Sample records for a4 disodium phosphate

  1. Efficacy and safety of disodium ascorbyl phytostanol phosphates in men with moderate dyslipidemia

    PubMed Central

    Trip, Mieke D.; Pritchard, P. Haydn; Tam, Patrick; Lukic, Tatjana; de Sain-van der Velden, Monique G.; de Barse, Martina; Kastelein, John J. P.

    2008-01-01

    Objective This study investigated the efficacy, safety, tolerability, and pharmacokinetics of a novel cholesterol absorption inhibitor, FM-VP4, comprising disodium ascorbyl sitostanol phosphate (DASP) and disodium ascorbyl campestanol phosphate (DACP). Methods In phase 1, 30 men received a single dose of 100, 200, 400, 800, 1,600, or 2,000 mg FM-VP4 or placebo. In phase 2, 100 men were treated with 100, 200, 400, or 800 mg/day of FM-VP4 or placebo for 4 weeks. Results The drug was well tolerated at each single or multiple dose level. After 4 weeks of treatment, low-density lipoprotein cholesterol (LDL-C) levels changed by 2.7% in the placebo group and by 2.9%, −4.2%, and −4.6% in the 100, 200, and 800 mg/day groups, respectively, which was not statistically significant. However, 400 mg/day of FM-VP4 significantly decreased LDL-C by 6.5% (p=0.02). Phase 1 showed that DACP and DASP were absorbed into plasma with a median tmax of 12 h for both components, and clearance was slow with a mean t1/2λ of 57 h. During 4 weeks of treatment, steady state was reached by approximately 8 days. Conclusion This study demonstrated that up to 800 mg/day of FM-VP4 is safe and well tolerated for at least 4 weeks. Furthermore, the higher doses significantly reduced LDL-C by 7% compared with baseline or by 10% compared with placebo, with the maximum effect reached at 400 mg/day. PMID:18320185

  2. 21 CFR 522.161 - Betamethasone acetate and betamethasone disodium phosphate aqueous suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... milligrams of dibasic sodium phosphate, 5 milligrams of sodium chloride, 0.1 milligram of disodium EDTA, 0.5 milligram of polysorbate 80, 9 milligrams of benzyl alcohol, 5 milligrams of sodium carboxymethylcellulose, 1.8 milligrams of methylparaben, 0.2 milligram of propylparaben, hydrochloric acid and/or sodium...

  3. 21 CFR 522.161 - Betamethasone acetate and betamethasone disodium phosphate aqueous suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... milligrams of dibasic sodium phosphate, 5 milligrams of sodium chloride, 0.1 milligram of disodium EDTA, 0.5 milligram of polysorbate 80, 9 milligrams of benzyl alcohol, 5 milligrams of sodium carboxymethylcellulose, 1.8 milligrams of methylparaben, 0.2 milligram of propylparaben, hydrochloric acid and/or sodium...

  4. 21 CFR 522.161 - Betamethasone acetate and betamethasone disodium phosphate aqueous suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... milligrams of dibasic sodium phosphate, 5 milligrams of sodium chloride, 0.1 milligram of disodium EDTA, 0.5 milligram of polysorbate 80, 9 milligrams of benzyl alcohol, 5 milligrams of sodium carboxymethylcellulose, 1.8 milligrams of methylparaben, 0.2 milligram of propylparaben, hydrochloric acid and/or sodium...

  5. 21 CFR 522.161 - Betamethasone acetate and betamethasone disodium phosphate aqueous suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Betamethasone acetate and betamethasone disodium phosphate aqueous suspension. 522.161 Section 522.161 Food and Drugs FOOD AND DRUG ADMINISTRATION... milligram of polysorbate 80, 9 milligrams of benzyl alcohol, 5 milligrams of sodium carboxymethylcellulose...

  6. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: dexamethasone phosphate disodium microparticles.

    PubMed

    Martín-Sabroso, Cristina; Tavares-Fernandes, Daniel Filipe; Espada-García, Juan Ignacio; Torres-Suárez, Ana Isabel

    2013-12-15

    In this work a protocol to validate analytical procedures for the quantification of drug substances formulated in polymeric systems that comprise both drug entrapped into the polymeric matrix (assay:content test) and drug released from the systems (assay:dissolution test) is developed. This protocol is applied to the validation two isocratic HPLC analytical procedures for the analysis of dexamethasone phosphate disodium microparticles for parenteral administration. Preparation of authentic samples and artificially "spiked" and "unspiked" samples is described. Specificity (ability to quantify dexamethasone phosphate disodium in presence of constituents of the dissolution medium and other microparticle constituents), linearity, accuracy and precision are evaluated, in the range from 10 to 50 μg mL(-1) in the assay:content test procedure and from 0.25 to 10 μg mL(-1) in the assay:dissolution test procedure. The robustness of the analytical method to extract drug from microparticles is also assessed. The validation protocol developed allows us to conclude that both analytical methods are suitable for their intended purpose, but the lack of proportionality of the assay:dissolution analytical method should be taken into account. The validation protocol designed in this work could be applied to the validation of any analytical procedure for the quantification of drugs formulated in controlled release polymeric microparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Creatine phosphate disodium salt protects against Dox-induced cardiotoxicity by increasing calumenin.

    PubMed

    Wang, Yu; Sun, Ying; Guo, Xin; Fu, Yao; Long, Jie; Wei, Cheng-Xi; Zhao, Ming

    2018-06-01

    Inhibiting endoplasmic reticulum stress (ERS)-induced apoptosis may be a new therapeutic target in cardiovascular diseases. Creatine phosphate disodium salt (CP) has been reported to have cardiovascular protective effect, but its effects on ERS are unknown. The aim of this study was to identify the mechanism by which CP exerts its cardioprotection in doxorubicin (Dox)-induced cardiomyocytes injury. In our study, neonatal rats cardiomyocytes (NRC) was randomly divided into control group, model group, and treatment group. The cell viability and apoptosis were detected. grp78, grp94, and calumenin of the each group were monitored. To investigate the role of calumenin, Dox-induced ERS was compared in control and down-regulated calumenin cardiomyocytes. Our results showed that CP decreased Dox-induced apoptosis and relieved ERS. We found calumenin increased in Dox-induced apoptosis with CP. ERS effector C/EBP homologous protein was down-regulated by CP and it was influenced by calumenin. CP could protect NRC by inhibiting ERS, this mechanisms may be associated with its increasing of calumenin.

  8. 21 CFR 73.3129 - Disodium 1-amino-4-[[4-[(2-bromo-1-oxoallyl)amino]-2-sulphonatophenyl]amino]-9,10-dihydro-9,10...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Disodium 1-amino-4-[[4-[(2-bromo-1-oxoallyl)amino... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3129 Disodium 1-amino-4-[[4-[(2-bromo-1...

  9. Yolk-Shell Porous Microspheres of Calcium Phosphate Prepared by Using Calcium L-Lactate and Adenosine 5'-Triphosphate Disodium Salt: Application in Protein/Drug Delivery.

    PubMed

    Ding, Guan-Jun; Zhu, Ying-Jie; Qi, Chao; Sun, Tuan-Wei; Wu, Jin; Chen, Feng

    2015-06-26

    A facile and environmentally friendly approach has been developed to prepare yolk-shell porous microspheres of calcium phosphate by using calcium L-lactate pentahydrate (CL) as the calcium source and adenosine 5'-triphosphate disodium salt (ATP) as the phosphate source through the microwave-assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk-shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk-shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as-prepared yolk-shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH-responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk-shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 21 CFR 573.360 - Disodium EDTA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.360 Disodium EDTA. The food additive disodium EDTA (disodium ethylenediaminetetraace- tate... food additive contains a minimum of 99 percent disodium ethylenediaminetetraacetate dihydrate...

  11. 21 CFR 573.360 - Disodium EDTA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.360 Disodium EDTA. The food additive disodium EDTA (disodium ethylenediaminetetraace- tate... food additive contains a minimum of 99 percent disodium ethylenediaminetetraacetate dihydrate...

  12. 21 CFR 573.360 - Disodium EDTA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.360 Disodium EDTA. The food additive disodium EDTA (disodium ethylenediaminetetraace- tate... food additive contains a minimum of 99 percent disodium ethylenediaminetetraacetate dihydrate...

  13. 21 CFR 573.360 - Disodium EDTA.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.360 Disodium EDTA. The food additive disodium EDTA (disodium ethylenediaminetetraace- tate... food additive contains a minimum of 99 percent disodium ethylenediaminetetraacetate dihydrate...

  14. 21 CFR 573.360 - Disodium EDTA.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.360 Disodium EDTA. The food additive disodium EDTA (disodium ethylenediaminetetraace- tate... food additive contains a minimum of 99 percent disodium ethylenediaminetetraacetate dihydrate...

  15. 21 CFR 73.3129 - Disodium 1-amino-4-[[4-[(2-bromo-1-oxoallyl)amino]-2-sulfonatophenyl]amino]-9,10-dihydro-9,10...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Disodium 1-amino-4-[[4-[(2-bromo-1-oxoallyl)amino]-2-sulfonatophenyl]amino]-9,10-dihydro-9,10-dioxoanthracene-2-sulfonate. 73.3129 Section 73.3129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF...

  16. 21 CFR 73.3129 - Disodium 1-amino-4-[[4-[(2-bromo-1-oxoallyl)amino]-2-sulfonatophenyl]amino]-9,10-dihydro-9,10...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Disodium 1-amino-4-[[4-[(2-bromo-1-oxoallyl)amino]-2-sulfonatophenyl]amino]-9,10-dihydro-9,10-dioxoanthracene-2-sulfonate. 73.3129 Section 73.3129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF...

  17. 21 CFR 73.2120 - Disodium EDTA-copper.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Disodium EDTA-copper. 73.2120 Section 73.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2120 Disodium EDTA-copper. (a) Identity. The...

  18. Controllable continuous sub-tenon drug delivery of dexamethasone disodium phosphate to ocular posterior segment in rabbit.

    PubMed

    Huang, Xuetao; Liu, Shaogang; Yang, Yezhen; Duan, Yiqin; Lin, Ding

    2017-11-01

    Corticosteroids have been used for treatment of posterior segment eye diseases, but the delivery of drug to the posterior segments is still a problem to resolve. In our study, we explore the feasibility of Sub-tenon's Controllable Continuous Drug Delivery to ocular posterior segment. Controllable continuous sub-tenon drug delivery (CCSDD) system, intravenous injections (IV) and sub-conjunctival injections (SC) were used to deliver dexamethasone disodium phosphate (DEXP) in rabbits, the dexamethasone concentration was measured in the ocular posterior segment tissue by Shimadzu LC-MS 2010 system at different time points in 24 h after first dose injection. Levels of dexamethasone were significantly higher at 12, 24 h in CCSDD than two other approaches, and at 3, 6 h in CCSDD than IV in vitreous body (p < 0.01); at 6, 12, 24 h in CCSDD than two other approaches, and at 1, 3 h in CCSDD than IV in retinal/choroidal compound (p < 0.01); at 3, 6, 12, 24 h in CCSDD than two other approaches, and at 1 h in CCSDD than IV in sclera (p < 0.05). The AUC 0-24 in CCSDD group is higher than two other groups in all ocular posterior segment tissue. Our results demonstrated that dexamethasone concentration could be sustained moderately higher in the posterior segment by CCSDD than SC and IV, indicating that CCSDD might be a therapeutic alternative to treat a variety of intractable posterior segment diseases.

  19. Suitability of oral administration of monosodium phosphate, disodium phosphate, and magnesium phosphate for the rapid correction of hypophosphatemia in cattle.

    PubMed

    Cohrs, Imke; Grünberg, Walter

    2018-05-01

    Hypophosphatemia is commonly associated with disease and decreased productivity in dairy cows particularly in early lactation. Oral supplementation with phosphate salts is recognized as suitable for the rapid correction of hypophosphatemia. Little information is available about the differences in efficacy between salts used for oral phosphorus supplementation. Comparison of efficacy of oral administration of NaH 2 PO 4 , Na 2 HPO 4 , and MgHPO 4 in treating hypophosphatemia in cattle. 12 healthy dairy cows in the fourth week of lactation in their second to fifth lactation. Randomized clinical study. Phosphorus deficient, hypophosphatemic cows underwent a sham treatment and were afterwards assigned to 1 of 3 treatments-NaH 2 PO 4 , Na 2 HPO 4 , or MgHPO 4 (each provided the equivalent of 60 g of phosphorus). Blood samples were obtained immediately before and repeatedly after treatment. Treatment with NaH 2 PO 4 and Na 2 HPO 4 resulted in rapid and sustained increases of plasma phosphate concentrations ([Pi]). Significant effects were apparent within 1 hour (NaH 2 PO 4 : P = .0044; Na 2 HPO 4 : P = .0077). Peak increments of plasma [Pi] of 5.33 mg/dL [5.26-5.36] and 4.30 mg/dL [3.59-4.68] (median and interquartile range) were reached after 7 and 6 hours in animals treated with NaPH 2 PO 4 and Na 2 HPO 4 , respectively, whereas treatment with MgHPO 4 led to peak increments 14 hours after treatment (3.19 mg/dL [2.11-4.04]). NaH 2 PO 4 and Na 2 HPO 4 are suitable to rapidly correct hypophosphatemia in cattle. Because of the protracted and weaker effect, MgHPO 4 cannot be recommended for this purpose. Despite important differences in solubility of NaH 2 PO 4 and Na 2 HPO 4 only small plasma [Pi] differences were observed after treatment. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  20. Synthesis and Characterization of a New Hydroquinone Derivative: Disodium p-Phenylene Diisostearyl Diphosphate.

    PubMed

    Hisama, Masayoshi; Matsuda, Sanae; Arai, Junichi; Masui, Katsunobu; Yamamura, Haruo

    2015-01-01

    A novel amphiphilic hydroquinone derivative having a C18 alkyl chain phosphate attached to the hydroquinone (HQ) moiety was chemically synthesized. The thermal stability, distribution between organic and aqueous phases, and in vitro skin permeability were evaluated. This HQ derivative was identified as disodium p-phenylene diisostearyl diphosphate (HQ-2P2IS) by UV, infrared, mass, and nuclear magnetic resonance spectroscopies. Product HQ-2P2IS was obtained in good yield (56%), and it exhibited satisfactory stability in neutral solution, comparable to that of HQ. Its skin permeability was also higher than that of HQ. HQ-2P2IS is susceptible to enzymatic hydrolysis by tissue phosphatase, which releases HQ in the skin tissues. Thus, these characteristics indicate that the novel hydroquinone derivative presented herein, i.e., HQ-2P2IS, may serve as an effective pro-hydroquinone for skin care applications.

  1. Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.

    PubMed

    Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin

    2009-01-01

    Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.

  2. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  3. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  4. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  5. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  6. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  7. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin

    2013-07-01

    The effect of disodium EDTA, as an additive, on the crystallization of struvite and carbonate apatite was studied. The growth of struvite crystals and carbonate apatite occurred in the solution of artificial urine at 37 °C and at the condition emulating real urinary tract infection. The results demonstrate that the addition of disodium EDTA increases the induction time and decreases the growth efficiency compared to the baseline (without disodium EDTA). The struvite crystal mean and median diameters were found to decrease in the presence of disodium EDTA but the crystal morphology and habit remain almost unchanged. Disodium EDTA has demonstrated its potential to be further investigated in the presence of bacteria and in vivo conditions.

  9. 21 CFR 73.2120 - Disodium EDTA-copper.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2120 Disodium EDTA-copper. (a) Identity. The... in the coloring of shampoos which are cosmetics. (d) Labeling requirements. The labeling of the color...

  10. 21 CFR 73.2120 - Disodium EDTA-copper.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2120 Disodium EDTA-copper. (a) Identity. The... in the coloring of shampoos which are cosmetics. (d) Labeling requirements. The labeling of the color...

  11. 21 CFR 73.2120 - Disodium EDTA-copper.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2120 Disodium EDTA-copper. (a) Identity. The... in the coloring of shampoos which are cosmetics. (d) Labeling requirements. The labeling of the color...

  12. 21 CFR 73.2120 - Disodium EDTA-copper.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2120 Disodium EDTA-copper. (a) Identity. The... in the coloring of shampoos which are cosmetics. (d) Labeling requirements. The labeling of the color...

  13. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... levels prescribed, calculated as anhydrous calcium disodium EDTA: Food Limitation (parts per million) Use Aqueous multivitamin preparations 150 With iron salts as a stabilizer for vitamin B 12 in liquid... accelerator with sodium ascorbate or ascorbic acid. Dressings, nonstandardized 75 Preservative. French...

  14. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... following foods at not to exceed the levels prescribed, calculated as anhydrous calcium disodium EDTA: Food... vitamin B 12 in liquid multivitamin preparations. Canned black-eyed peas 145 Promote color retention... sausage 36 As a cure accelerator with sodium ascorbate or ascorbic acid. Dressings, nonstandardized 75...

  15. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... following foods at not to exceed the levels prescribed, calculated as anhydrous calcium disodium EDTA: Food... vitamin B 12 in liquid multivitamin preparations. Canned black-eyed peas 145 Promote color retention... sausage 36 As a cure accelerator with sodium ascorbate or ascorbic acid. Dressings, nonstandardized 75...

  16. Natural-abundance 17O NMR spectra of some inorganic and biologically important phosphates

    NASA Astrophysics Data System (ADS)

    Gerothanassis, Ioannis P.; Sheppard, Norman

    A number of optimization techniques were employed to obtain 17O NMR spectra at natural abundance for a variety of inorganic and orgnic phosphates and polyphosphates. 17O chemical shifts and some JPO coupling constants are reported for the orthophosphate series of ions from H 3PO 4 to PO 43-, the pyrophosphate ion, P 2O 74-, the linear tripolyphosphate ion, P 3O 105-, and the cyclic trimetaphosphate ion, P 3O 93-; and for disodium DL-α-glycerophosphate and monosodium adenosine monophosphate. 17O- depleted water enables much improved results to be obtained in acqueous solutions.

  17. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution.

    PubMed

    Well, Lennart; Rausch, Vanessa Hanna; Adam, Gerhard; Henes, Frank Oliver; Bannas, Peter

    2017-07-01

    Purpose  Varying frequencies (5 - 18 %) of contrast-related transient severe motion (TSM) imaging artifacts during gadoxetate disodium-enhanced arterial phase liver MRI have been reported. Since previous reports originated from the United States and Japan, we aimed to determine the frequency of TSM at a German institution and to correlate it with potential risk factors and previously published results. Materials and Methods  Two age- and sex-matched groups were retrospectively selected (gadoxetate disodium n = 89; gadobenate dimeglumine n = 89) from dynamic contrast-enhanced MRI examinations in a single center. Respiratory motion-related artifacts in non-enhanced and dynamic phases were assessed independently by two readers blinded to contrast agents on a 4-point scale. Scores of ≥ 3 were considered as severe motion artifacts. Severe motion artifacts in arterial phases were considered as TSM if scores in all other phases were < 3. Potential risk factors for TSM were evaluated via logistic regression analysis. Results  For gadoxetate disodium, the mean score for respiratory motion artifacts was significantly higher in the arterial phase (2.2 ± 0.9) compared to all other phases (1.6 ± 0.7) (p < 0.05). The frequency of TSM was significantly higher with gadoxetate disodium (n = 19; 21.1 %) than with gadobenate dimeglumine (n = 1; 1.1 %) (p < 0.001). The frequency of TSM at our institution is similar to some, but not all previously published findings. Logistic regression analysis did not show any significant correlation between TSM and risk factors (all p > 0.05). Conclusion  We revealed a high frequency of TSM after injection of gadoxetate disodium at a German institution, substantiating the importance of a diagnosis-limiting phenomenon that so far has only been reported from the United States and Japan. In accordance with previous studies, we did not identify associated risk factors for TSM. Key Points:

  18. Synthesis of methylene- and difluoromethylenephosphonate analogues of uridine-4-phosphate and 3-deazauridine-4-phosphate.

    PubMed

    Taylor, Scott D; Mirzaei, Farzad; Sharifi, Ali; Bearne, Stephen L

    2006-12-08

    Cytidine triphosphate synthetase (CTPS) catalyzes the formation of cytidine triphosphate from glutamine, uridine-5'-triphosphate (UTP), and adenosine-5'-triphosphate. Inhibitors of CTPS are of interest because of their potential as therapeutic agents. One approach to potent enzyme inhibitors is to use analogues of high energy intermediates formed during the reaction. The CTPS reaction proceeds via the high energy intermediate UTP-4-phosphate (UTP-4-P). Four novel analogues of uridine-4-phosphate (U-4-P) and 3-deazauridine-4-phosphate (3-deazaU-4-P) were synthesized in which the labile phosphate ester oxygen was replaced with a methylene and difluoromethylene group. The methylene analogue of U-4-P, compound 1, was prepared by a reaction of the sodium salt of tert-butyl diethylphosphonoacetate with protected, 4-O-activated uridine followed by acetate deprotection and decarboxylation. It was found that this compound undergoes relatively facile dephosphonylation presumably via a metaphosphate intermediate. The difluoromethylene derivative, compound 2, was prepared by electrophilic fluorination of protected 1. This compound was stable and did not undergo dephosphonylation. Synthesis of the methylene analogue of 3-deazaU-4-P, compound 3, was achieved by ribosylation of protected 4-(phosphonomethyl)-2-hydroxypyridine. Electrophilic fluorination was also employed in the preparation of protected 4-(phosphonodifluoromethyl)-2-hydroxypyridine which was used as the key building block in the synthesis of difluoro derivative 4. These compounds represent the first examples of a nucleoside in which the base has been chemically modified with a methylene or difluormethylenephosphonate group.

  19. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.

    PubMed

    Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F

    2002-09-01

    Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.

  20. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium EDTA. 172.135 Section 172.135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN.... Gefilte fish balls or patties in packing medium 1 50 Inhibit discoloration. Legumes (all cooked canned...

  1. 21 CFR 172.135 - Disodium EDTA.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Disodium EDTA. 172.135 Section 172.135 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN.... Gefilte fish balls or patties in packing medium 1 50 Inhibit discoloration. Legumes (all cooked canned...

  2. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  3. Aspen flakeboard treated with disodium octaborate tetrahydrate

    Treesearch

    Robert H. White; John Forsman; John R. Erickson

    2008-01-01

    In this project, we investigated mechanical properties and fire performance of aspen flakeboards manufactured with the fire-retardant chemical disodium octaborate tetrahydrate (DOT). Flakeboards were prepared using two levels of adhesive loading (5% and 7% methylene diphenyl diisocyanate (MDI)) and three levels of fire-retardant treatments (6%, 9%, and 12%). DOT is a...

  4. 21 CFR 172.120 - Calcium disodium EDTA.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium disodium EDTA. 172.120 Section 172.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Preservative. Fermented malt beverages 25 Antigushing agent. French dressing 75 Preservative. Legumes (all...

  5. The Hidden Side of Disodium Cromolyn: from Mast Cell Stabilizer to an Angiogenic Factor and Antitumor Agent.

    PubMed

    Cimpean, Anca Maria; Raica, Marius

    2016-12-01

    Scattered data suggested that disodium cromolyn, well known as a mast cell stabilizer shows some effects on tumor cells and tumor-associated newly formed vascular networks. Most of these studies used tumor cell lines assessed by in vitro studies. Nor disodium cromolyn effects on melanoma cell lines were studied yet, neither its influence on recruited tumor blood vessels or angiogenic growth factors expression. We designed here a study regarding disodium cromolyn effects on A375 melanoma tumor cells implanted on chick embryo chorioallantoic membrane (CAM) and on blood vessels recruited by the experimental melanoma in the absence of mast cells, knowing that within CAM, the existence of mast cells are not certified yet. We also assessed the role of disodium cromolyn on the expression of several angiogenic growth factors. Disodium cromoglycate differentially acts on tumor cells and blood vessels. Extensive necrotic areas of experimental melanoma together with an increased number of peritumor blood vessels were observed in treated specimens as compared with untreated tumors. Disodium cromolyn inhibited VEGF and PDGF-BB expression, and had no effects on EG VEGF expression between treated and non treated specimens in a mast cells free microenvironment. Our results sustain the direct antitumor effects of sodium cromolyn and suggest the involvement of several growth factors in the recruitment of tumor vessels by A375 melanoma tumor cells. The expression of growth factors is differentially influenced by sodium cromolyn treatment.

  6. 21 CFR 172.120 - Calcium disodium EDTA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium disodium EDTA. 172.120 Section 172.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... malt beverages 25 Antigushing agent. French dressing 75 Preservative. Legumes (all cooked canned, other...

  7. Experimental Determination of Solubilities of Sodium Polyborates In MgCl 2 Solutions: Solubility Constant of Di-Sodium Hexaborate Tetrahydrate, and Implications For the Diagenetic Formation of Ameghinite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yongliang; Kirkes, Leslie; KNOX, Jandi

    In this paper, solubility measurements were conducted for sodium polyborates in MgCl 2 solutions at 22.5 ± 0.5 °C. According to solution chemistry and XRD patterns, di-sodium tetraborate decahydrate (borax) dissolves congruently, and is the sole solubility-controlling phase, in a 0.01 mol/kg MgCl 2 solution: Na 2B 4O 7•10H 2O(cr) ⇌ 2Na + + 4B(OH) 4 + 2H + + H 2O(l). However, in a 0.1 mol/kg MgCl 2 solution borax dissolves incongruently and is in equilibrium with di-sodium hexaborate tetrahydrate: 2Na 2B 6O 10•4H 2O(cr) + 2Na + + 23H 2O(l) ⇌ 3Na 2B 4O 7•10H 2O(cr) + 2Hmore » +. In this study, the equilibrium constant (log K 0) for Reaction 2 at 25 °C and infinite dilution was determined to be –16.44 ± 0.13 (2σ) based on the experimental data and the Pitzer model for calculations of activity coefficients of aqueous species. In accordance with the log K 0 for Reaction 1 from a previous publication from this research group, and log K 0 for Reaction 2 from this study, the equilibrium constant for dissolution of di-sodium hexaborate tetrahydrate at 25 °C and at infinite dilution, Na 2B 6O 10•4H 2O(cr) + 10H 2O(l) ⇌ 2Na + + 6B(OH) 4 - + 4H + was derived to be –45.42 ± 0.16 (2σ). The equilibrium constants determined in this study can find applications in many fields. For example, in the field of nuclear waste management, the formation of di-sodium hexaborate tetrahydrate in brines containing magnesium will decrease borate concentrations, making less borate available for interactions with Am(III). In the field of experimental investigations, based on the equilibrium constant for Reaction 2, the experimental systems can be controlled in terms of acidity around neutral pH by using the equilibrium assemblage of borax and di-sodium hexaborate tetrahydrate at 25 °C. As salt lakes and natural brines contain both borate and magnesium as well as sodium, the formation of sodium hexaborate tetrahydrate may influence the chemical evolution of salt lakes

  8. Experimental Determination of Solubilities of Sodium Polyborates In MgCl 2 Solutions: Solubility Constant of Di-Sodium Hexaborate Tetrahydrate, and Implications For the Diagenetic Formation of Ameghinite

    DOE PAGES

    Xiong, Yongliang; Kirkes, Leslie; KNOX, Jandi; ...

    2017-11-01

    In this paper, solubility measurements were conducted for sodium polyborates in MgCl 2 solutions at 22.5 ± 0.5 °C. According to solution chemistry and XRD patterns, di-sodium tetraborate decahydrate (borax) dissolves congruently, and is the sole solubility-controlling phase, in a 0.01 mol/kg MgCl 2 solution: Na 2B 4O 7•10H 2O(cr) ⇌ 2Na + + 4B(OH) 4 + 2H + + H 2O(l). However, in a 0.1 mol/kg MgCl 2 solution borax dissolves incongruently and is in equilibrium with di-sodium hexaborate tetrahydrate: 2Na 2B 6O 10•4H 2O(cr) + 2Na + + 23H 2O(l) ⇌ 3Na 2B 4O 7•10H 2O(cr) + 2Hmore » +. In this study, the equilibrium constant (log K 0) for Reaction 2 at 25 °C and infinite dilution was determined to be –16.44 ± 0.13 (2σ) based on the experimental data and the Pitzer model for calculations of activity coefficients of aqueous species. In accordance with the log K 0 for Reaction 1 from a previous publication from this research group, and log K 0 for Reaction 2 from this study, the equilibrium constant for dissolution of di-sodium hexaborate tetrahydrate at 25 °C and at infinite dilution, Na 2B 6O 10•4H 2O(cr) + 10H 2O(l) ⇌ 2Na + + 6B(OH) 4 - + 4H + was derived to be –45.42 ± 0.16 (2σ). The equilibrium constants determined in this study can find applications in many fields. For example, in the field of nuclear waste management, the formation of di-sodium hexaborate tetrahydrate in brines containing magnesium will decrease borate concentrations, making less borate available for interactions with Am(III). In the field of experimental investigations, based on the equilibrium constant for Reaction 2, the experimental systems can be controlled in terms of acidity around neutral pH by using the equilibrium assemblage of borax and di-sodium hexaborate tetrahydrate at 25 °C. As salt lakes and natural brines contain both borate and magnesium as well as sodium, the formation of sodium hexaborate tetrahydrate may influence the chemical evolution of salt lakes

  9. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  10. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  11. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  12. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  13. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Bacher, Adelbert; Fischer, Markus

    2004-07-01

    The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C atoms for the xylene moiety of riboflavin. Three of the four hydroxyl groups of ribulose 5-phosphate were coordinated by the metal ions. Based on crystallographic refinement, the metals were assigned as zinc and calcium, which were present in the crystallization buffer. Neither metal supports the enzymatic reaction. In the present study, the correctness of this assignment is assessed using anomalous diffraction data collected at the high-energy side of the zinc absorption edge (lambda = 1.2823 A). Only the three tentative zinc ions give strong peaks in an anomalous difference Fourier map (>20sigma), whereas the four tentative calcium ions do not show anomalous signals above the noise level. These results confirm the initial assignment. In addition, the resolution was improved to 1.55 A.

  14. Efficacy of didecyl dimethyl ammonium chloride (DDAC), disodium octaborate tetrahydrate (DOT), and chlorothalonil (CTL) against common mold fungi

    Treesearch

    Jessie A. Micales-Glaeser; Jeffrey D. Lloyd; Thomas L. Woods

    2004-01-01

    The fungitoxic properties of four fungicides, alone and in combination, against four different mold fungi commonly associated with indoor air quality problems were evaluated on two different wood species and sheetrock. The fungicides were chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) (CTL) in a 40.4% aqueous dispersion, disodium octaborate tetrahydrate (DOT) in...

