Science.gov

Sample records for a375 human melanoma

  1. Synergistic Apoptosis-Inducing Effects on A375 Human Melanoma Cells of Natural Borneol and Curcumin

    PubMed Central

    Chen, Jianping; Li, Lin; Su, Jianyu; Li, Bing; Chen, Tianfeng; Wong, Yum-Shing

    2014-01-01

    This study was to investigate the synergistic effect of NB/Cur on growth and apoptosis in A375 human melanoma cell line by MTT assay, flow cytometry and Western blotting. Our results demonstrated that NB effectively synergized with Cur to enhance its antiproliferative activity on A375 human melanoma cells by induction of apoptosis, as evidenced by an increase in sub-G1 cell population, DNA fragmentation, PARP cleavage and caspase activation. Further mechanistic studies by Western blotting showed that after treatment of the cells with NB/Cur, up-regulation of the expression level of phosphorylated JNK and down-regulation of the expression level of phosphorylated ERK and Akt contributed to A375 cells apoptosis. Moreover, NB also potentiated Cur to trigger intracellular ROS overproduction and the DNA damage with up-regulation of the expression level of phosphorylated ATM, phosphorylated Brca1 and phosphorylated p53. The results indicate the combinational application potential of NB and Cur in treatments of cancers. PMID:24971451

  2. Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line

    PubMed Central

    Merighi, Stefania; Varani, Katia; Gessi, Stefania; Cattabriga, Elena; Iannotta, Valeria; Ulouglu, Canan; Leung, Edward; Borea, Pier Andrea

    2001-01-01

    The present work characterizes, from a pharmacological and biochemical point of view, adenosine receptors in the human malignant melanoma A375 cell line. Adenosine receptors were detected by RT – PCR experiments. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 1.9±0.2 nM and Bmax of 23±7 fmol mg−1 of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 5.1±0.2 nM and a Bmax of 220±7 fmol mg−1 of protein. A3 receptors were studied with the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 3.3±0.7 nM and Bmax of 291±50 fmol mg−1 of protein. The pharmacological profile of radioligand binding on A375 cells was established using typical adenosine ligands which displayed a rank order of potency typical of the different adenosine receptor subtype. Thermodynamic data indicated that radioligand binding to adenosine receptor subtypes in A375 cells was entropy- and enthalpy-driven. In functional assays the high affinity A2A agonists HE-NECA, CGS 21680 and A2A – A2B agonist NECA were able to increase cyclic AMP accumulation in A375 cells whereas A3 agonists Cl-IB-MECA, IB-MECA and NECA were able to stimulate Ca2+ mobilization. In conclusion, all these data indicate, for the first time, that adenosine receptors with a pharmacological and biochemical profile typical of the A1, A2A, A2B and A3 receptor subtype are present on A375 melanoma cell line. PMID:11704641

  3. Proteomics analysis of A375 human malignant melanoma cells in response to arbutin treatment.

    PubMed

    Nawarak, Jiraporn; Huang-Liu, Rosa; Kao, Shao-Hsuan; Liao, Hsien-Hua; Sinchaikul, Supachok; Chen, Shui-Tein; Cheng, Sun-Long

    2009-02-01

    Although the toxicogenomics of A375 human malignant melanoma cells treated with arbutin have been elucidated using DNA microarray, the proteomics of the cellular response to this compound are still poorly understood. In this study, we performed proteomic analyses to investigate the anticancer effect of arbutin on the protein expression profile in A375 cells. After treatment with arbutin (8 microg/ml) for 24, 48 and 72 h, the proteomic profiles of control and arbutin-treated A375 cells were compared, and 26 differentially expressed proteins (7 upregulated and 19 downregulated proteins) were identified by MALDI-Q-TOF MS and MS/MS. Among these proteins, 13 isoforms of six identical proteins were observed. Bioinformatic tools were used to search for protein function and to predict protein interactions. The interaction network of 14 differentially expressed proteins was found to be correlated with the downstream regulation of p53 tumor suppressor and cell apoptosis. In addition, three upregulated proteins (14-3-3G, VDAC-1 and p53) and five downregulated proteins (ENPL, ENOA, IMDH2, PRDX1 and VIME) in arbutin-treated A375 cells were validated by RT-PCR analysis. These proteins were found to play important roles in the suppression of cancer development.

  4. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin.

    PubMed

    Cheng, Sun-Long; Liu, Rosa Huang; Sheu, Jin-Nan; Chen, Shui-Tein; Sinchaikul, Supachok; Tsay, Gregory Jiazer

    2007-01-01

    Although arbutin is a natural product and widely used as an ingredient in skin care products, its effect on the gene expression level of human skin with malignant melanoma cells is rarely reported. We aim to investigate the genotoxic effect of arbutin on the differential gene expression profiling in A375 human malignant melanoma cells through its effect on tumorigenesis and related side-effect. The DNA microarray analysis provided the differential gene expression pattern of arbutin-treated A375 cells with the significant changes of 324 differentially expressed genes, containing 88 up-regulated genes and 236 down-regulated genes. The gene ontology of differentially expressed genes was classified as belonging to cellular component, molecular function and biological process. In addition, four down-regulated genes of AKT1, CLECSF7, FGFR3, and LRP6 served as candidate genes and correlated to suppress the biological processes in the cell cycle of cancer progression and in the downstream signaling pathways of malignancy of melanocytic tumorigenesis.

  5. β- and γ-Actins in the nucleus of human melanoma A375 cells.

    PubMed

    Migocka-Patrzałek, Marta; Makowiecka, Aleksandra; Nowak, Dorota; Mazur, Antonina J; Hofmann, Wilma A; Malicka-Błaszkiewicz, Maria

    2015-11-01

    Actin is a highly conserved protein that is expressed in all eukaryotic cells and has essential functions in the cytoplasm and the nucleus. Nuclear actin is involved in transcription by all three RNA polymerases, chromatin remodelling, RNA processing, intranuclear transport, nuclear export and in maintenance of the nuclear architecture. The nuclear actin level and polymerization state are important factors regulating nuclear processes such as transcription. Our study shows that, in contrast to the cytoplasm, the majority of endogenous nuclear actin is unpolymerized in human melanoma A375 cells. Most mammalian cells express the two non-muscle β- and γ-actin isoforms that differ in only four amino acids. Despite their sequence similarity, studies analysing the cytoplasmic functions of these isoforms demonstrated that β- and γ-actins show differences in localization and function. However, little is known about the involvement of the individual actin isoforms in nuclear processes. Here, we used the human melanoma A375 cell line to analyse actin isoforms in regard to their nuclear localization. We show that both β- and γ-non-muscle actin isoforms are present in nuclei of these cells. Immunolocalization studies demonstrate that both isoforms co-localize with RNA polymerase II and hnRNP U. However, we observe differences in the ratio of cytoplasmic to nuclear actin distribution between the isoforms. We show that β-actin has a significantly higher nucleus-to-cytoplasm ratio than γ-actin.

  6. Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability.

    PubMed

    Badiola, Iker; Villacé, Patricia; Basaldua, Iratxe; Olaso, Elvira

    2011-10-01

    Discoidin domain receptors (DDR1 and DDR2) are tyrosine kinase receptors for fibrillar collagen implicated in postnatal development, tissue repair, and primary and metastatic cancer progression. While DDR1 has been described in tumor cells, DDR2 has been localized in the tumor stroma, but its presence in the tumor cells remains unknown. The aim of this study was to elucidate the role of DDR2 signaling in tumor cells during hepatic metastasis progression. DDR2 expression and phosphorylation in cultured human A375 melanoma cells was documented by Western blot analysis. A375 cells were stably transfected with a small interfering RNA (siRNA) against DDR2 and two clones were selected: A375R2-70 and A375R2-40, with 70 and 40% of the DDR2 protein expression respectively, compared to mock-transfected cells (A375R2-100). Development of experimental liver metastasis by intrasplenic inoculation of A375R2-70 and A37R2-40 clones was reduced by 60 and 75%, respectively, measured as tumor volume, compared to livers injected with A375R2-100 cells. Accordingly, A375R2-70 and A37R2-40 clones showed reduced in vitro gelatinase activity and JNK phosphorylation, compared to mock transfected cells, with maximal inhibition in A375R2-40. Additionally, A375 melanoma, SK-HEP hepatoma and HT-29 colon carcinoma human cell lines transiently transfected with siRNA against DDR2 also showed reduced proliferation and migration rates compared to mock-transfected ones. In conclusion, DDR2 promotes A375 melanoma metastasis to the liver and the underlying mechanism implicates regulation of metalloproteinase release, cell growth and chemotactic invasion of the host tissue.

  7. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells.

    PubMed

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed.

  8. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells

    PubMed Central

    Cattaneo, Lucia; Cicconi, Rosella; Mignogna, Giuseppina; Giorgi, Alessandra; Mattei, Maurizio; Graziani, Giulia; Ferracane, Rosalia; Grosso, Alessandro; Aducci, Patrizia; Schininà, M. Eugenia; Marra, Mauro

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary’s bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary’s anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed. PMID:26176704

  9. Physalin B from Physalis angulata triggers the NOXA-related apoptosis pathway of human melanoma A375 cells.

    PubMed

    Hsu, Chia-Chun; Wu, Yang-Chang; Farh, Lynn; Du, Ying-Chi; Tseng, Wei-Kung; Wu, Chau-Chung; Chang, Fang-Rong

    2012-03-01

    Melanoma is a lethal form of skin cancer that can metastasize rapidly. While surgery and radiation therapy provide palliative therapy for local tumor growth, systemic therapy is the mainstay of treatment for metastatic melanoma. However, limited chemotherapeutic agents are available for melanoma treatment. In this study, we investigated the anti-melanoma effect of physalin B, the major active compound from a widely used herb medicine, Physalis angulata L. This study demonstrated that physalin B exhibits cytotoxicity towards v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma A375 and A2058 cells (the IC50 values are lower than 4.6 μg/ml). Cytotoxicity is likely resulted from apoptosis since the apoptotic marker phosphatidylserine are detected immediately under physalin B treatment and apoptotic cells formation. Further examination revealed that physalin B induces expression of the proapoptotic protein NOXA within 2 h and later triggers the expression of Bax and caspase-3 in A375 cells. These results indicate that physalin B can induce apoptosis of melanoma cancer cells via the NOXA, caspase-3, and mitochondria-mediated pathways, but not of human skin fibroblast cells and myoblastic cells. Thus, physalin B has the potential to be developed as an effective chemotherapeutic lead compound for the treatment of malignant melanoma.

  10. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie; Bai, Yan; Huang, Liang

    2008-11-15

    Selenium nanoparticle (Nano-Se) is a novel Se species with novel biological activities and low toxicity. In the present study, we demonstrated a simple method for synthesis of size-controlled Nano-Se by adding Undaria pinnatifida polysaccharides to the redox system of selenite and ascorbic acid. A panel of four human cancer cell lines was shown to be susceptible to Nano-Se, with IC(50) values ranging from 3.0 to 14.1 microM. Treatment of A375 human melanoma cells with the Nano-Se resulted in dose-dependent cell apoptosis as indicated by DNA fragmentation and phosphatidylserine translocation. Further investigation on intracellular mechanisms found that Nano-Se treatment triggered apoptotic cell death in A375 cells with the involvement of oxidative stress and mitochondrial dysfunction. Our results suggest that Nano-Se may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma cancer.

  11. Antiproliferative and apoptosis-inducing effects of lipophilic vitamins on human melanoma A375 cells in vitro.

    PubMed

    Ishibashi, Mai; Arai, Mariko; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2012-01-01

    The effects of six lipophilic vitamins: tretinoin (ATRA), vitamin D(3) (VD(3)), VE, VK(1), VK(3), and VK(5) on cell proliferation and apoptosis in human A375 melanoma cells were investigated. VD(3), VK(3), and VK(5) were found to inhibit cell proliferation significantly at concentration ranges of 10-100 μmol/L (p<0.01), while the other vitamins did not show inhibitory effects at 100 μmol/L. VK(3) and VK(5) showed the strongest effects with IC(50) values of less than 10 μmol/L. Dacarbazine slightly inhibited the proliferation of A375 cells at a concentration range of 25-100 μmol/L, but the effects were not statistically significant. VK(3) and VK(5) increased annexin-V positive apoptotic cells, as well as activating caspase-3, in A375 cells. Our findings showed that VD(3), VK(3,) and VK(5) inhibited the growth of dacarbazine resistant human melanoma cells, while ATRA, VE, and VK(1) had little effect on the cell growth. The effects of VK(3) and VK(5) were observed at concentrations lower than 10 μmol/L, which are suggested to have resulted from apoptosis-induction in the melanoma cells.

  12. AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Romanini, Antonella; Pellegrino, Mario; Adinolfi, Barbara; Podestà, Adriano; Costa, Barbara; Da Pozzo, Eleonora; Martini, Claudia; Breschi, Maria Cristina; Nieri, Paola

    2015-08-01

    Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251. The BRAF V600E mutant melanoma cell line, A375, was used as an in-vitro model system. Characterization tools included a cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with Annexin V-FITC/7-AAD double staining, cell cycle analyses, and measurements of changes in intracellular cAMP and calcium concentrations. AM251 exerted a marked cytotoxic effect against A375 human melanoma cells with potency comparable with that observed for cisplatin without significant changes in the human dermal fibroblasts viability. AM251, at a concentration that approximates the IC50, downregulated genes encoding antiapoptotic proteins (BCL2 and survivin) and increased transcription levels of proapoptotic BAX, induced alteration of Annexin V reactivity, DNA fragmentation, chromatin condensation in the cell nuclei, and G2/M phase arrest.AM251 also induced a 40% increase in the basal cAMP levels, but it did not affect intracellular calcium concentrations. The involvement of GPR55, TRPA1, and COX-2 in the AM251 mechanism of action was excluded. The combination of AM251 with celecoxib produced a synergistic antitumor activity, although the mechanism underlying this effect remains to be elucidated. This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.

  13. Extracts of centipede Scolopendra subspinipes mutilans induce cell cycle arrest and apoptosis in A375 human melanoma cells.

    PubMed

    Ma, Weina; Liu, Rui; Qi, Junpeng; Zhang, Yanmin

    2014-07-01

    Extracts from the centipede Scolopendra genus, have been used in traditional medicine for the treatment of various diseases and have been found to exhibit anticancer activity in tumor cells. To investigate the potential and associated antitumor mechanism of alcohol extracts of the centipede Scolopendra subspinipes mutilans (AECS), cell viability, cell cycle and cell apoptosis were studied and the results revealed that AECS inhibits A375 cell proliferation in a dose- and time-dependent manner. In addition, AECS was found to arrest the cell cycle of A375 cells at the S phase, which was accompanied by a marked increase in the protein levels of cyclin E and a decrease in the protein levels of cyclin D1. In a cell culture system, AECS markedly induced the apoptosis of A375 cells, which was closely associated with the effects on the Bcl-2 family, whereby decreased Bcl-2 and increased Bak, Bax and Bad expression levels were observed. The underlying mechanism of AECS inhibiting A375 cell proliferation was associated with the induction of cell cycle arrest and apoptosis, indicating that AECS may present as a potential therapeutic agent for administration in human melanoma cancer intervention.

  14. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    PubMed Central

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  15. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line

    NASA Astrophysics Data System (ADS)

    Chakraborty, Ruchira; Basu, Tarakdas

    2017-03-01

    In two earlier communications (Chatterjee et al 2012 Nanotechnology 23 085103, Chatterjee et al 2014 Nanotechnology 25 135101), we reported the development of a simple and unique method of synthesizing highly stable metallic copper nanoparticles (Cu NPs) with high antibacterial activity. Here we report on the cytotoxic potency of the NPs against cancer cells. The value of the IC50 dose of the Cu NPs against human skin cancer cell A-375 was found to be 1.71 μg ml-1 only, which was much less than values reported so far, and this concentration had no cytotoxic effect on normal white blood cells. The NPs caused (i) lowering of cell membrane rigidity, (ii) DNA degradation, (iii) chromosomal condensation, (iv) cell cycle arrest in the G2/M phase, (v) depolarization of the mitochondrial membrane and (vi) apoptosis of cells. Cellular apoptosis occurred in the caspase-9-mediated intrinsic pathway. This study revealed that our Cu NPs had high anticancer properties by killing tumor cells through the apoptotic pathway. Since this particle has high antibacterial activity, our Cu NPs might be developed in future as a dual action drug—anticancer as well as antibacterial.

  16. Antioxidant enzymes and the mechanism of the bystander effect induced by ultraviolet C irradiation of A375 human melanoma cells.

    PubMed

    Ghosh, Rita; Guha, Dipanjan; Bhowmik, Sudipta; Karmakar, Sayantani

    2013-09-18

    Irradiated cells generate dynamic responses in non-irradiated cells; this signaling phenomenon is known as the bystander effect (BE). Factors secreted by the irradiated cells communicate some of these signals. Conditioned medium from UVC-irradiated A375 human melanoma cells was used to study the BE. Exposure of cells to conditioned medium induce cell-cycle arrest at the G2/M transition. Although conditioned medium treatment, by itself, did not alter cell viability, treated cells were more resistant to the lethal action of UVC or H2O2. This protective effect of conditioned medium was lost within 8h. Apoptotic or autophagic cell death was not involved in this resistance. Exposure to conditioned medium did not influence the rate of DNA repair, as measured by NAD(+) depletion. The activities of catalase and superoxide dismutase were elevated in cells exposed to conditioned medium, but returned to normal levels by 8h post-treatment. These results indicate a close correlation between BE-stimulated antioxidant activity and cellular sensitivity. Cell-cycle arrest and stimulation of antioxidant activity may account for the resistance to killing that was observed in bystander cells exposed to UVC or H2O2 treatment and are consistent with the role of the BE as a natural defense function triggered by UVC irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-03-19

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  18. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells.

    PubMed

    Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung

    2006-12-01

    Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.

  19. Vanillin Analogues o-Vanillin and 2,4,6-Trihydroxybenzaldehyde Inhibit NFĸB Activation and Suppress Growth of A375 Human Melanoma.

    PubMed

    Marton, Annamária; Kúsz, Erzsébet; Kolozsi, Csongor; Tubak, Vilmos; Zagotto, Giuseppe; Buzás, Krisztina; Quintieri, Luigi; Vizler, Csaba

    2016-11-01

    Constitutive activation of nuclear factor kappa-B (NFĸB) is a hallmark of various cancer types, including melanoma. Chemotherapy may further increase tumour NFĸB activity, a phenomenon that, in turn, exacerbates drug resistance. This study aimed at preliminary screening of a panel of aromatic aldehydes, including vanillin, for cytotoxicity and suppression of tumour cell NFĸB activity. The cytotoxic and NFĸB-inhibitory effects of 10 aromatic aldehydes, including vanillin, were investigated in cultured A375 human melanoma cells. Each compound was assayed alone and in combination with the model NFĸB-activating drug doxorubicin. The most promising analogues were then tested alone and in combination with 4-hydroperoxycyclophosphamide in vitro, and with cyclophosphamide in mice bearing A375 xenografts. The vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde exhibited cytotoxicity against cultured A375 cells, and inhibited doxorubicin- and 4-hydroperoxycyclophosphamide-induced NFĸB activation. They also suppressed A375 cell growth in mice. o-vanillin and 2,4,6-trihydroxybenzaldehyde deserve further evaluation as potential anticancer drugs. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Triggering Apoptotic Death of Human Malignant Melanoma A375.S2 Cells by Bufalin: Involvement of Caspase Cascade-Dependent and Independent Mitochondrial Signaling Pathways

    PubMed Central

    Hsiao, Yu-Ping; Yu, Chun-Shu; Yu, Chien-Chih; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Huang, Hui-Ying; Tang, Nou-Ying; Yang, Jen-Hung; Huang, An-Cheng; Chung, Jing-Gung

    2012-01-01

    Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨm), intracellular Ca2+ release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨm and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways. PMID:22719785

  1. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated

    PubMed Central

    Berenstein, Ariel; Notcovich, Cintia; Cerda, María B.; Klamt, Fabio; Chernomoretz, Ariel; Durán, Hebe

    2016-01-01

    Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas. PMID:27206673

  2. Effect of inhibition of aloe-emodin on N-acetyltransferase activity and gene expression in human malignant melanoma cells (A375.S2).

    PubMed

    Lin, Shuw-Yuan; Yang, Jen-Hung; Hsia, Te-Chun; Lee, Jau-Hong; Chiu, Tsan-Hung; Wei, Yau-Huei; Chung, Jing-Gung

    2005-12-01

    Arylamine carcinogens and drugs are N-acetylated by cytosolic N-acetyltransferase (NAT), which uses acetyl-coenzyme A as a cofactor. NAT plays an initial role in the metabolism of these arylamine compounds. 2-Aminofluorene is one of the arylamine carcinogens which have been demonstrated to undergo N-acetylation in laboratory animals and humans. Our previous study showed that human cancer cell lines (colon cancer, colo 205; liver cancer, Hep G2; bladder cancer, T24; leukemia, HL-60; prostate cancer, LNCaP; osteogenic sarcoma, U-2 OS; malignant melanoma, A375.S2) displayed NAT activity, which was affected by aloe-emodin in human leukemia cells. The purpose of this study was to determine whether aloe-emodin could affect the enzyme activity and gene expression of NAT at the mRNA and protein levels in malignant human melanoma A375.S2 cells. The results showed that aloe-emodin inhibited NAT1 activity (decreased N-acetylation of 2-aminofluorene) in intact cells in a dose-dependent manner. The effect of aloe-emodin on NAT1 at the protein level was determined by Western blotting and the mRNA levels were examined by polymerase chain reaction (PCR) and cDNA microarray. These results clearly indicate that aloe-emodin inhibits the mRNA expression and enzyme activity of NAT1 in A375.S2 cells.

  3. Antihyperglycemic drug Gymnema sylvestre also shows anticancer potentials in human melanoma A375 cells via reactive oxygen species generation and mitochondria-dependent caspase pathway.

    PubMed

    Chakraborty, Debrup; Ghosh, Samrat; Bishayee, Kausik; Mukherjee, Avinaba; Sikdar, Sourav; Khuda-Bukhsh, Anisur Rahman

    2013-09-01

    Ethanolic extract of Gymnema sylvestre (GS) leaves is used as a potent antidiabetic drug in various systems of alternative medicine, including homeopathy. The present study was aimed at examining if GS also had anticancer potentials, and if it had, to elucidate its possible mechanism of action. We initially tested possible anticancer potential of GS on A375 cells (human skin melanoma) through MTT assay and determined cytotoxicity levels in A375 and normal liver cells; we then thoroughly studied its apoptotic effects on A375 cells through protocols such as Hoechst 33258, H2DCFDA, and rhodamine 123 staining and conducted ELISA for cytochrome c, caspase 3, and PARP activity levels; we determined the mRNA level expression of cytochrome c, caspase 3, Bcl2, Bax, PARP, ICAD, and EGFR signaling genes through semiquantitative reverse transcriptase polymerase chain reaction and conducted Western blot analysis of caspase 3 and PARP. We also analyzed cell cycle events, determined reactive oxygen species accumulation, measured annexin V-FITC/PI and rhodamine 123 intensity by flow cytometry. Compared with both normal liver cells and drug-untreated A375, the mortality of GS-treated A375 cells increased in a dose-dependent manner. Additionally, GS induced nuclear DNA fragmentation and showed an increased level of mRNA expression of apoptotic signal related genes cytochrome c, caspase 3, PARP, Bax, and reduced expression level of ICAD, EGFR, and the anti-apoptotic gene Bcl2. Overall results indicate GS to have significant anticancer effect on A375 cells apart from its reported antidiabetic effect, indicating possibility of its palliative use in patients with symptoms of both the diseases.

  4. Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375.

    PubMed

    Khuda-Bukhsh, Anisur Rahman; Bhattacharyya, Soumya Sundar; Paul, Saili; Boujedaini, Naoual

    2010-09-01

    We formulated nano-encapsulation of a naturally occurring coumarin-scopoletin (7-hydroxy-6-methoxy coumarin, HMC, C(10)H(8)O(4)), isolated from plant Gelsemium sempervirens having anticancer potentials, with a bio-adhesive agent -polylactic-co-glycolic acid (PLGA) and tested if its cellular uptake, bioavailability and apoptotic (anticancer) potentials could thus be increased vis-a-vis unencapsulated HMC. A375 melanoma cancer cells were used for testing cellular entry and anticancer potentials of HMC and nano-7-hydroxy-6-methoxy coumarin (NHMC) through several standard protocols. Characterization of NHMC was done by dynamic light scattering for determination of particle size, polydispersity index (PDI), and zeta potential. Surface morphology of nanoparticles was determined by scanning electron microscopy and atomic force microscopy. HMC was encapsulated with more than 85% entrapment efficiency, the average particle size of NHMC being less than 110 nm and a PDI 0.237, which resulted in enhanced cellular entry and greater bioavailability. NHMC showed a faster cellular uptake (15 min) than its unencapsulated counterpart (30 min). Study of signal molecules through mRNA expressions revealed that NHMC caused down-regulation of cyclin-D1, proliferating cell nuclear antigen (PCNA), survivin and Stat-3, and up-regulation of p53 and caspase-3, that in turn induced a greater number of apoptosis vis-a-vis unencapsulated HMC. The formulation yielded small-sized NHMC by biodegradable PLGA that took less time for cellular entry, and caused more apoptosis to cancer cells, but apparently had negligible cytotoxicity against normal skin cells. Nano-encapsulation of bioactive plant ingredients can be a strategy worth trying for designing effective chemopreventive drug products.

  5. Spine venom of crown-of-thorns starfish (Acanthaster planci) induces antiproliferation and apoptosis of human melanoma cells (A375.S2).

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hsieh, Cheng-Hong; Hwang, Deng-Fwu

    2014-12-01

    The crown-of-thorns starfish (Acanthaster planci) is a venomous starfish. In this study, the extraction of A. planci spine venom (ASV) was performed by phosphate saline buffer, followed by assaying the cytotoxicity on human normal and tumor cells. It was found that human melanoma cells (A375.S2) were the most sensitive to the ASV solution. The cells, after incubation with ASV, significantly appeared to decrease cell viability and increase lactate dehydrogenase (LDH) release with a dose-dependent relationship. The extract of spine promoted loss of mitochondrial membrane potential (ΔΨm) and induced inter-nucleosomal DNA fragmentation in human melanoma cells. The cells exhibited apoptosis by using propidium iodide (PI) staining of DNA fragmentation; it was then determined by flow cytometry (sub-G1 peak). The molecular cytotoxicity of ASV was tested through evaluation of the apoptosis/necrosis ratio by double staining with annexin V and PI assay. The A. planci spine venom showed significant antiproliferation. The human melanoma cells revealed apoptosis at low dose (1.25 μg/ml), and necrosis occurred at high dose (5 μg/ml). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line.

    PubMed

    Chakraborty, Ruchira; Basu, Tarakdas

    2017-03-10

    In two earlier communications (Chatterjee et al 2012 Nanotechnology 23 085103, Chatterjee et al 2014 Nanotechnology 25 135101), we reported the development of a simple and unique method of synthesizing highly stable metallic copper nanoparticles (Cu NPs) with high antibacterial activity. Here we report on the cytotoxic potency of the NPs against cancer cells. The value of the IC50 dose of the Cu NPs against human skin cancer cell A-375 was found to be 1.71 μg ml(-1) only, which was much less than values reported so far, and this concentration had no cytotoxic effect on normal white blood cells. The NPs caused (i) lowering of cell membrane rigidity, (ii) DNA degradation, (iii) chromosomal condensation, (iv) cell cycle arrest in the G2/M phase, (v) depolarization of the mitochondrial membrane and (vi) apoptosis of cells. Cellular apoptosis occurred in the caspase-9-mediated intrinsic pathway. This study revealed that our Cu NPs had high anticancer properties by killing tumor cells through the apoptotic pathway. Since this particle has high antibacterial activity, our Cu NPs might be developed in future as a dual action drug-anticancer as well as antibacterial.

  7. In vitro antiproliferative effect of a water-soluble Laminaria japonica polysaccharide on human melanoma cell line A375.

    PubMed

    Peng, Zhenfei; Liu, Min; Fang, Zhexiang; Chen, Li; Wu, Jiulin; Zhang, Qiqing

    2013-08-01

    A water-soluble polysaccharide WPS-2-1, purified from Laminaria japonica, has been found to have antitumor activity. In this study, WPS-2-1 exhibited high anti-proliferative activity on A375 cells in a dosedependent manner. Further investigation indicated that WPS-2-1 induced A375 cells apoptosis. Moreover, WPS-2-1-induced apoptosis was associated with the alteration in expressions of Bcl-2 family proteins. Mitochonadrial apoptotic pathway was involved in WPS-2-1-induced apoptosis, which included the loss of mitochondrial membrane and activation of caspase-3/9. The results in this study suggested that WPS-2-1 could effectively inhibit proliferation of A375 cells in vitro and induce apoptosis via mitochondrial apoptotic pathway. It might serve as a potential antitumor agent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 1,4-Diselenophene-1,4-diketone triggers caspase-dependent apoptosis in human melanoma A375 cells through induction of mitochondrial dysfunction.

    PubMed

    Luo, Yi; Li, Xiaoling; Huang, Xiaochun; Wong, Yum-Shing; Chen, Tianfeng; Zhang, Yibo; Zheng, Wenjie

    2011-01-01

    Epidemiological, preclinical and clinical studies have supported the role of selenocompounds as potential cancer chemopreventive and chemotherapeutic agents. In this study, a novel selenophene-based compound, 1,4-diselenophene-1,4-diketone (DSeD), has been synthesized by Double Friedel-Crafts reaction and identified as a potent antiproliferative agent against a panel of six human caner cell lines. Despite this potency, DSeD was relatively nontoxic toward human normal cells, HS68 fibroblasts and HK-2 kidney cells. These results suggest that DSeD possesses great selectivity between cancer and normal cells. Induction of apoptosis in human melanoma A375 cells by DSeD was evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Activation of caspase-9 and depletion of mitochondrial membrane potential indicated the initiation of the mitochondria-mediated apoptosis pathway. Pretreatment of cells with general caspase inhibitor z-VAD-fmk and caspase-9 inhibitor z-LEHD-fmk significantly suppressed the cell apoptosis, demonstrating the important roles of caspase and mitochondria in DSeD-induced apoptotic cell death. Furthermore, DSeD-induced apoptosis was found independent of reactive oxygen species generation. Taken together, our results suggest that DSeD induces caspase-dependent apoptosis in A375 cells through activation of mitochondria-mediated apoptosis pathway.

  9. RNA-interference-mediated downregulation of Pin1 suppresses tumorigenicity of malignant melanoma A375 cells.

    PubMed

    Jin, J; Zhang, Y; Li, Y; Zhang, H; Li, H; Yuan, X; Li, X; Zhou, W; Xu, B; Zhang, C; Zhang, Z; Zhu, L; Chen, X

    2013-01-01

    The peptidyl-prolyl isomerase Pin1 is overexpressed in many human cancers, including melanoma. To investigate its possible role in oncogenesis of melanoma and as a therapeutic target, we suppressed Pin1 expression in the human melanoma cell line A375 by microRNA (miRNA) interference technology. Two stable clones with suppressed Pin1 were established by stable transfection of miRNA plasmid targeting Pin1 into A375 cells. Both clones showed reduced proliferation and invasion in vitro and suppressed tumorigenic potential in athymic mice. Furthermore, Pin1 inhibition also resulted in decreased phosphorylation of Akt and repressed expression of C-Jun N-terminal kinase and pro-matrix metalloproteinase 2, which were associated closely with the development of melanoma. These findings indicate that Pin1 plays an important role in the tumorigenesis of melanoma and might serve as a promising therapeutic target.

  10. DNA damage protecting and free radical scavenging properties of mycosporine-2-glycine from the Dead Sea cyanobacterium in A375 human melanoma cell lines.

    PubMed

    Cheewinthamrongrod, Vipaporn; Kageyama, Hakuto; Palaga, Tanapat; Takabe, Teruhiro; Waditee-Sirisattha, Rungaroon

    2016-11-01

    Mycosporine-like amino acids (MAAs) are a group of natural sunscreen compounds that possess highly photoprotective properties. The most commonly found MAAs in marine organisms is shinorine, porphyra-334, and mycosporine-glycine. However, the halophilic species accumulate mycosporine-2-glycine (M2G) as the major MAA. In this study, we have investigated the protective effect of M2G against oxidative stress. In vitro radical scavenging activity revealed that M2G exhibited a significant inhibition with scavenging concentration (SC) 50 value of 22±1.4μM. In vivo analysis using the human melanoma A375 and a control cell line (NHSF) showed that M2G at low concentration (i.e. micromolar range) protected the cells against the oxidative stress (H2O2)-induced cell death. Comet assay to assess total DNA strand breaks demonstrated that M2G was not genotoxic and protected against the DNA damage by H2O2 treatment at the same level as ascorbic acid. To our knowledge, this is the first evidence demonstrating potential protective role of the natural sunscreen compound M2G against oxidative stress-induced DNA damage in human cell lines. The potent antioxidant activity combined with DNA protection ability of M2G may support its endorsement as a potential natural sunscreen with antioxidant property. These findings provide important clues for possible use of M2G in pharmaceutical and biotechnological applications.

  11. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo.

    PubMed

    Shiue, Yin-Wen; Lu, Chi-Cheng; Hsiao, Yu-Ping; Liao, Ching-Lung; Lin, Jing-Pin; Lai, Kuang-Chi; Yu, Chien-Chih; Huang, Yi-Ping; Ho, Heng-Chien; Chung, Jing-Gung

    2016-01-01

    Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a

  12. MicroRNA-21 regulates the ERK/NF-κB signaling pathway to affect the proliferation, migration, and apoptosis of human melanoma A375 cells by targeting SPRY1, PDCD4, and PTEN.

    PubMed

    Mao, Xu-Hua; Chen, Min; Wang, Yan; Cui, Pan-Gen; Liu, Si-Bian; Xu, Zei-Yong

    2017-03-01

    This study aims to explore the effects of microRNA-21 (miR-21) and ERK/NF-κB signaling pathway on human melanoma A375 cells. The melanoma tissues and adjacent normal tissues were obtained from 45 melanoma patients. qRT-PCR was conducted to quantify the expression of miR-21 and the gene mRNA expressions. Human melanoma A375 cells were divided into the Mock, negative control (NC), miR-21 inhibitors, miR-21 inhibitors + siRNA-SPRY1, miR-21 inhibitors + siRNA-PDCD4, and miR-21 inhibitors + siRNA-PTEN groups. Western blotting was used to determine protein expressions. CCK8 assay and Transwell assay were performed to evaluate the proliferation, migration, and invasion of A375 cells. Annexin V/propidium iodide double staining was adopted to detect cell apoptosis. MiR-21 expression was higher in melanoma tissues than in adjacent tissues, while the mRNA and protein expressions of SPRY1, PDCD4, and PTEN were lower in melanoma tissues than in adjacent tissues. Compared with the Mock and NC groups, the miR-21 inhibitors group exhibited increased expressions of SPRY1, PDCD4, and PTEN and decreased expressions of ERK, p-ERK, NF-κB p65, and p-NF-κB p65. After transfection of miR-21 inhibitors, the proliferation, migration, and invasion of A375 cells were inhibited, while the apoptosis of A375 cells was promoted. However, the effects of miR-21 inhibitors on the growth, migration, invasion, and apoptosis of A375 cells were reversed after transfection of siRNA-SPRY1, siRNA-PDCD4, or siRNA-PTEN. MiR-21 can promote the proliferation, migration, and inhibit the apoptosis of human melanoma A375 cells by inhibiting SPRY1, PDCD4, and PTEN via ERK/NF-κB signaling pathway. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis.

    PubMed

    Bhui, Kulpreet; Tyagi, Shilpa; Srivastava, Amit Kumar; Singh, Madhulika; Roy, Preeti; Singh, Richa; Shukla, Yogeshwer

    2012-03-01

    Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy.

  14. IL-1-induced ERK1/2 activation up-regulates p21{sup Waf1/Cip1} protein by inhibition of degradation via ubiquitin-independent pathway in human melanoma cells A375

    SciTech Connect

    Arakawa, Tomohiro; Hayashi, Hidetoshi; Itoh, Saotomo; Takii, Takemasa; Onozaki, Kikuo

    2010-02-12

    IL-1 inhibits the proliferation of human melanoma cells A375 by arresting the cell cycle at G0/G1 phase, which accompanies the increase of p21{sup Waf1/Cip1} (p21) protein. Here, we demonstrate that IL-1 induces the stabilization of p21 protein via ERK1/2 pathway. The degradation of p21 was inhibited by IL-1, however the ubiquitination level of p21 was not affected. In addition, the degradation of non-ubiquitinated form of lysine less mutant p21-K6R was also inhibited by IL-1, suggesting that IL-1 stabilized p21 protein via ubiquitin-independent pathway. Furthermore, the inhibition of p21 protein degradation was prevented by a selective inhibitor of ERK1/2 pathway, PD98059. These results suggest that IL-1-induced ERK1/2 activation leads to the up-regulation of p21 by inhibiting degradation via ubiquitin-independent pathway in human melanoma cells A375.

  15. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine.

    PubMed

    Bedia, Carmen; Casas, Josefina; Andrieu-Abadie, Nathalie; Fabriàs, Gemma; Levade, Thierry

    2011-08-12

    Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma.

  16. Semi-preparative HPLC purification of δ-tocotrienol (δ-T3) from Elaeis guineensis Jacq. and Bixa orellana L. and evaluation of its in vitro anticancer activity in human A375 melanoma cells.

    PubMed

    Beretta, Giangiacomo; Gelmini, Fabrizio; Fontana, Fabrizio; Moretti, Roberta Manuela; Montagnani Marelli, Marina; Limonta, Patrizia

    2017-04-24

    In this work, we report a rapid and convenient HPLC-UV-DAD method for the isolation of δ-T3 on semi-preparative scale from two different vitamin E rich processed, commercially available products obtained from the fruits of Elaeis guineensis Jacq. (oil palm) and from the seeds of Bixa orellana L. (achiote tree). Chromatography was run using reverse phase (RP) C-18 columns and HPLC-grade acetonitrile as mobile phase. The purity of the isolated δ-T3, assessed by GC-MS and (1)H NMR was above 98%. The δ-T3 cytotoxic activity found in vitro against the proliferation of human A375 melanoma cells compared to that of the other δ-T3 free tocols mixture suggest its primary role in the experimental anticancer activity observed for palm oil derived products. Taken altogether, the results of this study highlight the importance of the application of suitable purification systems for the preparations of tocotrienols prior to their experimental or clinical testing.

  17. The Induction of Apoptosis in A375 Malignant Melanoma Cells by Sutherlandia frutescens

    PubMed Central

    van der Walt, Nicola B.; Zakeri, Zahra

    2016-01-01

    Sutherlandia frutescens is a medicinal plant indigenous to Southern Africa and is commonly known as the “cancer bush.” This plant has traditionally been used for the treatment of various ailments, although it is best known for its claims of activity against “internal” cancers. Here we report on its effect on melanoma cells. The aim of this study was to investigate whether an extract of S. frutescens could induce apoptosis in the A375 melanoma cell line and to outline the basic mechanism of action. S. frutescens extract induced apoptosis in A375 cells as evidenced by morphological features of apoptosis, phosphatidylserine exposure, nuclear condensation, caspase activation, and the release of cytochrome c from the mitochondria. Studies in the presence of a pan-caspase inhibitor allude to caspase-independent cell death, which appeared to be mediated by the apoptosis inducing factor. Taken together, the results of this study show that S. frutescens extract is effective in inducing apoptosis in malignant melanoma cells and indicates that further in vivo mechanistic studies may be warranted. PMID:27656236

  18. HDAC-inhibitor (S)-8 disrupts HDAC6-PP1 complex prompting A375 melanoma cell growth arrest and apoptosis

    PubMed Central

    Balliu, Manjola; Guandalini, Luca; Romanelli, Maria Novella; D'Amico, Massimo; Paoletti, Francesco

    2015-01-01

    Histone deacetylase inhibitors (HDACi) are agents capable of inducing growth arrest and apoptosis in different tumour cell types. Previously, we reported a series of novel HDACi obtained by hybridizing SAHA or oxamflatin with 1,4-benzodiazepines. Some of these hybrids proved effective against haematological and solid cancer cells and, above all, compound (S)-8 has emerged for its activities in various biological systems. Here, we describe the effectiveness of (S)-8 against highly metastatic human A375 melanoma cells by using normal PIG1 melanocytes as control. (S)-8 prompted: acetylation of histones H3/H4 and α-tubulin; G0/G1 and G2/M cell cycle arrest by rising p21 and hypophos-phorylated RB levels; apoptosis involving the cleavage of PARP and caspase 9, BAD protein augmentation and cytochrome c release; decrease in cell motility, invasiveness and pro-angiogenic potential as shown by results of wound-healing assay, down-regulation of MMP-2 and VEGF-A/VEGF-R2, besides TIMP-1/TIMP-2 up-regulation; and also intracellular accumulation of melanin and neutral lipids. The pan-caspase inhibitor Z-VAD-fmk, but not the antioxidant N-acetyl-cysteine, contrasted these events. Mechanistically, (S)-8 allows the disruption of cytoplasmic HDAC6-protein phosphatase 1 (PP1) complex in A375 cells thus releasing the active PP1 that dephosphorylates AKT and blocks its downstream pro-survival signalling. This view is consistent with results obtained by: inhibiting PP1 with Calyculin A; using PPP1R2-transfected cells with impaired PP1 activity; monitoring drug-induced HDAC6-PP1 complex re-shuffling; and, abrogating HDAC6 expression with specific siRNA. Altogether, (S)-8 proved very effective against melanoma A375 cells, but not normal melanocytes, and safe to normal mice thus offering attractive clinical prospects for treating this aggressive malignancy. PMID:25376115

  19. Fig latex (Ficus carica L. cultivar Dottato) in combination with UV irradiation decreases the viability of A375 melanoma cells in vitro.

    PubMed

    Menichini, Giulio; Alfano, Carmine; Provenzano, Eugenio; Marrelli, Mariangela; Statti, Giancarlo A; Somma, Francesco; Menichini, Francesco; Conforti, Filomena

    2012-10-01

    Melanoma and nonmelanoma skin cancers are among the most prevalent cancers in the human population. In the present work latex of Ficus carica cultivar Dottato from Italy collected from fruits and leaves was examined to assess its free radical-scavenging activity with 1,1-diphenyl-2 picrylhydrazyl (DPPH) and its phototoxicity on A375 human melanoma cells. The latex obtained from the fruits of Ficus carica cv. Dottato showed the best antiradical activity with an IC50 value of 0.05 mg/ml while the latex obtained from the leaves showed the best antiproliferative activity with an IC50 value of 1.5 μg/ml on the human tumor cell line A375 (melanoma) after irradiation at a specific UVA dose (1.08 J/cm2). Control experiments with UVA light or drugs alone were carried out without significant cytotoxic effects. Polyphenolic content of the samples was also evaluated. This is the first study comparing F. carica latex of leaves and fruits. Plant derived natural products have long been and will continue to be an important source for anticancer drug development.

  20. Mitotic Arrest-Associated Apoptosis Induced by Sodium Arsenite in A375 Melanoma Cells Is BUBR1-Dependent

    PubMed Central

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2009-01-01

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr161 phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic’s chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity. PMID:18501396

  1. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent

    SciTech Connect

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2008-08-15

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr{sup 161} phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.

  2. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1{alpha}-mediated signaling

    SciTech Connect

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-09-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1{alpha} (SDF-1{alpha}) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1{alpha}-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1{alpha}-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1{alpha}-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research Highlights: > A novel carboxylate-PBD hybrid as anti-melanoma drug. > IN4CPBD interrupts melanoma cell

  3. Evaluation of melanogenesis in A-375 melanoma cells treated with 5,7-dimethoxycoumarin and valproic acid.

    PubMed

    Chodurek, Ewa; Orchel, Arkadiusz; Orchel, Joanna; Kurkiewicz, Sławomir; Gawlik, Natalia; Dzierżewicz, Zofia; Stępień, Krystyna

    2012-12-01

    Malignant melanoma (melanoma malignum) is one of the most dangerous types of tumor. It is very difficult to cure. In recent years, a lot of attention has been given to chemoprevention. This method uses natural and synthetic compounds to interfere with and inhibit the process of carcinogenesis. In this study, a new treatment strategy was proposed consisting of a combination of 5,7-dimethoxycoumarin (DMC), an activator of melanogenesis, and valproic acid (VPA), a well-known drug that is one of the histone deacetylase inhibitors (HDACis). In conjunction with 1 mM VPA, all of the tested concentrations of DMC (10-150 μM) significantly decreased the proliferation of A-375 cells. VPA and DMC also induced the synthesis of melanin and the formation of dendrite and star-shaped cells. Tyrosinase gene expression and tyrosinase activity significantly increased in response to VPA treatment. Pyrolysis with gas chromatography and mass spectrometry (Py-GC/MS) was used to investigate the structure of the isolated melanin. This showed that the quantitative and qualitative components of melanin degradation products are dependent on the type of applied melanogenesis inductor. Products derived from eumelanin were detected in the pyrolytic profile of melanin isolated from A-375 cells stimulated with DMC. Thermal degradation of melanin isolated from melanoma cells after exposure to VPA or a mixture of VPA and DMC revealed the additional presence of products derived from pheomelanin.

  4. Chrysin-induced apoptosis is mediated through p38 and Bax activation in B16-F1 and A375 melanoma cells.

    PubMed

    Pichichero, Elena; Cicconi, Rosella; Mattei, Maurizio; Canini, Antonella

    2011-02-01

    Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from honey, plants and propolis. It possesses anti-inflammatory activity, anti-oxidant properties and promotes cell death by perturbing cell cycle progression. In this study, our attention focused on the possible role that chrysin may have as a potential anti-cancer agent, and we tested its biological activity in murine and human melanoma cell lines (B16-F1 and A375). This study demonstrated that chrysin reduced melanoma cell proliferation and induced cell differentiation in both human and murine melanoma cells through synthesis increase and intracellular accumulation of protoporphirin IX (PpIX). Furthermore, following treatments with chrysin an increase in the expression of porphobilinogen deaminase (PBG-D) was noted. This study demontrated also that chrysin induces cell death in human and murine melanoma cells through caspase-dependent mechanisms, involving down-regulation of ERK 1/2, and activation of p38 MAP kinases. Induction of cell death may be a promising therapeutic approach in cancer therapy. Our results suggest that chrysin may be considered a potential candidate for both cancer prevention and treatment.

  5. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    SciTech Connect

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  6. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    PubMed

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. GLO1 Overexpression in Human Malignant Melanoma

    PubMed Central

    Bair, Warner B; Cabello, Christopher M; Uchida, Koji; Bause, Alexandra S; Wondrak, Georg T

    2010-01-01

    Glyoxalase I [lactoylglutathione lyase (EC 4.4.1.5) encoded by GLO1] is a ubiquitous cellular defense enzyme involved in the detoxification of methylglyoxal, a cytotoxic byproduct of glycolysis. Accumulative evidence suggests an important role of GLO1 expression in protection against methylglyoxal-dependent protein adduction and cellular damage associated with diabetes, cancer, and chronological aging. Based on the hypothesis that GLO1 upregulation may play a functional role in glycolytic adaptations of cancer cells, we examined GLO1 expression status in human melanoma tissue. Quantitative RT-PCR analysis of a cDNA tissue array containing 40 human melanoma tissues (stages III and IV) and 13 healthy controls revealed pronounced upregulation of GLO1 expression at the mRNA level. Immunohistochemical analysis of a melanoma tissue microarray confirmed upregulation of glyoxalase 1 protein levels in malignant melanoma tissue versus healthy human skin. Consistent with an essential role of GLO1 in melanoma cell defense against methylglyoxal cytotoxicity, siRNA interference targeting GLO1-expression (siGLO1) sensitized A375 and G361 human metastatic melanoma cells towards the antiproliferative, apoptogenic, and oxidative stress-inducing activity of exogenous methylglyoxal. Protein adduction by methylglyoxal was increased in siGLO1-transfected cells as revealed by immunodetection using a monoclonal antibody directed against the major methylglyoxal-derived epitope argpyrimidine that detected a single band of methylglyoxal-adducted protein in human LOX, G361, and A375 total cell lysates. Using 2D-proteomics followed by mass spectrometry the methylglyoxal-adducted protein was identified as heat shock protein 27 (Hsp27; HSPB1). Taken together, our data suggest a function of GLO1 in the regulation of detoxification and target-adduction by the glycolytic byproduct methylglyoxal in malignant melanoma. PMID:20093988

  8. New dibutyltin(IV) ladders: Syntheses, structures and, optimization and evaluation of cytotoxic potential employing A375 (melanoma) and HCT116 (colon carcinoma) cell lines in vitro.

    PubMed

    Basu Baul, Tushar S; Dutta, Dhrubajyoti; Duthie, Andrew; Guchhait, Nikhil; Rocha, Bruno G M; Guedes da Silva, M Fátima C; Mokhamatam, Raveendra B; Raviprakash, Nune; Manna, Sunil K

    2017-01-01

    Synthesis and spectroscopic properties of seven new dibutyltin(IV) compounds of 2-{(E)-4-hydroxy-3-[(E)-4-(aryl)iminomethyl]phenyldiazenyl}benzoic acids (L(n)HH'; n=2-8) with general formula {[Bu2Sn(L(n)H)]2O}2 (1-7) are reported. The compounds were characterized by elemental analysis and by UV-Visible, fluorescence, IR, (1)H, (13)C and (119)Sn NMR spectroscopies. Solid state structures of dibutyltin(IV) compounds 1-3, 6 and 7 were accomplished from single crystal X-ray crystallography which reveal the common ladder-type structure with two endo- and two exo-Sn atoms. The redox properties of L(n)HH' (n=2-4, 7 and 8) and their diorganotin(IV) compounds 1-3, 6 and 7 were also investigated by cyclic voltammetry. In general, the dibutyltin(IV) derivatives exhibited significant in vitro cytotoxic potency towards A375 (melanoma) and HCT116 (colon carcinoma) cell lines as determined by several experiments, like Live and Dead assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay, LDH (lactate dehydrogenase), cleavage of caspases and PARP (poly(ADP-ribose)polymerase), and DNA fragmentation. Dibutyltin(IV) compounds increase cell death without cytolysis and decreases membrane fluidity, without interfering with p53. Among the dibutyltin(IV) compounds, compound 6 was found to be the most potent, with an IC50 value of 78nM. A mechanism of action for tumor cell death is proposed.

  9. The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells.

    PubMed

    Chatterjee, S J; Ovadje, P; Mousa, M; Hamm, C; Pandey, S

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25-29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells.

  10. Human adipose tissue-derived mesenchymal stem cells inhibit melanoma growth in vitro and in vivo.

    PubMed

    Ahn, Jin-Ok; Coh, Ye-Rin; Lee, Hee-Woo; Shin, Il-Seob; Kang, Sung-Keun; Youn, Hwa-Young

    2015-01-01

    The effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) on the growth of human malignancies, including melanoma, are controversial and the underlying mechanisms are not yet-well understood. The aim of the present study was to investigate the in vitro and in vivo anti-tumor effects of human AT-MSCs on human melanoma. The inhibitory effect of AT-MSC-conditioned medium (AT-MSC-CM) on the growth of A375SM and A375P (human melanoma) cells was evaluated using a cell viability assay. Cell-cycle arrest and apoptosis in melanoma cells were investigated by flow cytometry and western blot analysis. To evaluate the in vivo anti-tumor effect of AT-MSCs, CM-DiI-labeled AT-MSCs were circumtumorally injected in tumor-bearing athymic mice and tumor size was measured. AT-MSC-CM inhibited melanoma growth by altering cell-cycle distribution and inducing apoptosis in vitro. AT-MSCs suppressed tumor growth in tumor-bearing athymic mice and fluorescence analysis showed that AT-MSCs migrated efficiently to tumor tissues. AT-MSCs inhibit the growth of melanoma suggesting promise as a novel therapeutic agent for melanoma. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma.

    PubMed

    Nihal, Minakshi; Ahmad, Nihal; Mukhtar, Hasan; Wood, Gary S

    2005-04-20

    Melanoma accounts for only about 4% of all skin cancer cases but most of skin cancer-related deaths. Standard systemic therapies such as interferon (IFN) have not been adequately effective in the management of melanoma. Therefore, novel approaches are needed for prevention and treatment of this disease. Chemoprevention by naturally occurring agents present in food and beverages has shown benefits in certain cancers including nonmelanoma skin cancers. Here, employing 2 human melanoma cell lines (A-375 amelanotic malignant melanoma and Hs-294T metastatic melanoma) and normal human epidermal melanocytes (NHEM), we studied the antiproliferative effects of epigallocatechin-3-gallate (EGCG), the major polyphenolic antioxidant present in green tea. EGCG treatment was found to result in a dose-dependent decrease in the viability and growth of both melanoma cell lines. Interestingly, at similar EGCG concentrations, the normal melanocytes were not affected. EGCG treatment of the melanoma cell lines resulted in decreased cell proliferation (as assessed by Ki-67 and PCNA protein levels) and induction of apoptosis (as assessed cleavage of PARP, TUNEL assay and JC-1 assay). EGCG also significantly inhibited the colony formation ability of the melanoma cells studied. EGCG treatment of melanoma cells resulted in a downmodulation of anti-apoptotic protein Bcl2, upregulation of proapoptotic Bax and activation of caspases -3, -7 and -9. Furthermore, our data demonstrated that EGCG treatment resulted in a significant, dose-dependent decrease in cyclin D1 and cdk2 protein levels and induction of cyclin kinase inhibitors (ckis) p16INK4a, p21WAF1/CIP1 and p27KIP1. Our data suggest that EGCG causes significant induction of cell cycle arrest and apoptosis of melanoma cells that is mediated via modulations in the cki-cyclin-cdk network and Bcl2 family proteins. Thus, EGCG, alone or in conjunction with current therapies, could be useful for the management of melanoma.

  12. [Cytotoxic effects of local anesthesia through lidocaine/ropivacaine on human melanoma cell lines].

    PubMed

    Kang, Ding-Kun; Zhao, Li-Yan; Wang, Hong-Li

    Local anesthetics (LAs) are generally considered as safe, but cytotoxicity has been reported for several local anesthetics used in humans, which is not well investigated. In the present study, the cytotoxicity of lidocaine, ropivacaine and the combination of lidocaine and ropivacaine were evaluated on human melanoma cell lines. Melphalan, a nitrogen mustard alkylating agent, was used as a control agent for comparison of cytotoxic activity. Melanoma cell lines, A375 and Hs294T, were exposed to 1h to different concentrations of above agents. Cell-viability after exposure was determined by flow cytometry. Investigated LAs showed detrimental cytotoxicity on studied melanoma cell lines in time- (p<0.001), concentration- (p<0.001), and agent dependant. In both A375 and Hs294T cell lines, minimum cell viability rates were found after 72h of exposure to these agents. Lidocaine 2% caused a reduction of vital cells to 10%±2% and 14%±2% in A375 and Hs294T, respectively after 72h of exposure. Ropivacaine 0.75% after 72h reduced viable cells to 15%±3% and 25%±3% in A375 and Hs294T, respectively. Minimum cell viability after 72h exposure to the combination was 10%±2% and 18%±2% in A375 and Hs294T, respectively. Minimum cell viability after 72h exposure to melphalan was 8%±1% and 12%±2%, in A375 and Hs294T, respectively. LAs have cytotoxic activity on human melanoma cell lines in a time-, concentration- and agent-dependant manner. Apoptosis in the cell lines was mediated through activity of caspases-3 and caspases-8. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  13. Cytotoxic effects of local anesthesia through lidocaine/ropivacaine on human melanoma cell lines.

    PubMed

    Kang, Ding-Kun; Zhao, Li-Yan; Wang, Hong-Li

    Local anesthetics (LAs) are generally considered as safe, but cytotoxicity has been reported for several local anesthetics used in humans, which is not well investigated. In the present study, the cytotoxicity of lidocaine, ropivacaine and the combination of lidocaine and ropivacaine were evaluated on human melanoma cell lines. Melphalan, a nitrogen mustard alkylating agent, was used as a control agent for comparison of cytotoxic activity. Melanoma cell lines, A375 and Hs294T, were exposed to 1h to different concentrations of above agents. Cell-viability after exposure was determined by flow cytometry. Investigated LAs showed detrimental cytotoxicity on studied melanoma cell lines in time- (p<0.001), concentration- (p<0.001), and agent dependant. In both A375 and Hs294T cell lines, minimum cell viability rates were found after 72h of exposure to these agents. Lidocaine 2% caused a reduction of vital cells to 10%±2% and 14%±2% in A375 and Hs294T, respectively after 72h of exposure. Ropivacaine 0.75% after 72h reduced viable cells to 15%±3% and 25%±3% in A375 and Hs294T, respectively. Minimum cell viability after 72h exposure to the combination was 10%±2% and 18%±2% in A375 and Hs294T, respectively. Minimum cell viability after 72h exposure to melphalan was 8%±1% and 12%±2%, in A375 and Hs294T, respectively. LAs have cytotoxic activity on human melanoma cell lines in a time-, concentration- and agent-dependant manner. Apoptosis in the cell lines was mediated through activity of caspases-3 and caspases-8. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Ophiobolin A Induces Autophagy and Activates the Mitochondrial Pathway of Apoptosis in Human Melanoma Cells

    PubMed Central

    Rodolfo, Carlo; Rocco, Mariapina; Cattaneo, Lucia; Tartaglia, Maria; Sassi, Mauro; Aducci, Patrizia; Scaloni, Andrea; Marra, Mauro

    2016-01-01

    Ophiobolin A, a fungal toxin from Bipolaris species known to affect different cellular processes in plants, has recently been shown to have anti-cancer activity in mammalian cells. In the present study, we investigated the anti-proliferative effect of Ophiobolin A on human melanoma A375 and CHL-1 cell lines. This cellular model was chosen because of the incidence of melanoma malignant tumor on human population and its resistance to chemical treatments. Ophyobolin A strongly reduced cell viability of melanoma cells by affecting mitochondrial functionality. The toxin induced depolarization of mitochondrial membrane potential, reactive oxygen species production and mitochondrial network fragmentation, leading to autophagy induction and ultimately resulting in cell death by activation of the mitochondrial pathway of apoptosis. Finally, a comparative proteomic investigation on A375 cells allowed to identify several Ophiobolin A down-regulated proteins, which are involved in fundamental processes for cell homeostasis and viability. PMID:27936075

  15. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  16. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells.

