damaging the cells; this was the limiting factor on how quickly a Raman image could be obtained. Despite this diffculty we were able to obtain Raman images with rich information about the spectroscopic and structural features within the cytoplasm and cell nuclei. Differences were observed between the Raman images of normal and malignant cells. Spectra from purified DNA, RNA, lipids, proteins and melanin were obtained and these spectra were compared with the skin cell spectra with the aim of understanding how they are distributed over a cell and how the distribution changes between different cells.

  3. Specific expression of human intelectin-1 in malignant pleural mesothelioma and gastrointestinal goblet cells.

    PubMed

    Washimi, Kota; Yokose, Tomoyuki; Yamashita, Makiko; Kageyama, Taihei; Suzuki, Katsuo; Yoshihara, Mitsuyo; Miyagi, Yohei; Hayashi, Hiroyuki; Tsuji, Shoutaro

    2012-01-01

    Malignant pleural mesothelioma (MPM) is a fatal tumor. It is often hard to discriminate MPM from metastatic tumors of other types because currently, there are no reliable immunopathological markers for MPM. MPM is differentially diagnosed by some immunohistochemical tests on pathology specimens. In the present study, we investigated the expression of intelectin-1, a new mesothelioma marker, in normal tissues in the whole body and in many cancers, including MPM, by immunohistochemical analysis. We found that in normal tissues, human intelectin-1 was mainly secreted from gastrointestinal goblet cells along with mucus into the intestinal lumen, and it was also expressed, to a lesser extent, in mesothelial cells and urinary epithelial cells. Eighty-eight percent of epithelioid-type MPMs expressed intelectin-1, whereas sarcomatoid-type MPMs, biphasic MPMs, and poorly differentiated MPMs were rarely positive for intelectin-1. Intelectin-1 was not expressed in other cancers, except in mucus-producing adenocarcinoma. These results suggest that intelectin-1 is a better marker for epithelioid-type MPM than other mesothelioma markers because of its specificity and the simplicity of pathological assessment. Pleural intelectin-1 could be a useful diagnostic marker for MPM with applications in histopathological identification of MPM.

  4. Specific Expression of Human Intelectin-1 in Malignant Pleural Mesothelioma and Gastrointestinal Goblet Cells

    PubMed Central

    Washimi, Kota; Yokose, Tomoyuki; Yamashita, Makiko; Kageyama, Taihei; Suzuki, Katsuo; Yoshihara, Mitsuyo; Miyagi, Yohei; Hayashi, Hiroyuki; Tsuji, Shoutaro

    2012-01-01

    Malignant pleural mesothelioma (MPM) is a fatal tumor. It is often hard to discriminate MPM from metastatic tumors of other types because currently, there are no reliable immunopathological markers for MPM. MPM is differentially diagnosed by some immunohistochemical tests on pathology specimens. In the present study, we investigated the expression of intelectin-1, a new mesothelioma marker, in normal tissues in the whole body and in many cancers, including MPM, by immunohistochemical analysis. We found that in normal tissues, human intelectin-1 was mainly secreted from gastrointestinal goblet cells along with mucus into the intestinal lumen, and it was also expressed, to a lesser extent, in mesothelial cells and urinary epithelial cells. Eighty-eight percent of epithelioid-type MPMs expressed intelectin-1, whereas sarcomatoid-type MPMs, biphasic MPMs, and poorly differentiated MPMs were rarely positive for intelectin-1. Intelectin-1 was not expressed in other cancers, except in mucus-producing adenocarcinoma. These results suggest that intelectin-1 is a better marker for epithelioid-type MPM than other mesothelioma markers because of its specificity and the simplicity of pathological assessment. Pleural intelectin-1 could be a useful diagnostic marker for MPM with applications in histopathological identification of MPM. PMID:22768319

  5. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy.

    PubMed

    Hunter, Chris; Smith, Raffaella; Cahill, Daniel P; Stephens, Philip; Stevens, Claire; Teague, Jon; Greenman, Chris; Edkins, Sarah; Bignell, Graham; Davies, Helen; O'Meara, Sarah; Parker, Adrian; Avis, Tim; Barthorpe, Syd; Brackenbury, Lisa; Buck, Gemma; Butler, Adam; Clements, Jody; Cole, Jennifer; Dicks, Ed; Forbes, Simon; Gorton, Matthew; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jenkinson, Andy; Jones, David; Kosmidou, Vivienne; Laman, Ross; Lugg, Richard; Menzies, Andrew; Perry, Janet; Petty, Robert; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Solomon, Helen; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Easton, Douglas F; Riggins, Gregory; Roy, Jennifer E; Levine, Kymberly K; Mueller, Wolf; Batchelor, Tracy T; Louis, David N; Stratton, Michael R; Futreal, P Andrew; Wooster, Richard

    2006-04-15

    Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.

  6. Characterization of Two Human Skeletal Calsequestrin Mutants Implicated in Malignant Hyperthermia and Vacuolar Aggregate Myopathy*

    PubMed Central

    Lewis, Kevin M.; Ronish, Leslie A.; Ríos, Eduardo; Kang, ChulHee

    2015-01-01

    Calsequestrin 1 is the principal Ca2+ storage protein of the sarcoplasmic reticulum of skeletal muscle. Its inheritable D244G mutation causes a myopathy with vacuolar aggregates, whereas its M87T “variant” is weakly associated with malignant hyperthermia. We characterized the consequences of these mutations with studies of the human proteins in vitro. Equilibrium dialysis and turbidity measurements showed that D244G and, to a lesser extent, M87T partially lose Ca2+ binding exhibited by wild type calsequestrin 1 at high Ca2+ concentrations. D244G aggregates abruptly and abnormally, a property that fully explains the protein inclusions that characterize its phenotype. D244G crystallized in low Ca2+ concentrations lacks two Ca2+ ions normally present in wild type that weakens the hydrophobic core of Domain II. D244G crystallized in high Ca2+ concentrations regains its missing ions and Domain II order but shows a novel dimeric interaction. The M87T mutation causes a major shift of the α-helix bearing the mutated residue, significantly weakening the back-to-back interface essential for tetramerization. D244G exhibited the more severe structural and biophysical property changes, which matches the different pathophysiological impacts of these mutations. PMID:26416891

  7. Malignant Transformation Potentials of Human Umbilical Cord Mesenchymal Stem Cells Both Spontaneously and via 3-Methycholanthrene Induction

    PubMed Central

    Lai, Xiulan; Liu, Sizheng; Chen, Yezeng; Zheng, Zexin; Xie, Qingdong; Maldonado, Martin; Cai, Zhiwei; Qin, Shan; Ho, Guyu; Ma, Lian

    2013-01-01

    Human umbilical cord mesenchymal stem cells (HUMSCs) are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs) derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA), a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs) were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT) and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA. PMID:24339974

  8. Efficient isolation of human metapneumovirus using MNT-1, a human malignant melanoma cell line exhibiting early and distinct cytopathic effect.

    PubMed

    Sato, Ko; Watanabe, Oshi; Ohmiya, Suguru; Chiba, Fumiko; Suzuki, Akira; Okamoto, Michiko; Younghuang, Jiang; Hata, Akihiro; Nonaka, Hiroyuki; Kitaoka, Setsuko; Nagai, Yukio; Kawamura, Kazuhisa; Hayashi, Masahiro; Kumaki, Satoru; Suzuki, Tamio; Kawakami, Kazuyoshi; Nishimura, Hidekazu

    2017-09-20

    Isolation of human metapneumovirus (HMPV) from clinical specimens is currently inefficient due to the lack of a cell culture system exhibiting a distinct cytopathic effect (CPE). The cell lines LLC-MK2, Vero, and Vero E6 are used for isolation of HMPV; however, the CPE in these cell lines is subtle and usually requires a long observation period and sometimes blind passages. Thus, a cell line that exhibits an early and distinct CPE following HMPV inoculation is highly desired by clinical virology laboratories. We demonstrate that the human malignant melanoma cell line MNT-1 shows obvious syncytium formation shortly after inoculation with HMPV-positive clinical specimens. In addition, the growth and isolation efficiency of HMPV was higher using MNT-1 than any other conventional cell line. Addition of this cell line to our routine viral isolation system for clinical specimens markedly enhanced isolation frequency, allowing isolation-based surveillance. MNT-1 has the potential to facilitate clinical and epidemiological studies of HMPV. © 2017 The Societies and Wiley Publishing Asia Pty Ltd.

  9. Targeting autophagy enhances BO-1051-induced apoptosis in human malignant glioma cells.

    PubMed

    Chu, Pei-Ming; Chen, Li-Hsin; Chen, Ming-Teh; Ma, Hsin-I; Su, Tsann-Long; Hsieh, Pei-Chen; Chien, Chian-Shiu; Jiang, Bo-Hua; Chen, Yu-Chih; Lin, Yi-Hui; Shih, Yang-Hsin; Tu, Pang-Hsien; Chiou, Shih-Hwa

    2012-03-01

    BO-1051 is an N-mustard derivative that is conjugated with DNA-affinic 9-anilinoacridine. Since BO-1051 was reported to have strong anticancer activity, we investigated the effect and underlying mechanism of BO-1051 in human glioma cell lines. Human glioma cell lines U251MG and U87MG were studied with BO-1051 or the combination of BO-1051 and autophagic inhibitors. Growth inhibition was assessed by MTT assay. Apoptosis was measured by annexin V staining followed by flow cytometry and immunoblotting for apoptosis-related molecules. Induction of autophagy was detected by acridine orange labeling, electron microscopy, LC3 localization and its conversion. Transfection of shRNA was used to determine the involvement of Beclin1 in apoptotic cell death. MTT assay showed that BO-1051 suppressed the viability of four glioma cell lines (U251MG, U87MG, GBM-3 and DBTRG-05MG) in a dose-dependent manner. The IC(50) values of BO-1051 for the glioma cells were significantly lower than the values for primary neurons cultures and normal fibroblast cells. Moreover, BO-1051 not only induced apoptotic cell death, but also enhanced autophagic flux via inhibition of Akt/mTOR and activation of Erk1/2. Importantly, suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly increased BO-1051-induced apoptotic cell death in U251MG and U87MG cells. In addition, the proportion of apoptotic cells after BO-1051 treatment was enhanced by co-treatment with shRNA against Beclin1. BO-1051 induced both apoptosis and autophagy, and inhibition of autophagy significantly augmented the cytotoxic effect of BO-1051. Thus, a combination of BO-1051 and autophagic inhibitors offers a potentially new therapeutic modality for the treatment of malignant glioma.

  10. Molecular mechanism of inositol hexaphosphate-mediated apoptosis in human malignant glioblastoma T98G cells.

    PubMed

    Karmakar, Surajit; Banik, Naren L; Ray, Swapan K

    2007-12-01

    Glioblastoma is the deadliest brain tumor in humans. Current therapies are mostly ineffective and new agents need to be explored for controlling this devastating disease. Inositol hexaphosphate (IP6) is a phytochemical that is widely found in corns, cereals, nuts, and high fiber-content foods. Previous studies demonstrated anti-cancer properties of IP6 in several in vitro and in vivo tumor models. However, therapeutic efficacy of IP6 has not yet been evaluated in glioblastoma. Here, we explored the molecular mechanism of action of IP6 in human malignant glioblastoma T98G cells. The viability of T98G cells decreased following treatment with increasing doses of IP6. T98G cells exposed to 0.25, 0.5, and 1 mM IP6 for 24 h showed morphological and biochemical features of apoptosis. Western blotting indicated changes in expression of Bax and Bcl-2 proteins resulting in an increase in Bax:Bcl-2 ratio and upregulation of cytosolic levels of cytochrome c and Smac/Diablo, suggesting involvement of mitochondria-dependent caspase cascade in apoptosis. IP6 downregulated cell survival factors such as baculovirus inhibitor-of-apoptosis repeat containing-2 (BIRC-2) protein and telomerase to promote apoptosis. Upregulation of calpain and caspase-9 occurred in course of apoptosis. Increased activities of calpain and caspase-3 cleaved 270 kD alpha-spectrin at specific sites generating 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Increased caspase-3 activity also cleaved inhibitor of caspase-3-activated DNase and poly(ADP-ribose) polymerase. Collectively, our results demonstrated that IP6 down regulated the survival factors BIRC-2 and telomerase and upregulated calpain and caspase-3 activities for apoptosis in T98G cells.

  11. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  12. Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy.

    PubMed

    Furukawa, Jun-ichi; Tsuda, Masumi; Okada, Kazue; Kimura, Taichi; Piao, Jinhua; Tanaka, Shinya; Shinohara, Yasuro

    2015-01-01

    Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response.

  13. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    PubMed Central

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia. PMID:26539529

  14. Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues.

    PubMed

    D'Andrea, M R; Derian, C K; Santulli, R J; Andrade-Gordon, P

    2001-06-01

    The serine proteases thrombin and trypsin are among many factors that malignant cells secrete into the extracellular space to mediate metastatic processes such as cellular invasion, extracellular matrix degradation, angiogenesis, and tissue remodeling. The degree of protease secretion from malignant cells has been correlated to their metastatic potential. Protease activated receptors (PAR)-1 and -2, which are activated by thrombin and trypsin respectively, have not been extensively characterized in human tumors in situ. We investigated the presence of PAR-1 and PAR-2 in human normal, benign and malignant tissues using immunohistochemistry and in situ hybridization. Our results demonstrate PAR-1 and PAR-2 expression in the tumor cells, mast cells, macrophages, endothelial cells, and vascular smooth muscle cells of the metastatic tumor microenvironment. Most notably, an up-regulation of PAR-1 and PAR-2 observed in proliferating, smooth muscle actin (SMA)-positive stromal fibroblasts surrounding the carcinoma cells was not observed in normal or benign conditions. Furthermore, in vitro studies using proliferating, SMA-positive, human dermal fibroblasts, and scrape-wounded human dermal fibroblasts demonstrated the presence of PAR-1 and PAR-2 not detected in quiescent, SMA-negative cultures. PAR-1 and PAR-2 in the cells forming the tumor microenvironment suggest that these receptors mediate the signaling of secreted thrombin and trypsin in the processes of cellular metastasis.

  15. Fig latex (Ficus carica L. cultivar Dottato) in combination with UV irradiation decreases the viability of A375 melanoma cells in vitro.

    PubMed

    Menichini, Giulio; Alfano, Carmine; Provenzano, Eugenio; Marrelli, Mariangela; Statti, Giancarlo A; Somma, Francesco; Menichini, Francesco; Conforti, Filomena

    2012-10-01

    Melanoma and nonmelanoma skin cancers are among the most prevalent cancers in the human population. In the present work latex of Ficus carica cultivar Dottato from Italy collected from fruits and leaves was examined to assess its free radical-scavenging activity with 1,1-diphenyl-2 picrylhydrazyl (DPPH) and its phototoxicity on A375 human melanoma cells. The latex obtained from the fruits of Ficus carica cv. Dottato showed the best antiradical activity with an IC50 value of 0.05 mg/ml while the latex obtained from the leaves showed the best antiproliferative activity with an IC50 value of 1.5 μg/ml on the human tumor cell line A375 (melanoma) after irradiation at a specific UVA dose (1.08 J/cm2). Control experiments with UVA light or drugs alone were carried out without significant cytotoxic effects. Polyphenolic content of the samples was also evaluated. This is the first study comparing F. carica latex of leaves and fruits. Plant derived natural products have long been and will continue to be an important source for anticancer drug development.

  16. Canine classical seminoma: a specific malignant type with human classifications is highly correlated with tumor angiogenesis

    PubMed Central

    2010-01-01

    Background Human seminoma is classified as classical seminoma (SE) and spermatocytic seminoma (SS). Human SE is known to be more malignant and metastasizing more frequently than SS. Tumor angiogenesis is highly related with tumor progression and metastasis, with microvessel density (MVD) being an important parameter of metastatic potential. Canine seminoma is not yet well-established as SE or SS type including correlation with angiogenesis. We classified canine SE and SS, and then compared them to tumor associated vessels. Methods Twenty-three cases of canine seminomas (2 intratubular, 9 diffuse, and 12 intratubular/diffuse seminomas showing both intratubular and diffuse patterns) were classified as SE or SS by immunohistochemistry (IHC) using monoclonal antibody against PLAP and by PAS stain. The histopathological data were then compared to see if there was a correlation with SE or SS. Angiogenesis of seminomas were evaluated by immunohistochemical assay using polyclonal antibody against Von Willebrand factor (vWF) and by calculating the means of MVD, vessels area and perimeters using computerized image analysis. Statistical Package for Social Sciences (SPSS) program was used for various statistical analyses. Results The numbers of PLAP+/PAS+ canine SEs were 8/23 (34.8%) and PLAP-/PAS- SSs were 15/23 (61.2%). All SE cases (8/8, 100%) were intratubular/diffuse types. SS types included 2 intratubular (2/15, 13.3%), 9 diffuse (9/15, 60%), and 4 intratubular/diffuse (4/15, 26.7%) types. MVD and vascular parameters in SEs were significantly higher than in SSs, showing the highest value in the intratubular/diffuse type. Seminomas observed with neoplastic cells invasion of vessels presented higher perimeter and area values than seminomas without conformed neoplastic cells invasion. Conclusion In this study, we demonstrated a positive relationship between canine SE and tumor angiogenesis. Furthermore, we also showed that a tumor cells invasion of vessels were a correlated

  17. Store-operated Ca2+ Entry in Malignant Hyperthermia-susceptible Human Skeletal Muscle*

    PubMed Central

    Duke, Adrian M.; Hopkins, Philip M.; Calaghan, Sarah C.; Halsall, Jane P.; Steele, Derek S.

    2010-01-01

    In malignant hyperthermia (MH), mutations in RyR1 underlie direct activation of the channel by volatile anesthetics, leading to muscle contracture and a life-threatening increase in core body temperature. The aim of the present study was to establish whether the associated depletion of sarcoplasmic reticulum (SR) Ca2+ triggers sarcolemmal Ca2+ influx via store-operated Ca2+ entry (SOCE). Samples of vastus medialis muscle were obtained from patients undergoing assessment for MH susceptibility using the in vitro contracture test. Single fibers were mechanically skinned, and confocal microscopy was used to detect changes in [Ca2+] either within the resealed t-system ([Ca2+]t-sys) or within the cytosol. In normal fibers, halothane (0.5 mm) failed to initiate SR Ca2+ release or Ca2+t-sys depletion. However, in MH-susceptible (MHS) fibers, halothane induced both SR Ca2+ release and Ca2+t-sys depletion, consistent with SOCE. In some MHS fibers, halothane-induced SR Ca2+ release took the form of a propagated wave, which was temporally coupled to a wave of Ca2+t-sys depletion. SOCE was potently inhibited by “extracellular” application of a STIM1 antibody trapped within the t-system but not when the antibody was denatured by heating. In conclusion, (i) in human MHS muscle, SR Ca2+ depletion induced by a level of volatile anesthetic within the clinical range is sufficient to induce SOCE, which is tightly coupled to SR Ca2+ release; (ii) sarcolemmal STIM1 has an important role in regulating SOCE; and (iii) sustained SOCE from an effectively infinite extracellular Ca2+ pool may contribute to the maintained rise in cytosolic [Ca2+] that underlies MH. PMID:20566647

  18. Store-operated Ca2+ entry in malignant hyperthermia-susceptible human skeletal muscle.

    PubMed

    Duke, Adrian M; Hopkins, Philip M; Calaghan, Sarah C; Halsall, Jane P; Steele, Derek S

    2010-08-13

    In malignant hyperthermia (MH), mutations in RyR1 underlie direct activation of the channel by volatile anesthetics, leading to muscle contracture and a life-threatening increase in core body temperature. The aim of the present study was to establish whether the associated depletion of sarcoplasmic reticulum (SR) Ca(2+) triggers sarcolemmal Ca(2+) influx via store-operated Ca(2+) entry (SOCE). Samples of vastus medialis muscle were obtained from patients undergoing assessment for MH susceptibility using the in vitro contracture test. Single fibers were mechanically skinned, and confocal microscopy was used to detect changes in [Ca(2+)] either within the resealed t-system ([Ca(2+)](t-sys)) or within the cytosol. In normal fibers, halothane (0.5 mM) failed to initiate SR Ca(2+) release or Ca(2+)(t-sys) depletion. However, in MH-susceptible (MHS) fibers, halothane induced both SR Ca(2+) release and Ca(2+)(t-sys) depletion, consistent with SOCE. In some MHS fibers, halothane-induced SR Ca(2+) release took the form of a propagated wave, which was temporally coupled to a wave of Ca(2+)(t-sys) depletion. SOCE was potently inhibited by "extracellular" application of a STIM1 antibody trapped within the t-system but not when the antibody was denatured by heating. In conclusion, (i) in human MHS muscle, SR Ca(2+) depletion induced by a level of volatile anesthetic within the clinical range is sufficient to induce SOCE, which is tightly coupled to SR Ca(2+) release; (ii) sarcolemmal STIM1 has an important role in regulating SOCE; and (iii) sustained SOCE from an effectively infinite extracellular Ca(2+) pool may contribute to the maintained rise in cytosolic [Ca(2+)] that underlies MH.

  19. Catalase ameliorates polychlorinated biphenyl-induced cytotoxicity in non-malignant human breast epithelial cells

    PubMed Central

    Venkatesha, Venkatasubbaiah A.; Venkataraman, Sujatha; Sarsour, Ehab H.; Kalen, Amanda L.; Buettner, Garry R.; Robertson, Larry W.; Lehmler, Hans-Joachim; Goswami, Prabhat C.

    2008-01-01

    Polychlorinated biphenyls (PCBs) are environmental chemical contaminants believed to adversely affect cellular processes. We investigated the hypothesis that PCB-induced changes in the levels of cellular reactive oxygen species (ROS) induce DNA damage resulting in cytotoxicity. Exponentially growing cultures of human non-malignant breast epithelial cells (MCF10A) were incubated with PCBs for 3 days and assayed for cell number, ROS levels, DNA damage, and cytotoxicity. Exposure to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) or 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), a metabolite of 4-chlorobiphenyl (PCB3) significantly decreased cell number, MTS reduction, and increased the percentage of cells with sub G1 DNA content. Results from electron paramagnetic resonance (EPR) spectroscopy showed a 4-fold increase in the steady-state levels of ROS, which was suppressed in cells pre-treated with catalase. EPR measurements in cells treated with 4-Cl-BQ detected the presence of a semiquinone radical, suggesting that the increased levels of ROS could be due to the redox-cycling of 4-Cl-BQ. A dose-dependent increase in micronuclei frequency was observed in PCB-treated cells, consistent with an increase in histone 2AX-phosphorylation. Treatment of cells with catalase blunted the PCB-induced increase in micronuclei frequency and H2AX phosphorylation that was consistent with an increase in cell survival. Our results demonstrate a PCB-induced increase in cellular levels of ROS causing DNA damage, resulting in cell killing. PMID:18691649

  20. Enhanced antitumor therapy by inhibition of p21waf1 in human malignant mesothelioma.

    PubMed

    Lazzarini, Raffaella; Moretti, Simona; Orecchia, Sara; Betta, Pier-Giacomo; Procopio, Antonio; Catalano, Alfonso

    2008-08-15

    The p21 cyclin-dependent kinase inhibitor was frequently expressed in human malignant pleural mesothelioma (MPM) tissues as well as cell lines. Recent data indicate that p21 keeps tumor cells alive after DNA damage, favoring a survival advantage. In this study, we assessed the possibility of p21 suppression as a therapeutic target for MPM. We established two different MPM-derived (from H28 and H2052 cells) subclones using vector-based short hairpin RNA (shRNA). Then, chemosensitivity against low doses of antineoplastic DNA-damaging agents was investigated by colony formation assays, and furthermore, the type of cell response induced by these drugs was analyzed. To examine the effect of p21 shRNA on chemosensitivity in vivo, tumor formation assays in nude mice were done. In colony formation assay, the IC50 of doxorubicin was 33 +/- 3.0 nmol/L in p21 shRNA-transfected cells with respect to 125 +/- 10 nmol/L of control vector-transfected cells. This enhancement of growth inhibition was achieved by converting a senescence-like growth arrest to apoptosis in response to doxorubicin, etoposide, and CPT11. In the in vivo assays, CPT11 and loss-of-expression of p21 in combination led to considerable suppression of tumor growth associated with a substantially enhanced apoptotic response, whereas CPT11 alone was ineffective at inducing these responses. These results indicated that p21 might play an important role in chemosensitivity to anticancer agents, and the suppression of its expression might be a potential therapeutic target for MPM.

  1. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue.

    PubMed

    Reinicke, Karin; Sotomayor, Paula; Cisterna, Pedro; Delgado, Carolina; Nualart, Francisco; Godoy, Alejandro

    2012-02-01

    Over-expression of hexose transporters (Gluts), specifically Glut-1, is a common event in human malignancies. In prostate cancer (CaP), however, expression of Gluts has been characterized poorly. In this study, expression and distribution of Glut-1 and Glut-5 proteins were characterized using immunohistochemistry in 76 specimens of benign prostate, 10 specimens of high-grade intraepithelial neoplasia (HGPIN), and 28 specimens of CaP. In addition, mRNA expression of Glut-2, Glut-7, Glut-9, and Glut-11 was analyzed in a set of five specimens of benign prostate and CaP. In benign prostate, Glut-1 localized to the basal cells and to the basolateral membrane of secretory/luminal epithelial cells. Glut-5, however, localized to the apical membrane of secretory/luminal epithelial cells. In HGPIN, Glut-1 was immunohistochemically undetectable. Glut-5, however, localized to the apical membrane of the neoplastic epithelial cells. In CaP, Glut-1 and Glut-5, were immunohistochemically undetectable. However, over-expression of GLUT1 was observed in some specimens of highly proliferative intraductal CaP. Glut-7, Glut-9, and Glut-11 mRNAs were detected in benign prostate and CaP, however, only Glut-11 mRNA was consistently up-regulated in CaP compared to benign prostate. Low levels of expression of Glut-1 protein in the majority of CaP could explain, at least in part, the limited clinical applicability of positron emission tomography using 2-[18F]-fluoro-2-deoxy-D-glucose for imaging CaP. Moreover, expression of Glut-5 in HGPIN suggested that fructose could be utilized as potential metabolic substrate in HGPIN. Understanding the molecular mechanisms involved in regulation/dysregulation of Gluts in CaP could provide insight in the understanding of hexose metabolism in CaP.

  2. In Vivo Imaging of Human Malignant Mesothelioma Grown Orthotopically in the Peritoneal Cavity of Nude Mice

    PubMed Central

    Feng, Mingqian; Zhang, Jingli; Anver, Miriam; Hassan, Raffit; Ho, Mitchell

    2011-01-01

    Malignant mesothelioma (MM) causes significant morbidity and mortality in patients. With increasing efforts devoted to developing therapeutics targeting mesothelioma, a xenograft mouse model with in vivo tumor imaging is especially desired for evaluating anti-tumor therapies. In the present study, we fluorescently labeled the NCI-H226 human mesothelioma cell line by a lentiviral vector harboring a luciferase-GFP (Luc/GFP) fusion gene driven by the RNA polymerase II promoter. After single-cell cloning by flow cytometry, a clone (named LMB-H226-GL) that stably expresses high levels of Luc/GFP was obtained. The in vivo tumorigenicity of Luc/GFP-labeled LMB-H226-GL was determined by using intraperitoneal injections of the cells in nude mice. LMB-H226-GL was found to be able to consistently form solid tumors in the peritoneum of mice. Tumor growth and aggressive progression could be quantitated via in vivo bioluminescence imaging. The model exhibited the pathological hallmarks consistent with the clinical progression of MM in terms of tumor growth and spread inside the peritoneal cavity. To evaluate the in vivo efficacy of drugs targeting mesothelioma, we treated mice with SS1P, a recombinant immunotoxin currently evaluated in Phase II clinical trials for treatment of mesothelioma. All the tumor-bearing mice had a significant response to SS1P treatment. Our results showed that this is a well-suited model for mesothelioma, and may be useful for evaluating other novel agents for mesothelioma treatment in vivo. PMID:21479131

  3. Altered expression of G/sub 1/-specific genes in human malignant myeloid cells

    SciTech Connect

    Calabretta, B.; Venturelli, D.; Kaczmarek, L.; Narni, F.; Talpaz, M.; Anderson, B.; Beran, M.; Baserga, R.

    1986-03-01

    The authors have studied the expression of cell-cycle genes specific to the G/sub 1/ (2A9, 2F1, 4F1, c-myc) and S (histone H3) phases of the cell cycle in normal and malignant human myeloid cycling cells. The levels of expression were determined by measuring the amounts of specific RNA in blot hybridization assays. Levels of expression of the G/sub 1/ genes were compared to the level of expression of the S-phase-specific H3 gene. In a normal asynchronous system provided by the bone marrow cells of three normal donors, the expressions of the four G/sub 1/-specific genes 2A9, 2F1, 4F1, and c-myc, and of the S-phase-specific gene H3 were in ratios that differed little from one individual to another. In the total RNA of eight patients in the chronic phase of chronic myelogenous leukemia, a high level of expression of G/sub 1/ cell-cycle genes was paralleled by a high level of expression of the S-phase H3 gene, simply reflecting and increase in the fraction of proliferating cells. In patients with acute myelogenous leukemia (AML), the RNA levels of 2F1 and 4F1 paralleled the expression of H3. However, in 9 of 10 patients with AML they found that the expression of c-myc was elevated with respect to H3 expression. Two important conclusions can be drawn from these findings: (i) increased levels of a G/sub 1/-specific RNA in a tumor may not indicate overexpression of that gene but may instead simply reflect the fraction of proliferating cells; and (ii) in some patients with AML, however, the expression of certain G/sub 1/ genes is truly deregulated and might contribute to the impairment of proliferative control that is associated with this phenotype.

  4. p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia

    SciTech Connect

    Gaidano, G.; Ballerini, P.; Gong, J.Z.; Inghirami, G.; Knowles, D.M.; Dalla-Favera, R. ); Neri, A, Centro Malattie del Sangue G. Marcora, Milan ); Newcomb, E.W. ); Magrath, I.T. )

    1991-06-15

    The authors have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direst sequencing of PCR-amplified fragments. Mutations were found associated with (i) Burkitt lymphoma (9/27 biopsoes; 17/27 cell lines) and its leukemic counterpart L{sub 3}-type B-cell acute lymphoblastic leukemia (5/9), both of which also carry activated c-myc oncogenes, and (ii) B-cell chronic lymphocytic leukemia (6/40) and, in particular, its stage of progression known as Richter's transformation (3/7). Mutations were not found at any significant frequency in other types of non-Hodgkin lymphoma or acute lymphoblastic leukemia. In many cases, only the mutated allele was detectable, implying loss of the normal allele. These results suggest that (1) significant differences in the frequency of p53 mutations are present among subtypes of neoplasms derived from the same tissue; (2) p53 may play a role in tumor progression in B-cell chronic lymphocytic leukemia; (3) the presence of both p53 loss/inactivation and c-myc oncogene activation may be important in the pathogenesis of Burkitt lymphoma and its leukemia form L{sub 3}-type B-cell acute lymphoblastic leukemia.

  5. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    PubMed

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  6. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad; Verma, Ankit; Ahamed, Maqusood; Ahmed, Mukhtar; Alhadlaq, Hisham A

    2013-01-01

    The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles. PMID:23493450

  7. Functional roles of Fli-1, a member of the Ets family of transcription factors, in human breast malignancy.

    PubMed

    Sakurai, Takuya; Kondoh, Nobuo; Arai, Massaki; Hamada, Jun-ichi; Yamada, Toshiyuki; Kihara-Negishi, Fumiko; Izawa, Tetsuya; Ohno, Hideki; Yamamoto, Mikio; Oikawa, Tsuneyuki

    2007-01-01

    The Ets family of transcription factors is implicated in malignant transformation and tumor progression, including invasion, metastasis and neo-angiogenesis. In the present study, we found that the Fli-1 gene, a member of the Ets family, was highly expressed in several breast cancer cell lines (MDA-MB231, MDA-MB436, BT-549 and HCC1395). To investigate the functional roles of Fli-1 in breast cancer malignancy, we introduced an expression plasmid containing full-length Fli-1 cDNA into MCF7 breast cancer cells in which endogenous expression of Fli-1 was barely detectable.Overexpression of Fli-1 in MCF7 cells led to inhibition of apoptosis induced by serum depletion or ultraviolet irradiation, although it did not affect cell growth rate in liquid media, colony formation in soft agar or the in vitro invasion capacity of the cells. Expression of Fli-1 and antiapoptotic bcl-2 was coordinately upregulated by serum depletion in MCF7 cells, and the upregulation was inhibited by treatment of the cells with a c-Jun-NH(2)-terminal kinase-specific inhibitor. Furthermore, expression of the bcl-2 gene and protein was enhanced in Fli-1-overexpressing MCF7 cells compared with mock-transfected cells. In addition, human bcl-2 promoter activity was transactivated by Fli-1. These results suggest that Fli-1 contributes to the malignancy of human breast cancer by inhibiting apoptosis through upregulated expression of the bcl-2 gene.

  8. Role of transcription factor Sp1 in the quercetin-mediated inhibitory effect on human malignant pleural mesothelioma.

    PubMed

    Chae, Jung-Il; Cho, Jin Hyoung; Lee, Kyung-Ae; Choi, Nag-Jin; Seo, Kang Seok; Kim, Sang-Bum; Lee, Sang-Han; Shim, Jung-Hyun

    2012-10-01

    Quercetin (Qu) is found in plants, including red onions and in the skins of red apples, and induces the apoptosis of certain malignant cells. However, no report has been issued on the apoptotic effect of Qu on human malignant pleural mesothelioma. In the present study, it was found that MSTO-211H mesothelioma cell viability was reduced and apoptotic cell death was increased by Qu (20-80 µM), which was found to have an IC₅₀ of 58 µM. In addition, Qu increased the sub-G₁ cell population, and was found to interact with specificity protein 1 (Sp1) and significantly suppressed its expression at the protein and mRNA levels. Furthermore, Qu modulated the levels of Sp1 regulatory genes, such as cyclin D1, myeloid cell leukemia (Mcl)-1 and survivin in MSTO-211H cells. Apoptotic signaling cascades were activated by the cleavage of Bid, caspase-3 and PARP, and by the downregulation of Bcl-xL and the upregulation of Bax in MSTO-211H cells. Our results strongly suggest that Sp1 be considered as a novel molecular target of Qu in human malignant pleural mesothelioma.

  9. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation.

    PubMed

    Serafino, A; Balestrieri, E; Pierimarchi, P; Matteucci, C; Moroni, G; Oricchio, E; Rasi, G; Mastino, A; Spadafora, C; Garaci, E; Vallebona, P Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  10. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    SciTech Connect

    Serafino, A. Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; Vallebona, P. Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  11. Role of human papillomavirus in oral squamous cell carcinoma and oral potentially malignant disorders: A review of the literature

    PubMed Central

    Gupta, Shikha; Gupta, Sunita

    2015-01-01

    Human papillomaviruses (HPVs) are epitheliotropic viruses with an affinity for keratinocytes and are principally found in the anogenital tract, urethra, skin, larynx, tracheobronchial and oral mucosa. On the basis of high, but variable frequency of HPV in oral squamous cell carcinoma (OSCC), malignant potential of HPV infection has been hypothesized but not definitely confirmed. The aim of this review was to highlight the genomic structure and possible mechanism of infection and carcinogenesis by HPV in the oral mucosa and to review the frequency of HPV prevalence in OSCC and oral potentially malignant disorders. A computer database search was performed through the use of PubMed from 1994 to 2014. Search keywords used were: HPV and oral cancer, HPV and oral leukoplakia, HPV and oral lichen planus, HPV and OSCC, HPV and verrucous carcinoma, HPV and proliferative verrucous leukoplakia, HPV and oral papilloma. PMID:26097339

  12. Shape-dependent regulation of proliferation in normal and malignant human cells and its alteration by interferon

    SciTech Connect

    Kulesh, D.A.; Greene, J.J.