  15. Nephrogenic Systemic Fibrosis Risk After Liver Magnetic Resonance Imaging With Gadoxetate Disodium in Patients With Moderate to Severe Renal Impairment

    PubMed Central

    Lauenstein, Thomas; Ramirez-Garrido, Francisco; Kim, Young Hoon; Rha, Sung Eun; Ricke, Jens; Phongkitkarun, Sith; Boettcher, Joachim; Gupta, Rajan T.; Korpraphong, Pornpim; Tanomkiat, Wiwatana; Furtner, Julia; Liu, Peter S.; Henry, Maren; Endrikat, Jan

    2015-01-01

    Objective The objective of this study was to assess the risk of gadoxetate disodium in liver imaging for the development of nephrogenic systemic fibrosis (NSF) in patients with moderate to severe renal impairment. Materials and Methods We performed a prospective, multicenter, nonrandomized, open-label phase 4 study in 35 centers from May 2009 to July 2013. The study population consisted of patients with moderate to severe renal impairment scheduled for liver imaging with gadoxetate disodium. All patients received a single intravenous bolus injection of 0.025-mmol/kg body weight of liver-specific gadoxetate disodium. The primary target variable was the number of patients who develop NSF within a 2-year follow-up period. Results A total of 357 patients were included, with 85 patients with severe and 193 patients with moderate renal impairment, which were the clinically most relevant groups. The mean time period from diagnosis of renal disease to liver magnetic resonance imaging (MRI) was 1.53 and 5.46 years in the moderate and severe renal impairment cohort, respectively. Overall, 101 patients (28%) underwent additional contrast-enhanced MRI with other gadolinium-based MRI contrast agents within 12 months before the start of the study or in the follow-up. No patient developed symptoms conclusive of NSF within the 2-year follow-up. Conclusions Gadoxetate disodium in patients with moderate to severe renal impairment did not raise any clinically significant safety concern. No NSF cases were observed. PMID:25756684

  16. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan

    2005-12-16

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, {beta}-myosin heavy chain, and {alpha}-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated proteinmore » kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway.« less

  17. Comparative in vitro studies on disodium EDTA effect with and without Proteus mirabilis on the crystallization of carbonate apatite and struvite

    NASA Astrophysics Data System (ADS)

    Prywer, Jolanta; Olszynski, Marcin; Torzewska, Agnieszka; Mielniczek-Brzóska, Ewa

    2014-06-01

    Effect of disodium EDTA (salt of ethylenediamine tetraacetic acid) on the crystallization of struvite and carbonate apatite was studied. To evaluate such an effect we performed an experiment of struvite and carbonate apatite growth from artificial urine. The crystallization process was induced by Proteus mirabilis to mimic the real urinary tract infection, which usually leads to urinary stone formation. The results demonstrate that disodium EDTA exhibits the effect against P. mirabilis retarding the activity of urease - an enzyme produced by these microorganisms. The spectrophotometric results demonstrate that, with and without P. mirabilis, the addition of disodium EDTA increases the induction time and decreases the growth efficiency compared to the baseline (without disodium EDTA). These results are discussed from the standpoint of speciation of complexes formed in the solution of artificial urine in the presence of disodium EDTA. The size of struvite crystals was found to decrease in the presence of disodium EDTA. However, struvite crystals are larger in the presence of bacteria while the crystal morphology and habit remain unchanged.

  18. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4.

    PubMed

    Tas, A C; Aldinger, F

    2005-02-01

    Poorly crystalline, apatitic calcium phosphate powders have been synthesized by slowly adding a Na- and K-containing reference phosphate solution with a pH value of 7.4 to an aqueous calcium nitrate solution at 37 degrees C. Nano-particulated apatitic powders obtained were shown to contain small amounts of Na and K, which render them more similar in chemical composition to that of the bone mineral. Precipitated and dried powders were found to exhibit self-hardening cement properties when kneaded in a mortar with a sodium citrate- and sodium phosphate-containing starter solution. The same phosphate solution used in powder synthesis was found to be able to partially convert natural, white and translucent marble pieces of calcite (CaCO3) into calcium-deficient hydroxyapatite upon aging the samples in that solution for 3 days at 60 degrees C. Sample characterization was performed by using scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, inductively-coupled plasma atomic emission spectroscopy, and simultaneous thermogravimetry and differential thermal analysis.

  19. Molecular studies on di-sodium tartrate molecule

    NASA Astrophysics Data System (ADS)

    Divya, P.; Jayakumar, S.; George, Preethamary; Shubashree, N. S.; Ahmed. M, Anees

    2015-06-01

    Structural characterization is important for the development of new material. The acoustical parameters such as Free Length, Internal Pressure have been measured from ultrasonic velocity, density for di sodium tartrate an optically active molecule at different temperatures using ultrasonic interferometer of frequency (2MHZ). The ultrasonic velocity increases with increase in concentration there is an increase in solute-solvent interaction. The stability constant had been calculated. SEM with EDAX studies has been done for Di-sodium tartrate an optically active molecule.

  20. Edetate Disodium-Based Treatment for Secondary Prevention in Post-Myocardial Infarction Patients.

    PubMed

    Lamas, Gervasio A; Issa, Omar M

    2016-02-01

    An abundance of data, known for decades, is available linking metals, such as lead and cadmium, with cardiovascular disease. However, the idea that these toxic metals could be a modifiable risk factor for atherosclerosis did not become apparent clinically until the completion of the Trial to Assess Chelation Therapy in 2012. This pivotal study was the first double-blind, randomized, controlled trial of its kind to demonstrate a clear improvement in cardiovascular outcomes with edetate disodium therapy in a secondary prevention, post-myocardial infarction population. This effect size was most striking in diabetic patients, where the efficacy of edetate disodium was comparable, if not superior, to that of current guideline-based therapies. Given the economic burden of diabetes and cardiovascular disease, the potential impact of this therapy could be enormous if the results of this study are replicated.

  1. Determination of adenosine disodium triphosphate (ATP) using oxytetracycline-Eu 3+ as a fluorescence probe by spectrofluorimetry

    NASA Astrophysics Data System (ADS)

    Hou, Faju; Miao, Yanhong; Jiang, Chongqiu

    2005-10-01

    A new spectrofluorimetric method was developed for determination of adenosine disodium triphosphate (ATP). We studied the interactions between oxytetracycline (OTC)-Eu 3+ complex and adenosine disodium triphosphate (ATP) by using UV-vis absorption and fluorescence spectra. Using oxytetracycline (OTC)-Eu 3+ as a fluorescence probe, under the optimum conditions, ATP can remarkably enhance the fluorescence intensity of the OTC-Eu 3+ complex at λ = 612 nm and the enhanced fluorescence intensity of Eu 3+ ion is in proportion to the concentration of ATP. Optimum conditions for the determination of ATP were also investigated. The linear ranges for ATP are 8.00 × 10 -8-1.50 × 10 -6 mol L -1 with detection limits of 2.67 × 10 -9 mol L -1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of ATP in samples. The mechanism of fluorescence enhancement between oxytetracycline (OTC)-Eu 3+ complex and ATP was also studied.

  2. Enhanced vasculotoxic metal excretion in post-myocardial infarction patients following a single edetate disodium-based infusion.

    PubMed

    Arenas, Ivan A; Navas-Acien, Ana; Ergui, Ian; Lamas, Gervasio A

    2017-10-01

    Toxic metals have been associated with cardiovascular mortality and morbidity. We have hypothesized that enhanced excretion of vasculotoxic metals might explain the positive results of the Trial to Assess Chelation Therapy (TACT). The purpose of this study was to determine whether a single infusion of the edetate disodium- based infusion used in TACT led to enhanced excretion of toxic metals known to be associated with cardiovascular events. Twenty six patients (post-MI, age > 50 years, serum creatinine ≤ 2.0mg/dL) were enrolled in this open-label study. Urinary levels of 20 toxic metals normalized to urinary creatinine concentrations were measured at baseline in overnight urine collections, for 6h following a placebo infusion of 500mL normal saline and 1.2% dextrose, and for 6h following a 3g edetate disodium-based infusion. Self-reported metal exposure, smoking status, food frequency, occupational history, drinking water source, housing and hobbies were collected at baseline by a metal exposure questionnaire. The mean age was 65 years (range 51-81 years). All patients were male. 50% had diabetes mellitus and 58% were former smokers. Mean (SD) serum creatinine was 0.95 (0.31) mg/dL. Toxic metals were detected in the baseline urine of >80% of patients. After placebo infusion there were no significant changes in total urinary metal levels. After edetate infusion, total urinary metal level increased by 71% compared to baseline (1500 vs. 2580µg/g creatinine; P<0.0001). The effect of edetate was particularly large for lead (3835% increase) and cadmium (633% increase). Edetate disodium-based infusions markedly enhanced the urinary excretion of lead and cadmium, toxic metals with established epidemiologic evidence and mechanisms linking them to coronary and vascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. 40 CFR 721.3820 - L-Glutamic acid, N-(1-oxododecyl)-, disodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Specific Chemical Substances § 721.3820 L-Glutamic acid, N-(1-oxododecyl)-, disodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic...

  4. Allergenic Ingredients in Personal Hygiene Wet Wipes.

    PubMed

    Aschenbeck, Kelly A; Warshaw, Erin M

    Wet wipes are a significant allergen source for anogenital allergic contact dermatitis. The aim of the study was to calculate the frequency of potentially allergenic ingredients in personal hygiene wet wipes. Ingredient lists from brand name and generic personal hygiene wet wipes from 4 large retailers were compiled. In the 54 personal hygiene wet wipes evaluated, a total of 132 ingredients were identified (average of 11.9 ingredients per wipe). The most common ingredients were Aloe barbadensis (77.8%), citric acid (77.8%), fragrance (72.2%), sorbic acid derivatives (63.0%), tocopherol derivatives (63.0%), glycerin (59.3%), phenoxyethanol (55.6%), disodium cocoamphodiacetate (53.7%), disodium ethylenediaminetetraacetic acid (EDTA) (42.6%), propylene glycol (42.6%), iodopropynyl butylcarbamate (40.7%), chamomile extracts (38.9%), sodium benzoate (35.2%), bronopol (22.2%), sodium citrate (22.2%), lanolin derivatives (20.4%), parabens (20.4%), polyethylene glycol derivatives (18.5%), disodium phosphate (16.7%), dimethylol dimethyl hydantoin (DMDM) (14.8%), and cocamidopropyl propylene glycol (PG)-dimonium chloride phosphate (11.1%). Of note, methylisothiazolinone (5.6%) was uncommon; methylchloroisothiazolinone was not identified in the personal hygiene wet wipes examined. There are many potential allergens in personal hygiene wet wipes, especially fragrance and preservatives.

  5. 21 CFR 181.29 - Stabilizers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Ammonium citrate. Ammonium potassium hydrogen phosphate. Calcium glycerophosphate. Calcium phosphate.... Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium stearate. Magnesium...

  6. 21 CFR 181.29 - Stabilizers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...

  7. 21 CFR 181.29 - Stabilizers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...

  8. 21 CFR 181.29 - Stabilizers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...

  9. 21 CFR 181.29 - Stabilizers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... glycerophosphate. Calcium phosphate. Calcium hydrogen phosphate. Calcium oleate. Calcium acetate. Calcium carbonate. Calcium ricinoleate. Calcium stearate. Disodium hydrogen phosphate. Magnesium glycerophosphate. Magnesium...

  10. [Treatment of Paget's disease with diphosphonate (disodium ethydronate)].

    PubMed

    Caniggia, A; Gennari, C; Guideri, R; Vattimo, A; Nardi, P

    1976-01-07

    16 patients suffering from Paget's disease were studied before, during and after 3 or 6 month treatment with disodium ethydronate (EHDP) per os. An appreciable improvement in pain symptomatology was noted and at times an evident improvement in audiometry; from the metabolic viewpoint there was a fall in serum alkaline phosphatase and urinary excretion of calcium and hydroxyproline. A study of radiocalcium kinetics demonstrated a reduction in the exchangeable calcium pool and the fractional turnover rate. Histological examination following needle biopsy of the iliac crest showed evident diminution in the active bone cell population (osteoclasts, osteoblasts) and, in certain cases, appearance of osteoid borders.

  11. Fabrication of carbonate apatite blocks from set gypsum based on dissolution-precipitation reaction in phosphate-carbonate mixed solution.

    PubMed

    Nomura, Shunsuke; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki; Takahashi, Ichiro; Ishikawa, Kunio

    2014-01-01

    Carbonate apatite (CO3Ap), fabricated by dissolution-precipitation reaction based on an appropriate precursor, is expected to be replaced by bone according to bone remodeling cycle. One of the precursor candidates is gypsum because it shows self-setting ability, which then enables it to be shaped and molded. The aim of this study, therefore, was to fabricate CO3Ap blocks from set gypsum. Set gypsum was immersed in a mixed solution of 0.4 mol/L disodium hydrogen phosphate (Na2HPO4) and 0.4 mol/L sodium hydrogen carbonate (NaHCO3) at 80-200°C for 6-48 h. Powder X-ray diffraction patterns and Fourier transform infrared spectra showed that CO3Ap block was fabricated by dissolution-precipitation reaction in Na2HPO4-NaHCO3 solution using set gypsum in 48 h when the temperature was 100°C or higher. Conversion rate to CO3Ap increased with treatment temperature. CO3Ap block containing a larger amount of carbonate was obtained when treated at lower temperature.

  12. Characterization of Severe Arterial Phase Respiratory Motion Artifact on Gadoxetate Disodium-Enhanced MRI - Assessment of Interrater Agreement and Reliability.

    PubMed

    Ringe, Kristina Imeen; Luetkens, Julian A; Fimmers, Rolf; Hammerstingl, Renate Maria; Layer, Günter; Maurer, Martin H; Nähle, Claas Philip; Michalik, Sabine; Reimer, Peter; Schraml, Christina; Schreyer, Andreas G; Stumpp, Patrick; Vogl, Thomas J; Wacker, Frank K; Willinek, Winfried; Kukuk, Guido Mattias

    2018-04-01

     To assess the interrater agreement and reliability of experienced abdominal radiologists in the characterization and grading of arterial phase gadoxetate disodium-related respiratory motion artifact on liver MRI.  This prospective multicenter study was initiated by the working group for abdominal imaging within the German Roentgen Society (DRG), and approved by the local IRB of each participating center. 11 board-certified radiologists independently reviewed 40 gadoxetate disodium-enhanced liver MRI datasets. Motion artifacts in the arterial phase were assessed on a 5-point scale. Interrater agreement and reliability were calculated using the intraclass correlation coefficient (ICC) and Kendall coefficient of concordance (W), with p < 0.05 deemed significant.  The ICC for interrater agreement and reliability were 0.983 (CI 0.973 - 0.990) and 0.985 (CI 0.978 - 0.991), respectively (both p < 0.0001), indicating excellent agreement and reliability. Kendall's W for interrater agreement was 0.865. A severe motion artifact, defined as a mean motion score ≥ 4 in the arterial phase was observed in 12 patients. In these specific cases, a motion score ≥ 4 was assigned by all readers in 75 % (n = 9/12 cases).  Differentiation and grading of arterial phase respiratory motion artifact is possible with a high level of inter-/intrarater agreement and interrater reliability, which is crucial for assessing the incidence of this phenomenon in larger multicenter studies.   · Inter- and intrarater agreement for motion artifact scoring is excellent among experienced readers.. · Interrater reliability for motion artifact scoring is excellent among experienced readers.. · Characterization of severe motion artifacts proved feasible in this multicenter study.. · Ringe KI, Luetkens JA, Fimmers R et al. Characterization of Severe Arterial Phase Respiratory Motion Artifact on Gadoxetate Disodium-Enhanced MRI - Assessment of Interrater Agreement

  13. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism.

    PubMed

    Steinbacher, Stefan; Schiffmann, Susanne; Richter, Gerald; Huber, Robert; Bacher, Adelbert; Fischer, Markus

    2003-10-24

    Skeletal rearrangements of carbohydrates are crucial for many biosynthetic pathways. In riboflavin biosynthesis ribulose 5-phosphate is converted into 3,4-dihydroxy-2-butanone 4-phosphate while its C4 atom is released as formate in a sequence of metal-dependent reactions. Here, we present the crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal center presumably consisting of non-catalytic zinc and calcium ions at 1.7-A resolution. The carbonyl group (O2) and two out of three free hydroxyl groups (OH3 and OH4) of the substrate are metal-coordinated. We correlate previous mutational studies on this enzyme with the present structural results. Residues of the first coordination sphere involved in metal binding are indispensable for catalytic activity. Only Glu-185 of the second coordination sphere cannot be replaced without complete loss of activity. It contacts the C3 hydrogen atom directly and probably initiates enediol formation in concert with both metal ions to start the reaction sequence. Mechanistic similarities to Rubisco acting on the similar substrate ribulose 1,5-diphosphate in carbon dioxide fixation as well as other carbohydrate (reducto-) isomerases are discussed.

  14. Interaction of a dinuclear fluorescent Cd(II) complex of calix[4]arene conjugate with phosphates and its applicability in cell imaging.

    PubMed

    Sreenivasu Mummidivarapu, V V; Hinge, Vijaya Kumar; Rao, Chebrolu Pulla

    2015-01-21

    A triazole-linked hydroxyethylimino conjugate of calix[4]arene () and its cadmium complex have been synthesized and characterized, and their structures have been established. In the complex, both the Cd(2+) centers are bound by an N2O4 core, and one of it is a distorted octahedral, whereas the other is a trigonal anti-prism. The fluorescence intensity of the di-nuclear Cd(ii) complex is quenched only in the presence of phosphates and not with other anions studied owing to their binding affinities and the nature of the interaction of the phosphates with Cd(2+). These are evident even from their absorption spectra. Different phosphates exhibit changes in both their fluorescence as well as absorption spectra to varying extents, suggesting their differential interactions. Among the six phosphates, H2PO4(-) has higher fluorescence quenching even at low equivalents of this ion, whereas P2O7(4-) shows only 50% quenching even at 10 equivalents. The fluorescence quenching is considerable even at 20 ppb (0.2 μM) of H2PO4(-), whereas all other phosphates require a concentration of 50-580 ppb to exhibit the same effect on fluorescence spectra. Thus, the interaction of H2PO4(-) is more effective by ∼30 fold as compared to that of P2O7(4-). Fluorescence quenching by phosphate is due to the release of from its original cadmium complex via the formation of a ternary species followed by the capture of Cd(2+) by the phosphate, as delineated based on the combination of spectral techniques, such as absorption, emission, (1)H NMR and ESI MS. The relative interactive abilities of the six phosphates differ from each other. The removal of Cd(2+) is demonstrated to be reversible by the repeated addition of the phosphate followed by Cd(2+). The characteristics of the ternary species formed in each of these six phosphates have been computationally modeled using molecular mechanics. The computational study revealed that the coordination between cadmium and -CH2-CH2-OH breaks and new

  15. Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.

    2013-04-01

    Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].

  16. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.

    PubMed

    Yin, Zhongwei; Shi, Fachao; Jiang, Hongmei; Roberts, Daniel P; Chen, Sanfeng; Fan, Bingquan

    2015-12-01

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere, as the overapplication of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in China that had been exposed to excessive application of phosphatic fertilizer for decades. Each isolate excreted a number of organic acids into, acidified, and solubilized phosphorus in a synthetic broth containing insoluble tricalcium phosphate or rock phosphate. Isolate P4, applied as a seed treatment, increased maize fresh mass per plant when rock phosphate was added to the calcareous soil in greenhouse pot studies. Isolate P85 did not increase maize fresh mass per plant but did significantly increase total phosphorus per plant when rock phosphate was added. Significant increases in 7 and 4 organic acids were detected in soil in association with isolates P4 and P85, respectively, relative to the soil-only control. The quantity and (or) number of organic acids produced by these isolates increased when rock phosphate was added to the soil. Both isolates also significantly increased available phosphorus in soil in the presence of added rock phosphate and effectively colonized the maize rhizosphere. Studies reported here indicate that isolate P4 is adapted to and capable of promoting maize growth in a calcareous soil. Plant-growth promotion by this isolate is likely due, at least in part, to increased phosphorus availability resulting from the excretion of organic acids into, and the resulting acidification of, this soil.

  17. A vibrational spectroscopic study of the phosphate mineral lulzacite Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Belotti, Fernanda M.; Xi, Yunfei; Scholz, Ricardo

    2014-06-01

    The mineral lulzacite from Saint-Aubin des Chateaux mine, France, with theoretical formula Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10 has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Chemical analysis shows a Sr, Fe, Al phosphate with minor amounts of Ga, Ba and Mg. Raman spectroscopy identifies an intense band at 990 cm-1 with an additional band at 1011 cm-1. These bands are attributed to the PO43-ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of lulzacite. The series of Raman bands at 567, 582, 601, 644, 661, 673 and 687 cm-1 are assigned to the PO43-ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32-ν4 bending modes. No Raman bands of lulzacite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral lulzacite.

  18. A phosphoethanolamine transferase specific for the 4'-phosphate residue of Cronobacter sakazakii lipid A.

    PubMed

    Liu, L; Li, Y; Wang, X; Guo, W

    2016-11-01

    Investigate how Cronobacter sakazakii modify their lipid A structure to avoid recognition by the host immune cells. Lipid A modification was observed in C. sakazakii BAA894 grown at pH 5·0 but not pH 7·0. Overexpression of C. sakazakii gene ESA_RS09200 in Escherichia coli W3110 caused a phosphoethanolamine (PEA) modification of lipid A; when ESA_RS09200 was deleted in C. sakazakii BAA894, this lipid A modification disappeared. Lipid A modification was observed in BAA894 grown at pH 5·0 when the 1- phosphate residue of lipid A was removed, but disappeared when the 4'- phosphate residue of lipid A was removed. When ESA_RS16430, the orthologous gene of E. coli pmrA, was deleted in C. sakazakii BAA894, this PEA modification of lipid A was still observed, suggesting that this modification was not regulated by the PmrA-PmrB system. Compared to the wild-type BAA894, ESA_RS09200 deletion mutant showed decreased resistance to cationic antimicrobial peptides (CAMP), increased recognition by TLR4/MD2, decreased ability to invade and persist in mammalian cells. ESA_RS09200 in C. sakazakii BAA894 encodes a PEA transferase that specifically adds a PEA to the 4'-phosphate residue of lipid A, but not regulated by the PmrA-PmrB system. PEA modification of lipid A reduces recognition and killing by the host innate immune system. This study showed that modification of the lipid A moiety of C. sakazakii with PEA increased resistance to CAMP and recognition of the immune response although signalling of TLR4/MD2 cascade, suggesting that the organism could not successfully evade the host innate immune system without the transference of PEA to its lipid A moiety. © 2016 The Society for Applied Microbiology.

  19. Isolation and identification of a novel bacterium, Lactobacillus sakei subsp. dgh strain 5, and optimization of growth condition for highest antagonistic activity.

    PubMed

    Tashakor, Amin; Hosseinzadehdehkordi, Mahshid; Emruzi, Zeynab; Gholami, Dariush

    2017-05-01

    In the present study, we isolated Lactobacillus sakei strain DGH5 from raw beef meat. This bacterium plays an inhibitory effect against food-spoiling bacteria and food-borne pathogens, including Listeria monocytogenes, a gram-positive and pathogenic bacterium. Lactobacillus sakei strain DGH5 was identified through both phenotypical and biochemical tests accompanied with 16S rRNA sequence analysis. Among all the sources of carbon, nitrogen and phosphorous forms, we selected the most potent compounds to optimize the condition for the highest antagonistic activity. Among the sugars, polygalacturonic acid demonstrated to improve the antagonistic activity. Ammonium nitrate demonstrated to be suitable nitrogen sources. Amongst phosphorous sources, disodium hydrogen phosphate had the greatest antagonistic effect. According to Taguchi's orthogonal array, temperature, disodium hydrogen phosphate and soy Peptone had significant effect on antagonistic activity. Furthermore, mean comparisons showed that the optimum conditions achieved at pH 6.0, 25 °C temperature, 1.5% (w/v) Na 2 HPO 4 and 0.5% (w/v) peptone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2.

    PubMed

    Zhang, Z; Tamaki, Y; Miyazaki, T

    2001-12-01

    In previous study, we found that Mg(H2PO4)2 instead of NH4H2PO4 was available as a binder material for phosphate-bonded investments and possibly could be used to develop the phosphate-bonded investment without ammonia gas release. The purpose of the present study was to develop the experimental ammonia-free phosphate-bonded investments by investigating suitable refractories. Mg(H2PO4)2.nH2O and MgO were prepared as a binder. Cristobalite and quartz were selected as refractories. The power ratio of MgO/Mg(H2PO4)2.nH2O was set constant at 1.2 according to our previous findings. Fundamental properties of dental investment such as strength, manipulation and expansion were evaluated. Using cristobalite as the refractory material, further investigations were performed. The refractory/binder ratio was definitely effective. The increase of this ratio led to low mold strength and large mold expansion. The present findings suggested that C5 was desirable for dental investment.

  1. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride), sodium borate and sodium metaborate; exemptions from the requirement of a tolerance. 180.1121 Section 180.1121 Protection of Environment ENVIRONMENTAL PROTECTION...

  2. Synthesis, crystal structure and spectroscopy properties of Na 3AZr(PO 4) 3 ( A=Mg, Ni) and Li 2.6Na 0.4NiZr(PO 4) 3 phosphates

    NASA Astrophysics Data System (ADS)

    Chakir, M.; El Jazouli, A.; de Waal, D.

    2006-06-01

    Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates were prepared at 750 °C by coprecipitation route. Their crystal structures have been refined at room temperature from X-ray powder diffraction data using Rietveld method. Li 2.6Na 0.4NiZr(PO 4) 3 was synthesized through ion exchange from the sodium analog. These materials belong to the Nasicon-type structure. Raman spectra of Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates present broad peaks in favor of the statistical distribution in the sites around PO 4 tetrahedra. Diffuse reflectance spectra indicate the presence of octahedrally coordinated Ni 2+ ions.

  3. Chiral lyotropic chromonic liquid crystals composed of disodium cromoglycate doped with water-soluble chiral additives.

    PubMed

    Shirai, Tatsuya; Shuai, Min; Nakamura, Keita; Yamaguchi, Akihiro; Naka, Yumiko; Sasaki, Takeo; Clark, Noel A; Le, Khoa V

    2018-02-28

    We investigated the pitches of cholesteric liquid crystals prepared by mixing disodium cromoglycate (DSCG) in water with 5 different water-soluble chiral additives. The measurements are based on the Grandjean-Cano wedge cell method. Overall, the twisting effect is weak, and the shortest pitch of 2.9 ± 0.2 μm is obtained using trans-4-hydroxy-l-proline, by which the cholesteric sample is iridescent at certain viewing angles. Freeze-fracture transmission electron microscopy (FFTEM) was also performed for the first time on both the nematic and cholesteric phases, revealing that stacked chromonic aggregates are very long, up to a few hundred nm, which explains why cholesteric chromonic liquid crystals hardly have pitches in the visible wavelength region.

  4. In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans: a summary.

    PubMed

    Wester, R C; Hui, X; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry, which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10% in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percent dose, with flux and permeability constant (Kp) calculated at 0.009 microg/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percent dose, with flux and Kp calculated at 0.009 microg/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percent, with flux and Kp calculated at 0.01 microg/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.

  5. PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Singh, Neelima; Rajasekharan, Ram

    2015-10-01

    In Saccharomyces cerevisiae, PHM8 encodes a phosphatase that catalyses the dephosphorylation of lysophosphatidic acids to monoacylglycerol and nucleotide monophosphate to nucleoside and releases free phosphate. In this report, we investigated the role of PHM8 in triacylglycerol metabolism and its transcriptional regulation by a phosphate responsive transcription factor Pho4p under low-phosphate conditions. We found that the wild-type (BY4741) cells accumulate triacylglycerol and the expression of PHM8 was high under low-phosphate conditions. Overexpression of PHM8 in the wild-type, phm8Δ and quadruple phosphatase mutant (pah1Δdpp1Δlpp1Δapp1Δ) caused an increase in the triacylglycerol levels. However, the introduction of the PHM8 deletion into the quadruple phosphatase mutant resulted in a reduction in triacylglycerol levels and LPA phosphatase activity. The transcriptional activator Pho4p binds to the PHM8 promoter under low-phosphate conditions, activating PHM8 expression, which leads to the formation of monoacylglycerol from LPA. The synthesized monoacylglycerol is acylated to diacylglycerol by Dga1p, which is further acylated to triacylglycerol by the same enzyme. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  6. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa.

    PubMed

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-02-01

    The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-alpha-ketobutyrate. It belongs to the D-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 A from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 A. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (VM) of 3.64 A3 Da(-1) and a solvent content of 66%.

  7. Mahlmoodite, FeZr(PO4).4H2O, a new iron zirconium phosphate mineral from Wilson Springs, Arkansas

    USGS Publications Warehouse

    Milton, C.; McGee, J.J.; Evans, H.T.

    1993-01-01

    Small (<0.5 mm) cream white spheres observed in V ore have been identified as ferrous zirconium phosphate tetrahedrate, FeZr(PO4)2.4H2O. This new mineral, named mahlmoodite, occurs as spherules of radiating fibers usually perched on crystals of pyroxene in vugs. The optical and crystallographic properties of mahlmoodite are described. -after Authors

  8. Structure-based prediction and identification of 4-epimerization activity of phosphate sugars in class II aldolases.

    PubMed

    Lee, Seon-Hwa; Hong, Seung-Hye; An, Jung-Ung; Kim, Kyoung-Rok; Kim, Dong-Eun; Kang, Lin-Woo; Oh, Deok-Kun

    2017-05-16

    Sugar 4-epimerization reactions are important for the production of rare sugars and their derivatives, which have various potential industrial applications. For example, the production of tagatose, a functional sweetener, from fructose by sugar 4-epimerization is currently constrained because a fructose 4-epimerase does not exist in nature. We found that class II D-fructose-1,6-bisphosphate aldolase (FbaA) catalyzed the 4-epimerization of D-fructose-6-phosphate (F6P) to D-tagatose-6-phosphate (T6P) based on the prediction via structural comparisons with epimerase and molecular docking and the identification of the condensed products of C3 sugars. In vivo, the 4-epimerization activity of FbaA is normally repressed. This can be explained by our results showing the catalytic efficiency of D-fructose-6-phosphate kinase for F6P phosphorylation was significantly higher than that of FbaA for F6P epimerization. Here, we identified the epimerization reactions and the responsible catalytic residues through observation of the reactions of FbaA and L-rhamnulose-1-phosphate aldolases (RhaD) variants with substituted catalytic residues using different substrates. Moreover, we obtained detailed potential epimerization reaction mechanism of FbaA and a general epimerization mechanism of the class II aldolases L-fuculose-1-phosphate aldolase, RhaD, and FbaA. Thus, class II aldolases can be used as 4-epimerases for the stereo-selective synthesis of valuable carbohydrates.

  9. Effects of polyamines and calcium and sodium ions on smooth muscle cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase.