    PubMed

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L; Festuccia, Claudio; Limonta, Patrizia

    2016-07-27

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.

  17. MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression.

    PubMed

    Qiu, Hai-Jiang; Lu, Xiao-He; Yang, Sha-Sha; Weng, Chen-Yin; Zhang, E-Keng; Chen, Fang-Chao

    2016-08-01

    MicroRNAs (miRNAs) are short, non-coding RNAs with post-transcriptional regulatory function, playing crucial roles in cancer development and progression of human melanoma. Previous studies have indicated that miR-769 was implicated in diverse biological processes. However, the underlying mechanism of miR-769 in human melanoma has not been intensively investigated. In this present study, we aimed to investigate the role of miR-769 and its target genes in human melanoma. We found that miR-769 expression was strongly increased in human melanoma cells and clinical tissues compared with their corresponding controls. Overexpression of miR-769 promoted cell proliferation in human melanoma cell line A375, whereas miR-769-in reverses the function. Glycogen synthase kinase-3 Beta (GSK3B), a potential target gene of miR-769, and was validated by luciferase assay. Further studies revealed that miR-769 regulated cell proliferation of human melanoma by directly suppressing GSK3B expression and the knockdown of GSK3B expression reversed the effect of miR-769-in on human melanoma cell proliferation. In summary, our data demonstrated that miR-769 might act as a tumor promoter by targeting GSK3B during development of human melanoma.

  18. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells.

    PubMed

    Halder, Babli; Singh, Shruti; Thakur, Suman S

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells.

  19. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells

    PubMed Central

    Halder, Babli; Singh, Shruti; Thakur, Suman S.

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells. PMID:26334881

  20. Novel GHRH antagonists suppress the growth of human malignant melanoma by restoring nuclear p27 function

    PubMed Central

    Szalontay, Luca; Schally, Andrew V; Popovics, Petra; Vidaurre, Irving; Krishan, Awtar; Zarandi, Marta; Cai, Ren-Zhi; Klukovits, Anna; Block, Norman L; Rick, Ferenc G

    2014-01-01

    Malignant melanoma is the deadliest form of skin cancer; the treatment of advanced and recurrent forms remains a challenge. It has recently been reported that growth hormone-releasing hormone (GHRH) receptor is involved in the pathogenesis of melanoma. Therefore, we investigated the effects of our new GHRH antagonists on a human melanoma cancer cell line. Antiproliferative effects of GHRH antagonists, MIA-602, MIA-606 and MIA-690, on the human melanoma cell line, A-375, were studied in vitro using the MTS assay. The effect of MIA-690 (5 μg/day 28 d) was further evaluated in vivo in nude mice bearing xenografts of A-375. Subcellular localization of p27 was detected with Western blot and immunofluorescent staining. MIA-690 inhibited the proliferation of A-375 cells in a dose-dependent manner (33% at 10 μM, and 19.2% at 5 μM, P < 0 .05 vs. control), and suppressed the growth of xenografted tumors by 70.45% (P < 0.05). Flow cytometric analysis of cell cycle effects following the administration of MIA-690 revealed a decrease in the number of cells in G2/M phase (from 19.7% to 12.9%, P < 0.001). Additionally, Western blot and immunofluorescent studies showed that exposure of A-375 cells to MIA-690 triggered the nuclear accumulation of p27. MIA-690 inhibited tumor growth in vitro and in vivo, and increased the translocation of p27 into the nucleus thus inhibiting progression of the cell cycle. Our findings indicate that patients with malignant melanoma could benefit from treatment regimens, which combine existing chemotherapy agents and novel GHRH-antagonists. PMID:25486366

  1. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model

    PubMed Central

    2013-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD), elevated in tumor cells, catalyzes the first reaction in the pentose-phosphate pathway. The regulation mechanism of G6PD and pathological change in human melanoma growth remains unknown. Methods HEM (human epidermal melanocyte) cells and human melanoma cells with the wild-type G6PD gene (A375-WT), G6PD deficiency (A375-G6PD∆), G6PD cDNA overexpression (A375-G6PD∆-G6PD-WT), and mutant G6PD cDNA (A375-G6PD∆-G6PD-G487A) were subcutaneously injected into 5 groups of nude mice. Expressions of G6PD, STAT3, STAT5, cell cycle-related proteins, and apoptotic proteins as well as mechanistic exploration of STAT3/STAT5 were determined by quantitative real-time PCR (qRT-PCR), immunohistochemistry and western blot. Results Delayed formation and slowed growth were apparent in A375-G6PD∆ cells, compared to A375-WT cells. Significantly decreased G6PD expression and activity were observed in tumor tissues induced by A375-G6PD∆, along with down-regulated cell cycle proteins cyclin D1, cyclin E, p53, and S100A4. Apoptosis-inhibited factors Bcl-2 and Bcl-xl were up-regulated; however, apoptosis factor Fas was down-regulated, compared to A375-WT cells. Moderate protein expressions were observed in A375-G6PD∆-G6PD-WT and A375-G6PD∆-G6PD-G487A cells. Conclusions G6PD may regulate apoptosis and expression of cell cycle-related proteins through phosphorylation of transcription factors STAT3 and STAT5, thus mediating formation and growth of human melanoma cells. Further study will, however, be required to determine potential clinical applications. PMID:23693134

  2. Cerium Oxide Nanoparticles Induce Oxidative Stress and Genotoxicity in Human Skin Melanoma Cells.

    PubMed

    Ali, Daoud; Alarifi, Saud; Alkahtani, Saad; AlKahtane, Abdullah A; Almalik, Abdulaziz

    2015-04-01

    Extensive applications of cerium oxide (CeO2) nanoparticles require a better understanding of their possible effects on human health. However, data demonstrating the effect of CeO2 nanoparticles on the human skin melanoma cell remain scanty. In the current study, we determined the mechanism through which CeO2 nanoparticles (APS <25 nm) induce toxicity in human skin melanoma cells (A375). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and neutral red uptake assays showed concentration and time-dependent cytotoxicity of CeO2 nanoparticles in A375 cells. CeO2 nanoparticles significantly induced the generation reactive oxygen species (ROS) and malondialdehyde, superoxide dismutase, and decreased glutathione levels in A375 cells. It was also observed that the CeO2 nanoparticles induced chromosomal condensation and caspase-3 activity. CeO2 nanoparticles exposed cells revealed the formation of DNA double-strand breakage as measured by percent tail DNA and olive tail moment through comet assay. The decline of cell viability, production of ROS, and DNA damage in A375 cells specifies that CeO2 nanoparticles have less capable to induce cyto and genotoxicity.

  3. Antiproliferative and anti-invasive effects of inorganic and organic arsenic compounds on human and murine melanoma cells in vitro.

    PubMed

    Hiwatashi, Yoko; Tadokoro, Hiroko; Henmi, Kayo; Arai, Mariko; Kaise, Toshikazu; Tanaka, Sachiko; Hirano, Toshihiko

    2011-09-01

    For patients with advanced melanoma, no treatment options are available at present that provide either sufficient response rates or a significant prolongation of overall survival. The present study examines the effects of two inorganic and six organic arsenic compounds on cell proliferation and cell invasion of melanoma cells in vitro. The effects of arsenic compounds on proliferation of human melanoma A375 cells and murine melanoma B16F10 cells were examined by MTT assay and 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, and the effects of the compounds on cell invasion were examined by the Boyden chamber invasion assay. The amounts of active matrix metalloproteinase (MMP)-2 and pro-MMP-2 in the culture supernatant of A375 cells were determined by an MMP-2 activity assay system. Arsenate and arsenic trioxide (As(2) O(3) ) inhibited the proliferation of A375 and B16F10 cells significantly at concentration ranges of 0.1-20µg/ml (P<0.001), while the organic compounds arsenobetaine, arsenocholine, dimethylarsinic acid, methylarsonic acid, tetramethylarsonium and trimethylarsine oxide did not show any inhibitory effects even at 20µg/ml. Cell invasion of A375 and B16F10 cells through a layer of collagen IV was significantly inhibited by 0.1-20 µg/ml of arsenate or As(2) O(3) (P<0.05), while the organic compounds did not inhibit cell invasion. Arsenate or As(2) O(3) at 0.2-10µg/ml significantly inhibited the amount of active MMP-2 and pro-MMP-2 secreted into the A375 cell culture supernatant (P<0.05). Our findings show that the inorganic arsenic compounds arsenate and As(2) O(3) inhibit cell proliferation and prevent the invasive properties of melanoma cells, possibly by decreasing MMP-2 production from the cells. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  4. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    PubMed

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma.

  5. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma

    PubMed Central

    Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-01-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up- regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16 days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMPK-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity. PMID:25016296

  6. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  7. Bioactive proanthocyanidins inhibit growth and induce apoptosis in human melanoma cells by decreasing the accumulation of β-catenin.

    PubMed

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K

    2016-02-01

    Melanoma is a highly aggressive form of skin cancer with poor survival rate. Aberrant activation of Wnt/β-catenin has been observed in nearly one-third of human melanoma cases thereby indicating that targeting Wnt/β-catenin signaling could be a promising strategy against melanoma development. In the present study, we determined chemotherapeutic effect of grape seed proanthocyanidins (GSPs) on the growth of melanoma cells and validated their protective effects in vivo using a xenograft mouse model, and assessed if β-catenin is the target of GSP chemotherapeutic effect. Our in vitro data show that treatment of A375 and Hs294t human melanoma cells with GSPs inhibit the growth of melanoma cells, which was associated with the reduction in the levels of β-catenin. Administration of dietary GSPs (0.2 and 0.5%, w/w) in supplementation with AIN76A control diet significantly inhibited the growth of melanoma tumor xenografts in nude mice. Furthermore, dietary GSPs inhibited the xenograft growth of Mel928 (β-catenin-activated), while did not inhibit the xenograft growth of Mel1011 (β-catenin-inactivated) cells. These observations were further verified by siRNA knockdown of β-catenin and forced overexpression of β-catenin in melanoma cells using a cell culture model.

  8. Hypericum perforatum L. subsp. perforatum induces inhibition of free radicals and enhanced phototoxicity in human melanoma cells under ultraviolet light.

    PubMed

    Menichini, G; Alfano, C; Marrelli, M; Toniolo, C; Provenzano, E; Statti, G A; Nicoletti, M; Menichini, F; Conforti, F

    2013-04-01

    Our interest continues in discovering phytocomplexes from medicinal plants with phototoxic activity against human melanoma cells; thus the aim of the present study was to assess antioxidant, anti-inflammatory and phototoxic activity of Hypericum perforatum L. subsp. perforatum, and relate these properties to the plant's chemical composition. Components of H. perforatum subsp. perforatum were extracted by hydroalcoholic solution and chemical profiles of preparations (HyTE-3) performed by HPTLC. Linoleic acid peroxidation and DPPH tests were used to assess antioxidant activity, while MTT assay allowed evaluation of anti-proliferative activity with respect to A375 human melanoma cells after irradiation with UVA dose, 1.8 J/cm(2) . Inhibition of nitric oxide production of macrophages was also investigated. HyTE-3 indicated better antioxidant activity with β-carotene bleaching test in comparison to DPPH assay (IC50 = 0.89 μg/ml); significant phototoxicity in A375 cells at 78 μg/ml concentration resulted in cell destruction of 50%. HyTE-3 caused significant dose-related inhibition of nitric oxide production in murine monocytic macrophage cell line RAW 264.7 with IC50 value of 342 μg/ml. The H. perforatum subsp. perforatum-derived product was able to suppress proliferation of human malignant melanoma A375 cells; extract together with UVA irradiation enhanced phototoxicity. This biological activity of antioxidant effects was combined with inhibition of nitric oxide production. © 2013 Blackwell Publishing Ltd.

  9. Biology of Human Cutaneous Melanoma

    PubMed Central

    Elias, Elias G.; Hasskamp, Joanne H.; Sharma, Bhuvnesh K.

    2010-01-01

    A review of the natural behavior of cutaneous melanoma, clinical and pathological factors, prognostic indicators, some basic research and the present and possible futuristic strategies in the management of this disease are presented. While surgery remains to be the most effective therapeutic approach in the management of early primary lesions, there is no standard adjuvant therapy after surgical resection, or for metastatic disease. PMID:24281039

  10. Irradiation affects cellular properties and Eph receptor expression in human melanoma cells

    PubMed Central

    Mosch, Birgit; Pietzsch, Doreen; Pietzsch, Jens

    2012-01-01

    X-ray irradiation influences metastatic properties of tumor cells and, moreover, metastasis and cellular motility can be modified by members of the Eph receptor/ephrin family of receptor tyrosine kinases. We hypothesized that irradiation-induced changes in cellular properties relevant for metastasis in melanoma cells could be mediated by Eph receptor/ephrin signaling. In this pilot study, we analyzed one pre-metastatic (Mel-Juso) and three metastatic human melanoma (Mel-Juso-L3, A375, and A2058) cells lines and predominantly found anti-metastatic effects of X-ray irradiation with impaired cell growth, clonal growth and motility. Additionally, we observed an irradiation-induced increase in adhesion paralleled by a decrease in migration in Mel-Juso and Mel-Juso-L3 cells and, in part, also in A375 cells. We further demonstrate a decrease of EphA2 both in expression and activity at 7 d after irradiation paralleled by an upregulation of EphA3. Analyzing downstream signaling after irradiation, we detected decreased Src kinase phosphorylation, but unchanged focal adhesion kinase (FAK) phosphorylation, indicating, in part, irradiation-induced downregulation of signaling via the EphA2-Src-FAK axis in melanoma cells. However, to which extent this finding contributes to the modification of metastasis-relevant cellular properties remains to be elucidated. PMID:22568947

  11. Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice

    SciTech Connect

    Giavazzi, R.; Garofalo, A.; Bani, M.R.; Abbate, M.; Ghezzi, P.; Boraschi, D.; Mantovani, A.; Dejana, E. )

    1990-08-01

    This study has examined the effect of the cytokine interleukin 1 (IL-1) on metastasis formation by the human melanoma A375M in nude mice. We have found that human recombinant IL-1 beta (a single injection greater than 0.01 micrograms per mouse i.v. given before tumor cells) induced an augmentation of experimental lung metastases from the A375M tumor cells in nude mice. This effect was rapidly induced and reversible within 24 h after IL-1 injection. A similar effect was induced by human recombinant IL-1 alpha and human recombinant tumor necrosis factor, but not by human recombinant interleukin 6. 5-(125I)odo-2'-deoxyuridine-radiolabeled A375M tumor cells injected i.v. remained at a higher level in the lungs of nude mice receiving IL-1 than in control mice. In addition, IL-1 injected 1 h, but not 24 h, after tumor cells enhanced lung colonization as well, thus suggesting an effect of IL-1 on the vascular transit of tumor cells. These findings may explain the observation of enhanced secondary localization of tumor cells at inflammatory sites and suggest that modulation of secondary spread should be carefully considered when assessing the ability of this cytokine to complement cytoreductive therapies.

  12. Raman spectroscopy detects melanoma and the tissue surrounding melanoma using tissue-engineered melanoma models

    PubMed Central

    Yorucu, Ceyla; Lau, Katherine; Mittar, Shweta; Green, Nicola H.; Raza, Ahtasham; Rehman, Ihtesham Ur; MacNeil, Sheila

    2016-01-01

    ABSTRACT Invasion of melanoma cells from the primary tumor involves interaction with adjacent tissues and extracellular matrix. The extent of this interaction is not fully understood. In this study Raman spectroscopy was applied to cryo-sections of established 3D models of melanoma in human skin. Principal component analysis was used to investigate differences between the tumor and normal tissue and between the peri-tumor area and the normal skin. Two human melanoma cells lines A375SM and C8161 were investigated and compared in 3D melanoma models. Changes were found in protein conformations and tryptophan configurations across the entire melanoma samples, in tyrosine orientation and in more fluid lipid packing only in tumor dense areas, and in increased glycogen content in the peri-tumor areas of melanoma. Raman spectroscopy revealed changes around the perimeter of a melanoma tumor as well as detecting differences between the tumor and the normal tissue. PMID:27158185

  13. A3 Adenosine Receptors Modulate Hypoxia-Inducible Factor-1α Expression in Human A375 Melanoma Cells

    PubMed Central

    Merighi, Stefania; Benini, Annalisa; Mirandola, Prisco; Gessi, Stefania; Varani, Katia; Leung, Edward; MacLennan, Stephen; Baraldi, Pier Giovanni; Borea, Pier Andrea

    2005-01-01

    Abstract Hypoxia-inducible factor-1 (HIF-1) is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% O2), adenosine upregulates HIF-1α protein expression in a dose-dependent and time-dependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2) protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1α and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells. PMID:16242072

  14. Melanoma

    MedlinePlus

    Melanoma is the most serious type of skin cancer. Often the first sign of melanoma is a change in the size, shape, color, or feel of a mole. Most melanomas have a black or black-blue area. Melanoma ...

  15. Evaluation of Melanogenesis in A-375 Cells in the Presence of DMSO and Analysis of Pyrolytic Profile of Isolated Melanin

    PubMed Central

    Chodurek, Ewa; Orchel, Arkadiusz; Orchel, Joanna; Kurkiewicz, Sławomir; Gawlik, Natalia; Dzierżewicz, Zofia; Stępień, Krystyna

    2012-01-01

    The increase of a skin malignant melanoma (melanoma malignum) incidence in the world has been observed in recent years. The tumour, especially in advanced stadium with metastases, is highly resistant to conventional treatment. One of the strategies is to modulate melanogenesis using chemical compounds. In this study, the processes of differentiation and melanogenesis induced by dimethylsulfoxide (DMSO) in human melanoma cells (A-375) were investigated. Natural melanin isolated from A-375 melanoma cell line treated with 0.3% DMSO was analyzed by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) method. The products derived from pheomelanin have not been stated in the pyrolytic profile of analyzed melanin. Within all products derived from eumelanins, 1,2-benzenediol has been predominated. It has been shown that in the melanoma cells stimulated with 0.3% and 1% DMSO, the increase of transcriptional activity of the tyrosinase gene took place. It was accompanied by the rise of tyrosinase activity and an accumulation of melanin in the cells. The better knowledge about the structure of melanins can contribute to establish the uniform criteria of malignant melanoma morbidity risk. PMID:22654640

  16. Pre-clinical assessment of A-674563 as an anti-melanoma agent

    SciTech Connect

    Zou, Ying; Fan, Guobiao; Wang, Xuemin

    2016-08-12

    The present study aims to investigate the anti-melanoma activity by an Akt1 specific inhibitor A-674563. We showed that A-674563 was anti-proliferative and cytotoxic when added to human melanoma cells (A375, WM-115 and SK-Mel-2 lines). A-674563 induced caspase-dependent apoptotic death of human melanoma cells, and its cytotoxicity was inhibited with pre-treatment of caspase inhibitors. Further, A-674563 treatment blocked Akt and its downstream S6 Kinase 1 (S6K1) activation in A375 melanoma cells. Significantly, restoring Akt-S6K1 activation via introduction of constitutively-active Akt1 (ca-Akt1) only partially attenuated A-674563's cytotoxicity against A375 cells. Further, A-674563 induced pro-apoptotic ceramide production in A375 cells. Significantly, sphingosine-1-phosphate (S1P) inhibited A-674563-induced ceramide production and subsequent A375 cell apoptosis. On the other hand, co-treatment with the glucosylceramide synthase (GCS) inhibitor PDMP or the cell permeable short-chain ceramide (C6) potentiated A-674563's cytotoxicity against A375 cells. In vivo, A-674563 oral gavage inhibited A375 xenograft growth in severe combined immunodeficiency (scid) mice. Akt inactivation, caspase-3 activation and ceramide production were also observed in A-674563-treated A375 xenografts. Together, these results suggest that A-674563 exerts potent anti-melanoma activity, involving Akt-dependent and Akt-independent mechanisms. - Highlights: • A-674563 inhibits human melanoma cell survival and proliferation. • A-674563 induces melanoma cell apoptotic death, inhibited by caspase inhibitors. • A-674563 inhibits melanoma cells via Akt-dependent and -independent mechanisms. • A-674563 induces ceramide production in melanoma cells, independent of Akt inhibition. • A-674563 oral administration potently inhibits A375 xenograft growth in mice.

  17. Identification of cells initiating human melanomas

    PubMed Central

    Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.

    2012-01-01

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660

  18. Identification of cells initiating human melanomas.

    PubMed

    Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H

    2008-01-17

    Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.

  19. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.

    PubMed

    Zhao, Guangming; Han, Xiaodong; Cheng, Wei; Ni, Jing; Zhang, Yunfei; Lin, Jingrong; Song, Zhiqi

    2017-04-01

    Malignant melanoma is the most invasive and fatal form of cutaneous cancer. Moreover it is extremely resistant to conventional chemotherapy and radiotherapy. Apigenin, a non-mutagenic flavonoid, has been found to exhibit chemopreventive and/or anticancerogenic properties in many different types of human cancer cells. Therefore, apigenin may have particular relevance for development as a chemotherapeutic agent for cancer treatment. In the present study, we investigated the effects of apigenin on the viability, migration and invasion potential, dendrite morphology, cell cycle distribution, apoptosis, phosphorylation of the extracellular signal-regulated protein kinase (ERK) and the AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro. Apigenin effectively suppressed the proliferation of melanoma cells in vitro. Moreover, it inhibited cell migration and invasion, lengthened the dendrites, and induced G2/M phase arrest and apoptosis. Furthermore, apigenin promoted the activation of cleaved caspase-3 and cleaved PARP proteins and decreased the expression of phosphorylated (p)‑ERK1/2 proteins, p-AKT and p-mTOR. Consequently, apigenin is a novel therapeutic candidate for melanoma.

  20. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma.

    PubMed

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model.

  1. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma

    PubMed Central

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. PMID:24128326

  2. Bipolar cellular morphology of malignant melanoma in unstained human melanoma skin tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Wenkai; Yang, Chia-Yi; Yang, Haw

    2009-03-01

    Microstructures of unstained human melanoma skin tissues have been examined by multimodal nonlinear optical microscopy. The polarized shape of the individual melanoma cell can be readily recognized-a phenotype that has been identified in laboratory cultures as characteristic of proliferating melanocytes but has not been demonstrated in clinical instances. The results thus provide snapshots of invading melanoma cells in their native environment and suggest a practical means of connecting in vitro laboratory studies to in vivo processes.

  3. Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits

    PubMed Central

    Calvani, Maura; Bianchini, Francesca; Taddei, Maria Letizia; Becatti, Matteo; Giannoni, Elisa; Chiarugi, Paola; Calorini, Lido

    2016-01-01

    Tumors contain a sub-population of self-renewing and expanding cells known as cancer stem cells (CSCs). Putative CSCs were isolated from human melanoma cells of a different aggressiveness, Hs294T and A375 cell lines, grown under hypoxia using “sphere-forming assay”, CD133 surface expression and migration ability. We found that a cell sub-population enriched for P1 sphere-initiating ability and CD133 expression also express larger amount of VEGF-R2. Etoposide does not influence phenotype of this sub-population of melanoma cells, while a combined treatment with Etoposide and Bevacizumab significantly abolished P1 sphere-forming ability, an effect associated with apoptosis of this subset of cells. Hypoxic melanoma cells sorted for VEGF-R2/CD133 positivity also undergo apoptosis when exposed to Etoposide and Bevacizumab. When Etoposide and Bevacizumab-treated hypoxic cells were injected intravenously into immunodeficient mice revealed a reduced capacity to induce lung colonies, which also appear with a longer latency period. Hence, our study indicates that a combined exposure to Etoposide and Bevacizumab targets melanoma cells endowed with stem-like properties and might be considered a novel approach to treat cancer-initiating cells. PMID:27303923

  4. Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas.

    PubMed

    Gillard, Marc; Cadieu, Edouard; De Brito, Clotilde; Abadie, Jérôme; Vergier, Béatrice; Devauchelle, Patrick; Degorce, Frédérique; Dréano, Stephane; Primot, Aline; Dorso, Laetitia; Lagadic, Marie; Galibert, Francis; Hédan, Benoit; Galibert, Marie-Dominique; André, Catherine

    2014-01-01

    Spontaneously occurring melanomas are frequent in dogs. They appear at the same localizations as in humans, i.e. skin, mucosal sites, nail matrix and eyes. They display variable behaviors: tumors at oral localizations are more frequent and aggressive than at other anatomical sites. Interestingly, dog melanomas are associated with strong breed predispositions and overrepresentation of black-coated dogs. Epidemiological analysis of 2350 affected dogs showed that poodles are at high risk of developing oral melanoma, while schnauzers or Beauce shepherds mostly developped cutaneous melanoma. Clinical and histopathological analyses were performed on a cohort of 153 cases with a 4-yr follow-up. Histopathological characterization showed that most canine tumors are intradermal and homologous to human rare morphological melanomas types - 'nevocytoid type' and 'animal type'-. Tumor cDNA sequencing data, obtained from 95 dogs for six genes, relevant to human melanoma classification, detected somatic mutations in oral melanoma, in NRAS and PTEN genes, at human hotspot sites, but not in BRAF. Altogether, these findings support the relevance of the dog model for comparative oncology of melanomas, especially for the elucidation of non-UV induced pathways. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mitophagy and mitochondrial morphology in human melanoma-derived cells post exposure to simulated sunlight.

    PubMed

    Zanchetta, Luciene M; Garcia, Amaya; Lyng, Fiona; Walsh, James; Murphy, James E J

    2011-05-01

    To assess changes in mitochondrial morphology and mitophagy induced by simulated sunlight irradiation (SSI) and how these changes are modulated by mitochondrial activity and energy source. Human malignant amelanotic melanoma A375 cells were pre-treated with either a mitochondrial activity enhancer, uncoupler or were either melanin or glutamine supplemented/starved for 4 hours pre-exposure to sunlight. A Q-Sun Solar Simulator (Q-Lab, Homestead, FL, USA) was employed to expose cells to simulated sunlight. Confocal microscopy imaging of A375 cells co-loaded with mitochondria and lysosome-specific fluorescent dyes was used to identify these organelles and predict mitophagic events. SSI induces pronounced changes in mitochondrial dynamics and mitophagy in exposed skin cells compared to control and these effects were modified by both glutamine and melanin. Mitochondrial dynamics and rate of mitophagy in melanoma cells are sensitive to even short bursts of environmentally relevant SSI. Mitochondrial dynamics, and its modulation, may also play a role in mitophagy regulation, cell survival and proliferation post SSI.

  6. RORα and RORγ expression inversely correlates with human melanoma progression

    PubMed Central

    Brożyna, Anna A.; Jóźwicki, Wojciech; Skobowiat, Cezary; Jetten, Anton; Slominski, Andrzej T.

    2016-01-01

    The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions. PMID:27542227

  7. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    PubMed

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  8. Evaluating the cytotoxic effects of the water extracts of four anticancer herbs against human malignant melanoma cells

    PubMed Central

    Ling, Binbing; Michel, Deborah; Sakharkar, Meena Kishore; Yang, Jian

    2016-01-01

    Malignant melanoma (MM) is the most dangerous type of skin cancer, killing more than 1,100 people each year in Canada. Prognosis for late stage and recurrent MM is extremely poor due to insensitivity to chemotherapy drugs, and thus many patients seek complementary and alternative medicines. In this study, we examined four commonly used anticancer herbs in traditional Chinese medicine, Hedyotis diffusa, Scutellaria barbata, Lobelia chinensis, and Solanum nigrum, for their in vitro antitumor effects toward human MM cell line A-375. The crude water extract of S. nigrum (1 g of dry herb in 100 mL water) and its 2-fold dilution caused 52.8%±13.0% and 17.3%±2.7% cytotoxicity in A-375 cells, respectively (P<0.01). The crude water extract of H. diffusa caused 11.1%±12.4% cytotoxicity in A-375 cells with no statistical significance (P>0.05). Higher concentrated formulation might be needed for H. diffusa to exert its cytotoxic effect against A-375 cells. No cytotoxicity was observed in A-375 cells treated with crude water extract of S. barbata and L. chinensis. Further high performance liquid chromatography-tandem mass spectroscopy analysis of the herbal extracts implicated that S. nigrum and H. diffusa might have adopted the same bioactive components for their cytotoxic effects in spite of belonging to two different plant families. We also showed that the crude water extract of S. nigrum reduced intracellular reactive oxygen species generation in A-375 cells, which may lead to a cytostatic effect. Furthermore, synergistic effect was achieved when crude water extract of S. nigrum was coadministered with temozolomide, a chemotherapy drug for skin cancer. PMID:27843296

  9. Autocrine secretion of 15d-PGJ2 mediates simvastatin-induced apoptotic burst in human metastatic melanoma cells

    PubMed Central

    Wasinger, Christine; Künzl, Martin; Minichsdorfer, Christoph; Höller, Christoph; Zellner, Maria; Hohenegger, Martin

    2014-01-01

    Background and Purpose Despite new therapeutic approaches, metastatic melanomas still have a poor prognosis. Statins reduce low-density lipoprotein cholesterol and exert anti-inflammatory and anti-proliferative actions. We have recently shown that simvastatin triggers an apoptotic burst in human metastatic melanoma cells by the synthesis of an autocrine factor. Experimental Approach The current in vitro study was performed in human metastatic melanoma cell lines (A375, 518a2) and primary human melanocytes and melanoma cells. The secretome of simvastatin-stressed cells was analysed with two-dimensional difference gel electrophoresis and MS. The signalling pathways involved were analysed at the protein and mRNA level using pharmacological approaches and siRNA technology. Key Results Simvastatin was shown to activate a stress cascade, leading to the synthesis of 15-deoxy-12,14-PGJ2 (15d-PGJ2), in a p38- and COX-2-dependent manner. Significant concentrations of 15d-PGJ2 were reached in the medium of melanoma cells, which were sufficient to activate caspase 8 and the mitochondrial pathway of apoptosis. Inhibition of lipocalin-type PGD synthase, a key enzyme for 15d-PGJ2 synthesis, abolished the apoptotic effect of simvastatin. Moreover, 15d-PGJ2 was shown to bind to the fatty acid-binding protein 5 (FABP5), which was up-regulated and predominantly detected in the secretome of simvastatin-stressed cells. Knockdown of FABP5 abolished simvastatin-induced activation of PPAR-γ and amplified the apoptotic response. Conclusions and Implications We characterized simvastatin-induced activation of the 15d-PGJ2/FABP5 signalling cascades, which triggered an apoptotic burst in melanoma cells but did not affect primary human melanocytes. These data support the rationale for the pharmacological targeting of 15d-PGJ2 in metastatic melanoma. PMID:25091578

  10. Green Tea Catechins Reduce Invasive Potential of Human Melanoma Cells by Targeting COX-2, PGE2 Receptors and Epithelial-to-Mesenchymal Transition

    PubMed Central

    Singh, Tripti; Katiyar, Santosh K.

    2011-01-01

    Melanoma is the most serious type of skin disease and a leading cause of death from skin disease due to its highly metastatic ability. To develop more effective chemopreventive agents for the prevention of melanoma, we have determined the effect of green tea catechins on the invasive potential of human melanoma cells and the molecular mechanisms underlying these effects using A375 (BRAF-mutated) and Hs294t (Non-BRAF-mutated) melanoma cell lines as an in vitro model. Employing cell invasion assays, we found that the inhibitory effects of green tea catechins on the cell migration were in the order of (-)-epigallocatechin-3-gallate (EGCG)>(-)-epigallocatechin>(-)-epicatechin-3-gallate>(-)-gallocatechin>(-)-epicatechin. Treatment of A375 and Hs294t cells with EGCG resulted in a dose-dependent inhibition of cell migration or invasion of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2, prostaglandin (PG) E2 and PGE2 receptors (EP2 and EP4). Treatment of cells with celecoxib, a COX-2 inhibitor, also inhibited melanoma cell migration. EGCG inhibits 12-O-tetradecanoylphorbol-13-acetate-, an inducer of COX-2, and PGE2-induced cell migration of cells. EGCG decreased EP2 agonist (butaprost)- and EP4 agonist (Cay10580)-induced cell migration ability. Moreover, EGCG inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in A375 melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Inhibition of melanoma cell migration by EGCG was associated with transition of mesenchymal stage to epithelial stage, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin, cytokeratin and desmoglein 2) and a reduction in the levels of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in A375 melanoma cells. Together, these results indicate that EGCG, a major green tea catechin, has the ability to inhibit melanoma cell invasion

  11. Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation.

    PubMed

    Ivanov, Vladimir N; Hei, Tom K

    2015-07-01

    During embryonic development, melanoblasts, the precursors of melanocytes, emerge from a subpopulation of the neural crest stem cells and migrate to colonize skin. Melanomas arise during melanoblast differentiation into melanocytes and from young proliferating melanocytes through somatic mutagenesis and epigenetic regulations. In the present study, we used several human melanoma cell lines from the sequential phases of melanoma development (radial growth phase, vertical growth phase and metastatic phase) to compare: (i) the frequency and efficiency of the induction of cell death via apoptosis and necroptosis; (ii) the presence of neural and cancer stem cell biomarkers as well as death receptors, DR5 and FAS, in both adherent and spheroid cultures of melanoma cells; (iii) anti-apoptotic effects of the endogenous production of cytokines and (iv) the ability of melanoma cells to perform neural trans-differentiation. We demonstrated that programed necrosis or necroptosis, could be induced in two metastatic melanoma lines, FEMX and OM431, while the mitochondrial pathway of apoptosis was prevalent in a vast majority of melanoma lines. All melanoma lines used in the current study expressed substantial levels of pluripotency markers, SOX2 and NANOG. There was a trend for increasing expression of Nestin, an early neuroprogenitor marker, during melanoma progression. Most of the melanoma lines, including WM35, FEMX and A375, can grow as a spheroid culture in serum-free media with supplements. It was possible to induce neural trans-differentiation of 1205Lu and OM431 melanoma cells in serum-free media supplemented with insulin. This was confirmed by the expression of neuronal markers, doublecortin and β3-Tubulin, by significant growth of neurites and by the negative regulation of this process by a dominant-negative Rac1N17. These results suggest a relative plasticity of differentiated melanoma cells and a possibility for their neural trans-differentiation without the

  12. Experimental coexpression of vimentin and keratin intermediate filaments in human melanoma cells augments motility.

    PubMed Central

    Chu, Y. W.; Seftor, E. A.; Romer, L. H.; Hendrix, M. J.

    1996-01-01

    Intermediate filaments have been used as cell-type-specific markers in differentiation and pathology; however, recent reports have demonstrated the coexpression of vimentin (a mesenchymal marker) and keratins (epithelial markers) in numerous neoplasms, including melanoma, which has been linked to metastatic disease. To test the hypothesis that coexpression of vimentin and keratins by melanoma cells contributes to a more migratory and invasive phenotype, we co-transfected a vimentin-positive human melanoma cell line, A375P (of low invasive ability), with cDNAs for keratins 8 and 18. The resultant stable transfectants expressed vimentin- and keratin-positive intermediate filaments showed a two- to threefold increase in their invasion of basement membrane matrix and migration through gelatin in vitro. These findings were further corroborated by video cinematography. During attachment and spreading on fibronectin, the transfectants containing vimentin and keratins 8 and 18 demonstrated an increase in focal adhesions that stained positive for beta 1 integrin and phosphotyrosine, along with enhanced membrane ruffling and actin stress fiber formation. From these data, we postulate that coexpression of vimentin and keratins results in increased cytoskeletal interactions at focal contacts within extracellular matrices involving integrin cell signaling events, which contributes to a more migratory behavior. Images Figure 1 Figure 2 PMID:8546227

  13. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma.

    PubMed

    Namkoong, Jin; Shin, Seung-Shick; Lee, Hwa Jin; Marín, Yarí E; Wall, Brian A; Goydos, James S; Chen, Suzie

    2007-03-01

    Recently, several laboratories have started to investigate the involvement of glutamate signaling in cancer. In previous studies, we reported on a transgenic mouse model that develops melanoma spontaneously. Subsequent studies in these mice identified that the aberrant expression of metabotropic glutamate receptor 1 (GRM1) in melanocytes played a critical role in the onset of melanoma. Confirmation of the etiologic role of GRM1 in melanoma development was shown in a second transgenic line with GRM1 expression under the regulation of a melanocyte-specific dopachrome tautomerase promoter. Ectopic expression of GRM1 was also detected in a subset of human melanoma cell lines and biopsies, suggesting that aberrant expression of GRM1 in melanocytes may contribute to the development of human melanoma. GRM1, a seven-transmembrane domain G protein-coupled receptor, is normally expressed and functional in neuronal cells, and its ligand, glutamate, is the major excitatory neurotransmitter. Human melanoma cells are shown here to release elevated levels of glutamate, implying a possible autocrine loop. Treatment of GRM1-expressing human melanoma cells with a GRM1 antagonist (LY367385 or BAY36-7620) or a glutamate release inhibitor (riluzole) leads to a suppression of cell proliferation as well as a decrease in levels of extracellular glutamate. Treatment of human melanoma cell xenografts with riluzole for 18 days via p.o. gavage or i.v. injection leads to inhibition of tumor growth by 50% in comparison with controls. These data suggest the importance of glutamate signaling in human melanoma and imply that the suppression of glutamate signaling may be a new target for melanoma therapy.

  14. Intercellular crosstalk in human malignant melanoma.

    PubMed

    Dvořánková, Barbora; Szabo, Pavol; Kodet, Ondřej; Strnad, Hynek; Kolář, Michal; Lacina, Lukáš; Krejčí, Eliška; Naňka, Ondřej; Šedo, Aleksi; Smetana, Karel

    2017-05-01

    Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.

  15. Epigenetic Regulation of MicroRNA Genes and the Role of miR-34b in Cell Invasion and Motility in Human Melanoma

    PubMed Central

    Mazar, Joseph; Khaitan, Divya; DeBlasio, Dan; Zhong, Cuncong; Govindarajan, Subramaniam S.; Kopanathi, Sharmila; Zhang, Shaojie; Ray, Animesh; Perera, Ranjan J.

    2011-01-01

    Invasive melanoma is the most lethal form of skin cancer. The treatment of melanoma-derived cell lines with 5-aza-2′-deoxycytidine (5-Aza-dC) markedly increases the expression of several miRNAs, suggesting that the miRNA-encoding genes might be epigenetically regulated, either directly or indirectly, by DNA methylation. We have identified a group of epigenetically regulated miRNA genes in melanoma cells, and have confirmed that the upstream CpG island sequences of several such miRNA genes are hypermethylated in cell lines derived from different stages of melanoma, but not in melanocytes and keratinocytes. We used direct DNA bisulfite and immunoprecipitated DNA (Methyl-DIP) to identify changes in CpG island methylation in distinct melanoma patient samples classified as primary in situ, regional metastatic, and distant metastatic. Two melanoma cell lines (WM1552C and A375 derived from stage 3 and stage 4 human melanoma, respectively) were engineered to ectopically express one of the epigenetically modified miRNA: miR-34b. Expression of miR-34b reduced cell invasion and motility rates of both WM1552C and A375, suggesting that the enhanced cell invasiveness and motility observed in metastatic melanoma cells may be related to their reduced expression of miR-34b. Total RNA isolated from control or miR-34b-expressing WM1552C cells was subjected to deep sequencing to identify gene networks around miR-34b. We identified network modules that are potentially regulated by miR-34b, and which suggest a mechanism for the role of miR-34b in regulating normal cell motility and cytokinesis. PMID:21949788

  16. Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells

    PubMed Central

    Vaid, Mudit; Prasad, Ram; Sun, Qian; Katiyar, Santosh K.

    2011-01-01

    Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.e., β-catenin inactivation) and reducing the levels of matrix metalloproteinase (MMP) -2 and MMP-9 which are the down-stream targets of β-catenin. Silymarin enhanced: (i) the levels of casein kinase 1α, glycogen synthase kinase-3β and phosphorylated-β-catenin on critical residues Ser45, Ser33/37 and Thr41, and (ii) the binding of β-transducin repeat-containing proteins (β-TrCP) with phospho forms of β-catenin in melanoma cells. These events play important roles in degradation or inactivation of β-catenin. To verify whether β-catenin is a potent molecular target of silymarin, the effect of silymarin was determined on β-catenin-activated (Mel 1241) and β-catenin-inactivated (Mel 1011) melanoma cells. Treatment of Mel 1241 cells with silymarin or FH535, an inhibitor of Wnt/β-catenin pathway, significantly inhibited cell migration of Mel 1241 cells, which was associated with the elevated levels of casein kinase 1α and glycogen synthase kinase-3β, and decreased accumulation of nuclear β-catenin and inhibition of MMP-2 and MMP-9 levels. However, this effect of silymarin and FH535 was not found in Mel 1011 melanoma cells. These results indicate for the first time that silymarin inhibits melanoma cell migration by targeting β-catenin signaling pathway. PMID:21829575

  17. Human malignant melanoma heterotransplanted to nude mice.

    PubMed

    Tropé, C; Johnsson, J E; Alm, P; Landberg, T; Olsson, H; Wennerberg, J

    1981-01-01

    Five different human malignant melanoma were heterotransplanted subcutaneously to nude mice. When small tissue pieces were used 3 out of 5 tumors grew. Subcutaneous injections of suspended tumor cells were also made, but all failed to take. Metastatic or infiltrative growth was never seen in the mice observed for up to 2.5 months. The successful grafts largely retained the original morphologicaL features. The three successfully transplanted tumors could all be serially transferred with 100% tumor take. In one case passage time was reduced from 40 days to 15 days. As measured with 3H-thymidine incorporation the proliferation rate increased during the passages. These changes might be due to a selection of more rapidly growing tumor cells in the nudes.

  18. Ex Vivo and In Vivo Imaging and Biodistribution of Aptamers Targeting the Human Matrix MetalloProtease-9 in Melanomas

    PubMed Central

    Kryza, David; Debordeaux, Frédéric; Azéma, Laurent; Hassan, Aref; Paurelle, Olivier; Schulz, Jürgen; Savona-Baron, Catherine; Charignon, Elsa; Bonazza, Pauline; Taleb, Jacqueline; Fernandez, Philippe; Janier, Marc; Toulmé, Jean Jacques

    2016-01-01

    The human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor. PMID:26901393

  19. Cultured human melanoma cells biosynthesize a novel form of laminin that lacks the M/sub r/ = 400 kDa subunit

    SciTech Connect

    Peters, B.P.; Kroll, T.G.; Ruddon, R.W.

    1987-05-01

    A human melanoma cell line (A375) was found to produce an unusual type of laminin composed exclusively of M/sub r/ = 200 kDa B subunits and lacking the M/sub r/ = 400 kDa A subunit. Detergent lysates of A375 cells pulsed with (/sup 35/S)methionine contained an immunoreactive form of laminin that migrated on nonreduced SDS-PAGE with an apparent M/sub r/ = 850 kDa. The 850 kDa laminin was clearly resolved from the typical M/sub r/ = 950 kDa laminin composed of A and B subunit types that is produced by a variety of cultured cells such as human choriocarcinoma (JAR) cells. Upon reduction of the intersubunit disulfide bonds of the A375 laminin, a pair of polypeptides co-migrated on SDS-PAGE with the M/sub r/ = 200 kDa B subunit doublet of JAR laminin. The A-deficient A375 laminin does not seem to be a result of the proteolysis of A subunit in cell lysates. No degradation of (/sup 35/S)methionine-labeled JAR laminin was observed upon incubation with nonradioactive A375 cell lysate supplemented in the usual manner with ten protease inhibitors. Furthermore, A subunit did not appear transiently in A375 cells at any chase time (0-4 hr) following a 10-min biosynthetic pulse with (/sup 35/S)methionine. The authors observations suggest that A375 cells biosynthesize principally the B subunits of laminin and assemble them to form a disulfide-linked macromolecule, possibly a B/sub 4/ tetramer.

  20. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes.

    PubMed

    Kodet, Ondřej; Lacina, Lukáš; Krejčí, Eliška; Dvořánková, Barbora; Grim, Miloš; Štork, Jiří; Kodetová, Daniela; Vlček, Čestmír; Šáchová, Jana; Kolář, Michal; Strnad, Hynek; Smetana, Karel

    2015-01-05

    Nodular melanoma is one of the most life threatening tumors with still poor therapeutic outcome. Similarly to other tumors, permissive microenvironment is essential for melanoma progression. Features of this microenvironment are arising from molecular crosstalk between the melanoma cells (MC) and the surrounding cell populations in the context of skin tissue. Here, we study the effect of melanoma cells on human primary keratinocytes (HPK). Presence of MC is as an important modulator of the tumor microenvironment and we compare it to the effect of nonmalignant lowly differentiated cells also originating from neural crest (NCSC). Comparative morphometrical and immunohistochemical analysis of epidermis surrounding nodular melanoma (n = 100) was performed. Data were compared to results of transcriptome profiling of in vitro models, in which HPK were co-cultured with MC, normal human melanocytes, and NCSC, respectively. Differentially expressed candidate genes were verified by RT-qPCR. Biological activity of candidate proteins was assessed on cultured HPK. Epidermis surrounding nodular melanoma exhibits hyperplastic features in 90% of cases. This hyperplastic region exhibits aberrant suprabasal expression of keratin 14 accompanied by loss of keratin 10. We observe that MC and NCSC are able to increase expression of keratins 8, 14, 19, and vimentin in the co-cultured HPK. This in vitro finding partially correlates with pseudoepitheliomatous hyperplasia observed in melanoma biopsies. We provide evidence of FGF-2, CXCL-1, IL-8, and VEGF-A participation in the activity of melanoma cells on keratinocytes. We conclude that the MC are able to influence locally the differentiation pattern of keratinocytes in vivo as well as in vitro. This interaction further highlights the role of intercellular interactions in melanoma. The reciprocal role of activated keratinocytes on biology of melanoma cells shall be verified in the future.

  1. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines

    PubMed Central

    Piotrowska, Anna; Wierzbicka, Justyna; Nadkarni, Sharmin; Brown, Geoffrey; Kutner, Andrzej; Żmijewski, Michał A.

    2016-01-01

    Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. PMID:26760999

  2. [Melanoma and Human Papillomaviruses: Is There an Outlook for Study?].

    PubMed

    Volgareva, G M; Mikhaylova, I N; Golovina, D A

    2016-01-01

    Melanoma is one of the most aggressive human malignant tumors. Its incidence and mortality are growing steadily. Ultraviolet irradiation is the main risk factor for melanoma involved in melanomagenesis. The probability of viral etiology of melanoma has been discussed. Human papillomaviruses (HPV) have been mentioned among candidates for its etiologic agents because some HPV types are the powerful carcinogens causing cervical cancer and other cancers. The review analyses the literature data on the association of melanoma with HPV Several groupsfound HPVin skin melanomas as well as in mucosa; viruses of high oncogenic risk were detected in some cases. For some organs the etiological role of high-risk HPV as inducers of invasive carcinomas is confirmed. These organs require special mention: cervix uteri, vulva, vagina, penis, anal region, and oral cavity. However in the majority of the studies in which viral DNA-positive melanomas were found, testing for viral genome expression was not done while this is the fact of primary importance. HPVare found in normal skin and mucous membranes thus creating justifiable threat of tumor specimen contamination with viral DNA in vivo. There are limited data on aggravation of the disease prognosis in papillomavirus-positive melanomas. However, any systematic observation of a sizeable patient group distinguished by that tumor type has not been performed yet. Viral E6 and E7 oncogenes of high-risk papillomaviruses were shown to be able to transform normal human melanocytes in vitro experiments. Thus, we can assume the presence of the association of melanoma with oncogenic HPV. The clinical significance of this problem is indisputable under the conditions of the steady increase in melanoma incidence and mortality rates in Russia and abroad. The problem requires further study.

  3. Melanin content of hamster tissues, human tissues, and various melanomas

    SciTech Connect

    Watts, K.P.; Fairchild, R.G.; Slatkin, D.N.; Greenberg, D.; Packer, S.; Atkins, H.L.; Hannon, S.J.

    1981-02-01

    Melanin content (percentage by weight) was determined in both pigmented and nonpigmented tissues of Syrian golden hamsters bearing Greene melanoma. Melanin content was also measured in various other melanoma models (B-16 in C57 mice, Harding-Passey in BALB/c mice, and KHDD in C3H mice) and in nine human melanomas, as well as in selected normal tissues. The purpose was to evaluate the possible efficacy of chlorpromazine, which is known to bind to melanin, as a vehicle for boron transport in neutron capture therapy. Successful therapy would depend upon selective uptake and absolute concentration of borated compounds in tumors; these parameters will in turn depend upon melanin concentration in melanomas and nonpigmented ''background'' tissues. Hamster whole eyes, hamster melanomas, and other well-pigmented animal melanomas were found to contain 0.3 to 0.8% melanin by weight, whereas human melanomas varied from 0.1 to 0.9% (average, 0.35%). Other tissues, with the exception of skin, were lower in content by a factor of greater than or equal to30. Melanin pigment was extracted from tissues, and the melanin content was determined spectrophotometrically. Measurements were found to be sensitive to the presence of other proteins. Previous procedures for isolating and quantifying melanin often neglected the importance of removing proteins and other interfering nonmelanic substances.

  4. Expression of NM23 in human melanoma progression and metastasis.

    PubMed Central

    Easty, D. J.; Maung, K.; Lascu, I.; Véron, M.; Fallowfield, M. E.; Hart, I. R.; Bennett, D. C.

    1996-01-01

    NM23 is a putative metastasis-suppressor gene for some human cancers. Here we have studied NM23 expression during melanoma progression using Northern blotting and immunocytochemistry. There was no significant difference in the average amounts of NM23 mRNA between cell lines derived from metastatic and primary melanomas. The level of NM23 mRNA was also determined for three pairs of poorly metastatic parental (P) and their highly metastatic variant (M) cell lines; the ratios for M/P were 1.2, 0.98 and 0.80. Next we used immunocytochemistry to study NM23 protein in normal skin, benign naevi and primary and metastatic melanomas. Melanocytes in all normal skin and benign samples were positive for NM23; however most primary melanomas (7/11) were not stained by the antibody. All metastatic melanoma samples (5/5) were positively stained. Findings were similar with an antiserum reactive with both forms of NM23 (H1 and H2), and with an antibody specific for NM23-H1. No relationship was apparent between NM23 immunoreactivity in primary tumours and their aggressiveness or prognosis. Hence, in contrast to the situation described for murine melanoma, the amount of NM23 mRNA or protein in human melanoma did not correlate inversely with metastasis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8679442

  5. Roscovitine inhibits differentiation and invasion in a three-dimensional skin reconstruction model of metastatic melanoma.

    PubMed

    Mohapatra, Subhra; Coppola, Domenico; Riker, Adam I; Pledger, W Jack

    2007-02-01

    The aim of this study was to investigate the therapeutic potential of a cyclin-dependent kinase inhibitor, roscovitine, in cultured melanoma cells and a three-dimensional skin reconstruction model of metastatic melanoma. The modulatory effects of roscovitine on the growth and survival of normal melanocytes and cultured melanoma cell lines were tested. Additionally, we investigated the potential of roscovitine to regulate the growth and differentiation of a metastatic melanoma cell line (A375) in a three-dimensional skin reconstruction culture consisting of A375 cells admixed with normal human keratinocytes embedded within a collagen-constricted fibroblast matrix. We show that roscovitine is able to induce apoptosis in the melanoma cell lines A375, 888, and 624 but not in normal human cultured epithelial melanocytes. The degree of apoptosis within these cell lines correlated with the accumulation of p53 protein and concomitant reduction of X-linked inhibitor of apoptosis protein, with no change in the proteins Bcl-2 and survivin. We also found that roscovitine inhibited the growth and differentiation of A375 melanoma cells within the dermal layer of the skin. The results of this study show that roscovitine has the potential to inhibit the differentiation and invasion of metastatic melanoma and may be useful as a therapy for the treatment of patients with metastatic melanoma.

  6. Melanoma.

    PubMed

    Schadendorf, Dirk; Fisher, David E; Garbe, Claus; Gershenwald, Jeffrey E; Grob, Jean-Jacques; Halpern, Allan; Herlyn, Meenhard; Marchetti, Michael A; McArthur, Grant; Ribas, Antoni; Roesch, Alexander; Hauschild, Axel

    2015-04-23

    Melanoma is a common cancer in the Western world with an increasing incidence. Sun exposure is still considered to be the major risk factor for melanoma. The prognosis of patients with malignant (advanced-stage) melanoma differs widely between countries, but public campaigns advocating early detection have led to significant reductions in mortality rates. As well as sun exposure, distinct genetic alterations have been identified as associated with melanoma. For example, families with melanoma who have germline mutations in CDKN2A are well known, whereas the vast majority of sporadic melanomas have mutations in the mitogen-activated protein kinase cascade, which is the pathway with the highest oncogenic and therapeutic relevance for this disease. BRAF and NRAS mutations are typically found in cutaneous melanomas, whereas KIT mutations are predominantly observed in mucosal and acral melanomas. GNAQ and GNA11 mutations prevail in uveal melanomas. Additionally, the PI3K-AKT-PTEN pathway and the immune checkpoint pathways are important. The finding that programmed cell death protein 1 ligand 1 (PDL1) and PDL2 are expressed by melanoma cells, T cells, B cells and natural killer cells led to the recent development of programmed cell death protein 1 (PD1)-specific antibodies (for example, nivolumab and pembrolizumab). Alongside other new drugs - namely, BRAF inhibitors (vemurafenib and dabrafenib) and MEK inhibitors (trametinib and cobimetinib) - these agents are very promising and have been shown to significantly improve prognosis for patients with advanced-stage metastatic disease. Early signs are apparent that these new treatment modalities are also improving long-term clinical benefit and the quality of life of patients. This Primer summarizes the current understanding of melanoma, from mechanistic insights to clinical progress. For an illustrated summary of this Primer, visit: http://go.nature.com/vX2N9s.

  7. Aloe-emodin exerts a potent anticancer and immunomodulatory activity on BRAF-mutated human melanoma cells.

    PubMed

    Tabolacci, Claudio; Cordella, Martina; Turcano, Lorenzo; Rossi, Stefania; Lentini, Alessandro; Mariotti, Sabrina; Nisini, Roberto; Sette, Giovanni; Eramo, Adriana; Piredda, Lucia; De Maria, Ruggero; Facchiano, Francesco; Beninati, Simone

    2015-09-05

    Aim of this study was to extend the knowledge on the antineoplastic effect of aloe-emodin (AE), a natural hydroxyanthraquinone compound, both in metastatic human melanoma cell lines and in primary stem-like cells (melanospheres). Treatment with AE caused reduction of cell proliferation and induction of SK-MEL-28 and A375 cells differentiation, characterized by a marked increase of transamidating activity of transglutaminase whose expression remained unmodified. In vitro antimetastatic property of AE was evaluated by adhesion and Boyden chamber invasion assays. The effect of AE on melanoma cytokines/chemokines production was determined by a multiplex assay: interestingly AE showed an immunomodulatory activity through GM-CSF and IFN-γ production. We report also that AE significantly reduced the proliferation, stemness and invasive potential of melanospheres. Moreover, AE treatment significantly enhanced dabrafenib (a BRAF inhibitor) antiproliferative activity in BRAF mutant cell lines. Our results confirm that AE possesses remarkable antineoplastic properties against melanoma cells, indicating this anthraquinone as a promising agent for differentiation therapy of cancer, or as adjuvant in chemotherapy and targeted therapy. Further, its mechanisms of action support a potential efficacy of AE treatment to counteract resistance of BRAF-mutated melanoma cells to target therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. CD147 interacts with NDUFS6 in regulating mitochondrial complex I activity and the mitochondrial apoptotic pathway in human malignant melanoma cells.

    PubMed

    Luo, Z; Zeng, W; Tang, W; Long, T; Zhang, J; Xie, X; Kuang, Y; Chen, M; Su, J; Chen, X

    2014-01-01

    Malignant melanoma (MM) is one of the most lethal tumors and is characterized by high invasiveness, frequent metastasis, and resistance to chemotherapy. The risk of metastatic MM is accompanied by disordered energy metabolism involving the oxidative phosphorylation (OXPHOS) process, which is largely carried out in mitochondrial complexes. Complex I is the first and largest mitochondrial enzyme complex associated with this process. CD147 is a transmembrane glycoprotein mainly expressed on the cell surface, and also appears in the cytoplasm in some tumors. We found that CD147 is often translocated to the cytoplasm in metastatic MM specimens as compared to primary MM. We also demonstrated high expression of CD147 in isolated mitochondrial fractions of A375 cells. The yeast two-hybrid (Y2H) assay identified NDUFS6 (which encodes a subunit of mitochondrial respiratory chain complex I) as a candidate that interacts with CD147 and depletion of CD147 in A375 cells significantly decreased complex I enzyme activity. We also showed that CD147 increased the viability of A375 cells exposed to berberine-induced mitochondrial damage, and protected them from apoptosis through a mitochondrial-dependent pathway. This finding was confirmed by adding exogenous Bcl-2 to A375 cell cultures. In summary, our results identify the existence of CD147 in human melanoma cell mitochondria. They indicate that CD147 appears to regulate complex I activity and apoptosis in MM by interacting with mitochondrial NDUFS6. Our findings provide new insight into the function of CD147 and identify it as a promising therapeutic target in melanoma through disruption of the energy metabolism.