    1986-06-01

    The relationship between cell morphology, proliferation, and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes by plating onto plastic surfaces coated with poly(2-hydroxyethyl methacrylate). Poly(2-hydroxyethyl methacrylate) can precisely vary the shape of cells without toxicity. Cell proliferation was quantitated by cell counts and labeling indices were determined by autoradiography. The normal JHU-1 foreskin fibroblasts and IMR-90 lung fibroblasts exhibited contact-inhibited growth with a saturation density of 2.9 X 10(5) and 2.0 X 10(5) cells/cm2, respectively. These cells also exhibited stringent dependency on cell shape with a mitotic index of less than 3% at poly(2-hydroxyethyl methacrylate) concentrations at which the cells were rounded versus a labeling index of 75-90% when the cells were flat. The malignant bladder carcinoma line RT-4 exhibited partial contact-inhibited growth. Its dependency on cell shape was less stringent than that of normal cells with a mitotic index of 37-40% when rounded and 79% when flat. The malignant fibrosarcoma line, HT1080, was not contact inhibited and was entirely shape independent with a mitotic index of 70-90% regardless of cell shape. Treatment of HT1080 cells with low concentration of human fibroblast interferon (less than 40 units/ml) restored shape-dependent proliferation while having little effect on normal cells. Subantiproliferative doses of interferon were also shown to restore contact-inhibited proliferation control to malignant cells previously lacking it.

  13. PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling

    SciTech Connect

    Yamada, Tamaki; Tsuda, Masumi; Ohba, Yusuke Kawaguchi, Hideaki; Totsuka, Yasunori; Shindoh, Masanobu

    2008-04-11

    Parathyroid hormone-related protein (PTHrP) is detected in many aggressive tumors and involved in malignant conversion; however, the underlying mechanism remains obscure. Here, we identified PTHrP as a mediator of epidermal growth factor receptor (EGFR) signaling to promote the malignancies of oral cancers. PTHrP mRNA was abundantly expressed in most of the quiescent oral cancer cells, and was significantly upregulated by EGF stimulation via ERK and p38 MAPK. PTHrP silencing by RNA interference, as well as EGFR inhibitor AG1478 treatment, significantly suppressed cell proliferation, migration, and invasiveness. Furthermore, combined treatment of AG1478 and PTHrP knockdown achieved synergistic inhibition of malignant phenotypes. Recombinant PTHrP substantially promoted cell motility, and rescued the inhibition by PTHrP knockdown, suggesting the paracrine/autocrine function of PTHrP. These data indicate that PTHrP contributes to the malignancy of oral cancers downstream of EGFR signaling, and may thus provide a therapeutic target for oral cancer.

  14. MED12 Alterations in Both Human Benign and Malignant Uterine Soft Tissue Tumors

    PubMed Central

    Pérot, Gaëlle; Croce, Sabrina; Ribeiro, Agnès; Lagarde, Pauline; Velasco, Valérie; Neuville, Agnès; Coindre, Jean-Michel; Stoeckle, Eberhard; Floquet, Anne; MacGrogan, Gaëtan; Chibon, Frédéric

    2012-01-01

    The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/β-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and β-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors. PMID:22768200

  15. KANK1 inhibits cell growth by inducing apoptosis though regulating CXXC5 in human malignant peripheral nerve sheath tumors

    PubMed Central

    Cui, Zhibin; Shen, Yingjia; Chen, Kenny H.; Mittal, Suresh K.; Yang, Jer-Yen; Zhang, GuangJun

    2017-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are a type of rare sarcomas with a poor prognosis due to its highly invasive nature and limited treatment options. Currently there is no targeted-cancer therapy for this type of malignancy. Thus, it is important to identify more cancer driver genes that may serve as targets of cancer therapy. Through comparative oncogenomics, we have found that KANK1 was a candidate tumor suppressor gene (TSG) for human MPNSTs. Although KANK1 is known as a cytoskeleton regulator, its tumorigenic function in MPNSTs remains largely unknown. In this study, we report that restoration of KANK1 in human MPNST cells inhibits cell growth both in human cell culture and xenograft mice by increasing apoptosis. Consistently, knockdown of KANK1 in neurofibroma cells promoted cell growth. Using RNA-seq analysis, we identified CXXC5 and other apoptosis-related genes, and demonstrated that CXXC5 is regulated by KANK1. Knockdown of CXXC5 was found to diminish KANK1-induced apoptosis in MPNST cells. Thus, KANK1 inhibits MPNST cell growth though CXXC5 mediated apoptosis. Our results suggest that KANK1 may function as a tumor suppressor in human MPNSTs, and thus it may be useful for targeted therapy. PMID:28067315

  16. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors.

    PubMed

    Glinsky, Gennadi V

    2016-10-10

    Somatic mutations and chromosome instability are hallmarks of genomic aberrations in cancer cells. Aneuploidies represent common manifestations of chromosome instability, which is frequently observed in human embryos and malignant solid tumors. Activation of human endogenous retroviruses (HERV)-derived loci is documented in preimplantation human embryos, hESC, and multiple types of human malignancies. It remains unknown whether the HERV activation may highlight a common molecular pathway contributing to the frequent occurrence of chromosome instability in the early stages of human embryonic development and the emergence of genomic aberrations in cancer. Single cell RNA sequencing analysis of human preimplantation embryos reveals activation of specific LTR7/HERVH loci during the transition from the oocytes to zygotes and identifies HERVH network signatures associated with the aneuploidy in human embryos. The correlation patterns' analysis links transcriptome signatures of the HERVH network activation of the in vivo matured human oocytes with gene expression profiles of clinical samples of prostate tumors supporting the existence of a cancer progression pathway from putative precursor lesions (prostatic intraepithelial neoplasia) to localized and metastatic prostate cancers. Tracking signatures of HERVH networks' activation in tumor samples from cancer patients with known long-term therapy outcomes enabled patients' stratification into sub-groups with markedly distinct likelihoods of therapy failure and death from cancer. Genome-wide analyses of human-specific genetic elements of stem cell-associated retroviruses (SCARs)-regulated networks in 12,093 clinical tumor samples across 29 cancer types revealed pan-cancer genomic signatures of clinically-lethal therapy resistant disease defined by the presence of somatic non-silent mutations (SNMs), gene-level copy number changes, and transcripts and proteins' expression of SCARs-regulated host genes. More than 73% of all

  17. Native human autoantibodies targeting GIPC1 identify differential expression in malignant tumors of the breast and ovary

    PubMed Central

    Yavelsky, Victoria; Rohkin, Sarit; Shaco-Levy, Ruthy; Tzikinovsky, Alina; Amir, Tamar; Kohn, Hila; Delgado, Berta; Rabinovich, Alex; Piura, Benjamin; Chan, Gerald; Kalantarov, Gavreel; Trakht, Ilya; Lobel, Leslie

    2008-01-01

    Background We have been studying the native humoral immune response to cancer and have isolated a library of fully human autoantibodies to a variety of malignancies. We previously described the isolation and characterization of two fully human monoclonal antibodies, 27.F7 and 27.B1, from breast cancer patients that target the protein known as GIPC1, an accessory PDZ-domain binding protein involved in regulation of G-protein signaling. Human monoclonal antibodies, 27.F7 and 27.B1, to GIPC1 demonstrate specific binding to malignant breast cancer tissue with no reactivity with normal breast tissue. Methods The current study employs cELISA, flow cytometry, Western blot analysis as well as immunocytochemistry, and immunohistochemistry. Data is analyzed statistically with the Fisher one-tail and two-tail tests for two independent samples. Results By screening several other cancer cell lines with 27.F7 and 27.B1 we found consistently strong staining of other human cancer cell lines including SKOV-3 (an ovarian cancer cell line). To further clarify the association of GIPC1 with breast and ovarian cancer we carefully studied 27.F7 and 27.B1 using immunocytochemical and immunohistochemical techniques. An immunohistochemical study of normal ovarian tissue, benign, borderline and malignant ovarian serous tumors, and different types of breast cancer revealed high expression of GIPC1 protein in neoplastic cells. Interestingly, antibodies 27.F7 and 27.B1 demonstrate differential staining of borderline ovarian tumors. Examination of different types of breast cancer demonstrates that the level of GIPC1 expression depends on tumor invasiveness and displays a higher expression than in benign tumors. Conclusion The present pilot study demonstrates that the GIPC1 protein is overexpressed in ovarian and breast cancer, which may provide an important diagnostic and prognostic marker and will constitute the basis for further study of the role that this protein plays in malignant diseases

  18. Native human autoantibodies targeting GIPC1 identify differential expression in malignant tumors of the breast and ovary.

    PubMed

    Yavelsky, Victoria; Rohkin, Sarit; Shaco-Levy, Ruthy; Tzikinovsky, Alina; Amir, Tamar; Kohn, Hila; Delgado, Berta; Rabinovich, Alex; Piura, Benjamin; Chan, Gerald; Kalantarov, Gavreel; Trakht, Ilya; Lobel, Leslie

    2008-08-24

    We have been studying the native humoral immune response to cancer and have isolated a library of fully human autoantibodies to a variety of malignancies. We previously described the isolation and characterization of two fully human monoclonal antibodies, 27.F7 and 27.B1, from breast cancer patients that target the protein known as GIPC1, an accessory PDZ-domain binding protein involved in regulation of G-protein signaling. Human monoclonal antibodies, 27.F7 and 27.B1, to GIPC1 demonstrate specific binding to malignant breast cancer tissue with no reactivity with normal breast tissue. The current study employs cELISA, flow cytometry, Western blot analysis as well as immunocytochemistry, and immunohistochemistry. Data is analyzed statistically with the Fisher one-tail and two-tail tests for two independent samples. By screening several other cancer cell lines with 27.F7 and 27.B1 we found consistently strong staining of other human cancer cell lines including SKOV-3 (an ovarian cancer cell line). To further clarify the association of GIPC1 with breast and ovarian cancer we carefully studied 27.F7 and 27.B1 using immunocytochemical and immunohistochemical techniques. An immunohistochemical study of normal ovarian tissue, benign, borderline and malignant ovarian serous tumors, and different types of breast cancer revealed high expression of GIPC1 protein in neoplastic cells. Interestingly, antibodies 27.F7 and 27.B1 demonstrate differential staining of borderline ovarian tumors. Examination of different types of breast cancer demonstrates that the level of GIPC1 expression depends on tumor invasiveness and displays a higher expression than in benign tumors. The present pilot study demonstrates that the GIPC1 protein is overexpressed in ovarian and breast cancer, which may provide an important diagnostic and prognostic marker and will constitute the basis for further study of the role that this protein plays in malignant diseases. In addition, this study suggests that

  19. SERMs attenuate estrogen-induced malignant transformation of human mammary epithelial cells by upregulating detoxification of oxidative metabolites

    PubMed Central

    Madhubhani, L.P.; Hemachandra, P.; Patel, Hitisha; Esala, R.; Chandrasena, P.; Choi, Jaewoo; Piyankarage, Sujeewa C.; Wang, Shuai; Wang, Yijin; Thayer, Emily; Scism, Rob; Michalsen, Bradley T.; Xiong, Rui; Siklos, Marton; Bolton, Judy L.; Thatcher, Gregory R.J.

    2014-01-01

    The risk of developing hormone-dependent cancers with long-term exposure to estrogens is attributed both to proliferative, hormonal actions at the estrogen receptor (ER), and chemical carcinogenesis elicited by genotoxic, oxidative estrogen metabolites. Non-tumorigenic MCF-10A human breast epithelial cells are classified as ER(−) and undergo estrogen-induced malignant transformation. Selective estrogen receptor modulators (SERMs), in use for breast cancer chemoprevention and for post-menopausal osteoporosis, were observed to inhibit malignant transformation, as measured by anchorage-independent colony growth. This chemopreventive activity was observed to correlate with reduced levels of oxidative estrogen metabolites, cellular ROS, and DNA oxidation. The ability of raloxifene, desmethylarzoxifene (DMA), and bazedoxifene to inhibit this chemical carcinogenesis pathway was not shared by 4-hydroxytamoxifen. Regulation of Phase 2 rather than Phase 1 metabolic enzymes was implicated mechanistically: raloxifene and DMA were observed to upregulate sulfotransferase (SULT 1E1) and glucuronidase (UGT 1A1). The results support upregulation of Phase 2 metabolism in detoxification of catechol estrogen metabolites leading to attenuated ROS formation as a mechanism for inhibition of malignant transformation by a subset of clinically important SERMs. PMID:24598415

  20. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies.

    PubMed

    Chon, Hae J; Bae, Kyoung J; Lee, Yura; Kim, Jiyeon

    2015-01-01

    The casein kinase 2 (CK2) protein kinase is a pro-survival kinase and therapeutic target in treatment of various human cancers. CK2 overexpression has been demonstrated in hematological malignancies, including chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma. CX-4945, also known as Silmitasertib, is an orally administered, highly specific, ATP-competitive inhibitor of CK2. CX-4945 induces cytotoxicity and apoptosis and is currently being evaluated in clinical trials for treatment of many cancer types. In the past 2 years, the focus on the therapeutic potential of CX-4945 has shifted from solid tumors to hematological malignancies. CX-4945 exerts anti-proliferative effects in hematological tumors by downregulating CK2 expression and suppressing activation of CK2-mediated PI3K/Akt/mTOR signaling pathways. Furthermore, combination of CX-4945 with other inhibitors yielded synergistic effects in cell death induction. These new findings demonstrate that CK2 overexpression contributes to blood cancer cell survival and resistance to chemotherapy. Combinatorial use of CX-4945 is a promising therapeutic tool for treatment of hematological malignancies.

  1. Endogenously Expressed IL-4Rα Promotes the Malignant Phenotype of Human Pancreatic Cancer In Vitro and In Vivo.

    PubMed

    Traub, Benno; Sun, Lie; Ma, Yongsu; Xu, Pengfei; Lemke, Johannes; Paschke, Stephan; Henne-Bruns, Doris; Knippschild, Uwe; Kornmann, Marko

    2017-03-28

    Exogenous interleukin-4 (IL-4) has been demonstrated to affect the growth of different human malignancies including pancreatic cancer cells. The aim of our study was to determine the role of endogenously expressed IL-4-receptor-α-chain (IL-4Rα) in pancreatic cancer cells. IL-4Rα-suppression was achieved by generating Capan-1 cells stably expressing shRNA targeting IL-4Rα. The malignant phenotype was characterized by assessing growth properties, directional and non-directional cell movement in vitro and tumor growth in vivo. Signaling pathways were analyzed upon IL-4 and IL-13 stimulation of wildtype (WT) and control-transfected cells compared to IL-4Rα-knockdown cells. Silencing of IL-4Rα resulted in reduced anchorage-dependent cell growth (p < 0.05) and reduced anchorage-independent colony size (p < 0.001) in vitro. Moreover, cell movement and migration was inhibited. IL-4 and IL-13 stimulation of Capan-1-WT cells induced activation of similar pathways like stimulation with Insulin-like growth factor (IGF)-I. This activation was reduced after IL-4Rα downregulation while IGF-I signaling seemed to be enhanced in knockdown-clones. Importantly, IL-4Rα silencing also significantly suppressed tumor growth in vivo. The present study indicates that endogenously expressed IL-4 and IL-4Rα contribute to the malignant phenotype of pancreatic cancer cells by activating diverse pro-oncogenic signaling pathways. Addressing these pathways may contribute to the treatment of the disease.

  2. Negative human papillomavirus status and excessive alcohol consumption are significant risk factors for second primary malignancies in Japanese patients with oropharyngeal carcinoma.

    PubMed

    Saito, Yuki; Ebihara, Yasuhiro; Ushiku, Tetsuo; Omura, Go; Kobayashi, Kenya; Ando, Mizuo; Sakamoto, Takashi; Fukayama, Masashi; Yamasoba, Tatsuya; Asakage, Takahiro

    2014-06-01

    To determine the clinical significance of human papillomavirus subclinical infection in patients with oropharyngeal squamous cell carcinoma in Japan. Over a 9-year period, a retrospective case comparison study of the pathology database was conducted at the University of Tokyo to identify samples of oropharyngeal squamous cell carcinoma. We performed in situ hybridization for human papillomavirus-DNA to identify subclinical human papillomavirus infections among patients with oropharyngeal squamous cell carcinoma. Second primary malignancies were classified as synchronous, if identified within 6 months of the diagnosis of the first tumor, or metachronous, if identified after this 6-month period. Univariate and multivariate analyses using logistic stepwise regression models were performed to identify factors associated with synchronous and metachronous second primary malignancy. Of the 150 patients with oropharyngeal squamous cell carcinoma, 14% (21/150) and 20.7% (31/150) developed synchronous and metachronous second primary malignancies, respectively. Esophageal carcinoma was the most frequent second primary malignancy (10/21 for synchronous and 10/31 for metachronous second primary malignancies). The prevalence of oropharyngeal squamous cell carcinoma positive for human papillomavirus was 31% (47/150). Multivariate analysis identified alcohol consumption as a significant unfavorable risk factor for the occurrence of synchronous second primary malignancy, and either a human papillomavirus-negative status or N0 classification was a significant unfavorable risk factor for the occurrence of metachronous second primary malignancy. Evaluation of the human papillomavirus status may help identify patients at risk for metachronous second primary malignancy. Upper gastrointestinal endoscopy is very important in the diagnosis of oropharyngeal squamous cell carcinoma among heavy drinkers in Japan. © The Author 2014. Published by Oxford University Press. All rights reserved

  3. Targeting the Interleukin-6/Jak/Stat Pathway in Human Malignancies

    PubMed Central

    Sansone, Pasquale; Bromberg, Jacqueline

    2012-01-01

    The Janus kinase/signal transducer and activator of transcription (Jak/Stat) pathway was discovered 20 years ago as a mediator of cytokine signaling. Since this time, more than 2,500 articles have been published demonstrating the importance of this pathway in virtually all malignancies. Although there are dozens of cytokines and cytokine receptors, four Jaks, and seven Stats, it seems that interleukin-6–mediated activation of Stat3 is a principal pathway implicated in promoting tumorigenesis. This transcription factor regulates the expression of numerous critical mediators of tumor formation and metastatic progression. This review will examine the relative importance and function of this pathway in nonmalignant conditions as well as malignancies (including tumor intrinsic and extrinsic), the influence of other Stats, the development of inhibitors to this pathway, and the potential role of inhibitors in controlling or eradicating cancers. PMID:22355058

  4. Aberrant regulation of miR-15b in human malignant tumors and its effects on the hallmarks of cancer.

    PubMed

    Zhao, Ci; Wang, Guanyu; Zhu, Yuanyuan; Li, Xiaobo; Yan, Feihu; Zhang, Chunhui; Huang, Xiaoyi; Zhang, Yanqiao

    2016-01-01

    MicroRNAs encoded by the miR-15b/16-2 cluster act as tumor suppressors. Aberrant regulation of miR-15b in human malignant tumors is reportedly involved in cancer development, contributing to cell death, reduced proliferation, angiogenesis and metastasis resistance, metabolism reprogramming, genome instability, and tumor-associated inflammation. In this review, we summarize the mechanisms involved in regulating miR-15b expression in mammalian tumors and discuss the effects of miR-15b dysregulation on the hallmarks of cancer and highlight its role as a potentially valuable target for future cancer therapeutic strategies.

  5. Human herpesvirus 6 (HHV-6)-associated pleurisy after unrelated cord blood transplantation in children with chemotherapy-resistant malignant Lymphoma.

    PubMed

    Suminoe, Aiko; Matsuzaki, Akinobu; Koga, Yuhki; Kusuhara, Koichi; Hara, Toshiro

    2007-10-01

    Two children, 5 and 10 years of age, received unrelated cord blood transplantation (CBT) for malignant lymphoma. Both of them suffered from pleurisy with and without interstitial pneumonitis after transplantation. By the quantitative real-time polymerase chain reaction, human herpesvirus 6 (HHV-6) variant B DNA was detected in pleural effusion. This is the first report of HHV-6-associated pleurisy after hematopoietic stem cell transplantation. HHV-6-associated pleurisy should be considered as a complication after hematopoietic stem cell transplantation even in the absence of pneumonitis. Quantitative polymerase chain reaction is a useful tool for rapid detection of viral DNA, which may facilitate precise diagnosis and appropriate treatment.

  6. Efficacy of recombinant adenoviral human p53 gene in treatment of malignant pleural or peritoneal effusions.

    PubMed

    Zhang, Xin; Hu, Yi; Wang, Jinliang; Zhang, Sujie; Tao, Haitao; Jing, Sun; Wu, Baishou

    2013-03-01

    Once the malignant pleural or peritoneal effusion is developed it is difficult to control. This report presents a new method for controlling the malignant effusions. Forty-eight patients, 29 males and 19 females with an average age of 61.2 years old, who were satisfied with the study inclusion criteria, were recruited in this study. Twenty-seven and 21 patients had a malignant pleural and peritoneal effusion, respectively. After draining most of fluids, these patients received intra-cavity infusion of rAd-p53 once per week for 4 weeks, at dose of 2×10¹² viral particles (VP) diluted into 200 mL of saline solution for pleural effusions, and 4×10¹² VP diluted into 500 mL of saline solution for peritoneal effusions. Participants were followed up for a median time of 13.6 month. A total of 11 cases, 7 with pleural effusions and 4 with peritoneal effusions achieved a complete response (CR), and 20 cases (12 pleural effusions and 8 peritoneal effusions) had a partial response (PR). The overall response rate is 64.6%. Patients' quality of life, assessed by using Karnofsky performance scale (KPS) scores, was improved by an average of 26.4. The one-year of overall survival rate was 54.2% with a median survival time of 12.5 months. There were no serious side effects observed except for self-limited fever found in 79.8% of the cases. Intra-cavity infusion of rAd-p53 is an effective and safe treatment for the patients with malignant pleural or peritoneal effusions, especially for those patients who can't tolerate the standard treatments.

  7. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    SciTech Connect

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-05-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes.

  8. FT-IR Spectroscopic Analysis of Normal and Malignant Human Oral Tissues

    NASA Astrophysics Data System (ADS)

    Krishnakumar, N.; Madhavan, R. Nirmal; Sumesh, P.; Palaniappan, Pl. Rm.; Venkatachalam, P.; Ramachandran, C. R.

    2008-11-01

    FT-IR spectroscopy has been used to explore the changes in the vibrational bands of normal and oral squamous cell carcinoma (OSCC) tissues in the region 4000-400 cm-1. Significant changes in the spectral features were observed. The spectral changes were the results of characteristics structural alterations at the molecular level in the malignant tissues. These alterations include structural changes of proteins and possible increase of its content, an increase in the nucleic-to-cytoplasm ratio, an increase in the relative amount of DNA, an increase in the rate of phosphorylation process induced by carcinogenesis, a loss of hydrogen bonding of the C-OH groups in the amino acid residues of proteins, a decrease in the relative amount of lipids compared to normal epithelial oral tissues. The results of the present study demonstrate that the FT-IR technique has the feasibility of discriminating malignant from normal tissues and other pathological states in a short period of time and may detect malignant transformation earlier than the standard histological examination stage.

  9. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies

    PubMed Central

    Shukla, Ankita; Singh, Tiratha Raj

    2016-01-01

    DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC). Since lynch syndrome carries high risk (~40–60%) for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER) and mismatch repair (MMR). Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV) and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels. PMID:27276067

  10. Arsenic compounds: revived ancient remedies in the fight against human malignancies.

    PubMed

    Liu, Jian-Xiang; Zhou, Guang-Biao; Chen, Sai-Juan; Chen, Zhu

    2012-04-01

    Arsenic, the 20th most abundant element in the earth crust, is one of the oldest drugs in the world. It was used in the 18th century in treating hematopoietic malignancies, discarded in 1950s in favor of chemotherapeutic agents (busulphan and others), and was revived in the 1970s due to its dramatic efficacy on acute promyelocytic leukemia (APL) driven by the t(15;17) translocation-generated PML-RARα fusion. Arsenic represents the most potent single agent for APL, and achieves a five-year overall survival of 90% in APL patients when combined with all-trans retinoic acid (ATRA) and chemotherapy (daunorubicin and cytarabine), turning this disease from highly fatal to highly curable. Arsenic triggers sumoylation/ubiquitination and proteasomal degradation of PML-RARα via directly binding to the C3HC4 zinc finger motif in the RBCC domain of the PML moiety and induction of its homodimerization/multimerization and interaction with the SUMO E2 conjugase Ubc9. Because of its multiplicity of targets and complex mechanisms of action, arsenic is widely tested in combination with other agents in a variety of malignancies. Other arsenic containing recipes including oral formulations and organic arsenicals are being developed and tested, and progress in these areas will definitely expand the use of arsenicals in other malignant diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Upregulation of LAPTM4B-35 promotes malignant transformation and tumorigenesis in L02 human liver cell line.

    PubMed

    Li, Li; Shan, Yi; Yang, Hua; Zhang, Sha; Lin, Ming; Zhu, Ping; Chen, Xin-Yu; Yi, Jing; McNutt, Michael A; Shao, Gen-Ze; Zhou, Rou-Li

    2011-07-01

    Hepatocellular carcinoma (HCC) is one of the most frequent malignant neoplasms worldwide and is the second leading cause of cancer death in China. We have previously demonstrated that LAPTM4B-35, encoded by lysosomal protein transmembrane 4 beta gene, is overexpressed in over 80% of HCCs and is a novel-independent prognostic factor for metastasis, recurrence, and postoperative survival in HCC. In this study, we investigated the role of LAPTM4B-35 in malignant transformation and tumorigenesis using L02 cells, a cell line originated from human normal liver cells. Our data show that replication-deficient adenovirus vector-mediated upregulation of LAPTM4B-35 promotes anchorage-independent proliferation and resistance to adriamycin-induced apoptosis. Study of the underlying mechanisms demonstrated alterations of molecular events involved in these processes, which included the activation of phosphoinositide 3-kinases (PI3K)/serine/threonine protein kinase B (PKB/AKT)/bcl-xL/bcl-2-associated death promoter homolog (Bad) signaling pathway, inhibition of caspase-3 activation, upregulation of Bcl-2, and downregulation of Bax. In addition, upregulation of LAPTM4B-35 in L02 cells resulted in tumorigenesis in 100% (6/6) of inoculated nude mice and accelerated the death of mice with xenografts in vivo. In conclusion, LAPTM4B-35 promotes malignant transformation and tumorigenesis in human liver L02 cell line through promotion of deregulated proliferation and inhibition of apoptosis. These findings suggest that overexpression of LAPTM4B-35 may play a critical role in hepatocarcinogenesis and therefore, may be a therapeutic target for HCC.

  12. Association of Ig/BCL6 translocations with germinal center B lymphocytes in human lymphoid tissues: implications for malignant transformation

    PubMed Central

    Yang, Xuwei; Lee, Koutetsu; Said, Jonathan; Gong, Xun; Zhang, Ke

    2006-01-01

    Chromosomal translocations (CTs) between immunoglobulin (Ig) genes and the BCL6 proto-oncogene are frequently associated with diffuse large B-cell lymphomas (DLBCLs) and follicular lymphomas (FLs) and are implicated in the development of these lymphomas. However, whether Ig/BCL6 translocation per se is sufficient to drive malignant transformation is not clear. To understand the biology of Ig/BCL6-translocated cells prior to their malignant transformation, we developed a system capable of detecting 1 to 3 Igμ/BCL6 CT cells in 1 million mixed cells through the detection of chimeric Iμ-BCL6E2 and BCL6E1-Cμ1 transcripts that reflect reciprocal Igμ/BCL6 translocations. The chimeric transcripts that existed in the vast majority of normal lymphoid tissues are due to Igμ/BCL6 CT and were not generated from trans-splicing. Both Iμ-BCL6E2 and BCL6E1-Cμ1 transcripts were coexpressed in the same cell populations. The Ig/BCL6 recombination junctions themselves were isolated from B-cell subpopulations expressing the Iμ-BCL6 transcripts. The appearance of Igμ/BCL6 CT was associated with cells expressing germinal center but not naive B-cell markers. This study shows that Ig/BCL6 translocations occur in germinal center–stage B cells in healthy humans, and that Ig/BCL6 CTs per se are not likely sufficient to cause the malignant transformation in the context of human B cells. PMID:16728698

  13. Novel pegylated interferon-β as strong suppressor of the malignant ascites in a peritoneal metastasis model of human cancer.

    PubMed

    Iwamura, Tomokatsu; Narumi, Hideki; Suzuki, Tomohiko; Yanai, Hideyuki; Mori, Katsuyuki; Yamashita, Koji; Tsushima, Yoshiaki; Asano, Tomomi; Izawa, Akiko; Momen, Shinobu; Nishimura, Kazumi; Tsuchiyama, Hiromi; Uchida, Masashi; Yamashita, Yuji; Okano, Kiyoshi; Taniguchi, Tadatsugu

    2017-04-01

    Malignant ascites manifests as an end-stage event during the progression of a number of cancers and lacks a generally accepted standard therapy. Interferon-β (IFN-β) has been used to treat several cancer indications; however, little is known about the efficacy of IFN-β on malignant ascites. In the present study, we report on the development of a novel, engineered form of human and murine IFN-β, each conjugated with a polyethylene glycol molecule (PEG-hIFN-β and PEG-mIFN-β, respectively). We provide evidence that these IFN-β molecules retain anti-viral potency comparable to unmodified IFN-β in vitro and manifested improved pharmacokinetics in vivo. Interestingly, PEG-mIFN-β significantly inhibited the accumulation of ascites fluid and vascular permeability of the peritoneal membrane in models of ovarian cancer and gastric cancer cell xenograft mice. We further show that PEG-hIFN-β directly suppresses VEGF165 -induced hyperpermeability in a monolayer of human vascular endothelial cells and that PEG-mIFN-β enhanced gene expression for a number of cell adhesion related molecules in mouse vascular endothelial cells. Taken together, these findings unveil a hitherto unrecognized potential of IFN-β in maintaining vascular integrity, and provide proof-of-mechanism for a novel and long-acting pegylated hIFN-β for the therapeutic treatment of malignant ascites. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors.

    PubMed

    Tahiri, Andliena; Leivonen, Suvi-Katri; Lüders, Torben; Steinfeld, Israel; Ragle Aure, Miriam; Geisler, Jürgen; Mäkelä, Rami; Nord, Silje; Riis, Margit L H; Yakhini, Zohar; Kleivi Sahlberg, Kristine; Børresen-Dale, Anne-Lise; Perälä, Merja; Bukholm, Ida R K; Kristensen, Vessela N

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs, which play an essential role in the regulation of gene expression during carcinogenesis. The role of miRNAs in breast cancer has been thoroughly investigated, and although many miRNAs are identified as cancer related, little is known about their involvement in benign tumors. In this study, we investigated miRNA expression profiles in the two most common types of human benign tumors (fibroadenoma/fibroadenomatosis) and in malignant breast tumors and explored their role as oncomirs and tumor suppressor miRNAs. Here, we identified 33 miRNAs with similar deregulated expression in both benign and malignant tumors compared with the expression levels of those in normal tissue, including breast cancer-related miRNAs such as let-7, miR-21 and miR-155. Additionally, messenger RNA (mRNA) expression profiles were obtained for some of the same samples. Using integrated mRNA/miRNA expression analysis, we observed that overexpression of certain miRNAs co-occurred with a significant downregulation of their candidate target mRNAs in both benign and malignant tumors. In support of these findings, in vitro functional screening of the downregulated miRNAs in non-malignant and breast cancer cell lines identified several possible tumor suppressor miRNAs, including miR-193b, miR-193a-3p, miR-126, miR-134, miR-132, miR-486-5p, miR-886-3p, miR-195 and miR-497, showing reduced growth when re-expressed in cancer cells. The finding of deregulated expression of oncomirs and tumor suppressor miRNAs in benign breast tumors is intriguing, indicating that they may play a role in proliferation. A role of cancer-related miRNAs in the early phases of carcinogenesis and malignant transformation can, therefore, not be ruled out.

  15. Inhibition of CXCR4 by LY2624587, a Fully Humanized Anti-CXCR4 Antibody Induces Apoptosis of Hematologic Malignancies

    PubMed Central

    Peng, Sheng-Bin; Zhang, Xiaoyi; Paul, Donald; Kays, Lisa M.; Ye, Ming; Vaillancourt, Peter; Dowless, Michele; Stancato, Louis F.; Stewart, Julie; Uhlik, Mark T.; Long, Haiyan; Chu, Shaoyou; Obungu, Victor H.

    2016-01-01

    SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies. PMID:26954567

  16. Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy.

    PubMed

    Wang, Xiao-Jun; Xiang, Bing-Yu; Ding, Ya-Hui; Chen, Lu; Zou, Hai; Mou, Xiao-Zhou; Xiang, Charlie

    2017-08-29

    Despite many advances in conventional treatment strategies, there is no effective treatment modality for malignant gliomas. Gene therapy may offer a promising option for gliomas and several gene therapy approaches have shown anti-tumor efficiency in previous studies. Mesenchymal stem cell-based gene therapies, in which stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential because of their innate homing ability. In this study, human menstrual blood-derived MSCs (MenSC), a novel type of multipotential MSCs displays tropism for human malignant glioma when used as a gene delivery vehicle for therapeutics. Secretable trimeric TRAIL (stTRAIL) contains the receptor-binding domain of TRAIL, a death ligand that induces apoptosis in tumor cells. To overexpress stTRAIL, MenSCs were infected with efficient adenoviral serotype 35 vectors that had no influence on its broad multipotency and low immunophenotype. The modified MenSCs served as an excellent local drug delivery system for tumor site-specific targeted delivery and demonstrated therapeutic efficacy in an animal xenografts tumor model of U-87 MG cells. The MenSC-stTRAIL cells induced antitumor effects in vitro by significantly increasing apoptosis (P < 0.05). It also significantly reduced tumor burden in vivo (P < 0.05). The results showed that the proliferation of tumor cells was significantly reduced (P < 0.05). The MenSC, as a cellular delivery vehicle has a wide potential therapeutic role, which includes the treatment of tumors.

  17. The evaluation of human papillomavirus and p53 gene mutation in benign and malignant conjunctiva and eyelid lesions.

    PubMed

    Joanna, Reszec; Renata, Zalewska; Witold, Pepiński; Małgorzata, Skawronska; Bernaczyk, Piotr; Chyczewski, Lech

    2010-12-01

    Papillomas and squamous cell carcinomas are the most common conjunctival and eyelid lesions. The etiology is still unclear and recently human papillomavirus infection and p53 gene mutation have been taken into consideration. The aim of our study was the evaluation of HPV DNApresence and p53 gene mutation in 45 benign and 38 malignant squamous lesions of the conjunctiva and eyelid. For HPV detection PCR-RFLP and immunohistochemical reaction were used; for p53 gene mutation PCR-SSCP was used. Only 8.8% papillomas, 9.1% squamous cell cancers and 3.7% basal cell cancers (using PCR-RFLP method) and 26.6% papillomas, 7.4% squamous cell cancers and 9.1% basal cell cancers (using immunohisto-chemical reaction) were HPV positive. p53 gene mutation was evaluated in 24.4% papillomas, 54.5% squamous cell cancers and 22.2% basal cell cancers; most commonly in 6 and 7 exon. Human papillomavirus infection, opposite to p53 gene mutation, is not a significant etiological factor of the benign and malignant conjunctival and eyelid lesions development.

  18. Antibody-induced antigenic modulation is antigen dependent: characterization of 22 proteins on a malignant human B cell line

    SciTech Connect

    Pesando, J.M.; Hoffman, P.; Abed, M.

    1986-12-01

    Expression of several of the surface antigens on normal and malignant hematopoietic cells is reduced or is modulated by incubation with specific antibodies. Although antigenic modulation provides a means by which cells can escape antibody-mediated immune destruction, the physiologic significance and frequency of this phenomenon are both poorly understood. To begin to address these issues, the authors identified and characterized surface antigens on the malignant B cell line Laz 221 established from a patient with acute lymphoblastic leukemia (ALL). Indirect immunofluorescence analysis with the use of 26 hematopoietic cell populations and immune precipitation studies with the use of iodinated ALL cells indicate the 163 monoclonal antibodies (MoAb) identify 22 different proteins on this cell line, including at least six previously described surface molecules. Seven of these antigens are expressed by all nucleated cells examined, whereas only the ..mu.. chain of immunoglobulin is B cell specific. Studies that made use of multiple MoAb specific for the same antigen suggest that the capacity for antigenic modulation is an intrinsic property of individual antigens. These studies also suggest that the murine immune response to shared human antigens varies from one immunizing cell population to another. Immunogenicity of individual human antigens in the mouse may be a function of their cell surface environment.