    PubMed

    Chen, H; Baron, C B; Griffiths, T; Greeley, P; Coburn, R F

    1998-10-01

    In many different cell types, including smooth muscle cells (Baron et al., 1989, Am. J. Physiol., 256: C375-383; Baron et al., J. Pharmacol. Exp. Ther. 266: 8-15), phosphatidylinositol (4)-phosphate 5-kinase plays a critical role in the regulation of membrane concentrations of phosphatidylinositol (4,5)-bisphosphate and formation of inositol (1,4,5)-trisphosphate. In unstimulated porcine trachealis smooth muscle, 70% of total cellular phosphatidylinositol (4)-phosphate 5-kinase activity was associated with cytoskeletal proteins and only trace activity was detectable in isolated sarcolemma. Using two different preparations, we studied cytoskeleton-associated phosphatidyl inositol (4)-phosphate 5-kinase under conditions that attempted to mimic the ionic and thermal cytoplasmic environment of living cells. The cytoskeleton-associated enzyme, studied using phosphatidylinositol (4)-phosphate substrate concentrations that produced phosphatidylinositol 4,5-bisphosphate at about 10% of the maximal rate, was sensitive to free [Mg2+], had an absolute requirement for phosphatidylserine, phosphatidic acid, or phosphatidylinositol, and included type I isoforms. At 0.5 mM free [Mg2+], physiological spermine concentrations, 0.2-0.4 mM, increased phosphatidylinositol (4)-phosphate 5-kinase activity two to four times compared to controls run without spermine. The EC50 for spermine-evoked increases in activity was 0.17 +/- 0.02 mM. Spermine-evoked enzyme activity was a function of both free [Mg2+] and substrate concentration. Cytoskeleton-associated phosphatidylinositol (4)-phosphate 5-kinase was inhibited by free [Ca2+] over a physiological range for cytoplasm--10(-8) to 10(-5) M, an effect independent of the presence of calmodulin. Na+ over the range 20 to 50 mM also inhibited this enzyme activated by 5 mM Mg2+ but had no effect on spermine-activated enzyme. Na+, Ca2+, and spermine appear to be physiological modulators of smooth muscle cytoskeleton-bound phosphatidylinositol (4

  10. Conversion of phosphatidylinositol (PI) to PI4-phosphate (PI4P) and then to PI(4,5)P2 is essential for the cytosolic Ca2+ concentration under heat stress in Ganoderma lucidum.

    PubMed

    Liu, Yong-Nan; Lu, Xiao-Xiao; Ren, Ang; Shi, Liang; Zhu, Jing; Jiang, Ai-Liang; Yu, Han-Shou; Zhao, Ming-Wen

    2018-04-26

    How cells drive the phospholipid signal response to heat stress (HS) to maintain cellular homeostasis is a fundamental issue in biology, but the regulatory mechanism of this fundamental process is unclear. Previous quantitative analyses of lipids showed that phosphatidylinositol (PI) accumulates after HS in Ganoderma lucidum, implying the inositol phospholipid signal may be associated with HS signal transduction. Here, we found that the PI-4-kinase and PI-4-phosphate-5-kinase activities are activated and that their lipid products PI-4-phosphate and PI-4,5-bisphosphate are increased under HS. Further experimental results showed that the cytosolic Ca 2+ ([Ca 2+ ] c ) and ganoderic acid (GA) contents induced by HS were decreased when cells were pretreated with Li + , an inhibitor of inositol monophosphatase, and this decrease could be rescued by PI and PI-4-phosphate. Furthermore, inhibition of PI-4-kinases resulted in a decrease in the Ca 2+ and GA contents under HS that could be rescued by PI-4-phosphate but not PI. However, the decrease in the Ca 2+ and GA contents by silencing of PI-4-phosphate-5-kinase could not be rescued by PI-4-phosphate. Taken together, our study reveals the essential role of the step converting PI to PI-4-phosphate and then to PI-4,5-bisphosphate in [Ca 2+ ] c signalling and GA biosynthesis under HS. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Effect of various electrolytes upon cardiac and skeletal musculature

    PubMed Central

    Selye, H.; Bajusz, E.

    1959-01-01

    In rats kept on a low-potassium diet that contains only maintenance levels of magnesium, cardiac necroses and muscular cramps were readily induced by the oral administration of sodium perchlorate or disodium hydrogen phosphate. The precipitation of these cardiac and skeletal muscle changes by sodium chlorate was prevented by the prophylactic administration of either potassium or magnesium chlorides. The protective effect of these chlorides against the cardiotoxic and convulsive effects of disodium hydrogen phosphate has already been demonstrated by our earlier experiments. Sodium sulphate produced cardiac necroses in rats maintained on the same diet, and both potassium and magnesium chlorides had a prophylactic action. Unlike sodium perchlorate, however, sodium sulphate produced no muscular cramps under these conditions. Equimolecular amounts of sodium given in the form of sodium chloride (instead of sodium perchlorate, sodium sulphate, or disodium hydrogen phosphate) did not cause cardiac necroses or muscular cramps in rats maintained on the potassium-deficient diet. As the same three sodium salts, namely the perchlorate, the sulphate, and the hydrogen phosphate, produced cardiac necroses in rats sensitized by either a potassium-deficient diet or by certain corticoids, it seems that the anion must play a decisive rôle, since equivalent amounts of NaCl are ineffective. PMID:13651583

  12. Reorganization of Actin Cytoskeleton by the Phosphoinositide Metabolite Glycerophosphoinositol 4-Phosphate

    PubMed Central

    Mancini, Raffaella; Piccolo, Enza; Mariggio', Stefania; Filippi, Beatrice Maria; Iurisci, Cristiano; Pertile, Paolo; Berrie, Christopher P.; Corda, Daniela

    2003-01-01

    Glycerophosphoinositol 4-phosphate (GroPIns-4P) is a biologically active, water-soluble phospholipase A metabolite derived from phosphatidylinositol 4-phosphate, whose cellular concentrations have been reported to increase in Ras-transformed cells. It is therefore important to understand its biological activities. Herein, we have examined whether GroPIns-4P can regulate the organization of the actin cytoskeleton, because this could be a Ras-related function involved in cell motility and metastatic invasion. We find that in serum-starved Swiss 3T3 cells, exogenously added GroPIns-4P rapidly and potently induces the formation of membrane ruffles, and, later, the formation of stress fibers. These actin structures can be regulated by the small GTPases Cdc42, Rac, and Rho. To analyze the mechanism of action of GroPIns-4P, we selectively inactivated each of these GTPases. GroPIns-4P requires active Rac and Rho, but not Cdc42, for ruffle and stress fiber formation, respectively. Moreover, GroPIns-4P induces a rapid translocation of the green fluorescent protein-tagged Rac into ruffles, and increases the fraction of GTP-bound Rac, in intact cells. The activation of Rac by GroPIns-4P was near maximal and long-lasting. Interestingly, this feature seems to be critical in the induction of actin ruffles by GroPIns-4P. PMID:12589050

  13. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, R.F.; Letcher, A.J.; Lander, D.J.

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  14. Differentiating phosphate-dependent and phosphate-independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphite

    PubMed Central

    Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R.; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M.

    2015-01-01

    Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the ‘PHO regulon’ in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796

  15. Function of the Golgi-located phosphate transporter PHT4;6 is critical for senescence-associated processes in Arabidopsis

    PubMed Central

    Hassler, Sebastian; Jung, Benjamin; Lemke, Lilia; Novák, Ondřej; Strnad, Miroslav; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2016-01-01

    The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a ‘pleiotropic’ process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 + and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence. PMID:27325894

  16. Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC).

    PubMed

    Hinrichs, Heiko; Hinrichs, Jan B; Gutberlet, Marcel; Lenzen, Henrike; Raatschen, Hans-Juergen; Wacker, Frank; Ringe, Kristina I

    2016-04-01

    To assess the value of variable flip angle-based T1 liver mapping on gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC) for evaluation of global and segmental liver function, and determine a possible correlation with disease severity. Sixty-one patients (19 female, 42 male; mean age 41 years) with PSC were included in this prospective study. T1 mapping was performed using a 3D-spoiled GRE sequence (flip angles 5°, 15°, 20°, 30°) before, 16 (HP1) and 132 min (HP2) after contrast injection. T1 values were measured and compared (Wilcoxon-Test) by placing ROIs in each liver segment. The mean reduction of T1 relaxation time at HP1 and HP2 was calculated and correlated with liver function tests (LFTs), MELD, Mayo Risk and Amsterdam Scores (Spearman correlation). Significant changes of T1 relaxation times between non-enhanced and gadoxetate disodium-enhanced MRI at HP1 and HP2 could be observed in all liver segments (p < 0.0001). A significant correlation of T1 reduction could be observed with LFTs, MELD and Mayo Risk Score (p < 0.05). T1 mapping of the liver using a variable flip angle-based sequence is a feasible technique to evaluate liver function on a global level, and may be extrapolated on a segmental level in patients with PSC. • T1 mapping enables evaluation of global liver function in PSC. • T1 relaxation time reduction correlates with the MELD and MayoRisk Score. • Extrapolated, T1 mapping may allow for segmental evaluation of liver function.

  17. Pho4 Is Essential for Dissemination of Cryptococcus neoformans to the Host Brain by Promoting Phosphate Uptake and Growth at Alkaline pH

    PubMed Central

    Kaufman-Francis, Keren; Desmarini, Desmarini; Juillard, Pierre G.; Li, Cecilia; Stifter, Sebastian A.; Feng, Carl G.; Sorrell, Tania C.; Grau, Georges E. R.; Bahn, Yong-Sun

    2017-01-01

    ABSTRACT Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical

  18. Overexpression, crystallization and preliminary X-­ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa

    PubMed Central

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-01-01

    The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V M) of 3.64 Å3 Da−1 and a solvent content of 66%. PMID:16511285

  19. A dose-escalation study of combretastatin A4-phosphate in healthy dogs.

    PubMed

    Abma, E; Smets, P; Daminet, S; Cornelis, I; De Clercq, K; Ni, Y; Vlerick, L; de Rooster, H

    2018-03-01

    Combretastatin A4-Phosphate (CA4P) is a vascular disrupting agent revealing promising results in cancer treatments for humans. The aim of this study was to investigate the safety and adverse events of CA4P in healthy dogs as a prerequisite to application of CA4P in dogs with cancer. Ten healthy dogs were included. The effects of escalating doses of CA4P on physical, haematological and biochemical parameters, systolic arterial blood pressure, electrocardiogram, echocardiographic variables and general wellbeing were characterised. Three different doses were tested: 50, 75 and 100 mg m -2 . At all 3 CA4P doses, nausea, abdominal discomfort as well as diarrhoea were observed for several hours following administration. Likewise, a low-grade neutropenia was observed in all dogs. Doses of 75 and 100 mg m -2 additionally induced vomiting and elevation of serum cardiac troponine I levels. At 100 mg m -2 , low-grade hypertension and high-grade neurotoxicity were also observed. In healthy dogs, doses up to 75 mg m -2 seem to be well tolerated. The severity of the neurotoxicity observed at 100 mg m -2 , although transient, does not invite to use this dose in canine oncology patients. © 2017 John Wiley & Sons Ltd.

  20. Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300.

    PubMed

    Yakushiji, Fumika; Muguruma, Kyohei; Hayashi, Yoshiki; Shirasaka, Takuya; Kawamata, Ryosuke; Tanaka, Hironari; Yoshiwaka, Yushi; Taguchi, Akihiro; Takayama, Kentaro; Hayashi, Yoshio

    2017-07-15

    Plinabulin and KPU-300 are promising anti-microtubule agents; however, the low water solubility of these compounds (<0.1µg/mL) has limited their pharmaceutical advantages. Here, we developed five water-soluble derivatives of plinabulin and KPU-300 with a click strategy using disodium salts of amino acids. The mother skeleton, diketopiperazine (DKP), was transformed into a monolactim-type alkyne and a copper-catalyzed alkyne azide cycloaddition (CuAAC) combined azides that was derived from amino acids as a water-solubilizing moiety. The conversion of carboxyl groups into disodium salts greatly improved the water solubility by 0.8 million times compared to the solubility of the parent molecules. In addition, the α-amino acid side chains of the water-solubilizing moieties affected both the water solubility and the half-lives of the compounds during enzymatic hydrolysis. Our effort to develop a variety of water-soluble derivatives using the click strategy has revealed that the replaceable water-solubilizing moieties can alter molecular solubility and stability under enzymatic hydrolysis. With this flexibility, we are approaching to the in vivo study using water-soluble derivative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A vibrational spectroscopic study of the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; Belotti, Fernanda Maria; López, Andrés; Theiss, Frederick L.

    2015-08-01

    We have studied the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O using a combination of SEM with EDX and Raman and infrared spectroscopy. Qualitative chemical analysis shows Al, Fe and P. Raman bands at 1013 and 1027 cm-1 are assigned to the PO43- ν1 symmetric stretching mode. The observation of two bands suggests the non-equivalence of the phosphate units in the vantasselite structure. Raman bands at 1051, 1076 and 1090 cm-1 are attributed to the PO43- ν3 antisymmetric stretching vibration. A comparison is made with the spectroscopy of wardite. Strong infrared bands at 1044, 1078, 1092, 1112, 1133, 1180 and 1210 cm-1 are attributed to the PO43- ν3 antisymmetric stretching mode. Some of these bands may be due to δAl2OH deformation modes. Vibrational spectroscopy offers a mechanism for the study of the molecular structure of vantasselite.

  2. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  3. Enteral administration of monosodium phosphate, monopotassium phosphate and monocalcium phosphate for the treatment of hypophosphataemia in lactating dairy cattle.

    PubMed

    Idink, M J; Grünberg, W

    2015-05-09

    Hypohosphataemia is a frequent finding in early lactating and anorectic dairy cows. Sodium phosphate is commonly used for oral phosphorus (P) supplementation, although other phosphate salts may present useful treatment alternatives. Objectives of this study were to compare the efficacy of monopotassium phosphate (KH2PO4) and monocalcium phosphate (Ca(H2PO4)2) to monosodium phosphate (NaH2PO4) in P-depleted cows. Furthermore, the effect of concentrated NaH2PO4 on the reticular groove reflex was studied. Six healthy but P-depleted dairy cows underwent four treatments in randomised order. Treatments consisted of intraruminal administration of NaH2PO4, KH2PO4 and Ca(H2PO4)2 providing the equivalent of 60 g P. A fourth treatment consisting of concentrated NaH2PO4 combined with acetaminophen as a marker substance was administered orally to determine whether the reticular groove reflex could be induced. Intraruminal administration of NaH2PO4 and KH2PO4 resulted in similar increases in plasma Pi concentrations ([Pi]) while intraruminal Ca(H2PO4)2 resulted in lower increases in plasma [Pi]. Oral and intraruminal administration of NaH2PO4 resulted in similar times to peak plasma [Pi] and acetaminophen concentration, indicating that concentrated NaH2PO4 administered orally did not trigger the reticular groove reflex. These results suggest that oral administration of KH2PO4 is equally effective as NaH2PO4. Oral administration of Ca(H2PO4)2 in contrast has a less pronounced effect on the plasma [Pi]. British Veterinary Association.

  4. Effects of wet cleaning with disodium octaborate tetrahydrate on dust mites (Acari: Pyroglyphidae) in carpet.

    PubMed

    Vyszenski-Moher, Diann L; Arlian, Larry G

    2003-07-01

    In a controlled laboratory study, disodium octaborate tetrahydrate (DOT) applied to carpets with a carpet-cleaning machine at a rate of 509 ml DOT/8.15 liter H2O/100 m2 (two cups DOT/2 gal H2O/100 feet2) reduced survival and population growth of live Dermatophagoides farinae and Dermatophagoides pteronyssinus by > or = 98% compared with water-cleaned and uncleaned carpets at 8 wk postcleaning. Cleaning with DOT was more effective against D. pteronyssinus than D. farinae.

  5. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    PubMed

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  6. The molecular structure of the phosphate mineral beraunite Fe2+Fe53+(PO4)4(OH)5ṡ4H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei; Lana, Cristiano

    2014-07-01

    The mineral beraunite from Boca Rica pegmatite in Minas Gerais with theoretical formula Fe2+Fe53+(PO4)4(OH)5ṡ4H2O has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 990 cm-1 and 1011 cm-1. These bands are attributed to the PO43- ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of beraunite. The series of Raman bands at 567, 582, 601, 644, 661, 673, and 687 cm-1 are assigned to the PO43- ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32- ν4 bending modes. No Raman bands of beraunite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral beraunite.

  7. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition.

    PubMed

    Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin

    2017-06-01

    Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  8. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.

    PubMed

    Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid

    2016-12-01

    In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pemetrexed disodium in combination with cisplatin versus other cytotoxic agents or supportive care for the treatment of malignant pleural mesothelioma.

    PubMed

    Green, J; Dundar, Y; Dodd, S; Dickson, R; Walley, T

    2007-01-24

    compared with the cisplatin alone arm. (12.1 and 9.3 months, respectively, p=0.002). The incidence of grade 3/4 toxicities was higher in the combination arm compared with the cisplatin alone arm. Pemetrexed disodium in combination with cisplatin and with folic acid and vitamin B(12 )supplementation may improve survival when used in combination with cisplatin in good performance status patients. Further studies including patients with poor performance status are needed in order to generalise the treatment findings. Further studies are also needed into the optimum chemotherapy, and a clear definition of what constitutes best supportive care.

  10. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  11. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No. 7782-0975...

  12. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2013-04-22

    Hierarchically nanostructured porous hollow microspheres of hydroxyapatite (HAP) are a promising biomaterial, owing to their excellent biocompatibility and porous hollow structure. Traditionally, synthetic hydroxyapatite is prepared by using an inorganic phosphorus source. Herein, we report a new strategy for the rapid, sustainable synthesis of HAP hierarchically nanostructured porous hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through a microwave-assisted hydrothermal method. The as-obtained products are characterized by powder X-ray diffraction (XRD), Fourier-transform IR (FTIR) spectroscopy, SEM, TEM, Brunauer-Emmett-Teller (BET) nitrogen sorptometry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). SEM and TEM micrographs show that HAP hierarchically nanostructured porous hollow microspheres consist of HAP nanosheets or nanorods as the building blocks and DLS measurements show that the diameters of HAP hollow microspheres are within the range 0.8-1.5 μm. The specific surface area and average pore size of the HAP porous hollow microspheres are 87.3 m(2) g(-1) and 20.6 nm, respectively. The important role of creatine phosphate disodium salt and the influence of the experimental conditions on the products were systematically investigated. This method is facile, rapid, surfactant-free and environmentally friendly. The as-prepared HAP porous hollow microspheres show a relatively high drug-loading capacity and protein-adsorption ability, as well as sustained drug and protein release, by using ibuprofen as a model drug and hemoglobin (Hb) as a model protein, respectively. These experiments indicate that the as-prepared HAP porous hollow microspheres are promising for applications in biomedical fields, such as drug delivery and protein adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer

    PubMed Central

    2015-01-01

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (Mn = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (Mn = 2000) and biotin-terminated PEG (Mn = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000–PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir2012, 28, 12861−1287022906305) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline. PMID:24898128

  14. Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway.

    PubMed

    Feng, Xiang; Li, Jian-ming; Liao, Xiao-bo; Hu, Ye-rong; Shang, Bao-peng; Zhang, Zhi-yuan; Yuan, Ling-qing; Xie, Hui; Sheng, Zhi-feng; Tang, Hao; Zhang, Wei; Gu, Lu; Zhou, Xin-min

    2012-10-01

    Aortic valve calcification (AVC) is an active process characterized by osteoblastic differentiation of the aortic valve interstitial cells (AVICs). Taurine is a free β-amino acid and plays important physiological roles including protective effect of cardiovascular events. To evaluate the possible role of taurine in AVC, we isolated human AVICs from patients with type A dissection without leaflet disease. We demonstrated that the cultured AVICs express SM α-actin, vimentin and taurine transporter (TAUT), but not CD31, SM-myosin or desmin. We also established the osteoblastic differentiation model of the AVICs induced by pro-calcific medium (PCM) containing β-glycerophosphate disodium, dexamethasone and ascorbic acid in vitro. The results showed that taurine attenuated the PCM-induced osteoblastic differentiation of AVICs by decreasing the alkaline phosphate (ALP) activity/expression and the expression of the core binding factor α1 (Cbfα1) in a dose-dependent manner (reaching the maximum protective effect at 10 mM), and taurine (10 mM) inhibited the mineralization level of AVICs in the form of calcium content significantly. Furthermore, taurine activated the extracellular signal-regulated protein kinase (ERK) pathway via TAUT, and the inhibitor of ERK (PD98059) abolished the effect of taurine on both ALP activity/expression and Cbfα1 expression. These results suggested that taurine could inhibit osteoblastic differentiation of AVIC via the ERK pathway.

  15. In vivo percutaneous absorption of boric acid, borax, and disodium octaborate tetrahydrate in humans compared to in vitro absorption in human skin from infinite and finite doses.

    PubMed

    Wester, R C; Hui, X; Hartway, T; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-09-01

    Literature from the first half of this century report concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10%, in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percentage dose, with flux and permeability constant (Kp) calculated at 0.009 microgram/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percentage of dose, with flux and Kp calculated at 0.009 microgram/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percentage, with flux and Kp calculated at 0.01 microgram/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. In vitro human skin percentage of doses of boric acid absorbed were 1.2 for a 0.05% solution, 0.28 for a 0.5% solution, and 0.70 for a 5.0% solution. These absorption amounts translated into flux values of, respectively, 0.25, 0.58, and 14.58 micrograms/cm2/h and permeability constants (Kp) of 5.0 x 10(-4), 1.2 x 10(-4), and 2.9 x 10(-4) cm/h for the 0.05, 0.5, and 5.0% solutions. The above in vitro doses were at infinite, 1000 microliters/cm2 volume. At 2 microliters/cm2 (the in vivo dosing volume), flux decreased some

  16. [Calcium phosphate cements in medicine and dentistry--a review of literature].

    PubMed

    Noetzel, Jörn; Kielbassa, Andrej M

    2005-01-01

    Calcium phosphates represent the largest group of biominerals in vertebrate animals. They also have many uses in industry, agriculture, medicine and everyday life. The calcium phosphates containing the ionic species HPO4(2-) and PO4(3-) are biologically relevant. In medicine, calcium phosphates have been used for bone regeneration for several decades. The requirement of a mouldable, self-setting material has been fulfilled since the mid-1980s because of the development of calcium phosphate cements. Basically, they consist of a powder (e. g. di-, tri- or tetra-calcium phosphates) that is mixed with a liquid. Their properties depend on kind, amount, and location of each atom within the crystal structure. In dentistry calcium phosphate cements play a secondary role at the moment, although they often have an excellent biocompatibility. This review gives a general idea on development and chemistry of calcium phosphate cements and presents different cement types tested in vitro and in vivo.

  17. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  18. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  19. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  20. Phosphate homeostasis in Bartter syndrome: a case-control study.

    PubMed

    Bettinelli, Alberto; Viganò, Cristina; Provero, Maria Cristina; Barretta, Francesco; Albisetti, Alessandra; Tedeschi, Silvana; Scicchitano, Barbara; Bianchetti, Mario G

    2014-11-01

    Bartter patients may be hypercalciuric. Additional abnormalities in the metabolism of calcium, phosphate, and calciotropic hormones have occasionally been reported. The metabolism of calcium, phosphate, and calciotropic hormones was investigated in 15 patients with Bartter syndrome and 15 healthy subjects. Compared to the controls, Bartter patients had significantly reduced plasma phosphate {mean [interquartile range]:1.29 [1.16-1.46] vs. 1.61 [1.54-1.67] mmol/L} and maximal tubular phosphate reabsorption (1.16 [1.00-1.35] vs. 1.41 [1.37-1.47] mmol/L) and significantly increased parathyroid hormone (PTH) level (6.1 [4.5-7.7] vs. 2.8 [2.2-4.4] pmol/L). However, patients and controls did not differ in blood calcium, 25-hydroxyvitamin D, alkaline phosphatase, and osteocalcin levels. In patients, an inverse correlation (P < 0.05) was noted between total plasma calcium or glomerular filtration rate and PTH concentration. A positive correlation was also noted between PTH and osteocalcin concentrations (P < 0.005), as well as between chloriduria or natriuria and phosphaturia (P < 0.001). No correlation was noted between calciuria and PTH concentration or between urinary or circulating phosphate and PTH. The results of this study demonstrate a tendency towards renal phosphate wasting and elevated circulating PTH levels in Bartter patients.

  1. 40 CFR 721.9795 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-, disodium salt... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino]-, disodium salt, substituted with dialkyl amines...

  2. 40 CFR 721.9795 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-, disodium salt... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino]-, disodium salt, substituted with dialkyl amines...

  3. Phosphate uptake by a kidney cell line (LLC-PK1).

    PubMed

    Rabito, C A

    1983-07-01

    The uptake of inorganic phosphate was studied in an epithelial cell line of renal origin. Phosphate was accumulated through a mechanism with several features of a carrier-mediated process. The influx was accounted for by a saturable Na+-dependent and a nonsaturable Na+-independent process. Kinetic analysis at pH 6.6 and 7.4 suggests that the dibasic form of phosphate is the form transported by the saturable Na+-dependent system. The presence of Na+ in the incubation medium increased Vmax without affecting Km. Arsenate competitively inhibited the Na+-dependent phosphate transport with a Ki of 1.2 mM at 140 mM Na+ and pH 7.4. Other known inhibitors of phosphate reabsorption in the proximal tubule also inhibited phosphate transport by this cell line. Uptake studies from either side of the monolayers indicated that this transport system is preferentially located in the apical membrane of the cultured renal cells. These results show a close similarity between the Na+-dependent phosphate transport system in LLC-PK1 cells and the system present in the apical membrane of the proximal tubular cells.

  4. Enhanced thermal and structural properties of partially phosphorylated polyvinyl alcohol - Aluminum phosphate (PPVA-Alpo4) nanocomposites with aluminium nitrate source

    NASA Astrophysics Data System (ADS)

    Saat, Asmalina Mohamed; Johan, Mohd Rafie

    2017-12-01

    Synthesis of AlPO4 nanocomposite depends on the ratio of aluminum to phosphate, method of synthesis and the source for aluminum and phosphate source used. Variation of phosphate and aluminum source used will form multiple equilibria reactions and affected by ions variability and concentration, stoichiometry, temperature during reaction process and especially the precipitation pH. Aluminum nitrate was used to produce a partially phosphorylated poly vinyl alcohol-aluminum phosphate (PPVA-AlPO4) nanocomposite with various nanoparticle shapes, structural and properties. Synthesis of PPVA-AlPO4 nanocomposite with aluminum nitrate shows enhancement of thermal and structural in comparison with pure PVA and modified PPVA. Thermogravimetric (TGA) analysis shows that the weight residue of PPVA-AlPO4 composite was higher than PPVA and PVA. X-ray diffraction (XRD) pattern of PVA shows a single peak broadening after the addition of phosphoric acid. Meanwhile, XRD pattern of PPVA-AlPO4 demonstrates multiple phases of AlPO4 in the nanocomposite. Field Emission Scanning Electron Microscopy (FESEM) confirmed the existence of multiple geometrical phases and nanosize of spherical particles.

  5. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Gao, Tao; Wang, Jing; Wang, Chunsheng

    2014-03-01

    Croconic acid disodium salt (CADS), a renewable or recyclable organic compound, is investigated as an anode material in sodium ion battery for the first time. The pristine micro-sized CADS delivers a high capacity of 246.7 mAh g-1, but it suffers from fast capacity decay during charge/discharge cycles. The detailed investigation reveals that the severe capacity loss is mainly attributed to the pulverization of CADS particles induced by the large volume change during sodiation/desodiation rather than the generally believed dissolution of CADS in the organic electrolyte. Minimizing the particle size can effectively suppress the pulverization, thus improving the cycling stability. Wrapping CADS with graphene oxide by ultrasonic spray pyrolysis can enhance the integration and conductivity of CADS electrodes, thus providing a high capacity of 293 mAh g-1.

  6. Phases and structures of sunset yellow and disodium cromoglycate mixtures in water.

    PubMed

    Yamaguchi, Akihiro; Smith, Gregory P; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Zhu, Chenhui; Clark, Noel A

    2016-01-01

    We study phases and structures of mixtures of two representative chromonic liquid crystal materials, sunset yellow FCF (SSY) and disodium cromoglycate (DSCG), in water. A variety of combinations of isotropic, nematic (N), and columnar (also called M) phases are observed depending on their concentrations, and a phase diagram is made. We find a tendency for DSCG-rich regions to show higher-order phases while SSY-rich regions show lower-order ones. We observe uniform mesophases only when one of the materials is sparse in the N phases. Their miscibility in M phases is so low that essentially complete phase separation occurs. X-ray scattering and spectroscopy studies confirm that SSY and DSCG molecules do not mix when they form chromonic aggregates and neither do their aggregates when they form M phases.

  7. Phosphate-a poison for humans?

    PubMed

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions.

    PubMed

    Jung, Kyung-Won; Lee, Soonjae; Lee, Young Jae

    2017-12-01

    In this work, magnesium ferrite (MgFe 2 O 4 )/biochar magnetic composites (MFB-MCs) were prepared and utilized to remove phosphate from aqueous solutions. MFB-MCs were synthesized via co-precipitation of Fe and Mg ions onto a precursor, followed by pyrolysis. Characterization results confirmed that MgFe 2 O 4 nanoparticles with a cubic spinel structure were successfully embedded in the biochar matrix, and this offered magnetic separability with superparamagnetic behavior and enabled higher phosphate adsorption performance than that of pristine biochar and sole MgFe 2 O 4 nanoparticles. Batch experiments indicated that phosphate adsorption on the MFB-MCs is highly dependent on the pH, initial phosphate concentration, and temperature, while it was less affected by ionic strength. Analysis of activation and thermodynamic parameters as well as the isosteric heat of adsorption demonstrated that the phosphate adsorption is an endothermic and physisorption process. Lastly, highly efficient recyclability of the MFB-MCs suggested that they are a promising adsorbent for phosphate removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates

    PubMed Central

    Iali, Wissam; Rayner, Peter J.; Duckett, Simon B.