  9. Functional effects of GRM1 suppression in human melanoma cells.

    PubMed

    Wangari-Talbot, Janet; Wall, Brian A; Goydos, James S; Chen, Suzie

    2012-11-01

    Ectopic expression of a neuronal receptor, metabotropic glutamate receptor 1 (Grm1), in melanocytes has been implicated in melanoma development in mouse models. The human relevance of this receptor's involvement in melanoma pathogenesis was shown by detecting GRM1 expression in subsets of human melanomas, an observation lacking in benign nevi or normal melanocytes. Grm1-transformed mouse melanocytes and a conditional Grm1 transgenic mouse model confirmed a requirement for sustained expression of Grm1 for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. Here, we investigate if continued GRM1 expression is also required in human melanoma cell lines by using two inducible, silencing RNA systems: the ecdysone/Ponasterone A and tetracycline on/off approaches to regulate GRM1 expression in the presence of each inducer. Various in vitro assays were conducted to assess the consequences of a reduction in GRM1 expression on cell proliferation, apoptosis, downstream targeted signaling pathways, and in vivo tumorigenesis. We showed that suppression of GRM1 expression in several human melanoma cell lines resulted in a reduction in the number of viable cells and a decrease in stimulated mitogen-activated protein kinase (MAPK) and PI3K/AKT and suppressed tumor progression in vivo. These results reinforce earlier observations where a reduction in cell growth in vitro and tumorigenesis in vivo were correlated with decreased GRM1 activities by pharmacologic inhibitors of the receptor, supporting the notion that GRM1 plays a role in the maintenance of transformed phenotypes in human melanoma cells in vitro and in vivo and could be a potential therapeutic target for the treatment of melanoma.

  10. Functional Effects of GRM1 Suppression in Human Melanoma Cells

    PubMed Central

    Wangari-Talbot, Janet; Wall, Brian A.; Goydos, James S.; Chen, Suzie

    2012-01-01

    Ectopic expression of a neuronal receptor, Metabotropic Glutamate Receptor 1 (Grm1), in melanocytes has been implicated in melanoma development in mouse models. The human relevance of this receptor’s involvement in melanoma pathogenesis was demonstrated by detecting GRM1 expression in subsets of human melanomas, an observation lacking in benign nevi or normal melanocytes. Grm1-transformed mouse melanocytes and a conditional Grm1 transgenic mouse model confirmed a requirement for sustained expression of Grm1 for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. Here, we investigate if continued GRM1 expression is also required in human melanoma cell lines by using two inducible, silencing RNA systems: the ecdysone/Ponasterone A and tetracycline on/off approaches to regulate GRM1 expression in the presence of each inducer. Various in vitro assays were performed to assess consequences of a reduction in GRM1 expression on cell proliferation, apoptosis, downstream targeted signaling pathways and in vivo tumorigenesis. We demonstrated that suppression of GRM1 expression in several human melanoma cell lines resulted in a reduction in the number of viable cells and a decrease in stimulated MAPK and PI3K/AKT and suppressed tumor progression in vivo. These results reinforce earlier observations where a reduction in cell growth in vitro and tumorigenesis in vivo were correlated with decreased GRM1 activities by pharmacological inhibitors of the receptor, supporting the notion that GRM1 plays a role in the maintenance of transformed phenotypes in human melanoma cells in vitro and in vivo and potentially be a therapeutic target for the treatment of melanoma. PMID:22798429

  11. Cuprous oxide nanoparticle-inhibited melanoma progress by targeting melanoma stem cells

    PubMed Central

    Yu, Bin; Wang, Ye; Yu, Xinlu; Zhang, Hongxia; Zhu, Ji; Wang, Chen; Chen, Fei; Liu, Changcheng; Wang, Jingqiang; Zhu, Haiying

    2017-01-01

    Recent studies have shown that metal and metal oxide have a potential function in antitumor therapy. Our previous studies demonstrated that cuprous oxide nanoparticles (CONPs) not only selectively induce apoptosis of tumor cells in vitro but also inhibit the growth and metastasis of melanoma by targeting mitochondria with little hepatic and renal toxicities in mice. As a further study, our current research revealed that CONPs induced apoptosis of human melanoma stem cells (CD271+/high cells) in A375 and WM266-4 melanoma cell lines and could significantly suppress the expression of MITF, SOX10 and CD271 involved in the stemness maintenance and tumorigenesis of melanoma stem cells. CD271+/high cells could accumulate more CONPs than CD271−/low through clathrin-mediated endocytosis. In addition, lower dosage of CONPs exhibited good anti-melanoma effect by decreasing the cell viability, stemness and tumorigenesis of A375 and WM266-4 cells through reducing the expression of SOX10, MITF, CD271 and genes in MAPK pathway involved in tumor progression. Finally, CONPs obviously suppressed the growth of human melanoma in tumor-bearing nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice, accompanied with tumors structural necrosis and fibrosis remarkably and decreased expression of CD271, SOX10 and MITF. These results above proved the effectiveness of CONPs in inhibiting melanoma progress through multiple pathways, especially through targeting melanoma stem cells. PMID:28435246

  12. Cuprous oxide nanoparticle-inhibited melanoma progress by targeting melanoma stem cells.

    PubMed

    Yu, Bin; Wang, Ye; Yu, Xinlu; Zhang, Hongxia; Zhu, Ji; Wang, Chen; Chen, Fei; Liu, Changcheng; Wang, Jingqiang; Zhu, Haiying

    2017-01-01

    Recent studies have shown that metal and metal oxide have a potential function in antitumor therapy. Our previous studies demonstrated that cuprous oxide nanoparticles (CONPs) not only selectively induce apoptosis of tumor cells in vitro but also inhibit the growth and metastasis of melanoma by targeting mitochondria with little hepatic and renal toxicities in mice. As a further study, our current research revealed that CONPs induced apoptosis of human melanoma stem cells (CD271(+/high) cells) in A375 and WM266-4 melanoma cell lines and could significantly suppress the expression of MITF, SOX10 and CD271 involved in the stemness maintenance and tumorigenesis of melanoma stem cells. CD271(+/high) cells could accumulate more CONPs than CD271(-/low) through clathrin-mediated endocytosis. In addition, lower dosage of CONPs exhibited good anti-melanoma effect by decreasing the cell viability, stemness and tumorigenesis of A375 and WM266-4 cells through reducing the expression of SOX10, MITF, CD271 and genes in MAPK pathway involved in tumor progression. Finally, CONPs obviously suppressed the growth of human melanoma in tumor-bearing nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice, accompanied with tumors structural necrosis and fibrosis remarkably and decreased expression of CD271, SOX10 and MITF. These results above proved the effectiveness of CONPs in inhibiting melanoma progress through multiple pathways, especially through targeting melanoma stem cells.

  13. Reprogramming A375 cells to induced-resembled neuronal cells by structured overexpression of specific transcription genes

    PubMed Central

    Zhang, Hengzhu; Wei, Min; Jiang, Yangyang; Wang, Xiaodong; She, Lei; Yan, Zhengcun; Dong, Lun; Pang, Lujun; Wang, Xingdong

    2016-01-01

    Induced-resembled neuronal cells (irNCs) are generated by reprogramming human melanoma cells through the introduction of key transcription factors, providing novel concepts in the treatment of malignant tumor cells and making it possible to supply neural cells for laboratory use. In the present study, irNCs were derived from A375 cells by inducing the 'forced' overexpression of specific genes, including achaete-scute homolog 1 (Ascl1), neuronal differentiation factor 1 (Neurod1), myelin transcription factor 1 (Myt1), brain protein 2 (Brn2, also termed POU3F2) and human brain-derived neurotrophic factor (h-BDNF). irNCs induced from A375 cells express multiple neuronal markers and fire action potentials, exhibiting properties similar to those of motor neurons. The reprogramming procedure comprised reverse transcription-polymerase chain reaction and immunofluorescence staining; furthermore, electrophysiological profiling demonstrated the characteristics of the induced-resembled neurons. The present study obtained a novel type of human irNC from human melanoma, which secreted BDNF continuously, providing a model for neuron-like cells. Thus, irNCs offer promise in investigating various neural diseases by using neural-like cells derived directly from the patient of interest. PMID:27510459

  14. Melanoma

    MedlinePlus

    ... flat or raised, large or small, light or dark, and can appear anywhere on our bodies. Sometimes, ... can still get melanoma even if they're dark skinned, young, and have no family history. Even ...

  15. Melanoma

    MedlinePlus

    ... the most important contributors to melanoma is ultraviolet (UV) sun damage. Cells that have been damaged — particularly ... red hair) multiple moles (typically, more than 25) UV exposure (whether from the sun or a tanning ...

  16. Melanoma

    MedlinePlus

    ... gls/pdf/melanoma.pdf . Accessed March 17, 2016. Review Date 1/31/2016 Updated by: Kevin Berman, ... PhD, Atlanta Center for Dermatologic Disease, Atlanta, GA. Review provided by VeriMed Healthcare Network. Also reviewed by ...

  17. Curcumin Induces Pro-apoptotic Effects Against Human Melanoma Cells and Modulates The Cellular Response to Immunotherapeutic Cytokines

    PubMed Central

    Bill, Matthew A.; Bakan, Courtney; Benson, Don M.; Fuchs, James; Young, Gregory; Lesinski, Gregory B.

    2009-01-01

    Curcumin has potential as a chemopreventative and chemotherapeutic agent however its interactions with clinically relevant cytokines are poorly characterized. Since cytokine immunotherapy is a mainstay of treatment for malignant melanoma, we hypothesized that curcumin could modulate the cellular responsiveness to interferons and interleukins. As a single agent, curcumin induced a dose-dependent increase in apoptosis of human melanoma cell lines, which was most prominent at doses >10 µM. Immunoblot analysis confirmed that curcumin induced apoptosis and revealed caspase-3 processing, PARP cleavage, reduced Bcl-2 and decreased basal phosphorylated STAT3. Despite its pro-apoptotic effects, curcumin pre-treatment of human melanoma cell lines inhibited the phosphorylation of STAT1 protein and downstream gene transcription following IFN-α and IFN-γ as determined by immunoblot analysis and Real Time PCR, respectively. Pre-treatment of peripheral blood mononuclear cells (PBMCs) from healthy donors with curcumin also inhibited the ability of IFN-α, IFN-γ and IL-2 to phosphorylate STAT proteins critical for their anti-tumor activity (STAT1 and STAT5, respectively) and their respective downstream gene expression as measured by Real Time PCR. Finally, stimulation of natural killer (NK) cells with curcumin reduced the level of IL-12-induced IFN-γ secretion, and production of granzyme b or IFN-γ upon co-culture with A375 melanoma cells or NK sensitive K562 cells as targets. These data demonstrate that although curcumin can induce apoptosis of melanoma cells, it can also adversely affect the responsiveness of immune effector cells to clinically relevant cytokines that possess anti-tumor properties. PMID:19723881

  18. Engineering melanoma progression in a humanized environment in vivo.

    PubMed

    Kiowski, Gregor; Biedermann, Thomas; Widmer, Daniel S; Civenni, Gianluca; Burger, Charlotte; Dummer, Reinhard; Sommer, Lukas; Reichmann, Ernst

    2012-01-01

    To overcome the lack of effective therapeutics for aggressive melanoma, new research models closely resembling the human disease are required. Here we report the development of a fully orthotopic, humanized in vivo model for melanoma, faithfully recapitulating human disease initiation and progression. To this end, human melanoma cells were seeded into engineered human dermo-epidermal skin substitutes. Transplantation onto the back of immunocompromised rats consistently resulted in the development of melanoma, displaying the hallmarks of their parental tumors. Importantly, all initial steps of disease progression were recapitulated, including the incorporation of the tumor cells into their physiological microenvironment, transition of radial to vertical growth, and establishment of highly vascularized, aggressive tumors with dermal involvement. Because all cellular components can be individually accessed using this approach, it allows manipulation of the tumor cells, as well as of the keratinocyte and stromal cell populations. Therefore, in one defined model system, tumor cell-autonomous and non-autonomous pathways regulating human disease progression can be investigated in a humanized, clinically relevant context.

  19. Preclinical study on combined chemo- and nonviral gene therapy for sensitization of melanoma using a human TNF-alpha expressing MIDGE DNA vector.

    PubMed

    Kobelt, Dennis; Aumann, Jutta; Schmidt, Manuel; Wittig, Burghardt; Fichtner, Iduna; Behrens, Diana; Lemm, Margit; Freundt, Greta; Schlag, Peter M; Walther, Wolfgang

    2014-05-01

    Nonviral gene therapy represents a realistic option for clinical application in cancer treatment. This preclinical study demonstrates the advantage of using the small-size MIDGE(®) DNA vector for improved transgene expression and therapeutic application. This is caused by significant increase in transcription efficiency, but not by increased intracellular vector copy numbers or gene transfer efficiency. We used the MIDGE-hTNF-alpha vector for high-level expression of hTNF-alpha in vitro and in vivo for a combined gene therapy and vindesine treatment in human melanoma models. The MIDGE vector mediated high-level hTNF-alpha expression leads to sensitization of melanoma cells towards vindesine. The increased efficacy of this combination is mediated by remarkable acceleration and increase of initiator caspase 8 and 9 and effector caspase 3 and 7 activation. In the therapeutic approach, the nonviral intratumoral in vivo jet-injection gene transfer of MIDGE-hTNF-alpha in combination with vindesine causes melanoma growth inhibition in association with increased apoptosis in A375 cell line or patient derived human melanoma xenotransplant (PDX) models. This study represents a proof-of-concept for an anticipated phase I clinical gene therapy trial, in which the MIDGE-hTNF-alpha vector will be used for efficient combined chemo- and nonviral gene therapy of malignant melanoma.

  20. Melanoma.

    PubMed

    Gershenwald, J E

    2001-01-01

    The presentations at the American Society of Clinical Oncology 2001 meeting reported or updated the results of phase I, II, and III randomized trials and also reported important meta-analyses and retrospective studies impacting on the management of patients with melanoma. In the treatment of early stage melanoma, the prognostic significance of pathologic status of sentinel lymph nodes was affirmed. With respect to regional nodal involvement (American Joint Committee on Cancer [AJCC] stage III), investigators presented the interim results of the United Kingdom randomized low-dose interferon (IFN) trial, and up-to-date meta-analyses of several IFN trials including a pooled analysis of the Eastern Cooperative Oncology Group trials evaluating interferon in the adjuvant setting. In the advanced disease setting (AJCC stage IV), several studies elucidated the pros and cons of biochemotherapy in patients with metastatic melanoma, with an emphasis on seeking to improve response in the central nervous system and durability of response in general. Thought provoking was new data regarding the potential for lovastatin to act as a chemopreventive agent for melanoma. Translational studies were presented, one supporting the importance of HLA-typing in developing targeted vaccine therapy. Finally, the results of a novel experimental melanoma vaccine were presented using autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96).

  1. Identification of melanoma-reactive CD4+ T cell subsets from Human Melanoma Draining Lymph Nodes

    PubMed Central

    Zhang, Mei; Graor, Hallie; Yan, Lu; Kim, Julian

    2015-01-01

    Our laboratory has previously demonstrated that melanoma draining lymph node (MDLN) samples from stage III patients contained both CD4+ and CD8+ T cells that can be readily expanded to mediate tumor cell apoptosis in vitro and improve survival in mice bearing human melanoma xenografts. In this study, we investigated whether MDLN T cells contain melanoma-reactive CD4+ T cell compartment and what they are. In order to test this, we performed multi-parametric (11-color and 6-color) FACS analyses to monitor phenotypic and functional property of CD4+ T cells in response to melanoma cell antigen re-exposure. Our results have demonstrated that the antigen re-exposure could result in a generation of CD4+CCR7+CD62L+CD27− T cell subsets with various effector cell-like properties. Within the CD4+CCR7+CD62L+CD27− T cell compartment, in response to antigen re-exposure, some of the cells expressed significantly up-regulated CD40L and/or CXCR5, and some of them expressed significantly up-regulated IL-2 and/or TNF-α. This may suggest the existence of melanoma reactive CD4+ “effector-precursor” cells within the expanded MDLN cells and their differentiation into various effector lineages in response to antigen re-stimulation. Recent clinical trials have demonstrated that effective adoptive cellular immunotherapy (ACI) maybe enhanced by antigen specific CD4+ T cells. Therefore, results of this study may significantly benefit innovative design of ACI that can potentially mediate enhanced and durable clinical responses. PMID:26641258

  2. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  3. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    PubMed

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K; Ballestas, Mary E; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  4. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    PubMed Central

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  5. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  6. Biologic and Therapeutic Significance of MYB Expression in Human Melanoma

    NASA Astrophysics Data System (ADS)

    Hijiya, Nobuko; Zhang, Jin; Ratajczak, Mariusz Z.; Kant, Jeffrey A.; Deriel, Kim; Herlyn, Meenhard; Zon, Gerald; Gewirtz, Alan M.

    1994-05-01

    We investigated the therapeutic potential of employing antisense oligodeoxynucleotides to target the disruption of MYB, a gene which has been postulated to play a pathogenetic role in cutaneous melanoma. We found that MYB was expressed at low levels in several human melanoma cell lines. Also, growth of representative lines in vitro was inhibited in a dose- and sequence-dependent manner by targeting the MYB gene with unmodified or phosphorothioate-modified antisense oligodeoxynucleotides. Inhibition of cell growth correlated with specific decrease of MYB mRNA. In SCID mice bearing human melanoma tumors, infusion of MYB antisense transiently suppressed MYB gene expression but effected long-term growth suppression of transplanted tumor cells. Toxicity of the oligodeoxynucleotides was minimal in mice, even when targeted to the murine Myb gene. These results suggest that the MYB gene may play an important, though undefined, role in the growth of at least some human melanomas. Inhibition of MYB expression might be of use in the treatment of this disease.

  7. Regulation of mda-7 gene expression during human melanoma differentiation.

    PubMed

    Madireddi, M T; Dent, P; Fisher, P B

    2000-03-02

    Induction of irreversible growth arrest and terminal differentiation in human melanoma cells following treatment with recombinant human fibroblast interferon (IFN-beta) and mezerein (MEZ) results in elevated expression of a specific melanoma differentiation associated gene, mda-7. Experiments were conducted to define the mechanism involved in the regulation of mda-7 expression in differentiating human melanoma cells. The mda-7 gene is actively transcribed in uninduced HO-1 human melanoma cells and the rate of transcription of mda-7 is not significantly enhanced by treatment with IFN-beta, MEZ or IFN-beta+MEZ. The high basal activity of the mda-7 promoter in uninduced melanoma cells and the absence of enhancing effect upon treatment with differentiation inducers is corroborated by transfection studies using the promoter region of mda-7 linked to a luciferase reporter gene containing the SV40 polyadenylation signal sequence. RT - PCR analysis detects the presence of low levels of mda-7 transcripts in uninduced and concomitant increases in differentiation inducer treated HO-1 cells. However, steady-state mda-7 mRNA is detected only in IFN-beta+MEZ and to a lesser degree in MEZ treated cells. We show that induction of terminal differentiation of HO-1 cells with IFN-beta+MEZ dramatically increases the half-life of mda-7 mRNA while treatment with cycloheximide results in detectable mda-7 mRNA in control and inducer treated cells. These observations confirm constitutive activity of the mda-7 promoter in HO-1 cells irrespective of differentiation status suggesting posttranscriptional processes as important determinants of mda-7 expression during terminal differentiation. The 3' UTR region of mda-7 contains AU-rich elements (ARE) that contribute to rapid mda-7 mRNA turnover during proliferation and reversible differentiation, a process controlled by a labile protein factor(s). Substitution of the SV40 polyadenylation signal sequence in the luciferase reporter plasmid with

  8. Transscleral optical spectroscopy of uveal melanoma in enucleated human eyes.

    PubMed

    Krohn, Jørgen; Svenmarker, Pontus; Xu, Can T; Mørk, Sverre J; Andersson-Engels, Stefan

    2012-08-09

    The aims of this study were to use transscleral optical spectroscopy to analyze normal and tumor-infiltrated areas of enucleated human eyes, and to characterize the spectral properties of uveal melanomas in relation to various morphological features. Nine consecutive eyes enucleated for uveal melanoma were examined by transscleral spectroscopy, using a fiber-optic probe that exerted a fixed pressure on the scleral surface. Spectroscopic measurements, covering the wavelength range of 400-1100 nm, were sequentially performed over the uveal melanoma and on the opposite (normal) side of each eye. The eyes were then processed for histological and immunohistochemical analyses. Comparisons between spectral and morphological parameters were performed by Spearman's rank correlation coefficient and unpaired t-test. The average reflection intensity obtained from the normal side of the eyes was higher than that from the tumors. The spectral imprint of hemoglobin was lower and that of water was considerably stronger when compared with the tumor side. The diffuse reflection spectra from the melanomas showed a strong correlation with the degree of tumor pigmentation (Spearman's rho = -0.87, P < 0.0001). A weaker correlation was observed between the amount of hemoglobin-related absorption and the density of intratumoral blood vessels (Spearman's rho = -0.25, P = 0.023). The mean diffuse reflection intensity obtained from the spindle cell melanomas was significantly higher than that from the mixed and epithelioid cell melanomas (P < 0.0001). Although future in vivo studies are required, these data suggest that transscleral optical spectroscopy is a feasible method for identification and morphological assessment of choroidal tumors.

  9. Thiostrepton is an Inducer of Oxidative and Proteotoxic Stress that Impairs Viability of Human Melanoma Cells but not Primary Melanocytes

    PubMed Central

    Qiao, Shuxi; Lamore, Sarah D.; Cabello, Christopher M.; Lesson, Jessica L.; Muñoz-Rodriguez, José L.; Wondrak, Georg T.

    2012-01-01

    Pharmacological induction of oxidative and proteotoxic stress has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Guided by a differential phenotypic drug screen for novel lead compounds that selectively induce melanoma cell apoptosis without compromising viability of primary human melanocytes, we have focused on the cyclic pyridinyl-polythiazolyl peptide-antimicrobial thiostrepton. Using comparative gene expression-array analysis, the early cellular stress response induced by thiostrepton was examined in human A375 metastatic melanoma cells and primary melanocytes. Thiostrepton displayed selective antimelanoma activity causing early induction of proteotoxic stress with massive upregulation of heat shock (HSPA6, HSPA1A, DNAJB4, HSPB1, HSPH1, HSPA1L, CRYAB, HSPA5, DNAJA1), oxidative stress (HMOX1, GSR, SOD1), and ER stress response (DDIT3) gene expression, confirmed by immunodetection (Hsp70, Hsp70B′, HO-1, phospho-eIF2α). Moreover, upregulation of p53, proapoptotic modulation of Bcl-2 family members (Bax, Noxa, Mcl-1, Bcl-2), and induction of apoptotic cell death were observed. Thiostrepton rapidly induced cellular oxidative stress followed by inactivation of chymotrypsin-like proteasomal activity and melanoma cell-directed accumulation of ubiquitinated proteins, not observed in melanocytes that were resistant to thiostrepton-induced apoptosis. Proteotoxic and apoptogenic effects were fully antagonized by antioxidant intervention. In RPMI 8226 multiple myeloma cells, known to be exquisitely sensitive to proteasome inhibition, early proteotoxic and apoptogenic effects of thiostrepton were confirmed by array analysis indicating pronounced upregulation of heat shock response gene expression. Our findings demonstrate that thiostrepton displays dual activity as a selective prooxidant and proteotoxic chemotherapeutic, suggesting feasibility of experimental intervention targeting metastatic melanoma and other

  10. Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model.

    PubMed

    Kucerova, L; Skolekova, S; Demkova, L; Bohovic, R; Matuskova, M

    2014-10-01

    Mesenchymal stromal cells (MSC) can be exploited as cellular delivery vehicles for the enzymes converting non-toxic prodrugs to toxic substances. Because of their inherent chemoresistance, they exert potent bystander and antitumor effect. Here we show that the human adipose tissue-derived MSC expressing fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) in combination with 5-fluorocytosine (5FC) mediated a long-term tumor-free survival in the 83.3% of tumor-bearing animals. CD-MSC/5FC treatment induced cytotoxicity against model human melanoma cells EGFP-A375. Only 4% of the therapeutic CD-MSC cells eliminated >98.5% of the tumor cells in vitro. Long-term tumor-free survival was confirmed in 15 out of the 18 animals. However, repeatedly used CD-MSC/5FC therapeutic regimen generated more aggressive and metastatic variant of the melanoma cells EGFP-A375/Rel3. These cells derived from the refractory xenotransplants exhibited increased resistance to the CD-MSC/5FC treatment, altered cell adhesion, migration, tumorigenic and metastatic properties. However, long-term curative effect was achieved by the augmentation of the CD-MSC/5FC regimen along with the inhibition of c-Met/hepatocyte growth factor signaling axis in this aggressive melanoma derivative. In summary, the CD-MSC/5FC regimen can be regarded as a very effective antitumor approach to achieve long-term tumor-free survival as demonstrated on a mouse model of aggressive human melanoma xenografts.

  11. Effects of nuclear factor-κB and ERK signaling transduction pathway inhibitors on human melanoma cell proliferation in vitro.

    PubMed

    Huang, Yi-Chuan; Pan, Min; Liu, Ning; Xiao, Jun-Gang; Chen, Hong-Quan

    2015-11-01

    The present study aimed to investigate the effects of blocking nuclear factor (NF)-κB and/or extracellular signal-regulated kinase (ERK) signaling pathways on proliferation and apoptosis of melanoma cells in vitro. A375 Human melanoma cells were treated with U0126 (ERK signaling pathway inhibitor) and BMS-345541 (NF-κB inhibitor), alone or in combination. At 12, 24 and 48 h after treatment, cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle progression and apoptosis were evaluated by flow cytometry, and Bcl-2 protein content was determined by western blot analysis. BMS-345541 and U0126 significantly inhibited A375 cell proliferation in a dose- and time-dependent manner (P<0.01). The rate of proliferation inhibition at 24 h was 35.41±1.38% for BMS-345541 alone, 30.64±2.86% for U0126 alone, and 77.27±2.70% for BMS-345541 and U0126 in combination. The difference between combination and single treatment was significantly different (P<0.01). The proportion of cells in S phase was 14.20, 18.40 and 22.64% following treatment with BMS-345541, U0126, and BMS-345541 and U0126 in combination, respectively; these values were all significantly reduced compared with the untreated control group (P<0.01). The apoptosis rate was 24.98±1.03% in the BMS-345541 group, 13.96±0.96% in the U0126 group and 38.91±1.46% in the combination group; all significantly increased compared with the control group (P<0.01). Bcl-2 protein content in A375 cells was significantly increased following treatment with BMS-345541 and U0126, alone or in combination, when compared with the untreated control group (P<0.01). Therefore, NF-κB and ERK signaling pathway inhibitors may serve as potential therapeutic targets for melanoma.

  12. Purification and characterization of cytostatic lymphokines produced by activated human T lymphocytes. Synergistic antiproliferative activity of transforming growth factor beta 1, interferon-gamma, and oncostatin M for human melanoma cells.

    PubMed

    Brown, T J; Lioubin, M N; Marquardt, H

    1987-11-01

    Supernatants from activated human T lymphocytes were highly growth inhibitory for A375 human melanoma cells. Three growth inhibiting polypeptides, transforming growth factor beta 1 (TGF-beta 1), interferon-gamma (IFN-gamma), and oncostatin M, were isolated from the acid-soluble fraction of serum-free T cell-conditioned medium and purified by gel permeation chromatography and reverse-phase high performance liquid chromatography in volatile solvents at acid pH. The purification was monitored in a growth inhibition assay. The release of TGF-beta 1 biologic activity by and the purification of IFN-gamma from the medium of activated human peripheral blood T lymphocytes have been reported. We now describe the isolation of oncostatin M from the conditioned medium of activated human T cells. The concentration of oncostatin M required for half-maximal inhibition of A375 melanoma cells was approximately 4 pM when assayed in the presence of 10% fetal bovine serum. The purified oncostatin M had an apparent m.w. 28,000 and an amino-terminal sequence that was identical with the sequence of oncostatin M isolated from supernatants of macrophage-like cells. Suboptimal concentrations of TGF-beta 1 in combination with suboptimal concentrations of IFN-gamma or oncostatin M resulted in synergistic antiproliferative responses for A375 cells (1.9 and 3.1 times the expected additive responses, respectively). Combinations of oncostatin M and IFN-gamma added simultaneously to A375 cells caused an additive growth inhibitory response. These results demonstrate that oncostatin M is a novel lymphokine, and its interaction with other cytostatic polypeptide growth inhibitors may play a role in the immune regulation of tumor cell growth.

  13. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  14. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.

  15. Anticancer properties of chitosan on human melanoma are cell line dependent.

    PubMed

    Gibot, Laure; Chabaud, Stéphane; Bouhout, Sara; Bolduc, Stéphane; Auger, François A; Moulin, Véronique J

    2015-01-01

    Chitosan, a natural macromolecule, is widely used in medical and pharmaceutical fields because of its distinctive properties such as bactericide, fungicide and above all its antitumor effects. Although its antitumor activity against different types of cancer had been previously described, its mechanism of action was not fully understood. Coating of chitosan has been used in cell cultures with A375, SKMEL28, and RPMI7951 cell lines. Adherence, proliferation and apoptosis were investigated. Our results revealed that whereas chitosan decreased adhesion of primary melanoma A375 cell line and decreased proliferation of primary melanoma SKMEL28 cell line, it had potent pro-apoptotic effects against RPMI7951, a metastatic melanoma cell line. In these latter cells, inhibition of specific caspases confirmed that apoptosis was effected through the mitochondrial pathway and Western blot analyses showed that chitosan induced an up regulation of pro-apoptotic molecules such as Bax and a down regulation of anti-apoptotic proteins like Bcl-2 and Bcl-XL. More interestingly, chitosan exposure induced an exposition of a greater number of CD95 receptor at RPMI7951 surface, making them more susceptible to FasL-induced apoptosis. Our results indicate that chitosan could be a promising agent for further evaluations in antitumor treatments targeting melanoma. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Topical Delivery of 5-Fluorouracil from Pheroid™ Formulations and the In Vitro Efficacy Against Human Melanoma.

    PubMed

    Chinembiri, Tawona N; Gerber, Minja; du Plessis, Lissinda; du Preez, Jan; du Plessis, Jeanetta

    2015-12-01

    Drug delivery vehicles can influence the topical delivery and the efficacy of an active pharmaceutical ingredient (API). In this study, the influence of Pheroid™ technology, which is a unique colloidal drug delivery system, on the skin permeation and antimelanoma efficacy of 5-fluorouracil were investigated. Lotions containing Pheroid™ with different concentrations of 5-fluorouracil were formulated then used in Franz cell skin diffusion studies and tape stripping. The in vitro efficacy of 5-fluorouracil against human melanoma cells (A375) was investigated using a flow cytometric apoptosis assay. Statistically significant concentrations of 5-fluorouracil diffused into and through the skin with Pheroid™ formulations resulting in an enhanced in vitro skin permeation from the 4.0% 5-fluorouracil lotion (p < 0.05). The stratum corneum-epidermis and epidermis-dermis retained 5-fluorouracil concentrations of 2.31 and 6.69 μg/ml, respectively, after a diffusion study with the 4.0% Pheroid™ lotion. Subsequent to the apoptosis assay, significant differences were observed between the effect of 13.33 μg/ml 5-fluorouracil in Pheroid™ lotion and the effects of the controls. The results obtained suggest that the Pheroid™ drug delivery system possibly enhances the flux and delivery of 5-fluorouracil into the skin. Therefore, using Pheroid™ could possibly be advantageous with respect to topical delivery of 5-fluorouracil.

  17. FT-IR microspectroscopic imaging of human melanoma thin sections

    NASA Astrophysics Data System (ADS)

    Lasch, P.; Wäsche, W.; Müller, G.; Naumann, D.

    1998-06-01

    FT-IR microscopic mapping techniques in combination with image construction methods have been used to characterize tissue thin sections from human melanoma. While IR imaging based on distinct spectral parameters (intensity, frequency, or half-width) often gives unsatisfactory results, pattern recognition analysis (e.g. by principal component analysis or Artificial Neural Networks) of the IR-data confirms standard histopathological techniques and turns out to be helpful to discriminate reliably between different tissues.

  18. Cytotoxic and apoptotic activities of the plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) on A375.S2 cells.

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hwang, Deng-Fwu

    2015-04-01

    This study reports on a cytotoxic toxin derived from the venom of the crown-of-thorns starfish Acanthaster planci (CAV). The protein toxin was isolated through both ion-exchange and gel-filtration chromatography, and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrum analyzes. The CAV was identified as plancitoxin I protein. The mechanistic role of the CAV toxin was explored in human malignant melanoma A375.S2 cell death. The results indicated that after incubation with CAV toxin, cells significantly decreased in A375.S2 cell viability and increased in the lactate dehydrogenase (LDH) level in a dose-dependent manner. The assays indicated that CAV toxin promoted reactive oxygen species (ROS) production, induced nitric oxide (NO) formation, lost mitochondrial membrane potential (ΔΨm) and induced inter-nucleosomal DNA fragmentation in A375.S2 cells. The molecular cytotoxicity of the CAV toxin was tested through evaluation of the apoptosis/necrosis ratio by double staining with annexin V-FITC and a propidium iodide (PI) assay. The results suggested that CAV toxin induced a cytotoxic effect in A375.S2 cells via the apoptotic procedure, and may be associated with the regulation of the p38 pathways. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Phenotyping of human melanoma cells reveals a unique composition of receptor targets and a subpopulation co-expressing ErbB4, EPO-R and NGF-R.

    PubMed

    Mirkina, Irina; Hadzijusufovic, Emir; Krepler, Clemens; Mikula, Mario; Mechtcheriakova, Diana; Strommer, Sabine; Stella, Alexander; Jensen-Jarolim, Erika; Höller, Christoph; Wacheck, Volker; Pehamberger, Hubert; Valent, Peter

    2014-01-01

    Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45-/CD31- cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4-40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R- subpopulations produced melanoma lesions in NOD/SCID IL-2Rgamma(null) (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential.

  20. Phenotyping of Human Melanoma Cells Reveals a Unique Composition of Receptor Targets and a Subpopulation Co-Expressing ErbB4, EPO-R and NGF-R

    PubMed Central

    Krepler, Clemens; Mikula, Mario; Mechtcheriakova, Diana; Strommer, Sabine; Stella, Alexander; Jensen-Jarolim, Erika; Höller, Christoph; Wacheck, Volker; Pehamberger, Hubert; Valent, Peter

    2014-01-01

    Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45−/CD31− cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4–40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R− subpopulations produced melanoma lesions in NOD/SCID IL-2Rgammanull (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential. PMID:24489649

  1. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    PubMed

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. © 2015 Institute of Food Technologists®

  2. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  3. Versican Is Differentially Expressed in Human Melanoma and May Play a Role in Tumor Development

    PubMed Central

    Touab, Malika; Villena, Juan; Barranco, Carlos; Arumí-Uría, Montserrat; Bassols, Anna

    2002-01-01

    Undifferentiated human melanoma cell lines produce a large chondroitin sulfate proteoglycan, different from the well-known melanoma-specific proteoglycan mel-PG (Heredia and colleagues, Arch Biochem Biophys, 333: 198–206, 1996). We have identified this proteoglycan as versican and analyzed the expression of versican in several human melanoma cell lines. Versican isoforms are expressed in undifferentiated cell lines but not in differentiated cells, and the isoform expression pattern depends on the degree of cell differentiation. The V0 and V1 isoforms are found on cells with an early degree of differentiation, whereas the V1 isoform is present in cells with an intermediate degree of differentiation. We have also characterized some functional properties of versican on human melanoma cells: the purified proteoglycan stimulates cell growth and inhibits cell adhesion when cells are grown on fibronectin or collagen type I as substrates, and thus may facilitate tumor cell detachment and proliferation. Furthermore, we have analyzed the expression of versican in human melanocytic nevi and melanoma: 10 benign melanocytic nevi, 10 dysplastic nevi, 11 primary malignant melanomas, and 8 metastatic melanomas were tested. Immunoreactivity for versican was negative in benign melanocytic nevi, weakly to strongly positive in dysplastic nevi, and intensely positive in primary malignant melanomas and metastatic melanomas. Our results indicate that versican is involved in the progression of melanomas and may be a reliable marker for clinical diagnosis. PMID:11839575

  4. Epigenetic impacts of ascorbate on human metastatic melanoma cells.

    PubMed

    Venturelli, Sascha; Sinnberg, Tobias W; Berger, Alexander; Noor, Seema; Levesque, Mitchell Paul; Böcker, Alexander; Niessner, Heike; Lauer, Ulrich M; Bitzer, Michael; Garbe, Claus; Busch, Christian

    2014-01-01

    In recent years, increasing evidence has emerged demonstrating that high-dose ascorbate bears cytotoxic effects on cancer cells in vitro and in vivo, making ascorbate a pro-oxidative drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. This anticancer effect of ascorbate is hypoxia-inducible factor-1α- and O2-dependent. However, whether the intracellular mechanisms governing this effect are modulated by epigenetic phenomena remains unknown. We treated human melanoma cells with physiological (200 μM) or pharmacological (8 mM) ascorbate for 1 h to record the impact on DNA methyltransferase (DNMT)-activity, histone deacetylases (HDACs), and microRNA (miRNA) expression after 12 h. The results were analyzed with the MIRUMIR online tool that estimates the power of miRNA to serve as potential biomarkers to predict survival of cancer patients. FACS cell-cycle analyses showed that 8 mM ascorbate shifted BLM melanoma cells toward the sub-G1 fraction starting at 12 h after an initial primary G2/M arrest, indicative for secondary apoptosis induction. In pharmacological doses, ascorbate inhibited the DNMT activity in nuclear extracts of MeWo and BLM melanoma cells, but did not inhibit human HDAC enzymes of classes I, II, and IV. The expression of 151 miRNAs was altered 12 h after ascorbate treatment of BLM cells in physiological or pharmacological doses. Pharmacological doses up-regulated 32 miRNAs (≥4-fold) mainly involved in tumor suppression and drug resistance in our preliminary miRNA screening array. The most prominently up-regulated miRNAs correlated with a significantly increased overall survival of breast cancer or nasopharyngeal carcinoma patients of the MIRUMIR database with high expression of the respective miRNA. Our results suggest a possible epigenetic signature of pharmacological doses of ascorbate in human melanoma cells and support further pre-clinical and possibly even clinical evaluation of

  5. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271.

    PubMed

    Boiko, Alexander D; Razorenova, Olga V; van de Rijn, Matt; Swetter, Susan M; Johnson, Denise L; Ly, Daphne P; Butler, Paris D; Yang, George P; Joshua, Benzion; Kaplan, Michael J; Longaker, Michael T; Weissman, Irving L

    2010-07-01

    The question of whether tumorigenic cancer stem cells exist in human melanomas has arisen in the last few years. Here we show that in melanomas, tumour stem cells (MTSCs, for melanoma tumour stem cells) can be isolated prospectively as a highly enriched CD271(+) MTSC population using a process that maximizes viable cell transplantation. The tumours sampled in this study were taken from a broad spectrum of sites and stages. High-viability cells isolated by fluorescence-activated cell sorting and re-suspended in a matrigel vehicle were implanted into T-, B- and natural-killer-deficient Rag2(-/-)gammac(-/-) mice. The CD271(+) subset of cells was the tumour-initiating population in 90% (nine out of ten) of melanomas tested. Transplantation of isolated CD271(+) melanoma cells into engrafted human skin or bone in Rag2(-/-)gammac(-/-) mice resulted in melanoma; however, melanoma did not develop after transplantation of isolated CD271(-) cells. We also show that in mice, tumours derived from transplanted human CD271(+) melanoma cells were capable of metastatsis in vivo. CD271(+) melanoma cells lacked expression of TYR, MART1 and MAGE in 86%, 69% and 68% of melanoma patients, respectively, which helps to explain why T-cell therapies directed at these antigens usually result in only temporary tumour shrinkage.

  6. MicroRNA 211 Functions as a Metabolic Switch in Human Melanoma Cells

    PubMed Central

    Mazar, Joseph; Qi, Feng; Lee, Bongyong; Marchica, John; Govindarajan, Subramaniam; Shelley, John; Li, Jian-Liang; Ray, Animesh

    2016-01-01

    MicroRNA 211 (miR-211) negatively regulates genes that drive invasion of metastatic melanoma. Compared to normal human melanocytes, miR-211 expression is significantly reduced or absent in nonpigmented melanoma cells and lost during human melanoma progression. To investigate the molecular mechanism of its tumor suppressor function, miR-211 was ectopically expressed in nonpigmented melanoma cells. Ectopic expression of miR-211 reduced hypoxia-inducible factor 1α (HIF-1α) protein levels and decreased cell growth during hypoxia. HIF-1α protein loss was correlated with the downregulation of a miR-211 target gene, pyruvate dehydrogenase kinase 4 (PDK4). We present evidence that resumption of miR-211-mediated downregulation of PDK4 in melanoma cells causes inhibition of invasion by nonpigmented melanomas via HIF-1α protein destabilization. Thus, the tumor suppressor miR-211 acts as a metabolic switch, and its loss is expected to promote cancer hallmarks in human melanomas. Melanoma, one of the deadliest forms of skin cancer, kills nearly 10,000 people in the United States per year. We had previously shown that a small noncoding RNA, termed miR-211, suppresses invasion and the growth of aggressive melanoma cells. The results presented here support the hypothesis that miR-211 loss in melanoma cells causes abnormal regulation of energy metabolism, which in turn allows cancer cells to survive under low oxygen concentrations—a condition that generally kills normal cells. These findings highlight a novel mechanism of melanoma formation: miR-211 is a molecular switch that is turned off in melanoma cells, raising the hope that in the future we might be able to turn the switch back on, thus providing a better treatment option for melanoma. PMID:26787841

  7. The influence of ciprofloxacin on viability of A549, HepG2, A375.S2, B16 and C6 cell lines in vitro.

    PubMed

    Kloskowski, Tomasz; Gurtowska, Natalia; Nowak, Monika; Joachimiak, Romana; Bajek, Anna; Olkowska, Joanna; Drewa, Tomasz

    2011-01-01

    Ciprofloxacin is a chemotherapeutic agent mainly used in the treatment of the pulmonary and urinary tract infections but is also known for its anticancer properties. The aim of these study was to check the anticancer effect of ciprofloxacin on selected five cell lines. Human non-small cell lung cancer line A549, human hepatocellular carcinoma line HepG2, human and mouse melanoma lines (A375.S2 and B16) and rat glioblastoma line C6 were used for evaluation of cytotoxic properties of ciprofloxacin (in concentration range: 10-1000 microg/mL). Viability was established using trypan blue assay and MTT. Ciprofloxacin induced morphological changes and decreased viability of A549 cells in a concentration and time dependent manner. In case of A375.S2 and B16 cell lines, cytotoxicyty of ciprofloxacin was observed but we were not able to eradicate all cells from A375.S2 and B16 cultures. HepG2 line was sensitive to ciprofloxacin, but this effect was independent from concentration and incubation time. The C6 cells were insensitive to ciprofloxacin. Our results showed that ciprofloxacin can be potentially used for the experimental adjunctive therapy of lung cancer.

  8. Adaptive response of human melanoma cells to methylglyoxal injury.

    PubMed

    Amicarelli, F; Bucciarelli, T; Poma, A; Aimola, P; Di Ilio, C; Ragnelli, A M; Miranda, M

    1998-03-01

    The effects of methylglyoxal on the growth of a line of human melanoma cells are investigated. Methylglyoxal inhibits cell growth in a dose-dependent manner and causes an increase in glyceraldehyde 3-phosphate dehydrogenase, and glyoxalase 1 and glyoxalase 2 specific activities. The cellular response to increasing concentrations of methylglyoxal in the culture medium is also studied by measuring L-lactate production, reduced-oxidized glutathione levels and apoptotic cell death. Methylglyoxal seems to promote a change of cell population phenotypic repertoire toward a more monomorphic phenotype. In conclusion, methylglyoxal seems to induce an enzymatic cellular response that lowers methylglyoxal levels and selects the most resistant cells.

  9. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  10. The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts.

    PubMed

    McAllister, Josephine C; Zhan, Qian; Weishaupt, Carsten; Hsu, Mei-Yu; Murphy, George F

    2010-04-01

    Formation of channel-like structures, also termed vasculogenic mimicry (VM), describes the ability of aggressive melanoma cells to form PAS-positive anastomosing structures that correlate with tumor virulence. This phenomenon may indicate differentiation plasticity, a feature melanoma cells may share with stem cells in the developing embryo. Recent studies have indicated that VM and tumorigenicity of human malignant melanoma may depend on the signaling pathways of an embryonic morphogen, Nodal. However, given the secretory nature of Nodal protein and melanoma cell heterogeneity, it remains unclear whether the Nodal-expressing cells participate directly or indirectly in VM that is potentially related to tumorigenic growth. We have developed a humanized murine xenograft model in which developing human melanomas may be sequentially studied during early stages of tumorigenic growth within a physiological human dermal microenvironment. Nodal protein localized diffusely to melanoma cell membranes, with occasional foci of accentuated reactivity in patterns suggestive of channel formation. Similar findings were detected in a limited number of patient-derived tumors. In situ hybridization confirmed Nodal mRNA to be restricted to tumor cells within xenografts that formed arborizing networks in patterns consistent with VM. These data indicate that Nodal gene expression is associated with formation of VM-like structures in a physiologically relevant model of human melanoma tumorigenesis, and further support a key role for Nodal expression in the formation of channel-like structures. The humanized xenograft model should be useful in future studies to define the mechanistic pathways responsible for VM and melanoma progression.

  11. Textile industry manufacturing by-products induce human melanoma cell proliferation via ERK1/2 activation.

    PubMed

    Rizzi, M; Cravello, B; Renò, F

    2014-12-01

    Textiles used to make clothing can represent a source, often ignored, of chemicals potentially noxious to both skin and the whole organism. Among the most frequently produced potentially noxious chemical manufacturing by-products are formaldehyde (FA), nickel (Ni) and hexavalent chromium (Cr); they are of potential clinical interest as all are known to be carcinogenic to humans and to be potent skin sensitizers. The aim of this study was to investigate, in vitro, effects of these potentially dangerous compounds on two different melanoma cell lines. In particular, attention was focused on A375P, a poorly metastatic and low invasive cell line and SK-MEL-28, a highly metastatic cell line. Effects of these compounds was evaluated on A375P and SK-MEL-28 cells. FA (1-5 × 10(-5)  m), NiSO4 (10(-6) -10(-3)  m), K2 Cr2 O7 (10(-7) -10(-6)  m) effects on cell proliferation were evaluated by cell counting, while ERK pathway involvement was evaluated by Western blot analysis. Low concentrations of the chemicals, covering a range that corresponds to commonly accepted limits in textile production, induced a significant increase in cell proliferation concomitant with transient activation of phosphorylated ERK expression. Data obtained suggest that increasing attention must be focused on these by-products' potentially harmful effects in chemical manufacturing of clothes and accessories, that remain for long periods of time, in contact with human skin. © 2014 John Wiley & Sons Ltd.

  12. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    PubMed

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  13. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib.

    PubMed

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy.

  14. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    PubMed Central

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  15. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure.

    PubMed

    Srivastav, Ajeet K; Mujtaba, Syed Faiz; Dwivedi, Ashish; Amar, Saroj K; Goyal, Shruti; Verma, Ankit; Kushwaha, Hari N; Chaturvedi, Rajnish K; Ray, Ratan Singh

    2016-03-01

    Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.

  16. Overexpression of Hsp27 in a human melanoma cell line: regulation of E-cadherin, MUC18/MCAM, and plasminogen activator (PA) system

    PubMed Central

    Aldrian, Silke; Kindas-Mügge, Ingela; Trautinger, Franz; Fröhlich, Ilse; Gsur, Andrea; Herbacek, Irene; Berger, Walter; Micksche, Michael

    2003-01-01

    Hsp27 is considered a potential marker for cell differentiation in diverse tissues. Several aspects linked to the differentiation process and to the transition from high to low metastatic potential were analyzed in melanoma cells transfected with Hsp27. E-cadherin plays a central role in cell differentiation, migration, and normal development. Loss of expression or function of E-cadherin has been documented in a variety of human malignancies. We observed by fluorescence-activated cell sorter (FACS) as well as immunofluorescence (IF) analysis a pronounced expression of E-cadherin in Hsp27-transfected A375 melanoma cells compared with control melanoma cells. The expression of the adhesion molecule MUC18/MCAM correlates directly with the metastatic potential of melanoma cells. In contrast to wild-type and neotransfected melanoma cells, in Hsp27-transfected cells the expression of MUC18/MCAM could not be detected by FACS and IF analysis. The plasminogen activator (PA) system plays a central role in mediating extracellular proteolysis and also in nonproteolytic events such as cell adhesion, migration, and transmembrane signaling. Hsp27 transfectants revealed elevated messenger ribonucleic acid expression of the urokinase-type PA (uPA) and its inhibitor, PA inhibitor type 1, which might indicate a neutralization effect of the proteolytic activity of uPA. Control cells failed to express both these molecules. The influence of Hsp27 expression on uPA activity and the involvement of E-cadherin could be demonstrated by use of anti–E-cadherin–blocking antibody. Our data provide evidence for an inhibitory-regulatory role of Hsp27 in tumor progression as found in our system. PMID:14984058

  17. Constitutive Aberrant Endogenous Interleukin-1 Facilitates Inflammation and Growth in Human Melanoma

    PubMed Central

    Qin, Yong; Ekmekcioglu, Suhendan; Liu, Ping; Duncan, Lyn M.; Lizée, Gregory; Poindexter, Nancy; Grimm, Elizabeth A.

    2011-01-01

    Interleukin-1-mediated inflammation is proposed to contribute to the development and progression of some cancers. IL-1 family member proteins are known to be expressed constitutively in many melanoma tumor cells, and we hypothesize that these support molecular pathways of inflammation and facilitate tumor growth. To investigate the expression of IL-1α and IL-1β in melanoma patients, and their association with disease progression, immunohistochemical staining was performed on tissues from 170 patients including benign nevi, primary melanomas, and metastatic melanomas. IL-1β levels were low (or zero) in benign nevi, and higher in primary and metastatic melanomas (P<0.0001). IL-1α was expressed in about 73% of nevi and 55% of metastatic melanomas, with levels significantly higher in primary tumors (P<0.0001); most (98%) primary melanoma samples were positive for IL-1α. In vitro studies with 7 human melanoma cell lines showed that 5 cell lines expressed IL-1α and IL-1β proteins and mRNA. We identified for the first time several important downstream signaling pathways affected by endogenous IL-1, including reactive oxygen and nitrogen species, COX-2, and phosphorylated IκB and SAPK/JNK; all of which were decreased by siRNA to IL-1s. Downregulation of IL-1α, IL-1β, or MyD88 substantially increased p21 and p53 levels. Treatment with IL-1 receptor type I neutralizing antibody or IL-1-pathway-specific siRNAs led to growth arrest in IL-1-positive melanoma cells. Furthermore, blocking the IL-1 pathway increased autophagy in IL-1-positive melanoma cells. These results indicate that the endogenous IL-1 system is functional in most human melanoma, and interrupting its signaling inhibits the growth of IL-1-positive melanoma cells. PMID:21954434

  18. The novel PI3 kinase inhibitor, BAY 80-6946, impairs melanoma growth in vivo and in vitro.

    PubMed

    Schneider, Philine; Schön, Margarete; Pletz, Nadin; Seitz, Cornelia S; Liu, Ningshu; Ziegelbauer, Karl; Zachmann, Karolin; Emmert, Steffen; Schön, Michael P

    2014-08-01

    Due to its almost universal resistance to chemotherapy, metastasized melanoma remains a major challenge in clinical oncology. Given that phosphatidyl inositol-3 kinase (PI3K) activation in melanoma cells is associated with poor prognosis, disease progression and resistance to chemotherapy, the PI3K-Akt signalling pathway is a promising therapeutic target for melanoma treatment. We analysed six human melanoma cell lines for their constitutive activation of Akt and then tested two representative lines, A375 and LOX, for their susceptibility to PI3K-inhibition by the highly specific small molecule inhibitor, BAY 80-6946. In addition, the effect of BAY 80-6946 on A375 and LOX melanoma cells was assessed in vivo in a xenotransplantation mouse model. We provide experimental evidence that specifically inhibiting the PI3K pathway and phosphorylation of Akt by this novel compound results in antitumoral activities including inhibition of proliferation, induction of apoptosis and cell cycle arrest in vitro and in vivo. However, the susceptibility did not show a clear-cut pattern and differed between the melanoma cell lines tested, resulting in in vivo growth inhibition of A375 but not LOX melanoma cells. Thus, in some cases BAY 80-6946 or related compounds may be a valuable addition to the therapeutic armamentarium.

  19. Inhibition of L-tyrosine-induced micronuclei production by phenylthiourea in human melanoma cells.

    PubMed

    Poma, A; Bianchini, S; Miranda, M

    1999-12-13

    It was previously found that L-tyrosine oxidation product(s) are cytotoxic, genotoxic and increase the sister chromatid exchange (SCE) levels in human melanoma cells. In this work, the micronucleus assay has been performed on human melanotic and amelanotic melanoma cell lines (Carl-1 MEL and AMEL) in the presence of 1.0, 0.5 and 0.1 mM L-tyrosine concentrations to investigate if melanin synthesis intermediate(s) increase micronuclei production. L-Tyrosine oxidation product(s) increased the frequency of micronuclei in melanoma cells; 0.1 mM phenylthiourea (PTU), an inhibitor of L-tyrosine oxidation by tyrosinase, lowered the micronucleus production to the control levels. The culture of melanoma cells with high L-tyrosine in the culture medium resulted in a positive response to an ELISA-based apoptotic test. For comparison the effect of L-tyrosine on micronuclei production in human amelanotic melanoma cells was also investigated; the micronucleus production in the presence of 1 mM L-tyrosine in the culture medium was lower than that found with melanotic melanoma cells of the same cell line. The data suggest that melanin synthesis intermediates arising from L-tyrosine oxidation may cause micronuclei production in Carl-1 human melanoma cells; the addition of PTU in the presence of L-tyrosine decreased the frequency of micronuclei to about the control values thus the inhibition of melanogenesis may have some clinical implication in melanotic melanoma.

  20. Lymphatic vessels regulate immune microenvironments in human and murine melanoma.

    PubMed

    Lund, Amanda W; Wagner, Marek; Fankhauser, Manuel; Steinskog, Eli S; Broggi, Maria A; Spranger, Stefani; Gajewski, Thomas F; Alitalo, Kari; Eikesdal, Hans P; Wiig, Helge; Swartz, Melody A

    2016-09-01

    Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment.

  1. Lymphatic vessels regulate immune microenvironments in human and murine melanoma

    PubMed Central

    Lund, Amanda W.; Wagner, Marek; Fankhauser, Manuel; Steinskog, Eli S.; Broggi, Maria A.; Spranger, Stefani; Gajewski, Thomas F.; Alitalo, Kari; Eikesdal, Hans P.

    2016-01-01

    Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment. PMID:27525437

  2. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  3. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  4. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    SciTech Connect

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-06-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-{pi} was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G{sub 2}-phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application.

  5. Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells.

    PubMed

    Lee, Chi-Chiu; Hsieh, Hernyi Justin; Hsieh, Cheng-Hong; Hwang, Deng-Fwu

    2015-08-01

    The crown-of-thorns starfish Acanthaster planci is a venomous starfish whose venom provokes strong cytotoxicity. In the present study, the purified cytotoxic toxin of A. planci venom (CAV) was identified as plancitoxin I protein by mass spectrum analyses. This study aims to investigate the molecular mechanism underlying the cytotoxicity function of plancitoxin I by focusing on the oxidative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress pathway in human melanoma A375.S2 cells. The results indicated that after being treated with CAV toxin, A375.S2 cells significantly decreased viability in a dose-dependent manner. The CAV was found to reduce the cellular antioxidant enzymes such as SOD and CAT, and there was a significant decrease in total thiol level and mtDNA integrity, and it enhanced the lipid peroxidation. In addition, CAV increased cytosolic Ca(2+) concentration, and enhanced the expression of the ER molecular chaperones GRP78 and CHOP in a dose-dependent manner. CAV significantly elevated the activity of caspase-3, -8 and -9, and reduced the ratio of Bcl-2/Bax. The cells exhibited apoptosis were determined by using propidium iodide (PI) staining of DNA fragmentation (sub-G1 peak). In summary, the results demonstrated that plancitoxin I inhibits the proliferation of A375.S2 cells through induction of oxidative stress, mitochondrial dysfunction and ER stress associated apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    PubMed

    Botti, Gerardo; Fratangelo, Federica; Cerrone, Margherita; Liguori, Giuseppina; Cantile, Monica; Anniciello, Anna Maria; Scala, Stefania; D'Alterio, Crescenzo; Trimarco, Chiara; Ianaro, Angela; Cirino, Giuseppe; Caracò, Corrado; Colombino, Maria; Palmieri, Giuseppe; Pepe, Stefano; Ascierto, Paolo Antonio; Sabbatino, Francesco; Scognamiglio, Giosuè

    2017-02-23

    The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAF(V600E) A375 and NRAS(Q61R) SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. BRAF(V600E/V600K) and NRAS(Q61R/Q61L) were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAF(V600E) A375 and NRAS(Q61R) SK-MEL-2 melanoma cell lines. COX-2 expression

  7. Effect of proteasome inhibitors on proliferation and apoptosis of human cutaneous melanoma-derived cell lines.

    PubMed

    Sorolla, A; Yeramian, A; Dolcet, X; Pérez de Santos, A M; Llobet, D; Schoenenberger, J A; Casanova, J M; Soria, X; Egido, R; Llombart, A; Vilella, R; Matias-Guiu, X; Marti, R M

    2008-03-01

    Cutaneous malignant melanoma is an aggressive type of skin cancer which causes disproportionate mortality in young and middle-aged adults. Once disseminated, melanoma can be considered an incurable disease, highly resistant to standard antineoplastic treatment, such as chemotherapy or radiation therapy. The proteasome represents a novel target for cancer therapy that can potentially be used in melanoma. To assess the effect of four structurally different proteasome inhibitors on human cutaneous melanoma-derived cell lines. Sixteen human cutaneous melanoma-derived cell lines which are original were obtained from patients who were treated by two of the authors. Cells were cultured, exposed to proteasome inhibitors (bortezomib, ALLN, MG-132 and epoxomicin) and then assayed for cell cycle and cell death analyses. Proteasome inhibitors inhibited the in vitro growth of melanoma cells, and this effect was due to a reduction in cell proliferation rate and an induction of both caspase-dependent and caspase-independent cell death. Moreover, release of apoptosis-inducing factor was observed in the presence of the broad-specificity caspase inhibitor BAF (Boc-D-fmk). In addition, the four different proteasome inhibitors induced caspase 2 processing. This study provides information regarding the in vitro effects of proteasome inhibitors on melanoma cell lines, and the molecular mechanisms involved. It also gives support to the future use of such inhibitors in the treatment of patients with melanoma, either administered alone or in combination with other drugs.