  19. Toll-like receptors: lessons to learn from normal and malignant human B cells

    PubMed Central

    Chiron, David; Bekeredjian-Ding, Isabelle; Pellat-Deceunynck, Catherine; Bataille, Régis

    2008-01-01

    The humoral immune system senses microbes via recognition of specific microbial molecular motifs by Toll-like receptors (TLRs). These encounters promote plasma cell differentiation and antibody production. Recent studies have demonstrated the importance of the TLR system in enhancing antibody-mediated defense against infections and maintaining memory B cells. These results have led the way to the design of vaccines that target B cells by engaging TLRs. In hematologic malignancies, cells often retain B cell–specific receptors and associated functions. Among these, TLRs are currently exploited to target different subclasses of B-cell leukemia, and TLR agonists are currently being evaluated in clinical trials. However, accumulating evidence suggests that endogenous TLR ligands or chronic infections promote tumor growth, thus providing a need for further investigations to decipher the exact function of TLRs in the B-cell lineage and in neoplastic B cells. The aim of this review is to present and discuss the latest advances with regard to the expression and function of TLRs in both healthy and malignant B cells. Special attention will be focused on the growth-promoting effects of TLR ligands on leukemic B cells and their potential clinical impact. PMID:18591383

  20. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  1. A transgenic mouse model of plasma cell malignancy shows phenotypic, cytogenetic, and gene expression heterogeneity similar to human multiple myeloma.

    PubMed

    Boylan, Kristin L M; Gosse, Mary A; Staggs, Sarah E; Janz, Siegfried; Grindle, Suzanne; Kansas, Geoffrey S; Van Ness, Brian G

    2007-05-01

    Multiple myeloma is an incurable plasma cell malignancy for which existing animal models are limited. We have previously shown that the targeted expression of the transgenes c-Myc and Bcl-X(L) in murine plasma cells produces malignancy that displays features of human myeloma, such as localization of tumor cells to the bone marrow and lytic bone lesions. We have isolated and characterized in vitro cultures and adoptive transfers of tumors from Bcl-xl/Myc transgenic mice. Tumors have a plasmablastic morphology and variable expression of CD138, CD45, CD38, and CD19. Spectral karyotyping analysis of metaphase chromosomes from primary tumor cell cultures shows that the Bcl-xl/Myc tumors contain a variety of chromosomal abnormalities, including trisomies, translocations, and deletions. The most frequently aberrant chromosomes are 12 and 16. Three sites for recurring translocations were also identified on chromosomes 4D, 12F, and 16C. Gene expression profiling was used to identify differences in gene expression between tumor cells and normal plasma cells (NPC) and to cluster the tumors into two groups (tumor groups C and D), with distinct gene expression profiles. Four hundred and ninety-five genes were significantly different between both tumor groups and NPCs, whereas 124 genes were uniquely different from NPCs in tumor group C and 204 genes were uniquely different from NPCs in tumor group D. Similar to human myeloma, the cyclin D genes are differentially dysregulated in the mouse tumor groups. These data suggest the Bcl-xl/Myc tumors are similar to a subset of plasmablastic human myelomas and provide insight into the specific genes and pathways underlying the human disease.

  2. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  3. Fluoro-edenite induces fibulin-3 overexpression in non-malignant human mesothelial cells.

    PubMed

    Rapisarda, Venerando; Salemi, Rossella; Marconi, Andrea; Loreto, Carla; Graziano, Adriana C; Cardile, Venera; Basile, Maria S; Candido, Saverio; Falzone, Luca; Spandidos, Demetrios A; Fenga, Concettina; Libra, Massimo

    2016-11-01

    Exposure to asbestos is associated with the development of mesothelioma. In addition to asbestos, other fibers have been identified as risk factors for malignant and non-malignant diseases of the lungs. Among these, fluoro-edenite (FE) was found in patients from Biancavilla (Sicily, Italy) with pleural and lung disease, suggesting its role for tumor expansion. In this context, the identification of early biomarkers useful for the diagnosis of cancer is mandatory. Fibulin-3 represents an important marker for the diagnosis of mesothelioma. However, it remains to be determined whether it is directly associated with exposure to asbestos-like fibers. In the present study, peripheral blood levels of fibulin-3 from 40 asbestos-exposed workers were compared with those detected in 27 street cleaners from Biancavilla. Intriguingly, the results showed that fibulin-3 levels were higher in the group of street cleaners compared with those of the asbestos-exposed workers, suggesting that these workers used the personal protective equipment according to the current regulations. These data suggest that subjects exposed to FE should be monitored for the risk of mesothelioma. FE and volcanic particulates are probably contained within dust inhaled by street cleaners from Biancavilla during their work activities. Based on these criteria, in this study, such fibers were used to treat mesothelial cells (MeT5A) in order to verify whether fibulin-3 levels are affected by these treatments. The results showed that only treatment with FE was associated with fibulin-3 overexpression at both the transcript and protein levels. It was previously demonstrated that mesothelial cells exhibited low levels of p27 following treatment with FE. Notably, p27 downregulation is associated with stathmin upregulation in cancer, conferring an aggressive phenotype of tumor cells. This observation prompted us to perform a computational evaluation demonstrating the activation of stathmin in lung cancer in

  4. Fluoro-edenite induces fibulin-3 overexpression in non-malignant human mesothelial cells

    PubMed Central

    Rapisarda, Venerando; Salemi, Rossella; Marconi, Andrea; Loreto, Carla; Graziano, Adriana C.; Cardile, Venera; Basile, Maria S.; Candido, Saverio; Falzone, Luca; Spandidos, Demetrios A.; Fenga, Concettina; Libra, Massimo

    2016-01-01

    Exposure to asbestos is associated with the development of mesothelioma. In addition to asbestos, other fibers have been identified as risk factors for malignant and non-malignant diseases of the lungs. Among these, fluoro-edenite (FE) was found in patients from Biancavilla (Sicily, Italy) with pleural and lung disease, suggesting its role for tumor expansion. In this context, the identification of early biomarkers useful for the diagnosis of cancer is mandatory. Fibulin-3 represents an important marker for the diagnosis of mesothelioma. However, it remains to be determined whether it is directly associated with exposure to asbestos-like fibers. In the present study, peripheral blood levels of fibulin-3 from 40 asbestos-exposed workers were compared with those detected in 27 street cleaners from Biancavilla. Intriguingly, the results showed that fibulin-3 levels were higher in the group of street cleaners compared with those of the asbestos-exposed workers, suggesting that these workers used the personal protective equipment according to the current regulations. These data suggest that subjects exposed to FE should be monitored for the risk of mesothelioma. FE and volcanic particulates are probably contained within dust inhaled by street cleaners from Biancavilla during their work activities. Based on these criteria, in this study, such fibers were used to treat mesothelial cells (MeT5A) in order to verify whether fibulin-3 levels are affected by these treatments. The results showed that only treatment with FE was associated with fibulin-3 overexpression at both the transcript and protein levels. It was previously demonstrated that mesothelial cells exhibited low levels of p27 following treatment with FE. Notably, p27 downregulation is associated with stathmin upregulation in cancer, conferring an aggressive phenotype of tumor cells. This observation prompted us to perform a computational evaluation demonstrating the activation of stathmin in lung cancer in

  5. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas.

    PubMed

    Zhang, Yonghong; Sun, Xinlin; Huang, Min; Ke, Yiquan; Wang, Jihui; Liu, Xiao

    2015-01-01

    In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs) exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas. In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo. In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01). In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model. The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic.

  6. Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells.

    PubMed

    Liu, Zhao-Liang; You, Cai-Lian; Wang, Biao; Lin, Jian-Hong; Hu, Xue-Feng; Shan, Xiu-Ying; Wang, Mei-Shui; Zheng, Hou-Bing; Zhang, Yan-Ding

    2016-06-01

    The aim of the present study was to construct angiopoietin-2 (Ang2)-small interfering (si)RNA chitosan magnetic nanoparticles and to observe the interference effects of the nanoparticles on the expression of the Ang2 gene in human malignant melanoma cells. Ang2-siRNA chitosan magnetic nanoparticles were constructed and transfected into human malignant melanoma cells in vitro. Red fluorescent protein expression was observed, and the transfection efficiency was analyzed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the inhibition efficiency of Ang2 gene expression. Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed, and at a mass ratio of plasmid to magnetic chitosan nanoparticles of 1:100, the transfection efficiency into human malignant melanoma cells was the highest of the ratios assessed, reaching 61.17%. RT-qPCR analysis showed that the magnetic chitosan nanoparticles effectively inhibited Ang2 gene expression in cells, and the inhibition efficiency reached 59.56% (P<0.05). Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed. The in vitro studies showed that the nanoparticles inhibited Ang2 gene expression in human malignant melanoma tumor cells, which laid the foundation and provided experimental evidence for additional future in vivo studies of intervention targeting malignant melanoma tumor growth in nude mice.

  7. Photodynamic therapy of human malignant tumors: a comparative study between photohem and tetrasulfonated aluminum phthalocyanine

    NASA Astrophysics Data System (ADS)

    Stranadko, Eugeny P.; Skobelkin, Oleg K.; Litvin, Grigory D.; Astrakhankina, Tamara A.

    1996-01-01

    The analysis of the results of photodynamic therapy (PDT) for treating malignant neoplasms of the skin, mammary glands, tongue, oral mucous, lower lip, larynx, lungs, urinary bladder, rectum and other locations has been made. During 1992-1995 543 tumoral foci in 146 patients have been treated with PDT. All patients were previously treated with conventional techniques without effect or they were not treated due to contraindications either because of severe accompanying diseases or because of old age. A part of the patients had PDT because of recurrences or intradermal metastases in 1-2 years after surgical, radial or combined treatment. Two home-made preparations were used as photosensitizers: Photohem (hematoporphyrine derivative) and Photosense (aluminum sulfonated phthalocyanine). Light sources were: the argon pumped dye laser ('Innova-200,' 'Coherent') and home-made laser devices: copper-vapor laser-pumped dye laser ('Yakhroma-2,' Frjazino), gas-discharge unit 'Xenon' (wavelength 630 nm), gold-vapor laser (wavelength 627.8 nm) for Photohem; while for Photosense sessions we used solid-state laser on ittrium aluminate 'Poljus-1' (wavelength 670 mn). Up to now we have follow-up control data within 2 months and 3 years. Positive effect of PDT was seen in 92.4% of patients including complete regression of tumors in 62.3% and partial -- in 30.1%. Currently, this new perspective technique of treating malignant neoplasms is successfully being used in Russia; new photosensitizers and light sources for PDT and fluorescent tumour diagnostics are being developed as well.

  8. Identification of cancer stem cell markers in human malignant mesothelioma cells

    SciTech Connect

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi; Okamoto, Toshihiro; Aoe, Keisuke; Okabe, Kazunori; Mimura, Yusuke; Fujimoto, Nobukazu; Kishimoto, Takumi; Yamada, Taketo; Xu, C. Wilson; Morimoto, Chikao

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.

  9. Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas

    PubMed Central

    Bomben, V. C.; Sontheimer, H. W.

    2009-01-01

    Objectives Glial-derived primary brain tumours, gliomas, are among the fastest growing malignancies and present a huge clinical challenge. Research suggests an important, yet poorly understood, role of ion channels in growth control of normal and malignant cells. In this study, we sought to functionally characterize Transient Receptor Potential Canoncial (TRPC) channels in glioma cell proliferation. TRPC channels form non-selective cation channels that have been suggested to represent a Ca2+ influx pathway impacting cellular growth. Materials and Methods Employing a combination of molecular, biochemical and biophysical techniques, we characterized TRPC channels in glioma cells. Results We showed consistent expression of four channel family members (TRPC-1, -3, -5, -6) in glioma cell lines and acute patient-derived tissues. These channels gave rise to small, non-voltage-dependent cation currents that were blocked by the TRPC inhibitors GdCl3, 2-APB, or SKF96365. Importantly, TRPC channels contributed to the resting conductance of glioma cells and their acute pharmacological inhibition caused an ~10 mV hyperpolarization of the cells’ resting potential. Additionally, chronic application of the TRPC inhibitor SKF96365 caused near complete growth arrest. A detailed analysis, by fluorescence-activated cell sorting and time-lapse microscopy, showed that growth inhibition occurred at the G2 + M phase of the cell cycle with cytokinesis defects. Cells underwent incomplete cell divisions and became multinucleate, enlarged cells. Conclusions Nuclear atypia and enlarged cells are histopathological hallmarks for glioblastoma multiforme, the highest grade glioma, suggesting that a defect in TRPC channel function may contribute to cellular abnormalities in these tumours. PMID:18211288

  10. [Screening of urogenital malignancies by transabdominal ultrasonography in "human dry dock"].

    PubMed

    Ikemoto, I; Hatano, T; Yanada, S; Tomita, M; Takeuchi, H; Madarame, J; Yoshino, Y; Ohishi, Y; Kawaguchi, Y; Narusawa, T

    1999-10-01

    Transabdominal ultrasonography (US) has been widely accepted as a diagnostic method with which to examine multiple organs simultaneously. This study was designed to evaluate the efficacy of trans-abdominal US to screen for urogenital malignancies. From 1993 through 1997 109,077 men and 28,023 women underwent abdominal US to screen for abdominal and pelvic diseases as part of a regular health check-up program at the Tokyu Medical Health Center. Twelve renal cell cancers (RCCs), 7 bladder tumors (BTs), 4 prostatic cancers (PCs), and 1 testicular tumor (TT) were detected. All cancers were diagnosed pathologically and treated surgically except for one PC. Surgical pathological examination and conventional imaging revealed that all 12 RCCa and 6 of the 7 BTs were of less advanced stage than pT1N0M0. However, all 3 PCs and the TT were pT3N0-1M0 and pT1N3M0, respectively. The stage and grade of these 12 RCCs were significantly lower than those of 29 symptomatic RCCs. All 12 patients with RCC patients and 6 of the 7 patients with BT had no urological symptom, whereas 3 of the 4 patients with PC and the patient with TT had urogenital symptoms. Microscopic examination of the urine revealed both red blood cells and tumors cells in two of the seven patients with BT. All four patients with PC had serum levels of prostatic-specific antigen greater than 4 ng/ml. These results indicate that screening by transabdominal US as part of regular health check-ups can detect many types of urogenital malignancy. In particular, US is useful for detecting low-grade and low-stage RCCs and superficial BTs but is less sensitive for early-stage PCs and TTs.

  11. In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM).

    PubMed

    Ishiwata, Isamu; Ishiwata, Chieko; Ishiwata, Emiko; Sato, Yoshiro; Kiguchi, Kazushige; Tachibana, Toshiaki; Ishikawa, Hiroshi

    2004-12-01

    We placed on culture the 13 cases of meningiomas, succeeded in making a primary culture of 10 cases and maintained 5 cases in vitro over considerable period of time (over three month), and one cell line derived from a malignant meningioma were established. In the early period of the primary culture, meningioma cells were spindle- or round-shaped cells. In the case of psammomatous type, the cultured cells were characterized as forming psammoma bodies. A cell line designated "HKBMM" was established from a human malignant meningioma occurred from frontal lobe. This line grew well without interruption for 5 years and was subcultivated over 120 times. The cells were spindle and fibrous in shape, and neoplastic and pleomorphic features, and multilayering without contact inhibition. The cells proliferated rapidly, and the population doubling time was about 29 hours. The chromosome number showed a wide distribution of aneuploidy. The mode was in the diploid range. The culture cells were easily transplanted into the subcutis of nude mice and produced the tumor resembling the original tumor.

  12. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice

    PubMed Central

    Elkabets, Moshe; Gifford, Ann M.; Scheel, Christina; Nilsson, Bjorn; Reinhardt, Ferenc; Bray, Mark-Anthony; Carpenter, Anne E.; Jirström, Karin; Magnusson, Kristina; Ebert, Benjamin L.; Pontén, Fredrik; Weinberg, Robert A.; McAllister, Sandra S.

    2011-01-01

    Systemic instigation is a process by which endocrine signals sent from certain tumors (instigators) stimulate BM cells (BMCs), which are mobilized into the circulation and subsequently foster the growth of otherwise indolent carcinoma cells (responders) residing at distant anatomical sites. The identity of the BMCs and their specific contribution or contributions to responder tumor growth have been elusive. Here, we have demonstrated that Sca1+cKit– hematopoietic BMCs of mouse hosts bearing instigating tumors promote the growth of responding tumors that form with a myofibroblast-rich, desmoplastic stroma. Such stroma is almost always observed in malignant human adenocarcinomas and is an indicator of poor prognosis. We then identified granulin (GRN) as the most upregulated gene in instigating Sca1+cKit– BMCs relative to counterpart control cells. The GRN+ BMCs that were recruited to the responding tumors induced resident tissue fibroblasts to express genes that promoted malignant tumor progression; indeed, treatment with recombinant GRN alone was sufficient to promote desmoplastic responding tumor growth. Further, analysis of tumor tissues from a cohort of breast cancer patients revealed that high GRN expression correlated with the most aggressive triple-negative, basal-like tumor subtype and reduced patient survival. Our data suggest that GRN and the unique hematopoietic BMCs that produce it might serve as novel therapeutic targets. PMID:21266779

  13. RHAMM, a receptor for hyaluronan-mediated motility, on normal human lymphocytes, thymocytes and malignant B cells: a mediator in B cell malignancy?

    PubMed

    Pilarski, L M; Masellis-Smith, A; Belch, A R; Yang, B; Savani, R C; Turley, E A

    1994-08-01

    RHAMM (Receptor for HA Mediated Motility) is a novel HA receptor that has been linked to regulating cell locomotion and density dependent contact inhibition of fibroblasts, smooth muscle cells, macrophages, lymphocytes, astrocytes and sperm. The ubiquitous expression of RHAMM suggests the existence of multiple isoforms, and indeed, RHAMM is found in various cellular compartments, namely nuclear, cytosolic, membrane-bound and extracellular. In this review, we emphasize the evolving role of RHAMM in B cell malignancies, and examine the function of RHAMM in T cell development in the thymic microenvironment. Both the motile behaviour of progenitor thymocytes (CD3-CD4-CD8-) and malignant B cells from multiple myeloma (MM), plasma cell leukemia, and hairy cell leukemia was blocked by monoclonal antibodies to RHAMM, suggesting that motility may correlate with increased expression of RHAMM at the cell surface. Interestingly, the soluble form of RHAMM is able to inhibit fibroblast locomotion, and it is likely that a balance between expression of both forms determines, in part the motility of cells. RHAMM appears to play a fundamental role in the immune system and the ability of RHAMM to function as a motility receptor is likely to be due to complex variables including the extent to which soluble RHAMM is secreted. RHAMM expression characterizes circulating monoclonal B cells as abnormal. potentially invasive and/or metastatic components of myeloma and may underlie the malignant behavior of these cells.

  14. Identification of the transcriptional regulatory sequences of human calponin promoter and their use in targeting a conditionally replicating herpes vector to malignant human soft tissue and bone tumors.

    PubMed

    Yamamura, H; Hashio, M; Noguchi, M; Sugenoya, Y; Osakada, M; Hirano, N; Sasaki, Y; Yoden, T; Awata, N; Araki, N; Tatsuta, M; Miyatake, S I; Takahashi, K

    2001-05-15

    The calponin (basic or h1) gene, normally expressed in maturated smooth muscle cells, is aberrantly expressed in a variety of human soft tissue and bone tumors. In this study, we show that expression of the calponin gene in human soft tissue and bone tumor cells is regulated at the transcriptional level by the sequence between positions -260 and -219 upstream of the translation initiation site. A novel conditionally replicating herpes simplex virus-1 vector (d12.CALP) in which the calponin promoter drives expression of ICP4, a major trans-activating factor for viral genes was constructed and tested as an experimental treatment for malignant human soft tissue and bone tumors. In cell culture, d12.CALP at low multiplicity of infection (0.001 plaque-forming unit/cell) selectively killed calponin-positive human synovial sarcoma, leiomyosarcoma, and osteosarcoma cells. For in vivo studies, 10 animals harboring SK-LMS-1 human leiomyosarcoma cells were randomly divided and treated twice on days 0 and 9 intraneoplastically with either 1 x 10(7) plaque-forming units of d12.CALP/100 mm(3) of tumor volume or with medium alone. The viral treatment group showed stable and significant inhibition of tumorigenicity with apparent cure in four of five mice by day 35. Replication of viral DNA demonstrated by PCR amplification and expression of the inserted LacZ gene visualized by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside histochemistry was associated with oncolysis of d12.CALP-treated tumors, while sparing normal vascular smooth muscle cells. In mice harboring two SK-LMS-1 tumors, replication of d12.CALP was detected in a nontreated tumor distant from the site of virus inoculation. These results indicate that replication-competent virus vectors controlled by the calponin transcriptional regulatory sequence may be a new therapeutic strategy for treatment of malignant human soft tissue and bone tumors.

  15. Landscape of DNA Virus Associations across Human Malignant Cancers: Analysis of 3,775 Cases Using RNA-Seq

    PubMed Central

    Tannir, Nizar M.; Williams, Michelle D.; Chen, Yunxin; Yao, Hui; Zhang, Jianping; Thompson, Erika J.; Meric-Bernstam, Funda; Medeiros, L. Jeffrey; Weinstein, John N.

    2013-01-01

    Elucidation of tumor-DNA virus associations in many cancer types has enhanced our knowledge of fundamental oncogenesis mechanisms and provided a basis for cancer prevention initiatives. RNA-Seq is a novel tool to comprehensively assess such associations. We interrogated RNA-Seq data from 3,775 malignant neoplasms in The Cancer Genome Atlas database for the presence of viral sequences. Viral integration sites were also detected in expressed transcripts using a novel approach. The detection capacity of RNA-Seq was compared to available clinical laboratory data. Human papillomavirus (HPV) transcripts were detected using RNA-Seq analysis in head-and-neck squamous cell carcinoma, uterine endometrioid carcinoma, and squamous cell carcinoma of the lung. Detection of HPV by RNA-Seq correlated with detection by in situ hybridization and immunohistochemistry in squamous cell carcinoma tumors of the head and neck. Hepatitis B virus and Epstein-Barr virus (EBV) were detected using RNA-Seq in hepatocellular carcinoma and gastric carcinoma tumors, respectively. Integration sites of viral genes and oncogenes were detected in cancers harboring HPV or hepatitis B virus but not in EBV-positive gastric carcinoma. Integration sites of expressed viral transcripts frequently involved known coding areas of the host genome. No DNA virus transcripts were detected in acute myeloid leukemia, cutaneous melanoma, low- and high-grade gliomas of the brain, and adenocarcinomas of the breast, colon and rectum, lung, prostate, ovary, kidney, and thyroid. In conclusion, this study provides a large-scale overview of the landscape of DNA viruses in human malignant cancers. While further validation is necessary for specific cancer types, our findings highlight the utility of RNA-Seq in detecting tumor-associated DNA viruses and identifying viral integration sites that may unravel novel mechanisms of cancer pathogenesis. PMID:23740984

  16. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells.

    PubMed

    Chamberland, John P; Moon, Hyun-Seuk

    2015-03-01

    Omega-3 fatty acids (also called ω-3 fatty acis or n-3 fatty acid) are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. Numerous test tube and animal studies have shown that omega-3 fatty acids may prevent or inhibit the growth of cancers, suggesting that omega-3 fatty acids are important in cancer physiology. Alpha-linolenic acid (ALA) is one of an essential omega-3 fatty acid and organic compound found in seeds (chia and flaxseed), nuts (notably walnuts), and many common vegetable oils. ALA has also been shown to down-regulate cell proliferation of prostate, breast, and bladder cancer cells. However, direct evidence that ALA suppresses to the development of colon cancer has not been studied. Also, no previous studies have evaluated whether ALA may regulate malignant potential (adhesion, invasion and colony formation) in colon cancer cells. In order to address the questions above, we conducted in vitro studies and evaluated whether ALA may down-regulate malignant potential in human (HT29 and HCT116) and mouse (MCA38) colon cancer cell lines. We observed that treatment with 1-5 mM of ALA inhibits cell proliferation, adhesion and invasion in both human and mouse colon cancer cell lines. Interestingly, we observed that ALA did not decrease total colony numbers when compared to control. By contrast, we found that size of colony was significantly changed by ALA treatment when compared to control in all colon cancer cell lines. We suggest that our data enhance our current knowledge of ALA's mechanism and provide crucial information to further the development of new therapies for the management or chemoprevention of colon cancer.

  17. A human homolog of Drosophila lethal(3)malignant brain tumor (l(3)mbt) protein associates with condensed mitotic chromosomes.

    PubMed

    Koga, H; Matsui, S; Hirota, T; Takebayashi, S; Okumura, K; Saya, H

    1999-07-01

    The lethal(3)malignant brain tumor (D-l(3)mbt) gene is considered to be one of the tumor suppressor genes of Drosophila, and its recessive mutations are associated with malignant transformation of the neuroblasts in the larval brain. The structure of D-l(3)mbt protein is similar to Drosophila sex comb on midleg (Scm) protein which is a member of Polycomb group (PcG) proteins. We have isolated here the first human homolog of the D-l(3)mbt gene, designated h-l(3)mbt. Radiation hybrid mapping and fluorescence in situ hybridization (FISH) analysis localized the h-l(3)mbt gene to chromosome 20q12. The h-l(3)mbt transcript is expressed in most of the human adult normal tissues and cultured cell lines. However, some cancer cells markedly reduce the h-l(3)mbt protein expression. Immunocytochemical study revealed that the h-l(3)mbt protein shows a speckled and scattered distribution in interphase nuclei and completely associates with condensed chromosomes in mitotic cells. This subcellular localization has been shown to be different from that of Bmi1 protein which is a component of PcG complex. Furthermore, overexpression of h-l(3)mbt protein by using a Cre-mediated gene activation system leads to failures of proper chromosome segregation and cytokinesis, which result in formation of multinuclei in U251MG cells. These observations suggest that h-l(3)mbt protein has functions distinct from those of PcG proteins and may play a role in proper progression of cell division.

  18. Antibody-based therapeutics for the treatment of human B cell malignancies.

    PubMed

    Baskar, Sivasubramanian; Muthusamy, Natarajan

    2013-02-01

    The dynamic expression of various phenotypic markers during B cell development not only defines the particular stage in ontogeny but also provides the necessary growth, differentiation, maturation and survival signals. When a B cell at any given stage becomes cancerous, these cell surface molecules, intracellular signaling molecules, and the over-expressed gene products become favorite targets for potential therapeutic intervention. Various adaptive and adoptive immunotherapeutic approaches induce T cell and antibody responses against cancer cells, and successful remission leading to minimal residual disease has been obtained. Nonetheless, subsequent relapse and development of resistant clones prompted further development and several novel strategies are evolving. Engineered monoclonal antibodies with high affinity and specificity to target antigens have been developed and used either alone or in combination with chemotherapeutic drugs. They are also used as vehicles to deliver cytotoxic drugs, toxins, or radionuclides that are either directly conjugated or encapsulated in liposomal vesicles. Likewise, genetically engineered T cells bearing chimeric antigen receptors are used to redirect cytotoxicity to antigen-positive target cells. This review describes recent advancements in some of these adoptive immunotherapeutic strategies targeting B cell malignancies.

  19. Microwave-induced local hyperthermia in combination with radiotherapy of human malignant tumors

    SciTech Connect

    U, R.; Noell, K.T.; Woodward, K.T.; Worde, B.T.; Fishburn, R.I.; Miller, L.S.

    1980-02-15

    Since 1976, two groups of patients have been treated with local microwave hyperthermia immediately following ionizing radiation. Group A patients had measurable multiple lesions assigned radiotherapy only, microwave hyperthermia only, or combined treatment. Ionizing radiation in 200 to 600 rad fractions was used 2 to 5 times per week to a total of 1800 to 4200 rad in 5 to 14 fractions. Group B patients had combination treatment only, with radiation fractions of 200 to 600 rad 2 to 5 times per week to a total of 200 to 4800 rad total in 6 to 20 fractions. Both groups received hyperthermia (42 to 44 C) 2 to 3 times per week, maximum ten sessions in four weeks. The 19 patients treated have had squamous cell carcinoma, adenocarcinoma, malignant melanoma, plasmacytoma, epithelioid sarcoma, and undifferentiated carcinoma. After more than 150 hyperthermia sessions, we find: (1) local hyperthermia with microwave alone or in combination with ionizing radiation can be used with excellent normal tissue tolerance provided local tissue temperatures are carefully monitored and controlled; (2) a higher level of heat induction in tumor tissue as compared to surrounding normal tissues; and (3) repeated hyperthermia at 42 to 43.5 C for 45 minutes per session immediately following photon irradiation yields a favorable therapeutic result, occasionally dramatic. Local microwave hyperthermia in combination withradiotherapy offers the possibility of substantial impact on clinical cancer therapy, whether of curative or palliative intent.

  20. Agonist antibody that induces human malignant cells to kill one another.

    PubMed

    Yea, Kyungmoo; Zhang, Hongkai; Xie, Jia; Jones, Teresa M; Lin, Chih-Wei; Francesconi, Walter; Berton, Fulvia; Fallahi, Mohammad; Sauer, Karsten; Lerner, Richard A

    2015-11-10

    An attractive, but as yet generally unrealized, approach to cancer therapy concerns discovering agents that change the state of differentiation of the cancer cells. Recently, we discovered a phenomenon that we call "receptor pleiotropism" in which agonist antibodies against known receptors induce cell fates that are very different from those induced by the natural agonist to the same receptor. Here, we show that one can take advantage of this phenomenon to convert acute myeloblastic leukemic cells into natural killer cells. Upon induction with the antibody, these leukemic cells enter into a differentiation cascade in which as many as 80% of the starting leukemic cells can be differentiated. The antibody-induced killer cells make large amounts of perforin, IFN-γ, and granzyme B and attack and kill other members of the leukemic cell population. Importantly, induction of killer cells is confined to transformed cells, in that normal bone marrow cells are not induced to form killer cells. Thus, it seems possible to use agonist antibodies to change the differentiation state of cancer cells into those that attack and kill other members of the malignant clone from which they originate.

  1. Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas.

    PubMed

    Bomben, Valerie C; Turner, Kathryn L; Barclay, Tia-Tabitha C; Sontheimer, Harald

    2011-07-01

    The majority of malignant primary brain tumors are gliomas, derived from glial cells. Grade IV gliomas, Glioblastoma multiforme, are extremely invasive and the clinical prognosis for patients is dismal. Gliomas utilize a number of proteins and pathways to infiltrate the brain parenchyma including ion channels and calcium signaling pathways. In this study, we investigated the localization and functional relevance of transient receptor potential canonical (TRPC) channels in glioma migration. We show that gliomas are attracted in a chemotactic manner to epidermal growth factor (EGF). Stimulation with EGF results in TRPC1 channel localization to the leading edge of migrating D54MG glioma cells. Additionally, TRPC1 channels co-localize with the lipid raft proteins, caveolin-1 and β-cholera toxin, and biochemical assays show TRPC1 in the caveolar raft fraction of the membrane. Chemotaxis toward EGF was lost when TRPC channels were pharmacologically inhibited or by shRNA knockdown of TRPC1 channels, yet without affecting unstimulated cell motility. Moreover, lipid raft integrity was required for gliomas chemotaxis. Disruption of lipid rafts not only impaired chemotaxis but also impaired TRPC currents in whole cell recordings and decreased store-operated calcium entry as revealed by ratiomeric calcium imaging. These data indicated that TRPC1 channel association with lipid rafts is essential for glioma chemotaxis in response to stimuli, such as EGF.

  2. Apoptotic effects of γ-mangostin from the fruit hull of Garcinia mangostana on human malignant glioma cells.

    PubMed

    Chang, Hui-Fang; Huang, Wen-Tsung; Chen, Hui-Ju; Yang, Ling-Ling

    2010-12-07

    Gliomas are a common type of primary brain tumor with glioblastoma multiforme accounting for the majority of human brain tumors. In this paper, high grade human malignant glioblastomas (MGs) including U87 MG and GBM 8401 were used to evaluate the antitumor effects of γ-mangostin, a xanthone derivative isolated and purified from the hull of the tropical fruit Garcinia mangostana. The γ-mangostin showed potent antiproliferative activity toward MGs in dose- and time-dependent manners. In addition, flow cytometric analysis of cell morphology in the apoptotic cells revealed an increase in hypodiploid cells in γ-mangostin treated U87 MG and GBM 8401 cells, while significant enhancement of intracellular peroxide production was detected in the same γ-mangostin treated cells by DCHDA assay and DiOC(6)(3) stain. g-Mangostin induced apoptosis, which in turn mediates cytotoxicity in human MG cells was prevented by the addition of catalase. Naturally derived medicines and herbal therapies are drawing increasing attention in regard to the treatment of many health issues, and this includes the testing of new phytochemicals or nutrients for brain tumor patients. This has led to γ-mangostin being identified as a potential leading compound for the development of an anti-brain tumor agent.

  3. Specific and non-specific folate binding protein in normal and malignant human tissues

    PubMed Central

    Corrocher, R.; De Sandre, G.; Ambrosetti, A.; Pachor, M. L.; Bambara, L. M.; Hoffbrand, A. V.

    1978-01-01

    Binding of tritiated folic acid by supernatants prepared from extracts of normal and leukaemic leucocytes, normal mucosa, and malignant tumours from different parts of the gastrointestinal tract has been measured using Sephadex-gel filtration and albumin-coated charcoal techniques. Non-specific binding (measured by Sephadex G-75 gel filtration) was almost invariably greater than specific binding measured by albumin-coated charcoal separation of bound and unbound folate. In nine normal leucocyte extracts, binding measured by Sephadex G-75 filtration ranged from 1·3 to 18·2 (mean 8·2) pg/mg protein and by albumin-coated charcoal from 1·0 to 14·8 (mean 6·7) pg/mg protein. Raised specific binding was found in the extracts from leucocytes of eight of 14 patients with chronic granulocytic leukaemia, in four substantially so (389, 121, 108, 59·7 pg/mg protein), but was only marginally increased in one of eight cases of acute myeloid leukaemia and in two of five cases of chronic lymphocytic leukaemia. Binding was normal in the extracts of all three cases of acute lymphoblastic leukaemia tested. Among the tissues of the gastrointestinal tract binding was greatest by the duodenal mucosa and liver. Extracts of carcinoma of the stomach and colon bound greater amounts of 3H-folic acid than the corresponding normal mucosal extracts but the differences were not large. Sephadex G-200 gel chromatography showed more than one binding peak in the extracts of liver and duodenum but only one peak in the other tissues of the gastrointestinal tract, and only one peak, of molecular weight either about 50 000 or over 200 000, in the leucocyte extracts. PMID:670421

  4. Effects of curcumin on bleomycin-induced apoptosis in human malignant testicular germ cells.

    PubMed

    Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Ozben, Tomris

    2013-06-01

    Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols in testicular cancer. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has attracted interest because of its anti-inflammatory and chemopreventive activities. However, no study has been carried out so far to elucidate its interaction with bleomycin in testicular cancer cells. In this study, we investigated the effects of curcumin and bleomycin on apoptosis signalling pathways and compared the effects of bleomycin with H2O2 which directly produces reactive oxygen species. We measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and Cyt-c levels in NCCIT cells incubated with curcumin (5 μM), bleomycin (120 μg/ml), bleomycin + curcumin, H2O2 (35 μM), and H2O2 + curcumin for 72 h. Curcumin, bleomycin, and H2O2 caused apoptosis indicated as increases in caspase-3, caspase-8, and caspase-9 activities and Bax and cytoplasmic Cyt-c levels and a decrease in Bcl-2 level. Concurrent use of curcumin with bleomycin decreased caspase activities and Bax and Cyt-c levels compared to their separate effects in NCCIT cells. Our findings suggest that concurrent use of curcumin during chemotherapy in testis cancer should be avoided due to the inhibitory effect of curcumin on bleomycin-induced apoptosis.

  5. Role of androgen and vitamin D receptors in endothelial cells from benign and malignant human prostate

    PubMed Central

    Chung, Ivy; Montecinos, Viviana P.; Buttyan, Ralph; Johnson, Candace S.; Smith, Gary J.