    2018-01-01

    Hyperpolarization turns weak nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) responses into strong signals, so normally impractical measurements are possible. We use parahydrogen to rapidly hyperpolarize appropriate 1H, 13C, 15N, and 31P responses of analytes (such as NH3) and important amines (such as phenylethylamine), amides (such as acetamide, urea, and methacrylamide), alcohols spanning methanol through octanol and glucose, the sodium salts of carboxylic acids (such as acetic acid and pyruvic acid), sodium phosphate, disodium adenosine 5′-triphosphate, and sodium hydrogen carbonate. The associated signal gains are used to demonstrate that it is possible to collect informative single-shot NMR spectra of these analytes in seconds at the micromole level in a 9.4-T observation field. To achieve these wide-ranging signal gains, we first use the signal amplification by reversible exchange (SABRE) process to hyperpolarize an amine or ammonia and then use their exchangeable NH protons to relay polarization into the analyte without changing its identity. We found that the 1H signal gains reach as high as 650-fold per proton, whereas for 13C, the corresponding signal gains achieved in a 1H-13C refocused insensitive nuclei enhanced by polarization transfer (INEPT) experiment exceed 570-fold and those in a direct-detected 13C measurement exceed 400-fold. Thirty-one examples are described to demonstrate the applicability of this technique. PMID:29326984

  10. Structural study and physical properties of a new phosphate KCuFe(PO 4) 2

    NASA Astrophysics Data System (ADS)

    Badri, Abdessalem; Hidouri, Mourad; López, María Luisa; Pico, Carlos; Wattiaux, Alain; Amara, Mongi Ben

    2011-04-01

    Single crystals of a new phosphate KCuFe(PO 4) 2 have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P2 1/ n and its parameters are: a=7.958(3) Å, b=9.931(2) Å, c=9.039(2) Å, β=115.59(3)° and Z=4. Its structure consists of FeO 6 octahedra sharing corners with Cu 2O 8 units of edge-sharing CuO 5 polyhedra to form undulating chains extending infinitely along the b-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K + ions are located. The Mössbauer spectroscopy results confirm the exclusive presence of octahedral Fe 3+ ions. The magnetic measurements show the compound to be antiferromagnetic with Cm=5.71 emu K/mol and θ=-156.5 K. The derived experimental effective moment μex=6.76 μB is somewhat higher than the theoretical one of μth=6.16 μB, calculated taking only into account the spin contribution for Fe 3+ and Cu 2+ cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations.

  11. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme

    PubMed Central

    Hudek, L.; Premachandra, D.; Webster, W. A. J.

    2016-01-01

    ABSTRACT In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB−) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme. IMPORTANCE Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes

  12. Hydrogen bonding in the neutron structure of the mononucleotide 5'-UMP disodium salt

    NASA Astrophysics Data System (ADS)

    Chitra, R.; Ranjan-Choudhury, R.; Ramanadham, M.

    Disodium uridine 5'-monophosphate heptahydrate (5'-UMPNa2), Na2[C9H11N2O9P].7H2O, crystallises in space group C2221 with a=22.985, b=8.911 and c=19.494Å. A neutron beam of λ=1.216Å was used; Z=8 and V=3992.75Å3. Data consisted of 1785 unique reflections. Na ions were connected to the main molecule through water molecules and sugar oxygens. One of the Na ions occupied a special position, and the other at a general position was partially disordered. The uracil base was planar, and had anti conformation about the glycosidic bond. The sugar had C(2') endo conformation and was gauche-gauche.

  13. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.

    PubMed

    Hope, Thomas A; Pampaloni, Miguel Hernandez; Nakakura, Eric; VanBrocklin, Henry; Slater, James; Jivan, Salma; Aparici, Carina Mari; Yee, Judy; Bergsland, Emily

    2015-08-01

    To evaluate a simultaneous PET/MRI approach to imaging patients with neuroendocrine tumor using a combination of (68)Ga-DOTA-TOC as a PET contrast agent and gadoxetate disodium as a hepatobiliary MRI contrast agent. Ten patients with neuroendocrine tumor with known or suspected hepatic disease were imaged using a (68)Ga-DOTA-TOC PET/CT immediately followed by a 3.0T time-of-flight PET/MRI, using a combined whole body and liver specific imaging. The presence of lesions and DOTA-TOC avidity were assessed on CT, PET from PET/CT, diffusion weighted imaging, hepatobiliary phase imaging (HBP), and PET from PET/MRI. Maximum standardized uptake values (SUVmax) in hepatic lesions and nodal metastases were compared between PET/CT and PET/MRI, as were detection rates using each imaging approach. A total of 101 hepatic lesions were identified, 47 of which were DOTA-TOC avid and able to be individually measured on both PET/CT and PET/MRI. HBP imaging had a higher sensitivity for detection of hepatic lesions compared to CT or PET (99% vs. 46% and 64%, respectively; p values <0.001). There was a strong correlation between SUVmax of liver lesions obtained with PET/CT compared to PET/MR imaging (Pearson's correlation = 0.91). For nodal disease, CT had a higher sensitivity compared to whole body MRI (p = 0.015), although PET acquired from PET/MRI detected slightly more lesions compared to PET from PET/CT. A simultaneous PET/MRI using both (68)Ga-DOTA-TOC and gadoxetate disodium was successful in whole body staging of patients with neuroendocrine tumor. HBP imaging had an increased detection rate for hepatic metastases.

  14. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    PubMed

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  15. Influence of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Moudane, M., E-mail: m.elmoudane@gmail.com; El Maniani, M.; Sabbar, A.

    2015-12-15

    Highlights: • Results of ionic conductivities of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. • Determination of glass transition temperature using DSC method. • Study of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. - Abstract: Lithium–Lead–Bismuth phosphates glasses having, a composition 30Li{sub 3}PO{sub 4}–(70 − x)Pb{sub 3}(PO{sub 4}){sub 2}–xBiPO{sub 4} (45 ≤ x ≤ 60 mol%) were prepared by using the melt quenching method 1000 °C. The thermal stability of theses glasses increases with the substitution of Bi{sub 2}O{sub 3} with PbO. The ionic conductivity of all compositions havemore » been measured over a wide temperature (200–500 °C) and frequency range (1–106 Hz). The ionic conductivity data below and above T{sub g} follows Arrhenius and Vogel–Tamman–Fulcher (VTF) relationship, respectively. The activation energies are estimated and discussed. The dependence in frequency of AC conductivity is found to obey Jonscher’s relation.« less

  16. Phosphate reduction in a hydroxyapatite fluoride removal system

    NASA Astrophysics Data System (ADS)

    Egner, A.

    2012-12-01

    Fluorosis is a widespread disease that occurs as a result of excess fluoride consumption and can cause severe tooth and bone deformations. To combat fluorosis, several previous studies have examined the potential to replace traditional bone char filters with synthetic hydroxyapatite. Calcite particles with a synthetic hydroxyapatite coating have been shown to effectively removed fluoride, yet the low-cost method for forming these particles leaves high amounts of phosphate both in synthesis waste-water and in filter effluent. High phosphate in filter effluent is problematic because consumption of extremely high phosphate can leach calcium from bones, further exacerbating the fluoride effect. This study examines ways of reducing and reusing waste. In particular, a method of fluoride removal is explored in which fluorapatite coatings may be formed directly. In preliminary studies, batches of 4.1g of Florida limestone (<710 μm) were equilibrated with 100 mL of 10ppm fluoride. In a control batch containing lime but no added phosphate, 14% treatment was achieved, but with added phosphate, 100% treatment was achieved in all batches. Batches with lower levels of phosphate took longer to reach 100% treatment, ranging from less than 24 hours in the highest phosphate batches to approximately 42 hours in the lowest batches. The lower levels tested were well within reasonable levels for drinking water and reached 0ppm fluoride in 42 hours or less.

  17. [Effects of pamidronate disodium (Bonin) combined with chemotherapy on bone pain in multiple myeloma].

    PubMed

    Leng, Yun; Chen, Shi-lun; Shi, Hong-zhi

    2002-10-01

    Objective. To evaluate the therapeutic effects of Disodium Pamidronate (Bonin) on bone pain in multiple myeloma. Method. 18 patients received only chemotherapy and 16 patients with addition of Bonin were compared. Result. The bone pain was significantly relieved both in chemotherapy alone group and in the combination group of Bonin with chemotherapy after treatment (P<0.01, as compared with before therapy). However, the effects of combination group were more dramatical than that of the other group (P<0.05). No obvious side-effects were observed except mild fever in one patient in the combination group. Conclusion. Bonin, as a safe and effective Bisphosphonates preparation, could relieve bone pain in multiple myeloma more effectively when combined with chemotherapy.

  18. 4-Benzyl-4-ethyl-morpholin-1-ium hexa-fluoro-phosphate.

    PubMed

    Yang, Fang; Zang, Hongjun; Cheng, Bowen; Xu, Xianlin; Ren, Yuanlin

    2012-03-01

    The asymmetric unit of the title compound, C(13)H(20)NO(+)·PF(6) (-), contains two cations, one complete anion and two half hexa-fluoro-phosphate anions having crystallographically imposed twofold rotation symmetry. In the cations, the morpholine rings are in a chair conformation. In the crystal, ions are linked by weak C-H⋯F hydrogen bonds into a three-dimensional network.

  19. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice.

    PubMed

    Ruan, Wenyuan; Guo, Meina; Wu, Ping; Yi, Keke

    2017-02-01

    OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice. Phosphate (Pi) starvation response is a sophisticated process for plant in the natural environment. In this process, PHOSPHATE STARVATION RESPONSE 1 (PHR1) subfamily genes play a central role in regulating Pi-starvation signaling and Pi-homeostasis. Besides the three PHR1 orthologs in Oryza sativa L. (Os) [(Os) PHR1, (Os) PHR2, and (Os) PHR3], which were reported to regulated Pi-starvation signaling and Pi-homeostasis redundantly, a close related PHR1 ortholog [designated as (Os) PHR4] is presented in rice genome with unknown function. In this study, we found that OsPHR4 is a Pi-starvation induced gene and mainly expresses in vascular tissues through all growth and development periods. The expression of OsPHR4 is positively regulated by OsPHR1, OsPHR2 and OsPHR3. The nuclear located OsPHR4 can respectively interact with other three PHR1 subfamily members to regulate downstream Pi-starvation induced genes. Consistent with the positive role of PHR4 in regulating Pi-starvation signaling, the OsPHR4 overexpressors display higher Pi accumulation in the shoot and elevated expression of Pi-starvation induced genes under Pi-sufficient condition. Besides, moderate growth retardation and repression of the Pi-starvation signaling in the OsPHR4 RNA interfering (RNAi) transgenic lines can be observed under Pi-deficient condition. Together, we propose that OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.

  20. Gadoxetate Disodium-Enhanced MRI to Differentiate Dysplastic Nodules and Grade of Hepatocellular Carcinoma: Correlation With Histopathology.

    PubMed

    Channual, Stephanie; Tan, Nelly; Siripongsakun, Surachate; Lassman, Charles; Lu, David S; Raman, Steven S

    2015-09-01

    The objective of our study was to determine quantitative differences to differentiate low-grade from high-grade dysplastic nodules (DNs) and low-grade from high-grade hepatocellular carcinomas (HCCs) using gadoxetate disodium-enhanced MRI. A retrospective study of 149 hepatic nodules in 127 consecutive patients who underwent gadoxetic acid-enhanced MRI was performed. MRI signal intensities (SIs) of the representative lesion ROI and of ROIs in liver parenchyma adjacent to the lesion were measured on unenhanced T1-weighted imaging and on dynamic contrast-enhanced MRI in the arterial, portal venous, delayed, and hepatobiliary phases. The relative SI of the lesion was calculated for each phase as the relative intensity ratio as follows: [mass SI / liver SI]. Of the 149 liver lesions, nine (6.0%) were low-grade DNs, 21 (14.1%) were high-grade DNs, 83 (55.7%) were low-grade HCCs, and 36 (24.2%) were high-grade HCCs. The optimal cutoffs for differentiating low-grade DNs from high-grade DNs and HCCs were an unenhanced to arterial SI of ≥ 0 or a relative SI on T2-weighted imaging of ≤ 1.5, with a positive predictive value (PPV) of 99.2% and accuracy of 88.6%. The optimal cutoffs for differentiating low-grade HCCs from high-grade HCCs were a relative hepatobiliary SI of ≤ 0.5 or a relative T2 SI of ≥ 1.5, with a PPV of 81.0% and an accuracy of 60.5%. Gadoxetate disodium-enhanced MRI allows quantitative differentiation of low-grade DNs from high-grade DNs and HCCs, but significant overlap was seen between low-grade HCCs and high-grade HCCs.

  1. Meningococcal X polysaccharide quantification by high-performance anion-exchange chromatography using synthetic N-acetylglucosamine-4-phosphate as standard.

    PubMed

    Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F

    2013-11-15

    A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A case report of a 4-year-old child with glucose-6-phosphate dehydrogenase deficiency: An evidence based approach to nutritional management.

    PubMed

    Pinto, Alex; MacDonald, Anita; Cleto, Esmeralda; Almeida, Manuela Ferreira; Ramos, Paula Cristina; Rocha, Júlio César

    2017-01-01

    Pinto A, MacDonald A, Cleto E, Almeida MF, Ramos PC, Rocha JC. A case report of a 4-year-old child with glucose-6-phosphate dehydrogenase deficiency: An evidence based approach to nutritional management. Turk J Pediatr 2017; 59: 189-192. The objective was to describe the nutritional management of a 4-year-old child with glucose-6-phosphate dehydrogenase (G6PD) deficiency. A 4-year-old male child, African descent, born from non-consanguineous parents presented with a clinical history of frequent respiratory infections, usually treated with antibiotics. At 30 months of age, G6PD diagnosis was made after eating one portion (40 - 60 g) of fava beans, resulting in severe hemolytic anemia hospitalization for 5 days. Diagnosis was confirmed by G6PD activity measurement. Nutritional counseling was given to avoid dietary oxidative stressors particularly the exclusion of fava beans and accidental ingestion of other similar beans. Dietary intake of high vitamin C containing foods was discouraged and adequate hydration advised. Nutritional management is crucial in preventing acute stress events in patients with G6PD deficiency.

  3. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2014-01-01

    Increased fasting serum phosphate within the normal physiological range has been linked to increased cardiovascular risk in prospective epidemiology; increased production of fibroblast growth factor 23, and direct vascular effects of phosphate, may mediate this risk. Although dietary phosphate intake does not clearly influence fasting serum phosphate in individuals with normal renal function, increased phosphate intake can provoke a rise in fibroblast growth factor 23, and in diurnal phosphate levels, and hence may adversely influence vascular health. Dietary phosphate absorption can be moderated by emphasizing plant-based dietary choices (which provide phosphate in less bioavailable forms); avoidance of processed foods containing inorganic phosphate food additives; and by ingestion of phosphate-binder drugs, magnesium supplements, or niacin, which precipitate phosphate or suppress its gastrointestinal absorption. The propensity of dietary phosphate to promote vascular calcification may be opposed by optimal intakes of magnesium, vitamin K, and vitamin D; the latter should also counter the tendency of phosphate to elevate parathyroid hormone. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A vibrational spectroscopic study of the anhydrous phosphate mineral sidorenkite Na3Mn(PO4)(CO3)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Belotti, Fernanda Maria; Xi, Yunfei

    2015-02-01

    Sidorenkite is a very rare low-temperature hydrothermal mineral, formed very late in the crystallization of hyperagpaitic pegmatites in a differentiated alkalic massif (Mt. Alluaiv, Kola Peninsula, Russia). Sidorenkite Na3Mn(PO4)(CO3) is a phosphate-carbonate of sodium and manganese. Such a formula with two oxyanions lends itself to vibrational spectroscopy. The sharp Raman band at 959 cm-1 and 1012 cm-1 are assigned to the PO43- stretching modes, whilst the Raman bands at 1044 cm-1 and 1074 cm-1 are attributed to the CO32- stretching modes. It is noted that no Raman bands at around 800 cm-1 for sidorenkite were observed. The infrared spectrum of sidorenkite shows a quite intense band at 868 cm-1 with other resolved component bands at 850 and 862 cm-1. These bands are ascribed to the CO32- out-of-plane bend (ν2) bending mode. The series of Raman bands at 622, 635, 645 and 704 cm-1 are assigned to the ν4 phosphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the carbonate anion from D3h or even C2v.

  5. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert

    2009-03-06

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an {omega}-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K{sub m} ofmore » 35 {mu}M for BODIPY-sphingosine 1-phosphate.« less

  6. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California

    USGS Publications Warehouse

    McLaughlin, K.; Kendall, C.; Silva, S.R.; Young, M.; Paytan, A.

    2006-01-01

    A seasonal analysis assesing variations in the oxygen isotopic composition of dissolved inorganic phosphate (DIP) was conducted in the San Francisco Bay estuarine system, California. Isotopic fractionation of oxygen in DIP (exchange of oxygen between phosphate and environmental water) at surface water temperatures occurs only as a result of enzyme-mediated, biological reactions. Accordingly, if phospate demand is low relative to input and phosphate is not heavily cycled in the ecosystem, the oxygen isotopic composition of DIP (?? 18Op) will reflect the isotopic composition of the source of phosphate to the system. Such is the case for the North San Francisco Bay, an anthropogenically impacted estuary with high surface water phosphate concentrations. Variability in the ?? 18Op in the bay is primarily controlled by mixing of water masses with different ??18Op signatures. The ??18Op values range from 11.4??? at the Sacramento River to 20.1??? at the Golden Gate. Deviations from the two-component mixing model for the North Bay reflect additional, local sources of phosphate to the estuary that vary seasonally. Most notably, deviations from the mixing model occur at the confluence of a major river into the bay during periods of high river discharge and near wastewater treatment outlets. These data suggest that ??18Op can be an effective tool for identifying P point sources and understanding phosphate dynamics in estuarine systems. Copyright 2006 by the American Geophysical Union.

  7. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  8. Analysis of genomic responses in a rat lung model treated with a humidifier sterilizer containing polyhexamethyleneguanidine phosphate.

    PubMed

    Kim, Min-Seok; Jeong, Seok Won; Choi, Seong-Jin; Han, Jin-Young; Kim, Sung-Hwan; Yoon, Seokjoo; Oh, Jung-Hwa; Lee, Kyuhong

    2017-02-15

    The antimicrobial biocide polyhexamethyleneguanidine (PHMG) phosphate is the main ingredient in the commercially available humidifier disinfectant. PHMG phosphate-based humidifier disinfectants can cause pulmonary fibrosis and induce inflammatory and fibrotic responses both in vivo and in vitro. However, toxicological mechanisms including genomic alterations induced by inhalation exposure to PHMG phosphate have not been elucidated. Therefore, this study evaluated the toxicological effects of the PHMG phosphate-containing humidifier disinfectant. We used DNA microarray to identify global gene expression changes in rats treated with PHMG phosphate-containing humidifier disinfectant for 4 weeks and 10 weeks. Functional significance of differentially expressed genes (DEGs) was estimated by gene ontology (GO) analysis. Four weeks post-exposure, 320 and 392 DEGs were identified in female and male rats, respectively (>2-fold, p<0.05). Ten weeks post-exposure, 1290 and 995 DEGs were identified in females and males, respectively. Of these, 119 and 556 genes overlapped between females and males at 4 weeks and 10 weeks, respectively, post-PHMG phosphate exposure. In addition, 21 genes were upregulated and 4 genes were downregulated in response to PHMG phosphate in a time-dependent manner. Thus, we predict that changes in genomic responses could be a significant molecular mechanism underlying PHMG phosphate toxicity. Further studies are required to determine the detailed mechanism of PHMG phosphate-induced pulmonary toxicity. Copyright © 2016. Published by Elsevier B.V.

  9. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  10. Intermediate-range order in simple metal-phosphate glasses: The effect of metal cations on the phosphate anion distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, B.C.; Boatner, L.A.; Ramey, J.O.

    1997-06-01

    The technique of high-performance liquid chromatography (HPLC) has been used to probe the phosphate anion distribution in a variety of metal phosphate glasses including glasses made with trivalent metal cations (Al, In, Ga, La). The composition of each glass was chosen so that the average phosphate chain length was between 2 and 4 PO{sub 4} tetrahedra. The widths of the resulting phosphate anion distributions were determined directly from an analysis of the HPLC chromatograms. Literature values for the free energy of formation of the crystalline metal-orthophosphate compounds with respect to P{sub 2}O{sub 5} and the metal oxide, were compared tomore » the chromatogram widths. It was found that the smaller the energy of formation, the wider the distribution of phosphate chains, and the greater the ease of glass formation.« less

  11. Validity of fluorexon disodium versus sodium fluorescein for use in Goldmann tonometry.

    PubMed

    Ng, Loretta T; Tong, Judy W; De Land, Paul N

    2006-07-01

    To evaluate the safety, validity, and comfort of 0.35% fluorexon disodium and 0.4% benoxinate (Flura-Safe) compared with the gold standard of 0.25% sodium fluorescein and 0.4% benoxinate for Goldmann applanation tonometry (GAT). This was a double-masked, randomized, crossover clinical trial. Subjects received either the standard or study formulation for GAT on visit 1 and the other formulation 1 week later. At each visit, tonometer mire quality, adequacy of fluorescence, ease of intraocular pressure (IOP) measurements, the IOP value, and anesthetizing efficacy of the formulation were assessed. Subjects graded general comfort, soreness and irritation, and burning and stinging of each formulation at 1 and 5 minutes after drop instillation. Sixty-seven subjects completed the study. The mean IOP was 13.9 +/- 2.7 with fluorexon and 13.9 +/- 2.8 mm Hg with fluorescein OD and 14.0 +/- 2.8 with fluorexon and 13.9 +/- 2.5 mm Hg with fluorescein OS. The measurements with the 2 formulations were highly correlated for OD and OS, and the differences between the 2 measurements were not clinically significant. There was also no significant difference between the 2 drops in mire clarity, adequacy of fluorescence, or corneal anesthesia. However, fluorexon was statistically more comfortable (P = 0.039) and caused less stinging and burning (P = 0.014) at 1 minute versus the fluorescein formulation. Not only was the new fluorexon product accurate and effective in GAT, it was also statistically more comfortable and had a less stinging and burning effect at 1 minute after drop instillation than the traditional fluorescein formulation. Because fluorexon is less likely to stain soft contact lenses, this may be the dye-anesthetic formulation of choice for practices that routinely perform GAT.

  12. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    PubMed Central

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  13. Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase–phosphatase

    PubMed Central

    Das, Ushati; Shuman, Stewart

    2013-01-01

    T4 polynucleotide kinase–phosphatase (Pnkp) exemplifies a family of enzymes with 5′-kinase and 3′-phosphatase activities that function in nucleic acid repair. The polynucleotide 3′-phosphatase reaction is executed by the Pnkp C-terminal domain, which belongs to the DxDxT acylphosphatase superfamily. The 3′-phosphatase reaction entails formation and hydrolysis of a covalent enzyme-(Asp165)-phosphate intermediate, driven by general acid–base catalyst Asp167. We report that Pnkp also has RNA 2′-phosphatase activity that requires Asp165 and Asp167. The physiological substrate for Pnkp phosphatase is an RNA 2′,3′-cyclic phosphate end (RNA > p), but the pathway of cyclic phosphate removal and its enzymic requirements are undefined. Here we find that Pnkp reactivity with RNA > p requires Asp165, but not Asp167. Whereas wild-type Pnkp transforms RNA > p to RNAOH, mutant D167N converts RNA > p to RNA 3′-phosphate, which it sequesters in the phosphatase active site. In support of the intermediacy of an RNA phosphomonoester, the reaction of mutant S211A with RNA > p results in transient accumulation of RNAp en route to RNAOH. Our results suggest that healing of 2′,3′-cyclic phosphate ends is a four-step processive reaction: RNA > p + Pnkp → RNA-(3′-phosphoaspartyl)-Pnkp → RNA3′p + Pnkp → RNAOH + phosphoaspartyl-Pnkp → Pi + Pnkp. PMID:23118482

  14. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Edetate Disodium Chelation Therapy

    PubMed Central

    Lamas, Gervasio A.; Navas-Acien, Ana; Mark, Daniel B.; Lee, Kerry L.

    2016-01-01

    This review summarizes evidence from 2 lines of research previously thought unrelated: the unexpectedly positive results of the Trial to Assess Chelation Therapy (TACT), and a body of epidemiological data showing that accumulation of biologically active metals, such as lead and cadmium, is an important risk factor for cardiovascular disease. Considering these 2 areas of work together may lead to the identification of new, modifiable risk factors for atherosclerotic cardiovascular disease. We examine the history of chelation up through the report of TACT. We then describe work connecting higher metal levels in the body with the future risk of cardiovascular disease. We conclude by presenting a brief overview of a newly planned National Institutes of Health trial, TACT2, in which we will attempt to replicate the findings of TACT and to establish that removal of toxic metal stores from the body is a plausible mechanistic explanation for the benefits of edetate disodium treatment. PMID:27199065

  15. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... of the polymer and in the preparation and application of the emulsion may include substances named in... amount required as a preservative in emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde...

  16. Phosphate solubilization and promotion of maize growth in a calcareous soil by penicillium oxalicum P4 and aspergillus niger P85

    USDA-ARS?s Scientific Manuscript database

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  17. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency.

    PubMed

    Buch, Aditi; Archana, G; Naresh Kumar, G

    2008-01-01

    Most phosphate-solubilizing bacteria (PSB), including the Pseudomonas species, release P from sparingly soluble mineral phosphates by producing high levels of gluconic acid from extracellular glucose, in a reaction catalyzed by periplasmic glucose dehydrogenase, which is an integral component of glucose catabolism of pseudomonads. To investigate the differences in the glucose metabolism of gluconic acid-producing PSB pseudomonads and low gluconic acid-producing/non-PSB strains, several parameters pertaining to growth and glucose utilization under P-sufficient and P-deficient conditions were monitored for the PSB isolate Pseudomonas aeruginosa P4 (producing approximately 46 mM gluconic acid releasing 437 microM P) and non-PSB P. fluorescens 13525. Our results show interesting differences in the channeling of glucose towards gluconate and other catabolic end-products like pyruvate and acetate with respect to P status for both strains. However, PSB strain P. aeruginosa P4, apart from exhibiting better growth under both low and high Pi conditions, differed from P. fluorescens 13525 in its ability to accumulate gluconate under P-solubilizing conditions. These alterations in growth, glucose utilization and acid secretion are correlated with glucose dehydrogenase, glucose-6-phosphate dehydrogenase and pyruvate carboxylase activities. The ability to shift glucose towards a direct oxidative pathway under P deficiency is speculated to underlie the differential gluconic acid-mediated P-solubilizing ability observed amongst pseudomonads.

  18. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Phosphate additives in food--a health risk.

    PubMed

    Ritz, Eberhard; Hahn, Kai; Ketteler, Markus; Kuhlmann, Martin K; Mann, Johannes

    2012-01-01

    Hyperphosphatemia has been identified in the past decade as a strong predictor of mortality in advanced chronic kidney disease (CKD). For example, a study of patients in stage CKD 5 (with an annual mortality of about 20%) revealed that 12% of all deaths in this group were attributable to an elevated serum phosphate concentration. Recently, a high-normal serum phosphate concentration has also been found to be an independent predictor of cardiovascular events and mortality in the general population. Therefore, phosphate additives in food are a matter of concern, and their potential impact on health may well have been underappreciated. We reviewed pertinent literature retrieved by a selective search of the PubMed and EU databases (www.zusatzstoffe-online.de, www.codexalimentarius.de), with the search terms "phosphate additives" and "hyperphosphatemia." There is no need to lower the content of natural phosphate, i.e. organic esters, in food, because this type of phosphate is incompletely absorbed; restricting its intake might even lead to protein malnutrition. On the other hand, inorganic phosphate in food additives is effectively absorbed and can measurably elevate the serum phosphate concentration in patients with advanced CKD. Foods with added phosphate tend to be eaten by persons at the lower end of the socioeconomic scale, who consume more processed and "fast" food. The main pathophysiological effect of phosphate is vascular damage, e.g. endothelial dysfunction and vascular calcification. Aside from the quality of phosphate in the diet (which also requires attention), the quantity of phosphate consumed by patients with advanced renal failure should not exceed 1000 mg per day, according to the guidelines. Prospective controlled trials are currently unavailable. In view of the high prevalence of CKD and the potential harm caused by phosphate additives to food, the public should be informed that added phosphate is damaging to health. Furthermore, calls for labeling

  20. Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial.

    PubMed

    Lamas, Gervasio A; Goertz, Christine; Boineau, Robin; Mark, Daniel B; Rozema, Theodore; Nahin, Richard L; Lindblad, Lauren; Lewis, Eldrin F; Drisko, Jeanne; Lee, Kerry L

    2013-03-27

    Chelation therapy with disodium EDTA has been used for more than 50 years to treat atherosclerosis without proof of efficacy. To determine if an EDTA-based chelation regimen reduces cardiovascular events. Double-blind, placebo-controlled, 2 × 2 factorial randomized trial enrolling 1708 patients aged 50 years or older who had experienced a myocardial infarction (MI) at least 6 weeks prior and had serum creatinine levels of 2.0 mg/dL or less. Participants were recruited at 134 US and Canadian sites. Enrollment began in September 2003 and follow-up took place until October 2011 (median, 55 months). Two hundred eighty-nine patients (17% of total; n=115 in the EDTA group and n=174 in the placebo group) withdrew consent during the trial. Patients were randomized to receive 40 infusions of a 500-mL chelation solution (3 g of disodium EDTA, 7 g of ascorbate, B vitamins, electrolytes, procaine, and heparin) (n=839) vs placebo (n=869) and an oral vitamin-mineral regimen vs an oral placebo. Infusions were administered weekly for 30 weeks, followed by 10 infusions 2 to 8 weeks apart. Fifteen percent discontinued infusions (n=38 [16%] in the chelation group and n=41 [15%] in the placebo group) because of adverse events. The prespecified primary end point was a composite of total mortality, recurrent MI, stroke, coronary revascularization, or hospitalization for angina. This report describes the intention-to-treat comparison of EDTA chelation vs placebo. To account for multiple interim analyses, the significance threshold required at the final analysis was P = .036. Qualifying previous MIs occurred a median of 4.6 years before enrollment. Median age was 65 years, 18% were female, 9% were nonwhite, and 31% were diabetic. The primary end point occurred in 222 (26%) of the chelation group and 261 (30%) of the placebo group (hazard ratio [HR], 0.82 [95% CI, 0.69-0.99]; P = .035). There was no effect on total mortality (chelation: 87 deaths [10%]; placebo, 93 deaths [11%]; HR, 0

  1. Determination of Phosphates by the Gravimetric Quimociac Technique

    ERIC Educational Resources Information Center

    Shaver, Lee Alan

    2008-01-01

    The determination of phosphates by the classic quimociac gravimetric technique was used successfully as a laboratory experiment in our undergraduate analytical chemistry course. Phosphate-containing compounds are dissolved in acid and converted to soluble orthophosphate ion (PO[subscript 4][superscript 3-]). The soluble phosphate is easily…

  2. Microbial electrolysis cell accelerates phosphate remobilisation from iron phosphate contained in sewage sludge.

    PubMed

    Fischer, Fabian; Zufferey, Géraldine; Sugnaux, Marc; Happe, Manuel

    2015-01-01

    Phosphate was remobilised from iron phosphate contained in digested sewage sludge using a bio-electric cell. A significant acceleration above former results was caused by strongly basic catholytes. For these experiments a dual chambered microbial electrolysis cell with a small cathode (40 mL) and an 80 times larger anode (2.5 L) was equipped with a platinum sputtered reticulated vitreous carbon cathode. Various applied voltages (0.2-6.0 V) generated moderate to strongly basic catholytes using artificial waste water with pH close to neutral. Phosphate from iron phosphate contained in digested sewage sludge was remobilised most effectively at pH ∼13 with up to 95% yield. Beside minor electrochemical reduction, hydroxyl substitution was the dominating remobilisation mechanism. Particle-fluid kinetics using the "shrinking core" model allowed us to determine the reaction controlling step. Reaction rates changed with temperature (15-40 °C) and an activation energy of Ea = 55 kJ mol(-1) was found. These analyses indicated chemical and physical reaction control, which is of interest for future scale-up work. Phosphate remobilisation rates increased significantly, yields doubled and recovered PO4(3-) concentrations increased four times using a task specific bio-electric system. The result is a sustainable process for decentralized phosphate mining and a green chemical base generator useful also for many other sustainable processing needs.