  8. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Alkahtani, Saad; Verma, Ankit; Ahamed, Maqusood; Ahmed, Mukhtar; Alhadlaq, Hisham A

    2013-01-01

    The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles. PMID:23493450

  9. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps.

    PubMed

    Basu, Reetobrata; Baumgaertel, Nicholas; Wu, Shiyong; Kopchick, John J

    2017-03-14

    Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.

  10. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  11. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells

    PubMed Central

    Das, Swadesh K.; Sokhi, Upneet K.; Bhutia, Sujit K.; Azab, Belal; Su, Zhao-zhong; Sarkar, Devanand; Fisher, Paul B.

    2010-01-01

    MicroRNAs (miRNA), small noncoding RNAs, affect a broad range of biological processes, including tumorigenesis, by targeting gene products that directly regulate cell growth. Human polynucleotide phosphorylase (hPNPaseold-35), a type I IFN-inducible 3′-5′ exoribonuclease, degrades specific mRNAs and small noncoding RNAs. The present study examined the effect of this enzyme on miRNA expression in human melanoma cells. miRNA microarray analysis of human melanoma cells infected with empty adenovirus or with an adenovirus expressing hPNPaseold-35 identified miRNAs differentially and specifically regulated by hPNPaseold-35. One of these, miR-221, a regulator of the cyclin-dependent kinase inhibitor p27kip1, displayed robust down-regulation with ensuing up-regulation of p27kip1 by expression of hPNPaseold-35, which also occurred in multiple human melanoma cells upon IFN-β treatment. Using both in vivo immunoprecipitation followed by Northern blotting and RNA degradation assays, we confirm that mature miR-221 is the target of hPNPaseold-35. Inhibition of hPNPaseold-35 by shRNA or stable overexpression of miR-221 protected melanoma cells from IFN-β–mediated growth inhibition, accentuating the importance of hPNPaseold-35 induction and miR-221 down-regulation in mediating IFN-β action. Moreover, we now uncover a mechanism of miRNA regulation involving selective enzymatic degradation. Targeted overexpression of hPNPaseold-35 might provide an effective therapeutic strategy for miR-221–overexpressing and IFN-resistant tumors, such as melanoma. PMID:20547861

  12. Inhibitory effect of melanoma differentiation associated gene-7/interleukin-24 on invasion in vitro of human melanoma cancer cells.

    PubMed

    Lin, Bi-wen; Jiao, Ze-long; Fan, Jian-feng; Peng, Liang; Li, Lei; Zhao, Zi-gang; Ding, Xiang-yu; Li, Heng-jin

    2013-06-01

    The acquisition of metastasis potential is a critical point for malignant tumors. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a potential tumor suppress gene and frequently down-regulated in malignant tumors. It has been implicated that overexpression of MDA-7 led to proliferation inhibition in many types of human tumor. Invasion is an important process which is potential to promote tumor metastasis. However, the role and potential molecular mechanism of mda-7/IL-24 to inhibit the invasion of human melanoma cancer is not fully clear. In this report, we identified a solid role for mda-7/IL-24 in invasion inhibition of human melanoma cancer LiBr cells, including decreasing of adhesion and invasion in vitro, blocking cell cycle, down-regulating the expression of ICAM-1, MMP-2/9, CDK1, the phosphorylation of ERK and Akt, NF-κB and AP-1 transcription activity. Meanwhile, there was an increased expression of PTEN in mda-7/IL-24 over-expression LiBr cells. Our results demonstrated that mda-7/IL-24 is a potential invasion suppress gene, which inhibits the invasion of LiBr cells by the down-regulation of ICAM-1, MMP-2/9, PTEN, and CDK1 expression. The molecular pathways involved were the MAPK/ERK, PI3K-Akt, NF-κB, and AP-1. These findings suggest that mda-7/IL-24 may be used as a possible therapeutic strategy for human melanoma cancer.

  13. Functional expression of voltage-gated calcium channels in human melanoma.

    PubMed

    Das, A; Pushparaj, C; Bahí, N; Sorolla, A; Herreros, J; Pamplona, R; Vilella, R; Matias-Guiu, X; Martí, R M; Cantí, C

    2012-03-01

    The expression of voltage-gated calcium channels (VGCCs) has not been reported previously in melanoma cells in spite of increasing evidence of a role of VGCCs in tumorigenesis and tumour progression. To address this issue we have performed an extensive RT-PCR analysis of VGCC expression in human melanocytes and a range of melanoma cell lines and biopsies. In addition, we have tested the functional expression of these channels using Ca(2+) imaging techniques and examined their relevance for the viability and proliferation of the melanoma cells. Our results show that control melanocytes and melanoma cells express channel isoforms belonging to the Ca(v) 1 and Ca(v) 2 gene families. Importantly, the expression of low voltage-activated Ca(v) 3 (T-type) channels is restricted to melanoma. We have confirmed the function of T-type channels as mediators of constitutive Ca(2+) influx in melanoma cells. Finally, pharmacological and gene silencing approaches demonstrate a role for T-type channels in melanoma viability and proliferation. These results encourage the analysis of T-type VGCCs as targets for therapeutic intervention in melanoma tumorigenesis and/or tumour progression.

  14. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells.

    PubMed

    Slominski, Andrzej; Semak, Igor; Pisarchik, Alexander; Sweatman, Trevor; Szczesniewski, Andre; Wortsman, Jacobo

    2002-01-30

    We showed in human melanoma cells tryptophan hydroxylase (TPH) and hydroxyindole methyltransferase genes expression with the sequential enzymatic activities of TPH, serotonin (Ser) N-acetyltransferase and hydroxyindole methyltransferase. The presence of the products Ser, 5OH-tryptophan, N-acetylserotonin, melatonin (Mel), 5-methoxytryptamine and 5-methoxytryptophol was documented by liquid chromatography-mass spectrometry. Thus, human melanoma cells can synthesize and metabolize Ser and Mel.

  15. Autophagy-Dependent Crosstalk between GILT and PAX-3 Influences Radiation Sensitivity of Human Melanoma Cells.

    PubMed

    Hathaway-Schrader, Jessica D; Doonan, Bently P; Hossain, Azim; Radwan, Faisal F Y; Zhang, Lixia; Haque, Azizul

    2017-08-31

    Melanoma represents an ever-increasing problem in the western world as incidence rates continue to climb. Though manageable during early stages, late stage metastatic disease is highly resistant to current intervention. We have previously shown that gamma-interferon-inducible lysosomal thiol-reductase (GILT) enhances HLA class II antigen processing and immune detection of human melanoma cells. Here we report that GILT expression inhibits a potential target, paired box-3 (PAX-3) protein, in late stage human metastatic melanoma. We also show that GILT transfection or induction by IFN-?, decreases PAX-3 protein expression while upregulating the expression of Daxx, which is also a repressor of PAX-3. Confocal microscopic analysis demonstrated that GILT co-localizes with PAX-3 protein, but not with Daxx within melanoma cells. Immunoprecipitation and immunoblotting studies suggest that GILT expression negatively regulates PAX-3 through the autophagy pathway, potentially resulting in increased susceptibility to conventional treatment in the form of chemotherapy or radiotherapy. While high-dose radiation is a common treatment for melanoma patients, our data suggest that GILT expression significantly increased the susceptibility of melanoma cells to low-dose radiation therapy via upregulation of tumor suppressor protein p53. Overall, these data suggest that GILT has multiple roles in inducing human melanoma cells as better targets for radiation and immunotherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Cryptotanshinone induces melanoma cancer cells apoptosis via ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion.

    PubMed

    Ye, Tinghong; Zhu, Shirui; Zhu, Yongxia; Feng, Qiang; He, Bing; Xiong, Yiong; Zhao, Lifeng; Zhang, Yiwen; Yu, Luoting; Yang, Li

    2016-08-01

    Melanoma is the most serious type of skin cancer because it is highly frequency of drug resistance and can spread earlier and more quickly than other skin cancers. The objective of this research was to investigate the anticancer effects of cryptotanshinone on human melanoma cells in vitro, and explored its mechanisms of action. Our results have shown that cryptotanshinone could inhibit cell proliferation in human melanoma cell lines A2058, A375, and A875 in a dose- and time-dependent manner. In addition, flow cytometry assay showed that cryptotanshinone inhibited the proliferation of human melanoma cell line A375 by blocking cell cycle progression in G2/M phase and inducing apoptosis in a concentration-dependent manner. Moreover, western blot analysis indicated that the occurrence of its apoptosis was associated with upregulation of cleaved caspases-3 and pro-apoptotic protein Bax while downregulation of anti-apoptotic protein Bcl-2. Meanwhile, cryptotanshinone could decrease the levels of reactive oxygen species (ROS). Furthermore, cryptotanshinone also blocked A375 cell migration and invasion in vitro which was associated with the downregulation with MMP-9. Taken together, these results suggested that cryptotanshinone might be a potential drug in human melanoma treatment by inhibiting proliferation, inducing apoptosis via ROS-mitochondrial apoptotic pathway and blocking cell migration and invasion.

  17. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells.

    PubMed

    Eike, Liv-Marie; Yang, Nannan; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2015-10-27

    Host defense peptides (HDPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line defense against intruding pathogens, and several HDPs have been shown to possess anticancer activity. Structure-activity relationship studies on the HDP bovine lactoferricin revealed a de novo design of a nonamer peptide LTX-315, with oncolytic properties. In the present study, we investigated the oncolytic activity of LTX-315 in human melanoma cells (A375). LTX-315 induced a rapid plasma membrane disruption and cell death within 2 hours. At a low concentration, fluorescence-labeled LTX-315 was internalized and accumulated in cytoplasmic vacuoles in close proximity to the mitochondria. The mitochondrial membrane potential was shown to depolarize as a consequence of LTX-315 treatment and at ultrastructural level, the mitochondria morphology was significantly altered. Release of danger signals (DAMPs) such as ATP, Cytochrome C and HMGB1 into the cell supernatant of cultured cells was evident minutes after peptide treatment. The oncolytic effect of LTX-315 involving perturbation of both the cell membrane and the mitochondria with subsequent release of DAMPs may highlight the ability of LTX-315 to induce complete regression and long-term protective immune responses as previously reported in experimental animal models.

  18. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness.

    PubMed

    Jobe, Njainday Pulo; Rösel, Daniel; Dvořánková, Barbora; Kodet, Ondřej; Lacina, Lukáš; Mateu, Rosana; Smetana, Karel; Brábek, Jan

    2016-08-01

    Tumour microenvironment plays a critical role in cell invasion and metastasis. To investigate the role of cancer-associated fibroblasts (CAFs) in melanoma cell invasiveness, we used 3D spheroid invasion assay. The effect of conditioned media from normal fibroblasts and CAFs cultivated alone or co-cultivated with melanoma cells on BLM or A2058 melanoma spheroid invasion was analysed. We found that conditioned media from CAFs and CAFs co-cultured with melanoma cells, especially, promote invasion and migration, without significant effect on melanoma cell proliferation. We further analysed the expression of pro-invasive cytokines IL-8 and IL-6 in media and found that melanoma cells are dominant producers of IL-8 and fibroblasts are dominant producers of IL-6 in 2D monocultures, while co-cultivation of CAFs with melanoma cells induces production/secretion of IL-6 and IL-8 into the media. The analyses of IL-6 levels in 3D cultures and human melanoma samples, however, revealed that at least in some cases IL-6 is also produced directly by melanoma cells. Analysis of the role of IL-6 and IL-8 in CAF-induced melanoma invasion, using neutralising antibodies, revealed that simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. In summary, these experiments indicate the important role of CAFs and IL-8 and IL-6 cytokines in melanoma cell invasiveness.

  19. Human Melanoma Initiating Cells Express Neural Crest Nerve Growth Factor Receptor CD271

    PubMed Central

    Boiko, Alexander D.; Razorenova, Olga V.; van de Rijn, Matt; Swetter, Susan M.; Johnson, Denise L.; Ly, Daphne P.; Butler, Paris D.; Yang, George P.; Joshua, Benzion; Kaplan, Michael J.; Longaker, Michael T.; Weissman, Irving L.

    2010-01-01

    The question whether tumorigenic cancer stem cells exist in human melanomas has arisen recently1. Here we show that in melanomas, tumor stem cells (MTSC) can be isolated prospectively as a highly enriched CD271+ MTSC population using a process that maximizes viable cell transplantation1,6. In this study the tumors sampled were taken from a broad spectrum of sites and stages. High viability FACS isolated cells resuspended in a matrigel vehicle were implanted into T, B, and NK deficient Rag2−/− γc−/− mice (RG) mice. The CD271+ subset of cells was the tumor initiating population in 9/10 melanomas tested. Transplantation of isolated melanoma cells into engrafted human skin or bone in RG mice resulted in melanoma from CD271+ but not CD271− cells. We also showed that tumors transplanted by CD271+ patient cells were capable of metastasis in-vivo. Importantly, CD271+ melanoma cells lacked expression of TYR, MART and MAGE in 86%, 69% and 68% of melanoma patients respectively suggesting why T cell therapies directed at these antigens usually result in only temporary tumor shrinkage. PMID:20596026

  20. Expression of Rho GTPases family in melanoma cells and its influence on cytoskeleton and migration.

    PubMed

    Wen, Si-Jian; Zhang, Wei; Ni, Na-Na; Wu, Qiong; Wang, Xiao-Po; Lin, You-Kun; Sun, Jian-Fang

    2017-05-02

    Rho GTPases family members influenced the filopodia, lamellipodia, stress fiber and adhesion plaque of melanoma cells through regulating cytoskeleton recombination. The role of Rho GTPases family in the migration and invasion of melanoma and its molecular mechanism were explored. The morphological difference between three types of melanoma cells (M14, A375 and MV3) and human melanocyte (MC) was observed by the Hoffman microscope. Cells were stained by phalloidin labeled by rhodamine. The differences between 4 types of cells in filopodia, lamellipodia, stress fiber and adhesion plaque (microfilament is the main constituent) were observed under the super-high resolution microscope. The migration ability of 4 types of cells was detected by Transwell migration assay. QPCR was used to detect the mRNA transcription level of Rho GTPases family. WB was adopted to detect the expression of RhoD and DIAPH2 proteins. There were significant differences in filopodia, lamellipodia, stress fiber and adhesion plaque between MC and 3 types of melanoma cells (M14, A375 and MV3). MC did not have stress fiber or adhesion plaque, while M14, A375 and MV3 had stress fiber and adhesion plaque. All 4 types of cells had thin and short filopodia. MV3 had fewer but thicker stress fibers than the latter two. Transwell migration test indicated the followings: M14 and A375 had a similar high migration rate; the migration rate of MV3 was slightly low; MC did not have the ability of transmembrane migration. QPCR results of Rho GTPases family in 4 types of cells showed the change corresponding to immunofluorescence. WB results showed that RhoD was barely expressed in M14, A375 or MV3. DIAPH2, the downstream effector molecule of RhoD, had the corresponding change. Rho GTPases influences the migration and invasion of melanoma cells through regulating filopodia, lamellipodia, stress fiber and adhesion plaque (microfilament is the main constituent).

  1. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin

    PubMed Central

    Song, Ju Han; Houh, Younkyung; Kim, Tae Sung; Gil, Minchan; Lee, Kyung Jin; Kim, Seonghan; Kim, Daejin; Hur, Dae Young; Yang, Yoolhee; Bang, Sa Ik; Park, Hyun Jeong; Cho, Daeho

    2016-01-01

    Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma. PMID:27589563

  2. Interleukin-32α induces migration of human melanoma cells through downregulation of E-cadherin.

    PubMed

    Lee, Joohyun; Kim, Kyung Eun; Cheon, Soyoung; Song, Ju Han; Houh, Younkyung; Kim, Tae Sung; Gil, Minchan; Lee, Kyung Jin; Kim, Seonghan; Kim, Daejin; Hur, Dae Young; Yang, Yoolhee; Bang, Sa Ik; Park, Hyun Jeong; Cho, Daeho

    2016-10-04

    Interleukin (IL)-32α, the shortest isoform of proinflammatory cytokine IL-32, is associated with various inflammatory diseases and cancers. However, its involvement in human melanoma is not understood. To determine the effect of IL-32α in melanoma, IL-32α levels were examined in human melanoma cell lines that exhibit different migratory abilities. IL-32α levels were higher in human melanoma cell lines with more migratory ability. An IL-32α-overexpressing G361 human melanoma cell line was generated to investigate the effect of IL-32α on melanoma migration. IL-32α-overexpressing G361 cells (G361-IL-32α) exhibit an increased migratory ability compared to vector control cells (G361-vector). To identify factors involved in IL-32α-induced migration, we compared expression of E-cadherin in G361-vector and G361-IL-32α cells. We observed decreased levels of E-cadherin in G361-IL-32α cells, resulting in F-actin polymerization. To further investigate signaling pathways related to IL-32α-induced migration, we treated G361-vector and G361-IL-32α cells with PD98059, a selective MEK inhibitor. Inhibition of Erk1/2 by PD98059 restored E-cadherin expression and decreased IL-32α-induced migration. In addition, cell invasiveness of G361-IL-32α cells was tested using an in vivo lung metastasis model. As results, lung metastasis was significantly increased by IL-32α overexpression. Taken together, these data indicate that IL-32α induced human melanoma migration via Erk1/2 activation, which repressed E-cadherin expression. Our findings suggest that IL-32α is a novel regulator of migration in melanoma.

  3. Tanapoxvirus lacking a neuregulin-like gene regresses human melanoma tumors in nude mice.

    PubMed

    Zhang, Tiantian; Suryawanshi, Yogesh R; Kordish, Dennis H; Woyczesczyk, Helene M; Jeng, David; Essani, Karim

    2017-02-01

    Neuregulin (NRG), an epidermal growth factor is known to promote the growth of various cell types, including human melanoma cells through ErbB family of tyrosine kinases receptors. Tanapoxvirus (TPV)-encoded protein TPV-15L, a functional mimic of NRG, also acts through ErbB receptors. Here, we show that the TPV-15L protein promotes melanoma proliferation. TPV recombinant generated by deleting the 15L gene (TPVΔ15L) showed replication ability similar to that of wild-type TPV (wtTPV) in owl monkey kidney cells, human lung fibroblast (WI-38) cells, and human melanoma (SK-MEL-3) cells. However, a TPV recombinant with both 15L and the thymidine kinase (TK) gene 66R ablated (TPVΔ15LΔ66R) replicated less efficiently compared to TPVΔ15L and the parental virus. TPVΔ15L exhibited more robust tumor regression in the melanoma-bearing nude mice compared to other TPV recombinants. Our results indicate that deletion of TPV-15L gene product which facilitates the growth of human melanoma cells can be an effective strategy to enhance the oncolytic potential of TPV for the treatment of melanoma.

  4. The Cinnamon-derived Michael Acceptor Cinnamic Aldehyde Impairs Melanoma Cell Proliferation, Invasiveness, and Tumor Growth

    PubMed Central

    Cabello, Christopher M.; Bair, Warner B.; Lamore, Sarah D.; Ley, Stephanie; Bause, Alexandra S.; Azimian, Sara; Wondrak, Georg T.

    2009-01-01

    Redox dysregulation in cancer cells represents a chemical vulnerability that can be targeted by prooxidant redox intervention. Dietary constituents that contain an electrophilic Michael acceptor pharmacophore may therefore display promising chemopreventive and chemotherapeutic anti-cancer activity. Here, we demonstrate that the cinnamon-derived dietary Michael acceptor trans-cinnamic aldehyde (CA) impairs melanoma cell proliferation and tumor growth. Feasibility of therapeutic intervention using high doses of CA (120 mg/kg, p.o., q.d., 10 days) was demonstrated in a human A375 melanoma SCID-mouse xenograft model. Low micromolar concentrations (IC50 < 10 μM) of CA, but not closely related CA-derivatives devoid of Michael acceptor activity, suppressed proliferation of human metastatic melanoma cell lines (A375, G361, LOX) with G1 cell cycle arrest, elevated intracellular ROS, and impaired invasiveness. Expression array analysis revealed that CA induced an oxidative stress response in A375 cells, up-regulating heme oxygenase-1 (HMOX1), sulfiredoxin 1 homolog (SRXN1), thioredoxin reductase 1 (TXNRD1), and other genes including the cell cycle regulator and stress-responsive tumor suppressor gene cyclin-dependent kinase inhibitor 1A (CDKN1A), a key mediator of G1 phase arrest. CA, but not Michael-inactive derivatives, inhibited NFκB transcriptional activity and TNFα-induced IL-8 production in A375 cells. These findings support a previously unrecognized role of CA as a dietary Michael acceptor with potential anticancer activity. PMID:19000754

  5. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth.

    PubMed

    Cabello, Christopher M; Bair, Warner B; Lamore, Sarah D; Ley, Stephanie; Bause, Alexandra S; Azimian, Sara; Wondrak, Georg T

    2009-01-15

    Redox dysregulation in cancer cells represents a chemical vulnerability that can be targeted by pro-oxidant redox intervention. Dietary constituents that contain an electrophilic Michael acceptor pharmacophore may therefore display promising chemopreventive and chemotherapeutic anti-cancer activity. Here, we demonstrate that the cinnamon-derived dietary Michael acceptor trans-cinnamic aldehyde (CA) impairs melanoma cell proliferation and tumor growth. Feasibility of therapeutic intervention using high doses of CA (120 mg/kg, po, daily, 10 days) was demonstrated in a human A375 melanoma SCID mouse xenograft model. Low-micromolar concentrations (IC(50)< 10 microM) of CA, but not closely related CA derivatives devoid of Michael acceptor activity, suppressed proliferation of human metastatic melanoma cell lines (A375, G361, LOX) with G1 cell-cycle arrest, elevated intracellular ROS, and impaired invasiveness. Expression array analysis revealed that CA induced an oxidative stress response in A375 cells, up-regulating heme oxygenase 1, sulfiredoxin 1 homolog, thioredoxin reductase 1, and other genes, including the cell-cycle regulator and stress-responsive tumor suppressor gene cyclin-dependent kinase inhibitor 1A, a key mediator of G1-phase arrest. CA, but not Michael-inactive derivatives, inhibited NF-kappaB transcriptional activity and TNFalpha-induced IL-8 production in A375 cells. These findings support a previously unrecognized role of CA as a dietary Michael acceptor with potential anti-cancer activity.

  6. Natural killer cells kill human melanoma cells with characteristics of cancer stem cells.

    PubMed

    Pietra, Gabriella; Manzini, Claudia; Vitale, Massimo; Balsamo, Mirna; Ognio, Emanuela; Boitano, Monica; Queirolo, Paola; Moretta, Lorenzo; Mingari, Maria Cristina

    2009-07-01

    Experimental and clinical data suggest that tumours harbour a cell population retaining stem cell characteristics that can drive tumorigenesis. CD133 is considered an important cancer stem cells (CSC)-associated marker. In a large variety of human malignancies, including melanoma, CD133(+) cells have been reported to comprise CSC. In this study, we show that melanoma cell lines are highly heterogeneous for the expression of several stem cell-associated markers including CD133, c-kit/CD117 and p75 neurotrophin receptor/CD271. Since no information is available on the ability of NK cells to recognize and lyse melanoma stem cells, we assessed whether melanoma cell lines, characterized by stem cell-like features, were susceptible to lysis by IL-2-activated NK cells. We show that activated NK cells efficiently kill malignant melanoma cell lines that were enriched in putative CSC by the use of different selection methods (i.e. CD133 expression, radioresistance or the ability to form melanospheres in stem cell-supportive medium). NK cell-mediated recognition and lysis of melanoma cells involved different combinations of activating NK receptors. Since CSC have been reported to be both drug resistant and radioresistant, our present data suggest that NK-based adoptive immunotherapy could represent a novel therapeutic approach to possibly eradicate metastatic melanoma.

  7. Plasmonic enhanced fs-laser optoporation of human melanoma cells

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Humbert, L.; St.-Louis Lalonde, B.; Lebrun, J.-J.; Meunier, M.

    2011-03-01

    In this paper, we present the results of in vitro gene transfer by plasmonic enhanced optoporation of human melanoma cells. The fs-laser based optoporation is a gentle and efficient method for transfection. An optimum perforation rate with efficient dye or DNA uptake and high viability of the cells (~90%) was found for different types of nanostructures, spherical and rod shaped. The technique offers a very high selectivity and the low damage induced to the cell leads to a high transfection efficiency. The cell selectivity of this technique on the one hand is realized by using bioconjugated nanostructures, that couple selectively to a special cell type, and on the other hand, the spatial selectivity is due to the fact that only irradiated cells are perforated. In many biological applications a virus free and efficient transfection method is needed, especially in terms of its use in vivo. In cancer cells, the aggressiveness of the cells is shown in the migration and invasion velocity. The laser based and nanostructure enhanced transfection of cells offers the possibility to directly compare the treated and untreated cells. The treatment for migration and invasion assays can be performed by laser-scraping and laser transfection, resulting in a fully non-contact and therefore sterile method where the shape and the size of the scrape is well defined and reproducible. The laser based scrape test therefore offers less uncertainty due to scrape variations, high transfection efficiency, as well as direct comparison of treated and control cells in the same dish.

  8. Human papillomaviruses and non-melanoma skin cancer.

    PubMed

    McLaughlin-Drubin, Margaret E

    2015-04-01

    Human papillomaviruses (HPVs) infect the squamous epithelium and can induce benign and malignant lesions. To date, more than 200 different HPV types have been identified and classified into five genera, α, β, γ, μ, and ν. While high-risk α mucosal HPVs have a well-established role in cervical carcinoma and a significant percentage of other anogenital tract and oral carcinomas, the biology of the cutaneous β HPVs and their contribution to non-melanoma skin cancer (NMSC) has been less studied. Although the association of β HPV infection with NMSC in patients with a rare, genetically determined condition, epidermodysplasia verruciformis has been well established, the role of β HPV infection with NMSC in the normal population remains controversial. In stark contrast to α HPV-associated cancers, the presence of the β HPV genome does not appear to be mandatory for the maintenance of the malignant phenotype. Moreover, the mechanism of action of the β HPV E6 and E7 oncoproteins differs from the β HPV oncoproteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Epidermal growth factor facilitates melanoma lymph node metastasis by influencing tumor lymphangiogenesis.

    PubMed

    Bracher, Andreas; Cardona, Ana Soler; Tauber, Stefanie; Fink, Astrid M; Steiner, Andreas; Pehamberger, Hubert; Niederleithner, Heide; Petzelbauer, Peter; Gröger, Marion; Loewe, Robert

    2013-01-01

    Alterations in epidermal growth factor (EGF) expression are known to be of prognostic relevance in human melanoma, but EGF-mediated effects on melanoma have not been extensively studied. As lymph node metastasis usually represents the first major step in melanoma progression, we were trying to identify a potential role of primary tumor-derived EGF in the mediation of melanoma lymph node metastases. Stable EGF knockdown (EGFkd) in EGF-high (M24met) and EGF-low (A375) expressing melanoma cells was generated. Only in EGF-high melanoma cells, EGFkd led to a significant reduction of lymph node metastasis and primary tumor lymphangiogenesis in vivo, as well as impairment of tumor cell migration in vitro. Moreover, EGF-induced sprouting of lymphatic but not of blood endothelial cells was abolished using supernatants of M24met EGFkd cells. In addition, M24met EGFkd tumors showed reduced vascular endothelial growth factor-C (VEGF-C) expression levels. Similarly, in human primary melanomas, a direct correlation between EGF/VEGF-C and EGF/Prox-1 expression levels was found. Finally, melanoma patients with lymph node micrometastases undergoing sentinel node biopsy were found to have significantly elevated EGF serum levels as compared with sentinel lymph node-negative patients. Our data indicate that tumor-derived EGF is important in mediating melanoma lymph node metastasis.

  10. ALDH1A Isozymes Are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets

    PubMed Central

    Luo, Yuchun; Dallaglio, Katiuscia; Chen, Ying; Robinson, William A; Robinson, Steven E; McCarter, Martin D; Wang, Jianbin; Gonzalez, Rene; Thompson, David C; Norris, David A; Roop, Dennis R; Vasiliou, Vasilis; Fujita, Mayumi

    2012-01-01

    Although the concept of cancer stem cells (CSCs) is well accepted for many tumors, the existence of such cells in human melanoma has been the subject of debate. In the present study, we demonstrate the existence of human melanoma cells that fulfill the criteria for CSCs (self-renewal and differentiation) by serially xenotransplanting cells into NOD/SCID mice. These cells possess high aldehyde dehydrogenase (ALDH) activity with ALDH1A1 and ALDH1A3 being the predominant ALDH isozymes. ALDH-positive melanoma cells are more tumorigenic than ALDH-negative cells in both NOD/SCID mice and NSG mice. Biological analyses of the ALDH-positive melanoma cells reveal the ALDH isozymes to be key molecules regulating the function of these cells. Silencing ALDH1A by siRNA or shRNA leads to cell cycle arrest, apoptosis and decreased cell viability in vitro and reduced tumorigenesis in vivo. ALDH-positive melanoma cells are more resistant to chemotherapeutic agents and silencing ALDH1A by siRNA sensitizes melanoma cells to drug-induced cell death. Furthermore, we, for the first time, examined the molecular signatures of ALDH-positive CSCs from patient-derived tumor specimens. The signatures of melanoma CSCs include retinoic acid (RA)-driven target genes with RA response elements and genes associated with stem cell function. These findings implicate that ALDH isozymes are not only biomarkers of CSCs but also attractive therapeutic targets for human melanoma. Further investigation of these isozymes and genes will enhance our understanding of the molecular mechanisms governing CSCs and reveal new molecular targets for therapeutic intervention of cancer. PMID:22887839

  11. c-Abl and Arg are activated in human primary melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression.

    PubMed

    Ganguly, S S; Fiore, L S; Sims, J T; Friend, J W; Srinivasan, D; Thacker, M A; Cibull, M L; Wang, C; Novak, M; Kaetzel, D M; Plattner, R

    2012-04-05

    Despite 35 years of clinical trials, there is little improvement in 1-year survival rates for patients with metastatic melanoma, and the disease is essentially untreatable if not cured surgically. The paucity of chemotherapeutic agents that are effective for treating metastatic melanoma indicates a dire need to develop new therapies. Here, we found a previously unrecognized role for c-Abl and Arg in melanoma progression. We demonstrate that the kinase activities of c-Abl and Arg are elevated in primary melanomas (60%), in a subset of benign nevi (33%) and in some human melanoma cell lines. Using siRNA and pharmacological approaches, we show that c-Abl/Arg activation is functionally relevant because it is requiredfor melanoma cell proliferation, survival and invasion. Significantly, we identify the mechanism by which activated c-Abl promotes melanoma invasion by showing that it transcriptionally upregulates matrix metalloproteinase-1 (MMP-1), and using rescue approaches we demonstrate that c-Abl promotes invasion through a STAT3 → MMP-1 pathway. Additionally, we show that c-Abl and Arg are not merely redundant, as active Arg drives invasion in a STAT3-independent manner, and upregulates MMP-3 and MT1-MMP, in addition to MMP-1. Most importantly, c-Abl and Arg not only promote in vitro processes important for melanoma progression, but also promote metastasis in vivo, as inhibition of c-Abl/Arg kinase activity with the c-Abl/Arg inhibitor, nilotinib, dramatically inhibits metastasis in a mouse model. Taken together, these data identify c-Abl and Arg as critical, novel, drug targets in metastatic melanoma, and indicate that nilotinib may be useful in preventing metastasis in patients with melanomas harboring active c-Abl and Arg.

  12. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma

    PubMed Central

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-01-01

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma. PMID:27556188

  13. Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: Imaging of tumors hosted in nude mice

    SciTech Connect

    Le Doussal, J.M.; Gruaz-Guyon, A.; Martin, M.; Gautherot, E.; Delaage, M.; Barbet, J. )

    1990-06-01

    Antibody conjugates were prepared by coupling F(ab')2 or Fab' fragments of an antibody specific for the human high molecular weight-melanoma associated antigen to Fab' fragments of an antibody specific for indium-diethylenetriaminepentaacetate complexes. Monovalent and bivalent haptens were synthesized by reacting the dipeptide tyrosyl-lysine with diethylenetriaminepentaacetic cyclic anhydride. In vitro, the antibody conjugate mediated binding of the 111In-labeled haptens to melanoma cells. In vivo, it allowed specific localization of the haptens in A375 tumors. The bivalent hapten exhibited much higher efficiency at targeting 111In onto cells, both in vitro and in vivo. Antibody conjugate and hapten doses (2 micrograms and 1 pmol, respectively) and the delay between antibody conjugate and tracer injections (24 h) were adjusted to maximize tumor uptake (4% injected dose/g) and tumor to normal tissue contrast (greater than 3) obtained 3 h after injection of the 111In-labeled bivalent hapten. This two-step technique, when compared to direct targeting of 111In-labeled F(ab')2 fragments, provided lower localization of injected activity into the tumor (x 0.25), but higher tumor/tissue ratios, especially with respect to liver (x 7), spleen (x 8), and kidneys (x 10). In addition, high contrast images were obtained within 3 hours, instead of days. Thus, antibody conjugate-mediated targeting of small bivalent haptens, labeled with short half-life isotopes, is proposed as a general method for improving tumor radioimmunolocalization.

  14. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Formaldehyde solutions in simulated sweat increase human melanoma but not normal human keratinocyte cells proliferation.

    PubMed

    Rizzi, M; Cravello, B; Tonello, S; Renò, F

    2016-12-01

    Our skin is in close contact with clothes most of the time thus risking potentially noxious chemicals contact. One of the potentially harmful manufacturing by-products that can be released by textiles when sweating is formaldehyde, used as an anti-crease treatment. As it is known to be carcinogenic to humans and a potent skin sensitizer, the aim of this study was to investigate its effects on both normal human keratinocytes (HaCaT cells) and on a highly invasive malignant melanoma cell line (SK-MEL-28) in order to contribute to the definition of safety cut-off to be applied to the production processes. Formaldehyde concentrations below the commonly accepted limits (10-50μM) were obtained by diluting formaldehyde in simulated sweat (UNI EN ISO 105-E04). The effects on cell proliferation were evaluated by cell counting, while ERK pathway activation was evaluated by western blot. Low concentrations of formaldehyde (10μM) in both acidic and alkaline simulated sweat were able to increase malignant melanoma cell proliferation, while not affecting normal keratinocytes. Melanoma proliferation increase was greater in acidic (pH=5.5) than in alkaline (pH=8) conditions. Moreover, formaldehyde stimulation was able to induce ERK pathway activation. The data obtained suggest the need for an even increasing attention to the potentially harmful effects of textile manufacturing by-products. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  17. Cell-type dependent response of melanoma cells to aloe emodin.

    PubMed

    Radovic, J; Maksimovic-Ivanic, D; Timotijevic, G; Popadic, S; Ramic, Z; Trajkovic, V; Miljkovic, D; Stosic-Grujicic, S; Mijatovic, S

    2012-09-01

    Intrinsic characteristics of melanoma cells such as expression of inducible nitric oxide synthase (iNOS), redox status, and activity of signaling pathways involved in proliferation, differentiation and cell death define the response of the cells to the diverse treatments. In this context we compared the effectiveness of herbal antaquinone aloe emodin (AE) against mouse B16 melanoma and human A375, different in initial activity of ERK1/2, constitutive iNOS expression and basal level of reactive oxygen species (ROS). Both cell lines are sensitive to AE treatment. However, while the agent induces differentiation of B16 cells toward melanocytes, in A375 cells promoted massive apoptosis. Differentiation of B16 cells, characterized by enhanced melanin production and tyrosinase activity, was mediated by H(2)O(2) production synchronized with rapid p53 accumulation and enhanced expression of cyclins D1 and D3. Caspase mediated apoptosis triggered in A375 cells was accompanied with Bcl-2 but not iNOS down-regulation. In addition, opposite regulation of Akt-ERK1/2 axis in AE treated B16 and A375 cells correlated with different outcome of the treatment. However, AE in a dose-dependent manner rescued both B16 and A375 cells from doxorubicin- or paclitaxel-induced killing. These data indicate that caution is warranted when AE is administrated to the patients with conventional chemotherapy.

  18. HERV-K activation is strictly required to sustain CD133+ melanoma cells with stemness features.

    PubMed

    Argaw-Denboba, Ayele; Balestrieri, Emanuela; Serafino, Annalucia; Cipriani, Chiara; Bucci, Ilaria; Sorrentino, Roberta; Sciamanna, Ilaria; Gambacurta, Alessandra; Sinibaldi-Vallebona, Paola; Matteucci, Claudia

    2017-01-26

    Melanoma is a heterogeneous tumor in which phenotype-switching and CD133 marker have been associated with metastasis promotion and chemotherapy resistance. CD133 positive (CD133+) subpopulation has also been suggested as putative cancer stem cell (CSC) of melanoma tumor. Human endogenous retrovirus type K (HERV-K) has been described to be aberrantly activated during melanoma progression and implicated in the etiopathogenesis of disease. Earlier, we reported that stress-induced HERV-K activation promotes cell malignant transformation and reduces the immunogenicity of melanoma cells. Herein, we investigated the correlation between HERV-K and the CD133+ melanoma cells during microenvironmental modifications. TVM-A12 cell line, isolated in our laboratory from a primary human melanoma lesion, and other commercial melanoma cell lines (G-361, WM-115, WM-266-4 and A375) were grown and maintained in the standard and stem cell media. RNA interference, Real-time PCR, flow cytometry analysis, self-renewal and migration/invasion assays were performed to characterize cell behavior and HERV-K expression. Melanoma cells, exposed to stem cell media, undergo phenotype-switching and expansion of CD133+ melanoma cells, concomitantly promoted by HERV-K activation. Notably, the sorted CD133+ subpopulation showed stemness features, characterized by higher self-renewal ability, embryonic genes expression, migration and invasion capacities compared to the parental cell line. RNA interference-mediated downregulation experiments showed that HERV-K has a decisive role to expand and maintain the CD133+ melanoma subpopulation during microenvironmental modifications. Similarly, non nucleoside reverse transcriptase inhibitors (NNRTIs) efavirenz and nevirapine were effective to restrain the activation of HERV-K in melanoma cells, to antagonize CD133+ subpopulation expansion and to induce selective high level apoptosis in CD133+ cells. HERV-K activation promotes melanoma cells phenotype

  19. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    PubMed

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła

    2015-01-01

    Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.

  1. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma

    SciTech Connect

    Mamoon, A.M.; Miller, L.; Gamal-Eldeen, A. M.; Ruppel, M. E.; Smith, R. J.; Tsang, T.; Miller, L. M.

    2009-05-02

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage and changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell viability and apoptosis and necrosis markers. In the cell death pathway, {sup 1}O{sub 2} generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-{Kappa}B P65, and the enhancement of DNA fragmentation, and histone acetylation. ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma.

  2. Radiation survival of murine and human melanoma cells utilizing two assay systems: monolayer and soft agar.

    PubMed Central

    Yohem, K. H.; Slymen, D. J.; Bregman, M. D.; Meyskens, F. L.

    1988-01-01

    The radiation response of murine and human melanoma cells assayed in bilayer soft agar and monolayer was examined. Cells from the murine melanoma Cloudman S91 CCL 53.1 cell line and three human melanoma cell strains (C8146C, C8161, and R83-4) developed in our laboratory were irradiated by single dose X-rays and plated either in agar or on plastic. D0 values were the same within 95% confidence intervals for cells from the human melanoma cell strains C8146C, C8161, and R83-4 but were dissimilar for the murine cell line CCL 53.1 Dq values were different for all cells studied. The shape of the survival curve for all four melanomas was not identical for cells assayed in soft agar versus cells grown on plastic. This would indicate that apparent radiosensitivity was influenced by the method of assay although there were no apparent consistent differences between the curves generated by monolayer or bilayer soft agar assays. PMID:3348949

  3. Enhanced anti-melanoma efficacy of interferon alfa-2b via inhibition of Shp2.

    PubMed

    Win-Piazza, Hla; Schneeberger, Valentina E; Chen, Liwei; Pernazza, Daniele; Lawrence, Harshani R; Sebti, Said M; Lawrence, Nicholas J; Wu, Jie

    2012-07-01

    Interferon-α2b (IFN-α2b) is used to treat melanoma but there is a need to improve its efficacy. IFN-α2b signaling requires STAT1/STAT2 tyrosine phosphorylation and is subject to negative regulation by phosphatases. In this study, we determined whether inhibition of the protein tyrosine phosphatase Shp2 could enhance IFN-α2b responses in human melanoma cells. Shp2 knockdown increased IFN-α2b-stimulated STAT1 Tyr-701 phosphorylation and ISRE-luciferase activity even though it did not affect STAT2 Tyr-690 phosphorylation in A375 cells. In A375 tumor xenografts, Shp2 knockdown enhanced the anti-melanoma effect of IFN-α2b. Furthermore, the Shp2 inhibitor SPI-112Me increased the IFN-α2b-induced STAT1 activation and anti-proliferative response in A375 and SK-MEL-2 cells. These results demonstrate that inhibition of Shp2 can enhance the anti-melanoma activity of IFN-α2b.

  4. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models.

    PubMed

    Boccia, Antonio; Virata, Cyrus; Lindner, Daniel; English, Nicki; Pathan, Nuzhat; Brickelmaier, Margot; Hu, Xiao; Gardner, Jennifer L; Peng, Liaomin; Wang, Xinzhong; Zhang, Xiamei; Yang, Lu; Perron, Keli; Yco, Grace; Kelly, Rebecca; Gamez, James; Scripps, Thomas; Bennett, Donald; Joseph, Ingrid B; Baker, Darren P

    2017-01-01

    Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.

  5. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    PubMed Central

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  6. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.

    PubMed

    Gilbert, Amy E; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H; Takhar, Pooja; Geh, Jenny L C; Healy, Ciaran; Harries, Mark; Acland, Katharine M; Rudman, Sarah M; Beavil, Rebecca L; Blower, Philip J; Beavil, Andrew J; Gould, Hannah J; Spicer, James; Nestle, Frank O; Karagiannis, Sophia N

    2011-04-29

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.

  7. Studies of a high molecular weight human melanoma-associated antigen.

    PubMed

    Hellström, I; Garrigues, H J; Cabasco, L; Mosely, G H; Brown, J P; Hellström, K E

    1983-03-01

    Hybridomas were generated by fusing SP2/0 mouse myeloma cells with spleen cells from mice that had been immunized with cultured human melanoma cells. One of the hybridomas secreted a monoclonal IgG1 antibody, 48.7, which binds to a cell surface antigen of cells from human melanomas and compound nevi. The presence of the target antigen in vivo was demonstrated immunohistologically by staining frozen sections of primary and metastatic melanoma by the peroxidase anti-peroxidase technique. Weak staining of some blood vessel cells was also seen, but other normal cells, including skin melanocytes, were unstained, as were cells from other tumor types. Antibody 48.7 immunoprecipitated polypeptides with apparent m.w. on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 250,000 and greater than 400,000.

  8. Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Jose, Jithin; Grootendorst, Diederik J.; Vijn, Thomas W.; Wouters, Michel W.; van Boven, Hester; van Leeuwen, Ton G.; Steenbergen, Wiendelt; Ruers, Theo J. M.; Manohar, Srirang

    2011-09-01

    The pathological status of the sentinel lymph node is important for accurate melanoma staging, ascertaining prognosis and planning treatment. The standard procedure involves biopsy of the node and histopathological assessment of its status. Drawbacks of this examination include a finite sampling of the node with the likelihood of missing metastases, and a significant time-lag before histopathological results are available to the surgeon. We studied the applicability of photoacoustic computed tomographic imaging as an intraoperative modality for examining the status of resected human sentinel lymph nodes. We first applied the technique to image ex vivo pig lymph nodes carrying metastases-simulating melanoma cells using multiple wavelengths. The experience gained was applied to image a suspect human lymph node. We validated the photoacoustic imaging results by comparing a reconstructed slice with a histopathological section through the node. Our results suggest that photoacoustics has the potential to develop into an intraoperative imaging method to detect melanoma metastases in sentinel lymph nodes.

  9. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging.

    PubMed

    Langhout, Gerrit Cornelis; Grootendorst, Diederik Johannes; Nieweg, Omgo Edo; Wouters, Michel Wilhelmus Jacobus Maria; van der Hage, Jos Alexander; Jose, Jithin; van Boven, Hester; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theodoor Jacques Marie

    2014-01-01

    Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR(©) multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  10. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    SciTech Connect

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.; Chang, Michelle E.; Ata, Muhammad O.; Yusuf, Nabiha

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.

  11. [Characterization of genetic alterations in primary human melanomas carrying BRAF or NRAS mutation].

    PubMed

    Lázár, Viktória

    2013-06-01

    Human malignant melanoma is one of the most aggressive forms of skin cancer with an exceptionally bad prognosis. Melanoma often displays constitutively activated MAPK pathway through BRAF or NRAS mutations. It is also known that these mutations are almost never simultaneously present and that they appear at early stages and preserved throughout tumor progression, although it is proved that these alterations alone are insufficient to cause tumor progression. Therefore the first aim of our study was to evaluate those distinct genetic alterations which can properly differentiate the three important molecular subtypes of primary melanomas with a) BRAF, b) NRAS mutation and c) WT (wild type for both loci). High-resolution array comparative genomic hybridization (array CGH) was used to assess genome-wide analysis of DNA copy number alterations. Primary melanomas with BRAF mutation more frequently exhibited losses on 10q23-10q26 and gains on chromosome 7 and 1q23-1q25 compared to melanomas with NRAS mutation. Loss on the 11q23-11q25 sequence was found mainly in conjunction with NRAS mutation. Based on these results, we proved the existence of marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups, which might suggest that these mutations contribute to the development of malignant melanoma in conjunction with distinct cooperating oncogenic events. In general, it is an interesting phenomenon suggesting that these mutations provide probably the "guiding force" for these tumors and it also suggests that there are alternative genetic pathways to melanoma. These additional oncogenic events which are associated with BRAF or NRAS mutations can provide rational additional targets for a combination therapy with kinase inhibitors. In this study we also investigated the specific dynamic activities among different signalling pathways highlighting the frequent alterations of genes involved in the signalling interactions between the MAPK-JAK pathways

  12. Induction of monocyte chemoattractant protein-1 and interleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression.

    PubMed

    Díaz-Valdés, Nancy; Basagoiti, María; Dotor, Javier; Aranda, Fernando; Monreal, Iñaki; Riezu-Boj, José Ignacio; Borrás-Cuesta, Francisco; Sarobe, Pablo; Feijoó, Esperanza

    2011-02-01

    Melanoma progression is associated with the expression of different growth factors, cytokines, and chemokines. Because TGFβ1 is a pleiotropic cytokine involved not only in physiologic processes but also in cancer development, we analyzed in A375 human melanoma cells, the effect of TGFβ1 on monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10) expression, two known factors responsible for melanoma progression. TGFβ1 increased the expression of MCP-1 and IL-10 in A375 cells, an effect mediated by the cross-talk between Smad, PI3K (phosphoinositide 3-kinase)/AKT, and BRAF-MAPK (mitogen activated protein kinase) signaling pathways. Supernatants from TGFβ1-treated A375 cells enhanced MCP-1-dependent migration of monocytes, which, in turn, expressed high levels of TGF,β1, bFGF, and VEGF mRNA. Moreover, these supernatants also inhibited functional properties of dendritic cells through IL-10-dependent mechanisms. When using in vitro, the TGFβ1-blocking peptide P144, TGFβ1-dependent Smad3 phosphorylation, and expression of MCP-1 and IL-10 were inhibited. In vivo, treatment of A375 tumor-bearing athymic mice with P144 significantly reduced tumor growth, associated with a lower macrophage infiltrate and decreased intratumor MCP-1 and VEGF levels, as well as angiogenesis. Finally, in C57BL/6 mice with B16-OVA melanoma tumors, when administered with immunotherapy, P144 decreased tumor growth and intratumor IL-10 levels, linked to enhanced activation of dendritic cells and natural killer cells, as well as anti-OVA T-cell responses. These results show new effects of TGFβ1 on melanoma cells, which promote tumor progression and immunosuppression, strongly reinforcing the relevance of this cytokine as a molecular target in melanoma.

  13. Targeting melanoma cells with human high molecular weight-melanoma associated antigen-specific antibodies elicited by a peptide mimotope: functional effects.

    PubMed

    Luo, Wei; Ko, Eric; Hsu, Jeff Chi-feng; Wang, Xinhui; Ferrone, Soldano

    2006-05-15

    Human high molecular weight-melanoma associated Ag (HMW-MAA) mimics have been shown to elicit HMW-MAA-specific humoral immune responses that appear to be clinically beneficial. This finding has stimulated interest in characterizing the mechanism(s) underlying the ability of the elicited Abs to exert an anti-tumor effect. To address this question, in the present study, we have generated HMW-MAA-specific Abs by sequentially immunizing rabbits with the peptide P763.74, which mimics the HMW-MAA determinant recognized by mAb 763.74, and with HMW-MAA(+) melanoma cells. HMW-MAA-specific Abs isolated from immunized rabbits mediated cell-dependent cytotoxicity but did not mediate complement-dependent cytotoxicity of HMW-MAA(+) melanoma cells. These Abs also effectively inhibited spreading, migration and Matrigel invasion of HMW-MAA(+) melanoma cells. Besides contributing to our understanding of the role of HMW-MAA in the biology of melanoma cells, these results suggest that both immunological and nonimmunological mechanisms underlie the beneficial clinical effects associated with the induction of HMW-MAA-specific Abs in melanoma patients immunized with a HMW-MAA mimic.

  14. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  15. Signatures of microRNAs and selected microRNA target genes in human melanoma.

    PubMed

    Philippidou, Demetra; Schmitt, Martina; Moser, Dirk; Margue, Christiane; Nazarov, Petr V; Muller, Arnaud; Vallar, Laurent; Nashan, Dorothee; Behrmann, Iris; Kreis, Stephanie

    2010-05-15

    Small noncoding microRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation or orchestrating their sequence-specific degradation. In this study, we investigated miRNA and miRNA target gene expression patterns in melanoma to identify candidate biomarkers for early and progressive disease. Because data presently available on miRNA expression in melanoma are inconsistent thus far, we applied several different miRNA detection and profiling techniques on a panel of 10 cell lines and 20 patient samples representing nevi and primary or metastatic melanoma. Expression of selected miRNAs was inconsistent when comparing cell line-derived and patient-derived data. Moreover, as expected, some discrepancies were also detected when miRNA microarray data were correlated with qPCR-measured expression levels. Nevertheless, we identified miRNA-200c to be consistently downregulated in melanocytes, melanoma cell lines, and patient samples, whereas miRNA-205 and miRNA-23b were markedly reduced only in patient samples. In contrast, miR-146a and miR-155 were upregulated in all analyzed patients but none of the cell lines. Whole-genome microarrays were performed for analysis of selected melanoma cell lines to identify potential transcriptionally regulated miRNA target genes. Using Ingenuity pathway analysis, we identified a deregulated gene network centered around microphthalmia-associated transcription factor, a transcription factor known to play a key role in melanoma development. Our findings define miRNAs and miRNA target genes that offer candidate biomarkers in human melanoma.

  16. Dose fractionation effects in primary and metastatic human uveal melanoma cell lines.

    PubMed

    van den Aardweg, Gerard J M J; Kiliç, Emine; de Klein, Annelies; Luyten, Gregorius P M

    2003-11-01

    To investigate the effects of split-dose irradiation on primary and metastatic uveal melanoma cell lines, with a clonogenic survival assay. Appropriate cell concentrations of four primary and four metastatic human uveal melanoma cell lines were cultured for irradiation with single doses and with two equal fractions separated by 5 hours. After irradiation, colony formation was allowed for 7 to 21 days. Two cutaneous melanomas were also tested for comparison. All survival curves were analyzed using the linear quadratic (LQ) model. Specific parameters for the intrinsic radiosensitivity (alpha-component, SF2), for the capacity of repair of DNA damage (beta-component), as well as the alpha/beta ratio were calculated. After single-dose irradiation a wide range in the values of the alpha- and beta-component was obtained for both primary and metastatic uveal melanomas, which resulted in a wide range of alpha/beta ratios. In contrast, calculations based on split-dose data, with which the beta-component could be estimated independent of the alpha-component, indicated that estimates for the capacity of sublethal DNA damage repair was very similar in all cell lines. This indicated that intrinsic factors dominated the radiosensitivity of these cell lines. Split-dose irradiation had little influence on the intrinsic radiosensitivity (alpha-component), but cell survival increased for all cell lines. For the two cutaneous melanomas comparable split-dose results were obtained. For both primary and metastatic uveal melanoma cell lines, data from single and fractionated doses indicate large variations in radiosensitivity, which are mainly dominated by the intrinsic radiosensitivities. Doses of approximately 8 Gy in five fractions would be sufficient to eradicate 10(9) cells (approximately 1 cm3) of the most radioresistant tumor cell lines, but this schedule is an overkill for the radiosensitive tumor cell lines. Based on specific morphologic and histologic tumor markers, more

  17. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells

    PubMed Central

    Ott, Corinna Anna; Linck, Lisa; Kremmer, Elisabeth; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    Regulation of gene expression via microRNAs is known to promote the development of many types of cancer. In melanoma, miRNAs are globally up-regulated, and alterations of miRNA-processing enzymes have already been identified. However, mis-regulation of miRNA transport has not been analyzed in melanoma yet. We hypothesized that alterations in miRNA transport disrupt miRNA processing. Therefore, we investigated whether the pre-miRNA transporter Exportin-5 (XPO5) was involved in altered miRNA maturation and functional consequences in melanoma. We found that XPO5 is significantly over-expressed in melanoma compared with melanocytes. We showed enhanced XPO5 mRNA stability in melanoma cell lines which likely contributes to up-regulated XPO5 protein expression. In addition, we identified MEK signaling as a regulator of XPO5 expression in melanoma. Knockdown of XPO5 expression in melanoma cells led to decreased mature miRNA levels and drastic functional changes. Our data revealed that aberrant XPO5 expression is important for the maturation of miRNAs and the malignant behavior of melanoma cells. We suggest that the high abundance of XPO5 in melanoma leads to enhanced survival, proliferation and metastasis and thereby supports the aggressiveness of melanoma. PMID:27556702

  18. Melanotransferrin induces human melanoma SK-Mel-28 cell invasion in vivo

    SciTech Connect

    Bertrand, Yanick . E-mail: oncomol@nobel.si.uqam.ca

    2007-02-09

    The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [{sup 125}I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progession by stimulating plasmin generation as well as cell migration and invasion.

  19. Morphological changes in human skin melanoma treated by high-energy pulsed neodymium laser radiation.

    PubMed

    Moskalik, K G; Alexeeva, L N; Novik, V I; Demin, E V; Kozlov, A P

    2011-01-01

    The neodymium (Nd) laser irradiation has been successfully applied to the treatment of slightly elevated skin melanoma. At the same time the histologic aspects of such a treatment have not been precisely investigated. The aim of this study was to retrace the histological features in human primary cutaneous melanomas after 1060 nm high energy mono pulsed Nd laser treatment in the dynamic healing of the affected tissues. Histologic analysis of cutaneous melanomas irradiated by Nd laser was carried out. Tissue specimens were taken before and immediately after exposure to laser and 1 hour, and 1, 2 and 3 days after wards. Also the wounds that appeared after the scab fell off and the scars formed following laser irradiation were also the subject of histologic analysis at 2, 4 and 6 months post-treatment. The Nd laser irradiation caused coagulation necrosis of melanoma, epidermis and dermis with skin appendices and superficial layers of subcutaneous fatty tissue. Foci of laser destruction were characterized by strict locality and efficient separation from the adjacent tissues, by the presence of stasis, thrombosis and coagulation of blood and lymphatic vessels. There was an increase of lymphocytes, macrophages and histiocytes in the area damaged by laser as well as in wounds and scars. The pulsed Nd laser induces acute photothermal damages of melanoma tissue, which differs from the usual thermal lesions and the most critical difference of the effect of this modality is gain of immunocompetent cells in the affected tissue after laser beam application.

  20. Reduction of human melanoma tumor growth in severe combined immunodeficient mice by passive transfer of antibodies induced by a high molecular weight melanoma-associated antigen mimotope vaccine.

    PubMed

    Wagner, Stefan; Krepler, Clemens; Allwardt, Dorothee; Latzka, Julia; Strommer, Sabine; Scheiner, Otto; Pehamberger, Hubert; Wiedermann, Ursula; Hafner, Christine; Breiteneder, Heimo

    2008-12-15

    The high molecular weight melanoma-associated antigen (HMW-MAA) is an attractive target for immunotherapy of malignant melanoma. We have recently generated a vaccine based on the HMW-MAA mimotope 225D9.2+ that was able to induce anti-HMW-MAA antibodies with antitumor activity in vitro. Here, we investigated the antitumor activity of these antibodies in a human melanoma xenotransplant severe combined immunodeficient (SCID) mouse model. Tumors were established by injecting the human melanoma 518A2 cells into C.B.17 SCID/SCID mice. In tumor prevention experiments, 200 microg purified total IgG antibodies were injected intravenously the same day or on day 5 in therapeutic experiments. Antibody administration was repeated every fourth day and tumor volumes were measured. Antibody specificity and tumor infiltration by macrophages were investigated by immunohistochemistry. Within 35 days after cell inoculation, antibody treatment reduced tumor growth up to 40% in the therapeutic and up to 62% in the tumor prevention experiments compared with the control mice. In tumors of all groups, a similar distribution of the HMW-MAA and no differences in infiltration of macrophages were detected by immunohistochemistry. Here, we showed that antibodies induced by the 225D9.2+ mimotope effectively inhibited melanoma tumor growth. Additional mechanisms besides antibody-dependent cell cytotoxicity like disruption of interactions of melanoma cells mediated by extracellular matrix components seem to be involved in tumor growth inhibition. Based on our findings, we suggest that active immunization with this mimotope might be a promising strategy for treatment of melanoma.