    2013-01-01

    Forty years ago, Judah Folkman (Folkman. N Engl J Med 285: 1182–1186, 1971) proposed that tumor growth might be controlled by limiting formation of new blood vessels (angiogenesis) needed to supply a growing tumor with oxygen and nutrients. To this end, numerous “antiangiogenic” agents have been developed and tested for therapeutic efficacy in cancer patients, including prostate cancer (CaP) patients, with limited success. Despite the lack of clinical efficacy of lead anti-angiogenic therapeutics in CaP patients, recent published evidence continues to support the idea that prostate tumor vasculature provides a reasonable target for development of new therapeutics. Particularly relevant to antiangiogenic therapies targeted to the prostate is the observation that specific hormones can affect the survival and vascular function of prostate endothelial cells within normal and malignant prostate tissues. Here, we review the evidence demonstrating that both androgen(s) and vitamin D significantly impact the growth and survival of endothelial cells residing within prostate cancer and that systemic changes in circulating androgen or vitamin D drastically affect blood flow and vascularity of prostate tissue. Furthermore, recent evidence will be discussed about the expression of the receptors for both androgen and vitamin D in prostate endothelial cells that argues for direct effects of these hormone-activated receptors on the biology of endothelial cells. Based on this literature, we propose that prostate tumor vasculature represents an unexplored target for modulation of tumor growth. A better understanding of androgen and vitamin D effects on prostate endothelial cells will support development of more effective angiogenesis-targeting therapeutics for CaP patients. PMID:23548616

  6. Histone H2B monoubiquitination: roles to play in human malignancy.

    PubMed

    Cole, Alexander J; Clifton-Bligh, Roderick; Marsh, Deborah J

    2015-02-01

    Ubiquitination has traditionally been viewed in the context of polyubiquitination that is essential for marking proteins for degradation via the proteasome. Recent discoveries have shed light on key cellular roles for monoubiquitination, including as a post-translational modification (PTM) of histones such as histone H2B. Monoubiquitination plays a significant role as one of the largest histone PTMs, alongside smaller, better-studied modifications such as methylation, acetylation and phosphorylation. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) has been shown to have key roles in transcription, the DNA damage response and stem cell differentiation. The H2Bub1 enzymatic cascade involves E3 RING finger ubiquitin ligases, with the main E3 generally accepted to be the RNF20-RNF40 complex, and deubiquitinases including ubiquitin-specific protease 7 (USP7), USP22 and USP44. H2Bub1 has been shown to physically disrupt chromatin strands, fostering a more open chromatin structure accessible to transcription factors and DNA repair proteins. It also acts as a recruiting signal, actively attracting proteins with roles in transcription and DNA damage. H2Bub1 also appears to play central roles in histone cross-talk, influencing methylation events on histone H3, including H3K4 and H3K79. Most significantly, global levels of H2Bub1 are low to absent in advanced cancers including breast, colorectal, lung and parathyroid, marking H2Bub1 and the enzymes that regulate it as key molecules of interest as possible new therapeutic targets for the treatment of cancer. This review offers an overview of current knowledge regarding H2Bub1 and highlights links between dysregulation of H2Bub1-associated enzymes, stem cells and malignancy. © 2015 Society for Endocrinology.

  7. Neovibsanin B inhibits human malignant brain tumor cell line proliferation and induces apoptosis.

    PubMed

    Cui, Yi-Fen; Yuan, Xiao-Lin; Fan, Wen-Hai; Li, Sheng-Fan; Deng, Yu-Qin; Zhang, Qing; Zhang, Chun-Lei; Yang, Zhen

    2015-01-01

    The present study was designed to examine the effect of neovibsanin B on glioma cell viability, apoptosis and on the survival time in mice bearing tumor xenografts. The results demonstrated that neovibsanin B significantly reduced the cell viability of GL261-NS and GL261-AC cells in a dose-dependent manner. However the inhibition of proliferation was more significant in GL261-NS cells. The IC50 value of neovibsanin B against GL261-NS and GL261-AC cells is 5 and 25 nM, respectively. The inhibitory effect of neovibsanin B on cell growth was more effective than that of vincristine (VCR) (P < 0.05). We also observed a significant decrease in sphere-forming ability of GL261-NS cells on treatment with neovibsanin B. The number of colonies formed by GL261-NS cells on treatment with neovibsanin B, VCR and DMSO were 3.34 ± 1.02, 12.53 ± 3.46 and 61.34 ± 9.89% respectively after 7 days. The flow cytometry revealed a marked increase in apoptotic cell death of GL261-NS cells on treatment with neovibsanin B. The western blots showed a significant decrease in the level of activated caspase-3 on treatment with neovibsanin B after 24 h. In addition, neovibsanin B increased the median survival time of glioma-bearing mice (P < 0.05). Therefore, neovibsanin B effectively inhibits glioma cell viability by inducing apoptosis, and can be a potent therapeutic agent for the treatment of malignant glioma.

  8. An in-vivo metabolic test for detecting malignant hyperthermia susceptibility in humans: a pilot study.

    PubMed

    Schuster, Frank; Metterlein, Thomas; Negele, Sabrina; Kranke, Peter; Muellenbach, Ralf M; Schwemmer, Ulrich; Roewer, Norbert; Anetseder, Martin

    2008-09-01

    In vitro contracture testing to diagnose malignant hyperthermia (MH) susceptibility requires a muscle biopsy, which may be associated with severe side effects for the patient. After investigation of several different protocols, we present a less invasive metabolic test that involves IM injection of caffeine and halothane, and subsequent measurement of interstitial lactate to differentiate between MH susceptible (MHS) and MH non-susceptible (MHN) individuals. Two microdialysis probes with attached microtubing for trigger injection were inserted into the lateral vastus muscle of eight previously diagnosed MHS patients (representing three genetic variants Gly2434Arg, Thr2206Met, and Arg614Cys), seven MHN patients, and seven control individuals. After equilibration and lactate baseline recording, a single bolus of 200 muL caffeine 80 mM and a suspension of 200 muL halothane 4%V/V in soy bean oil (triggers) were injected locally. Lactate was measured spectrophotometrically. Data are presented as medians and interquartile ranges. Although baseline lactate values were similar in the investigated groups before trigger injection, caffeine increased local lactate in MHS patients significantly more (2.0 [1.8-2.6] mM) than in MHN (0.8 [0.6-1.1] mM) or in control individuals (0.8 [0.6-0.8 mM]). Similarly, halothane lead to a significant lactate increase in MHS compared to MHN and control individuals (8.6 [3.7-8.9] mM vs 0.9 [0.5-1.1] mM and 1.7 [0.9-2.3] mM, respectively). However, a relevant increase of lactate was observed in one MHN and in two control individuals. Systemic hemodynamic and metabolic variables did not differ between the investigated groups. Metabolic monitoring of IM lactate after local caffeine and halothane injection may allow less invasive testing to detect MH susceptibility, without systemic side effects.

  9. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.

    PubMed

    Miyata, Akinori; Ishizawa, Takeaki; Kamiya, Mako; Shimizu, Atsushi; Kaneko, Junichi; Ijichi, Hideaki; Shibahara, Junji; Fukayama, Masashi; Midorikawa, Yutaka; Urano, Yasuteru; Kokudo, Norihiro

    2014-01-01

    Recently, fluorescence imaging following the preoperative intravenous injection of indocyanine green has been used in clinical settings to identify hepatic malignancies during surgery. The aim of this study was to evaluate the ability of photoacoustic tomography using indocyanine green as a contrast agent to produce representative fluorescence images of hepatic tumors by visualizing the spatial distribution of indocyanine green on ultrasonographic images. Indocyanine green (0.5 mg/kg, intravenous) was preoperatively administered to 9 patients undergoing hepatectomy. Intraoperatively, photoacoustic tomography was performed on the surface of the resected hepatic specimens (n = 10) under excitation with an 800 nm pulse laser. In 4 hepatocellular carcinoma nodules, photoacoustic imaging identified indocyanine green accumulation in the cancerous tissue. In contrast, in one hepatocellular carcinoma nodule and five adenocarcinoma foci (one intrahepatic cholangiocarcinoma and 4 colorectal liver metastases), photoacoustic imaging delineated indocyanine green accumulation not in the cancerous tissue but rather in the peri-cancerous hepatic parenchyma. Although photoacoustic tomography enabled to visualize spatial distribution of ICG on ultrasonographic images, which was consistent with fluorescence images on cut surfaces of the resected specimens, photoacoustic signals of ICG-containing tissues decreased approximately by 40% even at 4 mm depth from liver surfaces. Photoacoustic tomography using indocyanine green also failed to identify any hepatocellular carcinoma nodules from the body surface of model mice with non-alcoholic steatohepatitis. In conclusion, photoacoustic tomography has a potential to enhance cancer detectability and differential diagnosis by ultrasonographic examinations and intraoperative fluorescence imaging through visualization of stasis of bile-excreting imaging agents in and/or around hepatic tumors. However, further technical advances are needed

  10. Cystathionine β-synthase-derived hydrogen sulfide is involved in human malignant hyperthermia.

    PubMed

    Vellecco, Valentina; Mancini, Antonio; Ianaro, Angela; Calderone, Vincenzo; Attanasio, Chiara; Cantalupo, Anna; Andria, Barbara; Savoia, Gennaro; Panza, Elisabetta; Di Martino, Antonietta; Cirino, Giuseppe; Bucci, Mariarosaria

    2016-01-01

    Hydrogen sulfide is an endogenous gasotransmitter and its mechanism of action involves activation of ATP-sensitive K(+) channels and phosphodiesterase inhibition. As both mechanisms are potentially involved in malignant hyperthermia (MH), in the present study we addressed the involvement of the L-cysteine/hydrogen sulfide pathway in MH. Skeletal muscle biopsies obtained from 25 MH-susceptible (MHS) and 56 MH-negative (MHN) individuals have been used to perform the in vitro contracture test (IVCT). Quantitative real-time PCR (qPCR) and Western blotting studies have also been performed. Hydrogen sulfide levels are measured in both tissue samples and plasma. In MHS biopsies an increase in cystathionine β-synthase (CBS) occurs, as both mRNA and protein expression compared with MHN biopsies. Hydrogen sulfide biosynthesis is increased in MHS biopsies (0.128±0.12 compared with 0.943±0.13 nmol/mg of protein per min for MHN and MHS biopsies, respectively; P<0.01). Addition of sodium hydrosulfide (NaHS) to MHS samples evokes a response similar, in the IVCT, to that elicited by either caffeine or halothane. Incubation of MHN biopsies with NaHS, before caffeine or halothane challenge, switches an MHN to an MHS response. In conclusion we demonstrate the involvement of the L-cysteine/hydrogen sulfide pathway in MH, giving new insight into MH molecular mechanisms. This finding has potential implications for clinical care and could help to define less invasive diagnostic procedures.

  11. Procaine in Malignant Hyperpyrexia

    PubMed Central

    Moulds, R. F. W.; Denborough, M. A.

    1972-01-01

    The caffeine contracture of normal human muscle, which has been used as a model for malignant hyperpyrexia, is greatly potentiated by halothane. Prior administration of procaine markedly reduces the halothane-potentiated caffeine contracture, and procaine given at the height of the contracture induces relaxation. Lignocaine, on the other hand, produces a variable response and sometimes increases the contracture. The muscle from a patient with an inherited susceptibility to malignant hyperpyrexia contracted spontaneously with halothane alone, and this contracture was reversed by procaine. These experiments support the therapeutic use of procaine in malignant hyperpyrexia. PMID:4642792

  12. Chrysin-induced apoptosis is mediated through p38 and Bax activation in B16-F1 and A375 melanoma cells.

    PubMed

    Pichichero, Elena; Cicconi, Rosella; Mattei, Maurizio; Canini, Antonella

    2011-02-01

    Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from honey, plants and propolis. It possesses anti-inflammatory activity, anti-oxidant properties and promotes cell death by perturbing cell cycle progression. In this study, our attention focused on the possible role that chrysin may have as a potential anti-cancer agent, and we tested its biological activity in murine and human melanoma cell lines (B16-F1 and A375). This study demonstrated that chrysin reduced melanoma cell proliferation and induced cell differentiation in both human and murine melanoma cells through synthesis increase and intracellular accumulation of protoporphirin IX (PpIX). Furthermore, following treatments with chrysin an increase in the expression of porphobilinogen deaminase (PBG-D) was noted. This study demontrated also that chrysin induces cell death in human and murine melanoma cells through caspase-dependent mechanisms, involving down-regulation of ERK 1/2, and activation of p38 MAP kinases. Induction of cell death may be a promising therapeutic approach in cancer therapy. Our results suggest that chrysin may be considered a potential candidate for both cancer prevention and treatment.

  13. The specific role of pRb in p16INK4A-mediated arrest of normal and malignant human breast cells

    PubMed Central

    Bazarov, Alexey V; Lee, Won Jae; Bazarov, Irina; Bosire, Moses; Hines, William C; Stankovich, Basha; Chicas, Agustin; Lowe, Scott W

    2012-01-01

    RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation. PMID:22333593

  14. The specific role of pRb in p16 (INK4A) -mediated arrest of normal and malignant human breast cells.

    PubMed

    Bazarov, Alexey V; Lee, Won Jae; Bazarov, Irina; Bosire, Moses; Hines, William C; Stankovich, Basha; Chicas, Agustin; Lowe, Scott W; Yaswen, Paul

    2012-03-01

    RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G 1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation.

  15. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    SciTech Connect

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  16. Preferential cytotoxicity of bortezomib toward highly malignant human liposarcoma cells via suppression of MDR1 expression and function

    SciTech Connect

    Hu, Yamei; Wang, Lingxian; Wang, Lu; Wu, Xuefeng; Wu, Xudong; Gu, Yanhong; Shu, Yongqian; Sun, Yang; Shen, Yan; Xu, Qiang

    2015-02-15

    Liposarcoma is the most common soft tissue sarcoma with a high risk of relapse. Few therapeutic options are available for the aggressive local or metastatic disease. Here, we report that the clinically used proteasome inhibitor bortezomib exhibits significantly stronger cytotoxicity toward highly malignant human liposarcoma SW872-S cells compared with its parental SW872 cells, which is accompanied by enhanced activation of apoptotic signaling both in vitro and in vivo. Treatment of cells with Jun-N-terminal kinase (JNK) inhibitor SP60015 or the translation inhibitor cycloheximide ameliorated this enhanced apoptosis. Bortezomib inhibited MDR1 expression and function more effectively in SW872-S cells than in SW872 cells, indicating that the increased cytotoxicity relies on the degree of proteasome inhibition. Furthermore, the pharmacological or genetic inhibition of sarco/endoplasmic reticulum calcium-ATPase (SERCA) 2, which is highly expressed in SW872-S cells, resulted in partial reversal of cell growth inhibition and increase of MDR1 expression in bortezomib-treated SW872-S cells. These results show that bortezomib exhibits preferential cytotoxicity toward SW872-S cells possibly via highly expressed SERCA2-associated MDR1 suppression and suggest that bortezomib may serve as a potent agent for treating advanced liposarcoma. - Highlights: • We compare the cytotoxicity of different drugs between SW872-S and SW872 cells. • Highly malignant liposarcoma cells SW872-S show hypersensitivity to bortezomib. • Apoptotic signaling is robustly enhanced in bortezomib-treated SW872-S cells. • Bortezomib has strong suppression on MDR1 expression and function in SW872-S cells. • Inhibition of SERCA2 protects SW872-S cells from bortezomib.

  17. Prognostic Role of MicroRNA-200c-141 Cluster in Various Human Solid Malignant Neoplasms

    PubMed Central

    Li, Xiao-yang; Li, Hui; Bu, Jie; Xiong, Liang; Guo, Hong-bin; Liu, Li-hong; Xiao, Tao

    2015-01-01

    The miR-200 family has emerged recently as a noticeable marker for predicting cancer prognosis and tumor progression. We aimed to review the evidence of miR-200c-141 genomic cluster as prognostic biomarkers in cancers. The results suggested that high level of miR-200c had no significant impact on OS (HR = 1.14 [0.77–1.69], P = 0.501) and DFS/PFS (HR = 0.72 [0.45–1.14], P = 0.161). Stratified analyses revealed that high miR-200c expression was significantly related to poor OS in serum/plasma (HR = 2.12 [1.62–2.77], P = 0.000) but not in tissues (HR = 0.89 [0.58–1.37], P = 0.599). High miR-200c expression was significantly associated with favorable DFS/PFS in tissues (HR = 0.56 [0.43–0.73], P = 0.000) but worse DFS/PFS in serum/plasma (HR = 1.90 [1.08–3.36], P = 0.027). For miR-141, we found that high miR-141 expression predicted no significant impact on OS (HR = 1.18 [0.74–1.88], P = 0.482) but poor DFS/PFS (HR = 1.11 [1.04–1.20], P = 0.003). Similarly, subgroup analyses showed that high miR-141 expression predicted poor OS in serum/plasma (HR = 4.34 [2.30–8.21], P = 0.000) but not in tissues (HR = 1.00 [0.92–1.09], P = 0.093). High miR-141 expression was significantly associated with worse DFS/PFS in tissues (HR = 1.12 [1.04–1.20], P = 0.002) but not in serum/plasma (HR = 0.90 [0.44–1.83], P = 0.771). Our findings indicated that, compared to their tissue counterparts, the expression level of miR-200c and miR-141 in peripheral blood may be more effective for monitoring cancer prognosis. High miR-141 expression was better at predicting tumor progression than survival for malignant tumors. PMID:26556949

  18. Anticancer activity of β-Elemene and its synthetic analogs in human malignant brain tumor cells.

    PubMed

    Li, Qingdi Quentin; Lee, Rebecca X; Liang, Huasheng; Zhong, Yuhua

    2013-01-01

    Malignant brain tumors are aggressive in both children and adults. Despite recent improvements in diagnostic techniques, therapeutic approaches remain disappointing and unsuccessful. There is an urgent need for promising anticancer agents to improve overall survival of patients with brain cancer. β-Elemene has been shown to have antiproliferative effects on many types of carcinomas. In this study, we compared the cytotoxic efficacy of β-elemene and its synthetic analogs in the brain tumor cell lines A172, CCF-STTG1, and U-87MG. β-Elemene exhibited cytotoxicity towards the tumor lines, effectively suppressing tumor cell survival. The inhibitory effect of β-elemene was mediated by the induction of apoptosis, as demonstrated by three assays. The annexin V assay showed that β-elemene increased the percentage of early- and late-apoptotic cells. Apoptotic nuclei were detected in cancer cells in situ by the terminal deoxynucleotidyltransferase-mediated deoxy-UTP-fluorescein nick end labeling (TUNEL) staining, and the number of TUNEL-positive cells was significantly increased at 24-72 h following drug treatment of the cell lines. Cell death enzyme-linked immunosorbent assay (ELISA) gave similar results. Furthermore, β-elemene increased caspase-3/7/10 activity, up-regulated protein expression of BAX, and down-regulated the one of BCL-2, BCL-XL, and of X-linked inhibitor of apoptosis (XIAP) in the cells, suggesting that apoptotic signaling pathways are involved in the responses triggered by β-elemene. Compared with β-elemene, only three of the 10 synthetic β-elemene analogs studied here, exerted comparable cytotoxic efficacy towards the three brain tumor lines: the analogs Lr-1 and Lr-2 had the same antitumor efficacy, while Lr-3 was less potent than β-elemene. Thus, some synthetic analogs of β-elemene may inhibit brain cancer cell growth and proliferation, and the synthetic analogs Lr-1 and Lr-2 may have great potential as alternatives to β-elemene for

  19. Basic and clinical aspects of malignant melanoma

    SciTech Connect

    Nathanson, L. )

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignant melanoma by fast neutrons.

  20. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles.

    PubMed

    Wang, Jishi; Ma, Dan; Li, Yan; Yang, Yuan; Hu, Xiaoyan; Zhang, Wei; Fang, Qin

    2014-03-01

    The aim of this study was to explore the effects of bone marrow-derived mesenchymal stem cells (BMSCs) as intermediate carriers on targeting of P450 gene recombinant adenovirus to malignant melanoma in vitro and in vivo. BMSCs were transduced with pAd5-CMV-CYP2E1 recombinant adenovirus. BMSC migration was detected by Transwell plates in vitro and by superparamagnetic iron oxide particles in vivo. Growth-inhibitory effect and apoptosis were determined by MTT and immunity fluorescence staining. Anticancer effects were examined by a human melanoma nude mouse model in vivo. BMSCs moved toward A375 cells in Transwell plates. Numerous superparamagnetic MSCs labeled with iron oxide were identified in the peripheral areas of the tumor, but were detected in primary organs by Prussian blue staining. BMSC-CYP2E1 cells mediated a bystander killing effect on CYP2E1-negative A375 cells during coculture (IC50 values for A375 cells cocultured with BMSC-EGFP and BMSC-CYP2E1 were 4.08 and 2.68 mmol/l, respectively). Intravenously injecting CYP2E1 recombinant adenovirus-loaded BMSCs in mice with established human melanoma managed to target the tumor site, and BMSCs with forced expression of CYP2E1 inhibited the growth of malignant cells in vivo by activating 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. BMSCs may serve as a platform of P450 gene-directed enzyme prodrug therapy for the delivery of chemotherapeutic prodrugs to tumors.

  1. Mesothelioma - malignant

    MedlinePlus

    ... Names Mesothelioma - malignant; Malignant pleura mesothelioma (MPM) Images Respiratory system References Broaddus VC, Robinson BWS. Pleural tumors. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  2. Loss of the malignant phenotype of human neuroblastoma cells by a catalytically inactive dominant-negative hTERT mutant.

    PubMed

    Samy, Mona; Gattolliat, Charles-Henry; Pendino, Frédéric; Hillion, Josette; Nguyen, Eric; Bombard, Sophie; Douc-Rasy, Sétha; Bénard, Jean; Ségal-Bendirdjian, Evelyne

    2012-11-01

    Telomerase, a ribonucleoprotein complex mainly composed of the reverse transcriptase catalytic subunit (human telomerase reverse transcriptase, hTERT) and the RNA component (hTR), is a key enzyme of cancer progression. That aggressive stage 4-neuroblastoma expressed high levels of telomerase activity, whereas favorable tumors had no or little telomerase expression and activity, prompted us to investigate the role of this enzyme in this tumor model of altered proliferation, neuronal differentiation, and apoptosis. A human MYCN-amplified neuroblastoma cell line (IGR-N-91) was engineered to stably express either the normal hTERT protein (WT-hTERT) or a catalytically inactive dominant-negative mutant of this protein (DN-hTERT). We showed that DN-hTERT expression inhibited the endogenous hTERT in the malignant neuroblasts without telomere shortening nor loss of in vitro proliferative capacity. Importantly, DN-hTERT expression induced major changes in cell morphology of neuroblasts that switched them from a neuronal to a substrate adherent phenotype, which was more prone to apoptosis and lost their tumorigenic properties in nude mice. These biologic effects arose from modifications in the expression of genes involved in both apoptosis and neuroblastoma biology. Taken together these results highlighted the functional relevance of noncanonical functions of hTERT in the determination of neuroblast cell fate. Therefore, our results envision new therapeutic strategies for metastatic neuroblastoma therapeutic management. ©2012 AACR.

  3. von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans

    PubMed Central

    Bauer, Alexander T.; Suckau, Jan; Frank, Kathrin; Desch, Anna; Goertz, Lukas; Wagner, Andreas H.; Hecker, Markus; Goerge, Tobias; Umansky, Ludmila; Beckhove, Philipp; Utikal, Jochen; Gorzelanny, Christian; Diaz-Valdes, Nancy; Umansky, Viktor

    2015-01-01

    Tumor-mediated procoagulatory activity leads to venous thromboembolism and supports metastasis in cancer patients. A prerequisite for metastasis formation is the interaction of cancer cells with endothelial cells (ECs) followed by their extravasation. Although it is known that activation of ECs and the release of the procoagulatory protein von Willebrand factor (VWF) is essential for malignancy, the underlying mechanisms remain poorly understood. We hypothesized that VWF fibers in tumor vessels promote tumor-associated thromboembolism and metastasis. Using in vitro settings, mouse models, and human tumor samples, we showed that melanoma cells activate ECs followed by the luminal release of VWF fibers and platelet aggregation in tumor microvessels. Analysis of human blood samples and tumor tissue revealed that a promoted VWF release combined with a local inhibition of proteolytic activity and protein expression of ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type I repeats 13) accounts for this procoagulatory milieu. Blocking endothelial cell activation by the low-molecular-weight heparin tinzaparin was accompanied by a lack of VWF networks and inhibited tumor progression in a transgenic mouse model. Our findings implicate a mechanism wherein tumor-derived vascular endothelial growth factor-A (VEGF-A) promotes tumor progression and angiogenesis. Thus, targeting EC activation envisions new therapeutic strategies attenuating tumor-related angiogenesis and coagulation. PMID:25977583

  4. Upper and lower respiratory tract infections by human enterovirus and rhinovirus in adult patients with hematological malignancies.

    PubMed

    Parody, R; Rabella, N; Martino, R; Otegui, M; del Cuerpo, M; Coll, P; Sierra, J

    2007-09-01

    The impact of human enterovirus (HEV) and human rhinovirus (HRV) respiratory tract infections in adult patients with hematological malignancies has been infrequently reported. We retrospectively studied 31 patients with an upper or lower respiratory tract infection (URTI/LRTI) by HEV (n = 18) or HRV (n = 15). At onset, a LRTI was present in 6 (33%) and 2 (13%) episodes of HEV and HRV infections, respectively, with or without an URTI. Progression to LRTI (pneumonia) from prior URTI was seen in 1 (6%) and 2 (13%) HEV and HRV infections, respectively. The presence of lymphocytopenia (<0.5 x 10(9)/l) was higher in LRTI by HEV: 4/5 (80%) versus 2/10 (20%) by HRV. Eight of 18 (44%) patients with immunosuppression versus 3/14 (21%) patients with no immunosuppression at the onset of respiratory infection developed a LRTI. Thirteen per cent of patients had associated respiratory infections from bacteria, aspergillus, or CMV. Pulmonary aspergillosis was diagnosed in 20% of HRV infections. Three of 11 patients (27%) with a LRTI died, but pulmonary copathogens were also involved in all cases. In conclusion, HEV and HRV can be associated with LRTI in immunocompromised patients, although their direct impact on mortality is uncertain. 2007 Wiley-Liss, Inc

  5. Apoptotic Endonuclease EndoG Inhibits Telomerase Activity and Induces Malignant Transformation of Human CD4+ T Cells.

    PubMed

    Vasina, D A; Zhdanov, D D; Orlova, E V; Orlova, V S; Pokrovskaya, M V; Aleksandrova, S S; Sokolov, N N

    2017-01-01

    Telomerase activity is regulated by an alternative splicing of mRNA of the telomerase catalytic subunit hTERT (human telomerase reverse transcriptase). Increased expression of the inactive spliced hTERT results in inhibition of telomerase activity. Little is known about the mechanism of hTERT mRNA alternative splicing. This study was aimed at determining the effect of an apoptotic endonuclease G (EndoG) on alternative splicing of hTERT and telomerase activity in CD4+ human T lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated the expression of the active full-length hTERT variant and upregulated the inactive alternatively spliced variant. Reduction of full-length hTERT levels caused downregulation of the telomerase activity, critical telomere shortening during cell division that converted cells into the replicative senescence state, activation of apoptosis, and finally cell death. Some cells survive and undergo a malignant transformation. Transformed cells feature increased telomerase activity and proliferative potential compared to the original CD4+ T cells. These cells have phenotype of T lymphoblastic leukemia cells and can form tumors and cause death in experimental mice.

  6. Esculetin, a Coumarin Derivative, Exhibits Anti-proliferative and Pro-apoptotic Activity in G361 Human Malignant Melanoma

    PubMed Central

    Jeon, Young-Joo; Jang, Jeong-Yun; Shim, Jung-Hyun; Myung, Pyung Keun; Chae, Jung-Il

    2015-01-01

    Background: Although esculetin, a coumarin compound, is known to induce apoptosis in human cancer cells, the effects and molecular mechanisms on the apoptosis in human malignant melanoma (HMM) cells are not well understood yet. In this study, we investigated the anti-proliferative effects of esculetin on the G361 HMM cells. Methods: We analyzed the anti-proliferative effects and molecular mechanisms of esculetin on G361 cells by a 3-(4,5-dimethylthiazol- 2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, 4′,6-diamidino-2-phenylindole staining and Western blotting. Results: Esculetin exhibited significant anti-proliferative effects on the HMM cells in a dose-dependent manner. Interestingly, we found that esculetin induced nuclear shrinkage and fragmentation, typical apoptosis markers, by suppression of Sp1 transcription factor (Sp1). Notably, esculetin modulated Sp1 downstream target genes including p27, p21 and cyclin D1, resulted in activation of apoptosis signaling molecules such as caspase-3 and PARP in G361 HMM cells. Conclusions: Our results clearly demonstrated that esculetin induced apoptosis in the HMM cells by downregulating Sp1 protein levels. Thus, we suggest that esculetin may be a potential anti-proliferative agent that induces apoptotic cell death in G361 HMM cells. PMID:26151043

  7. The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid.

    PubMed

    Hiroshima, Yukihiko; Maawy, Ali; Hassanein, Mohamed K; Menen, Rhiana; Momiyama, Masashi; Murakami, Takashi; Miwa, Shinji; Yamamoto, Mako; Uehara, Fuminari; Yano, Shuya; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2014-01-01

    We previously defined macrophages harvested from the peritoneal cavity of nude mice with subcutaneous human pancreatic tumors as "tumor-educated-macrophages" (Edu) and macrophages harvested from mice without tumors as "naïve-macrophages" (Naïve), and demonstrated that Edu-macrophages promoted tumor growth and metastasis. In this study, Edu- and Naïve-macrophages were compared for their ability to enhance pancreatic cancer malignancy at the cellular level in vitro and in vivo. The inhibitory efficacy of Zoledronic acid (ZA) on Edu-macrophage-enhanced metastasis was also determined. XPA1 human pancreatic cancer cells in Gelfoam co-cultured with Edu-macrophages proliferated to a greater extent compared to XPA1 cells cultured with Naïve-macrophages (P = 0.014). XPA1 cells exposed to conditioned medium harvested from Edu culture significantly increased proliferation (P = 0.016) and had more migration stimulation capability (P<0.001) compared to cultured cancer cells treated with the conditioned medium from Naïve. The mitotic index of the XPA1 cells, expressing GFP in the nucleus and RFP in the cytoplasm, significantly increased in vivo in the presence of Edu- compared to Naïve-macrophages (P = 0.001). Zoledronic acid (ZA) killed both Edu and Naïve in vitro. Edu promoted tumor growth and metastasis in an orthotopic mouse model of the XPA1 human pancreatic cancer cell line. ZA reduced primary tumor growth (P = 0.006) and prevented metastasis (P = 0.025) promoted by Edu-macrophages. These results indicate that ZA inhibits enhanced primary tumor growth and metastasis of human pancreatic cancer induced by Edu-macrophages.

  8. Transforming growth factor-β enhances invasion and metastasis in Ras-transfected human malignant epidermal keratinocytes

    PubMed Central

    Davies, Maria; Prime, Stephen S; Eveson, John W; Price, Nicky; Ganapathy, Anu; D’Mello, Anita; Paterson, Ian C

    2012-01-01

    Summary Transforming growth factor-β (TGF-β) is known to act as a tumour suppressor early in carcinogenesis, but then switches to a pro-metastatic factor in some late stage cancers. However, the actions of TGF-β are context dependent, and it is currently unclear how TGF-β influences the progression of human squamous cell carcinoma (SCC). This study examined the effect of overexpression of TGF-β1 or TGF-β2 in Ras-transfected human malignant epidermal keratinocytes that represent the early stages of human SCC. In vitro, the proliferation of cells overexpressing TGF-β1 or TGF-β2 was inhibited by exogenous TGF-β1; cells overexpressing TGF-β1 also grew more slowly than controls, but the growth rate of TGF-β2 overexpressing cells was unaltered. However, cells that overexpressed either TGF-β1 or TGF-β2 were markedly more invasive than controls in an organotypic model of SCC. The proliferation of the invading TGF-β1 overexpressing cells in the organotypic assays was higher than controls. Similarly, tumours formed by the TGF-β1 overexpressing cells following transplantation to athymic mice were larger than tumours formed by control cells and proliferated at a higher rate. Our results demonstrate that elevated expression of either TGF-β1 or TGF-β2 in cells that represent the early stages in the development of human SCC results in a more aggressive phenotype. PMID:22414291

  9. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    SciTech Connect

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.

  10. SPARC Gene Expression is Repressed in Human Urothelial Cells (UROtsa) Exposed to or Malignantly Transformed by Cadmium or Arsenite

    PubMed Central

    Larson, Jennifer; Yasmin, Tahmina; Sens, Donald A.; Zhou, Xu Dong; Sens, Mary Ann; Garrett, Scott H.; Dunlevy, Jane R.; Cao, Ling; Somji, Seema

    2010-01-01

    SPARC belongs to a class of extracellular matrix-associated proteins that have counteradhesive properties. The ability of SPARC to modulate cell-cell and cell-matrix interactions provides a strong rationale for studies designed to determine its expression in cancer. The objective of this study was to determine if SPARC expression was altered in cadmium (Cd+2) and arsenite (As+3) induced bladder cancer and if these alterations were present in archival specimens of human bladder cancer. The expression of SPARC was determined in human parental UROtsa cells, their Cd+2 and As+3 transformed counterparts and derived tumors, and in archival specimens of human bladder cancer using a combination of real time reverse transcriptase polymerase chain reaction, western blotting, immunofluoresence localization and immunohistochemical staining. It was demonstrated that SPARC expression was down-regulated in Cd+2 and As+3 transformed UROtsa cells. In addition, the malignant epithelial component of tumors derived from these cell lines were also down-regulated for SPARC expression, but the stromal cells recruited to these tumors was highly reactive for SPARC. This finding was shown to translate to specimens of human bladder cancer where tumor cells were SPARC negative, but stromal cells were positive. Acute exposure of UROtsa cells to both cadmium and arsenite reduced the expression of SPARC through a mechanism that did not involve changes in DNA methylation or histone acetylation. These studies suggest that environmental exposure to As+3 or Cd+2 can alter cell-cell and cell-matrix interactions in normal urothelial cells through a reduction in the expression of SPARC. The SPARC associated loss of cell-cell and cell-matrix contacts may participate in the multi-step process of bladder carcinogenesis. PMID:20837119

  11. A survey of human T-cell leukaemia virus type I antibodies in patients with malignant disease in the Witwatersrand area.

    PubMed

    Dansey, R D; Mansoor, N; Cohn, R J; MacDougall, L G; Bezwoda, W R

    1986-10-11

    The prevalence of antibodies to human T-cell leukaemia virus type I in Africa ranges from 2% to 21% according to the geographical area surveyed. Most studies suggest that the background infection rate in children is low. In paediatric patients with malignant disease in the Witwatersrand area the prevalence is low (1%), whereas a seemingly high rate is found in healthy black children from a restricted rural area (7%). Further, the antibody prevalence in adult whites with lymphoproliferative disease is low (1%) compared with that in blacks with malignant disease (6%). There also appears to be a higher prevalence of positive results in black women (7%) than in black men (4%).

  12. Ophiobolin A Induces Autophagy and Activates the Mitochondrial Pathway of Apoptosis in Human Melanoma Cells

    PubMed Central

    Rodolfo, Carlo; Rocco, Mariapina; Cattaneo, Lucia; Tartaglia, Maria; Sassi, Mauro; Aducci, Patrizia; Scaloni, Andrea; Marra, Mauro

    2016-01-01

    Ophiobolin A, a fungal toxin from Bipolaris species known to affect different cellular processes in plants, has recently been shown to have anti-cancer activity in mammalian cells. In the present study, we investigated the anti-proliferative effect of Ophiobolin A on human melanoma A375 and CHL-1 cell lines. This cellular model was chosen because of the incidence of melanoma malignant tumor on human population and its resistance to chemical treatments. Ophyobolin A strongly reduced cell viability of melanoma cells by affecting mitochondrial functionality. The toxin induced depolarization of mitochondrial membrane potential, reactive oxygen species production and mitochondrial network fragmentation, leading to autophagy induction and ultimately resulting in cell death by activation of the mitochondrial pathway of apoptosis. Finally, a comparative proteomic investigation on A375 cells allowed to identify several Ophiobolin A down-regulated proteins, which are involved in fundamental processes for cell homeostasis and viability. PMID:27936075

  13. Pleural malignancies.

    PubMed

    Friedberg, Joseph S; Cengel, Keith A

    2010-07-01

    Pleural malignancies, primary or metastatic, portend a grim prognosis. In addition to the serious oncologic implications of a pleural malignancy, these tumors can be highly symptomatic. A malignant pleural effusion can cause dyspnea, secondary to lung compression, or even tension physiology from a hydrothorax under pressure. The need to palliate these effusions is a seemingly straightforward clinical scenario, but with nuances that can result in disastrous complications for the patient if not attended to appropriately. Solid pleural malignancies can cause great pain from chest wall invasion or can cause a myriad of morbid symptoms because of the invasion of thoracic structures, such as the heart, lungs, or esophagus. This article reviews pleural malignancies, the purely palliative treatments, and the treatments that are performed with definitive (curative) intent. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Bipolar cellular morphology of malignant melanoma in unstained human melanoma skin tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Wenkai; Yang, Chia-Yi; Yang, Haw

    2009-03-01

    Microstructures of unstained human melanoma skin tissues have been examined by multimodal nonlinear optical microscopy. The polarized shape of the individual melanoma cell can be readily recognized-a phenotype that has been identified in laboratory cultures as characteristic of proliferating melanocytes but has not been demonstrated in clinical instances. The results thus provide snapshots of invading melanoma cells in their native environment and suggest a practical means of connecting in vitro laboratory studies to in vivo processes.