  3. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Fang, Wenkan; Xing, Mingchao; Wu, Deyi

    2017-02-01

    Owing to the easy magnetic separation from water for reuse, magnetic nanoparticles have drawn great interest as adsorbents. Herein hydrous zirconia-coated magnetite nanoparticles (Fe3O4@ZrO2) were created by a facile method and a bench-scale study was undertaken to evaluate its effectiveness and mechanism to remove phosphate at low concentrations. Results indicated that phosphate removal by Fe3O4@ZrO2 was fast (95% of phosphate removal within 10 min) and nearly complete removal could be achieved at the adsorbent dosage >0.6 g/L. In tap water or wastewater where competitive anions coexist, regulation of pH was found to be quite effective to augment the performance of phosphate removal. In pH-lowered adsorption systems, phosphate removal followed a good pattern similarly to pure water, i.e., a continuous high efficiency removal followed by a rapid saturation. Adsorption-desorption-regeneration studies showed that Fe3O4@ZrO2 could be repeatedly used for phosphate removal and adsorbed phosphate could be stripped for recovery. The fractionation of adsorbed phosphorus suggested that NaOH-P fraction was dominant. We also found that the adsorption reaction of phosphate with Fe3O4@ZrO2 shifted the isoelectric point of Fe3O4@ZrO2 from 9.0 to 3.0. FTIR measurements further showed the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. The formation of the monodentate (ZrO)PO2(OH) complex was proposed.

  4. Ifosfamide metabolites CAA, 4-OH-Ifo and Ifo-mustard reduce apical phosphate transport by changing NaPi-IIa in OK cells.

    PubMed

    Patzer, L; Hernando, N; Ziegler, U; Beck-Schimmer, B; Biber, J; Murer, H

    2006-11-01

    Renal Fanconi syndrome occurs in about 1-5% of all children treated with Ifosfamide (Ifo) and impairment of renal phosphate reabsorption in about 20-30% of them. Pathophysiological mechanisms of Ifo-induced nephropathy are ill defined. The aim has been to investigate whether Ifo metabolites affect the type IIa sodium-dependent phosphate transporter (NaPi-IIa) in viable opossum kidney cells. Ifo did not influence viability of cells or NaPi-IIa-mediated transport up to 1 mM/24 h. Incubation of confluent cells with chloroacetaldehyde (CAA) and 4-hydroperoxyIfosfamide (4-OH-Ifo) led to cell death by necrosis in a concentration-dependent manner. At low concentrations (50-100 microM/24 h), cell viability was normal but apical phosphate transport, NaPi-IIa protein, and -mRNA expression were significantly reduced. Coincubation with sodium-2-mercaptoethanesulfonate (MESNA) prevented the inhibitory action of CAA but not of 4-OH-Ifo; DiMESNA had no effect. Incubation with Ifosfamide-mustard (Ifo-mustard) did alter cell viability at concentrations above 500 microM/24 h. At lower concentrations (50-100 microM/24 h), it led to significant reduction in phosphate transport, NaPi-IIa protein, and mRNA expression. MESNA did not block these effects. The effect of Ifo-mustard was due to internalization of NaPi-IIa. Cyclophosphamide-mustard (CyP-mustard) did not have any influence on cell survival up to 1000 microM, but the inhibitory effect on phosphate transport and on NaPi-IIa protein was the same as found after Ifo-mustard. In conclusion, CAA, 4-OH-Ifo, and Ifo- and CyP-mustard are able to inhibit sodium-dependent phosphate cotransport in viable opossum kidney cells. The Ifo-mustard effect took place via internalization and reduction of de novo synthesis of NaPi-IIa. Therefore, it is possible that Ifo-mustard plays an important role in pathogenesis of Ifo-induced nephropathy.

  5. A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a High-Performance Anode for Sodium-Ion Batteries.

    PubMed

    Cao, Tengfei; Lv, Wei; Zhang, Si-Wei; Zhang, Jun; Lin, Qiaowei; Chen, Xiangrong; He, Yanbing; Kang, Fei-Yu; Yang, Quan-Hong

    2017-11-21

    As a promising candidate for large-scale energy storage systems, sodium-ion batteries (SIBs) are experiencing a rapid development. Organic conjugated carboxylic acid anodes not only have tailorable electrochemical properties but also are easily accessible. However, the low stability and electrical conductivity hamper their practical applications. In this study, disodium terephthalate (Na 2 TP), the most favorable organic conjugated carboxylic acid anode material for SIBs, was proposed to integrate with graphene oxide (GO) by an anti-solvent precipitation process, which ensures the uniform and tight coating of GO on the Na 2 TP surface. GO is electrochemically reduced during the first several cycles of the electrochemical measurement, which buffers the volume change and improves the electrical conductivity of Na 2 TP, resulting in a better cyclic and rate performance. The incorporation of only 5 wt % GO onto Na 2 TP leads to a reversible capability of 235 mA h g -1 after 100 cycles at a current rate of 0.1 C, which is the best among the state of the art organic anodes for SIBs. The one-step synthesis together with the low costs of the raw materials show a promise for the scalable preparation of anode materials for practical SIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Role of Polymeric Coating on the Phosphate Availability as a Fertilizer: Insight from Phosphate Release by Castor Polyurethane Coatings.

    PubMed

    da Cruz, Diego Fernandes; Bortoletto-Santos, Ricardo; Guimarães, Gelton Geraldo Fernandes; Polito, Wagner Luiz; Ribeiro, Caue

    2017-07-26

    The coating of fertilizers with polymers is an acknowledged strategy for controlling the release of nutrients and their availability in soil. However, its effectiveness in the case of soluble phosphate fertilizers is still uncertain, and information is lacking concerning the chemical properties and structures of such coatings. Here, an oil-based hydrophobic polymer system (polyurethane) is proposed for the control of the release of phosphorus from diammonium phosphate (DAP) granules. This material was systematically characterized, with evaluation of the delivery mechanism and the availability of phosphate in an acid soil. The results indicated that thicker coatings can change the maximum nutrient availability toward longer periods, such as 4.5-7.5 wt % DAP coated, that presented the highest concentrations at 336 h, as compared to 168 h for uncoated DAP. In contrast, DAP treated with 9.0 wt % began to increase the concentration after 168 h until it results in maximum release at 672 h. These effects could be attributed to the homogeneity of the polymer and the porosity. The strategy successfully provided long-term availability of a phosphate source.

  7. Computer modeling of lithium phosphate and thiophosphate electrolyte materials

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Lepley, N. D.; Du, Yaojun A.

    In this work, several lithium phosphate and thiophosphate materials are modeled to determine their optimized lattice structures, their total energies, and their electronic structures. Included in this study are materials characterized by isolated phosphate and thiophosphate groups - Li 3PS 4 and Li 3PO 4 and materials characterized by phosphate and thiophosphate dimers - Li 4P 2S 6 and Li 4P 2O 6 and Li 4P 2S 7 and Li 4P 2O 7. In addition, the superionic conducting material Li 7P 3S 11 is also modeled as are recently discovered crystalline argyrodite materials Li 7PS 6 and Li 6PS 5Cl. A comparison of Li ion vacancy migration in Li 4P 2S 7 and Li 4P 2O 7 shows the migration energy barriers in the thiophosphate to be smaller (less than one-half) than in the phosphate.

  8. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    PubMed

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  9. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.

    PubMed

    Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang

    2016-07-01

    Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process. Copyright © 2016. Published by Elsevier B.V.

  10. 3D WO3 /BiVO4 /Cobalt Phosphate Composites Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Zhang, Haifeng; Zhou, Weiwei; Yang, Yaping; Cheng, Chuanwei

    2017-04-01

    A novel 3D WO 3 /BiVO 4 /cobalt phosphate composite inverse opal is designed for photoeletrochemical (PEC) water splitting, yielding a significantly improved PEC performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice

    PubMed Central

    Welford, Abigail F.; Biziato, Daniela; Coffelt, Seth B.; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M.; Lewis, Claire E.

    2011-01-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA4P-treated tumors either by interfering pharmacologically with the CXCL12/CXCR4 axis or by genetically depleting TEMs in tumor-bearing mice markedly increased the efficacy of CA4P treatment. These data suggest that TEMs limit VDA-induced tumor injury and represent a potential target for improving the clinical efficacy of VDA-based therapies. PMID:21490397

  12. Ammonium–cobalt–nickel phosphates, NH{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torre-Fernández, Laura; Trobajo, Camino; Pedro, Imanol de

    The ammonium–cobalt–nickel phosphates, NH{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·H{sub 2}O (x=0.00, 0.34, 0.59, 0.70, 1.00), and the deuterated forms, ND{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·D{sub 2}O (x=0.00, 0.38, 0.48, 0.69, 0.85), have been synthesized under mild hydrothermal conditions and characterised using X-ray and neutron diffraction, chemical and thermal analysis, and magnetic measurements. Their crystal structures, including hydrogen positions, were determined by Rietveld refinement using single-crystal X-ray and neutron powder diffraction data. The space group of these orthorhombic crystals modifies as a function of their composition. The magnetic susceptibility and magnetization measurements of these ammonium–cobalt–nickel phosphates show antiferromagnetic behaviour, and the Neel temperaturemore » evolves from 5.5 K (x=0.00) up to 13.2 K (x=1.00). - Graphical abstract: We obtained single crystals for all the members of the family. In this series, although all crystals are orthorhombic, the space group changes as a function of the composition, showing how the single-crystal diffraction data is capable to manifest structural subtleties that had not been described before for this group of materials. All the investigated materials behave antiferromagnetically with ordering temperatures from 5.5 K up to 13.2 K. Display Omitted - Highlights: • The ammonium–cobalt–nickel phosphates, NH{sub 4}[Co{sub 1−x}Ni{sub x}PO{sub 4}]·H{sub 2}O (x=0.00, 0.34, 0.59, 0.70, 1.00) and the deuterated forms ND4[Co1-xNixPO4]·D{sub 2}O (x=0.00, 0.38, 0.49, 0.68, 0.85) have synthesized by hydrothermal synthesis. • The structural studies of these compounds are introduced as a function of the composition. • The magnetic studies show an antiferromagnetically behavior with ordering temperatures from 5.5 K to 13.2 K.« less

  13. A study of the phosphate mineral kapundaite NaCa(Fe3+)4(PO4)4(OH)3ṡ5(H2O) using SEM/EDX and vibrational spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Scholz, Ricardo

    2014-03-01

    Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of kapundaite with wardite. The Raman spectrum of kapundaite in the 800-1400 cm-1 spectral range shows two intense bands at 1089 and 1114 cm-1 assigned to the ν1PO43- symmetric stretching vibrations. The observation of two bands provides evidence for the non-equivalence of the phosphate units in the kapundaite structure. The infrared spectrum of kapundaite in the 500-1300 cm-1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 966, 1003 and 1036 cm-1 and are attributed to the ν1PO43- symmetric stretching mode and ν3PO43- antisymmetric stretching mode. Raman bands in the ν4 out of plane bending modes of the PO43- unit support the concept of non-equivalent phosphate units in the kapundaite structure. In the 2600-3800 cm-1 spectral range, Raman bands for kapundaite are found at 2905, 3151, 3311, 3449 and 3530 cm-1. These bands are broad and are assigned to OH stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm-1 and are attributed to water. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of kapundaite to be ascertained and compared with that of other phosphate minerals.

  14. Radiological assessment of Abu-Tartur phosphate, Western Desert Egypt.

    PubMed

    Uosif, M A M; El-Taher, A

    2008-01-01

    The contents of natural radionuclides ((226)Ra, (232)Th and (40)K) were measured in sedimentary phosphate rock samples (Abu-Tartur phosphate, Western Desert Egypt) by using gamma spectrometry (NaI (Tl) 3"x 3"). Phosphate and environmental samples were collected from Abu-Tartur phosphate mine and the surrounding region. The results are discussed and compared with the levels in phosphate rocks from different countries. The activities of (226)Ra, (232)Th series and (40)K are between (14.9 +/- 0.8 and 302.4 +/- 15.2), (2.6 +/- 1.0 and 154.9 +/- 7.8) and (10.0 +/- 0.5 and 368.4 +/- 18.4) Bq kg(-1), respectively. The Abu-Tartur phosphate deposit was found to have lower activity than many others exploited phosphate sedimentary deposits, with its average total annual dose being only 114.6 microSv y(-1). This value is about 11.46% of the 1.0 mSv y(-1) recommended by the International Commission on Radiological Protection (ICRP-60, 1990) as the maximum annual dose to members of the public.

  15. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.

    PubMed

    Taguchi, Yodai; Saburi, Wataru; Imai, Ryozo; Mori, Haruhide

    2017-08-01

    Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.

  16. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-09-01

    The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate

    NASA Astrophysics Data System (ADS)

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey; Sun, Yongming; Feng, Dawei; Lim, Kipil; Chueh, William C.; Toney, Michael F.; Cui, Yi; Bao, Zhenan

    2017-11-01

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g-1, and Earth abundance of disodium rhodizonate (Na2C6O6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. Here, we reveal that irreversible phase transformation of Na2C6O6 during cycling is the origin of the deteriorating redox activity of Na2C6O6. The active-particle size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. On the basis of this understanding, we achieved four-sodium storage in a Na2C6O6 electrode with a reversible capacity of 484 mAh g-1, an energy density of 726 Wh kg-1cathode, an energy efficiency above 87% and a good cycle retention.

  18. A Black Phosphate Conversion Coating on Steel Surface Using Antimony(III)-Tartrate as an Additive

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wang, Guiping

    2016-05-01

    A novel black phosphate conversion coating was formed on steel surface through a Zn-Mn phosphating bath containing mainly ZnO, H3PO4, Mn(H2PO4)2, and Ca(NO3)2, where antimony(III)-tartrate was used as the blackening agent of phosphatization. The surface morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersion spectroscopy, and x-ray photoelectron spectroscopy. Corrosion resistance of the coating was studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy. The pH value of the solution had significant influence on the formation and corrosion resistance of the coating. The experimental results indicated that the Sb plays a vital role in the blackening of phosphate conversion coating. The optimal concentration of antimony(III)-tartrate in the phosphating bath used in this experiment was 1.0 g L-1, as higher values reduced the corrosion resistance of the coating. In addition, by saponification and oil seals, the corrosion duration of the black phosphate coating in a copper sulfate spot test can be as long as 20 min.

  19. Fe(III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2⋅8H2O) in septic system wastewater.

    PubMed

    Azam, Hossain M; Finneran, Kevin T

    2014-02-01

    Phosphate is a water contaminant from fertilizers, soaps, and detergents that enters municipal and onsite wastewater from households, businesses, and other commercial operations. Phosphate is a limiting nutrient for algae, and is one of the molecules that promotes eutrophication of water bodies. Phosphate is especially problematic in onsite wastewater because there are few removal mechanisms under normal operating conditions; a system must be amended specifically with compounds to bond to or adsorb phosphate in the septic tank or within the leach field. Vivianite (Fe3(PO4)2⋅8H2O) is a stable mineral formed from ferrous iron and phosphate, often as the result of Fe(III) reducing microbial activity. What was unknown was the concentration of phosphate that could be removed by this process, and whether it was relevant to mixed microbial systems like septic tank wastewater. Data presented here demonstrate that significant concentrations of phosphate (12-14mM) were removed as vivianite in growing cultures of Geobacter metallireducens strain GS-15. Vivianite precipitates were identified on the cell surfaces and within multi cell clusters using TEM-EDX; the mineral phases were directly characterized using XRD. Phosphate was also removed in dilute and raw (undiluted) septic wastewater amended with different forms of Fe(III) including solid phase and soluble Fe(III). Vivianite precipitates were recovered and identified using XRD, along with siderite (ferrous carbonate), which was expected given that the systems were likely bicarbonate buffered. These data demonstrate that ferric iron amendments in septic wastewater increase phosphate removal as the mineral vivianite, and this may be a good strategy for phosphate attenuation in the septic tank portion of onsite wastewater systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A retrospective study of proteinuria in dogs receiving toceranib phosphate.

    PubMed

    Piscoya, Sindy L; Hume, Kelly R; Balkman, Cheryl E

    2018-06-01

    The incidence of proteinuria in humans receiving tyrosine kinase inhibitors has been well-documented. Reports of proteinuria with this class of drugs are limited in veterinary medicine. This retrospective study describes the incidence, severity, and progression of proteinuria in 55 dogs treated with toceranib phosphate, with or without concurrent glucocorticoid or NSAID (non-steroidal anti-inflammatory drug). Six dogs were proteinuric at baseline. Twelve of the 49 dogs that were not proteinuric at baseline developed proteinuria while receiving toceranib phosphate. Median urine protein:creatinine (UPC) ratio when proteinuria developed was 0.75 (range: 0.6 to 4.9). There was no association with intermittent glucocorticoid or NSAID use and development of proteinuria ( P = 0.5 and P = 0.7, respectively). Overall duration of toceranib phosphate treatment ranged from 70 to 802 days in proteinuric dogs and 28 to 1285 days in non-proteinuric dogs. Our results indicate a subset of dogs receiving toceranib phosphate may develop proteinuria; careful monitoring with serial UPCs is recommended.

  1. Charge transfer complexes of adenosine-5‧-monophosphate and cytidine-5‧-monophosphate with water-soluble cobalt(II) Schiff base complexes in aqueous solution

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2006-01-01

    Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5‧-monophosphate (AMP) and cytidine-5‧-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm-3 KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.

  2. Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: The TACT Randomized Trial

    PubMed Central

    Lamas, Gervasio A.; Goertz, Christine; Boineau, Robin; Mark, Daniel B.; Rozema, Theodore; Nahin, Richard L.; Lindblad, Lauren; Lewis, Eldrin F.; Drisko, Jeanne; Lee, Kerry L.

    2014-01-01

    Context Chelation therapy with disodium ethylene diamine tetraacetic acid (EDTA) has been used for over 50 years to treat atherosclerosis without proof of efficacy. Objective To determine if an EDTA-based chelation regimen reduces cardiovascular events. Design and Setting Double-blind placebo-controlled 2×2 factorial multicenter randomized trial. NIH Funding was approved in August 2002. The first patient was enrolled in September 2003, and the last follow-up took place in October 2011. Median follow-up was 55 months. Participants were recruited from 134 US and Canadian clinical sites. Participants 1708 patients, age 50 or older and at least 6 weeks post myocardial infarction, with a serum creatinine <2.0 mg/dL. 289 patients (17% of total; 115 in the EDTA group and 174 in the placebo group) withdrew consent for continued follow-up over the course of the trial. Interventions Patients were randomized to receive 40 infusions of a 500 mL chelation solution (containing 3 grams of disodium EDTA, 7 grams of ascorbate, B-vitamins, electrolytes, procaine, and heparin) versus placebo, and to an oral vitamin and mineral regimen or an oral placebo. Infusions were administered weekly for 30 weeks, followed by 10 infusions 2 to 8 weeks apart. Patients received 55,222 infusions. 15% discontinued infusions for adverse events. Main outcome measure The pre-specified primary endpoint was a composite of total mortality, recurrent myocardial infarction, stroke, coronary revascularization, or hospitalization for angina. Followup for clinical events began upon randomization. This report describes the intent-to-treat comparison of EDTA chelation versus placebo. To account for multiple interim analyses, the significance threshold required at the final analysis was p=0.036. Results The qualifying myocardial infarction occurred a median of 4.6 years before enrollment. Median age was 65 years, 18% were female, 9% were nonwhite, 31% were diabetic. 83% had prior coronary revascularization, and

  3. Novel bioassay for the discovery of inhibitors of the 2-C-Methyl-D-Erythritol 4-Phosphate (MEP) and terpenoid pathways leading to carotenoid biosynthesis

    USDA-ARS?s Scientific Manuscript database

    The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl-phosphate (IPP) in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisi...

  4. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    PubMed Central

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone–kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  5. Phosphoinositide and Inositol Phosphate Analysis in Lymphocyte Activation

    PubMed Central

    Sauer, Karsten; Huang, Yina Hsing; Lin, Hongying; Sandberg, Mark; Mayr, Georg W.

    2015-01-01

    Lymphocyte antigen receptor engagement profoundly changes the cellular content of phosphoinositide lipids and soluble inositol phosphates. Among these, the phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) play key signaling roles by acting as pleckstrin homology (PH) domain ligands that recruit signaling proteins to the plasma membrane. Moreover, PIP2 acts as a precursor for the second messenger molecules diacylglycerol and soluble inositol 1,4,5-trisphosphate (IP3), essential mediators of PKC, Ras/Erk, and Ca2+ signaling in lymphocytes. IP3 phosphorylation by IP3 3-kinases generates inositol 1,3,4,5-tetrakisphosphate (IP4), an essential soluble regulator of PH domain binding to PIP3 in developing T cells. Besides PIP2, PIP3, IP3, and IP4, lymphocytes produce multiple other phosphoinositides and soluble inositol phosphates that could have important physiological functions. To aid their analysis, detailed protocols that allow one to simultaneously measure the levels of multiple different phosphoinositide or inositol phosphate isomers in lymphocytes are provided here. They are based on thin layer, conventional and high-performance liquid chromatographic separation methods followed by radiolabeling or non-radioactive metal-dye detection. Finally, less broadly applicable nonchromatographic methods for detection of specific phosphoinositide or inositol phosphate isomers are discussed. Support protocols describe how to obtain pure unstimulated CD4+CD8+ thymocyte populations for analyses of inositol phosphate turnover during positive and negative selection, key steps in T cell development. PMID:19918943

  6. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., and methacrylic acid applied in emulsion form to molded virgin fiber and heat-cured to an insoluble... application of the emulsion may include substances named in this paragraph, in an amount not to exceed that... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl cellulose...

  7. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., and methacrylic acid applied in emulsion form to molded virgin fiber and heat-cured to an insoluble... application of the emulsion may include substances named in this paragraph, in an amount not to exceed that... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl cellulose...

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., and methacrylic acid applied in emulsion form to molded virgin fiber and heat-cured to an insoluble... application of the emulsion may include substances named in this paragraph, in an amount not to exceed that... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl cellulose...

  9. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  10. Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste).

    PubMed

    Castaldi, Paola; Silvetti, Margherita; Garau, Giovanni; Deiana, Salvatore

    2010-10-15

    In the present work we investigated the interactions established between red mud (RM) and phosphate anions (P) at pH 4.0, 7.0 and 10.0. The amount of P sorbed by RM (P-RM) increased as the pH decreased being equal to 4.871 mmol g(-1) at pH 4.0, 0.924 mmol g(-1) at pH 7.0, and 0.266 mmol g(-1) at pH 10.0. Sequential extractions' data of P-RM equilibrated at pH 4.0 and 7.0, suggested that the phosphate sorption at these pH values was mainly regulated by two different mechanisms that gave rise to a chemical adsorption on RM phases, and to the formation of metal phosphate precipitates. By contrast, at pH 10.0 the P-sorption was regulated by a chemisorption mechanism on Fe-Al phases of RM. These findings were supported by FT-IR analysis, which showed a broad band at 1114 and 1105 cm(-1) in P-RM spectra at pH 4.0 and 7.0 respectively, attributable to P-O(H) stretching nu(3)-modes associated to inner-sphere complexes of phosphate on Fe-Al phases, or alternatively to stretching vibrations of PO(4)(3-) tetrahedra, arising from a precipitate of aluminium phosphate. Importantly, the FT-IR spectroscopy showed a phosphate-promoted dissolution of tectosilicates, notably cancrinite and sodalite, in RM exchanged with phosphate at pH 4.0 and 7.0. 2010 Elsevier B.V. All rights reserved.

  11. Enhanced phosphate selectivity from wastewater using copper-loaded chelating resin functionalized with polyethylenimine.

    PubMed

    An, Byungryul; Nam, Juhee; Choi, Jae-Woo; Hong, Seok-Won; Lee, Sang-Hyup

    2013-11-01

    In water and wastewater, phosphate is considered a critical contaminant due to cause algae blooms and eutrophication. To meet the stringent regulation of phosphate in water, a new commercial chelating resin functionalized with polyethylenimine was tested for phosphate removal by loading Cu(2+) and Fe(2+)/Fe(3+) to enhance selectivity for phosphate. Batch and column experiments showed that CR20-Cu exhibited high selectivity for phosphate over other strong anions such as sulfate. The average binary phosphate/nitrate and phosphate/sulfate factors for CR20-Cu were calculated to be 7.3 and 4.8, respectively, which were more than 0.97 and 0.22 for a commercial anion exchanger (AMP16). The optimal pH for the phosphate removal efficiency was determined to be 7. According to the fixed-bed column test, the breakthrough sequence for multiple ions was HPO4(2-)>SO4(2-)>NO3(-)>Cl(-). Saturated CR20-Cu can be regenerated using 4% NaCl at pH 7. More than 95% of the phosphate from CR20-Cu was recovered, and the phosphate uptake capacity for CR20-Cu was not reduced after 7 regeneration cycles. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.

    PubMed

    Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe

    2014-09-01

    Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    PubMed

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Human Sodium Phosphate Transporter 4 (hNPT4/SLC17A3) as a Common Renal Secretory Pathway for Drugs and Urate*

    PubMed Central

    Jutabha, Promsuk; Anzai, Naohiko; Kitamura, Kenichiro; Taniguchi, Atsuo; Kaneko, Shuji; Yan, Kunimasa; Yamada, Hideomi; Shimada, Hidetaka; Kimura, Toru; Katada, Tomohisa; Fukutomi, Toshiyuki; Tomita, Kimio; Urano, Wako; Yamanaka, Hisashi; Seki, George; Fujita, Toshiro; Moriyama, Yoshinori; Yamada, Akira; Uchida, Shunya; Wempe, Michael F.; Endou, Hitoshi; Sakurai, Hiroyuki

    2010-01-01

    The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4. PMID:20810651

  15. The variable charge of andisols as affected by nanoparticles of rock phosphate and phosphate solubilizing bacteria

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.

    2018-02-01

    Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.

  16. Physical and mechanical properties and fire, decay, and termite resistance of treated oriented strandboard

    Treesearch

    Nadir Ayrilmis; S Nami Kartal; Theodore L. Laufenberg; Jerrold E. Winandy; Robert H. White

    2005-01-01

    This study evaluated the effects of a number of chemicals on the physical and mechanical properties and fire, decay, and termite resistance of oriented strandboard (OSB) panels. Disodium octaborate tetrahydrate (DOT), boric acid (BA), melamine phosphate (MP), and a BA/DOT mixture were sprayed onto the furnish at varying concentrations. The panels were tested for...

  17. 4-Benzyl-4-ethyl­morpholin-1-ium hexa­fluoro­phosphate

    PubMed Central

    Yang, Fang; Zang, Hongjun; Cheng, Bowen; Xu, Xianlin; Ren, Yuanlin

    2012-01-01

    The asymmetric unit of the title compound, C13H20NO+·PF6 −, contains two cations, one complete anion and two half hexa­fluoro­phosphate anions having crystallographically imposed twofold rotation symmetry. In the cations, the morpholine rings are in a chair conformation. In the crystal, ions are linked by weak C—H⋯F hydrogen bonds into a three-dimensional network. PMID:22412701

  18. Ultrasonic enhancing amorphization during synthesis of calcium phosphate.

    PubMed

    He, Kun; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2014-03-01

    Amorphous calcium phosphate (ACP) has great application potential in biomaterials field due to its non-cytotoxicity, high bioactivity, good cytocompatibility, and so on. The results of this research demonstrated that ultrasonic obviously enhanced amorphization during synthesis of calcium phosphate. The ACP phase was relatively ideal when the solvent of Ca(NO3)2·4H2O was ethanol and the solvent of (NH4)2HPO4 was a mixture of water and ethanol, under ultrasonic. In-situ crystallization of ACP could be observed by HRTEM. The mechanism on the effects of ultrasonic on amorphization of the synthesized calcium phosphate was discussed. It was suggested that ultrasonic synthesis might be a facile method to prepare pure and safe ACP related biomaterials. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g -1, and Earth abundance of disodium rhodizonate (Na 2C 6O 6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. In this paper, we reveal that irreversible phase transformation of Na 2C 6O 6 during cycling is the origin of the deteriorating redox activity of Na 2C 6O 6. The active-particlemore » size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. Finally, on the basis of this understanding, we achieved four-sodium storage in a Na 2C 6O 6 electrode with a reversible capacity of 484 mAh g -1, an energy density of 726 Wh kg -1 cathode, an energy efficiency above 87% and a good cycle retention.« less

  20. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate

    DOE PAGES

    Lee, Minah; Hong, Jihyun; Lopez, Jeffrey; ...

    2017-10-09

    Sodium-ion batteries (SIBs) for grid-scale applications need active materials that combine a high energy density with sustainability. Given the high theoretical specific capacity 501 mAh g -1, and Earth abundance of disodium rhodizonate (Na 2C 6O 6), it is one of the most promising cathodes for SIBs. However, substantially lower reversible capacities have been obtained compared with the theoretical value and the understanding of this discrepancy has been limited. In this paper, we reveal that irreversible phase transformation of Na 2C 6O 6 during cycling is the origin of the deteriorating redox activity of Na 2C 6O 6. The active-particlemore » size and electrolyte conditions were identified as key factors to decrease the activation barrier of the phase transformation during desodiation. Finally, on the basis of this understanding, we achieved four-sodium storage in a Na 2C 6O 6 electrode with a reversible capacity of 484 mAh g -1, an energy density of 726 Wh kg -1 cathode, an energy efficiency above 87% and a good cycle retention.« less

  1. Behavior of heavy metals in human urine and blood following calcium disodium ethylenediamine tetraacetate injection: observations in metal workers.

    PubMed

    Sata, F; Araki, S; Murata, K; Aono, H

    1998-06-12

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the behavior of 8 heavy metals in human urine and blood, CaEDTA was administered for 1 h by intravenous injection to 18 male metal foundry workers, whose blood lead concentrations (PbB) were between 16 and 59 (mean 34) microg/dl. Significant increases were found in urinary excretion of manganese, chromium, lead, zinc, and copper after the start of CaEDTA injection. Urinary chromium excretion reached a maximal level within 1 h after the start of injection, while urinary manganese, lead, and zinc excretion reached their highest concentrations between 1 and 2 h. Urinary copper excretion reached the highest level between 2 and 4 h. The rapid increases in urinary excretion of five metals were different from the "circadian rhythms," which are the normal, daily variations in renal glomerular filtration, reabsorption, and excretory mechanisms. Plasma lead concentrations were highest 1.5 h after the start of the 1-h injection, while plasma zinc concentration became lowest 5 h after the start of CaEDTA injection. Data suggest that manganese and chromium absorbed in human tissues might be mobilized by CaEDTA.