  1. Expression of fucosyltransferases contributes to melanoma invasive phenotype.

    PubMed

    Ciołczyk-Wierzbicka, Dorota; Bodzioch, Marek; Gil, Dorota; Zmudzińska, Danuta; Dembińska-Kieć, Aldona; Laidler, Piotr

    2007-09-01

    During carcinogenesis aberrant N-glycosylation may lead to the development of subpopulations of tumor cells with altered adhesion properties and increased invasive potential. Biosynthesis of glycans and oligosaccharides is tissue-specific and developmentally regulated by number of glycosyltransferases of which fucosyl-, sialyl- and N-acetylglucosaminyltransferases often participate in synthesis of tumor type glycans. We analyzed the expression of selected glycosyltransferases (real-time PCR): fucosyltransferases FUT-1 and FUT-4, sialyltransferase SIAT4C and beta 1,6-N-acetylglucosaminyltransferase V (MGAT-5), in human melanoma cell lines: WM35 from primary tumor site and WM239, WM9, A375 from metastatic sites. In parallel their proliferation (crystal violet test) and adhesion to fibronectin and collagen IV (BD Biocoat assay) was assessed. Examined cell lines showed expression of all studied glycosyltransferases. The level of expression of fucosyltransferases was significantly higher in melanoma cell lines from metastatic site than from primary cell line: mRNA expression of FUT-1 was 100 times higher in A375 melanoma cell line from metastatic site (A375, solid tumor) than in WM35 primary cell line. The expression of FUT-4 in cell lines from metastatic sites: WM9 (lymph node) and WM239 (skin) was respectively 80 and 37 times higher than in WM 35 primary cell line. In all melanoma cell lines very low expression of MGAT-5 and high expression of SIAT4C was observed. Melanoma cells bound both to fibronectin and to collagen IV. LTA (Lotus tetragonolobus agglutinin), the lectin that specifically recognizes fucose residue of glycans and 20mM L-fucose by itself significantly reduced adhesion of all studied cell lines, both primary and metastatic, to fibronectin (20-50 %) and to collagen IV (20-50 %). In addition LTA reduced the proliferation (20-30 %) of metastatic cell lines (A375, WM9, WM239) and did not affect the growth of primary cell line (WM35). The results suggest

  2. Design and synthesis of new imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells.

    PubMed

    Garamvölgyi, Rita; Dobos, Judit; Sipos, Anna; Boros, Sándor; Illyés, Eszter; Baska, Ferenc; Kékesi, László; Szabadkai, István; Szántai-Kis, Csaba; Kéri, György; Őrfi, László

    2016-01-27

    Melanoma is an aggressive form of skin cancer and it is generally associated with poor prognosis in patients with late-stage disease. Due to the increasing occurrence of melanoma, there is a need for the development of novel therapies. A new series of diarylamide and diarylurea derivatives containing imidazo[1,2-a]pyridine or imidazo[1,2-a]pyrazine scaffold was designed and synthesized to investigate their in vitro efficacy against the A375P human melanoma cell line. We found several compounds expressing submicromolar IC50 values against the A375P cells, from which 15d, 17e, 18c, 18h, 18i demonstrated the highest potencies with IC50 below 0.06 μM.

  3. Dual Processing of FAT1 Cadherin Protein by Human Melanoma Cells Generates Distinct Protein Products*

    PubMed Central

    Sadeqzadeh, Elham; de Bock, Charles E.; Zhang, Xu Dong; Shipman, Kristy L.; Scott, Naomi M.; Song, Chaojun; Yeadon, Trina; Oliveira, Camila S.; Jin, Boquan; Hersey, Peter; Boyd, Andrew W.; Burns, Gordon F.; Thorne, Rick F.

    2011-01-01

    The giant cadherin FAT1 is one of four vertebrate orthologues of the Drosophila tumor suppressor fat. It engages in several functions, including cell polarity and migration, and in Hippo signaling during development. Homozygous deletions in oral cancer suggest that FAT1 may play a tumor suppressor role, although overexpression of FAT1 has been reported in some other cancers. Here we show using Northern blotting that human melanoma cell lines variably but universally express FAT1 and less commonly FAT2, FAT3, and FAT4. Both normal melanocytes and keratinocytes also express comparable FAT1 mRNA relative to melanoma cells. Analysis of the protein processing of FAT1 in keratinocytes revealed that, like Drosophila FAT, human FAT1 is cleaved into a non-covalent heterodimer before achieving cell surface expression. The use of inhibitors also established that such cleavage requires the proprotein convertase furin. However, in melanoma cells, the non-cleaved proform of FAT1 is also expressed at the cell surface together with the furin-cleaved heterodimer. Moreover, furin-independent processing generates a potentially functional proteolytic product in melanoma cells, a persistent 65-kDa membrane-bound cytoplasmic fragment no longer in association with the extracellular fragment. In vitro localization studies of FAT1 showed that melanoma cells display high levels of cytosolic FAT1 protein, whereas keratinocytes, despite comparable FAT1 expression levels, exhibited mainly cell-cell junctional staining. Such differences in protein distribution appear to reconcile with the different protein products generated by dual FAT1 processing. We suggest that the uncleaved FAT1 could promote altered signaling, and the novel products of alternate processing provide a dominant negative function in melanoma. PMID:21680732

  4. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    PubMed

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  5. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    PubMed

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX.

  6. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression.

    PubMed

    Panza, Elisabetta; De Cicco, Paola; Armogida, Chiara; Scognamiglio, Giosuè; Gigantino, Vincenzo; Botti, Gerardo; Germano, Domenico; Napolitano, Maria; Papapetropoulos, Andreas; Bucci, Mariarosaria; Cirino, Giuseppe; Ianaro, Angela

    2015-01-01

    In humans, two main metabolic enzymes synthesize hydrogen sulfide (H2 S): cystathionine γ lyase (CSE) and cystathionine β synthase (CBS). A third enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST), synthesizes H2 S in the presence of the substrate 3-mercaptopyruvate (3-MP). The immunohistochemistry analysis performed on human melanoma samples demonstrated that CSE expression was highest in primary tumors, decreased in the metastatic lesions and was almost silent in non-lymph node metastases. The primary role played by CSE was confirmed by the finding that the overexpression of CSE induced spontaneous apoptosis of human melanoma cells. The same effect was achieved using different H2 S donors, the most active of which was diallyl trisulfide (DATS). The main pro-apoptotic mechanisms involved were suppression of nuclear factor-κB activity and inhibition of AKT and extracellular signal-regulated kinase pathways. A proof of concept was obtained in vivo using a murine melanoma model. In fact, either l-cysteine, the CSE substrate, or DATS inhibited tumor growth in mice. In conclusion, we have determined that the l-cysteine/CSE/H2 S pathway is involved in melanoma progression.

  7. Geranylgeranylacetone induces apoptosis via the intrinsic pathway in human melanoma cells.

    PubMed

    Jo, Ah Reum; Jeong, Hyo-Soon; Kim, Myo-Kyoung; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Kim, Dong-Seok

    2016-08-01

    The aim of this study was to test the anti-cancer effects of geranylgeranylacetone (GGA), an isoprenoid compound, on human melanoma cells. Human melanoma cell lines G361, SK-MEL-2, and SK-MEL-5 were treated with GGA at various doses (1-100μM). Cell viability was measured by crystal violet assay. Western blot analysis was adopted to detect marker proteins of apoptosis. GGA significantly reduced the viability of G361, SK-MEL-2, and SK-MEL-5 human melanoma cells at concentrations above 10μM. Western blot analysis showed the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) after GGA treatment, as well as activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP) cleavage. GGA also induced p53 and Bax expression, but did not affect expression of Bcl-2 and MITF. These findings suggest that GGA induces apoptosis through the intrinsic pathway. Accordingly, GGA should be considered for further development as a potential agent for melanoma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Suppression of B-Raf(V600E) melanoma cell survival by targeting mitochondria using triphenyl-phosphonium-conjugated nitroxide or ubiquinone.

    PubMed

    Hong, Seung-Keun; Starenki, Dmytro; Wu, Pui-Kei; Park, Jong-In

    2017-02-01

    Most BRAF-mutated melanomas initially responsive to the FDA-approved inhibitors preferentially targeting B-Raf mutated in Val600 residue eventually relapse, requiring additional therapeutic modalities. Recent studies report the significance of metabolic reprograming in mitochondria for maintenance of BRAF-mutated melanomas and for development of their drug resistance to B-Raf inhibitors, providing a rationale for targeting mitochondria as a potential therapeutic strategy for melanoma. We therefore determined whether mitochondria-targeted metabolism-interfering agents can effectively suppress human B-Raf(V600E) melanoma cell lines and their dabrafenib/PLX4032-resistant progenies using mitochondria-targeted carboxy-proxyl (Mito-CP) and ubiquinone (Mito-Q). These agents exhibited comparable efficacy to PLX4032 in suppressing SK-MEL28, A375, and RPMI-7951 cells in vitro. As determined in SK-MEL28 and A375 cells, Mito-CP induced apoptotic cell death mediated by mitochondrial membrane depolarization and subsequent oxidative stress, which PLX4032 could not induce. Of note, Mito-CP also effectively suppressed PLX4032-resistant progenies of SK-MEL28 and A375. Moreover, when orally administered, Mito-CP suppressed SK-MEL28 xenografts in mice as effectively as PLX4032 without serious adverse effects. These data demonstrate that mitochondria-targeted agents have therapeutic potential to effectively suppress BRAF-mutated melanomas via an effect(s) distinct from those of B-Raf inhibitors.

  9. Identification of the human melanoma-associated chondroitin sulfate proteoglycan antigen epitope recognized by the antitumor monoclonal antibody 763.74 from a peptide phage library.

    PubMed

    Geiser, M; Schultz, D; Le Cardinal, A; Voshol, H; García-Echeverría, C

    1999-02-15

    To identify the epitope of the melanoma-associated chondroitin sulfate proteoglycan (MCSP) recognized by the monoclonal antibody (mAb) 763.74, we first expressed random DNA fragments obtained from the complete coding sequence of the MCSP core glycoproteins in phages and selected without success for binders to the murine mAb 763.74. We then used a library of random heptapeptides displayed at the surface of the filamentous M13 phage as fusion protein to the NH2-terminal portion of the minor coat protein III. After three rounds of selection on the bound mAb, several phages displaying related binding peptides were identified, yielding the consensus sequence Val-His-Leu-Asn-Tyr-Glu-His. Competitive ELISA experiments showed that this peptide can be specifically prevented from binding to mAb 763.74 by an anti-idiotypic MK2-23 mouse:human chimeric mAb and by A375 melanoma cells expressing the antigen MCSP. We screened the amino acid sequence of the MCSP molecule for a region of homology to the consensus sequence and found that the amino acid sequence Val-His-Ile-Asn-Ala-His spanning positions 289 and 294 has high homology. Synthetic linear peptides corresponding to the consensus sequence as well as to the MCSP-derived epitope inhibit the binding of mAb 763.74 to the phages displaying the consensus amino acid sequence. Finally, the biotinylated consensus peptide absorbed to streptavidin-microtiter plates can be used for the detection of mAb 763.74 in human serum. These results show clearly that the MCSP epitope defined by mAb 763.74 has been identified.

  10. Anti-melanoma activity of Bupleurum chinense, Bupleurum kaoi and nanoparticle formulation of their major bioactive compound saikosaponin-d.

    PubMed

    Hu, Stephen Chu-Sung; Lee, I-Ta; Yen, Ming-Hong; Lin, Chun-Ching; Lee, Chiang-Wen; Yen, Feng-Lin

    2016-02-17

    Bupleurum chinense is a traditional Chinese medicinal herb which has been used to treat various inflammatory and infectious diseases, while Bupleurum kaoi is an endemic plant in Taiwan. We determined whether B. chinense and B. kaoi and their biologically active saikosaponin compounds possess anti-melanoma activity. In addition, we developed a novel saikosaponin-d nanoparticle system to improve its solubility, and evaluated its antiproliferative effects and molecular mechanisms in melanoma cells. Ethanolic extracts from B. chinense and B. kaoi were prepared, and their saikosaponin contents were determined by high performance liquid chromatography analysis. Saikosaponin-d nanoparticles were synthesized, and their physicochemical properties were evaluated by particle size analyzer, transmission electron microscopy, differential scanning calorimetry, X-ray diffractometry, and Fourier transform infrared spectroscopy. Human A375.S2 melanoma cells were cultured, and cell viability determined by the MTT assay. Apoptosis was evaluated by determination of mitochondrial membrane potential, and signal transduction pathways investigated by Western blotting. Ethanolic extracts from B. kaoi showed more potent antiproliferative effect on human A375.S2 melanoma cells compared to B. chinense. The saikosaponin-a, -c and -d contents were higher in B. kaoi compared to B. chinense. Saikosaponin-d was the most potent compound in terms of anti-melanoma activity, and saikosaponin-d nanoparticles exhibited increased water solubility due to lowered particle size, amorphous transformation and intermolecular hydrogen bond formation with the excipient. Furthermore, saikosaponin-d nanoparticles showed enhanced antiproliferative activity against melanoma cells, and induced apoptosis through the mitochondrial pathway. The anti-melanoma activity was mediated by phosphorylation of JNK and p38, phosphorylation of p53, increased level of cytochrome c, and activation of caspase 9. B. kaoi contains

  11. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome.

    PubMed

    Ahmad, Israr; Muneer, Kashiff M; Tamimi, Iman A; Chang, Michelle E; Ata, Muhammad O; Yusuf, Nabiha

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma.

  12. The Effect of Sunitinib Treatment in Human Melanoma Xenografts: Associations with Angiogenic Profiles.

    PubMed

    Gaustad, Jon-Vidar; Simonsen, Trude G; Andersen, Lise Mari K; Rofstad, Einar K

    2017-04-01

    The effect of antiangiogenic agents targeting the vascular endothelial growth factor A (VEGF-A) pathway has been reported to vary substantially in preclinical studies. The purpose of this study was to investigate the effect of sunitinib treatment on tumor vasculature and oxygenation in melanoma xenografts with different angiogenic profiles. A-07, U-25, D-12, or R-18 melanoma xenografts were grown in dorsal window chambers and given daily treatments of sunitinib (40 mg/kg) or vehicle. Morphologic parameters of tumor vascular networks were assessed from high-resolution transillumination images, and tumor blood supply times (BSTs) were assessed from first-pass imaging movies. Tumor hypoxia was assessed with immunohistochemistry by using pimonidazole as hypoxia marker, and the gene expression and the protein secretion rate of angiogenic factors were assessed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The melanoma lines differed substantially in the expression of VEGF-A, VEGF-C, and platelet-derived growth factor A. Sunitinib treatment reduced vessel densities and induced hypoxia in all melanoma lines, and the magnitude of the effect was associated with the gene expression and protein secretion rate of VEGF-A. Sunitinib treatment also increased vessel segment lengths, reduced the number of small-diameter vessels, and inhibited growth-induced increases in the diameter of surviving vessels but did not change BST. In conclusion, sunitinib treatment did not improve vascular function but reduced vessel density and induced hypoxia in human melanoma xenografts. The magnitude of the treatment-induced effect was associated with the VEGF-A expression of the melanoma lines.

  13. Detection of B-RAF and N-RAS mutations in human melanoma.

    PubMed

    Goydos, James S; Mann, Barbara; Kim, Hyunjin J; Gabriel, Emmanuel M; Alsina, Janivette; Germino, F Joseph; Shih, Weichung; Gorski, David H

    2005-03-01

    It is now known that activating point mutations in components of the mitogen-activated protein kinase pathway commonly occur in melanoma. We previously described a method to detect point mutations in heterogenous tissues containing both wild-type and mutant B-RAF and N-RAS genes by using site-directed mutagenesis to introduce new restrictions sites in the cDNA sequence when the specific point mutations are present. We modified this technique to improve sensitivity and used it to determine the incidence of B-RAF and N-RAS mutations in human melanoma. We screened 115 melanoma samples for the most common B-RAF and N-RAS mutations found in melanoma using a site-directed mutagenesis-based detection technique. Southern blotting was used to increase sensitivity of the basic system. We also tested this method of genetic mutation detection in fine-needle aspiration specimens and paraffin-embedded tissues. Sixty-eight samples (20 of 36 primaries, 18 of 27 regional metastases, 16 of 40 nodal metastases, and 9 of 12 distant metastases) harbored the V599E B-RAF mutation (59%), 17 contained a Q61R N-RAS mutation, and 4 contained a Q61K N-RAS mutation. We were able to detect the V599E mutation in genomic DNA from paraffin-embedded melanoma samples and could routinely detect this mutation in fine-needle aspirations of melanoma tumors. This method of detection was sensitive and specific with no false positives. Activating mutations of B-RAF and N-RAS were present in approximately 60% and 18%, respectively, of samples tested. The site-directed mutagenesis system of mutation detection was both sensitive and specific in detecting these mutations and will likely prove very clinically useful in future studies.

  14. Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells.

    PubMed

    Buettner, Ralf; Mesa, Tania; Vultur, Adina; Lee, Frank; Jove, Richard

    2008-11-01

    Src family kinases (SFK) are involved in regulating a multitude of biological processes, including cell adhesion, migration, proliferation, and survival, depending on the cellular context. Therefore, although SFKs are currently being investigated as potential targets for treatment strategies in various cancers, the biological responses to inhibition of SFK signaling in any given tumor type are not predictable. Dasatinib (BMS-354825) is a dual Src/Abl kinase inhibitor with potent antiproliferative activity against hematologic malignancies harboring activated BCR-ABL. In this study, we show that dasatinib blocks migration and invasion of human melanoma cells without affecting proliferation and survival. Moreover, dasatinib completely inhibits SFK kinase activity at low nanomolar concentrations in all eight human melanoma cell lines investigated. In addition, two known downstream targets of SFKs, focal adhesion kinase and Crk-associated substrate (p130(CAS)), are inhibited with similar concentrations and kinetics. Consistent with inhibition of these signaling pathways and invasion, dasatinib down-regulates expression of matrix metalloproteinase-9. We also provide evidence that dasatinib directly inhibits kinase activity of the EphA2 receptor tyrosine kinase, which is overexpressed and/or overactive in many solid tumors, including melanoma. Thus, SFKs and downstream signaling are implicated as having key roles in migration and invasion of melanoma cells.

  15. Design, synthesis, and antiproliferative activity of 3,4-diarylpyrazole-1-carboxamide derivatives against melanoma cell line.

    PubMed

    El-Gamal, Mohammed I; Choi, Hong Seok; Cho, Hae-Guk; Hong, Jun Hee; Yoo, Kyung Ho; Oh, Chang-Hyun

    2011-11-01

    Synthesis of a new series of 3,4-diarylpyrazole-1-carboxamide derivatives is described. Their antiproliferative activity against A375P human melanoma cell line was tested and the effect of substituents on the diarylpyrazole scaffold was investigated. The biological results indicated that five synthesized compounds (Ig, Ii, IIc, IIg, and IIh) exhibited similar activity to Sorafenib. In addition, three compounds (IIa, IIb, and IIi) were more potent than Sorafenib. Among all of these derivatives, compound IIa which has dimethylamino and phenolic moieties showed the most potent antiproliferative activity against A375P human melanoma cell line. Virtual screening was carried out through docking of the most potent compound IIa into the domain of V600E-b-Raf and the binding mode was studied.

  16. Differentiation of human melanoma cells induced by cyanidin-3-O-beta-glucopyranoside.

    PubMed

    Serafino, Annalucia; Sinibaldi-Vallebona, Paola; Lazzarino, Giuseppe; Tavazzi, Barbara; Rasi, Guido; Pierimarchi, Pasquale; Andreola, Federica; Moroni, Gabriella; Galvano, Giacomo; Galvano, Fabio; Garaci, Enrico

    2004-12-01

    Great attention has been recently given to a flavonoid of the anthocyanin class, cyanidin-3-O-beta-glucopyranoside (C-3-G), which is widely spread throughout the plant kingdom, and is present in both fruits and vegetables of human diets. In this study, we investigated the effect of C-3-G on proliferation and differentiation of human melanoma cells. Both morphological and functional parameters were evaluated, using electron and confocal microscopy, cytofluorometric analysis, HPLC assay, Western blot analysis, and enzymatic assay, as appropriate. A treatment with a single dose of C-3-G decreased cell proliferation without affecting cell viability and without inducing apoptosis or necrosis. The mitotic index and cell percentage in S phase were significantly lower in C-3-G treated cells compared with untreated control. C-3-G treatment induced, in a dose- and time-dependent manner, melanoma cell differentiation characterized by a strong increase in dendrite outgrowth accompanied with a remodeling of the microtubular network, a dramatic increase of focal adhesion and an increased expression of "brain specific" cytoskeletal components such as NF-160 and NF-200 neurofilament proteins. C-3-G treatment also induced increase of cAMP levels and up-regulation of tyrosinase expression and activity resulting in an enhanced melanin synthesis and melanosome maturation. Up-regulation of the melanoma differentiation antigen Melan-A/MART-1 in treated cells respect to the untreated control was also recorded. Data obtained provide evidence that a single treatment with C-3-G is able to revert the human melanoma cells from the proliferating to the differentiated state. We conclude that C-3-G is a very promising molecule to include in the strategies for treatment of melanoma; also because of its nutritional relevance.

  17. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide.

    PubMed

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J; Margison, Geoffrey P; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R; Macaulay, Valentine M

    2015-11-24

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage.

  18. Caspase dependent apoptotic inhibition of melanoma and lung cancer cells by tropical Rubus extracts.

    PubMed

    George, Blassan Plackal Adimuriyil; Abrahamse, Heidi; Hemmaragala, Nanjundaswamy M

    2016-05-01

    Rubus fairholmianus Gard. inhibits human melanoma (A375) and lung cancer (A549) cell growth by the caspase dependent apoptotic pathway. Herbal products have a long history of clinical use and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. The plants and plant derived products became the basis of traditional medicine system throughout the world for thousands of years. The effects of R. fairholmianus root acetone extract (RFRA) on the proliferation of A375 and A549 cells was examined in this study. RFRA led to a decrease in cell viability, proliferation and an increase in cytotoxicity in a dose dependent manner when compared with control and normal skin fibroblast cells (WS1). The morphology of treated cells supported apoptotic cell death. Annexin V/propidium iodide staining indicated that RFRA induced apoptosis in A375 and A549 cells and the percentages of early and late apoptotic populations significantly increased. Moreover, the apoptotic inducing ability of RFRA when analysing effector caspase 3/7 activity, indicated a marked increase in treated cells. In summary, we have shown the anticancer effects of RFRA in A375 and A549 cancer cells via induction of caspase dependent apoptosis in vitro. The extract is more effective against melanoma; which may suggest the usefulness of RFRA-based anticancer therapies.

  19. Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells.

    PubMed

    Jiang, Guan; Li, Ronghua; Tang, Jianqin; Ma, Yafeng; Hou, Xiaoyang; Yang, Chunsheng; Guo, Wenwen; Xin, Yong; Liu, Yanqun

    2017-02-01

    The present study was carried out to prepare and evaluate a temozolomide (TMZ)-loaded polyamide-amine dendrimer (PAMAM)‑based nanodrug delivery system, and to explore its ability to target human melanoma (A375) cells in vitro. Firstly, PAMAM-PEG and PAMAM-PEG-GE11 were synthesized by substitution and addition reactions, and their products were identified and characterized by fourier transform-infrared (FTIR), proton nuclear magnetic resonance (1H-NMR) and transmission electron microscopy (TEM), as well as differential light scattering (DLS). Using fluorescein isothiocyanate (FITC)-modified PAMAM, we synthesized FITC-PAMAM, FITC-PAMAM-PEG and FITC-PAMAM-PEG-GE11. Fluorescence microscopy and flow cytometry were used to monitor the uptake of A375 cells of these three nanomaterials. Secondly, TMZ-PAMAM‑PEG‑GE11-HA drug complexes were prepared by ultrasonic emulsification, and their particle size, zeta potential and morphology were evaluated by DLS and TEM. Drug loading (DL) and encapsulation efficiency (EE) were assayed by ultraviolet spectrophotometry. Thirdly, we ascertained whether TMZ-PAMAM-PEG-GE11-HA conjugates could target A375 cells in vitro. The TMZ-PAMAM‑PEG‑GE11-HA nanodrug delivery system was successfully synthesized according to FTIR and 1H-NMR. Its mean particle size was 183.2 nm and zeta potential was -0.01 mV. It was a regular sphere with good uniformity. The EE of TMZ-PAMAM-PEG-GE11-HA was ~50.63% and DL ~10.4%. TMZ-PAMAM-PEG-GE11-HA targeted A375 cells in vitro. In conclusion, the TMZ-PAMAM‑PEG-GE11-HA nanodrug delivery system was successfully prepared, and demonstrated its potential for targeting A375 cells in vitro. This system enhanced the sensitivity of A375 cells to TMZ, and provided a novel targeted strategy for the treatment of metastatic melanoma.

  20. Silymarin inhibits melanoma cell growth both in vitro and in vivo by targeting cell cycle regulators, angiogenic biomarkers and induction of apoptosis.

    PubMed

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K

    2015-11-01

    Cutaneous malignant melanoma is the leading cause of death from skin diseases and is often associated with activating mutations of the proto-oncogene BRAF. To develop more effective strategies for the prevention or treatment of melanoma, we have examined the inhibitory effects of silymarin, a flavanoid from Silybum marianum, on melanoma cells. Using A375 (BRAF-mutated) and Hs294t (non BRAF-mutated but highly metastatic) human melanoma cell lines, we found that in vitro treatment with silymarin resulted in a dose-dependent: (i) reduction in cell viability; (ii) enhancement of either Go/G1 (A375) or G2-M (Hs294t) phase cell cycle arrest with corresponding alterations in cyclins and cyclin-dependent kinases; and (iii) induction of apoptosis. The silymarin-induced apoptosis of human melanoma cells was associated with a reduction in the levels of anti-apoptotic proteins (Bcl-2 and Bcl-xl), an increase in the levels of pro-apoptotic protein (Bax), and activation of caspases. Further, oral administration of silymarin (500 mg/kg body weight/2× a week) significantly inhibited (60%, P < 0.01) the growth of BRAF-mutated A375 melanoma tumor xenografts, and this was associated with: (i) inhibition of cell proliferation; (ii) induction of apoptosis of tumor cells; (iii) alterations in cell cycle regulatory proteins; and (iv) reduced expression of tumor angiogenic biomarkers in tumor xenograft tissues. These results indicate that silymarin may have a chemotherapeutic effect on human melanoma cell growth and warrant its further evaluation. © 2014 Wiley Periodicals, Inc.

  1. TLR2/6 agonists and interferon-gamma induce human melanoma cells to produce CXCL10

    PubMed Central

    Mauldin, Ileana S.; Wang, Ena; Deacon, Donna H.; Olson, Walter C.; Bao, Yongde; Slingluff, Craig L.

    2015-01-01

    Clinical approaches to treat advanced melanoma include immune therapies, whose benefits depend on tumor-reactive T-cell infiltration of metastases. However, most tumors lack significant immune infiltration prior to therapy. Selected chemokines promote T-cell migration into tumors; thus, agents that induce these chemokines in the tumor microenvironment (TME) may improve responses to systemic immune therapy. CXCL10 has been implicated as a critical chemokine supporting T-cell infiltration into the TME. Here we show that toll-like receptor (TLR) agonists can induce chemokine production directly from melanoma cells when combined with IFNγ treatment. We find that TLR2 and TLR6 are widely expressed on human melanoma cells, and that TLR2/6 agonists (MALP-2 or FSL-1) synergize with interferon-gamma (IFNγ) to induce production of CXCL10 from melanoma cells. Furthermore, melanoma cells and immune cells from surgical specimens also respond to TLR2/6 agonists and IFNγ by upregulating CXCL10 production, compared to treatment with either agent alone. Collectively, these data identify a novel mechanism for inducing CXCL10 production directly from melanoma cells, with TLR2/6 agonists +IFNγ and raise the possibility that intratumoral administration of these agents may improve immune signatures in melanoma and have value in combination with other immune therapies, by supporting T-cell migration into melanoma metastases. PMID:25765738

  2. Differential mechanisms of tumor progression in clones from a single heterogeneous human melanoma.

    PubMed

    Croteau, Walburga; Jenkins, Molly H; Ye, Siying; Mullins, David W; Brinckerhoff, Constance E

    2013-04-01

    We used vertical growth phase (VGP) human VMM5 melanoma cells to ask whether the tumor microenvironment could induce matrix metalloproteinase-1 (MMP-1) in vivo, and whether this induction correlated with metastasis. We isolated two clones from parental VMM5 cells: a low MMP-1 producing clone (C4) and high producing clone (C9). When these clones were injected orthotopically (intradermally) into nude mice, both were equally tumorigenic and produced equivalent and abundant amounts of MMP-1. However, the tumors from the C4 clones displayed different growth kinetics and distinct profiles of gene expression from the C9 population. The C4 tumors, which had low MMP-1 levels in vitro, appeared to rely on growth factors and cytokines in the microenvironment to increase MMP-1 expression in vivo, while MMP-1 levels remained constant in the C9 tumors. C9 cells, but not C4 cells, grew as spheres in culture and expressed higher levels of JARID 1B, a marker associated with melanoma initiating cells. We conclude that VMM5 melanoma cells exhibit striking intra-tumor heterogeneity, and that the tumorigenicity of these clones is driven by different molecular pathways. Our data suggest that there are multiple mechanisms for melanoma progression within a tumor, which may require different therapeutic strategies.

  3. V3 versican isoform expression has a dual role in human melanoma tumor growth and metastasis.

    PubMed

    Miquel-Serra, Laia; Serra, Montserrat; Hernández, Daniel; Domenzain, Clelia; Docampo, María José; Rabanal, Rosa M; de Torres, Inés; Wight, Thomas N; Fabra, Angels; Bassols, Anna

    2006-09-01

    Versican is a large chondroitin sulfate proteoglycan produced by several tumor cell types, including malignant melanoma, which exists as four different splice variants. The presence of versican in the extracellular matrix plays a role in tumor cell growth, adhesion and migration, which could be altered by altering the ratio between versican isoforms. We have previously shown that overexpression of the V3 isoform of versican in human melanoma cell lines markedly reduces cell growth in vitro and in vivo, since V3-overexpressing (LV3SN) cultured cells as well as primary tumors arising from these cells grow slower than their vector-only counterparts (LXSN). In the present work, we have extended these observations to demonstrate that the delayed cell growth is due to multiple events since differences in proliferative index as well as in apoptosis are observed in LV3SN cells and tumors compared to LXSN. For example, LV3SN melanoma cells exhibit delayed activation of MAPK in response to EGF, we have also characterized further the primary tumors originated in nude mice from V3-transduced melanoma cells to determine if other events affect the V3 tumor phenotype. For example, hyaluronan content of LV3SN tumors was higher than in LXSN tumors, whereas other related matrix components and vascularization were unaffected. Furthermore, lung metastasis in nude mice occurred only in animals carrying LV3SN tumors, indicating a dual role for this molecule, both as an inhibitor of tumor growth and a metastasis inductor.

  4. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  5. Identification of a Cell Surface Protein, p97, in Human Melanomas and Certain Other Neoplasms

    NASA Astrophysics Data System (ADS)

    Woodbury, Richard G.; Brown, Joseph P.; Yeh, Ming-Yang; Hellstrom, Ingegerd; Hellstrom, Karl Erik

    1980-04-01

    BALB/c mice were immunized with a human melanoma cell line, SK-MEL 28, and their spleen cells were fused with mouse NS-1 myeloma cells. Hybrid cells were tested in an indirect 125I-labeled protein A assay for production of antibodies that bound to surface antigens of SK-MEL 28 melanoma cells but not to autologous skin fibroblasts. One hybridoma, designated 4.1, had the required specificity. It was cloned and grown in mice as an ascites tumor. The monoclonal IgG1 antibody produced by the hybridoma was purified from the ascites fluid and labeled with 125I. The labeled antibody bound, at significant levels, to approximately 90% of the melanomas tested and to approximately 55% of other tumor cells, but not to three B-lymphoblastoid cell lines or to cultivated fibroblasts from 15 donors. Immunoprecipitation and sodium dodecyl sulfate gel electrophoresis were used to detect the target antigen in 125I-labeled cell membranes of both cultivated cells and tumor biopsy samples. A protein with a molecular weight of 97,000 was identified. This protein, designated p97, was present in both cultured cells and biopsy material from melanomas and certain other tumors, but it was not detected in eight different samples of normal adult epithelial or mesenchymal tissues obtained from five donors.

  6. Nitric oxide donor augments antineoplastic effects of arginine deprivation in human melanoma cells.

    PubMed

    Mayevska, Oksana; Chen, Oleh; Karatsai, Olena; Bobak, Yaroslav; Barska, Maryna; Lyniv, Liliana; Pavlyk, Iuliia; Rzhepetskyy, Yuriy; Igumentseva, Natalia; Redowicz, Maria Jolanta; Stasyk, Oleh

    2017-06-15

    Anticancer therapy based on recombinant arginine-degrading enzymes has been proposed for the treatment of several types of malignant cells deficient in arginine biosynthesis. One of the predicted side effects of such therapy is restricted bioavailability of nitric oxide as arginine catabolic product. Prolonged NO limitation may lead to unwanted disturbances in NO-dependent vasodilation, cardiovascular and immune systems. This problem can be overcome by co-supplementation with exogenous NO donor. However, NO may potentially counteract anticancer effects of therapy based on arginine deprivation. In this study, we evaluate for the first time the effects of an exogenous NO donor, sodium nitroprusside, on viability and metastatic properties of two human melanoma cell lines SK-MEL-28 and WM793 under arginine-deprived conditions. It was revealed that NO did not rescue melanoma cells from specific effects evoked by arginine deprivation, namely decreased viability and induction of apoptosis, dramatically reduced motility, invasiveness and clonogenic potential. Moreover, sodium nitroprusside co-treatment augmented several of these antineoplastic effects. We report that a combination of NO-donor and arginine deprivation strongly and specifically impaired metastatic behavior of melanoma cells. Thus, sodium nitroprusside can be considered as an adjuvant for the more efficient treatment of malignant melanoma and possibly other tumors with arginine-degrading enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability.

    PubMed

    Junco, Jacob J; Mancha-Ramirez, Anna; Malik, Gunjan; Wei, Sung-Jen; Kim, Dae Joon; Liang, Huiyun; Slaga, Thomas J

    2015-04-01

    Malignant melanoma is associated with a 5-year survival rate of less than 20% once metastasized. Malignant melanoma cells exhibit increased levels of autophagy, a process of intracellular digestion that allows cells to survive various stresses including chemotherapies, resulting in reduced patient survival. Autophagy can be inhibited by chemicals like chloroquine (CQ), which prevents fusion of autophagosomes to lysosomes, resulting in autophagosome accumulation in most systems. Here, we describe how tested CQ to see whether it could sensitize B16F10 metastatic mouse melanoma cells to the anticancer activities of the natural compounds ursolic acid (UA) and resveratrol (RES). CQ with UA or RES strongly and synergistically reduced the viability of B16F10 mouse melanoma and A375 human melanoma cells. Surprisingly, flow cytometry of acridine orange-stained cells showed that UA or RES in combination with CQ significantly reduced autophagosome levels. Western blotting analysis revealed that CQ plus UA or RES paradoxically increased LC3II, indicative of autophagosome accumulation. In addition, CQ plus RES synergistically decreased the levels of both autophagy initiator beclin-1 and autophagy supporter p62. These results indicate that CQ with UA or RES strongly and synergistically reduces the viability of B16F10 and A375 melanoma cells. However, studies on B16F10 cells have shown that the synergistic effect was not mediated by inhibition of autophagy induced by UA or RES. These compounds are well-tolerated in humans, and CQ has shown promise as an adjuvant therapy. These combinations may be valuable treatment strategies for melanoma.

  8. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    PubMed

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  9. A human melanoma metastasis-suppressor locus maps to 6q16.3-q23.

    PubMed

    Miele, M E; Jewett, M D; Goldberg, S F; Hyatt, D L; Morelli, C; Gualandi, F; Rimessi, P; Hicks, D J; Weissman, B E; Barbanti-Brodano, G; Welch, D R

    2000-05-15

    Loss, deletion or rearrangement along large portions of the long arm (q-arm) of chromosome 6 occurs in >80% of late-stage human melanomas, suggesting that genes controlling malignant characteristics are encoded there. Metastasis, but not tumorigenicity, was completely suppressed in the human melanoma cell line C8161 into which an additional intact chromosome 6 had been introduced by microcell-mediated chromosome transfer. Our objective was to refine the location of a putative metastasis suppressor gene. To do this, we transferred an intact (neo6) and a deletion variant [neo6qdel; neo6(del)(q16.3-q23)] of neomycin-tagged human chromosome 6 into metastatic C8161 subclone 9 (C8161.9) by MMCT. Single cell hybrid clones were selected in G-418 and isolated. Following verification that the hybrids retained the expected regions of chromosome 6 using a panel of polymorphic sequence-tagged sites, the hybrids were tested for tumorigenicity and metastasis in athymic mice. As reported previously, intact, normal chromosome 6 suppressed metastasis whether tumor cells were injected i.v. or into an orthotopic (i.e., intradermal) site. In contrast, metastasis was not suppressed in the neo6qdel hybrids. Tumorigenicity was unaffected in hybrids prepared with either chromosome 6 donor. These data strongly suggest that a human melanoma metastasis suppressor locus maps between 6q16.3-q23 ( approximately 40 cM).

  10. Detection of mutations in the mitogen-activated protein kinase pathway in human melanoma.

    PubMed

    Alsina, Janivette; Gorsk, David H; Germino, F Joseph; Shih, Weichung; Lu, Shou-En; Zhang, Zhi-Gang; Yang, Jin-Ming; Hait, William N; Goydos, James S

    2003-12-15

    Recent studies suggest that activating point mutations in B-RAF may commonly occur in melanoma. We devised a method to detect point mutations in heterogeneous tissues containing both wild-type and mutant B-RAF and N-RAS genes by using site-directed mutagenesis to introduce new restrictions sites in the cDNA sequence when the specific point mutations are present. We used this technique to determine the incidence of mitogen-activated protein kinase (MAPK) mutations in human melanoma. We screened 85 melanoma samples for the most common B-RAF and N-RAS mutations found in melanoma using a site-directed mutagenesis-based detection technique. Western blotting was used to evaluate downstream up-regulation of the mitogen-activated protein kinase pathway in these tissues. Thirty-three samples (7 of 25 primaries, 15 of 25 regional metastases, 5 of 25 nodal metastases, and 6 of 10 distant metastases) harbored the V599E B-RAF mutation (39%), 12 contained a Q61R N-RAS mutation and 5 a Q61K N-RAS mutation. Western blotting with antiphosphorylated extracellular signal-regulated kinase 1/2 antibodies demonstrated up-regulation of the MAPK pathway in samples containing activating B-RAF or N-RAS mutations compared with wild-type samples. This method of detection was sensitive and specific with no false positives. Activating mutations of the MAPK pathway were present in approximately 60% of samples tested and caused activation of this cellular pathway that appears to be important in the pathogenesis of melanoma.

  11. Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells.

    PubMed

    Davids, Lester M; Kleemann, Britta; Kacerovská, Denisa; Pizinger, Karl; Kidson, Susan H

    2008-05-29

    Hypericin, the major component of St. John's Wort, absorbs light in the UV and visible ranges whereupon it becomes phototoxic through the production of reactive oxygen species. Although photodynamic mechanisms (i.e. through endogenous photosensitizers) play a role in UVA phototherapy for the treatment of skin disorders such as eczema and psoriasis, photodynamic therapy employing exogenous photosensitizers are currently being used only for the treatment of certain forms of non-melanoma skin cancers and actinic keratoses. There are few reports however on its use in treating melanomas. This in vitro study analyses the phototoxic effect of UVA (400-315 nm) - activated hypericin in human pigmented and unpigmented melanomas and immortalised keratinocytes and melanocytes. We show that neither hypericin exposure nor UV irradiation alone reduces cell viability. We show that an exposure to 1 microM UVA-activated hypericin does not bring about cell death, while 3 microM activated hypericin induces a necrotic mode of cell death in pigmented melanoma cells and melanocytes and an apoptotic mode of cell death in non-pigmented melanoma cells and keratinocytes. We hypothesis that the necrotic mode of cell death in the pigmented cells is possibly related to the presence of melanin-containing melanosomes in these cells and that the hypericin-induced increase in reactive oxygen species leads to an increase in permeability of melanosomes. This would result in toxic melanin precursors (of an indolic and phenolic nature) leaking into the cytoplasm which in turn leads to cell death. Hypericin localisation in the endoplasmic reticulum in these cells shown by fluorescent microscopy, further support a disruption in cellular processing and induction of cell death. In contrast, this study shows that cells that do not contain melanosomes (non-pigmented melanoma cells and keratinocytes) die by apoptosis. Further, using a mitochondrial-specific fluorescent dye, we show that intracellular

  12. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation.

    PubMed

    Serafino, A; Balestrieri, E; Pierimarchi, P; Matteucci, C; Moroni, G; Oricchio, E; Rasi, G; Mastino, A; Spadafora, C; Garaci, E; Vallebona, P Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  13. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    SciTech Connect

    Serafino, A. Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; Vallebona, P. Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  14. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  15. Inhibitor of DNA Binding 4 (ID4) Is Highly Expressed in Human Melanoma Tissues and May Function to Restrict Normal Differentiation of Melanoma Cells

    PubMed Central

    Peretz, Yuval; Wu, Hong; Patel, Shayan; Bellacosa, Alfonso; Katz, Richard A.

    2015-01-01

    Melanoma tissues and cell lines are heterogeneous, and include cells with invasive, proliferative, stem cell-like, and differentiated properties. Such heterogeneity likely contributes to the aggressiveness of the disease and resistance to therapy. One model suggests that heterogeneity arises from rare cancer stem cells (CSCs) that produce distinct cancer cell lineages. Another model suggests that heterogeneity arises through reversible cellular plasticity, or phenotype-switching. Recent work indicates that phenotype-switching may include the ability of cancer cells to dedifferentiate to a stem cell-like state. We set out to investigate the phenotype-switching capabilities of melanoma cells, and used unbiased methods to identify genes that may control such switching. We developed a system to reversibly synchronize melanoma cells between 2D-monolayer and 3D-stem cell-like growth states. Melanoma cells maintained in the stem cell-like state showed a striking upregulation of a gene set related to development and neural stem cell biology, which included SRY-box 2 (SOX2) and Inhibitor of DNA Binding 4 (ID4). A gene set related to cancer cell motility and invasiveness was concomitantly downregulated. Intense and pervasive ID4 protein expression was detected in human melanoma tissue samples, suggesting disease relevance for this protein. SiRNA knockdown of ID4 inhibited switching from monolayer to 3D-stem cell-like growth, and instead promoted switching to a highly differentiated, neuronal-like morphology. We suggest that ID4 is upregulated in melanoma as part of a stem cell-like program that facilitates further adaptive plasticity. ID4 may contribute to disease by preventing stem cell-like melanoma cells from progressing to a normal differentiated state. This interpretation is guided by the known role of ID4 as a differentiation inhibitor during normal development. The melanoma stem cell-like state may be protected by factors such as ID4, thereby potentially identifying a

  16. Restoration of E-cadherin sensitizes human melanoma cells for apoptosis.

    PubMed

    Kippenberger, Stefan; Loitsch, Stefan; Thaçi, Diamant; Müller, Jutta; Guschel, Maike; Kaufmann, Roland; Bernd, August

    2006-10-01

    Cell-cell adhesion is considered to be important in the development and maintenance of organ tissue. The spatial association between melanocytes and keratinocytes within human epidermis is achieved by homophilic interaction of E-cadherin molecules located on adjacent cells. In contrast, downregulation of E-cadherin expression in melanoma cells is considered as a key event in metastasis. Besides the adhesive properties, E-cadherin serves as a signal receptor linking to the cadherin-catenin signaling complex. As cadherins act as negative regulators of beta-catenin, a contribution to tumor formation seems likely. In the present study, it was tested whether ectopic expression of E-cadherin triggers apoptosis in human melanoma cell lines (G-361, JPC-298, SK-Mel-13). It was found that restoration of E-cadherin caused sensitization against drug-induced apoptosis. Particularly, the release of mitochondrial cytochrome c was increased in response to staurosporine. Moreover, activation of caspase-3 and caspase-8 was elevated. Similarly, DNA fragmentation, serving as a marker for advanced apoptosis, was amplified in cells transduced with E-cadherin. Interestingly, transduction with an E-cadherin construct lacking the extracellular domain showed no modified apoptosis. In conclusion, our findings suggest therapeutic strategies that enable expression of E-cadherin in order to sensitize human melanoma cells towards apoptosis.

  17. Specific killing of human melanoma cells with an efficient 10B-compound on monoclonal antibodies

    SciTech Connect

    Komura, A.; Tokuhisa, T.; Nakagawa, T.; Sasase, A.; Ichihashi, M.; Ferrone, S.; Mishima, Y. )

    1989-07-01

    We previously established methods which have enabled us to target a sufficient number of 10B atoms on human melanoma cells to destroy them by thermal neutron irradiation. Monoclonal antibodies were here used as vector of 10B atoms on the target cell. Thermal neutrons require at least 10(9) 10B atoms to destroy the cell. In order to accumulate an adequate number of 10B atoms on target cells, our first approach was to make an effective compound that contains 12 atoms of 10B in a molecule. The second step was to conjugate the compound with an avidin molecule (10B12-avidin). One molecule of the 10B12-avidin carries about 30 atoms of 10B. This 10B12-avidin can be specifically targeted on human melanoma cells by biotinated monoclonal antibodies specific for the cells. Furthermore, the number of 10B atoms on target cells can be augmented by a hapten-antihapten monoclonal antibody system. The cultured human melanoma cells treated with these methods were damaged by thermal neutron irradiation. This is the first study that indicates thermal neutrons do injure target cells boronated by monoclonal antibodies.

  18. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells.

    PubMed Central

    Bumol, T F; Reisfeld, R A

    1982-01-01

    A monoclonal antibody, 9.2.27, with a high specificity for human melanoma cell surfaces has been utilized for biosynthetic studies in M21 human melanoma cells to define a unique antigenic complex consisting of a 250-kilodalton N-linked glycoprotein and a high molecular weight proteoglycan component larger than 400 kilodaltons. The 250-kilodalton glycoprotein has endoglycosidase H-sensitive precursors and shows a lower apparent molecular weight after treatment with neuraminidase. The biosynthesis of the proteoglycan component is inhibited by exposure of M21 cells to the monovalent ionophore monensin, this component can be labeled biosynthetically with 35SO4, is sensitive to beta-elimination in dilute base, and is degraded by both chondroitinase AC and ABC lyases, suggesting that it is a chondroitin sulfate proteoglycan. These data demonstrate that the antigenic determinant recognized by monoclonal antibody 9.2.27 is located on a glycoprotein-proteoglycan complex which may have unique implications for the interaction of glycoconjugates at the human melanoma tumor cell surface. Images PMID:6175965

  19. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment.

    PubMed

    Sustarsic, Elahu G; Junnila, Riia K; Kopchick, John J

    2013-11-08

    Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute's NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on this data, GH could be a new therapeutic target in melanoma. Published by Elsevier Inc.

  20. Overcoming MITF-conferred drug resistance through dual AURKA/MAPK targeting in human melanoma cells

    PubMed Central

    Pathria, G; Garg, B; Borgdorff, V; Garg, K; Wagner, C; Superti-Furga, G; Wagner, S N

    2016-01-01

    MITF (microphthalmia-associated transcription factor) is a frequently amplified lineage-specific oncogene in human melanoma, whose role in intrinsic drug resistance has not been systematically investigated. Utilizing chemical inhibitors for major signaling pathways/cellular processes, we witness MITF as an elicitor of intrinsic drug resistance. To search kinase(s) targets able to bypass MITF-conferred drug resistance, we employed a multi-kinase inhibitor-directed chemical proteomics-based differential affinity screen in human melanocytes carrying ectopic MITF overexpression. A subsequent methodical interrogation informed mitotic Ser/Thr kinase Aurora Kinase A (AURKA) as a crucial regulator of melanoma cell proliferation and migration, independent of the underlying molecular alterations, including TP53 functional status and MITF levels. Crucially, assessing the efficacy of investigational AURKA inhibitor MLN8237, we pre-emptively witness the procurement of a molecular program consistent with acquired drug resistance. This involved induction of multiple MAPK (mitogen-activated protein kinase) signaling pathway components and their downstream proliferation effectors (Cyclin D1 and c-JUN) and apoptotic regulators (MITF and Bcl-2). A concomitant AURKA/BRAF and AURKA/MEK targeting overcame MAPK signaling activation-associated resistance signature in BRAF- and NRAS-mutated melanomas, respectively, and elicited heightened anti-proliferative activity and apoptotic cell death. These findings reveal a previously unreported MAPK signaling-mediated mechanism of immediate resistance to AURKA inhibitors. These findings could bear significant implications for the application and the success of anti-AURKA approaches that have already entered phase-II clinical trials for human melanoma. PMID:26962685

  1. Vaccination with a human high molecular weight melanoma-associated antigen mimotope induces a humoral response inhibiting melanoma cell growth in vitro.

    PubMed

    Wagner, Stefan; Hafner, Christine; Allwardt, Dorothee; Jasinska, Joanna; Ferrone, Soldano; Zielinski, Christoph C; Scheiner, Otto; Wiedermann, Ursula; Pehamberger, Hubert; Breiteneder, Heimo

    2005-01-15

    Peptide mimics of a conformational epitope that is recognized by a mAb with antitumor activity are promising candidates for formulations of anticancer vaccines. These mimotope vaccines are able to induce a polyclonal Ab response focused to the determinant of the mAb. Such attempts at cancer immunotherapy are of special interest for malignant melanoma that is highly resistant to chemotherapy and radiotherapy. In this study, we describe for the first time the design and immunogenicity of a vaccine containing a mimotope of the human high m.w. melanoma-associated Ag (HMW-MAA) and the biological potential of the induced Abs. Mimotopes were selected from a pVIII-9mer phage display peptide library with the anti-HMW-MAA mAb 225.28S. The mimotope vaccine was then generated by coupling the most suitable candidate mimotope to tetanus toxoid as an immunogenic carrier. Immunization of rabbits with this vaccine induced a specific humoral immune response directed toward the epitope recognized by the mAb 225.28S on the native HMW-MAA. The induced Abs inhibited the in vitro growth of the melanoma cell line 518A2 up to 62%. In addition, the Abs mediated 26% lysis of 518A2 cells in Ab-dependent cellular cytotoxicity. Our results indicate a possible application of this mimotope vaccine as a novel immunotherapeutic agent for the treatment of malignant melanoma.

  2. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    SciTech Connect

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M; Smith, R; Tsang, T; Miller, L

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  3. Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightlessness

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert

    2011-04-01

    The membrane-bound guanylyl cyclases A and B (GC-A/B), which are receptors for natriuretic peptides, are expressed in cancer cells including melanomas and may represent new anticancer targets. Here, we report down-regulation of GC-A/B expression in human metastatic melanoma cells at simulated weightlessness in comparison to 1 g conditions, suggesting attenuation of metastatic potential in weightlessness.

  4. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells

    PubMed Central

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-01-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact. PMID:22801967

  5. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  6. Basic and clinical aspects of malignant melanoma

    SciTech Connect

    Nathanson, L. )

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignant melanoma by fast neutrons.

  7. Biofunctional Activities of Equisetum ramosissimum Extract: Protective Effects against Oxidation, Melanoma, and Melanogenesis

    PubMed Central

    Li, Pin-Hui; Chiu, Yu-Pin; Shih, Chieh-Chih; Wen, Zhi-Hong; Ibeto, Laura Kaodichi; Huang, Shu-Hung; Chiu, Chien Chih; Ma, Dik-Lung; Leung, Chung-Hang; Chang, Yaw-Nan; Wang, Hui-Min David

    2016-01-01

    Equisetum ramosissimum, a genus of Equisetaceae, is a medicinal plant that can be separated into ethyl acetate (EA), dichloromethane (DM), n-hexane (Hex), methanol (MeOH), and water extracts. EA extract was known to have potent antioxidative properties, reducing power, DPPH scavenging activity, and metal ion chelating activity. This study compared these five extracts in terms of their inhibiting effects on three human malignant melanomas: A375, A375.S2, and A2058. MTT assay presented the notion that both EA and DM extracts inhibited melanoma growth but did not affect the viabilities of normal dermal keratinocytes (HaCaT) or fibroblasts. Western blot analyses showed that both EA and DM extracts induced overexpression of caspase proteins in all three melanomas. To determine their roles in melanogenesis, this study analyzed their in vitro suppressive effects on mushroom tyrosinase. All extracts except for water revealed moderate suppressive effects. None of the extracts affected B16-F10 cells proliferation. EA extract inhibited cellular melanin production whereas DM extract unexpectedly enhanced cellular pigmentation in B16-F10 cells. Data for modulations of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2 showed that EA extract inhibited protein expression mentioned above whereas DM extract had the opposite effect. Overall, the experiments indicated that the biofunctional activities of EA extract contained in food and cosmetics protect against oxidation, melanoma, and melanin production. PMID:27403230

  8. Biofunctional Activities of Equisetum ramosissimum Extract: Protective Effects against Oxidation, Melanoma, and Melanogenesis.

    PubMed

    Li, Pin-Hui; Chiu, Yu-Pin; Shih, Chieh-Chih; Wen, Zhi-Hong; Ibeto, Laura Kaodichi; Huang, Shu-Hung; Chiu, Chien Chih; Ma, Dik-Lung; Leung, Chung-Hang; Chang, Yaw-Nan; Wang, Hui-Min David

    2016-01-01

    Equisetum ramosissimum, a genus of Equisetaceae, is a medicinal plant that can be separated into ethyl acetate (EA), dichloromethane (DM), n-hexane (Hex), methanol (MeOH), and water extracts. EA extract was known to have potent antioxidative properties, reducing power, DPPH scavenging activity, and metal ion chelating activity. This study compared these five extracts in terms of their inhibiting effects on three human malignant melanomas: A375, A375.S2, and A2058. MTT assay presented the notion that both EA and DM extracts inhibited melanoma growth but did not affect the viabilities of normal dermal keratinocytes (HaCaT) or fibroblasts. Western blot analyses showed that both EA and DM extracts induced overexpression of caspase proteins in all three melanomas. To determine their roles in melanogenesis, this study analyzed their in vitro suppressive effects on mushroom tyrosinase. All extracts except for water revealed moderate suppressive effects. None of the extracts affected B16-F10 cells proliferation. EA extract inhibited cellular melanin production whereas DM extract unexpectedly enhanced cellular pigmentation in B16-F10 cells. Data for modulations of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2 showed that EA extract inhibited protein expression mentioned above whereas DM extract had the opposite effect. Overall, the experiments indicated that the biofunctional activities of EA extract contained in food and cosmetics protect against oxidation, melanoma, and melanin production.

  9. Functional classification of cellular proteome profiles support the identification of drug resistance signatures in melanoma cells.

    PubMed

    Paulitschke, Verena; Haudek-Prinz, Verena; Griss, Johannes; Berger, Walter; Mohr, Thomas; Pehamberger, Hubert; Kunstfeld, Rainer; Gerner, Christopher

    2013-07-05

    Drug resistance is a major obstacle in melanoma treatment. Recognition of specific resistance patterns, the understanding of the patho-physiology of drug resistance, and identification of remaining options for individual melanoma treatment would greatly improve therapeutic success. We performed mass spectrometry-based proteome profiling of A375 melanoma cells and HeLa cells characterized as sensitive to cisplatin in comparison to cisplatin resistant M24met and TMFI melanoma cells. Cells were fractionated into cytoplasm, nuclei and secretome and the proteome profiles classified according to Gene Ontology. The cisplatin resistant cells displayed increased expression of lysosomal as well as Ca²⁺ ion binding and cell adherence proteins. These findings were confirmed using Lysotracker Red staining and cell adhesion assays with a panel of extracellular matrix proteins. To discriminate specific survival proteins, we selected constitutively expressed proteins of resistant M24met cells which were found expressed upon challenging the sensitive A375 cells. Using the CPL/MUW proteome database, the selected lysosomal, cell adherence and survival proteins apparently specifying resistant cells were narrowed down to 47 proteins representing a potential resistance signature. These were tested against our proteomics database comprising more than 200 different cell types/cell states for its predictive power. We provide evidence that this signature enables the automated assignment of resistance features as readout from proteome profiles of any human cell type. Proteome profiling and bioinformatic processing may thus support the understanding of drug resistance mechanism, eventually guiding patient tailored therapy.

  10. Differential expression of endoglin in human melanoma cells expressing the V3 isoform of versican by microarray analysis.

    PubMed

    Miquel-Serra, Laia; Hernandez, Daniel; Docampo, María Jose; Bassols, Anna

    2010-01-01

    Versican is a large chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The large isoforms V0 and V1 promote melanoma cell proliferation. We previously described that overexpression of the short V3 isoform in MeWo human melanoma cells markedly reduced tumor cell growth in vitro and in vivo, but favored the appearance of secondary tumors. This study aimed to elucidate the mechanisms of V3 by identifying differentially expressed genes between parental and V3-expressing MeWo melanoma cells using microarray analysis. V3 expression significantly reduced the expression of endoglin, a transforming growth factor-β superfamily co-receptor. Other differentially expressed genes were VEGF and PPP1R14B. Changes in endoglin levels were validated by qRT-PCR and Western blotting.

  11. Orthotopic xenografts of human melanoma and colonic and ovarian carcinoma in sheep to evaluate radioimmunotherapy.

    PubMed Central

    Turner, J. H.; Rose, A. H.; Glancy, R. J.; Penhale, W. J.