  15. Malignant Precursor Cells Pre-Exist in Human Breast DCIS and Require Autophagy for Survival

    PubMed Central

    Espina, Virginia; Mariani, Brian D.; Gallagher, Rosa I.; Tran, Khoa; Banks, Stacey; Wiedemann, Joy; Huryk, Heather; Mueller, Claudius; Adamo, Luana; Deng, Jianghong; Petricoin, Emanuel F.; Pastore, Lucia; Zaman, Syed; Menezes, Geetha; Mize, James; Johal, Jasbir; Edmiston, Kirsten; Liotta, Lance A.

    2010-01-01

    Background While it is accepted that a majority of invasive breast cancer progresses from a ductal carcinoma in situ (DCIS) precursor stage, very little is known about the factors that promote survival of DCIS neoplastic cells within the hypoxic, nutrient deprived intraductal microenvironment. Methodology and Principal Findings We examined the hypothesis that fresh human DCIS lesions contain pre-existing carcinoma precursor cells. We characterized these cells by full genome molecular cytogenetics (Illumina HumanCytoSNP profile), and signal pathway profiling (Reverse Phase Protein Microarray, 59 endpoints), and demonstrated that autophagy is required for survival and anchorage independent growth of the cytogenetically abnormal tumorigenic DCIS cells. Ex vivo organoid culture of fresh human DCIS lesions, without enzymatic treatment or sorting, induced the emergence of neoplastic epithelial cells exhibiting the following characteristics: a) spontaneous generation of hundreds of spheroids and duct-like 3-D structures in culture within 2–4 weeks; b) tumorigenicity in NOD/SCID mice; c) cytogenetically abnormal (copy number loss or gain in chromosomes including 1, 5, 6, 8, 13, 17) compared to the normal karyotype of the non-neoplastic cells in the source patient's breast tissue; d) in vitro migration and invasion of autologous breast stroma; and e) up-regulation of signal pathways linked to, and components of, cellular autophagy. Multiple autophagy markers were present in the patient's original DCIS lesion and the mouse xenograft. We tested whether autophagy was necessary for survival of cytogenetically abnormal DCIS cells. The lysosomotropic inhibitor (chloroquine phosphate) of autophagy completely suppressed the generation of DCIS spheroids/3-D structures, suppressed ex vivo invasion of autologous stroma, induced apoptosis, suppressed autophagy associated proteins including Atg5, AKT/PI3 Kinase and mTOR, eliminated cytogenetically abnormal spheroid forming cells from

  16. Repair of chromosome damage induced by X-irradiation during G/sub 2/ phase in a line of normal human fibroblasts and its malignant derivative

    SciTech Connect

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-08-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G/sub 2/ phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or ..beta..-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G/sub 2/ phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H/sub 2/O/sub 2/, or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G/sub 2/ phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives.

  17. The human Bosniak model applied to a cat with renal cystadenoma. A classification to differentiate benign and malignant cystic renal masses via computed tomography and ultrasound.

    PubMed

    Baloi, P; Del Chicca, F; Ruetten, M; Gerber, B

    2015-01-01

    A 13-year-old domestic shorthair cat was presented with weight loss and azotemia. Abdominal ultrasound revealed a large cystic space- occupying lesion with multiple septae in the left kidney. A core needle biopsy yielded a renal cystadenoma originating from the epithelial cells. This report describes the clinical, ultrasonographic and computed tomographic features and the growth progression of a renal cystadenoma. We describe the first attempt to apply the human Bosniak classification to a cat with renal cystic neoplasia to differentiate between benign and malignant lesions. Cystadenoma should be a differential diagnosis in cases of renal cystic space-occupying lesions. Other differentials, imaging features to differentiate benign and malignant lesions and the risk of malignant transformation will be discussed.

  18. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas

    PubMed Central

    Agnihotri, Sameer; Wolf, Amparo; Munoz, Diana M.; Smith, Christopher J.; Gajadhar, Aaron; Restrepo, Andres; Clarke, Ian D.; Fuller, Gregory N.; Kesari, Santosh; Dirks, Peter B.; McGlade, C. Jane; Stanford, William L.; Aldape, Kenneth; Mischel, Paul S.; Hawkins, Cynthia

    2011-01-01

    Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neurospheres, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor–initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21CIP1, independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies. PMID:21464220

  19. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas.

    PubMed

    Agnihotri, Sameer; Wolf, Amparo; Munoz, Diana M; Smith, Christopher J; Gajadhar, Aaron; Restrepo, Andres; Clarke, Ian D; Fuller, Gregory N; Kesari, Santosh; Dirks, Peter B; McGlade, C Jane; Stanford, William L; Aldape, Kenneth; Mischel, Paul S; Hawkins, Cynthia; Guha, Abhijit

    2011-04-11

    Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neurospheres, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor-initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21(CIP1), independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies.

  20. Role of the human papilloma virus in the development of cervical intraepithelial neoplasia and malignancy

    PubMed Central

    Jastreboff, A; Cymet, T

    2002-01-01

    Human papilloma virus (HPV) is a public health problem as a sexually transmitted disease and as a critical factor in the pathogenesis of various cancers. The clinical manifestations, epidemiology, and virology that are critical to understanding the process of cervical dysplasia and neoplasia are reviewed. A discussion of the cervical transformation zone and the classification of cervical dysplasia and neoplasia leads into the importance of the Papanicolaou smear in prevention of potentially devastating sequelae of this virus. The role of the immune system in the progression of the disease and how it relates to vaccines, as well as treatment and prevention of HPV, are reviewed. PMID:11930025

  1. Immunohistochemical study on the expression of matrix metalloproteinase 2 and high-risk human papilloma virus in the malignant progression of papillomas.

    PubMed

    Lee, Ho-Jin; Kim, Jin-Wook

    2013-10-01

    Papilloma frequently develops as a benign tumor of the head and neck area, but its potential for malignant transformation has yet to be studied. This study aims to provide basic information for papillomas using the immunohistochemical staining of matrix metalloproteinase 2 (MMP-2) and human papilloma virus (HPV) 16 and 18. To evaluate the malignant transformation of papillomas, the selected tissue samples were serially diagnosed with pre-cancerous papilloma (with epithelial dysplasia, pseudo-epitheliomatous hyperplasia) or malignant lesion (squamous cell carcinoma, SCC) after the first diagnosis (squamous papilloma, inverted papilloma). The selected tissues were stained with an antibody to MMP-2 and HPV 16-E7, HPV 18-L1. A statistical analysis was performed according to each transformation step. The epithelial layer of papilloma and pre-cancerous papilloma lesions had a similar MMP-2 expression, but that of the malignant lesion had a significantly increased MMP-2 expression. HPV 16 and 18 infection rates were 28.6%, 33.3% and 63.6% in papillomas, pre-cancerous papilloma lesions, and SCC. A relatively high MMP-2 expression and HPV 16 or 18 infection of papillomas may be associated with early events in the multistep processes of malignant transformation of papillomas.

  2. Immunohistochemical study on the expression of matrix metalloproteinase 2 and high-risk human papilloma virus in the malignant progression of papillomas

    PubMed Central

    Lee, Ho-Jin

    2013-01-01

    Objectives Papilloma frequently develops as a benign tumor of the head and neck area, but its potential for malignant transformation has yet to be studied. This study aims to provide basic information for papillomas using the immunohistochemical staining of matrix metalloproteinase 2 (MMP-2) and human papilloma virus (HPV) 16 and 18. Materials and Methods To evaluate the malignant transformation of papillomas, the selected tissue samples were serially diagnosed with pre-cancerous papilloma (with epithelial dysplasia, pseudo-epitheliomatous hyperplasia) or malignant lesion (squamous cell carcinoma, SCC) after the first diagnosis (squamous papilloma, inverted papilloma). The selected tissues were stained with an antibody to MMP-2 and HPV 16-E7, HPV 18-L1. A statistical analysis was performed according to each transformation step. Results The epithelial layer of papilloma and pre-cancerous papilloma lesions had a similar MMP-2 expression, but that of the malignant lesion had a significantly increased MMP-2 expression. HPV 16 and 18 infection rates were 28.6%, 33.3% and 63.6% in papillomas, pre-cancerous papilloma lesions, and SCC. Conclusions A relatively high MMP-2 expression and HPV 16 or 18 infection of papillomas may be associated with early events in the multistep processes of malignant transformation of papillomas. PMID:24471049

  3. Transcutaneous application of carbon dioxide (CO2) induces mitochondrial apoptosis in human malignant fibrous histiocytoma in vivo.

    PubMed

    Onishi, Yasuo; Kawamoto, Teruya; Ueha, Takeshi; Kishimoto, Kenta; Hara, Hitomi; Fukase, Naomasa; Toda, Mitsunori; Harada, Risa; Minoda, Masaya; Sakai, Yoshitada; Miwa, Masahiko; Kurosaka, Masahiro; Akisue, Toshihiro

    2012-01-01

    Mitochondria play an essential role in cellular energy metabolism and apoptosis. Previous studies have demonstrated that decreased mitochondrial biogenesis is associated with cancer progression. In mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) regulates the activities of multiple nuclear receptors and transcription factors involved in mitochondrial proliferation. Previously, we showed that overexpression of PGC-1α leads to mitochondrial proliferation and induces apoptosis in human malignant fibrous histiocytoma (MFH) cells in vitro. We also demonstrated that transcutaneous application of carbon dioxide (CO(2)) to rat skeletal muscle induces PGC-1α expression and causes an increase in mitochondrial proliferation. In this study, we utilized a murine model of human MFH to determine the effect of transcutaneous CO(2) exposure on PGC-1α expression, mitochondrial proliferation and cellular apoptosis. PGC-1α expression was evaluated by quantitative real-time PCR, while mitochondrial proliferation was assessed by immunofluorescence staining and the relative copy number of mitochondrial DNA (mtDNA) was assessed by real-time PCR. Immunofluorescence staining and DNA fragmentation assays were used to examine mitochondrial apoptosis. We also evaluated the expression of mitochondrial apoptosis related proteins, such as caspases, cytochorome c and Bax, by immunoblot analysis. We show that transcutaneous application of CO(2) induces PGC-1α expression, and increases mitochondrial proliferation and apoptosis of tumor cells, significantly reducing tumor volume. Proteins involved in the mitochondrial apoptotic cascade, including caspase 3 and caspase 9, were elevated in CO(2) treated tumors compared to control. We also observed an enrichment of cytochrome c in the cytoplasmic fraction and Bax protein in the mitochondrial fraction of CO(2) treated tumors, highlighting the involvement of mitochondria in apoptosis. These

  4. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    PubMed Central

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy / energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependant. In addition, flow back water-transformed BEAS-2B cells show a better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. PMID:26210350

  5. Malignant human cell transformation of Marcellus Shale gas drilling flow back water.

    PubMed

    Yao, Yixin; Chen, Tingting; Shen, Steven S; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max; Zelikoff, Judith

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining.

  6. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    SciTech Connect

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  7. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  8. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1.

    PubMed

    Fernández-Martínez, Ana B; Bajo, Ana M; Isabel Arenas, M; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2010-12-18

    The carcinogenic potential of vasoactive intestinal peptide (VIP) was analyzed in non-tumor human prostate epithelial cells (RWPE-1) and in vivo xenografts. VIP induced morphological changes and a migratory phenotype consistent with stimulation of expression/activity of metalloproteinases MMP-2 and MMP-9, decreased E-cadherin-mediated cell-cell adhesion, and increased cell motility. VIP increased cyclin D1 expression and cell proliferation that was blocked after VPAC(1)-receptor siRNA transfection. Similar effects were seen in RWPE-1 tumors developed by subcutaneous injection of VIP-treated cells in athymic nude mice. VIP acts as a cytokine in RWPE-1 cell transformation conceivably through epithelial-mesenchymal transition (EMT), reinforcing VIP role in prostate tumorigenesis.

  9. Monocytes and macrophages in malignant melanoma. II. Lysis of antibody-coated human erythrocytes as an assay of monocyte function.

    PubMed Central

    Nyholm, R. E.; Currie, G. A.

    1978-01-01

    Peripheral blood mononuclear cells will lyse antibody-treated human erythrocytes. Using Group A red cells and a hyperimmune anti-A1 serum, we have devised a microassay for the cytolytic capacity of mononuclear cell suspensions. The effector cells responsible for red-cell lysis are mononuclear, adherent and phagocytic, and their activity is blocked by aggregated IgG. Their presence correlates well with non-specific esterase-containing cells and we conclude that they are monocytes. Dose-response curves of red-cell lysis plotted against numbers of monocytes were used to derive a simple parameter expressing the number of monocytes needed to lyse 15% of the 51Cr-labelled red cells. The assay was applied to a group of 27 normal controls and 36 patients with a histologically proven diagnosis of malignant melanoma. The results indicate that monocytes from patients show significantly greater lytic activity than those from the controls. These data suggest that monocytes from cancer patients are in some way activated, and that other defects in monocyte function which have been detected in cancer patients (defective chemotaxis and maturation) may be associated with monocyte "activation". PMID:638013

  10. Musk xylene induces malignant transformation of human liver cell line L02 via repressing the TGF-β signaling pathway.

    PubMed

    Zhang, Youyu; Huang, Lixing; Zhao, Yujie; Hu, Tianhui

    2017-02-01

    Musk xylene (MX) is a widely used synthetic nitro musk. Although the persistence and bioaccumulation of the synthetic musks are of concern since the nineteenth century, knowledge concerning the toxicity and environmental risks, especially the carcinogenicity is still limited. In the present study, the normal human hepatic cell line L02 was used to investigate the long-term carcinogenicity of MX. L02 cells were exposed to MX with different concentrations (10, 100, and 1000 μg/L) for 24 h, then with conventional culture. After MX exposure for 24 h, some irregular fusiform, protuberances and multinucleated cells were observed. Indefinite cell proliferation, ability of anchorage-independent proliferation and increase of migration and invision were also observed in subsequent experiments, which suggested the positive effects of MX on cell malignant transformation in vitro. Moreover, the up-regulated protein expression of some oncogenes (C-myc and PCNA) in each time points furthermore supported this conclusion. Meanwhile, decreased protein expression level of TGF-β and the downstream proteins, SMAD4 coupled with P15 were observed in MX-treated cells. In addition, after culturing for 20 passages, the proportion of cells in the G0/G1 phase was decreased. These results demonstrated that the TGF-β signaling pathway regulated indefinite cell proliferation might be responsible for the oncogenesis of MX.

  11. Xanthohumol induces apoptosis in human malignant glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways.

    PubMed

    Festa, Michela; Capasso, Anna; D'Acunto, Cosimo W; Masullo, Milena; Rossi, Adriano G; Pizza, Cosimo; Piacente, Sonia

    2011-12-27

    The effect of the biologically active prenylated chalcone and potential anticancer agent xanthohumol (1) has been investigated on apoptosis of the T98G human malignant glioblastoma cell line. Compound 1 decreased the viability of T98G cells by induction of apoptosis in a time- and concentration-dependent manner. Apoptosis induced by 1 was associated with activation of caspase-3, caspase-9, and PARP cleavage and was mediated by the mitochondrial pathway, as exemplified by mitochondrial depolarization, cytochrome c release, and downregulation of the antiapoptotic Bcl-2 protein. Xanthohumol induced intracellular reactive oxygen species (ROS), an effect that was reduced by pretreatment with the antioxidant N-acetyl-L-cysteine (NAC). Intracellular ROS production appeared essential for the activation of the mitochondrial pathway and induction of apoptosis after exposure to 1. Oxidative stress due to treatment with 1 was associated with MAPK activation, as determined by ERK1/2 and p38 phosphorylation. Phosphorylation of ERK1/2 and p38 was attenuated using NAC to inhibit ROS production. After treatment with 1, ROS provided a specific environment that resulted in MAPK-induced cell death, with this effect reduced by the ERK1/2 specific inhibitor PD98059 and partially inhibited by the p38 inhibitor SB203580. These findings suggest that xanthohumol (1) is a potential chemotherapeutic agent for the treatment of glioblastoma multiforme.

  12. Radiation-induced DNA damage and repair in cells of a radiosensitive human malignant glioma cell line

    SciTech Connect

    Allalunis-Turner, M.J.; Zia, P.K.Y.; Barron, G.M.

    1995-12-01

    The induction and repair of DNA double-strand breaks were studied in cells of two isogenic human malignant glioma cell lines which vary in their SF2 values by a factor of {approximately}30.M059J cells are radiosensitive (SF2 = 0.02) and lack the p350 component of DNA-dependent protein kinase (DNA-PK); M059K cells are radioresistant (SF2 = 0.64) and express normal levels of DNA-PK. Zero integrated field gel electrophoresis and alkaline sucrose gradient experiments indicated that equivalent numbers of DNA lesions were produced by ionizing radiation in M059J and M059K cells. To compare the capacity of both lines to repair sublethal damage, the split-dose recovery experiment after exposure to equitoxic doses of radiation was carried out. Significant sublethal damage repair was shown for M059K cells, with a 5.8-fold increase in relative survival peaking at 4 h, whereas M059J cells showed little repair activity. Electrophoresis studies indicated that more double-strand breaks were repaired by 30 min in M059K cells than in M059J cells. These results suggest that deficient DNA repair processes may be a major determinant of radiosensitivity in M059J cells. 24 refs., 5 figs., 2 tabs.

  13. Comparative Genomic Hybridization of Human Malignant Gliomas Reveals Multiple Amplification Sites and Nonrandom Chromosomal Gains and Losses

    PubMed Central

    Schròck, Evelin; Thiel, Gundula; Lozanova, Tanka; du Manoir, Stanislas; Meffert, Marie-Christine; Jauch, Anna; Speicher, Michael R.; Nürnberg, Peter; Vogel, Siegfried; Janisch, Werner; Donis-Keller, Helen; Ried, Thomas; Witkowski, Regine; Cremer, Thomas

    1994-01-01

    Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 and underrepresentation of chromosome 10 as the most frequent events (1 of 2 astrocytomas, 7 of 7 glioblastomas). Gain of a part or the whole chromosome 19 and losses of chromosome bands 9pter-23 and 22q13 were detected each in five cases. Loss of chromosome band 17p13 and gain of chromosome 20 were revealed each in three cases. The validity of the CGH data was confirmed using interphase cytogenetics with YAC clones, chromosome painting in tumor metaphase spreads, and DNA fingerprinting. A comparison of CGH data with the results of chromosome banding analyses indicates that metaphase spreads accessible in primary tumor cell cultures may not represent the clones predominant in the tumor tissue ImagesFigure 1Figure 4Figure 6 PMID:8203461

  14. Somatic mutations of the Parkinson's disease–associated gene PARK2 in glioblastoma and other human malignancies

    PubMed Central

    Veeriah, Selvaraju; Taylor, Barry S; Meng, Shasha; Fang, Fang; Yilmaz, Emrullah; Vivanco, Igor; Janakiraman, Manickam; Schultz, Nikolaus; Hanrahan, Aphrothiti J; Pao, William; Ladanyi, Marc; Sander, Chris; Heguy, Adriana; Holland, Eric C; Paty, Philip B; Mischel, Paul S; Liau, Linda; Cloughesy, Timothy F; Mellinghoff, Ingo K; Solit, David B; Chan, Timothy A

    2014-01-01

    Mutation of the gene PARK2, which encodes an E3 ubiquitin ligase, is the most common cause of early-onset Parkinson's disease1, 2, 3. In a search for multisite tumor suppressors, we identified PARK2 as a frequently targeted gene on chromosome 6q25.2–q27 in cancer. Here we describe inactivating somatic mutations and frequent intragenic deletions of PARK2 in human malignancies. The PARK2 mutations in cancer occur in the same domains, and sometimes at the same residues, as the germline mutations causing familial Parkinson's disease. Cancer-specific mutations abrogate the growth-suppressive effects of the PARK2 protein. PARK2 mutations in cancer decrease PARK2's E3 ligase activity, compromising its ability to ubiquitinate cyclin E and resulting in mitotic instability. These data strongly point to PARK2 as a tumor suppressor on 6q25.2–q27. Thus, PARK2, a gene that causes neuronal dysfunction when mutated in the germline, may instead contribute to oncogenesis when altered in non-neuronal somatic cells. PMID:19946270

  15. Highly efficient tumor transduction and antitumor efficacy in experimental human malignant mesothelioma using replicating gibbon ape leukemia virus.

    PubMed

    Kubo, S; Takagi-Kimura, M; Logg, C R; Kasahara, N

    2013-12-01

    Retroviral replicating vectors (RRVs) have been shown to achieve efficient tumor transduction and enhanced therapeutic benefit in a wide variety of cancer models. Here we evaluated two different RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), in human malignant mesothelioma cells. In vitro, both RRVs expressing the green fluorescent protein gene efficiently replicated in most mesothelioma cell lines tested, but not in normal mesothelial cells. Notably, in ACC-MESO-1 mesothelioma cells that were not permissive for AMLV-RRV, the GALV-RRV could spread efficiently in culture and in mice with subcutaneous xenografts by in vivo fluorescence imaging. Next, GALV-RRV expressing the cytosine deaminase prodrug activator gene showed efficient killing of ACC-MESO-1 cells in a prodrug 5-fluorocytosine dose-dependent manner, compared with AMLV-RRV. GALV-RRV-mediated prodrug activator gene therapy achieved significant inhibition of subcutaneous ACC-MESO-1 tumor growth in nude mice. Quantitative reverse transcription PCR demonstrated that ACC-MESO-1 cells express higher PiT-1 (GALV receptor) and lower PiT-2 (AMLV receptor) compared with normal mesothelial cells and other mesothelioma cells, presumably accounting for the distinctive finding that GALV-RRV replicates much more robustly than AMLV-RRV in these cells. These data indicate the potential utility of GALV-RRV-mediated prodrug activator gene therapy in the treatment of mesothelioma.

  16. Optimization of radioimmunotherapy using human malignant melanoma multicell spheroids as a model

    SciTech Connect

    Kwok, C.S.; Crivici, A.; MacGregor, W.D.; Unger, M.W. )

    1989-06-15

    In vitro multicell spheroids from a human melanoma cell line and the human colon cancer cell line HT29, used as control, have been established as a model of poorly vascularized micrometastases in vivo. The antimelanoma monoclonal antibody 96.5 was radiolabeled with 131I at specific radioactivities from 1.85 to 3.96 GBq/mg. Cytotoxicity of 131I-96.5 to the spheroids, at an initial size of 300 microns in diameter, was investigated as a function of concentration of 131I-96.5 in the incubation medium, specific radioactivity, and treatment time. Spheroid growth delay and clonogenic survival of cells disaggregated from the spheroids at various times after treatment were used as end points. Therapeutic effects increased with the concentration of 131I-96.5 within the range 0.2 to 2 mg/liter (0.34 to 3.4 GBq/liter) at a fixed specific radioactivity. The effects increased with specific radioactivity at a fixed concentration of 131I-96.5. Difference in therapeutic effect was also observed between treatment times of 8 and 24 h. Radiation doses to the melanoma spheroids varied from 10 to 16 Gy. Unlabeled 96.5 at 2 mg/liter or 131I-iodide at 1.7 GBq/liter did not affect the growth of the melanoma spheroids. The HT29 spheroids, however, only suffered slight cytotoxicity at 1 or 2 mg/liter of 131I-96.5 and for a treatment time of 24 h despite comparable radiosensitivity of HT29 cells and melanoma cells to high-dose-rate radiation. Similar cytotoxicity was observed in the HT29 group treated with 131I-iodide at 1.7 GBq/liter. Present findings therefore demonstrate preferential and adequate killing of the melanoma spheroids by 131I-96.5 at 0.5 mg/liter and 3.96 GBq/mg in 8 h.

  17. Health Disparities in the Immunoprevention of Human Papillomavirus Infection and Associated Malignancies

    PubMed Central

    Bakir, Amira H.; Skarzynski, Martin

    2015-01-01

    Human papillomavirus (HPV) causes roughly 1.6% of the plus 1.6 million cases of cancer that are diagnosed in the United States each year. Despite the proven safety and efficacy of available vaccines, HPV remains the most common sexually transmitted infection. Underlying the high prevalence of HPV infection is the poor adherence to the Centers for Disease Control recommendation to vaccinate all 11- to 12-year-old males and females. In fact, only about 38 and 14% of eligible females and males, respectively, receive the complete, three-dose immunization. The many factors associated with missed HPV vaccination opportunities – including race, age, family income, and patient education – contribute to widespread disparities in vaccine completion and related health outcomes. Beyond patient circumstance, however, research indicates that the rigor and consistency of recommendation by primary care providers also plays a significant role in uptake of HPV immunization. Health disparities data are of vital importance to HPV vaccination campaigns because they can provide insight into how to address current problems and allocate limited resources where they are most needed. Furthermore, even modest gains in populations with low vaccination rates may yield great benefits because HPV immunization has been shown to provide herd immunity, indirect protection for non-immunized individuals achieved by limiting the spread of an infectious agent through a population. However, the impact of current HPV vaccination campaigns is hindered by stagnant immunization rates, which remain far below target levels despite a slow overall increase. Furthermore, gains in immunization are not equally distributed across gender, age, demographic, and socioeconomic divisions within the recommended group of vaccine recipients. To achieve the greatest impact, public health campaigns should focus on improving immunization coverage where it is weakest. They should also explore more subtle but potentially

  18. Estimation of the epidemiological burden of human papillomavirus-related cancers and non-malignant diseases in men in Europe: a review

    PubMed Central

    2012-01-01

    Background The role of human papillomavirus (HPV) in malignant and non-malignant genital diseases in women is well known and the corresponding epidemiological burden has been widely described. However, less is known about the role of HPV in anal, penile and head and neck cancer, and the burden of malignant and non-malignant HPV-related diseases in men. The objective of this review is to estimate the epidemiological burden of HPV-related cancers and non-malignant diseases in men in Europe. Methods The annual number of new HPV-related cancers in men in Europe was estimated using Eurostat population data and applying cancer incidence rates published by the International Agency for Research on Cancer. The number of cancer cases attributable to HPV, and specifically to HPV16/18, was calculated based on the most relevant prevalence estimates. The annual number of new cases of genital warts was calculated from the most robust European studies; and latest HPV6/11 prevalence estimates were then applied. A literature review was also performed to retrieve exhaustive data on HPV infection at all anatomical sites under study, as well as incidence and prevalence of external genital warts, recurrent respiratory papillomatosis and HPV-related cancer trends in men in Europe. Results A total of 72, 694 new cancer cases at HPV-related anatomical sites were estimated to occur each year in men in Europe. 17,403 of these cancer cases could be attributable to HPV, with 15,497 of them specifically attributable to HPV16/18. In addition, between 286,682 and 325,722 new cases of genital warts attributable to HPV6/11were estimated to occur annually in men in Europe. Conclusions The overall estimated epidemiological burden of HPV-related cancers and non-malignant diseases is high in men in Europe. Approximately 30% of all new cancer cases attributable to HPV16/18 that occur yearly in Europe were estimated to occur in men. As in women, the vast majority of HPV-positive cancer in men is related

  19. Estimation of the epidemiological burden of human papillomavirus-related cancers and non-malignant diseases in men in Europe: a review.

    PubMed

    Hartwig, Susanne; Syrjänen, Stina; Dominiak-Felden, Géraldine; Brotons, Maria; Castellsagué, Xavier

    2012-01-20

    The role of human papillomavirus (HPV) in malignant and non-malignant genital diseases in women is well known and the corresponding epidemiological burden has been widely described. However, less is known about the role of HPV in anal, penile and head and neck cancer, and the burden of malignant and non-malignant HPV-related diseases in men. The objective of this review is to estimate the epidemiological burden of HPV-related cancers and non-malignant diseases in men in Europe. The annual number of new HPV-related cancers in men in Europe was estimated using Eurostat population data and applying cancer incidence rates published by the International Agency for Research on Cancer. The number of cancer cases attributable to HPV, and specifically to HPV16/18, was calculated based on the most relevant prevalence estimates. The annual number of new cases of genital warts was calculated from the most robust European studies; and latest HPV6/11 prevalence estimates were then applied. A literature review was also performed to retrieve exhaustive data on HPV infection at all anatomical sites under study, as well as incidence and prevalence of external genital warts, recurrent respiratory papillomatosis and HPV-related cancer trends in men in Europe. A total of 72, 694 new cancer cases at HPV-related anatomical sites were estimated to occur each year in men in Europe. 17,403 of these cancer cases could be attributable to HPV, with 15,497 of them specifically attributable to HPV16/18. In addition, between 286,682 and 325,722 new cases of genital warts attributable to HPV6/11were estimated to occur annually in men in Europe. The overall estimated epidemiological burden of HPV-related cancers and non-malignant diseases is high in men in Europe. Approximately 30% of all new cancer cases attributable to HPV16/18 that occur yearly in Europe were estimated to occur in men. As in women, the vast majority of HPV-positive cancer in men is related to HPV16/18, while almost all HPV

  20. Malignant hyperthermia

    MedlinePlus

    ... counseling is recommended for anyone with a family history of myopathy, muscular dystrophy, or malignant ... et al, eds. Harrison's Principles of Internal Medicine . 17th ed. [online version]. New York, NY: McGraw ...

  1. Accumulation of 99mTc-low-density lipoprotein in human malignant glioma.

    PubMed Central

    Leppälä, J.; Kallio, M.; Nikula, T.; Nikkinen, P.; Liewendahl, K.; Jääskeläinen, J.; Savolainen, S.; Gylling, H.; Hiltunen, J.; Callaway, J.

    1995-01-01

    Low-density lipoprotein (LDL) uptake in gliomas was studied to find out if LDL has potential as a drug carrier of boron, especially for boron neutron capture therapy. Single photon emission tomography (SPET) was performed 2 h and 20 h after intravenous injection of autologous 99mTc-labelled LDL in four patients with untreated and five patients with recurrent glioma. 99mTc-LDL uptake was compared with the uptake of 99mTc-labelled human serum albumin (HSA), an established blood pool marker. The intra- and peritumoral distributions of radioactivity in the SPET images were not identical for radiolabelled LDL and HSA. The mean LDL tumour to brain ratio, determined from transversal SPET slices at 20 h post injection, was 1.5 in untreated and 2.2 in recurrent gliomas; the corresponding ratios for HSA were 1.6 and 3.4. The brain to blood ratio remained constant at 2 h and 20 h in both types of tumours. These data are not consistent with highly selective, homogeneous uptake of LDL in gliomas. However, the different tumoral distribution and rate of uptake of 99mTc-LDL, as compared with 99mTc-HSA, indicate that the uptake of LDL is different from that of HSA and that further studies on the mechanism of LDL uptake in glioma are warranted. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7841057

  2. Effect of morphine on cell-mediated immune responses of human lymphocytes against allogeneic malignant cells.

    PubMed

    Fuggetta, M P; Di Francesco, P; Falchetti, R; Cottarelli, A; Rossi, L; Tricarico, M; Lanzilli, G

    2005-06-01

    Opioid drugs, including morphine, are largely used as pain control in cancer patients at different stages of neoplastic growth and progression. Therefore, the possible influence of these drugs on host immunity appears to be of considerable interest. We have examined in vitro the effect of morphine on the generation of human cytotoxic T lymphocytes (CTL) against HTLV-I induced T-cell leukemia cells (MT-2 line). The results show that the drug, at graded concentrations (from 3 pg/ml to 32 microg/ml), that include those detectable in treated patients, enhances CTL activity whereas natural killer cell activity was unaffected. The enhancing effect is particularly evident when morphine was present at the onset of lymphocyte/MT-2 co-culture. On the contrary, the drug was ineffective when added on the last day of co-culture, thus indicating that morphine operates during the generation phase of CTL, but not on mature CTL. Flow cytometric analysis of intracellular cytokine expression showed that morphine increases the percentage of interferon gamma-producing CD8+ T cells in co-culture assay. Collectively, these results suggest that in our experimental model morphine enhances CTL responses by directly affecting the induction phase of T-dependent cell-mediated immunity.

  3. Deletion of 6q16-q21 in human lymphoid malignancies: a mapping and deletion analysis.

    PubMed

    Jackson, A; Carrara, P; Duke, V; Sinclair, P; Papaioannou, M; Harrison, C J; Foroni, L

    2000-06-01

    Two distinct regions of minimal deletion (RMD) have been identified at 6q25-q27 in non-Hodgkin's lymphoma (RMD-1), and at 6q21-q23 in acute lymphoblastic leukemia (ALL; RMD-2) by loss of heterozygosity and fluorescence in situ hybridization studies. In this study, 30 overlapping yeast artificial chromosomes (YACs), 1 expressed sequence tag, and 11 novel YAC ends were identified using bidirectional YAC walks between markers D6S447 (proximal) and D6S246 (distal) in RMD-2. The genes AF6q21, human homologue of the Drosophila tailless (HTLX), CD24 antigen, the Kruppel-like zinc finger BLIMP1, and cyclin C (CCNC), previously mapped to 6q21, were accurately positioned in a telomere-to-centromere orientation. Approximately 3.5 Mb were found to separate the BLIMP1 (adjacent to D6S447) and AF6q21 genes (telomeric to D6S246). Deletions of 6q were investigated in 21 cases of ALL using the newly characterized YAC clones in dual-color fluorescence in situ hybridization studies. A region centromeric to D6S447 (containing marker D6S283) and a region telomeric to marker CHLC.GGAT16CO2 (and containing marker D6S268) were identified as distinct and nonoverlapping regions of deletion in ALL.

  4. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    SciTech Connect

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts melanoma cell

  5. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    PubMed Central

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small

  6. The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers.

    PubMed Central

    Pyke, C.; Rømer, J.; Kallunki, P.; Lund, L. R.; Ralfkiaer, E.; Danø, K.; Tryggvason, K.

    1994-01-01

    All known laminin isoforms are cross-shaped heterotrimeric molecules, consisting of one heavy alpha chain and two light beta and gamma chains. Recently, a cDNA encoding a new gamma chain from laminin 5 (also known as kalinin) was sequenced. This chain, named gamma 2, showed extended homology to the classical gamma 1 chain but differed from this by lacking the terminal globular domain. Recent data, indicating an important role of the gamma 2 chain gene in establishing adhesion contacts between epithelial cells and basement membranes, prompted us to investigate whether the gamma 2 chain gene is aberrantly expressed in cancer tissue, and if so whether its localization could provide clues to its possible role in cancer dissemination. Routinely processed tissue specimens from 36 cases of human cancer were investigated, including 16 cases of colon adenocarcinoma, 7 ductal mammary carcinomas, 4 squamous cell carcinomas, 3 malignant melanomas and 6 sarcomas. In situ hybridization for the detection of mRNAs for the gamma 2 chain and for the classical laminin chains alpha 1, beta 1, and gamma 1 was performed using S-35 labeled antisense RNA probes. As positive control of the specificity of the gamma 2 chain mRNA detection, two different anti-sense probes derived from two nonoverlapping cDNA clones were used. Malignant cells were found to express the gamma 2 chain in 29 of the 30 carcinomas studied and the expression was particularly high in cancer cells located at the invasion front. In contrast, mesenchymally derived cancer cells in three different types of sarcomas did not express the gamma 2 chain. In colon cancer there was a clear histological correlation between the expression of gamma 2 chain by cancer cells and their engagement in tumor budding processes. Laminin chains alpha 1, beta 1, and gamma 1 were weakly expressed throughout cancerous areas with no apparent correlation to sites of invasion. The aberrant expression of the gamma 2 chain gene seen in invasively

  7. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.

    PubMed

    Bakker, Bjorn; Taudt, Aaron; Belderbos, Mirjam E; Porubsky, David; Spierings, Diana C J; de Jong, Tristan V; Halsema, Nancy; Kazemier, Hinke G; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S J M; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M; Colomé-Tatché, Maria; Foijer, Floris

    2016-05-31

    Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.