  2. Studies on preparation of medium fat liquid dairy whitener from buffalo milk employing ultrafiltration process.

    PubMed

    Khatkar, Sunil Kumar; Gupta, Vijay Kumar; Khatkar, Anju Boora

    2014-09-01

    A study was conducted to develop good quality medium fat liquid dairy whitener from buffalo milk employing ultrafiltration (UF) process. The buffalo skim milk was UF concentrated to 4.05 to 4.18 (23.63 ± 0.30 % TS) fold and standardized to 10 % fat (on Dry Matter Basis) (i.e. formulation) and homogenized at 175.76 kg/cm(2). The addition of 0.4 % mixture of monosodium and disodium phosphate (2:1 w/w) improved the heat stability of homogenized formulation to an optimum of 66 min. The bland flavour of homogenized formulation with added 0.4 % mixture of monosodium phosphate and disodium phosphate (2:1 w/w) and 18 % sugar (on DMB) (i.e. medium fat liquid dairy whitener) was improved significantly (P < 0.01) with the addition of 0.2 % potassium chloride, but heat stability of medium fat liquid dairy whitener got reduced substantially (i.e. 19 min). With subsequent heat treatment to 85 °C for 5 min, heat stability of medium fat liquid dairy whitener got improved to reasonable level of 27 min. Whitening ability in terms of L* value of medium fat liquid dairy whitener in both tea and coffee was significantly (P < 0.01) better when homogenized at 175.76 kg/cm(2) vis-à-vis 140.61 kg/cm(2). Standardized medium fat liquid dairy whitener had significantly (P < 0.01) greater protein content (i.e. approximately 2.43 times) compared to market dairy whitener samples. At 2 % solids level, standardized medium fat liquid dairy whitener in tea/coffee fetched significantly (P < 0.01) better sensory attributes and instrumental whitening ability compared to market sample at 3 % solids level. There could be clear 33 % solids quantity saving in case of developed product compared to market dairy whitener sample.

  3. Surface properties and electromagnetic excitation of a piezoelectric gallium phosphate biosensor.

    PubMed

    Vasilescu, Alina; Ballantyne, Scott M; Cheran, Larisa-Emilia; Thompson, Michael

    2005-02-01

    The surface properties of GaPO4 have been studied by secondary ion mass spectrometry, X-ray photoelectron spectroscopy and electromagnetic acoustic wave excitation in order to explore the potential of this relatively new piezoelectric material as a biosensor. The X-ray photoelectron spectrum of the substrate shows a Ga-rich surface (Ga:P = 1.4), while the negative secondary ion mass spectrum is similar to that of other phosphates, with PO3- and PO2- being the main fragments derived from the substrate. Surface analysis reveals that the linker protein for biotinylated moieties, neutravidin, is both readily chemisorbed to bare gallium phosphate at pH 7.5 and attached to p-hydroxy benzaldehyde-treated devices, establishing the possibility to exploit the surface chemistry of the phosphate for the fabrication of an electrode-free acoustic wave biosensor. Preliminary results regarding the detection of the adsorption of neutravidin with an electromagnetic field-excited GaPO4 device incorporated in a FIA configuration showed comparable results with those obtained with a quartz-sensor equivalent. The frequency shift for the adsorbed protein layer at the device fundamental frequency was 200 Hz and the noise was routinely around 13 Hz. The possibility to use the electrodeless acoustic GaPO4 device at higher harmonics in the liquid phase has also been confirmed.

  4. Partial reactions of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase

    PubMed Central

    Barnett, J. E. G.; Rasheed, A.; Corina, D. L.

    1973-01-01

    After removal of tightly bound NAD+ by using charcoal, a preparation of d-glucose 6-phosphate–1 l-myoinositol 1-phosphate cyclase catalysed the reduction of 5-keto-d-glucitol 6-phosphate and 5-keto-d-glucose 6-phosphate by [4-3H]NADH to give [5-3H]-glucitol 6-phosphate and [5-3H]glucose 6-phosphate respectively. The position of the tritium atom in the latter was shown by degradation. Both enzyme-catalysed reductions were strongly inhibited by 2-deoxy-d-glucose 6-phosphate, a powerful competitive inhibitor of inositol cyclase. The charcoal-treated enzyme preparation also converted 5-keto-d-glucose 6-phosphate into [3H]myoinositol 1-phosphate in the presence of [4-3H]NADH, but less effectively. These partial reactions of inositol cyclase are interpreted as providing strong evidence for the formation of 5-keto-d-glucose 6-phosphate as an enzyme-bound intermediate in the conversion of d-glucose 6-phosphate into 1 l-myoinositol 1-phosphate. The enzyme was partially inactivated by NaBH4 in the presence of NAD+. Glucose 6-phosphate did not increase the inactivation, and there was no inactivation in the absence of NAD+. There was no evidence for Schiff base formation during the cyclization. d-Glucitol 6-phosphate (l-sorbitol 1-phosphate) was a good inhibitor of the overall reaction. It did not inactivate the enzyme. The apparent molecular weight of inositol cyclase as determined by Sephadex chromatography was 2.15×105. PMID:4352864

  5. The molecular structure of the phosphate mineral chalcosiderite - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Ribeiro, Carlos Augusto de Brito

    2013-07-01

    The mineral chalcosiderite with formula CuFe6(PO4)4(OH)8ṡ4H2O has been studied by Raman spectroscopy and by infrared spectroscopy. A comparison of the chalcosiderite spectra is made with the spectra of turquoise. The spectra of the mineral samples are very similar in the 1200-900 cm-1 region but strong differences are observed in the 900-100 cm-1 region. The effect of substitution of Fe for Al in chalcosiderite shifts the bands to lower wavenumbers. Factor group analysis (FGA) implies four OH stretching vibrations for both the water and hydroxyl units. Two bands ascribed to water are observed at 3276 and 3072 cm-1. Three hydroxyl stretching vibrations are observed. Calculations using a Libowitzky type formula show that the hydrogen bond distances of the water molecules are 2.745 and 2.812 Å which are considerably shorter than the values for the hydroxyl units 2.896, 2.917 and 2.978 Å. Two phosphate stretching vibrations at 1042 and 1062 cm-1 in line with the two independent phosphate units in the structure of chalcosiderite. Three bands are observed at 1102, 1159 and 1194 cm-1 assigned to the phosphate antisymmetric stretching vibrations. FGA predicts six bands but only three are observed due to accidental degeneracy. Both the ν2 and ν4 bending regions are complex. Four Raman bands observed at 536, 580, 598 and 636 cm-1 are assigned to the ν4 bending modes. Raman bands at 415, 420, 475 and 484 cm-1are assigned to the phosphate ν2 bending modes. Vibrational spectroscopy enables aspects of the molecular structure of chalcosiderite to be assessed.

  6. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    PubMed

    Panpisut, Piyaphong; Liaqat, Saad; Zacharaki, Eleni; Xia, Wendy; Petridis, Haralampos; Young, Anne Margaret

    2016-01-01

    This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS). The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine. Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF) were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained. Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa. The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and help

  7. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...

  8. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...

  9. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...

  10. 46 CFR 148.220 - Ammonium nitrate-phosphate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate-phosphate fertilizers. 148.220 Section... § 148.220 Ammonium nitrate-phosphate fertilizers. (a) This section applies to the stowage and... nitrate and containing a maximum of 0.4 percent total added combustible material or containing a maximum...

  11. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters.

    PubMed

    Guo, B; Jin, Y; Wussler, C; Blancaflor, E B; Motes, C M; Versaw, W K

    2008-01-01

    The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4. PHT4 proteins share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride. All of the PHT4 proteins mediate Pi transport in yeast with high specificity. Bioinformatic analysis and localization of PHT4-GFP fusion proteins indicate that five of the proteins are targeted to the plastid envelope, and the sixth resides in the Golgi apparatus. PHT4 genes are expressed in both roots and leaves, although two of the genes are expressed predominantly in leaves and one mostly in roots. These expression patterns, together with Pi transport activities and subcellular locations, suggest roles for PHT4 proteins in the transport of Pi between the cytosol and chloroplasts, heterotrophic plastids and the Golgi apparatus.

  12. Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    PubMed Central

    Zubkov, Mikhail V.; Martin, Adrian P.; Hartmann, Manuela; Grob, Carolina; Scanlan, David J.

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5–40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate. PMID:26198420

  13. Selective separation of phosphate and fluoride from semiconductor wastewater.

    PubMed

    Warmadewanthi, B; Liu, J C

    2009-01-01

    Hydrofluoric acid (HF) and phosphoric acid (H(3)PO(4)) are widely used in semiconductor industry for etching and rinsing purposes. Consequently, significant amount of wastewater containing phosphate and fluoride is generated. Selective separation of phosphate and fluoride from the semiconductor wastewater, containing 936 mg/L of fluoride, 118 mg/L of phosphate, 640 mg/L of sulfate, and 26.7 mg/L of ammonia, was studied. Chemical precipitation and flotation reactions were utilized in the two-stage treatment processes. The first-stage reaction involved the addition of magnesium chloride (MgCl(2)) to induce selective precipitation of magnesium phosphate. The optimal condition was pH 10 and molar ratio, [Mg(2 + )]/[(PO(4) (3-))], of 3:1, and 66.2% of phosphate was removed and recovered as bobierrite (Mg(3)(PO(4))(2).8H(2)O). No reaction was found between MgCl(2) and fluoride. Calcium chloride (CaCl(2)) was used in the second-stage reaction to induce precipitation of calcium fluoride and calcium phosphate. The optimum molar ratio, [Ca(2 + )]/[F(-)], was 0.7 at pH 10, and residual fluoride concentration of 10.7 mg/L and phosphate concentration of lower than 0.5 mg/L was obtained. Thermodynamic equilibrium was modeled with PHREEQC and compared with experimental results. Sodium dodecylsulfate (SDS) was an effective collector for subsequent solid-liquid removal via dispersed air flotation (DiAF). The study demonstrated that phosphate can be selectively recovered from the wastewater. Potential benefits include recovery of phosphate for reuse, lower required dosage of calcium for fluoride removal, and less amount of CaF(2) sludge.

  14. Blood Organic Phosphate in Hyperthermic Dogs

    DTIC Science & Technology

    1959-06-01

    fermenting uptake is then responsible for the previously yeast caused an increase in fezrmentation and a observed fall in plasma inorganic phosphate in...Young. The alcoholic 3. Radigan, L. R., and S. Robinson. Effects of ferment of yast- juice . Proc. Roy. Soc. London environmental heat stress and...4. Kenny, R. A. The effect of hot, humid environ- yeast - juice from hexose and phosphate. Proc. ments on the renal function of West Africans. Roy Soc

  15. A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum

    NASA Astrophysics Data System (ADS)

    Lin, Na; Li, Jian; Lu, Zhixiang; Bian, Longchun; Zheng, Liyan; Cao, Qiue; Ding, Zhongtao

    2015-03-01

    Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions.Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in

  16. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  17. Effects of phosphate binders in moderate CKD.

    PubMed

    Block, Geoffrey A; Wheeler, David C; Persky, Martha S; Kestenbaum, Bryan; Ketteler, Markus; Spiegel, David M; Allison, Matthew A; Asplin, John; Smits, Gerard; Hoofnagle, Andrew N; Kooienga, Laura; Thadhani, Ravi; Mannstadt, Michael; Wolf, Myles; Chertow, Glenn M

    2012-08-01

    Some propose using phosphate binders in the CKD population given the association between higher levels of phosphorus and mortality, but their safety and efficacy in this population are not well understood. Here, we aimed to determine the effects of phosphate binders on parameters of mineral metabolism and vascular calcification among patients with moderate to advanced CKD. We randomly assigned 148 patients with estimated GFR=20-45 ml/min per 1.73 m(2) to calcium acetate, lanthanum carbonate, sevelamer carbonate, or placebo. The primary endpoint was change in mean serum phosphorus from baseline to the average of months 3, 6, and 9. Serum phosphorus decreased from a baseline mean of 4.2 mg/dl in both active and placebo arms to 3.9 mg/dl with active therapy and 4.1 mg/dl with placebo (P=0.03). Phosphate binders, but not placebo, decreased mean 24-hour urine phosphorus by 22%. Median serum intact parathyroid hormone remained stable with active therapy and increased with placebo (P=0.002). Active therapy did not significantly affect plasma C-terminal fibroblast growth factor 23 levels. Active therapy did, however, significantly increase calcification of the coronary arteries and abdominal aorta (coronary: median increases of 18.1% versus 0.6%, P=0.05; abdominal aorta: median increases of 15.4% versus 3.4%, P=0.03). In conclusion, phosphate binders significantly lower serum and urinary phosphorus and attenuate progression of secondary hyperparathyroidism among patients with CKD who have normal or near-normal levels of serum phosphorus; however, they also promote the progression of vascular calcification. The safety and efficacy of phosphate binders in CKD remain uncertain.

  18. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    PubMed

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  19. Phosphate Removal by Peritoneal Dialysis: The Effect of Transporter Status and Peritoneal Dialysis Prescription.

    PubMed

    Courivaud, Cecile; Davenport, Andrew

    2016-01-01

    ♦ Interventional trials failed to demonstrate that increasing urea clearance improved peritoneal dialysis (PD) patient survival. Hyperphosphatemia is a well-recognized predictor of cardiovascular and all-cause mortality in PD patients. Simplification of PD small solute clearance targets focuses away from larger solutes, including phosphate. In the US and UK, increasing use of automated peritoneal dialysis (APD) cyclers with shorter dwell times could also potentially reduce peritoneal phosphate removal compared to continuous ambulatory peritoneal dialysis (CAPD). ♦ Total phosphate and peritoneal phosphate clearances were measured in a prospective observational cohort of 380 adult PD patients attending a tertiary university hospital between 1996 and 2013 for routine assessment of PD adequacy. ♦ Eighty-seven patients (22.9%) were hyperphosphatemic. Taking the mean 4-hour dialysate to plasma (D/P) ratio for phosphate, 193 (50.8%) were fast and fast-average transporters and 187 (49.2%) were slow and slow-average transporters (compared to 276 [72.6%] and 104 [27.4%], respectively, for peritoneal creatinine transporter status). Faster peritoneal phosphate transporter status was associated with over-hydration (odds ratio [OR] = 2.45 [1.43 - 4.20], p = 0.001). Whereas the 4-hour D/P creatinine and peritoneal weekly creatinine clearance did not differ between those who were hyperphosphatemic or not, the hyperphosphatemic patients had lower 4-hour D/P phosphate and lower peritoneal weekly phosphate clearance (p = 0.019, and p = 0.06 respectively). We found greater peritoneal phosphate clearance for patients choosing CAPD compared to APD, irrespective of the peritoneal phosphate transporter status. ♦ Peritoneal creatinine transporter status and creatinine clearance cannot be used as surrogate markers of peritoneal phosphate transport and clearance. Hyperphosphatemia was more common in PD patients with slower peritoneal transporter status and lower peritoneal phosphate

  20. Phosphate Removal by Peritoneal Dialysis: The Effect of Transporter Status and Peritoneal Dialysis Prescription

    PubMed Central

    Courivaud, Cecile; Davenport, Andrew

    2016-01-01

    ♦ Background: Interventional trials failed to demonstrate that increasing urea clearance improved peritoneal dialysis (PD) patient survival. Hyperphosphatemia is a well-recognized predictor of cardiovascular and all-cause mortality in PD patients. Simplification of PD small solute clearance targets focuses away from larger solutes, including phosphate. In the US and UK, increasing use of automated peritoneal dialysis (APD) cyclers with shorter dwell times could also potentially reduce peritoneal phosphate removal compared to continuous ambulatory peritoneal dialysis (CAPD). ♦ Methods: Total phosphate and peritoneal phosphate clearances were measured in a prospective observational cohort of 380 adult PD patients attending a tertiary university hospital between 1996 and 2013 for routine assessment of PD adequacy. ♦ Results: Eighty-seven patients (22.9%) were hyperphosphatemic. Taking the mean 4-hour dialysate to plasma (D/P) ratio for phosphate, 193 (50.8%) were fast and fast-average transporters and 187 (49.2%) were slow and slow-average transporters (compared to 276 [72.6%] and 104 [27.4%], respectively, for peritoneal creatinine transporter status). Faster peritoneal phosphate transporter status was associated with over-hydration (odds ratio [OR] = 2.45 [1.43 – 4.20], p = 0.001). Whereas the 4-hour D/P creatinine and peritoneal weekly creatinine clearance did not differ between those who were hyperphosphatemic or not, the hyperphosphatemic patients had lower 4-hour D/P phosphate and lower peritoneal weekly phosphate clearance (p = 0.019, and p = 0.06 respectively). We found greater peritoneal phosphate clearance for patients choosing CAPD compared to APD, irrespective of the peritoneal phosphate transporter status. ♦ Conclusion: Peritoneal creatinine transporter status and creatinine clearance cannot be used as surrogate markers of peritoneal phosphate transport and clearance. Hyperphosphatemia was more common in PD patients with slower peritoneal

  1. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    NASA Astrophysics Data System (ADS)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  2. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    PubMed

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  4. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  5. Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate.

    PubMed

    Zeng, Qingwei; Wu, Xiaoqin; Wang, Jiangchuan; Ding, Xiaolei

    2017-04-28

    Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

  6. The molecular structure of the phosphate mineral kidwellite NaFe93+(PO4)6(OH)11ṡ3H2O - A vibrational spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Scholz, Ricardo; Souza, Larissa

    2014-09-01

    The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11ṡ3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm-1 and 1014 cm-1. These bands are attributed to the PO43- ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm-1 are attributed to the ν3 antisymmetric stretching bands of the PO43- and HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm-1are assigned to the PO43- ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm-1 are attributed to the PO43- and HOPO32- ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm-1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.

  7. PROCESS FOR THE RECOVERY OF URANIUM FROM PHOSPHATIC ORE

    DOEpatents

    Long, R.L.

    1959-04-14

    A proccss is described for the recovery of uranium from phosphatic products derived from phosphatic ores. It has been discovered that certain alkyl phosphatic, derivatives can be employed in a direct solvent extraction operation to recover uranium from solid products, such as superphosphates, without first dissolving such solids. The organic extractants found suitable include alkyl derivatives of phosphoric, pyrophosphoric, phosof the derivative contains from 4 to 7 carbon atoms. A diluent such as kerosene is also used.

  8. Phosphate substitution in an AlOOH - TLR4 adjuvant system (SPA08) modulates the immunogenicity of Serovar E MOMP from Chlamydia trachomatis.

    PubMed

    Visan, Lucian; Sanchez, Violette; Kania, Margaux; de Montfort, Aymeric; de la Maza, Luis M; Ausar, Salvador Fernando

    2016-09-01

    Chlamydia trachomatis is one of the most common sexually transmitted pathogens and the development of an effective vaccine is highly desirable. The Major Outer Membrane Protein (MOMP) is one of the most abundant and immunogenic chlamydial proteins. Here we investigated the effects of phosphate substitution on the physicochemical and immunochemical properties of an experimental vaccine composed of serovar E recombinant MOMP (rMOMP) and a proprietary adjuvant system SPA08, consisting of aluminum oxyhydroxide (AlOOH) containing the TLR4 agonist E6020. An increase in phosphate substitution in the AlOOH component of the adjuvant markedly decreased the adsorptive coefficient and adsorptive capacity for both Ser E rMOMP and E6020. In vaccine formulations used for immunizations, phosphate substitution induced a decrease in the % adsorption of Ser E rMOMP without affecting the % adsorption of E6020. Immunogenicity studies in CD1 mice showed that an increase in phosphate substitution of the SPA08 adjuvant resulted in an increase in Ser E rMOMP-specific serum total IgG and IgG1 but not IgG2a titers. The degree of phosphate substitution in SPA08 also significantly increased in vitro neutralization concomitant with a decrease in proinflammatory cytokines secreted by Ser E rMOMP-restimulated splenocytes. Taken together, the results of these studies suggest that the degree of phosphate substitution in AlOOH greatly affects the adsorption of E6020 and Ser E rMOMP to AlOOH resulting in significant effects on vaccine-induced cellular and humoral responses.

  9. Effect of sucrose, erythrose-4-phosphate and phenylalanine on biomassa and flavonoid content of callus culture from leaves of Gynura procumbens Merr.

    NASA Astrophysics Data System (ADS)

    Nurisa, Aryana; Kristanti, Alfinda Novi; Manuhara, Yosephine Sri Wulan

    2017-08-01

    The aims of this study were to know the effect of concentration of sucrose, erythrose-4-phosphate and phenylalanine on biomass and flavonoid content of callus cultures from leaves of sambung nyawa (Gynura procumbens Merr.). This study was experimental research with complete randomized design. Callus induction was treated in MS medium supplemented with NAA 2 mg/L, BAP 1 mg/L and sucrose concentration (10 g/L, 30 g/L and 50 g/L) respectively were combined with erythrose-4-phosphate (0 µM, 2,5 µM and 5 µM) and phenylalanine (0 mg/L, 2 mg/L and 3 mg/L), each treatment were repeated four times. After six weeks of culture, fresh and dry weight of calli were measured and extracted with ethanol absolut. Crude extract ethanolic of callus was analyzed used by a modified colorimetric with spectrophotometer method. The best yield of calli biomass (0,672 ± 0,112 gram of fresh weight and 0,033 ± 0,009 gram of dry weight) was obtained in treatment of 30 g/L sucrose of and 5 µM erythrose-4-phosphate. The highest total flavonoid content was obtained of calli treated with 30 g/L of sucrose and 3 mg/L of phenylalanine (3633,4 ppm quercetin/gram dry weight and 15777,8 ppm kaempferol/gram dry weight).

  10. Synthesis and Characterization of a Phosphate Prodrug of Isoliquiritigenin.

    PubMed

    Boyapelly, Kumaraswamy; Bonin, Marc-André; Traboulsi, Hussein; Cloutier, Alexandre; Phaneuf, Samuel C; Fortin, Daniel; Cantin, André M; Richter, Martin V; Marsault, Eric

    2017-04-28

    Isoliquiritigenin (1) possesses a variety of biological activities in vitro. However, its poor aqueous solubility limits its use for subsequent in vivo experimentation. In order to enable the use of 1 for in vivo studies without the use of toxic carriers or cosolvents, a phosphate prodrug strategy was implemented relying on the availability of phenol groups in the molecule. In this study, a phosphate group was added to position C-4 of 1, leading to the more water-soluble prodrug 2 and its ammonium salt 3, which possesses increased stability compared to 2. Herein are reported the synthesis, characterization, solubility, and stability of phosphate prodrug 3 in biological medium in comparison to 1, as well as new results on its anti-inflammatory properties in vivo. As designed, the solubility of prodrug 3 was superior to that of the parent natural product 1 (9.6 mg/mL as opposed to 3.9 μg/mL). Prodrug 3 as an ammonium salt was also found to possess excellent stability as a solid and in aqueous solution, as opposed to its phosphoric acid precursor 2.

  11. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria

    PubMed Central

    Asplin, John R.; Frick, Kevin K.; Granja, Ignacio; Culbertson, Christopher D.; Ng, Adeline; Grynpas, Marc D.; Bushinsky, David A.

    2015-01-01

    Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation. PMID:25855777

  12. Hydroxyapatite and Other Calcium Phosphates for the Conservation of Cultural Heritage: A Review

    PubMed Central

    2018-01-01

    The present paper reviews the methods and the performance of in situ formation of calcium phosphates (CaP) for the conservation of materials belonging to cultural heritage. The core idea is to form CaP (ideally hydroxyapatite, HAP, the most stable CaP at pH > 4) by reaction between the substrate and an aqueous solution of a phosphate salt. Initially proposed for the conservation of marble and limestone, the treatment has been explored for a variety of different substrates, including sandstones, sulphated stones, gypsum stuccoes, concrete, wall paintings, archaeological bones and paper. First, the studies aimed at identifying the best treatment conditions (e.g., nature and concentration of the phosphate precursor, solution pH, treatment duration, ionic and organic additions to the phosphate solution, mineralogical composition of the new CaP phases) are summarized. Then, the treatment performance on marble and limestone is reviewed, in terms of protective and consolidating effectiveness, compatibility (aesthetic, microstructural and physical) and durability. Some pilot applications in real case studies are also reported. Recent research aimed at extending the phosphate treatment to other substrates is then illustrated. Finally, the strengths of the phosphate treatment are summarized, in comparison with alternative products, and some aspects needing future research are outlined. PMID:29617322

  13. Vibrational spectroscopic characterization of the phosphate mineral ludlamite (Fe,Mn,Mg)₃(PO₄)₂⋅4H₂O - a mineral found in lithium bearing pegmatites.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda M

    2013-02-15

    The objective of this work is to analyze ludlamite (Fe,Mn,Mg)(3)(PO(4))(2)⋅4H(2)O from Boa Vista mine, Galiléia, Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to be a ferrous phosphate with some minor substitution of Mg and Mn. Raman bands at 917 and 950 cm(-1) are assigned to the symmetric stretching mode of HOPO(3)(2-) and PO(4)(3-) units. Raman bands at 548, 564, 599 and 634 cm(-1) are assigned to the ν(4)PO(4)(3-) bending modes. Raman bands at 2605, 2730, 2896 and 3190 cm(-1) and infrared bands at 2623, 2838, 3136 and 3185 cm(-1) are attributed to water stretching vibrations. By using a Libowitzky empirical function, hydrogen bond distances are calculated from the OH stretching wavenumbers. Strong hydrogen bonds in the structure of ludlamite are observed as determined by their hydrogen bond distances. The application of infrared and Raman spectroscopy to the study of ludlamite enables the molecular structure of the pegmatite mineral ludlamite to be assessed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Improved photocatalytic degradation of chlorophenol over Pt/Bi2WO6 on addition of phosphate

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Xiong, Xianqiang; Zhang, Xiao; Xu, Yiming

    2018-05-01

    Bismuth tungstate (BiW) is a promising visible light photocatalyst. Herein we report a synergism between Pt and phosphate that increases the UV and visible light activities of BiW by factors of 32 and 15, respectively, for phenol degradation in neutral aqueous solution. BiW was home-made, followed by a photochemical deposition of Pt (Pt/BiW). On the addition of phosphate, the reaction rates on BiW and Pt/BiW in aqueous solution were decreased and increased, respectively. Such a phosphate effect was also observed from the reduction of O2 to H2O2, and from 2,4-dichlorophenol degradation. Moreover, the rate of phenol degradation was proportional to the amount of phosphate adsorption on Pt/BiW, and the phosphate activity increased in the order H3PO4 < H2PO4- < HPO42-. A (photo)electrochemical measurement revealed that Pt and phosphate catalyzed the electron reduction of O2 and the hole oxidation of phenol, respectively. A possible mechanism is proposed, involving the hole oxidation of phosphate into a phosphate radical, followed by phenol oxidation in aqueous phase. As phosphate loading exceeded 0.50 mM, however, the rates of phenol degradation on Pt/BiW under UV and visible light decreased with the phosphate loading. This is ascribed to recombination of the phosphate radicals into a less reactive peroxobiphosphate.

  15. Mechanism of oxidation of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt with oxygen in subcritical water.

    PubMed

    Imbierowicz, Mirosław

    2017-06-01

    The article presents the results of studies on the oxidation mechanism of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt (R-salt) with oxygen in subcritical water. To this aim, a series of experiments were carried out which showed that at a temperature of 413 K and pH > 9 the oxidation reaction of a substrate with oxygen was relatively quick and after approximately 40 min the R-salt oxidation yield exceeded 95%. In an acidic medium (pH < 7), the rate of R-salt oxidation is small. In order to identify the mechanism of R-salt oxidation, experiments were carried out at 413-569 K in solutions with pH = 10.0 and at partial oxygen pressure p O2  = 1.73 MPa. As a result of these experiments, a stable oxidation product was isolated from the reaction mixture and subjected to spectroscopic analysis. The analysis of H NMR of this product proved that a stable intermediate product of R-salt oxidation was 4-sulfophthalic acid sodium salt. The results of the experiments have shown that destructive oxidation of R-salt can easily be obtained at a temperature of 413 K, but satisfactory reduction of TOC in wastewater containing this substrate requires the use of very high temperature: at 569 K only 60% reduction of TOC was achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Influence of polarized PZT on the crystal growth of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sun, Xiaodan; Ma, Chunlai; Wang, Yude; Li, Hengde

    2002-01-01

    The effects of polarization on the crystallization of calcium phosphate are studied in this work. Crystals of calcium phosphate from saturated solution of hydroxyapatite (HA, Ca 10(PO 4) 6(OH) 2) were deposited on the surfaces of ferroelectric ceramics lead zirconate titanium (Pb(Ti,Zr)O 3, PZT). The results of the experiment demonstrated the acceleration effects of polarized PZT on the crystal growth of calcium phosphate. Furthermore, it is indicated that polarization also influenced the orientation of the deposited crystals due to the growth of a layer of (0 0 2) oriented octacalcium phosphate (OCP, Ca 8H 2(PO 4) 6·5H 2O) on the negatively charged surfaces of PZT.

  17. Effect of Phosphate on the Oxidation of Hydroxysulfate Green Rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benali, Omar; Abdelmoula, Mustapha; Genin, Jean-Marie R.

    During Hydroxysulfate green rust GR(SO{sub 4}{sup 2}) oxidation, lepidocrocite and goethite were formed. The oxidation of GR(SO{sub 4}{sup 2-}) in the presence of phosphate ions, also involved the formation of poorly crystallized lepidocrocite but not that of goethite. The dissolution of lepidocrocite is inhibited by adsorption of phosphate ions as confirmed by X-ray photoelectron spectroscopy. The formation of the poorly crystallized protective layer against corrosion is effectively due to the phosphate ions which adsorb on the surface of lepidocrocite, and prevents it to turn into a well crystallized oxide.

  18. Engineering Potato Starch with a Higher Phosphate Content

    PubMed Central

    Xu, Xuan; Huang, Xing-Feng; Visser, Richard G. F.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself. PMID:28056069

  19. Interaction between calcium and phosphate adsorption on goethite.

    PubMed

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  20. Ammonium iron(III) phosphate(V) fluoride, (NH4)0.5[(NH4)0.375K0.125]FePO4F, with ammonium partially substituted by potassium

    PubMed Central

    Wang, Lei; Zhou, Yan; Huang, Ya-Xi; Mi, Jin-Xiao

    2009-01-01

    The title compound, ammonium potassium iron(III) phosphate fluoride, (NH4)0.875K0.125FePO4F, is built from zigzag chains ∞ 1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [01] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octa­hedra via shared F-atom corners, and are linked by PO4 tetra­hedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H⋯O and two N—H⋯F). PMID:21581466

  1. Synthesis, structures and properties of the new lithium cobalt(II) phosphate Li{sub 4}Co(PO{sub 4}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaum, R., E-mail: rglaum@uni-bonn.de; Gerber, K.; Schulz-Dobrick, M.