    1998-01-01

    Extrapolation to humans from experimental radioimmunotherapy in nude mouse xenograft models is confounded by large relative tumour size and small volume of distribution in mice allowing tumour uptake of radiolabelled antibodies unattainable in patients. Our large animal model of human tumours in cyclosporin-immunosuppressed sheep demonstrated tumour uptake of targeted radiolabelled monoclonal antibodies comparable with uptakes reported in clinical trials. Sheep immunosuppression with daily intravenous cyclosporin augmented by oral ketoconazole maintained trough blood levels of cyclosporin within the range 1000-1500 ng ml(-1). Human tumour cells were transplanted orthotopically by inoculation of 10(7) cells: SKMEL melanoma subcutaneously; LS174T and HT29 colon carcinoma into bowel, peritoneum and liver; and JAM ovarian carcinoma into ovary and peritoneum. Tumour xenografts grew at all sites within 3 weeks of inoculation, preserving characteristic morphology without evidence of necrosis or host rejection. Lymphatic metastasis was demonstrated in regional nodes draining xenografts of melanoma and ovarian carcinoma. Colonic LS1 74T xenografts produced mucin and carcinoembryonic antigen (CEA). The anti-CEA IgG1 monoclonal antibody A5B7 was radiolabelled with iodine-131 and administered intravenously to sheep. Peak uptake at 5 days in orthotopic human tumour transplants in gut was 0.027% DI g(-1) (percentage of injected dose per gram) and 0.034% DI g(-1) in hepatic metastases with tumour to blood ratios of 2-2.5. Non-specific tumour uptake in melanoma was 0.003% DI g(-1). Uptake of radiolabelled monoclonal antibody in human tumours in our large animal model is comparable with that observed in patients and may be more realistic than nude mice xenografts for prediction of clinical efficacy of radioimmunotherapy. Images Figure 1 Figure 2 Figure 3 PMID:9716032

  12. A melanoma immune response signature including Human Leukocyte Antigen-E.

    PubMed

    Tremante, Elisa; Ginebri, Agnese; Lo Monaco, Elisa; Benassi, Barbara; Frascione, Pasquale; Grammatico, Paola; Cappellacci, Sandra; Catricalà, Caterina; Arcelli, Diego; Natali, Pier Giorgio; Di Filippo, Franco; Mottolese, Marcella; Visca, Paolo; Benevolo, Maria; Giacomini, Patrizio

    2014-01-01

    Paired cultures of early-passage melanoma cells and melanocytes were established from metastatic lesions and the uninvolved skin of five patients. In this stringent autologous setting, cDNA profiling was used to analyze a subset of 1477 genes selected by the Gene Ontology term 'immune response'. Human Leukocyte Antigen E (HLA-E) was ranked 19th among melanoma-overexpressed genes and was embedded in a transformation signature including its preferred peptide ligand donors HLA-A, HLA-B, HLA-C, and HLA-G. Mostly undetectable in normal skin and 39 nevi (including rare and atypical lesions), HLA-E was detected by immunohistochemistry in 17/30 (57%) and 32/48 (67%) primary and metastatic lesions, respectively. Accordingly, surface HLA-E was higher on melanoma cells than on melanocytes and protected the former (6/6 cell lines) from lysis by natural killer (NK) cells, functionally counteracting co-expressed triggering ligands. Although lacking HLA-E, melanocytes (4/4 cultures) were nevertheless (and surprisingly) fully protected from NK cell lysis.

  13. Photoacoustic detection of metastatic melanoma cells in the human circulatory system.

    PubMed

    Weight, Ryan M; Viator, John A; Dale, Paul S; Caldwell, Charles W; Lisle, Allison E

    2006-10-15

    Detection of disseminating tumor cells among patients suffering from various types and stages of cancer can function as an early warning system, alerting the physician of the metastatic spread or recurrence of the disease. Early detection of such cells can result in preventative treatment of the disease, while late stage detection can serve as an indicator of the effectiveness of chemotherapeutics. The prognostic value of exposing disseminating tumor cells poses an urgent need for an efficient, accurate screening method for metastatic cells. We propose a system for the detection of metastatic circulating tumor cells based on the thermoelastic properties of melanoma. The method employs photoacoustic excitation coupled with a detection system capable of determining the presence of disseminating cells within the circulatory system in vitro. Detection trials consisting of tissue phantoms and a human melanoma cell line resulted in a detection threshold of the order of ten individual cells, thus validating the effectiveness of the proposed mechanism. Results imply the potential to assay simple blood draws, from healthy and metastatic patients, for the presence of cancerous melanoma providing an unprecedented method for routine cancer screening.

  14. C-myc oncogene expression in human melanoma and its relationship with tumour antigenicity.

    PubMed

    Grover, R; Ross, D A; Richman, P I; Robinson, B; Wilson, G D

    1996-08-01

    Melanoma produces specific tumour antigens which are capable of eliciting an immune response. However, this tumour evades the immune system, in part, by downregulation of class I HLA antigens on the cell surface, which are required for T cell recognition. It has been suggested that the oncogene c-myc may have a role in effecting this change in vitro, however, the relationship between oncoprotein level and tumour antigenicity has not been established in human tumours. This study measured c-myc oncoprotein in 94 melanoma specimens (46 primary tumours and 48 regional metastases) using flow cytometry and evaluated class I HLA expression with immunohistochemistry. C-myc expression was found in 91 tumours (96%) with higher expression in metastases than primary melanomas (P<0.005). Class I HLA expression was found to show great variation although metastases showed less antigenicity than primary tumours (P<0.01). Analysis of the relationship between these two parameters revealed a highly significant correlation in both primary (P<0.01) and metastatic disease (P<0.01), with high oncoprotein being associated with down regulation of cell surface antigens. Knowledge of the control of tumour antigenicity is likely to provide an objective platform for the development of new strategies for immunotherapy.

  15. Response of human neuroblastoma and melanoma multicellular tumor spheroids (MTS) to single dose irradiation

    SciTech Connect

    Evans, S.M.; Labs, L.M.; Yuhas, J.M.

    1986-06-01

    The growth characteristics of 6 human cell line derived multicellular tumor spheroids (MTS) were studied. Melanoma MTS (C32, HML-A, HML-B) were slow growing with baseline growth rates of 13.9 to 27.3 microns diameter/day. Neuroblastoma MTS (Lan-1, NB-100, NB-134) grew rapidly, with baseline growth rates of 32.1 to 40.3 microns diameter/day, that is, 1.2 to 2.9 times as fast as the melanomas. Delay constants were calculated for all six lines. The neuroblastomas were more sensitive to radiation than melanomas, as reflected in a greater value for the radiation-induced growth delay constant. One neuroblastoma line, Lan-1, was highly radioresponsive; that is, after a subcurative dose of radiation, the MTS diameter decreased beyond the original diameter, which was followed by recovery and regrowth. Irrespective of these initial changes in diameter, growth delay sensitivity (value of delay constant) was the same for Lan-1 and NB-100, an MTS line that did not show the responsive pattern.

  16. 7-Hydroxydehydronuciferine induces human melanoma death via triggering autophagy and apoptosis.

    PubMed

    Wu, Pei-Fang; Chiu, Chien-Chih; Chen, Chung-Yi; Wang, Hui-Min David

    2015-12-01

    Melanoma is the deadliest cancer. We identified 7-hydroxydehydronuciferine (7-HDNF) isolated from the leaves of Nelumbo nucifera Gaertn cv. Rosa-plena to be a bio-active agent that antagonizes melanoma tumor growth in mice xenograft model in vivo. Cell proliferation assay demonstrated strong anticancer effects of 7-HDNF to exhibit a dose-dependent behaviour and displayed minor cytotoxicities on normal human skin cells, including epidermal keratinocytes and melanocytes, and dermal fibroblasts. With acridine orange (AO) staining and flow analysis, we found 7-HDNF induced the formation of intracellular vacuoles and the augmentation of acidic vesicular organelles (AVO). The apoptotic cell death ratio was measured via two-dimensional flow cytometry by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double stained to confirm the cellular membrane asymmetry lost. One-dimensional flow cytometric analysis showed 7-HDNF increased the cellular arrest in cell cycle at the G2/M phase. Through Western blot examinations, protein expressions were discovered to verify autophagy and apoptosis response mechanisms sharing the associated pathways. Finally, 7-HDNF presented a high-quality antimigratory activity in wound-healing assay. Overall, 7-HDNF presented high-quality anticancer bio-functions and inhibited melanoma tumor growth in vivo and in vitro. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Photoacoustic detection of metastatic melanoma cells in the human circulatory system

    NASA Astrophysics Data System (ADS)

    Weight, Ryan M.; Viator, John A.; Dale, Paul S.; Caldwell, Charles W.; Lisle, Allison E.

    2006-10-01

    Detection of disseminating tumor cells among patients suffering from various types and stages of cancer can function as an early warning system, alerting the physician of the metastatic spread or recurrence of the disease. Early detection of such cells can result in preventative treatment of the disease, while late stage detection can serve as an indicator of the effectiveness of chemotherapeutics. The prognostic value of exposing disseminating tumor cells poses an urgent need for an efficient, accurate screening method for metastatic cells. We propose a system for the detection of metastatic circulating tumor cells based on the thermoelastic properties of melanoma. The method employs photoacoustic excitation coupled with a detection system capable of determining the presence of disseminating cells within the circulatory system in vitro. Detection trials consisting of tissue phantoms and a human melanoma cell line resulted in a detection threshold of the order of ten individual cells, thus validating the effectiveness of the proposed mechanism. Results imply the potential to assay simple blood draws, from healthy and metastatic patients, for the presence of cancerous melanoma providing an unprecedented method for routine cancer screening.

  18. Mutational and Functional Analysis of the Tumor-Suppressor PTPRD in Human Melanoma

    PubMed Central

    Walia, Vijay; Prickett, Todd D.; Kim, Jung-Sik; Gartner, Jared J.; Lin, Jimmy C.; Zhou, Ming; Rosenberg, Steven A.; Elble, Randolph C.; Solomon, David A.; Waldman, Todd; Samuels, Yardena

    2015-01-01

    Protein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine–protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.5%. Functional evaluation of six PTPRD mutations revealed enhanced anchorage-dependent and anchorage-independent growth. Interestingly, melanoma cells expressing mutant PTPRD were significantly more migratory than cells expressing wild-type PTPRD or vector alone, indicating a novel gain-of-function associated with mutant PTPRD. To understand the molecular mechanisms of PTPRD mutations, we searched for its binding partners by converting the active PTPRD enzyme into a “substrate trap” form. Using mass spectrometry and coimmunoprecipitation, we report desmoplakin, a desmosomal protein that is implicated in cell–cell adhesion, as a novel PTPRD substrate. Further analysis showed reduced phosphatase activity of mutant PTPRD against desmoplakin. Our findings identify an essential signaling cascade that is disrupted in melanoma. Moreover, because PTPRD is also mutated in glioblastomas and adenocarcinoma of the colon and lung, our data might be applicable to a large number of human cancers. PMID:25113440

  19. Wnt Interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    PubMed Central

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; G, Mary; Johlfs, Ronald R. Fiscus; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤ 40 nm; intermediates ~40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. PMID:23318676

  20. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    SciTech Connect

    Sustarsic, Elahu G.; Junnila, Riia K.; Kopchick, John J.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  1. Optimization of radioimmunotherapy using human malignant melanoma multicell spheroids as a model

    SciTech Connect

    Kwok, C.S.; Crivici, A.; MacGregor, W.D.; Unger, M.W. )

    1989-06-15

    In vitro multicell spheroids from a human melanoma cell line and the human colon cancer cell line HT29, used as control, have been established as a model of poorly vascularized micrometastases in vivo. The antimelanoma monoclonal antibody 96.5 was radiolabeled with 131I at specific radioactivities from 1.85 to 3.96 GBq/mg. Cytotoxicity of 131I-96.5 to the spheroids, at an initial size of 300 microns in diameter, was investigated as a function of concentration of 131I-96.5 in the incubation medium, specific radioactivity, and treatment time. Spheroid growth delay and clonogenic survival of cells disaggregated from the spheroids at various times after treatment were used as end points. Therapeutic effects increased with the concentration of 131I-96.5 within the range 0.2 to 2 mg/liter (0.34 to 3.4 GBq/liter) at a fixed specific radioactivity. The effects increased with specific radioactivity at a fixed concentration of 131I-96.5. Difference in therapeutic effect was also observed between treatment times of 8 and 24 h. Radiation doses to the melanoma spheroids varied from 10 to 16 Gy. Unlabeled 96.5 at 2 mg/liter or 131I-iodide at 1.7 GBq/liter did not affect the growth of the melanoma spheroids. The HT29 spheroids, however, only suffered slight cytotoxicity at 1 or 2 mg/liter of 131I-96.5 and for a treatment time of 24 h despite comparable radiosensitivity of HT29 cells and melanoma cells to high-dose-rate radiation. Similar cytotoxicity was observed in the HT29 group treated with 131I-iodide at 1.7 GBq/liter. Present findings therefore demonstrate preferential and adequate killing of the melanoma spheroids by 131I-96.5 at 0.5 mg/liter and 3.96 GBq/mg in 8 h.

  2. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin.

    PubMed

    Falvo, Elisabetta; Tremante, Elisa; Fraioli, Rocco; Leonetti, Carlo; Zamparelli, Carlotta; Boffi, Alberto; Morea, Veronica; Ceci, Pierpaolo; Giacomini, Patrizio

    2013-12-21

    A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4(+) melanoma cell line, but not to a CSPG4(-) breast carcinoma cell line. As compared to the cisplatin-containing ferritin nanoparticle alone (HFt-Pt), which inhibited thymidine incorporation more efficiently in breast carcinoma than melanoma cells, the mAb-derivatized HFt-Pt-Ep1 nanoparticle had a 25-fold preference for the latter. A similar preference for melanoma was observed upon systemic intravenous administration of HFt-Pt-Ep1 to nude mice xenotransplanted with pre-established, palpable melanoma and breast carcinoma tumors. Thus, we have been able to determine precise combinations and stoichiometric relationships between mAbs and nanoparticle protein cages, whereby the latter lose their tropism for ubiquitously distributed cellular receptors, and acquire instead remarkably lineage-selective binding. HFt-Pt-Ep1 is therefore an interesting model to improve the therapeutic index of antiblastic therapy in a tumor such as melanoma, which at its advanced stages is totally refractory to mono- and combination-chemotherapy.

  3. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo.

    PubMed

    Bonner, Michael Y; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S; Vergani, Elisabetta; Arbiser, Jack L

    2016-03-15

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo.

  4. Detection of a low-molecular-weight antigen on melanoma cells by a human antiserum in leukocyte-dependent antibody assays.

    PubMed

    Hersey, P; Murray, E; Werkmeister, J; McCarthy, W H

    1979-10-01

    Biochemical characterization of serologically detected human melanoma antigens was undertaken for the development of immunodiagnostic assays in melanoma. An antiserum from a human melanoma patient, which detected melanoma antigens expressed on a large proportion of different melanoma cells, was used in leucocyte-dependent cytotoxic antibody (LDA) 51Cr-release assays to monitor the purification of melanoma antigens in urea/acetate extracts of lactoperoxidase 125I-labelled melanoma cell membranes. The separation procedures included affinity chromatography on Concanavalin A, gel filtration on porous polyacrylamide beads and preparative isoelectric focusing. The fractions were also monitored by polyacrylamide electrophoresis in sodium dodecyl sulphate and by measurement of beta 2 microglobulin and carcinoembryonic antigen content. The antigens detected by this antiserum appeared to be acidic (pI 3.5) low-mol.-wt glycoproteins of approximately 15,000 daltons which were resistant to heating at 56 degrees C and digestion with neuraminidase, but susceptible to repeated freeze-thawing and trypsin digestion. They did not appear to be related to HLA antigens, beta 2 microglobulin or known foetal antigens. The nature of the antigens detected in these studies is as yet unknown, but they appear similar to those described in the sera and urine of melanoma patients in previous reports. Thes combined results and the frequent expression of these antigens on melanoma cells from different patients suggest that assays to detect this antigen may provide a valuable immunodiagnostic aid in the management of melanoma.

  5. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    SciTech Connect

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  6. ANTIPROLIFERATIVE ACTIVITY OF NOVEL ACETYLENIC DERIVATIVES OF BETULIN AGAINST G-361 HUMAN MELANOMA CELLS.

    PubMed

    Bębenek, Ewa; Chodurek, Ewa; Orchel, Arkadiusz; Dzierżewicz, Zofia; Boryczka, Stanisław

    2015-01-01

    Acetylenic derivatives of betulin were tested in vitro for their antiproliferative activity against G-361 human melanoma cells. Two types of betulin derivatives were studied: monoesters, obtained by modification of the hydroxyl group at C-28 position, and diesters modified at both C-28 and C-3 positions. To assess cell proliferation, a colorimetric sulforhodamine B based method was used. All the tested monoesters inhibited cellular growth and 28-O-propynoylbetulin showed the strongest cytotoxic effect. Esterification of the C-3 hydroxyl group of the molecule abolished its growth inhibitory activity.

  7. Comparison of Radical Scavenging Activity, Cytotoxic Effects and Apoptosis Induction in Human Melanoma Cells by Taiwanese Propolis from Different Sources

    PubMed Central

    2004-01-01

    Propolis is a sticky substance that is collected from plants by honeybees. We previously demonstrated that propolins A, B, C, D, E and F, isolated from Taiwanese propolis (TP), could effectively induce human melanoma cell apoptosis and were strong antioxidant agents. In this study, we evaluated TP for free radical scavenging activity by DPPH (1,2-diphenyl-2-picrylhydrazyl). The phenolic concentrations were quantified by the Folin–Ciocalteu method. The apoptosis trigger activity in human melanoma cells was evaluated. TP contained a higher level of phenolic compounds and showed strong capability to scavenge free radicals. Additionally, TP1g, TP3, TP4 and TP7 exhibited a cytotoxic effect on human melanoma cells, with an IC50 of ∼2.3, 2.0, 3.3 and 3.3 μg/ml, respectively. Flow cytometric analysis for DNA fragmentation indicated that TP1g, TP2, TP3 and TP7 could induce apoptosis in human melanoma cells and there is a marked loss of cells from the G2/M phase of the cell cycle. To address the mechanism of the apoptosis effect of TP, we evaluated its effects on induction of apoptosis-related proteins in human melanoma cells. The levels of procaspase-3 and PARP [poly(ADP-ribose) polymerase] were markedly decreased. Furthermore, propolins A, B, C, D, E and F in TP were determined using HPLC. The results indicate that TP is a rich source of these compounds. The findings suggest that TP induces apoptosis in human melanoma cells due to its high level of propolins. PMID:15480443

  8. Comparison of Radical Scavenging Activity, Cytotoxic Effects and Apoptosis Induction in Human Melanoma Cells by Taiwanese Propolis from Different Sources.

    PubMed

    Chen, Chia-Nan; Weng, Meng-Shih; Wu, Chia-Li; Lin, Jen-Kun

    2004-09-01

    Propolis is a sticky substance that is collected from plants by honeybees. We previously demonstrated that propolins A, B, C, D, E and F, isolated from Taiwanese propolis (TP), could effectively induce human melanoma cell apoptosis and were strong antioxidant agents. In this study, we evaluated TP for free radical scavenging activity by DPPH (1,2-diphenyl-2-picrylhydrazyl). The phenolic concentrations were quantified by the Folin-Ciocalteu method. The apoptosis trigger activity in human melanoma cells was evaluated. TP contained a higher level of phenolic compounds and showed strong capability to scavenge free radicals. Additionally, TP1g, TP3, TP4 and TP7 exhibited a cytotoxic effect on human melanoma cells, with an IC(50) of approximately 2.3, 2.0, 3.3 and 3.3 μg/ml, respectively. Flow cytometric analysis for DNA fragmentation indicated that TP1g, TP2, TP3 and TP7 could induce apoptosis in human melanoma cells and there is a marked loss of cells from the G2/M phase of the cell cycle. To address the mechanism of the apoptosis effect of TP, we evaluated its effects on induction of apoptosis-related proteins in human melanoma cells. The levels of procaspase-3 and PARP [poly(ADP-ribose) polymerase] were markedly decreased. Furthermore, propolins A, B, C, D, E and F in TP were determined using HPLC. The results indicate that TP is a rich source of these compounds. The findings suggest that TP induces apoptosis in human melanoma cells due to its high level of propolins.

  9. Investigation of the phototoxic effect of ZnO nanorods on fibroblasts and melanoma human cells

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Siddique, M.; Israr-Qadir, M.; Nur, O.; Willander, M.; Öllinger, K.

    2014-11-01

    Photocytotoxic effects of as-grown and zinc oxide (ZnO) nanorods coated with 5-aminolevulinic acid (ALA) have been studied on human cells, i.e. melanoma and foreskin fibroblast, under dark and ultraviolet light exposures. Zinc oxide nanorods have been grown on the very sharp tip (diameter = 700 nm) of borosilicate glass pipettes and then were coated by the photosensitizer for targeted investigations inside human cells. The coated glass pipette’s tip with photosensitizer has been inserted inside the cells with the help of a micro-manipulator and irradiated through ultraviolet light (UVA), which reduces the membrane potential of the mitochondria leading to cell death. Cell viability loss has been detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay when exposed to the dissolved ZnO nanorods and the production of the reactive oxygen species (ROS) has been detected along with the enhanced cytotoxic effect under UVA irradiation. Additionally, the influence of the lipid soluble antioxidant vitamin E and water-soluble N-acetyl-cysteine toward the enhancement or reduction of the toxicity has been investigated. A comparative analysis of the toxic nature of ZnO nanorods has been drawn between normal human fibroblast and melanoma cells, which can be favorable for understanding the clinical setting for killing tumor cells.

  10. Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells.

    PubMed

    Parrillas, Verónica; Martínez-Muñoz, Laura; Holgado, Borja L; Kumar, Amit; Cascio, Graciela; Lucas, Pilar; Rodríguez-Frade, José Miguel; Malumbres, Marcos; Carrera, Ana C; van Wely, Karel Hm; Mellado, Mario

    2013-02-01

    Hypermethylation of SOCS genes is associated with many human cancers, suggesting a role as tumor suppressors. As adaptor molecules for ubiquitin ligases, SOCS proteins modulate turnover of numerous target proteins. Few SOCS targets identified so far have a direct role in cell cycle progression; the mechanism by which SOCS regulate the cell cycle thus remains largely unknown. Here we show that SOCS1 overexpression inhibits in vitro and in vivo expansion of human melanoma cells, and that SOCS1 associates specifically with Cdh1, triggering its degradation by the proteasome. Cells therefore show a G1/S transition defect, as well as a secondary blockade in mitosis and accumulation of cells in metaphase. SOCS1 expression correlated with a reduction in cyclin D/E levels and an increase in the tumor suppressor p19, as well as the CDK inhibitor p53, explaining the G1/S transition defect. As a result of Cdh1 degradation, SOCS1-expressing cells accumulated cyclin B1 and securin, as well as apparently inactive Cdc20, in mitosis. Levels of the late mitotic Cdh1 substrate Aurora A did not change. These observations comprise a hitherto unreported mechanism of SOCS1 tumor suppression, suggesting this molecule as a candidate for the design of new therapeutic strategies for human melanoma.

  11. Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma.

    PubMed

    Soares, Ana S; Costa, Vera M; Diniz, Carmen; Fresco, Paula

    2013-10-01

    Metastatic melanoma monotherapies with drugs such as dacarbazine, cisplatin or paclitaxel (PXT) are associated with significant toxicity and low efficacy rates. These facts reinforce the need for development of novel agents or combinatory strategies. Cl-IB-MECA is a small molecule, orally bioavailable, well tolerated and currently under clinical trials as an anticancer agent. Our aim was to investigate a possible combinatory therapeutic strategy using PXT and Cl-IB-MECA on human C32 melanoma cells and its underlying mechanisms. Cytotoxicity was evaluated using MTT reduction, lactate dehydrogenase leakage and neutral red uptake assays, for different concentrations and combinations of both agents, at 24 and 48 h. Apoptosis was also assessed using fluorescence microscopy and through the evaluation of caspases 8, 9, and 3 activities. We demonstrated, for the first time, that combination of PXT and Cl-IB-MECA significantly increases cytotoxicity for clinically relevant concentrations. This combination seems to act synergistically in disrupting membrane integrity, but also causing lysosomal and mitochondrial dysfunction. When using the lowest PTX concentration (10 ng/mL), co-incubation with CI-IB-MECA (micromolar concentrations) potentiated overall cytotoxic effects and morphological signs of apoptosis. All combinations studied enhanced caspase 8, 9, and 3 activities, suggesting the involvement of both intrinsic and extrinsic apoptotic pathways. The possibility that cytotoxicity elicited by Cl-IB-MECA, alone or in combination with PXT, involves adenosine receptor activation was discarded and results confirmed that oxidative stress is only involved in cytotoxicity after treatment with PXT, alone. Being melanoma a very apoptosis-resistance cancer, this combination seems to hold promise as a new therapeutic strategy for melanoma.

  12. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  13. A nude rat model for neutron capture therapy of human intracerebral melanoma

    SciTech Connect

    Barth, R.F.; Matalka, K.Z.; Bailey, M.Q.; Staubus, A.E.; Soloway, A.H.; Moeschberger, M.L. ); Coderre, J.A. ); Rofstad, E.K. )

    1994-03-30

    The present study was carried out to determine the efficacy of Boron Neutron Capture Therapy (BNCT) for intracerebral melanoma using nude rats, the human melanoma cell line MRA 27, and boronophenylalanine as the capture agent. MRA 27 cells (2 [times] 10[sup 5]) were implanted intracerebrally, and 30 days later, 120 mg of [sup 10]B-L-BPA were injected intraperitoneally into nude rats. Thirty days following implantation, tumor bearing rats were irradiated at the Brookhaven Medical Research Reactor. Six hours following administration of BPA, tumor, blood, and normal brain boron-10 levels were 23.7, 9.4, and 8.4 [mu]g/g respectively. Median survival time of untreated rats was 44 days compared to 76 days and 93 days for those receiving physical doses of 2.73 Gy and 3.64 Gy, respectively. Rats that have received both [sup 10]B-BPA and physical doses of 1.82, 2.73, or 3.64 Gy had median survival times of 170, 182, and 262 days, respectively. Forty percent of rats that had received the highest tumor dose (10.1 Gy) survived for > 300 days and in a replicate experiment 21% of the rats were longterm survivors (>220 days). Animals that received 12 Gy in a single dose or 18 Gy fractionated (2 Gy [times] 9) of gamma photons from a [sup 137]Cs source had median survival times of 86 and 79 days, respectively, compared to 47 days for untreated animals. Histopathologic examination of the brains of longterm surviving rats, euthanized at 8 or 16 months following BNCT, showed no residual tumor, but dense accumulations of melanin laden macrophages and minimal gliosis were observed. Significant prolongations in median survival time were noted in nude rats with intracerebral human melanoma that had received BNCT, thereby suggesting therapeutic efficacy. Large animal studies should be carried out to further assess BNCT of intracerebral melanoma before any human trials are contemplated. 49 refs., 7 figs., 2 tabs.

  14. Differential capacity of chaperone-rich lysates in cross-presenting human endogenous and exogenous melanoma differentiation antigens.

    PubMed

    Bleifuss, Elke; Bendz, Henriette; Sirch, Birgit; Thompson, Sylvia; Brandl, Anna; Milani, Valeria; Graner, Michael W; Drexler, Ingo; Kuppner, Maria; Katsanis, Emmanuel; Noessner, Elfriede; Issels, Rolf-Dieter

    2008-12-01

    The goal of immune-based tumor therapies is the activation of immune cells reactive against a broad spectrum of tumor-expressed antigens. Vaccines based on chaperone proteins appear promising as these proteins naturally exist as complexes with various protein fragments including those derived from tumor-associated antigens. Multi-chaperone systems are expected to have highest polyvalency as different chaperones can carry distinct sets of antigenic fragments. A free-solution isoelectric focusing (FS-IEF) technique was established to generate chaperone-rich cell lysates (CRCL). Results from murine systems support the contention that CRCL induce superior anti-tumor responses than single chaperone vaccines. We established an in vitro model for human melanoma to evaluate the capacity of CRCL to transfer endogenously expressed tumor antigens to the cross-presentation pathway of dendritic cells (DC) for antigen-specific T cell stimulation. CRCL prepared from human melanoma lines contained the four major chaperone proteins Hsp/Hsc70, Hsp90, Grp94/gp96 and calreticulin. The chaperones within the melanoma cell-derived CRCL were functionally active in that they enhanced cross-presentation of exogenous peptides mixed into the CRCL preparation. Superior activity was observed for Hsp70-rich CRCL obtained from heat-stressed melanoma cells. Despite the presence of active chaperones, melanoma cell-derived CRCL failed to transfer endogenously expressed melanoma-associated antigens to DC for cross-presentation and cytotoxic T cell (CTL) recognition, even after increasing intracellular protein levels of tumor antigen or chaperones. These findings reveal limitations of the CRCL approach regarding cross-presentation of endogenously expressed melanoma-associated antigens. Yet, CRCL may be utilized as vehicles to enhance the delivery of exogenous antigens for DC-mediated cross-presentation and T cell stimulation.

  15. RNA interference-mediated knockdown of SIRT1 and/or SIRT2 in melanoma: Identification of downstream targets by large-scale proteomics analysis.

    PubMed

    Wilking-Busch, Melissa J; Ndiaye, Mary A; Liu, Xiaoqi; Ahmad, Nihal

    2017-09-05

    Melanoma is the most notorious and fatal of all skin cancers and the existing treatment options have not been proven to effectively manage this neoplasm, especially the metastatic disease. Sirtuin (SIRT) proteins have been shown to be differentially expressed in melanoma. We have shown that SIRTs 1 and 2 were overexpressed in melanoma and inhibition of SIRT1 imparts anti-proliferative responses in human melanoma cells. To elucidate the impact of SIRT 1 and/or 2 in melanoma, we created stable knockdowns of SIRTs 1, 2, and their combination using shRNA mediated RNA interference in A375 human melanoma cells. We found that SIRT1 and SIRT1&2 combination knockdown caused a decreased cellular proliferation in melanoma cells. Further, the knockdown of SIRT 1 and/or 2 resulted in a decreased colony formation in melanoma cells. To explore the downstream targets of SIRTs 1 and/or 2, we employed a label-free quantitative nano-LC-MS/MS proteomics analysis using the stable lines. We found aberrant levels of proteins involved in many vital cellular processes, including cytoskeletal organization, ribosomal activity, oxidative stress response, and angiogenesis. These findings provide clear evidence of cellular systems undergoing alterations in response to sirtuin inhibition, and have unveiled several excellent candidates for future study. Melanoma is the deadliest form of skin cancer, due to its aggressive nature, metastatic potential, and a lack of sufficient treatment options for advanced disease. Therefore, detailed investigations into the molecular mechanisms of melanoma growth and progression are needed. In the search for candidate genes to serve as therapeutic targets, the sirtuins show promise as they have been found to be upregulated in melanoma and they regulate a large number of proteins involved in cellular processes known to affect tumor growth, such as DNA damage repair, cell cycle arrest, and apoptosis. In this study, we used a large-scale label-free comparative

  16. Involvement of human beta-defensin-2 in regulation of malignant potential of cultured human melanoma cells.

    PubMed

    Gerashchenko, O; Zhuravel, E; Skachkova, O; Khranovska, N; Pushkarev, V; Pogrebnoy, P; Soldatkina, M

    2014-03-01

    Human beta-defensin-2 (hBD-2) is an antimicrobial cationic peptide capable to control human carcinoma cell growth via cell cycle regulation. The present study was aimed on determination of hBD-2 influence on the growth patterns and malignant potential of cultured human melanoma cells. The study was performed on cultured human melanoma cells of mel Z and mel Is lines treated with recombinant hBD-2 (rec-hBD-2); cell viability, proliferation, cell cycle distribution, and anchorage-independent growth were analyzed using MTT test, direct cell counting, flow cytometry, and colony forming assay respectively. Expression and/or phosphorylation levels of proteins involved in cell cycle control were evaluated by Western blotting. The treatment of mel Z and mel Is cells with rec-hBD-2 in a concentration range of 100-1000 nM resulted in a concentration-dependent suppression of cell proliferation, viability, and colony forming activity. It has been shown that rec-hBD-2 exerts its growth suppression effects via significant downregulation of B-Raf expression, activation of pRB and upregulation of p21(WAF1) expression, downregulation of cyclin D1 and cyclin E resulting in cell cycle arrest at G1/S checkpoint. According to obtained results, hBD-2 exerts its growth suppression effect toward human melanoma cells via downregulation of B-Raf, cyclin D1 and cyclin E expression, upregulation of p21(WAF1) expression and activation of pRB.

  17. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  18. Genes involved in cell cycle G1 checkpoint control are frequently mutated in human melanoma metastases.

    PubMed Central

    Platz, A.; Sevigny, P.; Norberg, T.; Ring, P.; Lagerlöf, B.; Ringborg, U.

    1996-01-01

    A common characteristic of cancer cells is unrestrained cell division. This may be caused by mutational changes in genes coding for components of cell cycle-controlling networks. Alterations in genes involved in G1 checkpoint control have been registered in many human tumours, and investigations from several laboratories show that such alterations, taken together, are the most frequent changes detected in cancer cells. The present paper describes mutational analysis by polymerase chain reaction-single-strand conformation polymorphism (PCR/SSCP) and nucleotide sequence analysis of the genes coding for the p15, p53 and N-ras proteins in 26 metastases from 25 melanoma patients. The registered mutation frequencies add together with previously registered mutations in p16 in the same patient samples to a substantial total frequency of 44% of patients with mutation in at least one of the investigated genes. These results show the occurrence of heterogeneous defects among components of the cell cycle controlling machinery in a human melanoma tumour sample collection and demonstrate that the total frequency of detected alterations increases with the number of cell cycle controlling genes included in the screening panel. Images Figure 1 PMID:8826861

  19. Discovery of potent molecular chimera (CM358) to treat human metastatic melanoma.

    PubMed

    Gilad, Y; Tuchinsky, H; Ben-David, G; Minnes, R; Gancz, A; Senderowitz, H; Luboshits, G; Firer, M A; Gellerman, G

    2017-09-29

    The resistance of cancer cells to chemotherapeutic agents, whether through intrinsic mechanisms or developed resistance, motivates the search for new chemotherapeutic strategies. In the present report, we demonstrate a facile synthetic strategy towards the discovery of new anti-cancer substances. This strategy is based on simple covalent coupling between known anti-cancer drugs, which results in novel 'chimeric' small molecules. One of these novel compounds, CM358, is the product of an amide bond formation between the known Topoisomerase II (Topo II) inhibitor amonafide (AM) and the known DNA mustard alkylator chlorambucil (CLB). It demonstrates significant enhanced cytotoxicity over an equimolar mixture of AM and CLB in various cancer cell lines and in a xenograft model of human metastatic melanoma. Topo II inhibition as well as in silico docking studies suggest that CM358 is a stronger Topo II binder than AM. This may be attributed, at least partially, to the placement of the CLB moiety in a favorable orientation with respect to DNA cross-linking with nearby guanines. In a human metastatic melanoma (WM 266-4) xenograft model, this compound was profoundly superior to a mixture of AM and CLB in reduction of tumor growth, maintenance of body weight and extension of overall survival. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Differential expression of TYRP1 in adult human retinal pigment epithelium and uveal melanoma cells

    PubMed Central

    QIU, CHUN; LI, PENG; BI, JIANJUN; WU, QING; LU, LINNA; QIAN, GUANXIANG; JIA, RENBING; JIA, RONG

    2016-01-01

    Uveal melanoma (UM) is the most frequently occurring primary intraocular malignancy in adults. Tyrosinase (TYR) is a copper-containing enzyme and a type I membrane protein that is involved in the generation of melanin, the main pigment in vertebrates. TYR-related protein 1 (TYRP1) is regarded to have a crucial role in the immunotherapy of melanoma. As biomarkers, the TYR-related proteins, TYRP1 and TYRP2, exhibit specific expression in melanocytes, while also contributing to melanin synthesis within melanosomes. In the present study, the differential expression of TYRP1 was investigated at the mRNA, protein and morphological levels in four human UM cell lines (SP6.5, OM431, OCM1 and OCM290) and the human retinal pigment epithelium (RPE) cell line, using polymerase chain reaction, western blotting, immunocytochemistry and immunofluorescence staining. It was found that SP6.5 cells expressed the highest level of TYRP1, in comparison to SP6.5 OCM1 and OM431 cells, which produced less TYRP1, and OCM290 cells, which produced almost no TYRP1. No TYRP1 protein expression was identified in the RPE cell line. These findings indicate the potential use of TYRP1 in the development of therapy for UM. PMID:27073483

  1. Biologically active monoiodinated alpha-MSH derivatives for receptor binding studies using human melanoma cells

    SciTech Connect

    Eberle, A.N.; Verin, V.J.; Solca, F.; Siegrist, W.; Kueenlin, C.B.; Bagutti, C.; Stutz, S.; Girard, J. , University Hospital, Basel )

    1991-01-01

    Three different monoiodinated radioligands of alpha-MSH (alpha-melanocyte-stimulating hormone) were compared in a binding assay with human D10 melanoma cells: (Tyr(125I)2)-alpha-MSH, (Tyr(125I)2,NIe4)-alpha-MSH, and (Tyr(125I)2,NIe4,D-Phe7)-alpha-MSH. They were prepared either by the classical chloramine T method or by the Enzymobead method. A simple and rapid purification scheme was developed consisting of a primary separation on reversed-phase C18 silica cartridges immediately after the iodination, followed by HPLC purification before each binding experiment. Biological testing of the three radioligands showed that they all retained high melanotropic activity in the B16 melanin assay and the Anolis melanophore assay. However, in human D10 melanoma cells, (Tyr(125I)2,NIe4)-alpha-MSH led to a high degree of non-specific binding to the cells which could not be displaced by excess alpha-MSH and only partially by (NIe4)-alpha-MSH. The (Tyr(125I)2,NIe4,D-Phe7)-alpha-MSH tracer gave similar results but with a much lower proportion of non-specific binding. On the other hand, (Tyr(125I)2)-alpha-MSH proved to be an excellent radioligand whose non-specific binding to the D10 cells was not higher than 20% of the total binding.

  2. Human telomerase reverse transcriptase-transduced human cytotoxic T cells suppress the growth of human melanoma in immunodeficient mice.

    PubMed

    Verra, Natascha C V; Jorritsma, Annelies; Weijer, Kees; Ruizendaal, Janneke J; Voordouw, Arie; Weder, Pauline; Hooijberg, Erik; Schumacher, Ton N M; Haanen, John B A G; Spits, Hergen; Luiten, Rosalie M

    2004-03-15

    Immunotherapy of melanoma by adoptive transfer of tumor-reactive T lymphocytes aims at increasing the number of activated effectors at the tumor site that can mediate tumor regression. The limited life span of human T lymphocytes, however, hampers obtaining sufficient cells for adoptive transfer therapy. We have shown previously that the life span of human T cells can be greatly extended by transduction with the human telomerase reverse transcriptase (hTERT) gene, without altering antigen specificity or effector function. We developed a murine model to evaluate the efficacy of hTERT-transduced human CTLs with antitumor reactivity to eradicate autologous tumor cells in vivo. We transplanted the human melanoma cell line melAKR or melAKR-Flu, transduced with a retrovirus encoding the influenza virus/HLA-A2 epitope, in RAG-2(-/-) IL-2Rgamma (-/-) double knockout mice. Adoptive transfer of the hTERT-transduced influenza virus-specific CTL clone INFA24 or clone INFA13 inhibited the growth of melAKR-Flu tumors in vivo and not of the parental melAKR melanoma cells. Furthermore, the hTERT-transduced CTL clone INFA13 inhibited tumor growth to the same extent in vivo as the untransduced CTL clone, as determined by in vivo imaging of luciferase gene-transduced melAKR-Flu tumors, indicating that hTERT did not affect the in vivo function of CTL. These results demonstrate that hTERT-transduced human CTLs are capable of mediating antitumor activity in vivo in an antigen-specific manner. hTERT-transduced MART-1-specific CTL clones AKR4D8 and AKR103 inhibited the growth of syngeneic melAKR tumors in vivo. Strikingly, melAKR-Flu cells were equally killed by the MART-1-specific CTL clones and influenza virus-specific CTL clones in vitro, but only influenza-specific CTLs were able to mediate tumor regression in vivo. The influenza-specific CTL clones were found to produce higher levels of IFNgamma on tumor cell recognition than the MART-1-specific CTL clones, which may result from the

  3. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells.

    PubMed

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-04-01

    To estimate electroporation (EP) influence on malignant and normal cells. Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells.

  4. ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells

    PubMed Central

    Skolucka, Nina; Daczewska, Malgorzata; Saczko, Jolanta; Chwilkowska, Agnieszka; Choromanska, Anna; Kotulska, Malgorzata; Kaminska, Iwona; Kulbacka, Julita

    2011-01-01

    Objective To estimate electroporation (EP) influence on malignant and normal cells. Methods Two cell lines including human malignant melanoma (Me-45) and normal human gingival fibroblast (HGFs) were used. EP parameters were the following: 250, 1 000, 1 750, 2 500 V/cm; 50 µs by 5 impulses for every case. The viability of cells after EP was estimated by MTT assay. The ultrastructural analysis was observed by transmission electron microscope (Zeiss EM 900). Results In the current study we observed the intracellular effect following EP on Me-45 and HGF cells. At the conditions applied, we did not observe any significant damage of mitochondrial activity in both cell lines treated by EP. Conversely, we showed that EP in some conditions can stimulate cells to proliferation. Some changes induced by EP were only visible in electron microscopy. In fibroblast cells we observed significant changes in lower parameters of EP (250 and 1 000 V/cm). After applying higher electric field intensities (2 500 V/cm) we detected many vacuoles, myelin-like bodies and swallowed endoplasmic reticulum. In melanoma cells such strong pathological modifications after EP were not observed, in comparison with control cells. The ultrastructure of both treated cell lines was changed according to the applied parameters of EP. Conclusions We can claim that EP conditions are cell line dependent. In terms of the intracellular morphology, human fibroblasts are more sensitive to electric field as compared with melanoma cells. Optimal conditions should be determined for each cell line. Summarizing our study, we can conclude that EP is not an invasive method for human normal and malignant cells. This technique can be safely applied in chemotherapy for delivering drugs into tumor cells. PMID:23569735

  5. A combination of photodynamic therapy and chemotherapy displays a differential cytotoxic effect on human metastatic melanoma cells.

    PubMed

    Biteghe, Fa Nsole; Davids, L M

    2017-01-01

    Cutaneous melanoma represents the most lethal form of skin cancer and remains refractory to current therapies. Failure of treatment has been attributed to the over-expression of ABC transporters which efflux the drugs, below their cytotoxic threshold within cells. Therefore, this study set to investigate; the efficacy of a combinatorial approach comprising chemotherapy (Dacarbazine) and photodynamic therapy (PDT) to overcome resistance in pigmented and unpigmented metastatic melanoma and potentially identify resistant mechanisms. The cytotoxic effect of the chemotherapy, PDT and combination therapy treatment (Dacarbazine+PDT) was determined using a cell viability XTT assay. Thereafter, melanoma cells morphology, self-renewal capacity and ABCG2 protein expression, were determined using fluorescence microscopy, clonogenic assay, western blot and flow cytometry. All results were analyzed by t-test and ANOVA, followed by individual comparisons with post-tests. This study describes possible synergism of PDT+DTIC in reducing melanoma cell viability in vitro. At 24h post-treatment, only the unpigmented melanomas were sensitive to DTIC treatment (20-25% death at 1.25mM). At 48h, a lethal dose of 50% was reached in these cells in contrast to the pigmented melanoma (20% at 48h). The same trend was observed with the combination therapy (DTIC+PDT) at both time points. Furthermore, complete morphological disruption could be observed upon PDT only and PDT+DTIC treatments. Moreover, PDT and DTIC+PDT suppressed the self-renewal capacity of both melanoma cell lines. No significant differences in ABCG2 protein expression was found at 24h post-treatment. Overall, these results suggest that human melanomas remain heterogeneous in their phenotypes. Moreover, in our metastatic melanoma cells, ABCG2 transporters did not seem to be involved in resistance to therapies. Significantly though, a combinatorial approach of PDT and chemotherapy significantly decreases the self-renewal capacity

  6. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors

    PubMed Central

    2013-01-01

    Background It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of Tamarix aucheriana and was shown to possess proteasome inhibitory activity. Methods Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives: benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl 3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and 3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores, synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant melanoma cells as well as normal human fibroblast cells. Results Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2

  7. Differences in lipid characteristics of autologous human melanoma cell lines with distinct biological properties.

    PubMed

    Le Bivic, A; Sari, H; Reynier, M; Lebec, S; Bardin, F

    1987-12-01

    Significant differences in lipid composition were found when six established human melanoma cell lines were compared. A pair of cell lines was initiated from a superficial spreading melanoma and the lymph node of the same patient; four others were also autologous, three of which originated from the same nodular melanoma and the other from its metastasis. Cell lines varied in pigmentation level and ability to grow in nude mice. Cell lines contained similar amounts of total cholesterol, glycerides, and phospholipids but different amounts of free cholesterol and cholesterol esters. In particular, the molar ratio of free cholesterol to phospholipid was increased in highly tumorigenic cell lines. No changes in phospholipid profiles were noted among cell lines, except an increase in sphingomyelin with a concomitant decrease in phosphatidylcholine in one cell line compared to the profiles of its counterpart cell line. The saturated-to-unsaturated fatty acid ratios in phosphatidylcholine and phosphatidylethanolamine were similar in all cell lines, but the monounsaturated-to-polyunsaturated fatty acid ratio in phosphatidylcholine was increased in highly tumorigenic cell lines. A significant variation in the latter ratio in phosphatidylethanolamine was also observed in the pair of autologous cell lines. These changes were unrelated to a depletion in linoleic acid in culture medium. Results obtained by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene were consistent with the differences in lipid composition between two autologous cell lines. The present results indicate that two lipid characteristics were significantly changed in highly tumorigenic cell lines as compared to cell lines with low tumorigenicity, but no correlation was found between either pigmentation level or origin (primary or metastatic) and lipid composition.

  8. Expression of somatostatin receptors in human melanoma cell lines: effect of two different somatostatin analogues, octreotide and SOM230, on cell proliferation.

    PubMed

    Martinez-Alonso, M; Llecha, N; Mayorga, M E; Sorolla, A; Dolcet, X; Sanmartin, V; Abal, L; Casanova, J M; Baradad, M; Yeramian, A; Egido, R; Puig, S; Vilella, R; Matias-Guiu, X; Marti, R M

    2009-01-01

    Somatostatin analogues (SAs) are potential anticancer agents. This study was designed to investigate the expression of somatostatin receptors (SSTRs) in melanoma cells and the effect of two SAs on cell proliferation and viability. Eighteen primary and metastatic human cutaneous melanoma cell lines were treated with octreotide and SOM230. Expression of SSTR1, SSTR2, SSTR3 and SSTR5 was assessed by real-time polymerase chain reaction. Proliferation, viability and cell death were assessed using standard assays. Inhibition was modelled by mixed-effect regression. Melanoma cells expressed one or more SSTR. Both SAs inhibited proliferation of most melanoma cell lines, but inhibition was < 50%. Neither SA affected cell viability or induced cell death. The results suggest that melanoma cell lines express SSTRs. The SAs investigated, under the conditions used in this study, did not, however, significantly inhibit melanoma growth or induce cell death. Novel SAs, combination therapy with SAs and their anti-angiogenic properties should be further investigated.

  9. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk

    PubMed Central

    Salerno, Elise P.; Bedognetti, Davide; Mauldin, Ileana S.; Deacon, Donna H.; Shea, Sofia M.; Obeid, Joseph M.; Coukos, George; Gajewski, Thomas F.; Marincola, Francesco M.; Slingluff, Craig L.

    2016-01-01

    ABSTRACT We have identified eight genes whose expression in human melanoma metastases and ovarian cancers is associated with a lack of Th1 immune signatures. They encode molecules with mechanical barrier function in the skin and other normal tissues and include filaggrin (FLG), tumor-associated calcium signal transducer 2 (TACSTD2), and six desmosomal proteins (DST, DSC3, DSP, PPL, PKP3, and JUP). This association has been validated in an independent series of 114 melanoma metastases. In these, DST expression alone is sufficient to identify melanomas without immune signatures, while FLG and the other six putative barrier molecules are overexpressed in a different subset of melanomas lacking immune signatures. Similar associations have been identified in a set of 186 ovarian cancers. RNA-seq data from 471 melanomas and 307 ovarian cancers in the TCGA database further support these findings and also reveal that overexpression of barrier molecules is strongly associated with early patient mortality for melanoma (p = 0.0002) and for ovarian cancer (p < 0.01). Interestingly, this association persists for FLG for melanoma (p = 0.012) and ovarian cancer (p = 0.006), whereas DST overexpression is negatively associated with CD8+ gene expression, but not with patient survival. Thus, overexpression of FLG or DST identifies two distinct patient populations with low immune cell infiltration in these cancers, but with different prognostic implications for each. These data raise the possibility that molecules with mechanical barrier function in skin and other tissues may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction. PMID:28123876

  10. Tris (dibenzylideneacetone) dipalladium (Tris DBA), an N-myristoyltransferase 1 inhibitor, is effective against melanoma growth in vitro and in vivo

    PubMed Central

    Bhandarkar, Sulochana S.; Bromberg, Jacqueline; Carrillo, Carol; Selvakumar, Ponniah; Sharma, Rajendra K; Perry, Betsy N; Govindarajan, Baskaran; Fried, Levi; Sohn, Allie; Reddy, Kalpana; Arbiser, Jack L

    2008-01-01

    Purpose Melanoma is a solid tumor that is notoriously resistant to chemotherapy, and its incidence is rapidly increasing. Recently, several signaling pathways have been demonstrated to contribute to melanoma tumorigenesis, including constitutive activation of MAP kinase, Akt and Stat-3. The activation of multiple pathways may account in part for the difficulty in treatment of melanoma. In a recent screen of compounds, we found that an organopalladium compound, tris (dibenzylideneacetone) dipalladium (Tris DBA), demonstrated significant antiproliferative activity against melanoma cells. Studies were carried out to determine the mechanism of action of Tris DBA Experimental Design Tris DBA was tested on efficacy on proliferation of human and murine melanoma cells. In order to find the mechanism of action of Tris DBA, we performed Western Blot analysis and gene array analysis. The ability of Tris DBA to block tumor growth in vivo was assessed. Results (Tris DBA), has activity against B16 murine and A375 human melanoma in vivo. Tris DBA inhibits several signaling pathways including activation of MAP kinase, Akt, Stat-3 and S6 kinase activation, suggesting an upstream target. Tris DBA was found to be a potent inhibitor of N-myristoyltransferase 1 (NMT-1), which is required for optimal activity of membrane based signaling molecules. Tris DBA demonstrated potent antitumor activity in vivo against melanoma. Conclusion Tris DBA is thus a novel inhibitor of NMT-1 with significant antitumor activity and is well tolerated in vivo. Further preclinical evaluation of Tris DBA and related complexes is warranted. PMID:18794083

  11. Selective in vitro anti-melanoma activity of ursolic and oleanolic acids.

    PubMed

    Oprean, Camelia; Ivan, Alexandra; Bojin, Florina; Cristea, Mirabela; Soica, Codruta; Drăghia, Lavinia; Caunii, Angela; Paunescu, Virgil; Tatu, Calin

    2017-09-29

    Products of natural origin have become important agents in the treatment of cancer, and the active principles of natural sources could be used in combination with chemotherapeutic agents to increase their effects and to minimize their toxicity. Oleanolic (OA) and ursolic (UA) acids are intensely studied for their promising anticancer potential. The aim of this study was focused on the in vitro toxicological effects induced by UA and OA human mesenchymal stem cells and on melanoma, one of the most frequent cancers whose incidence is increasing every year. The two compounds were tested for their cytotoxic, cell cycle arrest and pro-apoptotic effects on melanoma cells (A375 and B164A5) and mesenchymal stem cells. UA exerted a cytotoxic effect in a dose-dependent manner on melanoma cells, while OA's activity has been shown to be low or moderate. Both compounds produced alterations of the cell cycle, arresting cells in the G0/G1 phase. Furthermore, UA induced significant apoptosis through the bcl-2 genes family pathway, with the decrease of the bcl-2 gene expression. The two compounds exerted selective effects on melanoma cells with no effects on human mesenchymal stem cells. The presented results reveal the anticancer potential of UA on melanoma cells, with no detectable toxicity on the mesenchymal stem cells.

  12. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing

    PubMed Central

    Vörsmann, H; Groeber, F; Walles, H; Busch, S; Beissert, S; Walczak, H; Kulms, D

    2013-01-01

    Despite remarkable efforts, metastatic melanoma (MM) still presents with significant mortality. Recently, mono-chemotherapies are increasingly replenished by more cancer-specific combination therapies involving death ligands and drugs interfering with cell signaling. Still, MM remains a fatal disease because tumors rapidly develop resistance to novel therapies thereby regaining tumorigenic capacity. Although genetically engineered mouse models for MM have been developed, at present no model is available that reliably mimics the human disease and is suitable for studying mechanisms of therapeutic obstacles including cell death resistance. To improve the increasing requests on new therapeutic alternatives, reliable human screening models are demanded that translate the findings from basic cellular research into clinical applications. By developing an organotypic full skin equivalent, harboring melanoma tumor spheroids of defined sizes we have invented a cell-based model that recapitulates both the 3D organization and multicellular complexity of an organ/tumor in vivo but at the same time accommodates systematic experimental intervention. By extending our previous findings on melanoma cell sensitization toward TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) by co-application of sublethal doses of ultraviolet-B radiation (UVB) or cisplatin, we show significant differences in the therapeutical outcome to exist between regular two-dimensional (2D) and complex in vivo-like 3D models. Of note, while both treatment combinations killed the same cancer cell lines in 2D culture, skin equivalent-embedded melanoma spheroids are potently killed by TRAIL+cisplatin treatment but remain almost unaffected by the TRAIL+UVB combination. Consequently, we have established an organotypic human skin-melanoma model that will facilitate efforts to improve therapeutic outcomes for malignant melanoma by providing a platform for the investigation of cytotoxic treatments and

  13. Aberrant CpG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma

    PubMed Central

    Hallberg, Andrea R; Vorrink, Sabine U; Hudachek, Danielle R; Cramer-Morales, Kimberly; Milhem, Mohammed M; Cornell, Robert A; Domann, Frederick E

    2014-01-01

    Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs. PMID:25625848

  14. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells.

    PubMed

    Bandura, Laura; Drukala, Justyna; Wolnicka-Glubisz, Agnieszka; Björnstedt, Mikael; Korohoda, Wlodzimierz

    2005-04-01

    Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.

  15. Hormone Conjugated with Antibody to CD3 Mediates Cytotoxic T Cell Lysis of Human Melanoma Cells

    NASA Astrophysics Data System (ADS)

    Liu, Margaret Ann; Nussbaum, Samuel R.; Eisen, Herman N.

    1988-01-01

    Cytotoxic T lymphocytes can be activated by antibodies to their antigen-specific receptor complex (TCR-CD3) to destroy target cells, regardless of the specificity of the cytotoxic T cells. A novel hormone-antibody conjugate, consisting of an analog of melanocyte-stimulating hormone chemically coupled to a monoclonal antibody to CD3, the invariant component of the T cell receptor complex, was used to target human melanoma cells for destruction by human cytotoxic T lymphocytes that bear no specificity for the tumor cells. As targeting components of such anti-CD3 conjugates, hormones or growth factors are expected to prove more effective than antibodies to tumor-associated antigens in focusing the destructive activity of cytotoxic T cells on tumor target cells.

  16. Comparative transforming potential of different human papillomaviruses associated with non-melanoma skin cancer

    SciTech Connect

    Massimi, Paola; Thomas, Miranda; Bouvard, Veronique; Ruberto, Irene; Campo, M. Saveria; Tommasino, Massimo; Banks, Lawrence

    2008-02-20

    It is well established that high-risk human papillomaviruses (HPVs) that infect mucosal epithelia are the causative agents of cervical cancer. In contrast, the association of cutaneo-tropic HPV types with the development of non-melanoma skin cancer (NMSC) is less well defined. In this study, we have analysed the in vitro transforming potential of various cutaneous HPV types. Using oncogene cooperation assays with activated ras, we have shown that diverse cutaneous types, including 12, 14, 15, 24, 36 and 49, have significant transforming potential. Interestingly, most of this activity appears to be encoded by the E6 gene product. In contrast, the common HPV-10 exhibits no significant transforming potential in these assays. This difference may be a reflection of different patterns of cellular localization, with transforming E6s being nuclear and non-transforming being cytoplasmic. These results provide molecular support for a role of these viruses in the development of certain human malignancies.

  17. Tocilizumab unmasks a stage-dependent interleukin-6 component in statin-induced apoptosis of metastatic melanoma cells

    PubMed Central

    Minichsdorfer, Christoph; Wasinger, Christine; Sieczkowski, Evelyn; Atil, Bihter

    2015-01-01

    The interleukin (IL)-6 inhibits the growth of early-stage melanoma cells, but not metastatic cells. Metastatic melanoma cells are susceptible to statin-induced apoptosis, but this is not clear for early-stage melanoma cells. This study aimed to investigate the IL-6 susceptibility of melanoma cells from different stages in the presence of simvastatin to overcome loss of growth arrest. ELISA was used to detect secreted IL-6 in human melanoma cells. The effects of IL-6 were measured by western blots for STAT3 and Bcl-2 family proteins. Apoptosis and proliferation were measured by caspase 3 activity, Annexin V staining, cell cycle analysis, and a wound-healing assay. Human metastatic melanoma cells A375 and 518A2 secrete high amounts of IL-6, in contrast to early-stage WM35 cells. Canonical IL-6 signaling is intact in these cells, documented by transient phosphorylation of STAT3. Although WM35 cells are highly resistant to simvastatin-induced apoptosis, coadministration with IL-6 enhanced the susceptibility to undergo apoptosis. This proapoptotic effect of IL-6 might be explained by a downregulation of Bcl-XL, observed only in WM35 cells. Furthermore, the IL-6 receptor blocking antibody tocilizumab was coadministered and unmasked an IL-6-sensitive proportion in the simvastatin-induced caspase 3 activity of metastatic melanoma cells. These results confirm that simvastatin facilitates apoptosis in combination with IL-6. Although endogenous IL-6 secretion is sufficient in metastatic melanoma cells, exogenously added IL-6 is needed for WM35 cells. This effect may explain the failure of simvastatin to reduce melanoma incidence in clinical trials and meta-analyses. PMID:26020489

  18. Human melanoma cells express FGFR/Src/Rho signaling that entails an adhesion-independent caveolin-1 membrane association.