  8. Wnt Interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    PubMed Central

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; G, Mary; Johlfs, Ronald R. Fiscus; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤ 40 nm; intermediates ~40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. PMID:23318676

  9. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective

    PubMed Central

    Surget, Sylvanie; Khoury, Marie P; Bourdon, Jean-Christophe

    2014-01-01

    Thirty-five years of research on p53 gave rise to more than 68,000 articles and reviews, but did not allow the uncovering of all the mysteries that this major tumor suppressor holds. How p53 handles the different signals to decide the appropriate cell fate in response to a stress and its implication in tumorigenesis and cancer progression remains unclear. Nevertheless, the uncovering of p53 isoforms has opened new perspectives in the cancer research field. Indeed, the human TP53 gene encodes not only one but at least twelve p53 protein isoforms, which are produced in normal tissues through alternative initiation of translation, usage of alternative promoters, and alternative splicing. In recent years, it became obvious that the different p53 isoforms play an important role in regulating cell fate in response to different stresses in normal cells by differentially regulating gene expression. In cancer cells, abnormal expression of p53 isoforms contributes actively to cancer formation and progression, regardless of TP53 mutation status. They can also be associated with response to treatment, depending on the cell context. The determination of p53 isoform expression and p53 mutation status helps to define different subtypes within a particular cancer type, which would have different responses to treatment. Thus, the understanding of the regulation of p53 isoform expression and their biological activities in relation to the cellular context would constitute an important step toward the improvement of the diagnostic, prognostic, and predictive values of p53 in cancer treatment. This review aims to summarize the involvement of p53 isoforms in cancer and to highlight novel potential therapeutic targets. PMID:24379683

  10. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells.

    PubMed

    Santner, S J; Dawson, P J; Tait, L; Soule, H D; Eliason, J; Mohamed, A N; Wolman, S R; Heppner, G H; Miller, F R

    2001-01-01

    The MCF10 series of cell lines was derived from benign breast tissue from a woman with fibrocystic disease. The MCF10 human breast epithelial model system consists of mortal MCF10M and MCF10MS (mortal cells grown in serum-free and serum-containing media, respectively), immortalized but otherwise normal MCF10F and MCF10A lines (free-floating versus growth as attached cells), transformed MCF10AneoT cells transfected with T24 Ha-ras, and premalignant MCF10AT cells with potential for neoplastic progression. The MCF10AT, derived from xenograft-passaged MCF10-AneoT cells, generates carcinomas in approximately 25% of xenografts. We now report the derivation of fully malignant MCF10CA1 lines that complete the spectrum of progression from relatively normal breast epithelial cells to breast cancer cells capable of metastasis. MCF10CA1 lines display histologic variations ranging from undifferentiated carcinomas, sometimes with focal squamous differentiation, to well-differentiated adenocarcinomas. At least two metastasize to the lung following injection of cells into the tail vein; one line grows very rapidly in the lung, with animals moribund within 4 weeks, whereas the other requires 15 weeks to reach the same endpoint. In addition to variations in efficiency of tumor production, the MCF10CA1 lines show differences in morphology in culture, anchorage-independent growth, karyotype, and immunocytochemistry profiles. The MCF10 model provides a unique tool for the investigation of molecular changes during progression of human breast neoplasia and the generation of tumor heterogeneity on a common genetic background.

  11. Household Chemical Exposures and the Risk of Canine Malignant Lymphoma, a Model for Human Non-Hodgkin’s Lymphoma

    PubMed Central

    Takashima-Uebelhoer, Biki B.; Barber, Lisa G.; Zagarins, Sofija E.; Procter-Gray, Elizabeth; Gollenberg, Audra L.; Moore, Antony S.; Bertone-Johnson, Elizabeth R.

    2011-01-01

    Background Epidemiologic studies of companion animals offer an important opportunity to identify risk factors for cancers in animals and humans. Canine malignant lymphoma (CML) has been established as a model for non-Hodgkin’s lymphoma (NHL). Previous studies have suggested that exposure to environmental chemicals may relate to development of CML. Methods We assessed the relation of exposure to flea and tick control products and lawn-care products and risk of CML in a case-control study of dogs presented to a tertiary-care veterinary hospital (2000–2006). Cases were 263 dogs with biopsy-confirmed CML. Controls included 240 dogs with benign tumors and 230 dogs undergoing surgeries unrelated to cancer. Dog owners completed a 10-page questionnaire measuring demographic, environmental, and medical factors. Results After adjustment for age, weight, and other factors, use of specific lawn care products was associated with greater risk of CML. Specifically, the use of professionally applied pesticides was associated with a significant 70% higher risk of CML (odds ratio(OR)=1.7; 95% confidence interval (CI)=1.1–2.7). Risk was also higher in those reporting use of self-applied insect growth regulators (OR = 2.7; 95% CI=1.1–6.8). The use of flea and tick control products was unrelated to risk of CML. Conclusions Results suggest that use of some lawn care chemicals may increase the risk of CML. Additional analyses are needed to evaluate whether specific chemicals in these products may be related to risk of CML, and perhaps to human NHL as well. PMID:22222006

  12. Malignant hyperthermia

    PubMed Central

    Rosenberg, Henry; Davis, Mark; James, Danielle; Pollock, Neil; Stowell, Kathryn

    2007-01-01

    Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stresses such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:5,000 to 1:50,000–100,000 anesthesias. However, the prevalence of the genetic abnormalities may be as great as one in 3,000 individuals. MH affects humans, certain pig breeds, dogs, horses, and probably other animals. The classic signs of MH include hyperthermia to marked degree, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. Early recognition of the signs of MH, specifically elevation of end-expired carbon dioxide, provides the clinical diagnostic clues. In humans the syndrome is inherited in autosomal dominant pattern, while in pigs in autosomal recessive. The pathophysiologic changes of MH are due to uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation. Due to ATP depletion, the muscle membrane integrity is compromised leading to hyperkalemia and rhabdomyolysis. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 90 mutations have been identified in the RYR-1 gene located on chromosome 19q13.1, and at least 25 are causal for MH. Diagnostic testing relies on assessing the in vitro contracture response of biopsied muscle to halothane, caffeine, and other drugs. Elucidation of the genetic changes has led to the introduction, on a limited basis so far, of genetic testing for susceptibility to MH. As the sensitivity of genetic testing increases, molecular genetics will be used for identifying those at risk with greater frequency. Dantrolene

  13. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  14. Clinical Significance of Hu-Antigen Receptor (HuR) and Cyclooxygenase-2 (COX-2) Expression in Human Malignant and Benign Thyroid Lesions.

    PubMed

    Giaginis, Constantinos; Alexandrou, Paraskevi; Delladetsima, Ioanna; Karavokyros, Ioannis; Danas, Eugene; Giagini, Athina; Patsouris, Efstratios; Theocharis, Stamatios

    2016-01-01

    Hu-antigen R (HuR) is considered to play a crucial role in tumor formation and growth by binding to mRNAs encoding proteins such as Cyclooxygenase-2 (COX-2) and inducing their expression via mRNA stabilization and/or altered translation. The present study aimed to evaluate the clinical significance of HuR and COX-2 proteins’ expression in human benign and malignant thyroid lesions. HuR and COX-2 proteins’ expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 98 patients with benign (n = 48) and malignant (n = 50) lesions and was statistically analyzed with clinicopathological parameters, follicular cells’ proliferative capacity and recurrence risk rate. Enhanced HuR and COX-2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0073 and p = 0.0016, respectively), as well as in papillary carcinomas compared to hyperplastic nodules (p = 0.0039 and p = 0.0009, respectively). Positive associations of both HuR and COX-2 expression with follicular cells’ proliferation rate were also noted (p = 0.0087 and p = 0.0127, respectively). In malignant thyroid lesions, elevated COX-2 expression was significantly associated with female patients’ gender (p = 0.0381) and the presence of lymph node metastases (p = 0.0296). The present data support evidence that both HuR and COX-2 may be involved in the malignant state of thyroid neoplasia and may be utilized in the diagnosis of malignant thyroid tumors.

  15. Protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation.

    PubMed Central

    Weller, M; Malipiero, U; Aguzzi, A; Reed, J C; Fontana, A

    1995-01-01

    The majority of human malignant glioma cells express Fas/APO-1 and are susceptible to Fas/APO-1 antibody-mediated apoptosis in vitro. The sensitivity of Fas/APO-1-positive glioma cell lines to Fas/APO-1 antibody-mediated killing correlates inversely with the constitutive expression of the antiapoptotic protooncogene bcl-2. Here we report that BCL-2 protein expression of human glial tumors in vivo correlates with malignant transformation in that BCL-2 immunoreactive glioma cells were more abundant in WHO grade III/IV gliomas than in grade I/II gliomas. Fas/APO-1 antibody-sensitive human glioma cell lines stably transfected with a murine bcl-2 cDNA acquired resistance to Fas/APO-1 antibody-mediated apoptosis. Forced expression of bcl-2 also attenuated TNF alpha-mediated cytotoxicity of glioma cell lines in the presence of actinomycin D and cycloheximide and conferred partial protection from irradiation and the cancer chemotherapy drugs, cisplatin and BCNU. Preexposure of the glioma cell lines to the cytokines, IFN gamma and TNF alpha, which sensitize for Fas/APO-1-dependent killing, partially overcame bcl-2-mediated rescue from apoptosis, suggesting that multimodality immunotherapy involving cytokines and Fas/APO-1 targeting might eventually provide a promising approach to the treatment of human malignant gliomas. Images PMID:7539458

  16. A3 Adenosine Receptors Modulate Hypoxia-Inducible Factor-1α Expression in Human A375 Melanoma Cells

    PubMed Central

    Merighi, Stefania; Benini, Annalisa; Mirandola, Prisco; Gessi, Stefania; Varani, Katia; Leung, Edward; MacLennan, Stephen; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2005-01-01

    Abstract Hypoxia-inducible factor-1 (HIF-1) is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% O2), adenosine upregulates HIF-1α protein expression in a dose-dependent and time-dependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2) protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1α and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells. PMID:16242072

  17. Induction of ovarian function by using short-term human menopausal gonadotrophin in patients with ovarian failure following cytotoxic chemotherapy for haematological malignancy.

    PubMed

    Chatterjee, R; Mills, W; Katz, M; McGarrigle, H H; Goldstone, A H

    1993-07-01

    Currently no treatment has proved successful in inducing ovarian steroidogenic and/or gametogenic recovery in patients with haematological malignancies treated by cytotoxic chemotherapy once biochemical failure becomes manifest i.e., when FSH levels exceed 40 IU/L. This paper reports two such cases with classical biochemical ovarian failure in which ovarian function was induced by brief stimulation with Human Menopausal Gonadotrophin (HMG).

  18. Prevalence of Human T-lymphotropic virus type 1 (HTLV-1) Infection in Patients with Hematologic Disorders and Non-Hematologic Malignancies in a Tertiary Referral Hospital.

    PubMed

    Jalaeikhoo, Hasan; Soleymani, Mosayeb; Rajaeinejad, Mohsen; Keyhani, Manoutchehr

    2017-04-01

    Human T-lymphotropic virus type 1 (HTLV-1) was the first retrovirus identified in human. The current evidence is quite scarce regarding the potential role of HTLV-1 in pathogenesis of hematologic disorders and non-hematologic malignancies. The aim of this study is to evaluate the prevalence of HTLV-1 infection in patients with hematologic disorders and non-hematologic malignancies. This cross-sectional study was conducted on 505 cases of definite diagnosis of hematologic disorders including malignancies as well as non-malignant disorders such as polycythemia and myelofibrosis and non-hematologic malignancies referred to the hematology and medical oncology ward at Army Hospital 501 from January 2015 to January 2016. A 3-mL blood specimen was collected from each patient and tested for the presence of anti-HTLV-1 antibodies using enzyme-linked immunosorbent assay (ELISA). Data were analyzed using SPSS software package version 19 (IBM, New York, USA). Data are presented as mean ± SD if normally distributed and otherwise as median (range). Totally, 242 (48%) males and 263 (52%) females with a mean ± SD age of 52.09 ± 16.24 were enrolled in this study. In total, there were 9 (1.78%) cases positive for HTLV-1 infection including 4 males and 5 females. Seven out of 287 (2.4%) patients with hematologic disorders were infected by HTLV-1. In non-hematologic malignancies, 2 out of 211 cases were positive (0.9%). There was no HTLV-1 positive case in 7 patients with both hematologic and non-hematologic disorders. The difference in HTLV-1 infection prevalence between patients with hematologic disorders and non-hematologic malignancies was not statistically significant different (P = 0.31). There was no association between sex and transfusion history with HTLV-1 infection in this population (P = 0.9 and 0.7, respectively). Our study revealed that the prevalence of HTLV-1 in hematologic disorders is higher than the general population. Further larger prospective studies are

  19. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    SciTech Connect

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  20. TRU-016, a humanized anti-CD37 IgG fusion protein for the potential treatment of B-cell malignancies.

    PubMed

    Robak, Tadeusz; Robak, Pawel; Smolewski, Piotr

    2009-12-01

    TRU-016, under development by Trubion Pharmaceuticals Inc and Facet Biotech Corp, is an intravenously administered anti-CD37 IgG fusion protein for the potential treatment of B-cell malignancies, including chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), as well as for autoimmune and inflammatory diseases. TRU-016 was created by humanizing SMIP-016, a mouse/human chimeric protein that demonstrated antitumor activity against lymphoid malignancies in preclinical studies, including in human B-cell tumor mouse xenograft models. In addition, TRU-016 demonstrated synergistic or additive activity in NHL cells in combination with rituximab, rapamycin, doxorubicin and bendamustine. In a phase I/II clinical trial in refractory or relapsed patients with CLL or small lymphocytic lymphoma, TRU-016 was well tolerated, with clinical benefit and a reduced absolute lymphocyte count observed in all cohorts dosed at > 0.1 mg/kg. TRU-016 is a promising therapeutic agent for patients with B-cell lymphoid malignancies, especially patients refractory to standard treatment.

  1. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    PubMed Central

    Belyanskaya, Larisa L; Marti, Thomas M; Hopkins-Donaldson, Sally; Kurtz, Stefanie; Felley-Bosco, Emanuela; Stahel, Rolf A

    2007-01-01

    Background The incidence of malignant pleural mesothelioma (MPM) is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1) or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab) and TRAIL-R2 (Lexatumumab) and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM. PMID:17953743

  2. Human epididymis protein 4 immunostaining of malignant ascites differentiates cancer of Müllerian origin from gastrointestinal cancer.

    PubMed

    Stiekema, Anna; Van de Vijver, Koen K; Boot, Henk; Broeks, Annegien; Korse, Catharina M; van Driel, Willemien J; Kenter, Gemma G; Lok, Christianne A R

    2017-03-01

    An accurate diagnosis of cancer of Müllerian origin is required before the initiation of treatment. An overlap in clinical presentation and cytological, histological, or imaging studies with other nongynecological tumors does occur. Therefore, immunocytochemistry markers are used to determine tumor origin. Human epididymis protein 4 (HE4) is overexpressed in tissue of epithelial ovarian cancer (EOC). It has shown to be a sensitive and specific serum marker for EOC and to be of value for the differentiation between EOC and ovarian metastases of gastrointestinal origin. The objective of the current study was to evaluate HE4 immunocytochemistry in malignant ascites for differentiation between cancer of Müllerian origin, including EOC, and adenocarcinomas of the gastrointestinal tract. Cytological specimens of 115 different adenocarcinomas (45 EOCs, 46 cases of gastric cancer, and 24 cases of colorectal cancer) were stained for HE4, paired box 8 (PAX8), and other specific markers. 91% of the ascites samples from patients with EOC stained for both HE4 and PAX8. The 4 samples without HE4 staining were a clear cell carcinoma, a low-grade serous adenocarcinoma, an undifferentiated adenocarcinoma, and a neuroendocrine carcinoma. All high-grade serous adenocarcinomas (n = 37, 100%) stained with HE4, compared with 94% that stained positively for PAX8. In cases of gastric or colorectal cancer, 25% and 21% of cases, respectively, stained positive for HE4. No PAX8 staining was observed in colorectal or gastric adenocarcinomas. HE4 staining in ascites is feasible and appears to have a high sensitivity for high-grade serous ovarian cancer. HE4 is a useful addition to the current panel of immunocytochemistry markers for the diagnosis of EOC and for differentiation with gastrointestinal adenocarcinomas. Cancer Cytopathol 2017;125:197-204. © 2016 American Cancer Society. © 2017 American Cancer Society.

  3. Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase C.

    PubMed

    Hanaki, Takehiko; Horikoshi, Yosuke; Nakaso, Kazuhiro; Nakasone, Masato; Kitagawa, Yoshinori; Amisaki, Masataka; Arai, Yosuke; Tokuyasu, Naruo; Sakamoto, Teruhisa; Honjo, Soichiro; Saito, Hiroaki; Ikeguchi, Masahide; Yamashita, Kazunari; Ohno, Shigeo; Matsura, Tatsuya

    2016-11-01

    Pancreatic cancer (PC) is the most lethal malignancy among solid tumors, and the most common risk factor for its development is cigarette smoking. Atypical protein kinase C (aPKC) isozymes function in cell polarity, proliferation, and survival, and have also been implicated in carcinogenesis. However, the involvement of aPKC in PC progression and the effect of nicotine, a major component of cigarette smoke, on the biological activities of aPKC remain to be fully elucidated. We investigated the effects of nicotine on the proliferation, migration and invasion of the human PC cell lines Panc1 and BxPC3. We analyzed aPKC localization and activity by immunohistochemistry and in vitro kinase assays, respectively, to assess their involvement in the regulation of PC progression. Moreover, we examined the effect of nicotine on implanted peritoneal tumors of PC cells in mice. Nicotine enhanced cell proliferation, migration and invasion in Panc1 and BxPC3 cells. In nicotine-treated PC cells, the aPKC was significantly activated. We also found that nicotine induced phosphatidylinositol 3-kinase (PI3K) signal activation, and a specific inhibitor of the nicotine acetylcholine receptor (nAChR) as well as knockdown of nAChR prevented nicotine-mediated Akt phosphorylation and aPKC activation. In a peritoneal dissemination model of PC, nicotine-treated mice had larger tumors and increased numbers of nodules. Immunohistochemistry showed enhanced expression levels of aPKC and phosphorylated Akt in nodules from nicotine-treated mice. Nicotine induces aberrant activation of aPKC via nAChR/PI3K signaling in PC cells, resulting in enhancement of cellular proliferation, migration and invasion. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of prolactin on ionic membrane conductances in the human malignant astrocytoma cell line U87-MG.

    PubMed

    Ducret, Thomas; Vacher, Anne-Marie; Vacher, Pierre

    2004-03-01

    Prolactin (PRL) is involved in numerous biological processes in peripheral tissues and the brain. Although numerous studies have been conducted to elucidate the signal transduction pathways associated with the PRL receptor, very few have examined the role of ion conductances in PRL actions. We used the patch-clamp technique in "whole cell" configuration and microspectrofluorimetry to investigate the effects of PRL on membrane ion conductances in the U87-MG human malignant astrocytoma cell line, which naturally expresses the PRL receptor. We found that a physiological concentration (4 nM) of PRL exerted a biphasic action on membrane conductances. First, PRL activated a Ca(2+)-dependent K(+) current that was sensitive to CTX and TEA. This current depended on PRL-induced Ca(2+) mobilization, through a JAK2-dependent pathway from a thapsigargin- and 2-APB-sensitive Ca(2+) pool. Second, PRL also activated an inwardly directed current, mainly due to the stimulation of calcium influx via nickel- and 2-APB-sensitive calcium channels. Both phases resulted in membrane hyperpolarizations, mainly through the activation of Ca(2+)-dependent K(+) channels. As shown by combined experiments (electrophysiology and microspectrofluorimetry), the PRL-induced Ca(2+) influx increased with cell membrane hyperpolarization and conversely decreased with cell membrane depolarization. Thus PRL-induced membrane hyperpolarizations facilitated Ca(2+) influx through voltage-independent Ca(2+) channels. Finally, PRL also activated a DIDS-sensitive Cl(-) current, which may participate in the PRL-induced hyperpolarization. These PRL-induced conductance activations are probably related to the PRL proliferative effect we have already described in U87-MG cells.

  5. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    PubMed Central

    Jorgensen, Ellen; Stinson, Andy; Shan, Lin; Yang, Jin; Gietl, Diana; Albino, Anthony P

    2008-01-01

    Background Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. Methods Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. Results We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers. Conclusion These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and

  6. Human IgG responses to macrocyclic chelating agents (DOTA and TETA) in patients with B-lymphocytic malignancies

    SciTech Connect

    DeNardo, G.L.; Mirick, G.R.; Kroger, L.A.

    1995-05-01

    Several metallic radionuclides have promise for immunoimaging and therapy. Macrocyclic chelating agents provide stable radioimmunoconjugates but have been reported to be immunogenic. The purpose of this study was to assess human antibody responses to macrocycles in 18 patients that were imaged and/or treated with In-111-21T-BAD-Lym-1 (5 patients) or Cu-67-21T-BAT-Lym-1 (13 patients) for B-lymphocytic malignancies. Lym-1 ranged from 1 to 6 doses (median 1) and from 6 to 285 mg (median 33) for each of the patients. A solid phase ELISA utilizing HSA-BAD, HSA-BAT, HSA-BABE or Lym-1 as the coating antigen was used to characterize and quantitate human antibodies in patient serum against DOTA, TETA, 21T or Lym-1, respectively. No patient that received In-111-21T-BAD-Lym-1 developed antibodies of any kind. Two (15%) of the 13 patients that received Cu-67-21T-BAT-Lym-1 developed antibodies against both TETA and Lym-1, and one additional patient developed antibodies against Lym-1 only. None of the patients had symptoms of serum sickness. The maximum number of doses of metal chelated Lym-1 without an immune response was 6. The smallest amount of TETA macrocycle that induced an anti-TETA response was 400 ug; the greatest amount of TETA that did not induce an anti-TETA response was 1,156 ug. The smallest amount of Lym-1 that induced a HAMA was 39 mg; the greatest amount of Lym-1 that did not induce a HAMA response was 285 mg. The relative amounts of anti-TETA to anti-Lym-1 were 1:30 and 1:95 in the two patients that developed both antibodies. None of the patients developed antibodies to the 2IT linker. Using different antibodies in patients with ovarian cancer, others have reported a high frequency of anti-macrocycle antibodies to DOTA. Although macrocycles such as DOTA and TETA can be haptens, our findings do not support the conclusion that they are more immunogenic than other radiometal chelating agents.

  7. Skeletal muscle ryanodine receptor mutations associated with malignant hyperthermia showed enhanced intensity and sensitivity to triggering drugs when expressed in human embryonic kidney cells.

    PubMed

    Sato, Keisaku; Roesl, Cornelia; Pollock, Neil; Stowell, Kathryn M

    2013-07-01

    Mutations within the gene encoding the skeletal muscle calcium channel ryanodine receptor can result in malignant hyperthermia. Although it is important to characterize the functional effects of candidate mutations to establish a genetic test for diagnosis, ex vivo methods are limited because of the low incidence of the disorder and sample unavailability. More than 250 candidate mutations have been identified, but only a few mutations have been functionally characterized. The human skeletal muscle ryanodine receptor complementary DNA was cloned with or without a disease-related variant. Wild-type and mutant calcium channel proteins were transiently expressed in human embryonic kidney-293 cells expressing the large T-antigen of simian virus 40, and functional analysis was carried out using calcium imaging with fura-2 AM. Six human malignant hyperthermia-related mutants such as R44C, R163C, R401C, R533C, R533H, and H4833Y were analyzed. Cells were stimulated with a specific ryanodine receptor agonist 4-chloro-m-cresol, and intracellular calcium mobility was analyzed to determine the functional aspects of mutant channels. Mutant proteins that contained a variant linked to malignant hyperthermia showed higher sensitivity to the agonist. Compared with the wild type (EC50=453.2 µM, n=18), all six mutants showed a lower EC50 (21.2-170.4 µM, n=12-23), indicating susceptibility against triggering agents. These six mutations cause functional abnormality of the calcium channel, leading to higher sensitivity to a specific agonist, and therefore could be considered potentially causative of malignant hyperthermia reactions.

  8. Hematologic malignancies

    SciTech Connect

    Hoogstraten, B.

    1986-01-01

    The principle aim of this book is to give practical guidelines to the modern treatment of the six important hematologic malignancies. Topics considered include the treatment of the chronic leukemias; acute leukemia in adults; the myeloproliferative disorders: polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis/agnogenic myeloid metaplasia; Hodgkin's Disease; non-Hodgkin's lymphoma; and Multiple Myeloma.

  9. Prediction of the Number of Activated Genes in Multiple Independent Cd+2- and As+3-Induced Malignant Transformations of Human Urothelial Cells (UROtsa)

    PubMed Central

    Garrett, Scott H.; Somji, Seema; Sens, Donald A.; Zhang, Ke K.

    2014-01-01

    Background Many toxic environmental agents such as cadmium and arsenic are found to be epidemiologically linked to increasing rates of cancers. In vitro studies show that these toxic agents induced malignant transformation in human cells. It is not clear whether such malignant transformation induced by a single toxic agent is driven by a common set of genes. Although the advancement of high-throughput technology has facilitated the profiling of global gene expression, it remains a question whether the sample size is sufficient to identify this common driver gene set. Results We have developed a statistical method, SOFLR, to predict the number of common activated genes using a limited number of microarray samples. We conducted two case studies, cadmium and arsenic transformed human urothelial cells. Our method is able to precisely predict the number of stably induced and repressed genes and the number of samples to identify the common activated genes. The number of independent transformed isolates required for identifying the common activated genes is also estimated. The simulation study further validated our method and identified the important parameters in this analysis. Conclusions Our method predicts the degree of similarity and diversity during cell malignant transformation by a single toxic agent. The results of our case studies imply the existence of common driver and passenger gene sets in toxin-induced transformation. Using a pilot study with small sample size, this method also helps microarray experimental design by determining the number of samples required to identify the common activated gene set. PMID:24465620

  10. Hemostasis and malignancy.

    PubMed

    Francis, J L; Biggerstaff, J; Amirkhosravi, A

    1998-01-01

    There is considerable evidence that the hemostatic system is involved in the growth and spread of malignant disease. There is an increased incidence of thromboembolic disease in patients with cancers and hemostatic abnormalities are extremely common in such patients. Antihemostatic agents have been successfully used to treat a variety of experimental tumors, and several clinical trials in humans have been initiated. Although metastasis is undoubtedly multifactorial, intravascular coagulation activation and peritumor fibrin deposition seem to be important. The mechanisms by which hemostatic activation facilitates the malignant process remain to be completely elucidated. Of central importance may be the presence on malignant cells of tissue factor and urokinase receptor. Recent studies have suggested that these proteins, and others, may be involved at several stages of metastasis, including the key event of neovascularization. Tissue factor, the principal initiator of coagulation, may have additional roles, outside of fibrin formation, that are central to the biology of some solid tumors.

  11. Aberrant Cytokeratin Expression During Arsenic-induced Acquired Malignant Phenotype in Human HaCaT Keratinocytes Consistent with Epidermal Carcinogenesis

    PubMed Central

    Sun, Yang; Pi, Jingbo; Wang, Xueqian; Tokar, Erik J.; Liu, Jie; Waalkes, Michael P.

    2009-01-01

    Inorganic arsenic is a known human skin carcinogen. Chronic arsenic exposure results in various human skin lesions, including hyperkeratosis and squamous cell carcinoma (SCC), both characterized by distorted cytokeratin (CK) production. Prior work shows the human skin keratinocyte HaCaT cell line, when exposed chronically for >25 weeks to a low level of inorganic arsenite (100 nM) results in cells able to produce aggressive SCC upon inoculation into nude mice. In the present study, CK expression analysis was performed in arsenic-exposed HaCaT cells during the progressive acquisition of this malignant phenotype (0 to 20 weeks) to further validate this model as relevant to epidermal carcinogenesis induced by arsenic in humans. Indeed, we observed clear evidence of acquired cancer phenotype by 20 weeks of arsenite exposure including the formation of giant cells, a >4-fold increase in colony formation in soft agar and a ∼2.5-fold increase in matrix metalloproteinase-9 secretion, an enzyme often secreted by cancer cells to help invade through the local extra-cellular matrix. During this acquired malignant phenotype, various CK genes showed markedly altered expression at the transcript and protein levels in a time-dependent manner. For example, CK1, a marker of hyperkeratosis, increased up to 34-fold during arsenic-induced transformation, while CK13, a marker for dermal cancer progression, increased up to 45-fold. The stem cell marker, CK15, increased up to 7-fold, particularly during the later stages of arsenic exposure, indicating a potential emergence of cancer stem-like cells with arsenic-induced acquired malignant phenotype. The expression of involucrin and loricrin, markers for keratinocyte differentiation, increased up to 9-fold. Thus, during arsenic-induced acquired cancer phenotype in human keratinocytes, dramatic and dynamic alterations in CK expression occur which are consistent with the process of epidermal carcinogenesis helping validate this as an

  12. Aberrant cytokeratin expression during arsenic-induced acquired malignant phenotype in human HaCaT keratinocytes consistent with epidermal carcinogenesis.

    PubMed

    Sun, Yang; Pi, Jingbo; Wang, Xueqian; Tokar, Erik J; Liu, Jie; Waalkes, Michael P

    2009-08-03

    Inorganic arsenic is a known human skin carcinogen. Chronic arsenic exposure results in various human skin lesions, including hyperkeratosis and squamous cell carcinoma (SCC), both characterized by distorted cytokeratin (CK) production. Prior work shows the human skin keratinocyte HaCaT cell line, when exposed chronically for >25 weeks to a low level of inorganic arsenite (100nM) results in cells able to produce aggressive SCC upon inoculation into nude mice. In the present study, CK expression analysis was performed in arsenic-exposed HaCaT cells during the progressive acquisition of this malignant phenotype (0-20 weeks) to further validate this model as relevant to epidermal carcinogenesis induced by arsenic in humans. Indeed, we observed clear evidence of acquired cancer phenotype by 20 weeks of arsenite exposure including the formation of giant cells, a >4-fold increase in colony formation in soft agar and a approximately 2.5-fold increase in matrix metalloproteinase-9 secretion, an enzyme often secreted by cancer cells to help invade through the local extra-cellular matrix. During this acquired malignant phenotype, various CK genes showed markedly altered expression at the transcript and protein levels in a time-dependent manner. For example, CK1, a marker of hyperkeratosis, increased up to 34-fold during arsenic-induced transformation, while CK13, a marker for dermal cancer progression, increased up to 45-fold. The stem cell marker, CK15, increased up to 7-fold, particularly during the later stages of arsenic exposure, indicating a potential emergence of cancer stem-like cells with arsenic-induced acquired malignant phenotype. The expression of involucrin and loricrin, markers for keratinocyte differentiation, increased up to 9-fold. Thus, during arsenic-induced acquired cancer phenotype in human keratinocytes, dramatic and dynamic alterations in CK expression occur which are consistent with the process of epidermal carcinogenesis helping validate this as an

  13. Overexpression of the Hepatocyte Growth Factor (HGF) Receptor (Met) and Presence of a Truncated and Activated Intracellular HGF Receptor Fragment in Locally Aggressive/Malignant Human Musculoskeletal Tumors

    PubMed Central

    Wallenius, Ville; Hisaoka, Masanori; Helou, Khalil; Levan, Göran; Mandahl, Nils; Meis-Kindblom, Jeanne M.; Kindblom, Lars-Gunnar; Jansson, John-Olov

    2000-01-01

    Enhanced hepatocyte growth factor (HGF) receptor (Met) signaling has been suggested to play an important role in the development and progression of various epithelial and nonepithelial tumors. N-terminally truncated forms of the HGF receptor have been shown to be constitutively activated and tumorigenic in animal experiments. In the present study, 102 benign and malignant human musculoskeletal tumors were examined for expression of the HGF receptor by Western blotting and/or immunohistochemistry. A clear predominance of HGF receptor expression was seen in malignant as compared to benign tumors (Western blotting, P < 0.001; immunohistochemistry, P < 0.02). For the first time we show HGF receptor expression in the following four tumor types: dermatofibrosarcoma protuberans, clear cell sarcoma of tendons, malignant primitive neuroectodermal tumor, and benign fibrous histiocytoma. In three cases of sarcoma with high HGF receptor expression by Western blotting, we found indications of a short 85-kd N-terminally truncated HGF receptor that was tyrosine phosphorylated and located in the cytoplasm. Although fragments of this length were seen in 18 of 65 tumors, most were not tyrosine-phosphorylated. Northern blotting revealed only the 7.5-kb full-length HGF receptor transcript, suggesting that the 85-kd fragment is generated by an alternative initiation of translation or by proteolytic cleavage. Southern blotting detected no amplification of the Hgfr/Met gene in the 35 tumors examined, in contrast to our recent report of Hgfr/Met gene amplification in 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat sarcomas. The present data suggest that the locally aggressive and malignant properties of human mesenchymal tumors maybe related, in part, to high levels of full-length HGF receptors, and in some cases to the occurrence of N-terminally truncated HGF receptors, activated independently of HGF. PMID:10702398

  14. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    SciTech Connect

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  15. Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

    PubMed Central

    Arooj, Syeda; Nazir, Samina; Nadhman, Akhtar; Ahmad, Nafees; Muhammad, Bakhtiar; Ahmad, Ishaq; Mazhar, Kehkashan

    2015-01-01

    Summary The use of photoactive nanoparticles (NPs) such as zinc oxide (ZnO) and its nanocomposites has become a promising anticancer strategy. However, ZnO has a low photocatalytic decomposition rate and the incorporation of metal ions such as silver (Ag) improves their activity. Here different formulations of ZnO:Ag (1, 3, 5, 10, 20 and 30% Ag) were synthesized by a simple co-precipitation method and characterized by powder X-ray diffraction, scanning electron microscopy, Rutherford back scattering and diffuse reflectance spectroscopy for their structure, morphology, composition and optical band gap. The NPs were investigated with regard to their different photocatalytic cytotoxic effects in human malignant melanoma (HT144) and normal (HCEC) cells. The ZnO:Ag nanocomposites killed cancer cells more efficiently than normal cells under daylight exposure. Nanocomposites having higher Ag content (10, 20 and 30%) were more toxic compared to low Ag content (1, 3 and 5%). For HT144, under daylight exposure, the IC50 values were ZnO:Ag (10%): 23.37 μg/mL, ZnO:Ag (20%): 19.95 μg/mL, and ZnO:Ag (30%): 15.78 μg/mL. ZnO:Ag (30%) was toxic to HT144 (IC50: 23.34 μg/mL) in dark as well. The three nanocomposites were further analyzed with regard to their ability to generate reactive oxygen species (ROS) and induce lipid peroxidation. The particles led to an increase in levels of ROS at cytotoxic concentrations, but only HT144 showed strongly induced MDA level. Finally, NPs were investigated for the ROS species they generated in vitro. A highly significant increase of 1O2 in the samples exposed to daylight was observed. Hydroxyl radical species, HO•, were also generated to a lesser extent. Thus, the incorporation of Ag into ZnO NPs significantly improves their photo-oxidation capabilities. ZnO:Ag nanocomposites could provide a new therapeutic option to selectively target cancer cells. PMID:25821698

  16. In vivo tracing of indium-111 oxine-labeled human peripheral blood mononuclear cells in patients with lymphatic malignancies

    SciTech Connect

    Mueller, C.Z.; Zielinski, C.C.; Linkesch, W.; Ludwig, H.; Sinzinger, H.

    1989-06-01

    The in vivo migration of (/sup 111/In)oxine-labeled peripheral mononuclear cells (PMNC) was studied in 20 patients with various lymphatic malignancies and palpable enlarged lymph nodes. The maximal labeling dose of 10 microCi (0.37 MBq) (/sup 111/In)oxine/10(8) PMNC was found not to adversely influence either cell viability or lymphocyte proliferation in vitro. For in vivo studies, 1.5 X 10(9) PMNC were gained by lymphapheresis and reinjected intravenously after radioactive labeling, 150 microCi (5.55 MBq). The labeling of enlarged palpable lymph nodes was achieved in three out of three patients with Hodgkin's disease and in five out of five with high-malignant lymphoma, whereas three out of seven patients with low malignant lymphoma and no patient with chronic lymphatic leukemia had positive lymph node imaging. We thus conclude that PMNC retain their ability to migrate after (/sup 111/In)oxine labeling and that these cells traffic to involved lymph nodes of some, but not all hematologic malignancies.

  17. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis.