    2012-04-15

    {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} has been synthesized and crystallized by solid-state reactions. The new phosphate crystallizes in the monoclinic system (P2{sub 1}/a, Z=4, a=8.117(3) Angstrom-Sign , b=10.303(8) Angstrom-Sign , c=8.118(8) Angstrom-Sign , {beta}=104.36(8) Angstrom-Sign ) and is isotypic to {alpha}-Li{sub 4}Zn(PO{sub 4}){sub 2}. The structure of {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} has been determined from single-crystal X-ray diffraction data {l_brace}R{sub 1}=0.040, wR{sub 2}=0.135, 2278 unique reflections with F{sub o}>4{sigma}(F{sub o}){r_brace}. The crystal structure, which might be regarded as a superstructure of the wurtzite structure type, is build of layers of regular CoO{sub 4}, PO{sub 4} and Li1O{sub 4} tetrahedra. Lithium atomsmore » Li2, Li3 and Li4 are located between these layers. Thermal investigations by in-situ XRPD, DTA/TG and quenching experiments suggest decomposition followed by formation and phase transformation of Li{sub 4}Co(PO{sub 4}){sub 2}: {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} Long-Rightwards-Double-Arrow {sup 442 Degree-Sign C}{beta}-Li{sub 3}PO{sub 4}+LiCoPO{sub 4} Rightwards-Harpoon-Over-Leftwards-Harpoon {sup 773 Degree-Sign C}{beta}-Li{sub 4}Co(PO{sub 4}){sub 2} Long-Rightwards-Double-Arrow {sup quenchingto25 Degree-Sign C}{alpha}-Li{sub 4} Co(PO{sub 4}){sub 2} According to HT-XRPD at {theta}=850 Degree-Sign C{beta}-Li{sub 4}Co(PO{sub 4}){sub 2} (Pnma, Z=2, 10.3341(8) A, b=6.5829(5) A, c=5.0428(3) Angstrom-Sign ) is isostructural to {gamma}-Li{sub 3}PO{sub 4}. The powder reflectance spectrum of {alpha}-Li{sub 4}Co(PO{sub 4}){sub 2} shows the typical absorption bands for the tetrahedral chromophore [Co{sup II}O{sub 4}]. - Graphical abstract: The complex formation and decomposition behavior of Li{sub 4}Co(PO{sub 4}){sub 2} with temperature has been elucidated. The crystal structure of its {alpha}-phase was determined from single crystal data, HT-XRPD allowed derivation of a structure model for the {beta

  2. Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    PubMed Central

    2015-01-01

    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations

  3. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling

    PubMed Central

    Yu, Hailan; Luo, Nan; Sun, Lichao; Liu, Dong

    2012-01-01

    The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases. Molecular cloning indicated that hps4 is a new allele of SABRE, which was previously identified as an important regulator of cell expansion in Arabidopsis. HPS4/SABRE antagonistically interacts with ethylene signalling to regulate plant responses to Pi starvation. Furthermore, it is shown that Pi-starved hps4 mutants accumulate more auxin in their root tips than the wild type, which may explain the increased inhibition of their primary root growth when grown under Pi deficiency. PMID:22615140

  4. Arabidopsis inositol phosphate kinases, IPK1 and ITPK1, constitute a metabolic pathway in maintaining phosphate homeostasis.

    PubMed

    Kuo, Hui-Fen; Hsu, Yu-Ying; Lin, Wei-Chi; Chen, Kai-Yu; Munnik, Teun; Brearley, Charles A; Chiou, Tzyy-Jen

    2018-05-19

    Emerging studies have implicated a close link between inositol phosphate (InsP) metabolism and cellular phosphate (P i ) homeostasis in eukaryotes; however, whether a common InsP species is deployed as an evolutionarily conserved metabolic messenger to mediate P i signaling remains unknown. Here, using genetics and InsP profiling combined with P i starvation response (PSR) analysis in Arabidopsis thaliana, we showed that the kinase activity of inositol pentakisphosphate 2-kinase (IPK1), an enzyme required for phytate (inositol hexakisphosphates; InsP 6 ) synthesis, is indispensable for maintaining P i homeostasis under P i -replete conditions, and inositol 1,3,4-trisphosphate 5/6-kinase 1 (ITPK1) plays an equivalent role. Although both ipk1-1 and itpk1 mutants exhibited decreased levels of InsP 6 and diphosphoinositol pentakisphosphate (PP-InsP 5 ; InsP 7 ), disruption of another ITPK family enzyme, ITPK4, which correspondingly caused depletion of InsP 6 and InsP 7 , did not display similar P i -related phenotypes, which precludes these InsP species as effectors. Notably, the level of D/L-Ins(3,4,5,6)P 4 was concurrently elevated in both ipk1-1 and itpk1 mutants, which showed a specific correlation to the misregulated P i phenotypes. However, the level of D/L-Ins(3,4,5,6)P 4 is not responsive to P i starvation that instead manifests a shoot-specific increase in InsP 7 level. This study demonstrates a more nuanced picture of the intersection of InsP metabolism and P i homeostasis and PSR than has previously been elaborated and additionally establishes intermediate steps to phytate biosynthesis in plant vegetative tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Phosphate removal and hemodialysis conditions.

    PubMed

    Pohlmeier, R; Vienken, J

    2001-02-01

    Hyperphosphatemia is frequently found in hemodialysis patients, and the association with an increased risk of mortality has been demonstrated. Other authors have linked hyperphosphatemia to increased cardiovascular mortality. The normalization of phosphate plasma levels is therefore an important goal in the treatment of end-stage renal disease patients. Absorption of phosphate from the food exceeds the elimination through a hemodialysis treatment, and this leads to a chronic phosphate load for the majority of hemodialysis patients. This imbalance should be improved by either a reduction of phosphate absorption or an increased removal of phosphate. A reduction of phosphate absorption can be achieved by reducing the amount of phosphate in the diet or by the administration of phosphate binders. Unfortunately, these measures imply practical difficulties, for example, a lack of patient compliance or other side effects. When considering modifications of the hemodialysis treatment, an essential understanding of the kinetics of dialytic phosphate removal is mandatory. Phosphate is unevenly distributed in different compartments of the body. Only a very small amount of phosphate is present in the easily accessible plasma compartment. The major part of phosphate removed during hemodialysis originates from the cytoplasm of cells. A transfer from intracellular space to the plasma and further from the plasma to the dialysate is necessary. However, if we consider improvement to phosphate removal by dialysis procedures, full dialyzer clearance is effective in only the initial phase of the dialysis treatment. After this initial phase, the transfer rate for phosphate from the intracellular space to the plasma becomes the rate-limiting step for phosphate transport. Attempts to improve this transfer rate have recently been investigated by acidosis correction, but turned out not to be consistently successful. Furthermore, modifications of the treatment schedule have been described in

  6. Network-level fossil of a phosphate-free biosphere

    NASA Astrophysics Data System (ADS)

    Goldford, J.; Hartman, H.; Smith, T. F.; Segre, D.

    2017-12-01

    The emergence of a metabolism capable of sustaining cellular life on early Earth is a major unresolved enigma. Such a transition from prebiotic chemistry to an organized biochemical network seemingly required the concurrent availability of multiple molecular components. One of these components, phosphate, carries several essential functions in present-day metabolism, most notably energy transduction through ATP. However, the ubiquity of phosphate in living systems today stands in sharp contrast with its poor geochemical availability, prompting previous efforts to search for plausible prebiotic sources. The alternative, intriguing possibility is that primitive life did not require phosphate. Here we explore this possibility by determining the feasibility and functional potential of a phosphate-independent metabolism amongst the set of all known biochemical reactions in the biosphere. Surprisingly, we identified a cryptic phosphate-independent core metabolism that can be generated from simple sets of compounds thought to be available on early Earth. This network can support the biosynthesis of a broad category of key biomolecules. The enzymes contained in this network display a striking enrichment for dependence on iron-sulfur and transition metal coenzymes, a fundamental cornerstone of early biochemistry. We furthermore show that phosphate-independent precursors of present-day cofactors could have helped overcome thermodynamic energy barriers, enabling the production of a rich set of biomolecules, including 15 out of the 20 amino acids, vitamins, pentoses and nucleobases. Altogether, our results suggest that present-day biochemical networks may contain vestiges of a very ancient past, and that a complex thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.

  7. Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers

    PubMed Central

    Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.

    2011-01-01

    Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for

  8. High phosphate diet increases arterial blood pressure via a parathyroid hormone mediated increase of renin.

    PubMed

    Bozic, Milica; Panizo, Sara; Sevilla, Maria A; Riera, Marta; Soler, Maria J; Pascual, Julio; Lopez, Ignacio; Freixenet, Montserrat; Fernandez, Elvira; Valdivielso, Jose M

    2014-09-01

    There is growing evidence suggesting that phosphate intake is associated with blood pressure levels. However, data from epidemiological studies show inconsistent results. The present study was designed to evaluate the effect of high circulating phosphorus on arterial blood pressure of healthy rats and to elucidate the potential mechanism that stands behind this effect. Animals fed a high phosphate diet for 4 weeks showed an increase in blood pressure, which returned to normal values after the addition of a phosphate binder (lanthanum carbonate) to the diet. The expression of renin in the kidney was higher, alongside an increase in plasma renin activity, angiotensin II (Ang II) levels and left ventricular hypertrophy. The addition of the phosphate binder blunted the increase in renin and Ang II levels. The levels of parathyroid hormone (PTH) were also higher in animals fed a high phosphate diet, and decreased when the phosphate binder was present in the diet. However, blood P levels remained elevated. A second group of rats underwent parathyroidectomy and received a continuous infusion of physiological levels of PTH through an implanted mini-osmotic pump. Animals fed a high phosphate diet with continuous infusion of PTH did not show an increase in blood pressure, although blood P levels were elevated. Finally, unlike with verapamil, the addition of losartan to the drinking water reverted the increase in blood pressure in rats fed a high phosphate diet. The results of this study suggest that a high phosphate diet increases arterial blood pressure through an increase in renin mediated by PTH.

  9. Investigation of microstructure and mechanical properties of phosphocalcic bone substitute using the chemical wet method

    NASA Astrophysics Data System (ADS)

    Alimi, Latifa; Bahloul, Lynda; Azzi, Afef; Guerfi, Souad; Ismail, Fadhel; Chaoui, Kamel

    2018-05-01

    Selection of calcium phosphate base materials in reconstructive bone surgery is justified by the surprising similarities in chemical compositions with human bones. The closest to natural apatite material is the hydroxyapatite (HAp) which has a chemical composition based on calcium and phosphate (Ca10(PO4)6(OH)2). In this study, HAp is synthesized using the wet precipitation method from hydrated calcium chloride (CaCl2,12H2O) and di-sodium hydrogen phosphate di-hydrate (HNa2PO4,2H2O). The powder is calcinated at 900°C and 1200°C in order to compare with sintered condition at 1150°C. Vickers microhardness tests and X-ray diffraction analyzes are used for the characterization of the crystalline material. Mechanical properties (Hv, σe, σr, and KC) and the degree of crystallinity (Xc) are discussed according to heat treatment temperatures. Results indicate that heat treating the powder at 1200°C increased crystallinity up to 72%. At the same time, microhardness increased with temperature and even outmatched the sintered case at 1150°C. Fracture toughness is ameliorated with increasing heat treatment temperature by more than two folds.

  10. Evaluation of liver function using gadoxetate disodium (Gd-EOB-DTPA) enhanced MR imaging

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Hara, Takeshi; Li, Feng; Doi, Kunio

    2010-03-01

    Indocyanine green (ICG) is widely used for its clearance test in the evaluation of liver function. Gadoxetate disodium (Gd-EOB-DTPA) is a targeted MR contrast agent partially taken up by hepatocytes. The objective of this study was to evaluate the feasibility of an estimation of the liver function corresponding to plasma disappearance rate of indocyanine green (ICG-PDR) by use of the signal intensity of the liver alone in Gd-EOB-DTPA enhanced MR imaging (EOB-MRI). We evaluated fourteen patients who had EOB-MRI and ICG clearance test within 1 month. 2D-GRE T1 weighted images were obtained at pre contrast, 3 min (equilibrium phase) and 20 min (hepatobiliary phase) after the intravenous administration of Gd-EOB-DTPA, and the mean signal intensity of the liver was measured. The correlation between ICG-PDR and many parameters derived from the signal intensity of the liver in EOB-MRI was evaluated. The correlation coefficient between ICG-PDR and many parameters derived from the signal intensity of the liver in EOBMRI was low and not significant. The estimation of the liver function corresponding to ICG-PDR by use of the signal intensity of the liver alone in EOB-MRI would not be reliable.

  11. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes*

    PubMed Central

    Cooper, Daniel E.; Grevengoed, Trisha J.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state. PMID:25918168

  12. Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vrajesh S.; Maillot, Fabien; Wang, Zheming

    Phosphate addition to subsurface environments contaminated with uranium can be used as an in situ remediation approach. Batch experiments were conducted to evaluate the dependence of the extent and mechanism of uranium uptake on the pathway for reaction with calcium phosphates. At pH 4.0 and 6.0 uranium uptake occurred via autunite (Ca(UO2)(PO4)3) precipitation irrespective of the starting forms of calcium and phosphate. At pH 7.5, the uptake mechanism depended on the nature of the calcium and phosphate. When dissolved uranium, calcium, and phosphate were added simultaneously, uranium was structurally incorporated into a newly formed amorphous calcium phosphate solid. Adsorption wasmore » the dominant removal mechanism for uranium contacted with pre-formed amorphous calcium phosphate solids,. When U(VI) was added to a suspension containing amorphous calcium phosphate solids as well as dissolved calcium and phosphate, then removal occurred through precipitation (57±4 %) of autunite and adsorption (43±4 %) onto calcium phosphate. The solid phase speciation of the uranium was determined using X-ray absorption spectroscopy and laser induced fluorescence spectroscopy. Dissolved uranium, calcium, and phosphate concentrations with saturation index calculations helped identify removal mechanisms and determine thermodynamically favorable solid phases.« less

  13. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  14. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  15. Technical report: gadoxetate-disodium-enhanced 2D R2* mapping: a novel approach for assessing bile ducts in living donors.

    PubMed

    Fazeli Dehkordy, Soudabeh; Fowler, Kathryn J; Wolfson, Tanya; Igarashi, Saya; Lamas Constantino, Carolina P; Hooker, Jonathan C; Hong, Cheng W; Mamidipalli, Adrija; Gamst, Anthony C; Hemming, Alan; Sirlin, Claude B

    2017-10-31

    Gadoxetate-disodium (Gd-EOB-DTPA)-enhanced 3D T1- weighted (T1w) MR cholangiography (MRC) is an efficient method to evaluate biliary anatomy due to T1 shortening of excreted contrast in the bile. A method that exploits both T1 shortening and T2* effects may produce even greater bile duct conspicuity. The aim of our study is to determine feasibility and compare the diagnostic performance of two-dimensional (2D) T1w multi-echo (ME) spoiled gradient-recalled-echo (SPGR) derived R2* maps against T1w MRC for bile duct visualization in living liver donor candidates. Ten potential living liver donor candidates underwent pretransplant 3T MRI and were included in our study. Following injection of Gd-EOBDTPA and a 20-min delay, 3D T1w MRC and 2D T1w ME SPGR images were acquired. 2D R2* maps were generated inline by the scanner assuming exponential decay. The 3D T1w MRC and 2D R2* maps were retrospectively and independently reviewed in two separate sessions by three radiologists. Visualization of eight bile duct segments was scored using a 4-point ordinal scale. The scores were compared using mixed effects regression model. Imaging was tolerated by all donors and R2* maps were successfully generated in all cases. Visualization scores of 2D R2* maps were significantly higher than 3D T1w MRC for right anterior (p = 0.003) and posterior (p = 0.0001), segment 2 (p < 0.0001), segment 3 (p = 0.0001), and segment 4 (p < 0.0001) ducts. Gd-EOB-DTPA-enhanced 2D R2* mapping is a feasible method for evaluating the bile ducts in living donors and may be a valuable addition to the living liver donor MR protocol for delineating intrahepatic biliary anatomy.

  16. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    PubMed

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  17. Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.

    PubMed

    Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro

    2005-10-01

    Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.

  18. Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Glyceraldehyde-3-phosphate acts as the substrate in a model of early self-replication of a phosphodiester copolymer of glycerate-3-phosphate and glycerol-3-phosphate. This model of self-replication is based on covalent complementarity in which information transfer is mediated by a single covalent bond, in contrast to multiple weak interactions that establish complementarity in nucleic acid replication. This replication model is connected to contemporary biochemistry through its use of glyceraldehyde-3-phosphate, a central metabolite of glycolysis and photosynthesis.

  19. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.

    PubMed

    Crutchik, D; Garrido, J M

    2011-01-01

    Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.

  20. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbance.

    PubMed

    Håglin, Lena

    2016-06-01

    Hypophosphatemia (HP) with or without intracellular depletion of inorganic phosphate (Pi) and adenosine triphosphate has been associated with central and peripheral nervous system complications and can be observed in various diseases and conditions related to respiratory alkalosis, alcoholism (alcohol withdrawal), diabetic ketoacidosis, malnutrition, obesity, and parenteral and enteral nutrition. In addition, HP may explain serious muscular, neurological, and haematological disorders and may cause peripheral neuropathy with paresthesias and metabolic encephalopathy, resulting in confusion and seizures. The neuropathy may be improved quickly after proper phosphate replacement. Phosphate depletion has been corrected using potassium-phosphate infusion, a treatment that can restore consciousness. In severe ataxia and tetra paresis, complete recovery can occur after adequate replacement of phosphate. Patients with multiple risk factors, often with a chronic disease and severe HP that contribute to phosphate depletion, are at risk for neurologic alterations. To predict both risk and optimal phosphate replenishment requires assessing the nutritional status and risk for re-feeding hypophosphatemia. The strategy for correcting HP depends on the severity of the underlying disease and the goal for re-establishing a phosphate balance to limit the consequences of phosphate depletion.

  1. An infrared and Raman spectroscopic study of natural zinc phosphates.

    PubMed

    Frost, Ray L

    2004-06-01

    Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.

  2. Towards Synthesis and Usage of Actinide-Bearing REE Phosphate age Standards: A Progress Report

    NASA Astrophysics Data System (ADS)

    Pyle, J. M.; Cherniak, D. J.

    2006-05-01

    Electron microprobe (EMP) dates result from a concentration-time unit conversion, so use of a concentration- based (rather than isotope-ratio based) fictive age standard is warranted. This observation has motivated our mineral synthesis program, aimed at producing actinide-doped REE phosphate EMP dating standards that meet the following criteria: 1) known concentrations of U, Th, and Pb; 2) homogeneous intragrain distribution of all components; 3) of suitable size, either as a single-crystal or polycrystalline sintered ceramic. Single-crystal synthesis of actinide-doped LaPO4 by flux-growth methods results in disproportionation of lanthanide and flux, alkali, and actinide components into phosphate and oxide phases, respectively, and flux- growth methods were abandoned. Actinide-doped La phosphate is successfully prepared by high-T annealing and hydrothermal processing of microcrystalline phosphate; both homogeneity and charge-balance of (Ca, Th, Pb)-bearing LaPO4 increase with increasing solvent acidity during cold-seal hydrothermal synthesis. A combination of pressing and high-T (1400° C) sintering transforms fine-grained (0.1-10 μm) run- products to ceramic pellets with 90-95% theoretical density. Our most recent runs focused on a target composition of La80(CaTh)17(CaU)2(PbTh)1PO4 processed with 6% 2M HCl at 820° C, 0.75 kbar for 1 week. The run products are 0.1-2 μm crystals identified by XRD as La-actinide phosphate solid solution. 2 μm grains (N=16) give a composition (mean±2 sd) of La79.77(1.26)(CaTh)17.87(1.00)(CaU)1.53(0.42)(PbTh)0.82(0.09)PO4. Th (8.07-9.13 wt. %) is homogeneous at the level of analytical precision, and the Pb concentration range (3500-4350 ppm) is restricted relative to untreated precipitate. Uranium concentration values are more variable (6500-10000 ppm). This run yields a fictive age of 702±4 Ma (mean±2 se), compared to the fictive age of 794 Ma for the target composition.

  3. Five years experience on 3,4-diaminopyridine phosphate in Lambert–Eaton syndrome

    PubMed Central

    Portaro, Simona; Brizzi, Teresa; Sinicropi, Stefano; Cacciola, Alberto; De Cola, Maria Cristina; Bramanti, Alessia; Milardi, Demetrio; Lupica, Antonino; Bramanti, Placido; Toscano, Antonio; Rodolico, Carmelo

    2017-01-01

    Abstract Rationale: To report our experience on 7 patients (4 males and 3 females), affected by nonparaneoplastic Lambert–Eaton myasthenic syndrome, treated with 3,4-diaminopyridine phosphate (3,4-DAPP) either alone or in combination with other immunosuppressants or steroids. Patient concerns: Patients have been evaluated at specific timepoints (ie, baseline and last 5 year follow-up), with neurological examination, autoantibodies against presynaptic voltage-gated Cav2.1 (P/Q type) calcium ion channel (VGCC) dosage, neurophysiological evaluation focusing on the increased amplitude of the compound muscle action potential (cMAP) after maximum voluntary effort, quantitative myasthenia gravis (QMG) and activities of daily living scales, and autonomic nervous system involvement evaluation. Outcomes: Five out of 7 patients presented a clinical improvement persisting at last 5-year follow-up; 2 out of them improved taking only 3,4-DAPP at the maximal dosage, whereas the remaining received concomitant medications, such as prednisone and azathioprine. However, the clinical amelioration was not statistically significant. No one of the patients reported severe adverse events, except one, complaining of transient chin and perioral paresthesias. A significant association between QMG and the type of pharmacological drugs therapy (P = .028) emerged. Indeed, we observed an improvement of the clinical condition in all 3 subjects treated with 3,4-DAPP and prednisone. Conclusions: In this study, we confirm 3,4-DAPP treatment efficacy on muscle strength, but minor evidence of drug effectiveness have been demonstrated on the autonomic nervous system involvement and on the deep tendon reflexes reappearance, a part from patients who received 3,4-DAPP associated to prednisone. PMID:28930822

  4. A Pictorial Review of Hepatobiliary Magnetic Resonance Imaging With Hepatocyte-Specific Contrast Agents: Uses, Findings, and Pitfalls of Gadoxetate Disodium and Gadobenate Dimeglumine.

    PubMed

    Scali, Elena P; Walshe, Triona; Tiwari, Hina Arif; Harris, Alison C; Chang, Silvia D

    2017-08-01

    Magnetic resonance imaging (MRI) has a well-established role as a highly specific and accurate modality for characterizing benign and malignant focal liver lesions. In particular, contrast-enhanced MRI using hepatocyte-specific contrast agents (HSCAs) improves lesion detection and characterization compared to other imaging modalities and MRI techniques. In this pictorial review, the mechanism of action of gadolinium-based MRI contrast agents, with a focus on HSCAs, is described. The clinical indications, protocols, and emerging uses of the 2 commercially available combined contrast agents available in the United States, gadoxetate disodium and gadobenate dimeglumine, are discussed. The MRI features of these agents are compared with examples of focal hepatic masses, many of which have been obtained within the same patient therefore allowing direct lesion comparison. Finally, the pitfalls in the use of combined contrast agents in liver MRI are highlighted. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Meurigite, a new fibrous iron phosphate resembling kidwellite

    USGS Publications Warehouse

    Birch, W.D.; Pring, A.; Self, P.G.; Gibbs, R.B.; Keck, E.; Jensen, M.C.; Foord, E.E.

    1996-01-01

    Meurigite is a new hydrated potassium iron phosphate related to kidwellite and with structural similarities to other late-stage fibrous ferric phosphate species. It has been found at four localities so far - the Santa Rita mine, New Mexico, U.S.A.; the Hagendorf-Sud pegmatite in Bavaria, Germany; granite pegmatite veins at Wycheproof, Victoria. Australia; and at the Gold Quarry Mine, Nevada, U.S.A. The Santa Rita mine is the designated type locality. Meurigite occurs as tabular, elongated crystals forming spherical and hemispherical clusters and drusy coatings. The colour ranges from creamy white to pale yellow and yellowish brown. At the type locality, the hemispheres may reach 2 mm across, but the maximum diameter reached in the other occurrences is usually less than 0.5 mm. A wide variety of secondary phosphate minerals accompanies meurigite at each locality, with dufrenite, cyrilovite. beraunite, rockbridgeite and leucophosphite amongst the most common. Vanadates and uranates occur with meurigite at the Gold Quarry mine. Electron microprobe analysis and separate determination of H2O and CO2 on meurigite from the type locality gave a composition for which several empirical formulae could be calculated. The preferred formula, obtained on the basis of 35 oxygen atoms, is (K0.85Na0.03)??0.88(Fe7.013+Al0.16Cu0.02)??7.19 (PO4)5.11(CO3)0.20(OH) 6.7??7-7.25H2O, which simplifies to KFe73+(PO4)5(OH) 7??8H2O. Qualitative analyses only were obtained for meurigite from the other localities, due to the softness and openness of the aggregates. Because of the fibrous nature of meurigite, it was not possible to determine the crystal structure, hence the exact stoichiometry remains uncertain. The lustre of meurigite varies from vitreous to waxy for the Santa Rita mine mineral, to silky for the more open sprays and internal surfaces elsewhere. The streak is very pale yellow to cream and the estimated Mohs hardness is about 3. Cleavage is perfect on {001] and fragments from the

  6. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rong; Pineda, Marco; Ajamian, Eunice

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+},more » which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.« less

  7. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2 solution.

    PubMed

    Takashiba, Shigeyuki; Zhang, Zutai; Tamaki, Yukimichi

    2002-12-01

    In our previous study, we investigated ammonia-free phosphate-bonded investments using Mg (H2PO4)2 powder. The purpose of the present study was to attempt usage of 50 wt% Mg (H2PO4)2 solution instead of powder. Magnesium oxide (MgO) was prepared as a binder and cristobalite was selected as a refractory. After arranging six kinds of experimental investments (A-F) with different cristobalite/MgO ratios, the fundamental properties of the dental investments were examined. The properties of the molds were influenced by the amount of MgO. Decreases in MgO showed lower mold strengths, longer setting time and larger setting expansion. According to XRD analysis, the peaks of MgH(PO4)3 x 3H2O newly formed, cristobalite and MgO were detected in the A set, but MgO peaks in F set were reduced. On the other hand, the surface of F was entirely covered by phosphorus. From these results, it was found that the usage of Mg(H2PO4)2 solution was possible for ammonia-free investments.

  8. Phosphate, urea and creatinine clearances: haemodialysis adequacy assessed by weekly monitoring.

    PubMed

    Debowska, Malgorzata; Wojcik-Zaluska, Alicja; Ksiazek, Andrzej; Zaluska, Wojciech; Waniewski, Jacek

    2015-01-01

    The specific distribution of phosphate and the control mechanisms for its plasma level makes phosphate kinetics during haemodialysis (HD) considerably different from those of urea and creatinine and makes the quantitative evaluation of adequacy of phosphate removal difficult. We propose the application of equivalent continuous clearance (ECC) as a phosphate adequacy parameter and compare it with ECC for creatinine and urea. Three consecutive dialysis sessions were evaluated for 25 patients on maintenance HD. Concentrations of phosphate, urea and creatinine in plasma were measured every 1h during the treatment and 45 min after, and every 30 min in dialysate. ECC was calculated using the removed solute mass assessed in dialysate and weekly solute profile in plasma. Similar calculations were performed also for the midweek dialysis session only. Different versions of the reference concentration for ECC were applied. ECC with peak average reference concentration was 5.4 ± 1.0 for phosphate, 7.0 ± 1.0 for urea and 4.7 ± 1.0 mL/min for creatinine. ECC for urea and creatinine were well correlated in contrast to the correlations of ECC for phosphate versus urea and creatinine. Midweek ECC were higher than weekly ECC, but they were well correlated for urea and creatinine, but only weakly for phosphate. HD adequacy monitoring for phosphate may be performed using ECC, but it is less predictable than similar indices for urea and creatinine. The values of ECC for phosphate are within the range expected for its molecular size compared with those for urea and creatinine. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  9. Cyanotoxins: a poison that frees phosphate.

    PubMed

    Raven, John A

    2010-10-12

    Autotrophic organisms obtain phosphorus from the environment by secreting alkaline phosphatases that act on esters, resulting in inorganic phosphate that is then taken up. New work shows that the cyanobacterium Aphanizomenon ovalisporum obtains inorganic phosphate by secreting the cyanotoxin cylindrospermopsin, which induces alkaline phosphatase in other phytoplankton species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  11. Formation kinetics of a novel product from photolysis of cytosine in phosphate-buffered solutions

    NASA Astrophysics Data System (ADS)

    Wenqing, Wang; Feng, Lin; Jilan, Wu

    1999-01-01

    For studying the role of phosphate in the origin of life and the effect of far-ultraviolet light induced photochemical damage to RNA, DNA and its components, it was found that the photolysis of nucleobases, nucleosides and nucleotides was strongly enhanced by phosphate under the irradiation of medium pressure mercury lamp (MPML). Ultraviolet irradiation (190-220 nm) of cytosine in 0.05 mol dm -3 phosphate buffered solution at pH 8-9 leads to the production of a novel compound C 4H 6N 3O 5P in the presence of oxygen. The main photoproduct has been isolated, purified and characterized by use of 1H- and 31P-NMR spectroscopy, elemental analysis, ultraviolet and infrared spectroscopy and electron impact mass spectrometry. Phosphate effect can be inhibited by amino acids. The formation mechanism of the photoproduct and the kinetics was studied.

  12. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  13. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  14. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  15. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  16. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    PubMed

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  17. Inositol phosphates in the duckweed Spirodela polyrhiza L.

    PubMed Central

    Brearley, C A; Hanke, D E

    1996-01-01

    We have undertaken an analysis of the inositol phosphates of Spirodela polyrhiza at a developmental stage when massive accumulation of InsP6 indicates that a large net synthesis is occurring. We have identified Ins3P, Ins(1,4)P2, Ins(3,4)P2 and possibly Ins(4,6)P2, Ins(3,4,6)P3, Ins(3,4,5,6)P4, Ins (1,3,4,5,6)P5, D- and/or L-Ins(1,2,4,5,6)P5 and InsP6 and revealed the likely presence of a second InsP3 with chromatographic properties similar to Ins(1,4,5)P3. The higher inositol phosphates identified show no obvious direct link to pathways of metabolism of second messengers purported to operate in higher plants, nor do they resemble the immediate products of plant phytase action on InsP6. PMID:8660286

  18. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  19. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    PubMed

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    PubMed

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Uranium(VI) Scavenging by Amorphous Iron Phosphate Encrusting Sphaerotilus natans Filaments.