    PubMed

    Fecchi, Katia; Travaglione, Sara; Spadaro, Francesca; Quattrini, Adriano; Parolini, Isabella; Piccaro, Giovanni; Raggi, Carla; Fabbri, Alessia; Felicetti, Federica; Carè, Alessandra; Fiorentini, Carla; Sargiacomo, Massimo

    2012-03-15

    Caveolae have been indicated as a center of cytoskeleton regulation for Src kinase/Rho GTPase signaling. In addition, Src recruitment on intact cortical actin cytoskeleton appears to be required for bFGF/FGFR signal activation. Recently, we established a relationship between caveolin-1 (Cav-1) expression and cell migration in human malignant melanoma, constitutively activated by a bFGF autoregulatory loop. This work intends to investigate whether caveolae's asset, through bFGF/FGFR/c-Src/Rho signaling, could be related to melanoma cell anchorage. Accordingly, we revealed the existence of a FGFR/Src kinase pathway in Cav-1 enriched detergent-resistant membranes (DRMs) of Me665/1 metastatic melanoma cells, as confirmed by FGFR silencing. Moreover, we determined the expression and phosphorylation levels of Cav-1/Src/Erk signal pathway as a function of FGFR activation and cell density. A sucrose density gradient ultracentrifugation was employed to monitor Cav-1 membrane association and buoyancy in Me665/1 cells treated for actin fragmentation or for altered phosphorylation signals. As a result, melanoma cells show remarkable resistance to Cav-1 disassembly, together with persisting cell signal activity, being Src and Cav-1 crucial modulators of Rho GTPases. In conclusion, our study primarily highlights, in a metastatic melanoma cell line expressing caveolin, the circumstances whereby caveola structural and functional endurance enables the FGFR/Src/Rho GTPases pathway to keep on cell progression.

  19. Single-chain antibody-delivered Livin siRNA inhibits human malignant melanoma growth in vitro and in vivo.

    PubMed

    Wang, Hao; Yang, Yifei; Wang, Wei; Guan, Bing; Xun, Meng; Zhang, Hai; Wang, Ziling; Zhao, Yong

    2017-05-01

    Although gene therapy has brought new insights into the treatment of malignant melanoma, targeting delivery of nucleic acid which targets critical oncogene/anti-oncogene in vivo is still a bottleneck in the therapeutic application. Our previous in vitro studies have found that the oncogene Livin could serve as a potential molecular target by small interfering RNA for gene therapy of malignant melanoma. However, how to transport Livin small interfering RNA into malignant melanoma cells specifically and efficiently in vivo needs further investigation. Cumulative evidence has suggested that single-chain antibody-mediated small interfering RNA targeted delivery is an effective way to silence specific genes in human cancer cells. Indeed, this study designed a protamine-single-chain antibody fusion protein, anti-MM scFv-tP, to deliver Livin small interfering RNA into LiBr cells. Further experiments confirmed the induction of cell apoptosis and suppression of cell proliferation by anti-MM scFv-tP in LiBr cells, along with efficient silence of Livin gene both in vitro and in vivo. Altogether, our findings provide a feasible approach to transport Livin small interfering RNA to malignant melanoma cells which would be a new therapeutic strategy for combating malignant melanoma.

  20. Anti-Melanogenic Activity and Cytotoxicity of Pistacia vera Hull on Human Melanoma SKMEL-3 Cells.

    PubMed

    Sarkhail, Parisa; Salimi, Mona; Sarkheil, Pantea; Mostafapour Kandelous, Hirsa

    2017-07-01

    Pistacia vera seed is a common food and medicinal seed in Iran. It's hull (outer skin) as a significant byproduct of pistachio, is traditionally used as tonic, sedative and antidiarrheal and has been shown to be a rich source of antioxidants. The aim of the present study is to evaluate the anti-melanogenic activity of the pistachio hulls in order to discover a new alternative herbal agent to treat skin hyperpigmentation disorders. In this work, antioxidant and anti-tyrosinase activity of MeOH extract from Pistacia vera hull (MPH) were evaluated in vitro, respectively, by DPPH radical scavenging and mushroom tyrosinase activity assays. Then the effect of MPH on the melanin content, cellular tyrosinase activity and cytotoxicity (MTT assay) on human melanoma SKMEL-3 cell were determined followed by 72 h incubation. The results indicated that MPH had valuable DPPH radical scavenging effect and weak anti-tyrosinase activity when compared to the well-known antioxidant (BHT) and tyrosinase inhibitor (kojic acid), respectively. MPH, at a high dose (0.5 mg/mL), showed significant cytotoxic activity (~63%) and strong anti-melanogenic effect (~57%) on SKMEL-3 cells. The effect of MPH in the reduction of melanin content may be related to its cytotoxicity. The results obtained suggest that MPH can be used as an effective agent in the treatment of some skin hyperpigmentation disorders such as melanoma.

  1. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma

    PubMed Central

    Liao, Jack C. F.; Gregor, Polly; Wolchok, Jedd D.; Orlandi, Francesca; Craft, Diane; Leung, Carrie; Houghton, Alan N.; Bergman, Philip J.

    2007-01-01

    Antitumor immune responses can be elicited in preclinical mouse melanoma models using plasmid DNA vaccines encoding xenogeneic melanosomal differentiation antigens. We previously reported on a phase I clinical trial of human tyrosinase (huTyr) DNA vaccination of 9 dogs with advanced malignant melanoma (World Health Organization stages II-IV), in which we demonstrated the safety of the treatment and the prolongation of the expected survival time (ST) of subjects as compared to historical, stage-matched controls. As a secondary goal of the same study, we report here on the induction of tyrosinase-specific antibody responses in three of the nine dogs vaccinated with huTyr DNA. The antibodies in two of the three responders cross-react with syngeneic canine tyrosinase, demonstrating the ability of this vaccine to overcome host immune tolerance and/or ignorance to or of “self” antigens. Most interestingly, the onset of antibody induction in these three dogs coincides with observed clinical responses and may suggest a means to account for their long-term tumor control and survival. PMID:16626110

  2. Galectin-3 Expression Correlates with Apoptosis of Tumor-Associated Lymphocytes in Human Melanoma Biopsies

    PubMed Central

    Zubieta, Mariana Rodríguez; Furman, David; Barrio, Marcela; Bravo, Alicia Inés; Domenichini, Enzo; Mordoh, José

    2006-01-01

    The immune system recognizes diverse melanoma antigens. However, tumors can evade the immune response, therefore growing and progressing. It has been reported that galectin-3 and galectin-1 can induce apoptosis of activated lymphocytes. However, there is strong evidence indicating that the regulation of galectins function in the human tumor microenvironment is a complex process that is influenced by diverse biological circumstances. Here, we have investigated 33 biopsies (eight primary and 25 metastases) from 24 melanoma patients (15–72 years old) and describe the correlation between the expression of galectin-3 or galectin-1 and the level of apoptosis of tumor-associated lymphocytes using immunohistochemistry and an in situ nick translation assay. The range of galectin-3-positive tumor cells varied between 0% and 93% and that of galectin-1-positive tumor cells varied between 5% and 97%. In addition, 23 ± 27% of tumor-associated lymphocytes were apoptotic. Although our results show a correlation between galectin-3 expression and apoptosis of tumor-associated lymphocytes, we could not find such correlation with galectin-1. Considering the complex process of cancer immunoediting, various interacting factors must be considered. PMID:16651632

  3. Functional interdependence of NHE1 and merlin in human melanoma cells.

    PubMed

    Frontzek, Fabian; Nitzlaff, Svenja; Horstmann, Malte; Schwab, Albrecht; Stock, Christian

    2014-12-01

    Upregulation of the Na(+)/H(+) exchanger isoform 1 (NHE1) has been correlated with tumor malignancy. In contrast, moesin-radixin-ezrin-like protein (merlin) is a tumor suppressor that protects from cancerogenesis. Merlin is highly related to the members of the ezrin, radixin, and moesin (ERM) protein family that are directly attached to and functionally linked with NHE1. In addition, merlin inhibits the MAPK cascade and the Rho-GTPases known to activate NHE1 activity. The present study investigates whether NHE1 expression and activity affect merlin or, conversely, whether merlin has an impact on NHE1 in human melanoma (MV3) cells. Indeed, features of merlin-deficient MV3 cells point to a functional link: merlin-deficient cells showed a decreased NHE1 expression and, paradoxically, an increase in NHE1 activity as measured upon cytosolic acidification (NH4Cl prepulse method). Loss of merlin also led to an elevated cell motility that could be further increased by NHE1 overexpression, whereas NHE1 overexpression alone had no effect on migration. In contrast, neither NHE1 expression nor its activity had an impact on merlin expression. These results suggest a novel tumor suppressor function of merlin in melanoma cells: the inhibition of the proto-oncogenic NHE1 activity, possibly including its downstream signaling pathways.

  4. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma

    PubMed Central

    Benezra, Miriam; Penate-Medina, Oula; Zanzonico, Pat B.; Schaer, David; Ow, Hooisweng; Burns, Andrew; DeStanchina, Elisa; Longo, Valerie; Herz, Erik; Iyer, Srikant; Wolchok, Jedd; Larson, Steven M.; Wiesner, Ulrich; Bradbury, Michelle S.

    2011-01-01

    Nanoparticle-based materials, such as drug delivery vehicles and diagnostic probes, currently under evaluation in oncology clinical trials are largely not tumor selective. To be clinically successful, the next generation of nanoparticle agents should be tumor selective, nontoxic, and exhibit favorable targeting and clearance profiles. Developing probes meeting these criteria is challenging, requiring comprehensive in vivo evaluations. Here, we describe our full characterization of an approximately 7-nm diameter multimodal silica nanoparticle, exhibiting what we believe to be a unique combination of structural, optical, and biological properties. This ultrasmall cancer-selective silica particle was recently approved for a first-in-human clinical trial. Optimized for efficient renal clearance, it concurrently achieved specific tumor targeting. Dye-encapsulating particles, surface functionalized with cyclic arginine–glycine–aspartic acid peptide ligands and radioiodine, exhibited high-affinity/avidity binding, favorable tumor-to-blood residence time ratios, and enhanced tumor-selective accumulation in αvβ3 integrin–expressing melanoma xenografts in mice. Further, the sensitive, real-time detection and imaging of lymphatic drainage patterns, particle clearance rates, nodal metastases, and differential tumor burden in a large-animal model of melanoma highlighted the distinct potential advantage of this multimodal platform for staging metastatic disease in the clinical setting. PMID:21670497

  5. Characterization of a new human melanoma cell line with CD133 expression.

    PubMed

    Gil-Benso, Rosario; Monteagudo, Carlos; Cerdá-Nicolás, Miguel; Callaghan, Robert C; Pinto, Sandra; Martínez-Romero, Alicia; Pellín-Carcelén, Ana; San-Miguel, Teresa; Cigudosa, Juan C; López-Ginés, Concha

    2012-06-01

    A novel human malignant melanoma cell line, designated MEL-RC08, was established from a pericranial metastasis of a malignant melanoma of the skin. The cell line has been subcultured for more than 150 passages and is tumorigenic in nude mice. Growth kinetics, cytogenetics, flow cytometry, and molecular techniques for analysis of the genes implicated in cell cycle control; mutations in BRAF, NRAS, C-KiT, RB, and TP53 genes; and amplification of MDM2, CDK4, and cyclin D1 have been studied. Cytogenetically, the tumor and the cell line showed a hypertriploid karyotype with many clonal numeric and structural abnormalities. DNA flow cytometry showed an aneuploid peak with a DNA index value of 1.5. Mutations in TP53 and BRAF genes were demonstrated in both tumor and cell line. Furthermore, stem cell marker CD133 expression was detected in most cells, together with other stem cell markers, suggesting the presence of cells with tumor-initiating potential in this cell line.

  6. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells.

    PubMed

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-02-13

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na(+)/H(+) exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade.

  7. Extracellular protonation modulates cell-cell interaction mechanics and tissue invasion in human melanoma cells

    PubMed Central

    Hofschröer, Verena; Koch, Kevin Alexander; Ludwig, Florian Timo; Friedl, Peter; Oberleithner, Hans; Stock, Christian; Schwab, Albrecht

    2017-01-01

    Detachment of cells from the primary tumour precedes metastatic progression by facilitating cell release into the tissue. Solid tumours exhibit altered pH homeostasis with extracellular acidification. In human melanoma, the Na+/H+ exchanger NHE1 is an important modifier of the tumour nanoenvironment. Here we tested the modulation of cell-cell-adhesion by extracellular pH and NHE1. MV3 tumour spheroids embedded in a collagen matrix unravelled the efficacy of cell-cell contact loosening and 3D emigration into an environment mimicking physiological confinement. Adhesive interaction strength between individual MV3 cells was quantified using atomic force microscopy and validated by multicellular aggregation assays. Extracellular acidification from pHe7.4 to 6.4 decreases cell migration and invasion but increases single cell detachment from the spheroids. Acidification and NHE1 overexpression both reduce cell-cell adhesion strength, indicated by reduced maximum pulling forces and adhesion energies. Multicellular aggregation and spheroid formation are strongly impaired under acidification or NHE1 overexpression. We show a clear dependence of melanoma cell-cell adhesion on pHe and NHE1 as a modulator. These effects are opposite to cell-matrix interactions that are strengthened by protons extruded via NHE1. We conclude that these opposite effects of NHE1 act synergistically during the metastatic cascade. PMID:28205573

  8. Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma

    PubMed Central

    Redko, Boris; Tuchinsky, Helena; Segal, Tamar; Tobi, Dror; Luboshits, Galia; Ashur-Fabian, Osnat; Pinhasov, Albert; Gerlitz, Gabi; Gellerman, Gary

    2017-01-01

    The newly discovered short (9 amino acid) non-RGD S-S bridged cyclic peptide ALOS-4 (H-cycl(Cys-Ser-Ser-Ala-Gly-Ser-Leu-Phe-Cys)-OH), which binds to integrin αvβ3 is investigated as peptide carrier for targeted drug delivery against human metastatic melanoma. ALOS4 binds specifically the αvβ3 overexpressing human metastatic melanoma WM-266-4 cell line both in vitro and in ex vivo assays. Coupling ALOS4 to the topoisomerase I inhibitor Camptothecin (ALOS4-CPT) increases the cytotoxicity of CPT against human metastatic melanoma cells while reduces dramatically the cytotoxicity against non-cancerous cells as measured by the levels of γH2A.X, active caspase 3 and cell viability. Moreover, conjugating ALOS4 to CPT even increases the chemo-stability of CPT under physiological pH. Bioinformatic analysis using Rosetta platform revealed potential docking sites of ALOS4 on the αvβ3 integrin which are distinct from the RGD binding sites. We propose to use this specific non-RGD cyclic peptide as the therapeutic carrier for conjugation of drugs in order to improve efficacy and reduce toxicity of currently available treatments of human malignant melanoma. PMID:27768593

  9. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo

    PubMed Central

    Sheen, Joon-Ho; Zoncu, Roberto; Kim, Dohoon; Sabatini, David M.

    2011-01-01

    SUMMARY Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anti-cancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine. PMID:21575862

  10. D-Penicillamine targets metastatic melanoma cells with induction of the unfolded protein response (UPR) and Noxa (PMAIP1)-dependent mitochondrial apoptosis.

    PubMed

    Qiao, Shuxi; Cabello, Christopher M; Lamore, Sarah D; Lesson, Jessica L; Wondrak, Georg T

    2012-10-01

    D-Penicillamine (3,3-dimethyl-D-cysteine; DP) is an FDA-approved redox-active D-cysteine-derivative with antioxidant, disulfide-reducing, and metal chelating properties used therapeutically for the control of copper-related pathology in Wilson's disease and reductive cystine-solubilization in cystinuria. Based on the established sensitivity of metastatic melanoma cells to pharmacological modulation of cellular oxidative stress, we tested feasibility of using DP for chemotherapeutic intervention targeting human A375 melanoma cells in vitro and in vivo. DP treatment induced caspase-dependent cell death in cultured human metastatic melanoma cells (A375, G361) without compromising viability of primary epidermal melanocytes, an effect not observed with the thiol-antioxidants N-acetyl-L-cysteine (NAC) and dithiothreitol. Focused gene expression array analysis followed by immunoblot detection revealed that DP rapidly activates the cytotoxic unfolded protein response (UPR; involving phospho-PERK, phospho-eIF2α, Grp78, CHOP, and Hsp70) and the mitochondrial pathway of apoptosis with p53 upregulation and modulation of Bcl-2 family members (involving Noxa, Mcl-1, and Bcl-2). DP (but not NAC) induced oxidative stress with early impairment of glutathione homeostasis and mitochondrial transmembrane potential. SiRNA-based antagonism of PMAIP1 expression blocked DP-induced upregulation of the proapoptotic BH3-only effector Noxa and prevented downregulation of the Noxa-antagonist Mcl-1, rescuing melanoma cells from DP-induced apoptosis. Intraperitoneal administration of DP displayed significant antimelanoma activity in a murine A375 xenograft model. It remains to be seen if melanoma cell-directed induction of UPR and apoptosis using DP or improved DP-derivatives can be harnessed for future chemotherapeutic intervention.

  11. Specific sialyltransferase is responsible for the synthesis of GD/sup 3/, a ganglioside preferentially expressed on human metastatic melanoma cells

    SciTech Connect

    Rosenberg, J.M.; Reisfeld, R.A.; Sander, D.J.; Winfield, J.B.; Cheresh, D.A.

    1986-05-01

    A number of studies have been directed toward defining surface structures that may be preferentially expressed on human tumor cells of the metastatic phenotype. Human melanoma was used as a tumor model to study the molecular events associated with metastasis. Using monoclonal antibodies directed to a variety of human melanoma associated antigens, they demonstrate that the disialoganglioside GD/sub 3/ is preferentially expressed on human melanoma cells derived from metastatic foci, whereas cells derived from primary lesions as well as melanocytes express minimal levels of this antigen. The enhanced expression of GD/sub 3/ on metastatic melanoma cells is due to an increased biosynthetic rate as shown by intrinsic labeling with (/sup 3/H)-glucosamine. Moreover, they demonstrate the presence of a specific sialyltransferase (GD/sub 3/ synthetase) responsible for the synthesis of GD/sub 3/. This enzyme activity is associated with a membrane fraction of human melanoma cells and converts the monosialylated precursor GM/sub 3/ to GD/sub 3/. In fact, a cultured human melanoma cell line derived from a metastatic foci was shown to contain a five-fold increase in GD/sub 3/ synthetase specific activity as compared to that observed for a cell line derived from a primary lesion of the same patient. The elucidation of the mechanism regulating the expression of this enzyme may lead to a more complete understanding of the metastatic phenotype of human melanoma.

  12. Redirected lysis of human melanoma cells by a MCSP/CD3-bispecific BiTE antibody that engages patient-derived T cells.

    PubMed

    Torisu-Itakura, Hitoe; Schoellhammer, Hans F; Sim, Myung-Shin; Irie, Reiko F; Hausmann, Susanne; Raum, Tobias; Baeuerle, Patrick A; Morton, Donald L

    2011-10-01

    Melanoma-associated chondroitin sulfate proteoglycan (MCSP; also called HMW-MAA, CSPG4, NG2, MSK16, MCSPG, MEL-CSPG, or gp240) is a well characterized melanoma cell-surface antigen. In this study, a new bispecific T-cell engaging (BiTE) antibody that binds to MCSP and human CD3 (MCSP-BiTE) was tested for its cytotoxic activity against human melanoma cell lines. When unstimulated peripheral mononuclear blood cells (PBMCs) derived from healthy donors were cocultured with melanoma cells at effector:target ratios of 1:1, 1:5, or 1:10, and treated with MCSP-BiTE antibody at doses of 10, 100, or 1000 ng/mL, all MCSP-expressing melanoma cell lines (n=23) were lysed in a dose-dependent and effector:target ratio-dependent manner, whereas there was no cytotoxic activity against MCSP-negative melanoma cell lines (n=2). To investigate whether T cells from melanoma patients could act as effector cells, we cocultured unstimulated PBMCs with allogeneic melanoma cells from 13 patients (4 stage I/II, 3 stage III, and 6 stage IV) or with autologous melanoma cells from 2 patients (stage IV). Although cytotoxic activity varied, all 15 PBMC samples mediated significant redirected lysis by the BiTE antibody. When PBMC or CD8 T cells were prestimulated by anti-CD3 antibody OKT-3 and interleukin-2, the MCSP-BiTE concentrations needed for melanoma cell lysis decreased up to 1000-fold. As MCSP is expressed on most human melanomas, immunotherapy with MCSP/CD3-bispecific antibodies merits clinical investigation.

  13. Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells.

    PubMed Central

    Moser, B; Barella, L; Mattei, S; Schumacher, C; Boulay, F; Colombo, M P; Baggiolini, M

    1993-01-01

    Two cDNAs coding for distinct interleukin 8 (IL-8) receptors, IL-8R1 [Murphy and Tiffany (1991) Science 253, 1280-1283] and IL-8R2 [Holmes, Lee, Kuang, Rice and Wood (1991) Science 253, 1278-1280] have been reported, and biochemical studies on human neutrophils have revealed two proteins (p70 and p44) that bind IL-8 with high affinity [Moser, Schumacher, von Tscharner, Clark-Lewis and Baggiolini (1991), J. Biol. Chem. 266, 10666-10671]. We have cloned the cDNA coding for IL-8R1 from a library of differentiated HL-60 cells. Transfection of this cDNA into Jurkat cells resulted in the expression of high-affinity binding for IL-8 and two related cytokines, GRO alpha and neutrophil-activating peptide 2 (Kd 0.5-1.0 nM). Northern-blot analysis with the IL-8R1 cDNA as probe revealed abundant expression of transcripts of different size in human neutrophils and low-level expression of a single RNA species in HL-60 cells differentiated with dimethyl sulphoxide and retinoic acid. Because of the extensive nucleotide sequence similarity of the cDNAs for IL-8R1 and IL-8R2, the reverse-transcription PCR method was used for analysis of RNA expression in myeloid and lymphoid cells, 19 cell lines established from human primary melanomas or metastases, two melanocyte and one fibroblast cell lines. IL-8R1 mRNA transcripts were expressed at high levels in neutrophils, and to a lesser extent in blood monocytes and the myeloid cell lines, HL-60 and AML 193, but were not found in THP-1 cells, lymphocytes and Jurkat cells. IL-8R2 mRNA transcripts, by contrast, were found in all blood cells and related cell lines, as well as in all melanoma, melanocyte and fibroblast cell lines tested. As for IL-8R1, IL-8R2 mRNA expression was highest in neutrophils. These results suggest that IL-8R1 and IL-8R2 may both be involved in neutrophil activation by IL-8 and related cytokines, and presumably correspond to p70 and p44, the receptors that were identified biochemically. Possible IL-8 functions on

  14. Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells

    PubMed Central

    Muñoz, Mindy; Craske, Madeleine; Severino, Patricia; de Lima, Thais Martins; Labhart, Paul; Chammas, Roger; Velasco, Irineu Tadeu; Machado, Marcel Cerqueira César; Egan, Brian; Nakaya, Helder I; Pinheiro da Silva, Fabiano

    2016-01-01

    Antimicrobial peptides are an ancient family of molecules that emerged millions of years ago and have been strongly conserved during the evolutionary process of living organisms. Recently, our group described that the human antimicrobial peptide LL-37 migrates to the nucleus, raising the possibility that LL-37 could directly modulate transcription under certain conditions. Here, we showed evidence that LL-37 binds to gene promoter regions, and LL-37 gene silencing changed the transcriptional program of melanoma A375 cells genes associated with histone, metabolism, cellular stress, ubiquitination and mitochondria. PMID:27994673

  15. Evaluation of depigmenting activity by 8-hydroxydaidzein in mouse B16 melanoma cells and human volunteers.

    PubMed

    Tai, Sorgan Shou-Ku; Lin, Ching-Gong; Wu, Mon-Han; Chang, Te-Sheng

    2009-11-20

    In our previous study, 8-hydroxydaidzein (8-OHDe) was demonstrated to be a potent and unique suicide substrate of mushroom tyrosinase. In this study, the compound was evaluated for in vitro cellular tyrosinase and melanogenesis inhibitory activities in mouse B16 melanoma cells and for in vivo skin-whitening activity in human volunteers. Tyrosinase activity and melanogenesis in the cell culture incubated with 10 microM of 8-OHDe were decreased to 20.1% and 51.8% of control, respectively, while no obvious cytotoxicity was observed in this concentration. In contrast, a standard tyrosinase inhibitor, kojic acid, showed 69.9% and 71.3% of control in cellular tyrosinase and melanogenesis activity, respectively, at a concentration as high as 100 microM. Hence, 8-OHDe exhibited more than an inhibitory effects on melanin production in B16 cells 10-fold stronger than kojic acid. In addition, when a cream containing 4% 8-OHDe was applied to human skin in an in vivo study, significant increases in the dL*-values were observed after three weeks. Moreover, the increase in the dL*-values after 8-week treatment with 4% 8-OHDe (from -0.57 to 1.94) is stronger than those of 2% 8-OHDe treatment (from 0.26 to 0.94) and 2% ascorbic acid-2-glucoside treatment (from 0.07 to 1.54). From the results of the study, it was concluded that 8-OHDe, the potent suicide substrate of mushroom tyrosinase, has depigmenting activities in both mouse melanoma cells and in human volunteers. Thus, the compound has significant potential for use in cosmetics as a skin-whitening ingredient.

  16. Evaluation of Depigmenting Activity by 8-Hydroxydaidzein in Mouse B16 Melanoma Cells and Human Volunteers

    PubMed Central

    Tai, Sorgan Shou-Ku; Lin, Ching-Gong; Wu, Mon-Han; Chang, Te-Sheng

    2009-01-01

    In our previous study, 8-hydroxydaidzein (8-OHDe) was demonstrated to be a potent and unique suicide substrate of mushroom tyrosinase. In this study, the compound was evaluated for in vitro cellular tyrosinase and melanogenesis inhibitory activities in mouse B16 melanoma cells and for in vivo skin-whitening activity in human volunteers. Tyrosinase activity and melanogenesis in the cell culture incubated with 10 μM of 8-OHDe were decreased to 20.1% and 51.8% of control, respectively, while no obvious cytotoxicity was observed in this concentration. In contrast, a standard tyrosinase inhibitor, kojic acid, showed 69.9% and 71.3% of control in cellular tyrosinase and melanogenesis activity, respectively, at a concentration as high as 100 μM. Hence, 8-OHDe exhibited more than an inhibitory effects on melanin production in B16 cells 10-fold stronger than kojic acid. In addition, when a cream containing 4% 8-OHDe was applied to human skin in an in vivo study, significant increases in the dL*-values were observed after three weeks. Moreover, the increase in the dL*-values after 8-week treatment with 4% 8-OHDe (from −0.57 to 1.94) is stronger than those of 2% 8-OHDe treatment (from 0.26 to 0.94) and 2% ascorbic acid-2-glucoside treatment (from 0.07 to 1.54). From the results of the study, it was concluded that 8-OHDe, the potent suicide substrate of mushroom tyrosinase, has depigmenting activities in both mouse melanoma cells and in human volunteers. Thus, the compound has significant potential for use in cosmetics as a skin-whitening ingredient. PMID:20057943

  17. Riluzole is a radio-sensitizing agent in an in vivo model of brain metastasis derived from GRM1 expressing human melanoma cells.

    PubMed

    Wall, Brian A; Yu, Lumeng J; Khan, Atif; Haffty, Bruce; Goydos, James S; Chen, Suzie

    2015-01-01

    Approximately 50% of patients having metastatic melanoma develop brain metastases during the course of their illness. Evidence exists that melanoma cells have increased aptitude for the repair of sublethal DNA damage caused by ionizing radiation therapy. To address the radio-resistance of melanoma, many groups adopted radiotherapy schedules that deliver larger daily fractions of radiation, but due to the risk of neurotoxicity, these large fractions cannot be delivered to the whole brain for patients with brain metastases. Here, we used orthotopic implanted GRM1 expressing human melanoma cell xenografts in mice, to demonstrate that animals receiving concurrent glutamate signaling blockade (riluzole) and radiation led to a decrease in intracranial tumor growth compared to either modality alone. These preclinical results suggest riluzole may cause radio-sensitization that offers enhanced efficacy for a subset of human melanoma patients undergoing radiotherapy for brain metastasis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Tautomerization of 2-nitroso-N-arylanilines by coordination as N,N'-chelate ligands to rhenium(I) complexes and the anticancer activity of newly synthesized oximine rhenium(I) complexes against human melanoma and leukemia cells in vitro.

    PubMed

    Wirth, Stefan; Wallek, Andreas U; Zernickel, Anna; Feil, Florian; Sztiller-Sikorska, M; Lesiak-Mieczkowska, K; Bräuchle, Christoph; Lorenz, Ingo-Peter; Czyz, M

    2010-07-01

    The synthesis, structural characterization and biological activity of eight ortho-quinone(N-aryl)-oximine rhenium(I) complexes are described. The reaction of the halogenido complexes (CO)(5)ReX (X = Cl (4), Br (5)) with 2-nitroso-N-arylanilines {(C(6)H(3)ClNO)NH(C(6)H(4)R)} (R = p-Cl, p-Me, o-Cl, H) (3a-d) in tetrahydrofurane (THF) yields the complexes fac-(CO)(3)XRe{(C(6)H(3)ClNO)NH(C(6)H(4)R)} (6a-d, 7a-d) with the tautomerized ligand acting as a N,N'-chelate. The substitution of two carbonyl ligands leads to the formation of a nearly planar 5-membered metallacycle. During coordination the amino-proton is shifted to the oxygen of the nitroso group which can be observed in solution for 6 and 7 by (1)H NMR spectroscopy and in solid state by crystal structure analysis. After purification, all compounds have been fully characterized by their (1)H and (13)C NMR, IR, UV/visible (UV/Vis) and mass spectra. The X-ray structure analyses revealed a distorted octahedral coordination of the CO, X and N,N'-chelating ligands for all Re(I) complexes. Biological activity of four oximine rhenium(I) complexes was assessed in vitro in two highly aggressive cancer cell lines: human metastatic melanoma A375 and human chronic myelogenous leukemia K562. Chlorido complexes (6a and 6c) were more efficient than bromido compounds (7d and 7b) in inducing apoptotic cell death of both types of cancer cells. Melanoma cells were more susceptible to tested rhenium(I) complexes than leukemia cells. None of the ligands (3a-d) showed any significant anticancer activity. 2010 Elsevier Inc. All rights reserved.

  19. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    SciTech Connect

    Ungerer, Christopher; Doberstein, Kai; Boehm, Beate; Pfeilschifter, Josef; Mihic-Probst, Daniela; Gutwein, Paul

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  20. Reduction of COX-2 through modulating miR-124/SPHK1 axis contributes to the antimetastatic effect of alpinumisoflavone in melanoma

    PubMed Central

    Gao, Ming; Chang, Yuan; Wang, Xiuyong; Ban, Chao; Zhang, Fan

    2017-01-01

    Alpinumisoflavone (AIF) is a naturally occurring flavonoid that is a major bioactive component of the medicinal plant Derris eriocarpa. In this study we evaluated the antimetastatic effect of AIF and investigated the underlying mechanism of action using in vitro and in vivo models of melanoma. We found that AIF impaired the metastatic potential of A375 and SK-MEL-1 human melanoma cells by promoting cell differentiation as assessed by melanin content, protoporphyrin IX accumulation, and tissue transglutaminase activity. In addition, AIF inhibited cell adhesion, migration, and invasion in melanoma cells. We found that AIF treatment decreased cyclooxygenase-2 (COX-2) expression, and COX-2 overexpression attenuated the inhibitory effects of AIF on the metastatic behaviors of melanoma cells. AIF dose-dependently increased microRNA-124 (miR-124) levels and decreased levels of sphingosine kinase 1 (SPHK1), a target of miR-124. In a mouse model of melanoma, AIF suppressed lung metastasis. Taken together, our findings suggest that AIF inhibits metastasis in melanoma by modulating COX-2 expression, at least in part, through targeting the miR-124/SphK1 axis. Our study provides evidence that AIF may be useful as an antimetastatic agent in the treatment of melanoma. PMID:28386327

  1. Antibody-drug conjugates: targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin

    NASA Astrophysics Data System (ADS)

    Falvo, Elisabetta; Tremante, Elisa; Fraioli, Rocco; Leonetti, Carlo; Zamparelli, Carlotta; Boffi, Alberto; Morea, Veronica; Ceci, Pierpaolo; Giacomini, Patrizio

    2013-11-01

    A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4+ melanoma cell line, but not to a CSPG4- breast carcinoma cell line. As compared to the cisplatin-containing ferritin nanoparticle alone (HFt-Pt), which inhibited thymidine incorporation more efficiently in breast carcinoma than melanoma cells, the mAb-derivatized HFt-Pt-Ep1 nanoparticle had a 25-fold preference for the latter. A similar preference for melanoma was observed upon systemic intravenous administration of HFt-Pt-Ep1 to nude mice xenotransplanted with pre-established, palpable melanoma and breast carcinoma tumors. Thus, we have been able to determine precise combinations and stoichiometric relationships between mAbs and nanoparticle protein cages, whereby the latter lose their tropism for ubiquitously distributed cellular receptors, and acquire instead remarkably lineage-selective binding. HFt-Pt-Ep1 is therefore an interesting model to improve the therapeutic index of antiblastic therapy in a tumor such as melanoma, which at its advanced stages is totally refractory to mono- and combination-chemotherapy.A novel antibody-drug conjugate (ADC) was synthesized incorporating ferritin-based nanoparticles. An average of three molecules of monoclonal antibody (mAb) Ep1 to the human melanoma-specific antigen CSPG4 were conjugated to a single ferritin cage encapsulating about 50 cisplatin molecules (HFt-Pt-Ep1). The HFt-Pt-Ep1 nanoparticle had an estimated molecular size of about 900 kD and 33 nm, and flow cytometry demonstrated specific binding to a CSPG4+ melanoma cell line, but not to a CSPG4- breast carcinoma cell

  2. Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes.

    PubMed

    Wilmott, James S; Field, Matthew A; Johansson, Peter A; Kakavand, Hojabr; Shang, Ping; De Paoli-Iseppi, Ricardo; Vilain, Ricardo E; Pupo, Gulietta M; Tembe, Varsha; Jakrot, Valerie; Shang, Catherine A; Cebon, Jonathan; Shackleton, Mark; Fitzgerald, Anna; Thompson, John F; Hayward, Nicholas K; Mann, Graham J; Scolyer, Richard A

    2015-12-01

    Whole genome sequencing (WGS) of cancer patients' tumours offers the most comprehensive method of identifying both novel and known clinically-actionable genomic targets. However, the practicalities of performing WGS on clinical samples are poorly defined.This study was designed to test sample preparation, sequencing specifications and bioinformatic algorithms for their effect on accuracy and cost-efficiency in a large WGS analysis of human melanoma samples.WGS was performed on melanoma cell lines (n = 15) and melanoma fresh frozen tumours (n = 222). The appropriate level of coverage and the optimal mutation detection algorithm for the project pipeline were determined.An incremental increase in sequencing coverage from 36X to 132X in melanoma tissue samples and 30X to 103X for cell lines only resulted in a small increase (1-2%) in the number of mutations detected, and the quality scores of the additional mutations indicated a low probability that the mutations were real. The results suggest that 60X coverage for melanoma tissue and 40X for melanoma cell lines empower the detection of 98-99% of informative single nucleotide variants (SNVs), a sensitivity level at which clinical decision making or landscape research projects can be carried out with a high degree of confidence in the results. Likewise the bioinformatic mutation analysis methodology strongly influenced the number and quality of SNVs detected. Detecting mutations in the blood genomes separate to the tumour genomes generated 41% more SNVs than if the blood and melanoma tissue genomes were analysed simultaneously. Therefore, simultaneous analysis should be employed on matched melanoma tissue and blood genomes to reduce errors in mutation detection.This study provided valuable insights into the accuracy of SNV with WGS at various coverage levels in human clinical cancer specimens. Additionally, we investigated the accuracy of the publicly available mutation detection algorithms to detect cancer

  3. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry

    PubMed Central

    Bassani-Sternberg, Michal; Bräunlein, Eva; Klar, Richard; Engleitner, Thomas; Sinitcyn, Pavel; Audehm, Stefan; Straub, Melanie; Weber, Julia; Slotta-Huspenina, Julia; Specht, Katja; Martignoni, Marc E.; Werner, Angelika; Hein, Rüdiger; H. Busch, Dirk; Peschel, Christian; Rad, Roland; Cox, Jürgen; Mann, Matthias; Krackhardt, Angela M.

    2016-01-01

    Although mutations may represent attractive targets for immunotherapy, direct identification of mutated peptide ligands isolated from human leucocyte antigens (HLA) on the surface of native tumour tissue has so far not been successful. Using advanced mass spectrometry (MS) analysis, we survey the melanoma-associated immunopeptidome to a depth of 95,500 patient-presented peptides. We thereby discover a large spectrum of attractive target antigen candidates including cancer testis antigens and phosphopeptides. Most importantly, we identify peptide ligands presented on native tumour tissue samples harbouring somatic mutations. Four of eleven mutated ligands prove to be immunogenic by neoantigen-specific T-cell responses. Moreover, tumour-reactive T cells with specificity for selected neoantigens identified by MS are detected in the patient's tumour and peripheral blood. We conclude that direct identification of mutated peptide ligands from primary tumour material by MS is possible and yields true neoepitopes with high relevance for immunotherapeutic strategies in cancer. PMID:27869121

  4. A new ceramide from Suillus luteus and its cytotoxic activity against human melanoma cells.

    PubMed

    León, Francisco; Brouard, Ignacio; Torres, Fernando; Quintana, José; Rivera, Augusto; Estévez, Francisco; Bermejo, Jaime

    2008-01-01

    A new phytosphingosine-type ceramide, suillumide (1), was isolated from the EtOH extract of the basidiomycete Suillus luteus (L.) S. F. Gray, along with ten known compounds: ergosta-4,6,8(14),22-tetraen-3-one, ergosterol, ergosterol peroxide, suillin, (E)-3,4,5-trimethoxycinnamic alcohol, 5 alpha,6 alpha-epoxyergosta-8,22-diene-3beta,7 beta-diol, (R)-1-palmitoylglycerol, ergosta-7,9(11),22-triene-3beta,5 alpha,6 beta-triol, cerevisterol, and 4-hydroxybenzoic acid. The structure of 1 was determined on the basis of spectroscopic and mass-spectrometric analyses, as well as by chemical methods. Compound 1 and its synthetic diacetyl derivative 2 were tested for their cytotoxic activities against the human melanoma cell line SK-MEL-1. Both drugs showed IC(50) values of ca. 10 microM after 72 h of exposure.

  5. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans.

    PubMed

    Bramante, Simona; Kaufmann, Johanna K; Veckman, Ville; Liikanen, Ilkka; Nettelbeck, Dirk M; Hemminki, Otto; Vassilev, Lotta; Cerullo, Vincenzo; Oksanen, Minna; Heiskanen, Raita; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Matikainen, Sampsa; Vähä-Koskela, Markus; Koski, Anniina; Hemminki, Akseli

    2015-10-01

    Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma.

  6. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange.

    PubMed

    Stock, Christian; Gassner, Birgit; Hauck, Christof R; Arnold, Hannelore; Mally, Sabine; Eble, Johannes A; Dieterich, Peter; Schwab, Albrecht

    2005-08-15

    Their glycolytic metabolism imposes an increased acid load upon tumour cells. The surplus protons are extruded by the Na+/H+ exchanger (NHE) which causes an extracellular acidification. It is not yet known by what mechanism extracellular pH (pHe) and NHE activity affect tumour cell migration and thus metastasis. We studied the impact of pHe and NHE activity on the motility of human melanoma (MV3) cells. Cells were seeded on/in collagen I matrices. Migration was monitored employing time lapse video microscopy and then quantified as the movement of the cell centre. Intracellular pH (pHi) was measured fluorometrically. Cell-matrix interactions were tested in cell adhesion assays and by the displacement of microbeads inside a collagen matrix. Migration depended on the integrin alpha2beta1. Cells reached their maximum motility at pHe approximately 7.0. They hardly migrated at pHe 6.6 or 7.5, when NHE was inhibited, or when NHE activity was stimulated by loading cells with propionic acid. These procedures also caused characteristic changes in cell morphology and pHi. The changes in pHi, however, did not account for the changes in morphology and migratory behaviour. Migration and morphology more likely correlate with the strength of cell-matrix interactions. Adhesion was the strongest at pHe 6.6. It weakened at basic pHe, upon NHE inhibition, or upon blockage of the integrin alpha2beta1. We propose that pHe and NHE activity affect migration of human melanoma cells by modulating cell-matrix interactions. Migration is hindered when the interaction is too strong (acidic pHe) or too weak (alkaline pHe or NHE inhibition).

  7. Transport and expression in human melanomas of a transferrin-like glycosylphosphatidylinositol-anchored protein.

    PubMed

    Food, M R; Rothenberger, S; Gabathuler, R; Haidl, I D; Reid, G; Jefferies, W A

    1994-01-28

    Melanotransferrin, also called p97, is a cell surface glycoprotein which was first described as a marker antigen for human melanoma cells. Although p97 has a striking structural similarity to human serum transferrin and lactoferrin, its function has not yet been determined. One feature that distinguishes p97 from the other members of the transferrin family is the presence of a stretch of 24 hydrophobic amino acids at the C terminus, previously assumed to form a proteinacious transmembrane domain. In this study, sensitivity to bacterial phosphatidylinositol-specific phospholipase C, biosynthetic labeling with [3H]ethanolamine, and partitioning in Triton X-114 are used to establish that p97 is expressed at the cell surface as a glycosylphosphatidylinositol-anchored protein. In addition, to gain insight into the intracellular transport of p97, biosynthetic transport studies were performed on a melanoma cell line. These studies resulted in the identification of an additional form of p97 which is found in the medium and which likely does not originate from an alternatively spliced form of the p97 mRNA. These findings, together with our recent observation of the co-localization of p97 and the transferrin receptor in brain capillary endothelium (W. A. Jefferies, M. R. Food, R. Gabathuler, S. Rothenberger, T. Yamada, and P. L. McGeer, manuscript submitted) raise important questions about the function of the two forms of p97 detected and the possible involvement of this protein in a cellular iron uptake mechanism that is independent from the transferrin/transferrin receptor system.

  8. Hypoxia-induced tetraploidisation of a diploid human melanoma cell line in vitro.

    PubMed Central

    Rofstad, E. K.; Johnsen, N. M.; Lyng, H.

    1996-01-01

    Many human tumours are hyperdiploid, particularly in advanced stages of growth. The purpose of the present work was to investigate whether exposure to hypoxia followed by reoxygenation might induce hyperploidisation of diploid human tumour cells in vitro. The investigation was performed by using the diploid melanoma cell line BEX-c (median chromosome number, 46; DNA index, 1.10 +/- 0.04) as test line and the hyperdiploid melanoma cell line SAX-c (median chromosome number, 61; DNA index, 1.42 +/- 0.03) as control line. Cell cultures kept in glass dishes in air-tight steel chambers were exposed to hypoxia (O2 concentrations < 10 p.p.m. or < 100 p.p.m.) at 37 degrees C for 24 h. DNA content was measured by flow cytometry. Metaphase spreads banded with trypsin-Versene-Giemsa were examined to determine the number of chromosomes per cell. An electronic particle counter was used to measure cell volume. The expression of p53 and pRb was studied by Western blot analysis. Transient exposure to hypoxia was found to induce a doubling of the number of chromosomes in BEX-c but not in SAX-c. The fraction of the BEX-c metaphase spreads with 92 chromosomes was approximately 10% at 18 h after reoxygenation, decreased to approximately 2% at 7 days after reoxygenation and then increased gradually with time. The whole cell population became tetraploid within 25 weeks. BEX-c and SAX-c behaved differently during the 24 h hypoxia exposure. Cell volume and fraction of cells in G2 + M increased with time in BEX-c but remained essentially unchanged in SAX-c. On the other hand, the expression of p53 and pRb was similar for the two lines; hypoxia induced increased expression of p53 and hypophosphorylation of pRb. Images Figure 5 PMID:8763866

  9. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange

    PubMed Central

    Stock, Christian; Gassner, Birgit; Hauck, Christof R; Arnold, Hannelore; Mally, Sabine; Eble, Johannes A; Dieterich, Peter; Schwab, Albrecht

    2005-01-01

    Their glycolytic metabolism imposes an increased acid load upon tumour cells. The surplus protons are extruded by the Na+/H+ exchanger (NHE) which causes an extracellular acidification. It is not yet known by what mechanism extracellular pH (pHe) and NHE activity affect tumour cell migration and thus metastasis. We studied the impact of pHe and NHE activity on the motility of human melanoma (MV3) cells. Cells were seeded on/in collagen I matrices. Migration was monitored employing time lapse video microscopy and then quantified as the movement of the cell centre. Intracellular pH (pHi) was measured fluorometrically. Cell–matrix interactions were tested in cell adhesion assays and by the displacement of microbeads inside a collagen matrix. Migration depended on the integrin α2β1. Cells reached their maximum motility at pHe∼7.0. They hardly migrated at pHe 6.6 or 7.5, when NHE was inhibited, or when NHE activity was stimulated by loading cells with propionic acid. These procedures also caused characteristic changes in cell morphology and pHi. The changes in pHi, however, did not account for the changes in morphology and migratory behaviour. Migration and morphology more likely correlate with the strength of cell–matrix interactions. Adhesion was the strongest at pHe 6.6. It weakened at basic pHe, upon NHE inhibition, or upon blockage of the integrin α2β1. We propose that pHe and NHE activity affect migration of human melanoma cells by modulating cell–matrix interactions. Migration is hindered when the interaction is too strong (acidic pHe) or too weak (alkaline pHe or NHE inhibition). PMID:15946960

  10. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  11. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase

    NASA Astrophysics Data System (ADS)

    Koo, Han-Mo; Vanbrocklin, Matt; McWilliams, Mary Jane; Leppla, Stephan H.; Duesbery, Nicholas S.; Vande Woude, George F.

    2002-03-01

    Lethal factor, the principal virulence factor of Bacillus anthracis, inhibits mitogen-activated protein kinase (MAPK) signaling by proteolytically cleaving MAPK kinases. Edema factor, another component of anthrax toxin, is an adenylate cyclase, which increases intracellular cAMP. Inhibition of MAPK signaling with either anthrax lethal toxin (LeTx) or small molecule MAPK kinase inhibitors triggers apoptosis in human melanoma cells. Normal melanocytes do not undergo apoptosis in response to MAPK inhibition but arrest in the G1 phase of the cell cycle. Importantly, in vivo treatment of human melanoma xenograft tumors in athymic nude mice with LeTx results in significant or complete tumor regression without apparent side effects, suggesting that inhibiting the MAPK signaling pathway may be a useful strategy for treating melanoma. Additionally, interrupting MAPK signaling with LeTx and elevating cAMP with anthrax edema toxin in both melanoma cells and melanocytes lead to dramatic melanin production, perhaps explaining the formation of blackened eschars in cutaneous anthrax.

  12. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth.

    PubMed

    Civenni, Gianluca; Walter, Anne; Kobert, Nikita; Mihic-Probst, Daniela; Zipser, Marie; Belloni, Benedetta; Seifert, Burkhardt; Moch, Holger; Dummer, Reinhard; van den Broek, Maries; Sommer, Lukas

    2011-04-15

    Human melanoma is composed of distinct cell types reminiscent of neural crest derivatives and contains multipotent cells that express the neural crest stem cell markers CD271(p75(NTR)) and Sox10. When isolated from solid tumors by using a method that leaves intact cell surface epitopes, CD271-positive, but not CD271-negative, cells formed tumors on transplantation into nude or nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. These tumors fully mirrored the heterogeneity of the parental melanoma and could be passaged more than 5 times. In contrast, in more immunocompromised NOD/SCID/IL2rγ(null) mice, or in natural killer cell-depleted nude or NOD/SCID mice, both CD271-positive and CD271-negative tumor cell fractions established tumors. However, tumors resulting from either fraction did not phenocopy the parental tumors, and tumors derived from the CD271-negative cell fraction could not be passaged multiple times. Together, our findings identify CD271-positive cells as melanoma stem cells. Our observation that a relatively high frequency of CD271/Sox10-positive cells correlates with higher metastatic potential and worse prognosis further supports that CD271-positive cells within human melanoma represent genuine cancer stem cells. ©2011 AACR.

  13. Investigations on the presence of papova virus in certain forms of human cancer. Note I. Renal tumors and melanomas.

    PubMed

    Stoian, M; Dumitrescu, S M; Athanasiu, P; Nastac, E

    1980-01-01

    Within the framework of their research concerns regarding the presence of papova viruses in the human population of Romania, as well as the relationship between these viruses and certain forms of human cancer, the authors undertook an electron microscopic study of 4 renal tumors and 6 melanomas. No viral particles could be made evident in any of the sections examined. Viral SV-40 antigen was detected by indirect immunofluorescence reaction in kidney sections from a nephrosis case considered as control.

  14. Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression

    PubMed Central

    Hofmann, U B; Westphal, J R; Waas, E T; Zendman, A J W; Cornelissen, I M H A; Ruiter, D J; Muijen, G N P van

    1999-01-01

    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tumour progression and metastasis. In this study, we investigated the in vitro and in vivo expression patterns of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 mRNA and protein in a previously described human melanoma xenograft model. This model consists of eight human melanoma cell lines with different metastatic behaviour after subcutaneous (s.c.) injection into nude mice. MMP-1 mRNA was detectable in all cell lines by reverse transcription polymerase chain reaction (RT-PCR), but the expression was too low to be detected by Northern blot analysis. No MMP-1 protein could be found using Western blotting. MMP-2 mRNA and protein were present in all cell lines, with the highest expression of both latent and active MMP-2 in the highest metastatic cell lines MV3 and BLM. MMP-3 mRNA was expressed in MV3 and BLM, and in the non-metastatic cell line 530, whereas MMP-3 protein was detectable only in MV3 and BLM. None of the melanoma cell lines expressed MMP-9. TIMP-1 and TIMP-2 mRNA and protein, finally, were present in all cell lines. A correlation between TIMP expression level and metastatic capacity of cell lines, however, was lacking. MMP and TIMP mRNA and protein expression levels were also studied in s.c. xenograft lesions derived from a selection of these cell lines. RT-PCR analysis revealed that MMP-1 mRNA was present in MV3 and BLM xenografts, and to a lesser extent in 530. Positive staining for MMP-1 protein was found in xenograft lesions derived from both low and high metastatic cell lines, indicating an in vivo up-regulation of MMP-1. MMP-2 mRNA was detectable only in xenografts derived from the highly metastatic cell lines 1F6m, MV3 and BLM. In agreement with the in vitro results, the highest levels of both latent and activated MMP-2 protein were observed in MV3 and BLM xenografts. With the exception of MMP-9 mRNA expression in 530 xenografts, MMP-3, MMP-9, and TIMP-1 mRNA and

  15. Constitutive suppressor of cytokine signaling 3 expression confers a growth advantage to a human melanoma cell line.

    PubMed

    Komyod, Waraporn; Böhm, Markus; Metze, Dieter; Heinrich, Peter C; Behrmann, Iris

    2007-03-01

    The growth of melanocytes and many early stage melanoma cells can be inhibited by cytokines, whereas late stage melanoma cells have often been reported to be "multi-cytokine-resistant." Here, we analyzed the melanoma cell line 1286, resistant towards the growth-inhibitory effects of interleukin 6 (IL-6), and oncostatin M (OSM), to better understand the mechanisms underlying cytokine resistance. Although the relevant receptors gp130 and OSMR are expressed at the cell surface of these cells, cytokine stimulation hardly led to the activation of Janus kinase 1 and signal transducer and activator of transcription (STAT)3 and STAT1. We found a high-level constitutive expression of suppressors of cytokine signaling 3 (SOCS3) that did not further increase after cytokine treatment. Importantly, upon suppression of SOCS3 by short interfering RNA, cells became susceptible towards OSM and IL-6: they showed an enhanced STAT3 phosphorylation and a dramatically increased STAT1 phosphorylation. Moreover, suppression of SOCS3 rendered 1286 cells sensitive to the antiproliferative action of IL-6 and OSM, but not of IFN-alpha. Interestingly, SOCS3-short interfering RNA treatment also increased the growth-inhibitory effect in cytokine-sensitive WM239 cells expressing SOCS3 in an inducible way. Thus, SOCS3 expression confers a growth advantage to these cell lines. Constitutive SOCS3 mRNA expression, although at lower levels than in 1286 cells, was found in nine additional human melanoma cell lines and in normal human melanocytes, although at the protein level, SOCS3 expression was marginal at best. However, in situ analysis of human melanoma specimens revealed SOCS3 immunoreactivity in 3 out of 10 samples, suggesting that in vivo SOCS3 may possibly play a role in IL-6 resistance in at least a fraction of tumors.

  16. Inducible nitric oxide synthase (iNOS) drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2

    PubMed Central

    Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni; Davies, Michael A.; Ekmekcioglu, Suhendan; Izadmehr, Sudeh; Milton, Denái R.; Chipuk, Jerry E.; Grimm, Elizabeth A.; Estrada, Yeriel; Aguirre-Ghiso, Julio; Sikora, Andrew G.

    2014-01-01

    Melanoma is one of the cancers of fastest-rising incidence in the world. iNOS is overexpressed in melanoma and other cancers, and previous data suggest that iNOS and nitric oxide (NO) drive survival and proliferation of human melanoma cells. However, specific mechanisms through which this occurs are poorly defined. One candidate is the PI3K/AKT/mTOR pathway, which plays a major role in proliferation, angiogenesis, and metastasis of melanoma and other cancers. We used the chick embryo chorioallantoic membrane (CAM) assay to test the hypothesis that melanoma growth is regulated by iNOS-dependent mTOR pathway activation. Both pharmacologic inhibition and siRNA-mediated gene silencing of iNOS suppressed melanoma proliferation and in vivo growth on the CAM in human melanoma models. This was associated with strong downregulation of mTOR pathway activation by Western blot analysis of p-mTOR, p-P70S6K, p-S6RP, and p-4EBP1. iNOS expression and NO were associated with reversible nitrosylation of TSC2, and inhibited dimerization of TSC2 with its inhibitory partner TSC1, enhancing GTPase activity of its target Rheb, a critical activator of mTOR signaling. Immunohistochemical analysis of tumor specimens from stage III melanoma patients showed a significant correlation between iNOS expression levels and expression of mTOR pathway members. Exogenously-supplied NO was also sufficient to reverse mTOR pathway inhibition by the B-Raf inhibitor Vemurafenib. In summary, covalent modification of TSC2 by iNOS-derived NO is associated with impaired TSC2/TSC1 dimerization, mTOR pathway activation, and proliferation of human melanoma. This model is consistent with the known association of iNOS overexpression and poor prognosis in melanoma and other cancers. PMID:24398473

  17. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death.

    PubMed

    Qiao, Shuxi; Tao, Shasha; Rojo de la Vega, Montserrat; Park, Sophia L; Vonderfecht, Amanda A; Jacobs, Suesan L; Zhang, Donna D; Wondrak, Georg T

    2013-12-01

    Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.

  18. Synthesis and Preclinical Characterization of [18F]FPBZA: A Novel PET Probe for Melanoma

    PubMed Central

    Huang, Shih-Pin; Lo, Yen-Chen; Liu, Ren-Shyan; Shen, Chih-Chieh

    2014-01-01

    Introduction. Benzamide can specifically bind to melanoma cells. A 18F-labeled benzamide derivative, [18F]N-(2-diethylaminoethyl)-4-[2-(2-(2-fluoroethoxy) ethoxy)ethoxy]benzamide ([18F]FPBZA), was developed as a promising PET probe for primary and metastatic melanoma. Methods. [18F]FPBZA was synthesized via a one-step radiofluorination in this study. The specific uptake of [18F]FPBZA was studied in B16F0 melanoma cells, A375 amelanotic melanoma cells, and NB-DNJ-pretreated B16F0 melanoma cells. The biological characterization of [18F]FPBZA was performed on mice bearing B16F0 melanoma, A375 amelanotic melanoma, or inflammation lesion. Results. [18F]FPBZA can be prepared efficiently with a yield of 40–50%. The uptake of [18F]FPBZA by B16F0 melanoma cells was significantly higher than those by A375 tumor cells and NB-DNJ-pretreated B16F0 melanoma cells. B16F0 melanoma displayed prominent uptake of [18F]FPBZA at 2 h (7.81 ± 0.82 %ID/g), compared with A375 tumor and inflammation lesion (3.00 ± 0.71 and 1.67 ± 0.56 %ID/g, resp.). [18F]FPBZA microPET scan clearly delineated B16F0 melanoma but not A375 tumor and inflammation lesion. In mice bearing pulmonary metastases, the lung radioactivity reached 4.77 ± 0.36 %ID/g at 2 h (versus 1.16 ± 0.23 %ID/g in normal mice). Conclusions. Our results suggested that [18F]FPBZA PET would provide a promising and specific approach for the detection of primary and metastatic melanoma lesions. PMID:25254219

  19. NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.

    PubMed

    Jarrett, Stuart G; Novak, Marian; Harris, Nathan; Merlino, Glenn; Slominski, Andrezj; Kaetzel, David M

    2013-01-01

    Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of <5 % for patients presenting with metastatic disease. Mechanisms underlying metastatic spread of UVR-induced melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

  20. sup 211 At-methylene blue for targeted radiotherapy of human melanoma xenografts: Treatment of micrometastases

    SciTech Connect

    Link, E.M.; Carpenter, R.N. )

    1990-05-15

    Treatment of micrometastases of HX34 human melanoma grown as xenografts in nude mice represents an advanced stage of preclinical investigations concerning targeted radiotherapy of this neoplasm using 3,7-(dimethylamino)phenazathionium chloride methylene blue (MTB) labeled with astatine-211 (211At) (alpha-particle emitter). The therapeutic effectiveness of 211At-MTB administered i.v. was determined by a lung colony assay combined with a search for metastases to organs other than the lungs. A single dose of 211At-MTB lowered the HX34 cell surviving fraction in lungs to below 10% almost independently of the time interval between cell inoculation and radioisotope injection and of 211At-MTB radioactivity within its investigated range. Radiation dose and the time of its administration did, however, influence the size of lung colonies. In contrast, the efficacy of 211At-MTB treatment as assessed by both surviving fraction and colony size was significantly dependent on a number of HX34 cells inoculated initially into mice. These results are explained by a short range of alpha-particles emitted by 211At and a mechanism of growth of lung colonies from tumor cells circulating with blood and blocking lung capillaries. Metastases in organs other than lungs and characteristic of control animals were not found in mice treated with 211At-MTB. The high therapeutic efficacy achieved proved that 211At-MTB is a very efficient scavenger of single melanoma cells distributed through blood and micrometastases with sizes below the limit of clinical detection.