    PubMed

    Lukic, Natalija; Visentin, Rémy; Delhaye, Myriam; Frossard, Jean-Louis; Lescuyer, Pierre; Dumonceau, Jean-Marc; Farina, Annarita

    2014-05-01

    Proteomics is a key tool in the identification of new bile biomarkers for differentiating malignant and nonmalignant biliary stenoses. Unfortunately, the complexity of bile and the presence of molecules interfering with protein analysis represent an obstacle for quantitative proteomic studies in bile samples. The simultaneous need to introduce purification steps and minimize the use of pre-fractionation methods inevitably leads to protein loss and limited quantifications. This dramatically reduces the chance of identifying new potential biomarkers. In the present study, we included differential centrifugation as a preliminary step in a quantitative proteomic workflow involving iTRAQ labeling, peptide fractionation by OFFGEL electrophoresis and LC-MS/MS, to compare protein expression in bile samples collected from patients with malignant or nonmalignant biliary stenoses. A total of 1267 proteins were identified, including a set of 322 newly described bile proteins, mainly belonging to high-density cellular fractions. The subsequent comparative analysis led to a 5-fold increase in the number of quantified proteins over previously published studies and highlighted 104 proteins overexpressed in malignant samples. Finally, immunoblot verifications performed on a cohort of 8 malignant (pancreatic adenocarcinoma, n=4; cholangiocarcinoma, n=4) and 5 nonmalignant samples (chronic pancreatitis, n=3; biliary stones, n=2) confirmed the results of proteomic analysis for three proteins: olfactomedin-4, syntenin-2 and Ras-related C3 botulinum toxin substrate 1. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.

  18. STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model

    PubMed Central

    Couronné, Lucile; Scourzic, Laurianne; Pilati, Camilla; Valle, Véronique Della; Duffourd, Yannis; Solary, Eric; Vainchenker, William; Merlio, Jean-Philippe; Beylot-Barry, Marie; Damm, Frederik; Stern, Marc-Henri; Gaulard, Philippe; Lamant, Laurence; Delabesse, Eric; Merle-Beral, Hélène; Nguyen-Khac, Florence; Fontenay, Michaëla; Tilly, Hervé; Bastard, Christian; Zucman-Rossi, Jessica; Bernard, Olivier A.; Mercher, Thomas

    2013-01-01

    STAT3 protein phosphorylation is a frequent event in various hematologic malignancies and solid tumors. Acquired STAT3 mutations have been recently identified in 40% of patients with T-cell large granular lymphocytic leukemia, a rare T-cell disorder. In this study, we investigated the mutational status of STAT3 in a large series of patients with lymphoid and myeloid diseases. STAT3 mutations were identified in 1.6% (4 of 258) of patients with T-cell neoplasms, in 2.5% (2 of 79) of patients with diffuse large B-cell lymphoma but in no other B-cell lymphoma patients (0 of 104) or patients with myeloid malignancies (0 of 96). Functional in vitro assays indicated that the STAT3Y640F mutation leads to a constitutive phosphorylation of the protein. STA21, a STAT3 small molecule inhibitor, inhibited the proliferation of two distinct STAT3 mutated cell lines. Using a mouse bone marrow transplantation assay, we observed that STAT3Y640F expression leads to the development of myeloproliferative neoplasms with expansion of either myeloid cells or megakaryocytes. Together, these data indicate that the STAT3Y640F mutation leads to constitutive activation of STAT3, induces malignant hematopoiesis in vivo, and may represent a novel therapeutic target in some lymphoid malignancies. PMID:23872306

  19. The anti-proliferative effects of a palm oil-derived product and its mode of actions in human malignant melanoma MeWo cells.

    PubMed

    Komarasamy, Thamil Vaani; Sekaran, Shamala Devi

    2012-01-01

    Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC₅₀) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.

  20. Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells.

    PubMed

    Suebsoonthron, Junjira; Jaroonwitchawan, Thiranut; Yamabhai, Montarop; Noisa, Parinya

    2017-02-24

    Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.

  1. Differential expression of metallothioneins (MTs) 1, 2, and 3 in response to zinc treatment in human prostate normal and malignant cells and tissues

    PubMed Central

    Wei, Hua; Desouki, Mohamed Mokhtar; Lin, Shufei; Xiao, Dakai; Franklin, Renty B; Feng, Pei

    2008-01-01

    Background The disturbance of zinc homeostasis featured with a significant decrease of cellular zinc level was well documented to associate with the development and progression of human prostate malignancy. We have previously reported that zinc treatment induces prostate malignant cell apoptosis through mitochondrial pathway. Metallothionein (MT) is a major receptor/donor of zinc in the cells. However, the studies on the expression of MT in association with the prostate pathological and malignant status are very limited, and the zinc regulation of MT isoform expression in prostate cells remains elusive. The goals of this study were to define the expression of endogenous MTs, the isoforms of MT 1, 2, 3 at both messenger ribonucleic acid (mRNA) and protein levels; and to investigate the zinc effect on MT expression in normal prostate, benign prostatic hyperplasia (BPH) and malignant PC-3 cells, and in relevant human tissues. Cellular MT proteins were detected by immunohistochemistry, fluorescence staining and Western blot analysis; reverse transcription polymerase chain reaction (RT-PCR) was used to determine the MT isoform-specific mRNAs. Results Our results demonstrated a significant suppression of endogenous levels of MT1/2 in malignant PC-3 cells (95% reduction compared to the normal prostate cells) and in human adenocarcinoma tissues (73% MT1/2 negative). A moderate reduction of MT1/2 expression was observed in BPH. Zinc treatment remarkably induced MT1/2 expression in PC-3 and BPH cells, which was accordant with the restored cellular zinc level. MT 3, as a growth inhibitory factor, was detected and up-regulated by zinc mainly in BPH cells. Conclusion This study provided evidence of the association of attenuated MT1/2 with prostate tumor progression, and the zinc induction of MT1/2 expression resulting in cellular zinc restoration. The results suggest the potential of MT1/2 as a candidate biomarker for prostate cancer and the utilization of zinc in prostate

  2. ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer.

    PubMed

    Theophilou, Georgios; Lima, Kássio M G; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Martin, Francis L

    2016-01-21

    Surgical management of ovarian tumours largely depends on their histo-pathological diagnosis. Currently, screening for ovarian malignancy with tumour markers in conjunction with radiological investigations has a low specificity for discriminating benign from malignant tumours. Also, pre-operative biopsy of ovarian masses increases the risk of intra-peritoneal dissemination of malignancy. Intra-operative frozen section, although sufficiently accurate in differentiating tumours according to their histological type, increases operation times. This results in increased surgery-related risks to the patient and additional burden to resource allocation. We set out to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, combined with chemometric analysis can be applied to discriminate between normal, borderline and malignant ovarian tumours and classify ovarian carcinoma subtypes according to the unique spectral signatures of their molecular composition. Formalin-fixed, paraffin-embedded ovarian tissue blocks were de-waxed, mounted on Low-E slides and desiccated before being analysed using ATR-FTIR spectroscopy. Chemometric analysis in the form of principal component analysis (PCA), successive projection algorithm (SPA) and genetic algorithm (GA), followed by linear discriminant analysis (LDA) of the obtained spectra revealed clear segregation between benign versus borderline versus malignant tumours as well as segregation between different histological tumour subtypes, when these approaches are used in combination. ATR-FTIR spectroscopy coupled with chemometric analysis has the potential to provide a novel diagnostic approach in the accurate diagnosis of ovarian tumours assisting surgical decision making to avoid under-treatment or over-treatment, with minimal impact to the patient.

  3. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer.

    PubMed

    Wang, Tianzhen; Wang, Guangyu; Hao, Dapeng; Liu, Xi; Wang, Dong; Ning, Ning; Li, Xiaobo

    2015-06-30

    RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7, one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis, metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain oncogenes (such as MYC, RAS, PI3K/AKT, NF-κB and β-catenin) in regulating hallmarks of cancer has also been discussed.

  4. FOXM1 Upregulation Is an Early Event in Human Squamous Cell Carcinoma and it Is Enhanced by Nicotine during Malignant Transformation

    PubMed Central

    Gemenetzidis, Emilios; Bose, Amrita; Riaz, Adeel M.; Chaplin, Tracy; Young, Bryan D.; Ali, Muhammad; Sugden, David; Thurlow, Johanna K.; Cheong, Sok-Ching; Teo, Soo-Hwang; Wan, Hong; Waseem, Ahmad; Parkinson, Eric K.; Fortune, Farida; Teh, Muy-Teck

    2009-01-01

    Background Cancer associated with smoking and drinking remains a serious health problem worldwide. The survival of patients is very poor due to the lack of effective early biomarkers. FOXM1 overexpression is linked to the majority of human cancers but its mechanism remains unclear in head and neck squamous cell carcinoma (HNSCC). Methodology/Principal Findings FOXM1 mRNA and protein expressions were investigated in four independent cohorts (total 75 patients) consisting of normal, premalignant and HNSCC tissues and cells using quantitative PCR (qPCR), expression microarray, immunohistochemistry and immunocytochemistry. Effect of putative oral carcinogens on FOXM1 transcriptional activity was dose-dependently assayed and confirmed using a FOXM1-specific luciferase reporter system, qPCR, immunoblotting and short-hairpin RNA interference. Genome-wide single nucleotide polymorphism (SNP) array was used to ‘trace’ the genomic instability signature pattern in 8 clonal lines of FOXM1-induced malignant human oral keratinocytes. Furthermore, acute FOXM1 upregulation in primary oral keratinocytes directly induced genomic instability. We have shown for the first time that overexpression of FOXM1 precedes HNSCC malignancy. Screening putative carcinogens in human oral keratinocytes surprisingly showed that nicotine, which is not perceived to be a human carcinogen, directly induced FOXM1 mRNA, protein stabilisation and transcriptional activity at concentrations relevant to tobacco chewers. Importantly, nicotine also augmented FOXM1-induced transformation of human oral keratinocytes. A centrosomal protein CEP55 and a DNA helicase/putative stem cell marker HELLS, both located within a consensus loci (10q23), were found to be novel targets of FOXM1 and their expression correlated tightly with HNSCC progression. Conclusions/Significance This study cautions the potential co-carcinogenic effect of nicotine in tobacco replacement therapies. We hypothesise that aberrant upregulation

  5. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    PubMed Central

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  6. Changes in expression of human serine protease HtrA1, HtrA2 and HtrA3 genes in benign and malignant thyroid tumors.

    PubMed

    Zurawa-Janicka, Dorota; Kobiela, Jarosław; Galczynska, Natalia; Stefaniak, Tomasz; Lipinska, Barbara; Lachinski, Andrzej; Skorko-Glonek, Joanna; Narkiewicz, Joanna; Proczko-Markuszewska, Monika; Sledzinski, Zbigniew

    2012-11-01

    Human HtrA proteins are serine proteases involved in essential physiological processes. HtrA1 and HtrA3 function as tumor suppressors and inhibitors of the TGF-β signaling pathway. HtrA2 regulates mitochondrial homeostasis and plays a pivotal role in the induction of apoptosis. The aim of the study was to determine whether the HtrA proteins are involved in thyroid carcinogenesis. We used the immunoblotting technique to estimate protein levels of HtrA1, HtrA2, long and short variants of HtrA3 (HtrA3-L and HtrA3-S) and TGF-β1 in tissues of benign and malignant thyroid lesions, and control groups. We found that the levels of HtrA2 and HtrA3-S were higher in thyroid malignant tumors compared to normal tissues and benign tumors. The HtrA3-L level was increased in malignant tumor tissues compared to benign tumor tissues and control tissues from patients with benign lesions, and elevated in normal tissues from patients with thyroid carcinoma compared to normal tissues from patients with benign lesions. We also compared levels of HtrA proteins in follicular thyroid carcinoma (FTC) and papillary thyroid carcinoma (PTC) and found that these types of carcinoma differed in the expression of HtrA3-S and HtrA1. These results indicate the implication of HtrA proteins in thyroid carcinogenesis suggest that HtrA3 variants may play different roles in cancer development, and that the increased HtrA3-L levels in thyroid tissue could be correlated with the development of malignant lesions. The TGF-β1 levels in tumor tissues were not significantly altered compared to control tissues.

  7. Expression patterns of ERVWE1/Syncytin-1 and other placentally expressed human endogenous retroviruses along the malignant transformation process of hydatidiform moles.

    PubMed

    Bolze, Pierre-Adrien; Patrier, Sophie; Cheynet, Valérie; Oriol, Guy; Massardier, Jérôme; Hajri, Touria; Guillotte, Michèle; Bossus, Marc; Sanlaville, Damien; Golfier, François; Mallet, François

    2016-03-01

    Up to 20% of hydatidiform moles are followed by malignant transformation in gestational trophoblastic neoplasia and require chemotherapy. Syncytin-1 is involved in human placental morphogenesis and is also expressed in various cancers. We assessed the predictive value of the expression of Syncytin-1 and its interactants in the malignant transformation process of hydatidiform moles. Syncytin-1 glycoprotein was localized by immunohistochemistry in hydatidiform moles, gestational trophoblastic neoplasia and control placentas. The transcription levels of its locus ERVWE1, its interaction partners (hASCT1, hASCT2, TLR4 and DC-SIGN) and two loci (ERVFRDE1 and ERV3) involved the expression of other placental envelopes were assessed by real-time PCR. Syncytin-1 glycoprotein was expressed in syncytiotrophoblast of hydatidiform moles with an apical enhancement when compared with normal placentas. Moles with further malignant transformation had a higher staining intensity of Syncytin-1 surface unit C-terminus but the transcription level of its locus ERVWE1 was not different from that of moles with further remission and normal placentas. hASCT1 and TLR4, showed lower transcription levels in complete moles when compared to normal placentas. ERVWE1, ERVFRDE1 and ERV3 transcription was down-regulated in hydatidiform moles and gestational trophoblastic neoplasia. Variations of Syncytin-1 protein localization and down-regulation of hASCT1 and TLR4 transcription are likely to reflect altered functions of Syncytin-1 in the premalignant context of complete moles. The reduced transcription in gestational trophoblastic diseases of ERVWE1, ERVFRDE1 and ERV3, which expression during normal pregnancy is differentially regulated by promoter region methylation, suggest a joint dysregulation mechanism in malignant context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Expression and Subcellular Distribution of Costimulatory Molecules B7-H1,B7-H3 and B7-H4 in Human Hematologic Malignancy Cell Lines].

    PubMed

    Zhang, Wei; Wang, Jing; Wang, Yan-Fang; Zhu, Ming-Xia; Wan, Wen-Li; Li, Hai-Shen; Wu, Fei-Fei; Yan, Xin-Xing; Ke, Xiao-Yan

    2016-10-01

    To investigate the expression and subcellular distribution of costimulatory molecules B7-H1, B7-H3 and B7-H4 in human hematologic malignancy cell lines. The expression and subcellular distribution of B7-H1, B7-H3 and B7-H4 in 13 human hematologic malignancy cell lines were determined by RT-PCR, qPCR, Western blot and flow cytometry, the peripheral blood mononuclear cells (PB MNC) of 12 volunteers were used as control. The mRNA of B7-H1, B7-H3 and B7-H4 was widely expressed in PB MNC and hematologic malignancy cell lines, with a lower level of B7-H4. The mRNA expression of 3 molecules was highest in Maver, Z138, and HL-60, respectively, while among them the B7-H3 and B7-H4 had no expression in CZ1. The nuclear and cytoplasmic protein of 3 costimulatory molecules abnormally overexpressed only in hematologic malignancy cell lines, with the highest level in U937, Z138, and Raji, respectively, while the B7-H3 and B7-H4 had no expression in CZ1. There were differences among mRNA expression, nuclear and cytoplasmic protein expression of 3 molecules in cell lines derived from the same type of tumor, but the differences of expression in mRNA and protein levels were not exactly the same. The B7-H3 expression abundance in membrane localization was higher in U937, Maver and Z138, while the membrane protein of B7-H1 and B7-H4 had no or low expression in 13 cell lines. The mRNA expression of costimulatory molecules B7-H1, B7-H3 and B7-H4 can be widely detected. The protein level of 3 costimulatory molecules abnormally overexpressed only in hematologic malignancy cell lines, moreover the subcellular localizations mostly was found in nucleus and cytoplasm, while the membrane protein expresses in low level or had no expression. There are differences among the expression of 3 molecules in cell lines derived from the same type of tumor.

  9. Lack of expression of the liver-type glutaminase (LGA) mRNA in human malignant gliomas.

    PubMed

    Szeliga, Monika; Sidoryk, Marta; Matyja, Ewa; Kowalczyk, Paweł; Albrecht, Jan

    2005-02-21

    In the central nervous system (CNS), liver-type glutaminase (LGA) shows a unique nuclear localization suggesting its role in the regulation of transcription rather than in the cellular glutamine metabolism. RT-PCR analysis of RNA derived from postoperative tissue samples revealed the absence or only traces of LGA mRNA in all (9) cases of malignant gliomas (astrocytoma anaplasticum, AA, WHO grade III; glioblastoma multiforme, WHO grade IV) examined. The RNA was strongly expressed in the non-neoplastic tissue derived from the same patients (6 cases), and in most of the brain metastases from different organs (5 out of 7 cases). By contrast, the mRNAs coding for the kidney-type glutaminase (KGA) and its less ubiquitous isoform GAC, which catalyze degradation of the cytoplasmic pool of Gln, were expressed in all the tissues examined. The lack of LGA may be thus considered as a useful negative diagnostic marker of highly malignant gliomas in situ.

  10. Immunohistochemical evidence for ubiquitous distribution of metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines

    PubMed Central

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2013-01-01

    Immunohistochemical evidence for ubiquitous distribution of metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, spleen) and on a cell microarray encompassing 31 tumor cell lines of different origin plus trophoblast cells, and normal blood lymphocytes and granulocytes. IDE protein is expressed by all of the tissues assessed and in all of the tumor cell lines except Raji and HL-60; trophoblast cells and granulocytes but not normal lymphocytes are also IDE-positive. PMID:18783335

  11. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma.

    PubMed

    Puustinen, Pietri; Junttila, Melissa R; Vanhatupa, Sari; Sablina, Anna A; Hector, Melissa E; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C; Westermarck, Jukka

    2009-04-01

    Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies; however, the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here, we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A promotes basal ERK pathway activity and is required for efficient growth factor response. Mechanistically, PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and protein kinase C. In malignant gliomas, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (n=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells and suggest an important functional role for PME-1 in the disease progression of human astrocytic gliomas.

  12. Epigenetic alteration by DNA-demethylating treatment restores apoptotic response to glucocorticoids in dexamethasone-resistant human malignant lymphoid cells

    PubMed Central

    2014-01-01

    Background Glucocorticoids (GCs) are often included in the therapy of lymphoid malignancies because they kill several types of malignant lymphoid cells. GCs activate the glucocorticoid receptor (GR), to regulate a complex genetic network, culminating in apoptosis. Normal lymphoblasts and many lymphoid malignancies are sensitive to GC-driven apoptosis. Resistance to GCs can be a significant clinical problem, however, and correlates with resistance to several other major chemotherapeutic agents. Methods We analyzed the effect of treatment with the cytosine analogue 5 aza-2’ deoxycytidine (AZA) on GC resistance in two acute lymphoblastic leukemia (T or pre-T ALL) cell lines- CEM and Molt-4- and a (B-cell) myeloma cell line, RPMI 8226. Methods employed included tissue culture, flow cytometry, and assays for clonogenicity, cytosine extension, immunochemical identification of proteins, and gene transactivation. High throughput DNA sequencing was used to confirm DNA methylation status. Conclusions Treatment of these cells with AZA resulted in altered DNA methylation and restored GC-evoked apoptosis in all 3 cell lines. In CEM cells the altered epigenetic state resulted in site-specific phosphorylation of the GR, increased GR potency, and GC-driven induction of the GR from promoters that lie in CpG islands. In RPMI 8226 cells, expression of relevant coregulators of GR function was altered. Activation of p38 mitogen-activated protein kinase (MAPK), which is central to a feed-forward mechanism of site-specific GR phosphorylation and ultimately, apoptosis, occurred in all 3 cell lines. These data show that in certain malignant hematologic B- and T-cell types, epigenetically controlled GC resistance can be reversed by cell exposure to a compound that causes DNA demethylation. The results encourage studies of application to in vivo systems, looking towards eventual clinical applications. PMID:24795534

  13. Malignant hyperthermia.

    PubMed

    Cantin, R Y; Poole, A; Ryan, J F

    1986-10-01

    The increasing use of intravenous and inhalation sedation in the dental office has the potential of increasing the incidence of malignant hyperthermia (MH) in susceptible subjects. The object of this article is to present two cases of MH and to discuss its pathophysiology, its clinical picture, and its management in the light of the current literature. Stringent screening procedures should be adopted and maintained in order to channel suspected cases to appropriate centers for expert consultation and management. It is further advocated that a program of education for patients and their families be instituted, as it is an essential prerequisite of effective prophylaxis.

  14. Hypericum perforatum L. subsp. perforatum induces inhibition of free radicals and enhanced phototoxicity in human melanoma cells under ultraviolet light.

    PubMed

    Menichini, G; Alfano, C; Marrelli, M; Toniolo, C; Provenzano, E; Statti, G A; Nicoletti, M; Menichini, F; Conforti, F

    2013-04-01

    Our interest continues in discovering phytocomplexes from medicinal plants with phototoxic activity against human melanoma cells; thus the aim of the present study was to assess antioxidant, anti-inflammatory and phototoxic activity of Hypericum perforatum L. subsp. perforatum, and relate these properties to the plant's chemical composition. Components of H. perforatum subsp. perforatum were extracted by hydroalcoholic solution and chemical profiles of preparations (HyTE-3) performed by HPTLC. Linoleic acid peroxidation and DPPH tests were used to assess antioxidant activity, while MTT assay allowed evaluation of anti-proliferative activity with respect to A375 human melanoma cells after irradiation with UVA dose, 1.8 J/cm(2) . Inhibition of nitric oxide production of macrophages was also investigated. HyTE-3 indicated better antioxidant activity with β-carotene bleaching test in comparison to DPPH assay (IC50 = 0.89 μg/ml); significant phototoxicity in A375 cells at 78 μg/ml concentration resulted in cell destruction of 50%. HyTE-3 caused significant dose-related inhibition of nitric oxide production in murine monocytic macrophage cell line RAW 264.7 with IC50 value of 342 μg/ml. The H. perforatum subsp. perforatum-derived product was able to suppress proliferation of human malignant melanoma A375 cells; extract together with UVA irradiation enhanced phototoxicity. This biological activity of antioxidant effects was combined with inhibition of nitric oxide production. © 2013 Blackwell Publishing Ltd.

  15. Malignant hyperthermia

    PubMed Central

    2012-01-01

    Malignant hyperthermia (MH) is an uncommon, life-threatening pharmacogenetic disorder of the skeletal muscle. It presents as a hypermetabolic response in susceptible individuals to potent volatile anesthetics with/without depolarizing muscle relaxants; in rare cases, to stress from exertion or heat stress. Susceptibility to malignant hyperthermia (MHS) is inherited as an autosomally dominant trait with variable expression and incomplete penetrance. It is known that the pathophysiology of MH is related to an uncontrolled rise of myoplasmic calcium, which activates biochemical processes resulting in hypermetabolism of the skeletal muscle. In most cases, defects in the ryanodine receptor are responsible for the functional changes of calcium regulation in MH, and more than 300 mutations have been identified in the RYR1 gene, located on chromosome 19q13.1. The classic signs of MH include increase of end-tidal carbon dioxide, tachycardia, skeletal muscle rigidity, tachycardia, hyperthermia and acidosis. Up to now, muscle contracture test is regarded as the gold standard for the diagnosis of MHS though molecular genetic test is used, on a limited basis so far to diagnose MHS. The mortality of MH is dramatically decreased from 70-80% to less than 5%, due to an introduction of dantrolene sodium for treatment of MH, early detection of MH episode using capnography, and the introduction of diagnostic testing for MHS. This review summarizes the clinically essential and important knowledge of MH, and presents new developments in the field. PMID:23198031

  16. Cadmium Induced Cell Apoptosis, DNA Damage, Decreased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells

    PubMed Central

    Zhou, Zhiheng; Wang, Caixia; Liu, Haibai; Huang, Qinhai; Wang, Min; Lei, Yixiong

    2013-01-01

    Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mechanisms of DNA damage in cadmium-induced malignant transformation of human bronchial epithelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells. These cells consisted of untreated control cells, cells in the fifth, 15th, and 35th passage of cadmium-treated cells, and tumorigenic cells from nude mice using flow cytometry, Hoechst 33258 staining, comet assay, quantitative real-time polymerase chain reaction (PCR), Western blot analysis, random amplified polymorphic DNA (RAPD)-PCR, and sequence analysis. We observed a progressive increase in cell population of the G0/G1 phase of the cell cycle and the rate of apoptosis, DNA damage, and cadmium-induced apoptotic morphological changes in cerebral cortical neurons during malignant transformation. Gene expression analysis revealed increased expression of cell proliferation (PCNA), cell cycle (CyclinD1), pro-apoptotic activity (Bax), and DNA damage of the checkpoint genes ATM, ATR, Chk1, Chk2, Cdc25A. Decreased expression of the anti-apoptotic gene Bcl-2 and the DNA repair genes hMSH2, hMLH1, ERCC1, ERCC2, and hOGG1 was observed. RAPD-PCR revealed genomic instability in cadmium-exposed cells, and sequence analysis showed mutation of exons in hMSH2, ERCC1, XRCC1, and hOGG1 in tumorigenic cells. This study suggests that Cadmium can increase cell apoptosis and DNA damage, decrease DNA repair capacity, and cause mutations, and genomic instability leading to malignant transformation. This process could be a viable mechanism for cadmium-induced cancers. PMID:24046522

  17. The error-prone DNA polymerase zeta catalytic subunit (Rev3) gene is ubiquitously expressed in normal and malignant human tissues.

    PubMed

    Kawamura, K; O-Wang, J; Bahar, R; Koshikawa, N; Shishikura, T; Nakagawara, A; Sakiyama, S; Kajiwara, K; Kimura, M; Tagawa, M

    2001-01-01

    Mutagenesis induced by UV light and chemical agents in yeast is largely dependent on the function of Rev3, the catalytic subunit of DNA polymerase zeta that carries out translesion DNA synthesis. Human and mouse homologues of the yeast Rev3 gene have recently been identified, and inhibition of Rev3 expression in cultured human fibroblasts by Rev3 anti-sense was shown to reduce UV-induced mutagenesis, indicating that Rev3 also plays a crucial role in mutagenesis in mammalian cells. A common variant transcript with an insertion of 128-bp between nucleotides +139 and +140 is found in both human and mouse Rev3 cDNAs, but its biological significance has not been defined. We show here that the insertion variant is not translatable either under in vitro or in vivo conditions. We also found that the translational efficiency of Rev3 gene is enhanced by the 5' untranslated region that contains a putative stem-loop structure postulated to inhibit the translation. Since the human Rev3 gene is localized to chromosome 6q21, a region previously shown to contain genes involved in tumor suppression and cellular senescence, we examined its expression in various normal and malignant tissues. Rev3 and its insertion variant transcripts were ubiquitously detected in all 27 normal human tissues studied, with an additional variant species found in tissues with relatively high levels of Rev3 expression. Levels of Rev3 transcripts were similar in lung, gastric, colon and renal tumors compared to normal tissue counterparts. The data indicate that Rev3 expression is ubiquitous and is not dysregulated in malignancies.

  18. Up-regulation of human cervical cancer proto-oncogene contributes to hepatitis B virus-induced malignant transformation of hepatocyte by down-regulating E-cadherin

    PubMed Central

    Li, Junfeng; Dai, Xiaopeng; Zhang, Hongfei; Zhang, Wei; Sun, Shihui; Gao, Tongtong; Kou, Zhihua; Yu, Hong; Guo, Yan; Du, Lanying; Jiang, Shibo; Zhang, Jianying; Zhou, Yusen

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most fatal human malignancies, Human cervical cancer proto-oncogene (HCCR) aberrantly expressed in a number of malignant tumors, including HCC. HCC is associated with Hepatitis B virus (HBV) infection in a large percentage of cases. To explore the regulation and function of HCCR expression in the development of HCC, we detected HCCR expression in HBV expressing hepatocytes. Results showed that the expression of HCCR was higher in HBV-expressing hepatocytes than that in control cells. Examining different components of HBV revealed that the HBx promotes HCCR expression in hepatocytes via the T-cell factor (TCF)/β-catenin pathway. HCCR expression in HBx transgenic mice increased with as the mice aged and developed tumors. We also found that overexpression of HCCR in hepatocytes promoted cell proliferation, migration, and invasion and reduced cell adhesion. Suppressing HCCR expression abolished the effect of HBx-induced hepatocyte growth. In addition, HCCR represses the expression of E-cadherin by inhibition its promoter activity, which might correlate with the effects of HCCR in hepatocytes. Taken together, these results demonstrate that HBx-HCCR-E-cadherin regulation pathway might play an important role in HBV-induced hepatocarcinogenesis. They also imply that HCCR is a potential risk marker for HCC and/or a potential therapeutic target. PMID:26470691

  19. Evaluation of discoidin domain receptor-2 (DDR2) expression level in normal, benign, and malignant human prostate tissues.

    PubMed

    Azemikhah, Mitra; Ashtiani, Hamidreza Ahmadi; Aghaei, Mahmoud; Rastegar, Hosein

    2015-01-01

    Discoidin domain receptor (DDR) is a new member of the receptor tyrosine kinase family. There are two isoforms of discoidin domain receptor (DDR), DDR1 and DDR2. These receptors play a major role in the adhesion, motility and cell proliferation. Due to the important role of DDR2 in the development of tumor extension, this receptor is pivotal in the field of carcinogenesis. The aim of this study was to investigate the mRNA and protein expression of DDR2, in the malignant, benign prostatic hyperplasia (BPH) and normal tissues of patients with prostate cancer. In this study the gene and protein expression of DDR2 in adjacent normal (n=40), BPH (n=40), and malignant (n=40) prostate tissue were measured using real-time PCR and Western blotting. Then, the correlation of DDR2 gene and protein expression with prognostic factors such as age, tumor grade, tumor stage, lymph node involvement, and serum prostate-specific antigen (PSA) concentration were evaluated. The relative mRNA and protein expression level of DDR2 in malignant and benign prostate tissue was significantly higher than those of adjacent normal tissues (P<0.01). This expression was found to increase approximately 3.5 and 2.1 fold for mRNA and protein levels, respectively. Spearman test indicated a significant correlation between DDR2 mRNA and protein expression with prognostic factors such as tumor grade, stage, lymph node involvement, and serum PSA concentration. However, significant correlation with age was not observed. These findings suggest that DDR2 is a cancer-related gene associated with the aggressive progression of prostate cancer patients.

  20. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family.

    PubMed

    Suzuki, Osamu; Abe, Masafumi; Hashimoto, Yuko

    2015-12-01

    To determine the biological roles of cell surface glycosylation, we modified the surface glycosylation of human malignant lymphoma cell lines using glycosylation inhibitors. The O-glycosylation inhibitor, benzyl-α-GalNAc (BZ) enhanced the fibronectin adhesion of HBL-8 cells, a human Burkitt's lymphoma cell line, and of H-ALCL cells, a human anaplastic large cell lymphoma cell line, both of which were established in our laboratory. The N-glycosylation inhibitor, tunicamycin (TM) inhibited the surface expression of Phaseolus vulgaris leukoagglutinating (L-PHA) lectin- and Canavalia ensiformis (ConA) lectin-reactive oligosaccharides in the HBL-8 cell line. Assay of the adhesion of HBL-8 cells to fibronectin showed that fibronectin adhesion is mediated by the integrin very late antigen (VLA)-4 and that not only BZ but also TM treatment enhanced HBL-8 cell adhesion to fibronectin. Furthermore, although BZ treatment also enhanced H-ALCL cell adhesion to fibronectin, this effect was not mediated by VLA-5 or the RGD sequence of fibronectin. We also showed that H-ALCL cell adhesion to galectin-3 was enhanced by pre-treatment with neuraminidase, which cleaves cell surface sialic acid. Additionally, H-ALCL cell adhesion to galectin-3 was inhibited by pre‑treatment with the RGD peptide suggesting that cell adhesion to galectin-3 is mediated by integrin (VLA-5). Furthermore, H-ALCL cell invasion of galectin-1 and galectin-3 was inhibited by pre-treatment with the RGD peptide. Therefore, cell adhesion to and invasion of galectin-1 and galectin-3 are integrin-dependent. In addition to these findings, cell adhesion to galectin-3 was markedly inhibited by treatment with β-lactose compared to treatment with sucrose. Therefore, interactions between integrins and galectin-3 may be mediated through β-galactose that is linked to glycans of integrins. AZA1, an inhibitor of Ras homolog oncoprotein (Rho) GTPase family proteins, RAS-related C3 botulinus toxin substrate 1 (Rac 1) and

  1. Telomerase Activation in Hematological Malignancies

    PubMed Central

    Ropio, Joana; Merlio, Jean-Philippe; Soares, Paula; Chevret, Edith

    2016-01-01

    Telomerase expression and telomere maintenance are critical for cell proliferation and survival, and they play important roles in development and cancer, including hematological malignancies. Transcriptional regulation of the rate-limiting subunit of human telomerase reverse transcriptase gen (hTERT) is a complex process, and unveiling the mechanisms behind its reactivation is an important step for the development of diagnostic and therapeutic applications. Here, we review the main mechanisms of telomerase activation and the associated hematologic malignancies. PMID:27618103

  2. Malignant hyperthermia.

    PubMed

    Bandschapp, Oliver; Girard, Thierry

    2012-07-31

    Malignant hyperthermia (MH) is a subclinical myopathy, usually triggered by volatile anaesthetics and depolarising muscle relaxants. Clinical symptoms are variable, and the condition is sometimes difficult to identify. Nevertheless, rapid recognition and specific as well as symptomatic treatment are crucial to avoid a lethal outcome. Molecular genetic investigations have confirmed the skeletal muscle type ryanodine receptor to be the major MH locus with more than 70% of MH families carrying a mutation in this gene. There is no screening method to test for MH, as current tests are invasive (open muscle biopsy) or restricted to MH families with known MH-associated mutations (molecular genetic testing). The prevalence of the MH trait is unknown, because the clinical penetrance after contact with triggering agents is very variable. More recently, MH mutations have been associated with rhabdomyolysis following statin therapy or with non-pharmacological triggering, such as exertional heat stroke.

  3. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study.

    PubMed

    Immonen, Arto; Vapalahti, Matti; Tyynelä, Kristiina; Hurskainen, Heleena; Sandmair, Anu; Vanninen, Ritva; Langford, Gillian; Murray, Neil; Ylä-Herttuala, Seppo

    2004-11-01

    Malignant glioma is a devastating brain tumor with no effective treatment. This randomised, controlled study involved 36 patients with operable primary or recurrent malignant glioma. Seventeen patients were randomized to receive AdvHSV-tk gene therapy (3 x 10(10) pfu) by local injection into the wound bed after tumor resection, followed by intravenous ganciclovir (GCV), 5 mg/kg twice daily for 14 days. The control group of 19 patients received standard care consisting of radical excision followed by radiotherapy in those patients with primary tumors. The primary end-point was survival as defined by death or surgery for recurrence. Secondary end-points were all-cause mortality and tumour progression as determined by MRI. Overall safety and quality of life were also assessed. Findings were also compared with historical controls (n = 36) from the same unit over 2 years preceding the study. AdvHSV-tk treatment produced a clinically and statistically significant increase in mean survival from 39.0 +/- 19.7 (SD) to 70.6 +/- 52.9 weeks (P = 0.0095, log-rank regression vs. randomized controls). The median survival time increased from 37.7 to 62.4 weeks. Six patients had increased anti-adenovirus antibody titers, without adverse effects. The treatment was well tolerated. It is concluded that AdvHSV-tk gene therapy with GCV is a potential new treatment for operable primary or recurrent high-grade glioma.

  4. Synergistic anticancer activity of curcumin and bleomycin: an in vitro study using human malignant testicular germ cells.

    PubMed

    Cort, Aysegul; Timur, Mujgan; Ozdemir, Evrim; Kucuksayan, Ertan; Ozben, Tomris

    2012-06-01

    Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols used for testicular cancer; however, side-effects are common. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has been demonstrated to induce apoptosis in a number of malignancies. However, to date no study has been carried out to elucidate its anticancer activity and interaction with bleomycin in testicular cancer cells. In this study, we investigated and compared the effects of curcumin, bleomycin and hydrogen peroxide (H2O2) on apoptotic signaling pathways. Curcumin (20 µM), bleomycin (400 µg/ml) and H2O2 (400 µM) incubation for 24 h decreased the viability of NTera-2 cells, and increased caspase-3, -8 and -9 activities, Bax and cytoplasmic cytochrome c levels and decreased Bcl-2 levels. The concurrent use of curcumin with bleomycin induced caspase-3, -8 and -9 activities to a greater extent in NTera-2 cells than the use of each drug alone. Our observations suggest that the effects of curcumin and bleomycin on apoptotic signaling pathways are synergistic. Therefore, we propose to use curcumin together with bleomycin to decrease its therapeutic dose and, therefore, its side-effects.