  1. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons.

    PubMed

    Keta, Otilija; Todorović, Danijela; Popović, Nataša; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan; Ristić-Fira, Aleksandra

    2014-06-29

    Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features.

  2. Gene expression in SK-Mel-28 human melanoma cells treated with the snake venom jararhagin.

    PubMed

    Klein, Anelise; Capitanio, Juliana Silva; Maria, Durvanei Augusto; Ruiz, Itamar Romano Garcia

    2011-01-01

    Alternative approaches to improve the treatment of advanced melanomas are highly needed. The disintegrin domain of metalloproteinases binds integrin receptors on tumor cells, blocking migration, invasion, and metastatization. Previous studies showed that jararhagin, from the Bothrops jararaca snake venom, induces changes in the morphology and viability of SK-Mel-28 human melanoma cells, and decreases the number of metastases in mice injected with pre-treated cells. The purpose of this study was to evaluate the molecular effects of jararhagin on SK-Mel-28 cells and fibroblasts, concerning the expression of integrins, cadherins, caspases, and TP53 genes. Sub-toxic doses of jararhagin were administered to confluent cells. RT-PCR was performed following extraction of total RNA. Jararhagin treatments induced similar morphological alterations in both normal and tumor cells, with higher IC50 values for fibroblasts. Integrin genes were downregulated in untreated cells, except for ITGA6a,b, ITGAv, and ITGB3 which were highly expressed in SK-Mel-28. The integrin expression profiles were not affected by the toxin. However, jararhagin 30ng/μl upregulated genes TP53, CDKN1A, CDKN2A, CASP3, CASP5, CASP6, CASP8, and E-CDH in SK-Mel-28, and genes ITGB6, ITGB7, CASP3, TP53, and CDKN1B in fibroblasts. Appropriate jararhagin concentration can have apoptotic and suppressant effects on SK-Mel-28 cells, rather than on fibroblasts, and can be used to develop potential anti-cancer drugs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells.

    PubMed

    Liao, Yu-Pei; Wang, Chun-Chieh; Butterfield, Lisa H; Economou, James S; Ribas, Antoni; Meng, Wilson S; Iwamoto, Keisuke S; McBride, William H

    2004-08-15

    Radiation is generally considered to be an immunosuppressive agent that acts by killing radiosensitive lymphocytes. In this study, we demonstrate the noncytotoxic effects of ionizing radiation on MHC class I Ag presentation by bone marrow-derived dendritic cells (DCs) that have divergent consequences depending upon whether peptides are endogenously processed and loaded onto MHC class I molecules or are added exogenously. The endogenous pathway was examined using C57BL/6 murine DCs transduced with adenovirus to express the human melanoma/melanocyte Ag recognized by T cells (AdVMART1). Prior irradiation abrogated the ability of AdVMART1-transduced DCs to induce MART-1-specific T cell responses following their injection into mice. The ability of these same DCs to generate protective immunity against B16 melanoma, which expresses murine MART-1, was also abrogated by radiation. Failure of AdVMART1-transduced DCs to generate antitumor immunity following irradiation was not due to cytotoxicity or to radiation-induced block in DC maturation or loss in expression of MHC class I or costimulatory molecules. Expression of some of these molecules was affected, but because irradiation actually enhanced the ability of DCs to generate lymphocyte responses to the peptide MART-1(27-35) that is immunodominant in the context of HLA-A2.1, they were unlikely to be critical. The increase in lymphocyte reactivity generated by irradiated DCs pulsed with MART-1(27-35) also protected mice against growth of B16-A2/K(b) tumors in HLA-A2.1/K(b) transgenic mice. Taken together, these results suggest that radiation modulates MHC class I-mediated antitumor immunity by functionally affecting DC Ag presentation pathways.

  4. High Immunogenicity of the Human Leukocyte Antigen Peptidomes of Melanoma Tumor Cells*

    PubMed Central

    Jarmalavicius, Saulius; Welte, Yvonne; Walden, Peter

    2012-01-01

    Human leukocyte antigens (HLA) bind peptides generated by limited proteolysis in cells and present them at the cell surfaces for recognition by T cells. Through this antigen presentation function they control the specificity of T cell responses and thereby adaptive immune responses. Knowledge of HLA-bound peptides is thus key to understanding adaptive immunity and to the development of vaccines and other specific immune intervention strategies. To gain insight into the antigenicity of melanomas, peptides were extracted from HLA isolated from the tumor cells, separated by two-dimensional HPLC, and sequenced by mass spectrometry. The spectra were analyzed by database-dependent MASCOT searches and database-independent de novo sequencing and, where required, confirmed with synthetic peptides, which were also used to determine their immunogenicity. Comparing four different melanoma cell lines, little overlap of the HLA-bound peptides was found, suggesting a high degree of individualization of the HLA peptidomes. This notwithstanding, the peptidomes were highly immunogenic in the patients from whom the tumor cells had been established and in unrelated patients. This broad cross-patient immunogenicity was only exceptionally related to individual peptides. The majority of the identified epitopes were derived from low to medium abundance proteins, mostly involved in sensitive cellular processes such as cell cycle control, DNA replication, control of gene expression, tumor suppressor function, and protein metabolism. The peptidomes thus provide insights into processes potentially related to tumorigenesis. Furthermore, analyses of the peptide sequences yield information on the specificity of peptide selection by HLA applicable to the developing prediction algorithms for T cell epitopes. PMID:22869377

  5. Resveratrol Is Rapidly Metabolized in Athymic (Nu/Nu) Mice and Does Not Inhibit Human Melanoma Xenograft Tumor Growth1

    PubMed Central

    Niles, Richard M.; Cook, Carla P.; Meadows, Gary G.; Fu, Ya-Min; McLaughlin, Jerry L.; Rankin, Gary O.

    2006-01-01

    Resveratrol has been shown to have anticarcinogenic activity. We previously found that resveratrol inhibited growth and induced apoptosis in 2 human melanoma cell lines. In this study we determined whether resveratrol would inhibit human melanoma xenograft growth. Athymic mice received control diets or diets containing 110 μmol/L or 263 μmol/L resveratrol, 2 wk prior to subcutaneous injection of the tumor cells. Tumor growth was measured during a 3-wk period. Metabolism of resveratrol was assayed by bolus gavage of 75 mg/kg resveratrol in tumor-bearing and nontumor-bearing mice. Pellets containing 10–100 mg resveratrol were implanted into the mice, next to newly palpated tumors, and tumor growth determined. We also determined the effect of a major resveratrol metabolite, piceatannol, on experimental lung metastasis. Resveratrol, at any concentration tested, did not have a statistically significant effect on tumor growth. The higher levels of resveratrol tested (0.006% in food or 100 mg in slow-release pellets) tended to stimulate tumor growth (P = 0.08–0.09). Resveratrol and its major metabolites, resveratrol glucuronide and piceatannol, were found in serum, liver, skin, and tumor tissue. Piceatannol did not affect the in vitro growth of a murine melanoma cell line, but significantly stimulated the number of lung metastases when these melanoma cells were directly injected into the tail vein of the mouse. These results suggest that resveratrol is not likely to be useful in the treatment of melanoma and that the effects of phytochemicals on cell cultures may not translate to the whole animal system. PMID:16988123

  6. Acid Ceramidase in Melanoma

    PubMed Central

    Realini, Natalia; Palese, Francesca; Pizzirani, Daniela; Pontis, Silvia; Basit, Abdul; Bach, Anders; Ganesan, Anand; Piomelli, Daniele

    2016-01-01

    Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nm) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation. PMID:26553872

  7. Comparison of a treatment strategy combining CCI-779 plus DTIC versus DTIC monotreatment in human melanoma in SCID mice.

    PubMed

    Thallinger, Christiane; Werzowa, Johannes; Poeppl, Wolfgang; Kovar, Florian M; Pratscher, Barbara; Valent, Peter; Quehenberger, Peter; Joukhadar, Christian

    2007-10-01

    This study compares the antineoplastic potential of a novel treatment strategy combining cell cycle inhibitor-779 (CCI-779) plus dacarbazine (DTIC) versus DTIC monotreatment, the current chemotherapeutic mainstay in combating metastatic melanoma. A controlled four-group parallel study design comprising 24-40 mice per tumor cell line was used in a severe combined immunodeficiency (SCID)-mouse xenotransplantation model. SCID mice were injected with 518A2, Mel-JUSO, or 607B human melanoma cells. After they developed tumors, mice received daily CCI-779 or solvent over 14 days. From treatment day 4-8 mice were additionally injected with DTIC or saline. Treatment with CCI-779 plus DTIC was superior to single agent DTIC in two out of three cell lines (P<0.05). The tumor weight reduction was 44+/-17 and 61+/-6% compared with DTIC monotreatment in Mel-JUSO and 607B melanomas, respectively (P<0.05). In contrast, in 518A2 xenotransplants, CCI-779 plus DTIC treatment was as effective as DTIC monotreatment. CCI-779 monotherapy exerted no statistically significant antitumor effect. Collectively, these data indicate that CCI-779 has the potential to increase the chemotherapeutic efficacy, as the combination of CCI-779 plus DTIC proved to be more efficacious compared to DTIC monotherapy in two out of three melanoma cell lines in vivo.

  8. A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen*

    PubMed Central

    Bianchi, Valentina; Bulek, Anna; Fuller, Anna; Lloyd, Angharad; Attaf, Meriem; Rizkallah, Pierre J.; Dolton, Garry; Sewell, Andrew K.; Cole, David K.

    2016-01-01

    Human CD8+ cytotoxic T lymphocytes can mediate tumor regression in melanoma through the specific recognition of HLA-restricted peptides. Because of the relatively weak affinity of most anti-cancer T-cell receptors (TCRs), there is growing emphasis on immunizing melanoma patients with altered peptide ligands in order to induce strong anti-tumor immunity capable of breaking tolerance toward these self-antigens. However, previous studies have shown that these immunogenic designer peptides are not always effective. The melanocyte differentiation protein, glycoprotein 100 (gp100), encodes a naturally processed epitope that is an attractive target for melanoma immunotherapies, in particular peptide-based vaccines. Previous studies have shown that substitutions at peptide residue Glu3 have a broad negative impact on polyclonal T-cell responses. Here, we describe the first atomic structure of a natural cognate TCR in complex with this gp100 epitope and highlight the relatively high affinity of the interaction. Alanine scan mutagenesis performed across the gp100280–288 peptide showed that Glu3 was critically important for TCR binding. Unexpectedly, structural analysis demonstrated that the Glu3 → Ala substitution resulted in a molecular switch that was transmitted to adjacent residues, abrogating TCR binding and T-cell recognition. These findings help to clarify the mechanism of T-cell recognition of gp100 during melanoma responses and could direct the development of altered peptides for vaccination. PMID:26917722

  9. Dissection of stromal and cancer cell-derived signals in melanoma xenografts before and after treatment with DMXAA

    PubMed Central

    Henare, K; Wang, L; Wang, L-Cs; Thomsen, L; Tijono, S; Chen, C-Jj; Winkler, S; Dunbar, P R; Print, C; Ching, L-M

    2012-01-01

    Background: The non-malignant cells of the tumour stroma have a critical role in tumour biology. Studies dissecting the interplay between cancer cells and stromal cells are required to further our understanding of tumour progression and methods of intervention. For proof-of-principle of a multi-modal approach to dissect the differential effects of treatment on cancer cells and stromal cells, we analysed the effects of the stromal-targeting agent 5,6-dimethylxanthenone-4-acetic acid on melanoma xenografts. Methods: Flow cytometry and multi-colour immunofluorescence staining was used to analyse leukocyte numbers in xenografts. Murine-specific and human-specific multiplex cytokine panels were used to quantitate cytokines produced by stromal and melanoma cells, respectively. Human and mouse Affymetrix microarrays were used to separately identify melanoma cell-specific and stromal cell-specific gene expression. Results: 5,6-Dimethylxanthenone-4-acetic acid activated pro-inflammatory signalling pathways and cytokine expression from both stromal and cancer cells, leading to neutrophil accumulation and haemorrhagic necrosis and a delay in tumour re-growth of 26 days in A375 melanoma xenografts. Conclusion: 5,6-Dimethylxanthenone-4-acetic acid and related analogues may potentially have utility in the treatment of melanoma. The experimental platform used allowed distinction between cancer cells and stromal cells and can be applied to investigate other tumour models and anti-cancer agents. PMID:22415295

  10. Tumor regression induced by intratumoral injection of DNA coding for human interleukin 12 into melanoma metastases in gray horses.

    PubMed

    Heinzerling, L M; Feige, K; Rieder, S; Akens, M K; Dummer, R; Stranzinger, G; Moelling, K

    2001-01-01

    Preclinical studies investigating new therapeutic principles against melanoma are presently being carried out in mouse models; however, these are not optimal. Here we describe a novel animal model using gray horses. These animals spontaneously develop metastatic melanoma that resembles human disease and is thus highly relevant for preclinical studies testing new immunotherapy protocols. We found that injection of plasmid DNA coding for the human cytokine interleukin 12 into established metastases induced significant regression in all 12 treated lesions in a total of 7 horses. Complete disappearance was observed in one treated lesion, with no recurrence after 6 months. No adverse events have been observed in any of the animals during and after treatment. These results demonstrate the effectiveness and safety of interleukin 12 encoding plasmid DNA therapy against established metastatic disease in a large animal model and serve as a basis for a clinical trial.

  11. Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study

    PubMed Central

    2010-01-01

    Background Cathepsins represent a group of proteases involved in determining the metastatic potential of cancer cells. Among these are cysteinyl- (e.g. cathepsin B and cathepsin L) and aspartyl-proteases (e.g. cathepsin D), normally present inside the lysosomes as inactive proenzymes. Once released in the extracellular space, cathepsins contribute to metastatic potential by facilitating cell migration and invasiveness. Results In the present work we first evaluated, by in vitro procedures, the role of cathepsins B, L and D, in the remodeling, spreading and invasiveness of eight different cell lines: four primary and four metastatic melanoma cell lines. Among these, we considered two cell lines derived from a primary cutaneous melanoma and from a supraclavicular lymph node metastasis of the same patient. To this purpose, the effects of specific chemical inhibitors of these proteases, i.e. CA-074 and CA-074Me for cathepsin B, Cathepsin inhibitor II for cathepsin L, and Pepstatin A for cathepsin D, were evaluated. In addition, we also analyzed the effects of the biological inhibitors of these cathepsins, i.e. specific antibodies, on cell invasiveness. We found that i) cathepsin B, but not cathepsins L and D, was highly expressed at the surface of metastatic but not of primary melanoma cell lines and that ii) CA-074, or specific antibodies to cathepsin B, hindered metastatic cell spreading and dissemination, whereas neither chemical nor biological inhibitors of cathepsins D and L had significant effects. Accordingly, in vivo studies, i.e. in murine xenografts, demonstrated that CA-074 significantly reduced human melanoma growth and the number of artificial lung metastases. Conclusions These results suggest a reappraisal of the use of cathepsin B inhibitors (either chemical or biological) as innovative strategy in the management of metastatic melanoma disease. PMID:20684763

  12. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets

    PubMed Central

    Litou, Zoi I.; Konstandi, Ourania A.; Giannopoulou, Aikaterini F.; Anastasiadou, Ema; Voutsinas, Gerassimos E.; Tsangaris, George Th.; Stravopodis, Dimitrios J.

    2017-01-01

    Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma’s heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the

  13. Identification of TDP-43 as an oncogene in melanoma and its function during melanoma pathogenesis.

    PubMed

    Zeng, Qinghai; Cao, Ke; Liu, Rui; Huang, Jinhua; Xia, Kun; Tang, Jintian; Chen, Xiang; Zhou, Ming; Xie, Huiqing; Zhou, Jianda

    2017-01-02

    Although recent studies have revealed TAR (trans-activating response region) DNA binding protein (TDP-43) as a potential therapeutic target for cancers, its role and clinical association with melanoma have not been explored. To identify the role and function of TDP-43 during melanoma pathogenesis. Firstly, the relationship between TDP-43 expression and patient survival was explored. Then TDP-43 expression level in melanoma tissue and different melanoma cell lines was measured. After silencing TDP-43 expression in melanoma cells, the impacts of TDP-43 on cellular proliferation, metastasis, glucose uptake, and glucose transporters levels were studied. In the end, effect of TDP-43 depletion on tumorigenicity of melanoma cells was tested in vivo. Our results showed that TDP-43 was overexpressed in melanoma paraffin samples compared with that in nevi tissues. The high expression level of TDP-43 was associated with poor patient survival. By silencing TDP-43, we saw significant inhibition of cell proliferation and metastasis in A375 and WM451 cells. TDP-43 knockdown could suppress glucose transporter type-4 (GLUT4) expression and reduce glucose uptake. And downregulation of GLUT4 in melanoma cells induced inhibition of cell proliferation and metastasis. TDP-43 knockdown significantly slowed down tumor growth and decreased GLUT4 expression in vivo. TDP-43 is a novel oncogene in melanoma and regulates melanoma proliferation and metastasis potentially through modulation of glucose metabolism.

  14. CPI-17 drives oncogenic Ras signaling in human melanomas via Ezrin-Radixin-Moesin family proteins

    PubMed Central

    Riecken, Lars Björn; Zoch, Ansgar; Wiehl, Ulrike; Reichert, Sabine; Scholl, Ingmar; Cui, Yan; Ziemer, Mirjana; Anderegg, Ulf; Hagel, Christian; Morrison, Helen

    2016-01-01

    Hyperactive Ras signaling has strong oncogenic effects causing several different forms of cancer. Hyperactivity is frequently induced by mutations within Ras itself, which account for up to 30% of all human cancers. In addition, hyperactive Ras signaling can also be triggered independent of Ras by either mutation or by misexpression of various upstream regulators and immediate downstream effectors. We have previously reported that C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) can drive Ras activity and promote tumorigenic transformation by inhibition of the tumor suppressor Merlin. We now describe an additional element of this oncogenic mechanism in the form of the ezrin-radixin-moesin (ERM) protein family, which exhibits opposing roles in Ras activity control. Thus, CPI-17 drives Ras activity and tumorigenesis in a two-fold way; inactivation of the tumor suppressor merlin and activation of the growth promoting ERM family. The in vivo significance of this oncogenic switch is highlighted by demonstrating CPI-17's involvement in human melanoma pathogenesis. PMID:27793041

  15. Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells.

    PubMed

    Pieper, R; Christian, R E; Gonzales, M I; Nishimura, M I; Gupta, G; Settlage, R E; Shabanowitz, J; Rosenberg, S A; Hunt, D F; Topalian, S L

    1999-03-01

    CD4(+) T cells play a critical role in generating and maintaining immune responses against pathogens and alloantigens, and evidence suggests an important role for them in antitumor immunity as well. Although major histocompatibility complex class II-restricted human CD4(+) T cells with specific antitumor reactivities have been described, no standard method exists for cloning the recognized tumor-associated antigen (Ag). In this study, biochemical protein purification methods were used in conjunction with novel mass spectrometry sequencing techniques and molecular cloning to isolate a unique melanoma Ag recognized by a CD4(+) tumor-infiltrating lymphocyte (TIL) line. The HLA-DRbeta1*0101-restricted Ag was determined to be a mutated glycolytic enzyme, triosephosphate isomerase (TPI). A C to T mutation identified by cDNA sequencing caused a Thr to Ile conversion in TPI, which could be detected in a tryptic digest of tumor-derived TPI by mass spectrometry. The Thr to Ile conversion created a neoepitope whose T cell stimulatory activity was enhanced at least 5 logs compared with the wild-type peptide. Analysis of T cell recognition of serially truncated peptides suggested that the mutated amino acid residue was a T cell receptor contact. Defining human tumor Ag recognized by T helper cells may provide important clues to designing more effective immunotherapies for cancer.

  16. Biochemical Identification of a Mutated Human Melanoma Antigen Recognized by CD4+ T Cells

    PubMed Central

    Pieper, Rembert; Christian, Robert E.; Gonzales, Monica I.; Nishimura, Michael I.; Gupta, Gaorav; Settlage, Robert E.; Shabanowitz, Jeffrey; Rosenberg, Steven A.; Hunt, Donald F.; Topalian, Suzanne L.

    1999-01-01

    CD4+ T cells play a critical role in generating and maintaining immune responses against pathogens and alloantigens, and evidence suggests an important role for them in antitumor immunity as well. Although major histocompatibility complex class II–restricted human CD4+ T cells with specific antitumor reactivities have been described, no standard method exists for cloning the recognized tumor-associated antigen (Ag). In this study, biochemical protein purification methods were used in conjunction with novel mass spectrometry sequencing techniques and molecular cloning to isolate a unique melanoma Ag recognized by a CD4+ tumor-infiltrating lymphocyte (TIL) line. The HLA-DRβ1*0101–restricted Ag was determined to be a mutated glycolytic enzyme, triosephosphate isomerase (TPI). A C to T mutation identified by cDNA sequencing caused a Thr to Ile conversion in TPI, which could be detected in a tryptic digest of tumor-derived TPI by mass spectrometry. The Thr to Ile conversion created a neoepitope whose T cell stimulatory activity was enhanced at least 5 logs compared with the wild-type peptide. Analysis of T cell recognition of serially truncated peptides suggested that the mutated amino acid residue was a T cell receptor contact. Defining human tumor Ag recognized by T helper cells may provide important clues to designing more effective immunotherapies for cancer. PMID:10049939

  17. SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells

    PubMed Central

    Ohanna, Mickaël; Bonet, Caroline; Bille, Karine; Allegra, Maryline; Davidson, Irwin; Bahadoran, Philippe; Lacour, Jean-Philippe; Ballotti, Robert; Bertolotto, Corine

    2014-01-01

    SIRT1 operates as both a tumor suppressor and oncogenic factor depending on the cell context. Whether SIRT1 plays a role in melanoma biology remained poorly elucidated. Here, we demonstrate that SIRT1 is a critical regulator of melanoma cell proliferation. SIRT1 suppression by genetic or pharmacological approaches induces cell cycle arrest and a senescence-like phenotype. Gain and loss of function experiments show that M-MITF regulates SIRT1 expression, thereby revealing a melanocyte-specific control of SIRT1. SIRT1 over-expression relieves the senescence-like phenotype and the proliferation arrest caused by MITF suppression, demonstrating that SIRT1 is an effector of MITF-induced proliferation in melanoma cells. Interestingly, SIRT1 level and activity are enhanced in the PLX4032-resistant BRAFV600E-mutated melanoma cells compared with their sensitive counterpart. SIRT1 inhibition decreases melanoma cell growth and rescues the sensibility to PLX4032 of PLX4032-resistant BRAFV600E-mutated melanoma cells. In conclusion, we provide the first evidence that inhibition of SIRT1 warrants consideration as an anti-melanoma therapeutic option. PMID:24742694

  18. MicroRNA-155 targets the SKI gene in human melanoma cell lines.

    PubMed

    Levati, Lauretta; Pagani, Elena; Romani, Sveva; Castiglia, Daniele; Piccinni, Eugenia; Covaciu, Claudia; Caporaso, Patrizia; Bondanza, Sergio; Antonetti, Francesca R; Bonmassar, Enzo; Martelli, Fabio; Alvino, Ester; D'Atri, Stefania

    2011-06-01

    The SKI protein is a transcriptional coregulator over-expressed in melanoma. Experimentally induced down-regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA-155 (miR-155) is down-regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR-155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR-155 interacted with SKI 3'UTR and impaired gene expression. Transfection of melanoma cells with miR-155 reduced SKI levels, while inhibition of endogenous miR-155 up-regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over-expressing a 3'UTR-deleted SKI were still susceptible to the antiproliferative effect of miR-155. Our data demonstrate for the first time that SKI is a target of miR-155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth-suppressive effect of miR-155 found in this malignancy.

  19. Uveal melanoma: estimating prognosis.

    PubMed

    Kaliki, Swathi; Shields, Carol L; Shields, Jerry A

    2015-02-01

    Uveal melanoma is the most common primary malignant tumor of the eye in adults, predominantly found in Caucasians. Local tumor control of uveal melanoma is excellent, yet this malignancy is associated with relatively high mortality secondary to metastasis. Various clinical, histopathological, cytogenetic features and gene expression features help in estimating the prognosis of uveal melanoma. The clinical features associated with poor prognosis in patients with uveal melanoma include older age at presentation, male gender, larger tumor basal diameter and thickness, ciliary body location, diffuse tumor configuration, association with ocular/oculodermal melanocytosis, extraocular tumor extension, and advanced tumor staging by American Joint Committee on Cancer classification. Histopathological features suggestive of poor prognosis include epithelioid cell type, high mitotic activity, higher values of mean diameter of ten largest nucleoli, higher microvascular density, extravascular matrix patterns, tumor-infiltrating lymphocytes, tumor-infiltrating macrophages, higher expression of insulin-like growth factor-1 receptor, and higher expression of human leukocyte antigen Class I and II. Monosomy 3, 1p loss, 6q loss, and 8q and those classified as Class II by gene expression are predictive of poor prognosis of uveal melanoma. In this review, we discuss the prognostic factors of uveal melanoma. A database search was performed on PubMed, using the terms "uvea," "iris," "ciliary body," "choroid," "melanoma," "uveal melanoma" and "prognosis," "metastasis," "genetic testing," "gene expression profiling." Relevant English language articles were extracted, reviewed, and referenced appropriately.

  20. Itraconazole exerts its anti-melanoma effect by suppressing Hedgehog, Wnt, and PI3K/mTOR signaling pathways

    PubMed Central

    Liang, Guanzhao; Liu, Musang; Wang, Qiong; Shen, Yongnian; Mei, Huan; Li, Dongmei; Liu, Weida

    2017-01-01

    Malignant melanoma is the deadliest form of all skin cancers. Itraconazole, a commonly used systemic antifungal drug, has been tested for its anti-tumor effects on basal cell carcinoma, prostate cancer, and non-small cell lung cancer. Whether itraconazole has any specific anti-tumor effect on melanoma remains unknown. However, the goal of this study is to investigate the effect of itraconazole on melanoma and to reveal some details of its underlying mechanism. In the in vivo xenograft mouse model, we find that itraconazole can inhibit melanoma growth and extend the survival of melanoma xenograft mice, compared to non-itraconazole-treated mice. Also, itraconazole can significantly inhibit cell proliferation, as demonstrated by Ki-67 staining in itraconazole-treated tumor tissues. In in vitro, we show that itraconazole inhibits the proliferation and colony formation of both SK-MEL-28 and A375 human melanoma cells. Moreover, we demonstrate that itraconazole significantly down-regulates Gli-1, Gli-2, Wnt3A, β-catenin and cyclin D1, while it up-regulates Gli-3 and Axin-1, indicating potent inhibitory effects of itraconazole on Hedgehog (Hh) and Wnt signaling pathways. Furthermore, itraconazole significantly suppresses the PI3K/mTOR signaling pathway – indicated by the down-regulated phosphorylation of p70S6K, 4E-BP1 and AKT – but has no effect on the phosphorylation of MEK or ERK. Our data suggest that itraconazole inhibits melanoma growth through an interacting regulatory network that includes Hh, Wnt, and PI3K/mTOR signaling pathways. These results suggest that this agent has several potent anti-melanoma features and may be useful in the synergesis of other anti-cancer drugs via blockage of the Hh, Wnt and PI3K/mTOR signaling pathways. PMID:28212537

  1. 6-Bromoindirubin-3'-oxime inhibits JAK/STAT3 signaling and induces apoptosis of human melanoma cells.

    PubMed

    Liu, Lucy; Nam, Sangkil; Tian, Yan; Yang, Fan; Wu, Jun; Wang, Yan; Scuto, Anna; Polychronopoulos, Panos; Magiatis, Prokopios; Skaltsounis, Leandros; Jove, Richard

    2011-06-01

    STAT3 is persistently activated and contributes to malignant progression in various cancers. Janus activated kinases (JAK) phosphorylate STAT3 in response to stimulation by cytokines or growth factors. The STAT3 signaling pathway has been validated as a promising target for development of anticancer therapeutics. Small-molecule inhibitors of JAK/STAT3 signaling represent potential molecular-targeted cancer therapeutic agents. In this study, we investigated the role of JAK/STAT3 signaling in 6-bromoindirubin-3'-oxime (6BIO)-mediated growth inhibition of human melanoma cells and assessed 6BIO as a potential anticancer drug candidate. We found that 6BIO is a pan-JAK inhibitor that induces apoptosis of human melanoma cells. 6BIO directly inhibited JAK-family kinase activity, both in vitro and in cancer cells. Apoptosis of human melanoma cells induced by 6BIO was associated with reduced phosphorylation of JAKs and STAT3 in both dose- and time-dependent manners. Consistent with inhibition of STAT3 signaling, expression of the antiapoptotic protein Mcl-1 was downregulated. In contrast to the decreased levels of phosphorylation of JAKs and STAT3, phosphorylation levels of the Akt and mitogen-activated protein kinase (MAPK) signaling proteins were not inhibited in cells treated with 6BIO. Importantly, 6BIO suppressed tumor growth in vivo with low toxicity in a mouse xenograft model of melanoma. Taken together, these results show that 6BIO is a novel pan-JAK inhibitor that can selectively inhibit STAT3 signaling and induces tumor cell apoptosis. Our findings support further development of 6BIO as a potential anticancer therapeutic agent that targets JAK/STAT3 signaling in tumor cells.

  2. Targeting Nitric Oxide Signaling with nNOS Inhibitors As a Novel Strategy for the Therapy and Prevention of Human Melanoma

    PubMed Central

    Yang, Zhen; Misner, Bobbye; Ji, Haitao; Poulos, Thomas L.; Silverman, Richard B.; Meyskens, Frank L.

    2013-01-01

    Abstract Aims: Our previous studies have shown that nitric oxide (NO) plays an important role in increasing the invasion and proliferation of human melanoma cells, suggesting that targeting NO signaling may facilitate therapy and prevention. Neuronal nitric oxide synthase (nNOS) is present in melanocytes, a cell type that originates from the neural crest. The aims of this study were to determine the role of nNOS in melanoma progression and the potential antitumor effects of novel synthesized nNOS inhibitors. Results: In vitro studies demonstrated abundant expression of nNOS in melanoma compared to melanocytes, which was inducible by ultraviolet radiation and was associated with increased NO generation. nNOS was also detected in melanoma biopsies that increased with disease stage. Knockdown of nNOS in melanoma cells diminished L-arginine-induced NO production; the metastatic capacity was also reduced as well as the levels of MMP-1, Bcl-2, JunD, and APE/Ref-1. Similar inhibition of NO and invasion potential was observed utilizing novel, highly selective nNOS inhibitors. In three-dimensional human skin reconstructs, the nNOS inhibitor cpd8 effectively reversed the melanoma overgrowth stimulated by NO stress. Innovation: Our work lays the foundation for development of clinical “drug-like” nNOS inhibitors as a new and promising strategy for the chemoprevention of early melanoma progression and the inhibition of secondary melanoma in high-risk individuals. Conclusion: Based on our observations, we propose that nNOS in melanoma results in constitutive overproduction of NO, which stimulates proliferation and increases invasion potential, leading to subsequent development of metastases. Antioxid. Redox Signal. 19, 433–447. PMID:23199242

  3. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects.

  4. Enhancing the efficiency of 5-aminolevulinic acid-mediated photodynamic therapy using 5-fluorouracil on human melanoma cells.

    PubMed

    Tahmasebi, Hadis; Khoshgard, Karim; Sazgarnia, Ameneh; Mostafaie, Ali; Eivazi, Mohammad Taghi

    2016-03-01

    5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is an effective and noninvasive modality for treatment of several types of non-melanoma skin cancers. This in-vitro study attempted to know whether the killing effect of ALA-PDT on the human melanoma cells (Mel-Rm cell line) could be increased by the presence of 5-fluorouracil (5-FU). To evaluate the effect of ALA-PDT in combination with 5-FU on viability of human melanoma Mel-Rm cells, the cells incubated with 5-ALA and 5-FU for 3h in nontoxic concentrations, and subsequently illuminated with a 630 nm light-emitting diode array. The cells viability and cytotoxicity determined by mitochondrial activity and lactate dehydrogenase assays. Combination of ALA-PDT and 5-FU (FU-ALA-PDT) showed a considerable growth inhibition according to the results of MTT assay compared to ALA-PDT. The results of LDH assay also showed a cytotoxicity effect in ALA-PDT; however, the FU-ALA-PDT showed no significantly enhancement in cytotoxicity compared to ALA-PDT using LDH assay. The Mel-Rm cells incubation with 5-FU before PDT enhances the efficiency of 5-Aminolevulinic acid-mediated photodynamic therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells.

    PubMed

    Russo, A; Piovano, M; Lombardo, L; Garbarino, J; Cardile, V

    2008-09-26

    In humans both UV-A and UV-B can cause gene mutations and suppress immunity, which leads to skin cancer, including melanoma. Inhibition of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears particularly promising as ROS and RNS production by both UV-A and UV-B contributes to inflammation, immunosuppression, gene mutation and carcinogenesis. We evaluated the effect of two lichen compounds, sphaerophorin (depside) and pannarin (depsidone) on pBR322 DNA cleavage induced by hydroxyl radicals (()OH), and by nitric oxide (NO), and their superoxide anion (O(2)(-)) scavenging capacity. In addition, we investigated the growth inhibitory activity of these compounds against human melanoma cells (M14 cell line). Sphaerophorin and pannarin showed a protective effect on plasmid DNA and exhibited a superoxide dismutase like effect. The data obtained in cell culture show that these lichen metabolites inhibit the growth of melanoma cells, inducing an apoptotic cell death, demonstrated by the fragmentation of genomic DNA (COMET and TUNEL Assays) and by a significant increase of caspase-3 activity, and correlated, at least in part, to the increase of ROS generation, These results confirm the promising biological properties of sphaerophorin and pannarin and encourage further investigations on their molecular mechanisms.

  6. Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma.

    PubMed

    Calero, R; Morchon, E; Martinez-Argudo, I; Serrano, R

    2017-10-10

    Drug resistance by MAPK signaling recovery or activation of alternative signaling pathways, such as PI3K/AKT/mTOR, is an important factor that limits the long-term efficacy of targeted therapies in melanoma patients. In the present study, we investigated the phospho-proteomic profile of RTKs and its correlation with downstream signaling pathways in human melanoma. We found that tyrosine kinase receptors expression correlated with the expression of pivotal downstream components of the RAS/RAF/MAPK and PI3K/AKT/mTOR pathways in melanoma cell lines and tumors. We also found high expression of HSP90 and the PI3K/AKT/mTOR pathway proteins, 4EBP1 and AKT compared with healthy tissue and this correlated with poor overall survival of melanoma patients. The combination of the HSP90 inhibitor 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic activity decreasing melanoma cell growth, inducing apoptosis and targeting simultaneously the MAPK and PI3K/AKT/mTOR pathways. These results demonstrate that the combination of HSP90 and PI3K/mTOR inhibitors could be an effective therapeutic strategy that target the main survival pathways in melanoma and must be considered to overcome resistance to BRAF inhibitors in melanoma patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and shedding of hyaluronan from plasma membranes of human fibroblasts and metastatic and non-metastatic melanoma cells.

    PubMed Central

    Lüke, H J; Prehm, P

    1999-01-01

    The regulation of hyaluronan synthesis and shedding was analysed in human fibroblasts and in two melanoma cells that differed in the metastatic potential and proteolysis of the hyaluronan receptor CD44. Dissociation of nascent hyaluronan from plasma membranes isolated from fibroblasts by high salt concentrations led to activation of hyaluronan synthase. Hyaluronan synthesis was also enhanced in plasma membranes from fibroblasts that had been treated with hyaluronidase or trypsin. Hyaluronan oligosaccharides stimulated hyaluronan production in fibroblast cultures. These results indicated that nascent high-molecular-mass hyaluronan inhibited its own chain elongation, if it was retained in the vicinity of the synthase by cell-surface receptors. The results also indicated that increased hyaluronan synthesis and shedding correlated with proteolysis of CD44 on the melanoma cell lines, which has been observed by others. PMID:10493913

  8. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons

    PubMed Central

    Keta, Otilija; Todorović, Danijela; Popović, Nataša; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan

    2014-01-01

    Introduction Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. Material and methods Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features. PMID:25097591

  9. Growth inhibition of human melanoma cells by a recombinant arginine deiminase expressed in Escherichia coli.

    PubMed

    Kozai, Megumi; Sasamori, Eriko; Fujihara, Masatoshi; Yamashita, Tetsuro; Taira, Hideharu; Harasawa, Ryô

    2009-10-01

    We have cloned the arginine deiminase (ADI) gene from Mycoplasma hominis PG21 genomic DNA by polymerase chain reaction, and changed four TGA tryptophan codons (stop codon in E. coli) to TGG codons in the coding region by site-directed mutagenesis in order to express in E. coli. The recombinant ADI (rADI) was purified to apparent homogeneity by Ni-affinity chromatography after extraction from inclusion bodies followed by refolding. The rADI expressed in E. coli was estimated to be 50 kDa. Dimeric forms of rADI exerted enzymatic activity. We found that high concentration of potassium dihydrogenphosphate (PDP) and L-arginine addition in refolding reaction increases the enzyme activity. The specific activity of rADl was calculated as 0.618 U/mg. In addition, the enzyme activity of purified rADI remained for at least one month in 100 mM PDP solution (pH 6.5), but diminished within one week in 100 mM PDP solution (pH 7.4). Anti-tumor activity of the purified rADI was estimated to be 0.036 U/ml as 50% growth inhibitory activity against human melanoma cell line G-361.

  10. A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines.

    PubMed

    Aasen, Synnøve Nymark; Pospisilova, Aneta; Eichler, Tilo Wolf; Panek, Jiri; Hruby, Martin; Stepanek, Petr; Spriet, Endy; Jirak, Daniel; Skaftnesmo, Kai Ove; Thorsen, Frits

    2015-09-08

    To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T₁ relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.

  11. A Novel Nanoprobe for Multimodal Imaging Is Effectively Incorporated into Human Melanoma Metastatic Cell Lines

    PubMed Central

    Aasen, Synnøve Nymark; Pospisilova, Aneta; Eichler, Tilo Wolf; Panek, Jiri; Hruby, Martin; Stepanek, Petr; Spriet, Endy; Jirak, Daniel; Skaftnesmo, Kai Ove; Thorsen, Frits

    2015-01-01

    To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T1 relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe. PMID:26370983

  12. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit.

    PubMed

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar

    2016-01-01

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth-dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8MeV proton, 190.1MeV alpha, and 1060MeV carbon ions that have the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam׳s Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.

  13. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells.

    PubMed

    Horváthová, Katarína; Chalupa, Ivan; Sebová, Lívia; Tóthová, Darina; Vachálková, Anna

    2005-01-03

    Multifunctional effects of flavonoids are reported to be markedly connected with their structure and the functional groups in the molecule. The important role in the activity play C2-C3 double bond, hydroxyl group at C3 and the number of hydroxyl groups at phenyl ring (B). In this paper, the DNA protective free radical scavenging potential of quercetin (QU) and luteolin (LU) against H2O2 and their clastogenic effect alone and in combination with melphalan (MH) were investigated in human melanoma HMB-2 cells. Elevated frequency of chromosomal aberrations induced by MH, that at high doses have shown a variety of toxic side effects, was statistically decreased by studied flavonoids regarding to control (QU at the concentration of 50 microM and LU already at the concentration of 20 microM). The results concerning DNA protective potential against free radicals in HMB-2 cells demonstrated that QU and LU have significant effect in dose dependent manner. The percentage of QU protective effect is 40% at the concentration 20 microM, resp. 80% at the concentration 100 microM. Comparable values were obtained with LU. Results are correlated to their structural arrangement and organization of the hydroxyl groups.

  14. Sunitinib treatment does not improve blood supply but induces hypoxia in human melanoma xenografts

    PubMed Central

    2012-01-01

    Background Antiangiogenic agents that disrupt the vascular endothelial growth factor pathway have been demonstrated to normalize tumor vasculature and improve tumor oxygenation in some studies and to induce hypoxia in others. The aim of this preclinical study was to investigate the effect of sunitinib treatment on the morphology and function of tumor vasculature and on tumor oxygenation. Methods A-07-GFP and R-18-GFP human melanoma xenografts grown in dorsal window chambers were used as preclinical tumor models. Morphologic parameters of tumor vascular networks were assessed from high-resolution transillumination images, and tumor blood supply time was assessed from first-pass imaging movies recorded after a bolus of 155 kDa tetramethylrhodamine isothiocyanate-labeled dextran had been administered intravenously. Tumor hypoxia was assessed from immunohistochemical preparations of the imaged tissue by use of pimonidazole as a hypoxia marker. Results Sunitinib treatment reduced vessel densities, increased vessel segment lengths, did not affect blood supply times, and increased hypoxic area fractions. Conclusion Sunitinib treatment did not improve vascular function but induced hypoxia in A-07-GFP and R-18-GFP tumors. PMID:22947392

  15. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis.

    PubMed

    Legg, James; Jensen, Uffe B; Broad, Simon; Leigh, Irene; Watt, Fiona M

    2003-12-01

    Human interfollicular epidermis is renewed by stem cells that are clustered in the basal layer in a patterned, non-random distribution. Stem cells can be distinguished from other keratinocytes by high expression of beta1 integrins and lack of expression of terminal differentiation markers; they divide infrequently in vivo but form actively growing colonies in culture. In a search for additional stem cell markers, we observed heterogeneous epidermal expression of melanoma chondroitin sulphate proteoglycan (MCSP). MCSP was expressed by those keratinocytes with the highest beta1 integrin levels. In interfollicular epidermis, expression was confined to non-cycling cells and, in culture, to self-renewing clones. However, fluorescence-activated cell sorting on the basis of MCSP and beta1 integrin expression gave no more enrichment for clonogenic keratinocytes than sorting for beta1 integrins alone. To interfere with endogenous MCSP, we retrovirally infected keratinocytes with a chimera of the CD8 extracellular domain and the MCSP cytoplasmic domain. CD8/MCSP did not affect keratinocyte proliferation or differentiation but the cohesiveness of keratinocytes in isolated clones or reconstituted epidermal sheets was greatly reduced. CD8/MCSP caused stem cell progeny to scatter without differentiating. CD8/MCSP did not alter keratinocyte motility but disturbed cadherin-mediated cell-cell adhesion and the cortical actin cytoskeleton, effects that could be mimicked by inhibiting Rho. We conclude that MCSP is a novel marker for epidermal stem cells that contributes to their patterned distribution by promoting stem cell clustering.

  16. Radiolabeled porphyrin versus gallium-67 citrate for the detection of human melanoma in athymic mice

    SciTech Connect

    Maric, N.; Chan, S. Ming; Hoffer, P.B.; Duray, P.

    1987-01-01

    We performed the biodistribution and imaging studies of /sup 111/In and /sup 67/Ga labeled tetra(4-N-methylpyridyl) porphine, (T4NMPYP), and compared it to that of /sup 67/Ga citrate in athymic mice bearing a human melanoma xenograft. The biodistribution results of both /sup 111/In and /sup 67/Ga labeled T4NMPYP (3, 6, 24, and 48 hours) were similar but differed from that of /sup 67/Ga citrate (48 hours). The optimum tumor uptake of both radiolabeled porphyrins was at 6 hours postinjection and was lower than the tumor uptake of /sup 67/Ga citrate at 48 hours postinjection. Kidney was the only organ showing higher uptake of radiolabeled porphyrin compared to that of /sup 67/Ga citrate. The imaging studies performed with /sup 111/In T4NMPYP and /sup 67/Ga citrate correspond to the biodistribution results. Osteomyelitis present in one mouse showed good localization of /sup 111/In T4NMPYP. 15 refs., 3 figs., 5 tabs.

  17. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit

    SciTech Connect

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar

    2016-07-01

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that have the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.

  18. Etiology of melanoma.

    PubMed

    Koh, H K; Sinks, T H; Geller, A C; Miller, D R; Lew, R A

    1993-01-01

    Although the precise etiology of melanoma remains unknown, much data link sunlight to melanoma. The imperfect evidence associating sun exposure (particularly UVB radiation) with melanoma emerges from human data, obviating problems inherent in extrapolation from animal and other models. However, the mechanism by which sunlight might possibly initiate or promote melanoma remains obscure. Some clarification should emerge from the potential isolation of genes that carry susceptibility to melanoma in families prone to the disease; such work could serve as a basis to distinguish genetic and environmental influences in melanoma [167]. Continued studies of faulty DNA repair in XP patients may elucidate the steps in mutagenesis and carcinogenesis. Future case-control studies must address the limits on the accuracy of recall and the limits on statistical methods to separate the cluster of phenotypic risk needed in determining biologically effective dose. Animal and in vitro studies must contribute more insight. Further research in the South American opossum models appears promising [72]. Although ozone depletion has been documented, there has been little definitive evidence of subsequent increase of UVB at the Earth's surface. Nevertheless, the threat posed by ozone depletion deserves continued environmental action and public education. The role of precursor lesions, particularly dysplastic nevi/atypical moles, must be clarified with future research. The distribution of melanoma among various work forces suggests that occupational risk factors may play an important role in the etiology of this disease [168-170]. The consistent reports of excess melanoma among accountants, clerical workers, professional workers, and teachers deserve further study. Furthermore, evidence of excesses in printing and press, petrochemical, and the telecommunications industries require follow-up. Carefully planned studies that account for nonoccupational risk factors are recommended. Research over

  19. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma

    PubMed Central

    Jafarnejad, Seyed Mehdi; Sjoestroem, Cecilia; Martinka, Magdalena; Li, Gang

    2016-01-01

    Aberrant expression of miRNAs and their biogenesis factors has been frequently observed in different types of cancer. We recently reported that expression of DICER1 is reduced in metastatic melanoma. Nevertheless, so far very little is known about the expression pattern of other miRNA biogenesis factors in this type of malignancy. Here, we investigated the expression pattern of DROSHA in a large set of melanocytic lesions by tissue microarray and immunohistochemistry (n = 409). We found that nuclear expression of DROSHA is markedly reduced in the early stages of melanoma progression (P = 0.0001) and is inversely correlated with melanoma thickness (P = 0.0001), AJCC stages (P = 0.0001), and ulceration status (P = 0.002). We also confirmed the reduced expression of nuclear DROSHA by a second specific antibody raised against a different region of the DROSHA protein. In addition, we observed that the reduced nuclear expression of DROSHA during melanoma progression is accompanied by an increased cytoplasmic expression of this protein (P = 0.0001). Finally, we found that expression pattern of DROSHA varies from that of DICER1 and concomitant loss of expression of both DICER1 and DROSHA confers the worse outcome for melanoma patients. Our results demonstrate a reduced nuclear expression of DROSHA which further highlights a perturbed miRNA biogenesis pathway in melanoma. In addition, the aberrant subcellular localization of DROSHA indicates possible deregulation in the mechanisms responsible for its proper localization in the nucleus. PMID:23370771

  20. Gene expression analysis of terminal differentiation of human melanoma cells highlights global reductions in cell cycle-associated genes.

    PubMed

    Huynh, Kim Mai; Kim, Gyoungmi; Kim, Dong-Joon; Yang, Suk-Jin; Park, Seong-min; Yeom, Young-Il; Fisher, Paul B; Kang, Dongchul

    2009-03-15

    Defects in differentiation are frequently observed in cancer cells. By appropriate treatment specific tumor cell types can be induced to terminally differentiate. Metastatic HO-1 human melanoma cells treated with IFN-beta plus mezerein (MEZ) undergo irreversible growth arrest and terminal differentiation followed by apoptosis. In order to define the molecular changes associated with this process, changes in gene expression were analyzed by cDNA microarray hybridization and by semi-quantitative and quantitative RT-PCRs of representative 44 genes. The expression of 210 genes was changed more than two-fold at either 8 or 24 h post-treatment (166 up and 44 down). Major biological processes associated with the up-regulated genes were response to endogenous/exogenous stimuli (38%), cell proliferation (13%), cell death (16%) and development (30%). Approximately 34% of the down-regulated genes were associated with cell cycle, 9% in DNA replication and 11% in chromosome organization, respectively. Suppression of cell cycle associated genes appeared to directly correlate with growth arrest observed in the terminal differentiation process. Expression of Calpain 3 (CAPN3) variant 6 was suppressed by the combined treatment and maintained high in various melanoma cell lines. However, over-expression of the CAPN3 did not significantly affect growth kinetics and cell viability, suggesting that up-regulation of CAPN3 alone may not be a causative, but an associated change with melanoma development. This analysis provides further insights into the spectrum of up-regulated and the first detailed investigation of down-regulated gene changes associated with and potentially causative of induction of loss of proliferative capacity and terminal differentiation in human melanoma cells.

  1. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  2. Synthesis and characterization of a melanoma-targeted fluorescence imaging probe by conjugation of a melanocortin 1 receptor (MC1R) specific ligand.

    PubMed

    Tafreshi, Narges K; Huang, Xuan; Moberg, Valerie E; Barkey, Natalie M; Sondak, Vernon K; Tian, Haibin; Morse, David L; Vagner, Josef

    2012-12-19

    The incidence of malignant melanoma is rising more rapidly than that of any other cancer in the United States. The melanocortin 1 receptor (MC1R) is overexpressed in most human melanoma metastases, thus making it a promising target for imaging and therapy of melanomas. We have previously reported the development of a peptidomimetic ligand with high specificity and affinity for MC1R. Here, we have conjugated near-infrared fluorescent dyes to the C-terminus of this ligand via lysine-mercaptopropionic acid linkers to generate MC1R specific optical probes (MC1RL-800, 0.4 nM K(i); and MC1RL-Cy5, 0.3 nM K(i)). Internalization of the imaging probe was studied in vitro by fluorescence microscopy using engineered A375/MC1R cells and B16F10 cells with endogenous MC1R expression. The in vivo tumor targeting of MC1RL-800 was evaluated by intravenous injection of probe into nude mice bearing bilateral subcutaneous A375 xenograft tumors with low MC1R expression and engineered A375/MC1R tumors with high receptor expression. Melanotic B16F10 xenografts were also studied. Fluorescence imaging showed that the agent has higher uptake values in tumors with high expression compared to low (p < 0.05), demonstrating the effect of expression levels on image contrast-to-noise. In addition, tumor uptake was significantly blocked by coinjection of excess NDP-α-MSH peptide (p < 0.05). In conclusion, the MC1R-specific imaging probe developed in this study displays excellent potential for the intraoperative detection of regional node involvement and for margin detection during melanoma metastasis resection.

  3. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma.

    PubMed

    Wang, Jin; Chen, Jianjun; Miller, Duane D; Li, Wei

    2014-01-01

    Acquired clinical resistance to vemurafenib, a selective BRAF(V600E) inhibitor, arises frequently after short-term chemotherapy. Because inhibitions of targets in the RAF-MEK-ERK pathway result in G(0)-G(1) cell-cycle arrest, vemurafenib-resistant cancer cells are expected to escape this cell-cycle arrest and progress to the subsequent G(2)-M phase. We hypothesized that a combined therapy using vemurafenib with a G(2)-M phase blocking agent will trap resistant cells and overcome vemurafenib resistance. To test this hypothesis, we first determined the combination index (CI) values of our novel tubulin inhibitor ABI-274 and vemurafenib on parental human A375 and MDA-MB-435 melanoma cell lines to be 0.32 and 0.1, respectively, suggesting strong synergy for the combination. We then developed an A375RF21 subline with significant acquired resistance to vemurafenib and confirmed the strong synergistic effect. Next, we studied the potential mechanisms of overcoming vemurafenib resistance. Flow cytometry confirmed that the combination of ABI-274 and vemurafenib synergistically arrested cells in the G(1)-G(2)-M phase, and significantly increased apoptosis in both parental A375 and the vemurafenib-resistant A375RF21 cells. Western blot analysis revealed that the combination treatment effectively reduced the level of phosphorylated and total AKT, activated the apoptosis cascade, and increased cleaved caspase-3 and cleaved PARP, but had no significant influence on the level of extracellular signal-regulated kinase (ERK) phosphorylation. Finally, in vivo coadministration of vemurafenib with ABI-274 showed strong synergistic efficacy in the vemurafenib-resistant xenograft model in nude mice. Overall, these results offer a rational combination strategy to significantly enhance the therapeutic benefit in patients with melanoma who inevitably become resistant to current vemurafenib therapy.

  4. Effects of antimetabolites on adenovirus replication in sensitive and resistant human melanoma cell lines.

    PubMed

    Musk, P; Stowers, A; Parsons, P G

    1990-02-15

    Methotrexate (MTX), 6-thioguanine (6-TG) and cytosine arabinoside (ara-C) inhibited the replication of adenovirus (viral capacity) more in drug-sensitive than in resistant human melanoma cell lines. By comparison, inhibition of cellular DNA and RNA synthesis after short treatment periods (less than 48 hr) was not a good predictor of cellular sensitivity. MTX, an inhibitor of de novo nucleotide synthesis, was most effective when added to cells just before infection with virus and inhibited viral capacity at doses 10-1000-fold lower than those required to affect cell survival. The MTX-sensitive cell lines, members of a DNA repair deficient group sensitive also to killing by methylating agents (the Mer- phenotype), were not deficient in dihydrofolate reductase but exhibited DNA fragmentation after treatment with MTX for 48 hr. 6-TG and ara-C, inhibitors of purine and pyrimidine salvage, were most inhibitory to viral capacity when added greater than 36 hr before virus infection and were less effective than MTX (doses 5-7-fold and 4-24-fold higher than for cell survival respectively). No correlation was found between MTX sensitivity and sensitivity to 6-TG or ara-C. These results indicate that (i) inhibition of viral capacity is a more comprehensive test of antimetabolite cytotoxicity than inhibition of cellular DNA or RNA synthesis; (ii) the viral capacity assay correctly predicts cellular sensitivity to MTX, 6-TG and ara-C and therefore has potential for application to primary cultures of human tumours; and (iii) MTX-sensitive cell lines and adenovirus replication rely heavily on de novo nucleotide synthesis, which in Mer- cells appears to be linked to a DNA repair defect as yet undefined.

  5. Discrepancy Between Tumor Antigen Distribution and Radiolabeled Antibody Binding in a Nude Mouse Xenograft Model of Human Melanoma.

    PubMed

    Kim, Yong-Il; Paeng, Jin Chul; Cheon, Gi Jeong; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2017-04-01

    Biodistribution of antibodies is vital to successful immunoscintigraphy/immunotherapy, and it is assumed to be similar to antigen distribution. We measured and compared the binding pattern of radiolabeled antibody to tissue antigen distribution in a nude mouse xenograft model of human melanoma. We transplanted 10(7) FEM-XII human melanoma cells into the right flank of five nude mice. For the control, we transplanted 5 × 10(6) LS174T human colon cancer cells into the left flank. Two weeks later, 10 μCi of (131)I-labeled melanoma-associated 96.5 monoclonal antibody (targeting p97 antigen) was intravenously injected. Three days later, we sacrificed the mice and evaluated 96.5 antibody binding and concentration in the tumors by ex vivo quantitative autoradiography (QAR). Two months later, we incubated adjacent tumor tissue slices in various concentrations of (125)I-labeled 96.5 MoAb and evaluated the distribution/concentration of p97 antigen by in vitro QAR. p97 antigen distribution was homogeneous in the tumors (total antigen concentration [Bmax] = 17.36-38.36 pmol/g). In contrast, radiolabeled 96.5 antibody binding was heterogenous between location within the tumor (estimated bound antigen concentration = 0.7-6.6 pmol/g). No quantifiable parameters were found to be related with radiolabeled antibody binding and tumor antigen distribution. Antibody-bound tumor antigen to total antigen ratios ranged between 2% and 38%. Heterogeneous features of target antibody binding were observed in contrast to relatively homogenous feature of tumor antigen. We did not identify any correlations between p97 antigen distribution and 96.5 antibody binding in melanoma tissue. Radiolabeled 96.5 antibody binding patterns within melanoma cannot be predicted based on p97 antigen distribution in the tumor, which needs to be further studied with several other methods and more subjects in the future.

  6. Role of versican V0/V1 and CD44 in the regulation of human melanoma cell behavior.

    PubMed

    Hernández, Daniel; Miquel-Serra, Laia; Docampo, Maria José; Marco-Ramell, Anna; Bassols, Anna

    2011-02-01

    Versican is a hyaluronan-binding, large extracellular matrix chondroitin sulfate proteoglycan whose expression is increased in malignant melanoma. Binding to hyaluronan allows versican to indirectly interact with the hyaluronan cell surface receptor CD44. The aim of this work was to study the effect of silencing the large versican isoforms (V0 and V1) and CD44 in the SK-mel-131 human melanoma cell line. Versican V0/V1 or CD44 silencing caused a decrease in cell proliferation and migration, both in wound healing assays and in Transwell chambers. Versican V0/V1 silencing also caused an increased adhesion to type I collagen, laminin and fibronectin. These results support the proposed role of versican as a proliferative, anti-adhesive and pro-migratory molecule. On the other hand, CD44 silencing caused a decrease in cell adhesion to vitronectin, fibronectin and hyaluronan. CD44 silencing inhibited the binding of a FITC-hyaluronan complex to the cell surface and its internalization into the cytoplasm. Our results indicate that both versican and CD44 play an important role regulating the behavior of malignant melanoma cells.

  7. The effect of blue light exposure and use of intraocular lenses on human uveal melanoma cell lines.

    PubMed

    Marshall, Jean-Claude A; Gordon, Keith D; McCauley, Cristin S; de Souza Filho, João Pessoa; Burnier, Miguel N

    2006-12-01

    Little is known about the effect of blue light on inducing melanocytic malignant transformation. We chose to investigate the effect of blue light (475 nm wavelength) on the proliferation rates of uveal melanoma cells. In addition, we tested two different intraocular lenses to determine the possible effects of ultraviolet absorbing and blue light filtering intraocular lenses on the changes in proliferation. Four human