  5. miR-135b, a key regulator of malignancy, is linked to poor prognosis in human myxoid liposarcoma

    PubMed Central

    Nezu, Y; Hagiwara, K; Yamamoto, Y; Fujiwara, T; Matsuo, K; Yoshida, A; Kawai, A; Saito, T; Ochiya, T

    2016-01-01

    Myxoid/round cell (RC) liposarcomas (MLS) were originally classified into two distinct populations based on histological differences; a myxoid component and a RC component. It is notable that, depending on an increase of the RC component, the prognosis significantly differs. Hence, the RC component is associated with metastasis and poor prognosis. However, the molecular mechanisms that contribute to the malignancy of the RC component still remain largely unknown. Here, we report microRNA-135b (miR-135b), a key regulator of the malignancy, highly expressed in the RC component and promoting MLS cell invasion in vitro and metastasis in vivo through the direct suppression of thrombospondin 2 (THBS2). Decreased THBS2 expression by miR-135b increases the total amount of matrix metalloproteinase 2 (MMP2) and influences cellular density and an extracellular matrix structure, thereby resulting in morphological change in tumor. The expression levels of miR-135b and THBS2 significantly correlated with a poor prognosis in MLS patients. Overall, our study reveals that the miR-135b/THBS2/MMP2 axis is tightly related to MLS pathophysiology and has an important clinical implication. This work provides noteworthy evidence for overcoming metastasis and improving patient outcomes, and sheds light on miR-135b and THBS2 as novel molecular targets for diagnosis and therapy in MLS. PMID:27157622

  6. Malignancy from Radium

    PubMed Central

    Loutit, J. F.

    1970-01-01

    Human experience of the toxicity of radium acts as a guide for the setting of occupationally permissible levels for radioactive nucleides, especially bone-seekers. Reviewing the published statements and photomicrographs in early reports especially those of Martland (1931) one can make a case that malignancy was induced in bone-marrow (leukaemia, malignant myelosclerosis) as well as in bone (osteosarcoma) by radium, especially with large doses. Three case reports of radium intoxication in Britons are noted as compatible with this suggestion, after revised interpretation in two of them. ImagesFigs. 9-10Fig. 4Fig. 5Figs. 11-12Figs. 6-7Fig. 8Figs. 13-14 PMID:5271269

  7. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity.

    PubMed

    Roscilli, Giuseppe; De Vitis, Claudia; Ferrara, Fabiana Fosca; Noto, Alessia; Cherubini, Emanuela; Ricci, Alberto; Mariotta, Salvatore; Giarnieri, Enrico; Giovagnoli, Maria Rosaria; Torrisi, Maria Rosaria; Bergantino, Francesca; Costantini, Susan; Fenizia, Francesca; Lambiase, Matilde; Aurisicchio, Luigi; Normanno, Nicola; Ciliberto, Gennaro; Mancini, Rita

    2016-02-29

    Lung cancer is the leading cause of cancer related deaths and Malignant Pleural Effusion (MPE) is a frequent complication. Current therapies suffer from lack of efficacy in a great percentage of cases, especially when cancer is diagnosed at a late stage. Moreover patients' responses vary and the outcome is unpredictable. Therefore, the identification of patients who will benefit most of chemotherapy treatment is important for accurate prognostication and better outcome. In this study, using malignant pleural effusions (MPE) from non-small cell lung cancer (NSCLC) patients, we established a collection of patient-derived Adenocarcinoma cultures which were characterized for their sensitivity to chemotherapeutic drugs used in the clinical practice. Tumor cells present in MPEs of patients with NSCLC were isolated by density gradient centrifugation, placed in culture and genotyped by next generation sequencing. In a subset of cases patient derived xenografts (PDX) were obtained upon tumor cell inoculation in rag2/IL2 knock-out mice. Isolated primary cultures were characterized and tested for drug sensitivity by in vitro proliferation assays. Additivity, antagonism or synergy for combinatorial treatments were determined by analysis with the Calcusyn software. We have optimized isolation procedures and culture conditions to expand in vitro primary cultures from Malignant Pleural Effusions (MPEs) of patients affected by lung adenocarcinomas, the most frequent form of non small cell lung cancer. Using this approach we have been able to establish 16 primary cultures from MPEs. Cells were banked at low passages and were characterized for their mutational pattern by next generation sequencing for most common driver mutations in lung cancer. Moreover, amplified cultures were shown to engraft with high efficiency when injected in immunocompromised mice. Cancer cell sensitivity to drugs used in standard chemotherapy regimens was assessed either individually or in combination

  8. Cutavirus in Cutaneous Malignant Melanoma

    PubMed Central

    Fridholm, Helena; Vinner, Lasse; Kjartansdóttir, Kristín Rós; Friis-Nielsen, Jens; Asplund, Maria; Herrera, Jose A.R.; Steiniche, Torben; Mourier, Tobias; Brunak, Søren; Willerslev, Eske; Izarzugaza, Jose M.G.; Hansen, Anders J.; Nielsen, Lars P.

    2017-01-01

    A novel human protoparvovirus related to human bufavirus and preliminarily named cutavirus has been discovered. We detected cutavirus in a sample of cutaneous malignant melanoma by using viral enrichment and high-throughput sequencing. The role of cutaviruses in cutaneous cancers remains to be investigated. PMID:28098541

  9. The Origin of Malignant Malaria

    USDA-ARS?s Scientific Manuscript database

    Plasmodium falciparum is the causative agent of malignant malaria, which is among the most severe human infectious diseases. Despite its overwhelming significance to human health, the parasite’s origins remain unclear. The favored origin hypothesis holds that P. falciparum and its closest known rel...

  10. Identification of a cDNA encoding a parathyroid hormone-like peptide from a human tumor associated with humoral hypercalcemia of malignancy

    SciTech Connect

    Mangin, M.; Webb, A.C.; Dreyer, B.E.; Posillico, J.T.; Ikeda, K.; Weir, E.C.; Stewart, A.F.; Bander, N.H.; Milstone, L.; Barton, D.E.

    1988-01-01

    Humoral hypercalcemia of malignancy is a common paraneoplastic syndrome that appears to be mediated in many instances by a parathyroid hormone-like peptide. Poly(A)/sup +/ RNA from a human renal carcinoma associated with this syndrome was enriched by preparative electrophoresis and used to construct an enriched cDNA library in phage lambdagt10. The library was screened with a codon-preference oligonucleotide synthesized on the basis of a partial N-terminal amino acid sequence from a human tumor-derived peptide, and a 2.0 kilo-base cDNA was identified. The cDNA encodes a 177 amino acid protein consisting of a 36 amino acid leader sequence and a 141 amino acid mature peptide. The first 13 amino acids of the deduced sequence of the mature peptide display strong homology to human PTH, with complete divergence thereafter. RNA blot-hybridization analysis revealed multiple transcripts in mRNA from tumors associated with the humor syndrome and also in mRNA from normal human keratinocytes. Southern blot analysis of genomic DNA from humans and rodents revealed a simple pattern compatible with a single-copy gene. The gene has been mapped to chromosome 12.

  11. Development of Methodology to Maintain Primary Cultures of Normal and Malignant Human Prostatic Epihelial Cells in Vivo

    DTIC Science & Technology

    2007-02-01

    environment and the grafting site. Several xenotransplantation models were developed based on severe combined immunodeficient (SCID) mice and their...useful for studying xenotransplantation of human plasmacytoid dendritic cell precursors and human peripheral blood lymphocytes for the development of a

  12. Structure, growth and cell proliferation of human osteosarcoma and malignant fibrous histiocytoma xenografts in serial transplantation in nude mice.

    PubMed

    Broström, L A; Crnalic, S; Löfvenberg, R; Stenling, R; Boquist, L

    1996-11-01

    Tumour specimens from one patient with osteosarcoma and one with malignant fibrous histiocytoma were transplanted in serial passages in nude mice. Structure, growth and cell kinetics of the xenografts were studied in order to assess the validity of the two tumour models. Cell proliferation was analysed using in vivo labelling with the thymidine analogue iododeoxyuridine (IdUrd) and the IdUrd labelling index (LI) was determined by immunohistochemistry. The DNA index (DI) was examined by flow cytometry. The c-myc oncoprotein expression was studied by immunohistochemistry. More intense proliferation was observed in the peripheral parts of the tumours. There was no correlation between tumour growth and cell proliferation in the two tumour groups. Stability of the tumour models was indicated by low intrapassage and interpassage variations of DI, LI, and volume doubling time, and also by retained histopathological characteristics and c-myc staining patterns of donor patients' tumours during serial transplantation.

  13. [Biochemical findings in proteincomposition of secretions of human malignant parotid tumours, chronic parotitis and sialadenoses (author's transl)].

    PubMed

    Eichner, H; Bretzel, G; Hochstrasser, K

    1977-01-01

    In comparison to former investigations in pleomorphic adenoms and Wharthin tumours in the present paper secretion of IgA, lysozyme in correlation to flowrate and total secretion in glands with malignant tumours, inflammations and Sialadenosis were estimated. Thereby 12 patients with malignomas of the parotid gland, 11 patients with chronic parotitis and 12 with sialadenoses were examined. The following results were found: 1. The concentration of protein, IgA and Lysozym is significantly higher than in normal glands and in glands with pleomorphic adenomas and Wharthin tumours. 2. Differentialdiagnosis of Sialadenitis and Sialadenosis of parotid glands is possible by estimating the examined parameters. Thereby in glands with sialadenosis flowrate is higher than in normal glands, and significant lower in glands with sialadenitis. Moreover concentrations of IgA and Lysozyme and protein in glands with sialadenitis are evaluated.

  14. Human thoracic duct cannulation: manipulation of tumor-specific blocking factors in a patient with malignant melanoma.

    PubMed

    Isbister, W H; Noonan, F P; Halliday, W J; Clunie, G J

    1975-05-01

    Thoracic duct lymph was drained for 28 days from a patient with disseminated malignant melanoma. Lymphocytes were separated from the lymph by centrifugation, and returned to the patient daily. Biochemical and hematologic parameters were monitored in blood and lymph, and were maintained at satisfactory levels throughout the period. Cell-mediated immunity and specific blocking activity directed against melanoma antigens were examined by the leukocyte adherence inhibition test. Blocking factors in drained lymph fell to undetectable levels after 6 days' thoracic duct drainage, whereas it took 9 days for serum blocking factors to fall to similar levels. Peripheral blood leukocytes demonstrated cell-mediated immunity against melanoma antigens before and throughout the period of drainage, except for the immediate postoperative period. Within 24 hours of closure of the thoracic duct fistula, serum blocking activity had returned, and 17 days later the patient died.

  15. Low molecular weight heparin suppresses receptor for advanced glycation end products-mediated expression of malignant phenotype in human fibrosarcoma cells.

    PubMed

    Takeuchi, Akihiko; Yamamoto, Yasuhiko; Munesue, Seiichi; Harashima, Ai; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi; Tsuchiya, Hiroyuki

    2013-06-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor and its engagement by ligands such as high mobility group box 1 (HMGB1) is implicated in tumor growth and metastasis. Low molecular weight heparin (LMWH) has an antagonistic effect on the RAGE axis and is also reported to exert an antitumor effect beyond the known activity of anticoagulation. However, the link between the anti-RAGE and antitumor activities of LMWH has not yet to be fully elucidated. In this study, we investigated whether LMWH could inhibit tumor cell proliferation, invasion, and metastasis by blocking the RAGE axis using in vitro and in vivo assay systems. Stably transformed HT1080 human fibrosarcoma cell lines were obtained, including human full-length RAGE-overexpressing (HT1080(RAGE)), RAGE dominant-negative, intracellular tail-deleted RAGE-overexpressing (HT1080(dnRAGE)), and mock-transfected control (HT1080(mock)) cells. Confocal microscopy showed the expression of HMGB1 and RAGE in HT1080 cells. The LMWH significantly inhibited HMGB1-induced NFκB activation through RAGE using an NFκB-dependent luciferase reporter assay and the HT1080 cell lines. Overexpression of RAGE significantly accelerated, but dnRAGE expression attenuated HT1080 cell proliferation and invasion in vitro, along with similar effects on local tumor mass growth and lung metastasis in vivo. Treatment with LMWH significantly inhibited the migration, invasion, tumor formation, and lung metastasis of HT1080(RAGE) cells, but not of HT1080(mock) or HT1080(dnRAGE) cells. In conclusion, this study revealed that RAGE exacerbated the malignant phenotype of human fibrosarcoma cells, and that this exacerbation could be ameliorated by LMWH. It is suggested that LMWH has therapeutic potential in patients with certain types of malignant tumors. © 2013 Japanese Cancer Association.

  16. Fusion Toxin BLyS-Gelonin Inhibits Growth of Malignant Human B Cell Lines In Vitro and In Vivo

    PubMed Central

    Luster, Troy A.; Mukherjee, Ipsita; Carrell, Jeffrey A.; Cho, Yun Hee; Gill, Jeffrey; Kelly, Lizbeth; Garcia, Andy; Ward, Christopher; Oh, Luke; Ullrich, Stephen J.; Migone, Thi-Sau; Humphreys, Robin

    2012-01-01

    B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant. A BLyS-gelonin fusion toxin (BLyS-gel) was generated consisting of the recombinant plant-derived toxin gelonin fused to the N-terminus of BLyS and tested against a large and diverse panel of B-NHL cell lines. Interestingly, B-NHL subtypes mantle cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL) and B cell precursor-acute lymphocytic leukemia (BCP-ALL) were preferentially sensitive to BLyS-gel mediated cytotoxicity, with low picomolar EC50 values. BLyS receptor expression did not guarantee sensitivity to BLyS-gel, even though the construct was internalized by both sensitive and resistant cells. Resistance to BLyS-gel could be overcome by treatment with the endosomotropic drug chloroquine, suggesting BLyS-gel may become trapped within endosomal/lysosomal compartments in resistant cells. BLyS-gel induced cell death was caspase-independent and shown to be at least partially mediated by the “ribotoxic stress response.” This response involves activation of p38 MAPK and JNK/SAPK, and BLyS-gel mediated cytotoxicity was inhibited by the p38/JNK inhibitor SB203580. Finally, BLyS-gel treatment was shown to localize to sites of disease, rapidly reduce tumor burden, and significantly prolong survival in xenograft mouse models of disseminated BCP-ALL, DLBCL, and MCL. Together, these findings suggest BLyS has significant potential as a targeting ligand for the delivery of cytotoxic “payloads” to malignant B cells. PMID:23056634

  17. Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells

    SciTech Connect

    Yamazaki, Hiroto; Naito, Motohiko; Ghani, Farhana Ishrat; Dang, Nam H.; Morimoto, Chikao

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer We focused on CD24 and CD26 for further analysis of CSC properties in MM. Black-Right-Pointing-Pointer Their expressions were correlated with chemoresistance, cell growth, and invasion. Black-Right-Pointing-Pointer Their expressions were also correlated with several cancer related genes. Black-Right-Pointing-Pointer The expression of each marker was correlated with different CSC property in Meso1. Black-Right-Pointing-Pointer Phosphorylation of ERK by EGF was regulated by expression of CD26, but not CD24. -- Abstract: Malignant mesothelioma (MM) is an asbestos-related malignancy characterized by rapid growth and poor prognosis. In our previous study, we have demonstrated that several cancer stem cell (CSC) markers correlated with CSC properties in MM cells. Among these markers, we focused on two: CD24, the common CSC marker, and CD26, the additional CSC marker. We further analyzed the CSC properties of CD24 and CD26-positve MM cells. We established RNAi-knockdown cells and found that these markers were significantly correlated with chemoresistance, proliferation, and invasion potentials in vitro. Interestingly, while Meso-1 cells expressed both CD24 and CD26, the presence of each of these two markers was correlated with different CSC property. In addition, downstream signaling of these markers was explored by microarray analysis, which revealed that their expressions were correlated with several cancer-related genes. Furthermore, phosphorylation of ERK by EGF stimulation was significantly affected by the expression of CD26, but not CD24. These results suggest that CD24 and CD26 differentially regulate the CSC potentials of MM and could be promising targets for CSC-oriented therapy.

  18. Non-AIDS definings malignancies among human immunodeficiency virus-positive subjects: Epidemiology and outcome after two decades of HAART era

    PubMed Central

    Brugnaro, Pierluigi; Morelli, Erika; Cattelan, Francesca; Petrucci, Andrea; Panese, Sandro; Eseme, Franklyn; Cavinato, Francesca; Barelli, Andrea; Raise, Enzo

    2015-01-01

    Highly active antiretroviral therapy (HAART) for human immunodeficiency virus (HIV) infection has been widely available in industrialized countries since 1996; its widespread use determined a dramatic decline in acquired immunodeficiency syndrome (AIDS)-related mortality, and consequently, a significant decrease of AIDS-defining cancers. However the increased mean age of HIV-infected patients, prolonged exposure to environmental and lifestyle cancer risk factors, and coinfection with oncogenic viruses contributed to the emergence of other malignancies that are considered non-AIDS-defining cancers (NADCs) as a relevant fraction of morbidity and mortality among HIV-infected people twenty years after HAART introduction. The role of immunosuppression in the pathogenesis of NADCs is not well defined, and future researches should investigate the etiology of NADCs. In the last years there is a growing evidence that intensive chemotherapy regimens and radiotherapy could be safely administrated to HIV-positive patients while continuing HAART. This requires a multidisciplinary approach and a close co-operation of oncologists and HIV-physicians in order to best manage compliance of patients to treatment and to face drug-related side effects. Here we review the main epidemiological features, risk factors and clinical behavior of the more common NADCs, such as lung cancer, hepatocellular carcinoma, colorectal cancer and anal cancer, Hodgkin’s lymphoma and some cutaneous malignancies, focusing also on the current therapeutic approaches and preventive screening strategies. PMID:26279983

  19. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    PubMed Central

    Wang, Ping; Xue, Yi-Xue; Yao, Yi-Long; Yu, Bo; Liu, Yun-Hui

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma cells were treated with artemether at various concentrations and shRNA interfering technology was employed to silence the expression of VCAM-1. Cell viability, migration, invasiveness and apoptosis were assessed with MTT, wound healing, Transwell and Annexin V-FITC/PI staining. The expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylated Akt (p-Akt) was checked by Western blot assay. Results showed that artemether and shRNA-VCAM-1 not only significantly inhibited the migration, invasiveness and expression of MMP-2/9 and p-Akt, but also promoted the apoptosis of U87 cells. Combined treatment of both displayed the maximum inhibitory effects on the malignant biological behavior of glioma cells. Our work revealed the potential therapeutic effects of artemether and antiVCAM-1 in the treatments of gliomas. PMID:23593320

  20. Alterations in vitamin D signaling pathway in gastric cancer progression: a study of vitamin D receptor expression in human normal, premalignant, and malignant gastric tissue

    PubMed Central

    Wen, Yanghui; Da, Mingxu; Zhang, Yongbin; Peng, Lingzhi; Yao, Jibin; Duan, Yaoxing

    2015-01-01

    Amount of studies in cells and animal models have proved vitamin D has multifarious antitumor effects. However, epidemiological studies showed inconsistent result on gastric cancer. The antitumor role is mainly mediated by the vitamin D receptor (VDR). Our hypothesis is that VDR may be abnormally (poorly) expressed in gastric cancer tissue. Present study is aimed at discovering and analyzing VDR expression in a series of human gastric tissues, including normal, premalignant, and malignant gastric tissue, and correlated VDR to the clinicopathological parameters of gastric cancer patients. VDR expression was detected by immunohistochemistry. The χ2 test was used to analyze the VDR expression as well as the relationship between VDR and the clinicopathological factors of gastric cancer patients. Compared with normal (82.61%) and premalignant tissues (73.64%), VDR was lower expressed in cancer tissues (57.61%), with a statistically significant difference (P = 0.001). Among cancer tissues, VDR was higher expressed in well and moderate differentiated tissues contrasted with tissues with poor differentiation, and higher expressed in small tumors (< 5 cm) compared with large tumors (≥ 5 cm), with a statistically significant difference respectively (P = 0.016, P = 0.009). A decline linear trend appeared when analyzing the statistical difference of VDR expression among normal, premalignant, and malignant gastric tissues. VDR expression has been on the decline from the premalignant stage, finally low expressed in gastric cancer tissues, especial in poorly differentiated tissues. VDR could be a potential prognostic factor for patients with gastric cancer. PMID:26722516

  1. Involvement of p53 mutation and mismatch repair proteins dysregulation in NNK-induced malignant transformation of human bronchial epithelial cells.

    PubMed

    Shen, Ying; Zhang, Shuilian; Huang, Xiaobin; Chen, Kailin; Shen, Jing; Wang, Zhengyang

    2014-01-01

    Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  2. Alterations in vitamin D signaling pathway in gastric cancer progression: a study of vitamin D receptor expression in human normal, premalignant, and malignant gastric tissue.

    PubMed

    Wen, Yanghui; Da, Mingxu; Zhang, Yongbin; Peng, Lingzhi; Yao, Jibin; Duan, Yaoxing

    2015-01-01

    Amount of studies in cells and animal models have proved vitamin D has multifarious antitumor effects. However, epidemiological studies showed inconsistent result on gastric cancer. The antitumor role is mainly mediated by the vitamin D receptor (VDR). Our hypothesis is that VDR may be abnormally (poorly) expressed in gastric cancer tissue. Present study is aimed at discovering and analyzing VDR expression in a series of human gastric tissues, including normal, premalignant, and malignant gastric tissue, and correlated VDR to the clinicopathological parameters of gastric cancer patients. VDR expression was detected by immunohistochemistry. The χ(2) test was used to analyze the VDR expression as well as the relationship between VDR and the clinicopathological factors of gastric cancer patients. Compared with normal (82.61%) and premalignant tissues (73.64%), VDR was lower expressed in cancer tissues (57.61%), with a statistically significant difference (P = 0.001). Among cancer tissues, VDR was higher expressed in well and moderate differentiated tissues contrasted with tissues with poor differentiation, and higher expressed in small tumors (< 5 cm) compared with large tumors (≥ 5 cm), with a statistically significant difference respectively (P = 0.016, P = 0.009). A decline linear trend appeared when analyzing the statistical difference of VDR expression among normal, premalignant, and malignant gastric tissues. VDR expression has been on the decline from the premalignant stage, finally low expressed in gastric cancer tissues, especial in poorly differentiated tissues. VDR could be a potential prognostic factor for patients with gastric cancer.

  3. Pelvic pain, free fluid in pelvis, and human chorionic gonadotropin serum elevation: recurrence of malignant ovarian germ-cell tumor or early pregnancy?

    PubMed

    Barczyński, B; Rogala, E; Nowicka, A; Nurzyńska-Flak, J; Kotarski, J

    2013-01-01

    Conservative treatment of metastatic germ-cell tumor of the ovary does not exclude the possibility of pregnancy in the future. Serum beta-human chorionic gonadotropin (beta-hCG) serves as pregnancy test, and has also been proven to be a useful marker for ovarian germ-cell tumors. This paper is a case report of a 19-year-old patient who was admitted to a district hospital in emergency due to pelvic pain, amenorrhoea, and free fluid in the pelvis. Laboratory tests demonstrated slight increase in beta-hCG serum concentration and transvaginal ultrasound (TVUS) showed no evidence of gestational sac in the uterus. At the age of 14, the patient was diagnosed with malignant germ-cell tumor of the left ovary in FIGO Stage IV and was treated with four courses of chemotherapy according to TGM-95 protocol with etoposide, ifosfamide, and cisplatin, followed by conservative surgery and adjuvant two courses of cytostatics. The initial diagnosis was recurrence of ovarian malignancy and the patient was referred to an oncology center. Wait-and-see approach and repeated ultrasound examination confirmed a normal intrauterine pregnancy which concluded with the delivery of a healthy newborn through cesarean section.

  4. [Malignant hyperthermia].

    PubMed

    Metterlein, T; Schuster, F; Graf, B M; Anetseder, M

    2014-12-01

    Malignant hyperthermia (MH) is a rare hereditary, mostly subclinical myopathy. Trigger substances, such as volatile anesthetic agents and the depolarizing muscle relaxant succinylcholine can induce a potentially fatal metabolic increase in predisposed patients caused by a dysregulation of the myoplasmic calcium (Ca) concentration. Mutations in the dihydropyridine ryanodine receptor complex in combination with the trigger substances are responsible for an uncontrolled release of Ca from the sarcoplasmic reticulum. This leads to activation of the contractile apparatus and a massive increase in cellular energy production. Exhaustion of the cellular energy reserves ultimately results in local muscle cell destruction and subsequent cardiovascular failure. The clinical picture of MH episodes is very variable. Early symptoms are hypoxia, hypercapnia and cardiac arrhythmia whereas the body temperature rise, after which MH is named, often occurs later. Decisive for the course of MH episodes is a timely targeted therapy. Following introduction of the hydantoin derivative dantrolene, the previously high mortality of fulminant MH episodes could be reduced to well under 10 %. An MH predisposition can be detected using the invasive in vitro contracture test (IVCT) or mutation analysis. Few elaborate diagnostic procedures are in the developmental stage.

  5. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

    PubMed

    O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M

    2007-08-07

    Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.

  6. Asbestos-related malignancy

    SciTech Connect

    Talcott, J.A.; Antman, K.H.

    1988-05-01

    Asbestos-associated malignancies have received significant attention in the lay and medical literature because of the increasing frequency of two asbestos-associated tumors, lung carcinoma and mesothelioma; the wide distribution of asbestos; its status as a prototype environmental carcinogen; and the many recent legal compensation proceedings, for which medical testimony has been required. The understanding of asbestos-associated carcinogenesis has increased through study of animal models, human epidemiology, and, recently, the application of modern molecular biological techniques. However, the detailed mechanisms of carcinogenesis remain unknown. A wide variety of malignancies have been associated with asbestos, although the strongest evidence for a causal association is confined to lung cancer and mesothelioma. Epidemiological studies have provided evidence that both the type of asbestos fiber and the industry in which the exposure occurs may affect the rates of asbestos-associated cancers. It has been shown that asbestos exerts a carcinogenic effect independent of exposure to cigarette smoking that, for lung cancers, is synergistically enhanced by smoking. Other questions remain controversial, such as whether pulmonary fibrosis necessarily precedes asbestos-associated lung cancer and whether some threshold level of exposure to asbestos (including low-dose exposures that may occur in asbestos-associated public buildings) may be safe. Mesothelioma, the most closely asbestos-associated malignancy, has a dismal natural history and has been highly resistant to therapy. However, investigational multi-modality therapy may offer benefit to some patients. 179 references.

  7. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast - A numerical study.

    PubMed

    Das, Koushik; Mishra, Subhash C

    2015-08-01

    This article reports a numerical study pertaining to simultaneous estimation of size, radial location and angular location of a malignant tumor in a 3-D human breast. The breast skin surface temperature profile is specific to a tumor of specific size and location. The temperature profiles are always the Gaussian one, though their peak magnitudes and areas differ according to the size and location of the tumor. The temperature profiles are obtained by solving the Pennes bioheat equation using the finite element method based solver COMSOL 4.3a. With temperature profiles known, simultaneous estimation of size, radial location and angular location of the tumor is done using the curve fitting method. Effect of measurement errors is also included in the study. Estimations are accurate, and since in the inverse analysis, the curve fitting method does not require solution of the governing bioheat equation, the estimation is very fast.

  8. Establishment of a human herpes virus-8-negative malignant effusion lymphoma cell line (STR-428) carrying concurrent translocations of BCL2 and c-MYC genes.

    PubMed

    Taira, Tamiko; Nagasaki, Akitoshi; Tomoyose, Takeaki; Miyagi, Jun-ichi; Kakazu, Naoki; Makino, Shigeyoshi; Shinjyo, Tetsuharu; Taira, Naoya; Masuda, Masato; Takasu, Nobuyuki

    2007-09-01

    A new cell line, STR-428 was established from ascites tumor cells of a malignant effusion lymphoma patient without human herpes virus-8 (HHV-8) infection. STR-428 cells showed an immunophenotype of mature B-cells and produced few cytokines related to lymphomatous effusion. Karyotypic and genetic analysis revealed complex translocations including t(14;18)(q32;q21) effecting IgH/BCL2 and der(8)t(3;8)(q27;q24) involving c-MYC. STR-428 represents a unique, B-cell lymphoma cell line carrying concurrent rearrangement of BCL2 and c-MYC genes with features distinct from those of HHV-8-related primary effusion lymphoma. This cell line may be a valuable tool, other than HHV-8, to investigate the pathogenesis of primary lymphomatous effusion.

  9. Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells

    PubMed Central

    MATAYOSHI, SEN; CHIBA, SHUNMEI; LIN, YANFUI; ARAKAKI, KAZUNARI; MATSUMOTO, HIROFUMI; NAKANISHI, TAKAYA; SUZUKI, MIKIO; KATO, SEIYA

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer worldwide. Despite improvement in therapeutic strategies, the prognosis of advanced HNSCC remains poor. The extacellular lipid mediators known as lysophosphatidic acids (LPAs) have been implicated in tumorigenesis of HNSCC. LPAs activate G-protein-coupled receptors not only in the endothelial differentiation gene (Edg) family (LPA1, LPA2, LPA3) but also in the phylogenetically distant non-Edg family (LPA4, LPA5, LPA6). The distinct roles of these receptor isoforms in HNSCC tumorigenesis have not been clarified. In the present study, we investigated the effect of ectopic expression of LPA4 in SQ-20B, an HNSCC cell line, expressing a trivial level of endogenous LPA4. LPA (18:1) stimulated proliferation of SQ-20B cells, but did not affect proliferation of HEp-2, an SCC cell line expressing higher levels of LPA4, comparable to those of with LPA1. LPA-stimulated proliferation of SQ-20B cells was attenuated by Ki16425 and Rac1 inhibitor, but not by Y-27632. Infection with doxycycline-regulatable adenovirus vector expressing green fluorescent protein-tagged LPA4 (AdvLPA4G) abolished LPA-stimulated proliferation in SQ-20B cells with the accumulation of G2/M-phasic cells. Ectopic LPA4 induction further downregulated proliferation of Ki16425-treated SQ-20B cells, of which downregulation was partially recovered by LPA. Ectopic LPA4 induction also downregulated proliferation of Rac1 inhibitor-treated SQ-20B cells, however, LPA no longer recovered it. Finally, LPA-induced cell motility was suppressed by ectopic LPA4 expression as well as by Ki16425, Rac1 inhibitor or Y-27632. Our data suggest that LPA4 signaling potentially modulates malignant behavior of SQ-20B cells. LPA signaling, which is mediated by both Edg and non-Edg receptors, may be a determinant of malignant behavior of HNSCC and could therefore be a promising therapeutic target. PMID:23467751

  10. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma.

    PubMed

    Lee, Kyung-Ae; Chae, Jung-Il; Shim, Jung-Hyun

    2012-06-26

    Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a very poor prognosis. Several clinical studies such as immunotherapy, gene therapy and molecular targeting agents have been tried for treatment of malignant mesothelioma, however, there is no application for effective clinical treatment. Coffee has various biological functions such as anti-oxidant, anti-inflammatory, anti-mutagenic and anti-carcinogenic activities. The therapeutic activities of the bioactive compounds in coffee was sugested to influence intracellular signaling of MPM. Regarding to the cancer-related functions, In this study, suppression of Sp1 protein level followed by induction of MSTO-211H cell apoptosis by cafestol and kahweol were investigated in oreder to determine Sp1's potential as a significant target for human MPM therapy as well. Cells were treated separately with final concentration of cafestol and kahweol and the results were analyzed by MTS assay, DAPI staining, PI staining, luciferase assay, RT-PCR, and immunoblotting. Viability of MSTO-211H and H28 cells were decreased, and apoptotic cell death was increased in MSTO-211H as a result of cafestol and kahweol treatment. Cafestol and kahweol increased Sub-G1 population and nuclear condensation in MSTO-211H cells. Roles of Sp1 in cell proliferation and apoptosis of the MSTO-211H cells by the Sp1 inhibitor of Mithramycin A were previously confirmed. Cafestol and kahweol significantly suppressed Sp1 protein levels. Kahweol slightly attenuated Sp1 mRNA, while Cafestol did not affect in MSTO-211H cells. Cafestol and kahweol modulated the promoter activity and protein expression level of the Sp1 regulatory genes including Cyclin D1, Mcl-1, and Survivin in mesothelioma cells. Apoptosis signaling cascade was activated by cleavages of Bid, Caspase-3, and PARP with cafestol and by upregulation of Bax, and downregulation of Bcl-xl by kahweol. Sp1 can be a novel molecular target of cafestol and kahweol in human MPM.

  11. Isolation and fine mapping of 16 novel human zinc finger-encoding cDNAs identify putative candidate genes for developmental and malignant disorders

    SciTech Connect

    Tommerup, N.; Vissing, H.

    1995-05-20

    The authors have isolated and chromosomally fine-mapped 16 novel genes belonging to the human zinc finger Krueppel family (ZNF131-140, 142, 143, 148, 151, 154, and 155), including 1 of the GLI type (ZNF143) and 3 containing a KRAB (Krueppel-associated box) segment (ZNF133, 136, and 140). Based on their map position, several of these ZNF genes are putative candidate genes for both developmental and malignant disorders: ZNF138, ZNF139, and ZNF143 were localized to 7q11.2, 7q21.3-q22.1, and 11p15.3-p15.4, regions involved in deletions and/or translocations associated with Williams syndrome, split hand and foot disease (SHFD1), and Beckwith-Wiedemann syndrome, respectively. ZNF133 was localized to 20p11.2, close to, but probably distinct from, the region deleted in Alagille syndrome. Zinc finger genes mapping to regions commonly deleted in solid tumors included ZNF132, 134, 135, 137, 154, and 155, all located on 19q13 (thyroid adenoma), and ZNF151, at 1p36.1-p36.2 (neuroblastoma, colon cancer, and other tumors). In addition, several of the ZNFs mapped to regions implicated in recurrent chromosomal rearrangements in hematological malignancies (ZNF139, 7q21.3-q22.1; ZNF148, 3q21-q22; ZNF151, 1p36.1-p36.2). The study indicates that the number of ZNF genes in human is large and that systematic isolation and mapping of ZNF genes is a straightforward approach for the identification of novel candidate disease genes. 47 refs., 2 figs., 1 tab.

  12. Interaction of human malignant melanoma (ST-ML-12) tumor spheroids with endothelial cell monolayers. Damage to endothelium by oxygen-derived free radicals.

    PubMed Central

    Offner, F. A.; Wirtz, H. C.; Schiefer, J.; Bigalke, I.; Klosterhalfen, B.; Bittinger, F.; Mittermayer, C.; Kirkpatrick, C. J.

    1992-01-01

    Clinical and experimental observations suggest that tumor-induced endothelial cell injury may be one of several initial events in the establishment of tumor metastases. To test this hypothesis, the authors have analyzed the interaction of malignant melanoma (ST-ML-12) multicenter tumor spheroids with endothelial cell monolayers in a three-dimensional coculture system. After 1.5 hours of interaction, the authors observed a toxic effect on endothelial cells in the perispheroid region. The latter was demonstrated by testing membrane integrity with the fluorescent probes acridine orange/ethidium bromide and resulted in sensitivity to shear stress of the damaged cells. The endothelium then underwent a regenerative cycle to replace the denuded halo. Addition of the oxygen radical-scavenging enzyme superoxide dismutase to the culture medium prevented this endothelial cell damage in a dose-dependent manner for up to 12 hours. By contrast, catalase, deferoxamine mesylate, allopurinol, and the proteinase inhibitors soybean trypsin inhibitor and aprotinin were not protective under the same conditions. The endothelial damage was dependent on the attachment of the spheroids. Medium conditioned by ST-ML-12-spheroids proved to be ineffective. A similar, but less prominent, deleterious effect was seen when human peritoneal mesothelial cells were used in place of the human umbilical vein endothelial cells. Spheroids of the uroepithelial cell line HU-609 were used as control. No toxicity was observed in these cocultures. Melanin biosynthesis is associated with the production of oxygen-derived free radicals. The results suggest a possible impl