    PubMed

    Seder-Colomina, Marina; Morin, Guillaume; Brest, Jessica; Ona-Nguema, Georges; Gordien, Nilka; Pernelle, Jean-Jacques; Banerjee, Dipanjan; Mathon, Olivier; Esposito, Giovanni; van Hullebusch, Eric D

    2015-12-15

    U(VI) sorption to iron oxyhydroxides, precipitation of phosphate minerals, as well as biosorption on bacterial biomass are among the most reported processes able to scavenge U(VI) under oxidizing conditions. Although phosphates significantly influence bacterially mediated as well as iron oxyhydroxide mediated scavenging of uranium, the sorption or coprecipitation of U(VI) with poorly crystalline nanosized iron phosphates has been scarcely documented, especially in the presence of microorganisms. Here we show that dissolved U(VI) can be bound to amorphous iron phosphate during their deposition on Sphaerotilus natans filamentous bacteria. Uranium LIII-edge EXAFS analysis reveals that the adsorbed uranyl ions share an equatorial oxygen atom with a phosphate tetrahedron of the amorphous iron phosphate, with a characteristic U-P distance of 3.6 Å. In addition, the uranyl ions are connected to FeO6 octahedra with U-Fe distances at ~3.4 Å and at ~4.0 Å. The shortest U-Fe distance corresponds to a bidentate edge-sharing complex often reported for uranyl adsorption onto iron oxyhydroxides, whereas the longest U-Fe and U-P distances can be interpreted as a bidentate corner-sharing complex, in which two adjacent equatorial oxygen atoms are shared with the vertices of a FeO6 octahedron and of a phosphate tetrahedron. Furthermore, based on these sorption reactions, we demonstrate the ability of an attached S. natans biofilm to remove uranium from solution without any filtration step.

  2. Continuous analysis of phosphate in a Greenland shallow ice core

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Svensson, Anders; Bigler, Matthias; Vallelonga, Paul; Kettner, Ernesto; Dahl-Jensen, Dorthe

    2010-05-01

    Phosphate is an important and sometimes limiting nutrient for primary production in the oceans. Because of deforestation and the use of phosphate as a fertilizer changes in the phosphate cycle have occurred over the last centuries. On longer time scales, sea level changes are thought to have also caused changes in the phosphate cycle. Analyzing phosphate concentrations in ice cores may help to gain important knowledge about those processes. In the present study, we attach a phosphate detection line to an existing continuous flow analysis (CFA) setup for ice core analysis at the University of Copenhagen. The CFA system is optimized for high-resolution measurements of insoluble dust particles, electrolytic melt water conductivity, and the concentrations of ammonium and sodium. For the phosphate analysis we apply a continuous and highly sensitive absorption method that has been successfully applied to determine phosphate concentrations of sea water (Zhang and Chi, 2002). A line of melt water from the CFA melt head (1.01 ml per minute) is combined with a molybdate blue reagent and an ascorbic acid buffer. An uncompleted reaction takes place in five meters of heated mixing coils before the absorption measurement at a wavelength of 710 nanometer takes place in a 2 m long liquid waveguide cell (LWCC) with an inner volume of 0.5 ml. The method has a detection limit of around 0.1 ppb and we are currently investigating a possible interference from molybdate reacting with silicates that are present in low amounts in the ice. Preliminary analysis of early Holocene samples from the NGRIP ice core show phosphate concentration values of a few ppb. In this study, we will attempt to determine past levels of phosphate in a shallow Northern Greenland firn core with an annual layer thickness of about 20 cm ice equivalent. With a melt speed of 2.5 cm ice per minute our method should allow the resolution of any seasonal variability in phosphate concentrations.

  3. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1.

    PubMed

    Xiao, Chunqiao; Zhang, Huaxiang; Fang, Yujuan; Chi, Ruan

    2013-01-01

    A strain WHAK1, identified as Aspergillus niger, was isolated from Yichang phosphate mines in Hubei province of China. The fungus developed a phosphate solubilization zone on modified National Botanical Research Institute's phosphate growth (NBRIP) agar medium, supplemented with tricalcium phosphate. The fungus was applied in a repeated-batch fermentation process in order to test its effect on solubilization of rock phosphate (RP). The results showed that A. niger WHAK1 could effectively solubilize RP in NBRIP liquid medium and released soluble phosphate in the broth, which can be illustrated by the observation of scanning electron microscope, energy-dispersive X-ray microanalysis, and Fourier transform infrared spectroscopy. Acidification of the broth seemed to be the major mechanism for RP solubilization by the fungus. Indeed, multiple organic acids (mainly gluconic acid) were detected in the broth by high-performance liquid chromatography analysis. These organic acids caused a significant drop of pH and an obvious rise of titratable acidity in the broth. The fungus also exhibited high levels of tolerance against temperature, pH, salinity, and desiccation stresses, although a significant decline in the fungal growth and release of soluble phosphate was marked under increasing intensity of stress parameters. Further, the fungus was introduced into the soil supplemented with RP to analyze its effect on plant growth and phosphate uptake of wheat plants. The result revealed that inoculation of A. niger WHAK1 significantly increased the growth and phosphate uptake of wheat plants in the RP-amended soil compared to the control soil.

  4. Disodium N,N-bis-(dithiocarboxy)ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II).

    PubMed

    Xiao, Xiao; Ye, Maoyou; Yan, Pingfang; Qiu, Yiqin; Sun, Shuiyu; Ren, Jie; Dai, Yongkang; Han, Dajian

    2016-10-01

    A new effective multi-dithiocarbamate heavy metal precipitant, disodium N,N-bis-(dithiocarboxy) ethanediamine (BDE), was synthesized by mixing ethanediamine with carbon disulfide under alkaline conditions, and it was utilized for removing trace ethylenediaminetetraacetic acid copper (II) (EDTA-Cu) from wastewater. Its structure was confirmed by ultraviolet spectra, Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The removal performance of EDTA-Cu by BDE was evaluated according to BDE dosage, initial concentration, pH, and reaction time through single-factor experiments. With the optimized conditions of a pH range of 3-9, dosage ratio of BDE/Cu of 1:1, PAM dosage of 1 mg/L, and reaction time of 4 min, the removal efficiency of Cu(2+) was more than 98 % from simulated wastewater containing EDTA-Cu with initial concentrations of 5-100 mg/L. Treatment of actual EDTA-Cu wastewater showed that BDE performed superior effectiveness, and the average residential concentration of Cu(2+) was 0.115 mg/L. Besides, the stability of chelated precipitate and the reaction mechanism of BDE and EDTA-Cu were also introduced. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the chelated precipitate was non-hazardous and stable in weak acid and alkaline conditions. The BDE reacts with EDTA-Cu at a stoichiometric ratio, and the removal of Cu(2+) was predominantly achieved through the replacement reaction of BDE and EDTA-Cu.

  5. Phosphatidylserine Stimulation of Drs2p·Cdc50p Lipid Translocase Dephosphorylation Is Controlled by Phosphatidylinositol-4-phosphate*

    PubMed Central

    Jacquot, Aurore; Montigny, Cédric; Hennrich, Hanka; Barry, Raphaëlle; le Maire, Marc; Jaxel, Christine; Holthuis, Joost; Champeil, Philippe; Lenoir, Guillaume

    2012-01-01

    Here, Drs2p, a yeast lipid translocase that belongs to the family of P4-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-32P]ATP of a 32P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p. It was inhibited by orthovanadate and fluoride compounds. In crude membranes, the phosphoenzyme formed at steady state at 4 °C displayed ADP-insensitive but temperature-sensitive decay. Solubilizing concentrations of dodecyl maltoside left this decay rate almost unaltered, whereas several other detergents accelerated it. Unexpectedly, the dephosphorylation rate for the solubilized Drs2p·Cdc50p complex was inhibited by the addition of phosphatidylserine. Phosphatidylserine exerted its anticipated accelerating effect on the dephosphorylation of Drs2p·Cdc50p complex only in the additional presence of phosphatidylinositol-4-phosphate. These results explain why phosphatidylinositol-4-phosphate tightly controls Drs2p-catalyzed lipid transport and establish the functional relevance of the Drs2p·Cdc50p complex overexpressed here. PMID:22351780

  6. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.

    PubMed

    Harrison, M J; van Buuren, M L

    1995-12-07

    Vesicular-arbuscular (VA) mycorrhizal fungi form symbiotic associations with the roots of most terrestrial plants, including many agriculturally important crop species. The fungi colonize the cortex of the root to obtain carbon from their plant host, while assisting the plant with the uptake of phosphate and other mineral nutrients from the soil. This association is beneficial to the plant, because phosphate is essential for plant growth and development, especially during growth under nutrient-limiting conditions. Molecular genetic studies of these fungi and their interaction with plants have been limited owing to the obligate symbiotic nature of the VA fungi, so the molecular mechanisms underlying fungal-mediated uptake and translocation of phosphate from the soil to the plant remain unknown. Here we begin to investigate this process by identifying a complementary DNA that encodes a transmembrane phosphate transporter (GvPT) from Glomus versiforme, a VA mycorrhizal fungus. The function of the protein encoded by GvPT was confirmed by complementation of a yeast phosphate transport mutant. Expression of GvPT was localized to the external hyphae of G. versiforme during mycorrhizal associations, these being the initial site of phosphate uptake from the soil.

  7. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, Dan J; Mattus, Catherine H; Dole, Leslie Robert

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials andmore » structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.« less

  8. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    PubMed

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  9. Water-Soluble Combretastatin A4 Phosphate Orally Delivered via Composite Nanoparticles With Improved Inhibition Effect Toward S180 Tumors.

    PubMed

    Shen, Yurun; Wu, Liping; Qiu, Liyan

    2017-10-01

    Combretastatin A4 phosphate (CA4P) is a novel vascular disrupting agent for cancer therapy. However, frequent dosing and negative patient compliance have been encountered over CA4P by injection administration due to its quite short-term action and acute side effects. Therefore, it is significant to develop an oral formulation of CA4P. We established a novel method to prepare CA4P-loaded nanoparticles (CA4P-NPs) for oral administration by combining methoxy poly(ethylene glycol)-b-polylactide (PELA) and poly(d,l-lactic-co-glycolic acid) (PLGA) polymers. Transport study in vitro was evaluated on Madin-Darby canine kidney cell models, and antitumor effect evaluation in vivo was performed on S180 subcutaneous xenotransplanted tumor models in mice. The highest entrapment efficiency of CA4P-NPs was achieved when the weight ratio of PELA to PLGA was optimized to 1:1. The apparent permeability coefficient of CA4P-NPs was found to be 2.08-fold higher than that of free CA4P in transport study. CA4P-NPs reached an absolute bioavailability of 77.6% with the tumor inhibition ratio of 41.2% that was significantly superior to free CA4P. These results suggest a promising application of this composite nanoparticle for the oral delivery of water-soluble drugs. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  11. Phosphates behaviours in conversion of FP chlorides

    NASA Astrophysics Data System (ADS)

    Amamoto, I.; Kofuji, H.; Myochin, M.; Takasaki, Y.; Terai, T.

    2009-06-01

    The spent electrolyte of the pyroprocessing by metal electrorefining method should be considered for recycling after removal of fission products (FP) such as, alkali metals (AL), alkaline earth metals (ALE), and/or rare earth elements (REE), to reduce the volume of high-level radioactive waste. Among the various methods suggested for this purpose is precipitation by converting FP from chlorides to phosphates. Authors have been carrying out the theoretical analysis and experiment showing the behaviours of phosphate precipitates so as to estimate the feasibility of this method. From acquired results, it was found that AL except lithium and ALE are unlikely to form phosphate precipitates. However their conversion behaviours including REE were compatible with the theoretical analysis; in the case of LaPO 4 as one of the REE precipitates, submicron-size particles could be observed while that of Li 3PO 4 was larger; the precipitates were apt to grow larger at higher temperature; etc.

  12. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment.

    PubMed

    Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R

    2018-03-05

    Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.

  13. Precipitation of Phosphate Minerals by Microorganisms Isolated from a Fixed-Biofilm Reactor Used for the Treatment of Domestic Wastewater

    PubMed Central

    Rivadeneyra, Almudena; Gonzalez-Martinez, Alejandro; Gonzalez-Lopez, Jesus; Martin-Ramos, Daniel; Martinez-Toledo, Maria Victoria; Rivadeneyra, Maria Angustias

    2014-01-01

    The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA), the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences). The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX). All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O), bobierrite [Mg3(PO4)2·8H2O] and baricite [(MgFe)3(PO4)2·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors. PMID:24699031

  14. Selective hydrolysis of phosphate monoester by a supramolecular phosphatase formed by the self-assembly of a bis(Zn(2+)-cyclen) complex, cyanuric acid, and copper in an aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane).

    PubMed

    Zulkefeli, Mohd; Suzuki, Asami; Shiro, Motoo; Hisamatsu, Yosuke; Kimura, Eiichi; Aoki, Shin

    2011-10-17

    In Nature, organized nanoscale structures such as proteins and enzymes are formed in aqueous media via intermolecular interactions between multicomponents. Supramolecular and self-assembling strategies provide versatile methods for the construction of artificial chemical architectures for controlling reaction rates and the specificities of chemical reactions, but most are designed in hydrophobic environments. The preparation of artificial catalysts that have potential in aqueous media mimicking natural enzymes such as hydrolases remains a great challenge in the fields of supramolecular chemistry. Herein, we describe that a dimeric Zn(2+) complex having a 2,2'-bipyridyl linker, cyanuric acid, and a Cu(2+) ion automatically assembles in an aqueous solution to form a 4:4:4 complex, which is stabilized by metal-ligand coordination bonds, π-π-stacking interactions, and hydrogen bonding and contains μ-Cu(2)(OH)(2) cores analogous to the catalytic centers of phosphatase, a dinuclear metalloenzyme. The 4:4:4 complex selectively accelerates the hydrolysis of a phosphate monoester, mono(4-nitrophenyl)phosphate, at neutral pH.

  15. Polynucleotide 3′-terminal Phosphate Modifications by RNA and DNA Ligases

    PubMed Central

    Zhelkovsky, Alexander M.; McReynolds, Larry A.

    2014-01-01

    RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5′-phosphate and 3′-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3′-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3′p substrate to generate an RNA 2′,3′-cyclic phosphate or convert DNA3′p to ssDNA3′pp5′A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3′p. These modifications of RNA and DNA 3′-phosphates are similar to the activities of RtcA, an RNA 3′-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3′p or DNA 3′p to generate the adenylated intermediate. For RNA 3′pp5′A, the third step involves attack of the adjacent 2′ hydroxyl to generate the RNA 2′,3′-cyclic phosphate. These steps are analogous to those in classical 5′ phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3′p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3′-phosphorylated nicks in double-stranded DNA to produce a 3′-adenylated product. These 3′-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5′Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3′-terminal phosphates. PMID:25324547

  16. Intracellular Phosphate Dynamics in Muscle Measured by Magnetic Resonance Spectroscopy during Hemodialysis

    PubMed Central

    Fournier, Thomas; Kocevar, Gabriel; Belloi, Amélie; Normand, Gabrielle; Ibarrola, Danielle; Sappey-Marinier, Dominique; Juillard, Laurent

    2016-01-01

    Of the 600–700 mg inorganic phosphate (Pi) removed during a 4-hour hemodialysis session, a maximum of 10% may be extracted from the extracellular space. The origin of the other 90% of removed phosphate is unknown. This study tested the hypothesis that the main source of phosphate removed during hemodialysis is the intracellular compartment. Six binephrectomized pigs each underwent one 3-hour hemodialysis session, during which the extracorporeal circulation blood flow was maintained between 100 and 150 ml/min. To determine in vivo phosphate metabolism, we performed phosphorous (31P) magnetic resonance spectroscopy using a 1.5-Tesla system and a surface coil placed over the gluteal muscle region. 31P magnetic resonance spectra (repetition time =10 s; echo time =0.35 ms) were acquired every 160 seconds before, during, and after dialysis. During the dialysis sessions, plasma phosphate concentrations decreased rapidly (−30.4 %; P=0.003) and then, plateaued before increasing approximately 30 minutes before the end of the sessions; 16 mmol phosphate was removed in each session. When extracellular phosphate levels plateaued, intracellular Pi content increased significantly (11%; P<0.001). Moreover, βATP decreased significantly (P<0.001); however, calcium levels remained balanced. Results of this study show that intracellular Pi is the source of Pi removed during dialysis. The intracellular Pi increase may reflect cellular stress induced by hemodialysis and/or strong intracellular phosphate regulation. PMID:26561642

  17. Pyridinium-functionalized magnetic mesoporous silica nanoparticles as a reusable adsorbent for phosphate removal from aqueous solution.

    PubMed

    Ma, Fang; Du, Hongtao; Li, Ronghua; Zhang, Zengqiang

    In this work, pyridinium-functionalized silica nanoparticles adsorbent (PC/SiO2/Fe3O4) was synthesized for phosphate removal from aqueous solutions. The removal efficiency of phosphate on the PC/SiO2/Fe3O4 was carried out and investigated under various conditions such as pH, contact temperature and initial concentration. The results showed that the adsorption equilibrium could be reached within 10 min, which fitted a Langmuir isotherm model, with maximum adsorption capacity of 94.16 mg/g, and the kinetic data were fitted well by pseudo-second-order and intra-particle diffusion models. Phosphate loaded on the adsorbents could be easily desorbed with 0.2 mol/L of NaOH, and the adsorbents showed good reusability. The adsorption capacity was still around 50 mg/g after 10 times of reuse. All the results demonstrated that this pyridinium-functionalized mesoporous material could be used for the phosphate removal from aqueous solution and it was easy to collect due to its magnetic properties.

  18. Impact of using two dialyzers in parallel on phosphate clearance in hemodialysis patients: a randomized trial.

    PubMed

    Thompson, Stephanie; Manns, Braden; Lloyd, Anita; Hemmelgarn, Brenda; MacRae, Jennifer; Klarenbach, Scott; Unsworth, Larry; Courtney, Mark; Tonelli, Marcello

    2017-05-01

    Dietary restriction and phosphate binders are the main interventions used to manage hyperphosphatemia in people on hemodialysis, but have limited efficacy. Modifying conventional dialysis regimens to enhance phosphate clearance as an alternative approach remains relatively unstudied. This was a 10-week, 2-arm, randomized crossover study. Participants were prevalent dialysis patients ( n = 32) with consecutive serum phosphate levels >1.6 mmol/L and on stable doses of a phosphate binder. Following a 2-week run-in period, participants were randomized to initiate dialysis using two high flux dialyzers in parallel (blood flow ≥350 mL/min, dialysate flow 800 mL/min) or standard dialysis using one high flux dialyzer (blood flow ≥350 mL/min, dialysate flow of 800 mL/min). Each regimen was 3 weeks in duration. After a 2-week washout period, participants received the alternate regimen. The primary outcome was the mean difference in phosphate clearance by dialyzer strategy. Secondary outcomes were phosphate removal and pre-dialysis serum phosphate. Phosphate clearance for the double dialyzer strategy did not differ significantly from the single dialyzer strategy [mean difference 7.5 mL/min (95% confidence interval, 95% CI, -6.1, 21.0), P = 0.28]. There was no difference in total phosphate removal and pre-dialysis phosphate between the double and single dialyzer strategies [total phosphate removal mean difference -0.2 mmol (95% CI -4.1, 3.7), P = 0.93; pre-dialysis mean difference 0.01 mmol/L (95% CI -0.18, 0.21), P = 0.88]. There was no difference in the proportion of participants who experienced at least one episode of intradialytic hypotension (32 versus 47%, P = 0.13). A limitation of the study was frequent protocol deviations in the dialysis prescription. In this study, the use of two dialyzers in parallel did not increase phosphate clearance, phosphate removal or pre-dialysis serum phosphorus when compared with a standard dialysis treatment strategy. Future studies

  19. A novel biphasic calcium phosphate derived from fish otoliths

    NASA Astrophysics Data System (ADS)

    Montañez-Supelano, N. D.; Sandoval-Amador, A.; Estupiñan-Durán, H. A.; Y Peña-Ballesteros, D.

    2017-12-01

    Calcium phosphates are bioceramics that have been widely used as bone substitutes because they encourage the formation of bone on their surface and can improve the healing of the bone. Hydroxyapatite HA (calcium/phosphorus ratio of 1.67) and tricalcium phosphate TCP (calcium/phosphorus ratio of 1.50) are the most common calcium phosphates. Natural materials have begun to be tested to make HA or TCP such as shells of cardiidae (family of mollusks) and eggshells. The calcium phosphate obtained has a high ability to precipitate apatite. In this work, the mixed phase ceramic of beta-Tri-calcium phosphate / hydroxyapatite (β-TCP/HA) was synthesized by aqueous precipitation from fish otoliths, which are monomineralic species composed of aragonite. Otoliths of the specie Plagioscion squamosissimus, commonly called the river croaker, were used. Techniques such as DRX, Raman spectroscopy and SEM-EDS were used to characterize the raw material and the obtained material. X-ray diffraction analysis revealed the presence of two crystalline phases of calcium phosphates with 86.2% crystallinity. SEM micrographs showed agglomeration of particles with porous structure and submicron particle sizes.

  20. A Novel Polymer-Synthesized Ceramic Composite Based System for Bone Repair: Osteoblast Growth on Scaffolds with Varied Calcium Phosphate Content

    DTIC Science & Technology

    2005-01-01

    demongtrated the synthesis of degradable scaffolds from PLAGA /calcium phosphate composite microspheres in which an amorphous calcium phosphate is...EXPERIMENTAL DETAILS Scaffold Preparation Scaffolds were prepared as described in detail previously [3]. Briefly, PLAGA /calcium phosphate composite...culture polystyrene (TCPS) 2- pure PLAGA microspheres 64 3- composite microsphere matrices with a low polymer/ceramic ratio 4- composite microsphere

  1. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation

    PubMed Central

    Nandimath, Arusha P.; Karad, Dilip D.; Gupta, Shantikumar G.; Kharat, Arun S.

    2017-01-01

    Background and Objectives: Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. Materials and Methods: In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Results: Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml−1. Conclusion: As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting. PMID:29296275

  2. Phosphate limitation induces sporulation in the chytridiomycete Blastocladiella emersonii.

    PubMed

    Bongiorno, Vagner Alexandre; Ferreira da Cruz, Angela; Nunis da Silva, Antonio; Corrêa, Luiz Carlos

    2012-09-01

    The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.

  3. THE CHEMISTRY OF TRIBUTYL PHOSPHATE: A REVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, L.L.

    1955-10-27

    The preparation, purification, and chemical properties of THP have been reviewed with emphasis on the hydrolytic reactions. TBP is chemically a very stable compound as evidenced by its thermal stability and resistance to oxidation. The most important reactions are hydrolytic which cleave the butyl or butoxy group and normally produce butyl alcohol together with dibutyl and monobutyl phosphate (DBP and MBP, respectively), and eventually H/sub 3/PO/sub 4/. Hydrolysis occurs in either the organic phase or the aqueous phase and is first order with respect to the ester. Although the rate in the aqueous phase is much faster than in themore » organic phase, the solubility is so low in aqueous solutions that the organic phase reactions become more important. Acid hydrolysis depends on both the nature of the acid and the concentration. The order with respect to acid concentration is close to one but often less than one. Hydrolysis is catalyzed by both acids and bases. In the latter case, the reaction occurs only in the aqueous phase and normally stops with the formation of dibutyl phosphate. The hydrolysis rate increases greatly as the temperature is raised and an activation energy of the order of 20 kcal is often found. The rates observed in the presence of 5 M acid at 60 and 70 deg C may be high enough to cause some concern in solvent extraction technology, since the product, dibutyl phosphate, has undesirable properties. Impurities produced during manufacture or by thermal degradation during purification such as the pyrophosphates, if present, would yield the same objectionable products as TBP hydrolysis, but at a faster rate. Included in the survey is a selected tabulation of physical properties of TBP. (auth)« less

  4. The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells.

    PubMed

    Gerber, Esther; Hemmerlin, Andréa; Hartmann, Michael; Heintz, Dimitri; Hartmann, Marie-Andrée; Mutterer, Jérôme; Rodríguez-Concepción, Manuel; Boronat, Albert; Van Dorsselaer, Alain; Rohmer, Michel; Crowell, Dring N; Bach, Thomas J

    2009-01-01

    Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.

  5. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications.

    PubMed

    el-Briak, Hasna; Durand, Denis; Nurit, Josiane; Munier, Sylvie; Pauvert, Bernard; Boudeville, Phillipe

    2002-01-01

    By mixing CaHPO(4) x 2H(2)O (DCPD) and CaO with water or sodium phosphate buffers as liquid phase, a calcium phosphate cement was obtained. Its physical and mechanical properties, such as compressive strength, initial and final setting times, cohesion time, dough time, swelling time, dimensional and thermal behavior, and injectability were investigated by varying different parameters such as liquid to powder (L/P) ratio (0.35-0.7 ml g(-1)), molar calcium to phosphate (Ca/P) ratio (1.67-2.5) and the pH (4, 7, and 9) and the concentration (0-1 M) of the sodium phosphate buffer. The best results were obtained with the pH 7 sodium phosphate buffer at the concentration of 0.75 M. With this liquid phase, physical and mechanical properties depended on the Ca/P and L/P ratios, varying from 3 to 11 MPa (compressive strength), 6 to 10 min (initial setting time), 11 to 15 min (final setting time), 15 to 30 min (swelling time), 7 to 20 min (time of 100% injectability). The dough or working time was over 16 min. This cement expanded during its setting (1.2-5 % according to Ca/P and L/P ratios); this would allow a tight filling. Given the mechanical and rheological properties of this new DCPD/CaO-based cement, its use as root canal sealing material can be considered as classical calcium hydroxide or ZnO/eugenol-based pastes, without or with a gutta-percha point. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 447-453, 2002

  6. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  7. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGES

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; ...

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated

  8. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated

  9. Hyperphosphatemia after sodium phosphate laxatives in low risk patients: Prospective study

    PubMed Central

    Casais, Marcela Noemi; Rosa-Diez, Guillermo; Pérez, Susana; Mansilla, Elina Noemi; Bravo, Susana; Bonofiglio, Francisco Carlos

    2009-01-01

    AIM: To establish the frequency of hyperphosphatemia following the administration of sodium phosphate laxatives in low-risk patients. METHODS: One hundred consecutive ASA I-II individuals aged 35-74 years, who were undergoing colonic cleansing with oral sodium phosphate (OSP) before colonoscopy were recruited for this prospective study. Exclusion criteria: congestive heart failure, chronic kidney disease, diabetes, liver cirrhosis, intestinal obstruction, decreased bowel motility, increased bowel permeability, and hyperparathyroidism. The day before colonoscopy, all the participants entered a 24-h period of diet that consisted of 4 L of clear fluids with sugar or honey and 90 mL (60 g) of OSP in two 45-mL doses, 5 h apart. Serum phosphate was measured before and after the administration of the laxative. RESULTS: The main demographic data (mean ± SD) were: age, 58.9 ± 8.4 years; height, 163.8 ± 8.6 cm; weight, 71 ± 13 kg; body mass index, 26 ± 4; women, 66%. Serum phosphate increased from 3.74 ± 0.56 to 5.58 ± 1.1 mg/dL, which surpassed the normal value (2.5-4.5 mg/dL) in 87% of the patients. The highest serum phosphate was 9.6 mg/dL. Urea and creatinine remained within normal limits. Post-treatment OSP serum phosphate concentration correlated inversely with glomerular filtration rate (P < 0.007, R2 = 0.0755), total body water (P < 0.001, R2 = 0.156) and weight (P < 0.013, R2 = 0.0635). CONCLUSION: In low-risk, well-hydrated patients, the standard dose of OSP-laxative-induced hyperphosphatemia is related to body weight. PMID:20014460

  10. Pentose Phosphate Pathway Function Affects Tolerance to the G-Quadruplex Binder TMPyP4

    PubMed Central

    Andrew, Elizabeth J.; Merchan, Stephanie; Lawless, Conor; Banks, A. Peter; Wilkinson, Darren J.; Lydall, David

    2013-01-01

    G-quadruplexes form in guanine-rich regions of DNA and the presence of these structures at telomeres prevents the activity of telomerase in vitro. Ligands such as the cationic porphyrin TMPyP4 stabilise G-quadruplexes and are therefore under investigation for their potential use as anti-cancer drugs. In order to investigate the mechanism of action of TMPyP4 in vivo, we carried out a genome-wide screen in the budding yeast Saccharomyces cerevisiae. We found that deletion of key pentose phosphate pathway (PPP) genes increased the sensitivity of yeast to the presence of TMPyP4. The PPP plays an important role in the oxidative stress response and sensitivity to TMPyP4 also increased when genes involved in the oxidative stress response, CCS1 and YAP1, were deleted. For comparison we also report genome wide-screens using hydrogen peroxide, which causes oxidative stress, RHPS4, another G-quadruplex binder and hydroxyurea, an S phase poison. We found that a number of TMPyP4-sensitive strains are also sensitive to hydrogen peroxide in a genome-wide screen. Overall our results suggest that treatment with TMPyP4 results in light-dependent oxidative stress response in budding yeast, and that this, rather than G-quadruplex binding, is the major route to cytotoxicity. Our results have implications for the usefulness and mechanism of action of TMPyP4. PMID:23776642

  11. A precise method for the analysis of d18O of dissolved inorganic phosphate in seawater

    USGS Publications Warehouse

    McLaughlin, K.; Silva, S.; Kendall, C.; Stuart-Williams, Hilary; Paytan, A.

    2004-01-01

    A method for preparation and analysis of the oxygen isotope composition (d18O) of dissolved inorganic phosphate (DIP) has been developed and preliminary results for water samples from various locations are reported. Phosphate is extracted from seawater samples by coprecipitation with magnesium hydroxide. Phosphate is further purified through a series of precipitations and resin separation and is ultimately converted to silver phosphate. Silver phosphate samples are pyrolitically decomposed to carbon monoxide and analyzed for d18O. Silver phosphate samples weighing 0.7 mg (3.5 mol oxygen) can be analyzed routinely with an average standard deviation of about 0.3. There is no isotope fractionation during extraction and blanks are negligible within analytical error. Reproducibility was determined for both laboratory standards and natural samples by multiple analyses. A comparison between filtered and unfiltered natural seawater samples was also conducted and no appreciable difference was observed for the samples tested. The d18O values of DIP in seawater determined using this method range from 18.6 to 22.3, suggesting small but detectable natural variability in seawater. For the San Francisco Bay estuary DIP d18O is more variable, ranging from 11.4 near the San Joaquin River to 20.1 near the Golden Gate Bridge, and was well correlated with salinity, phosphate concentration, and d18O of water.

  12. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiang

    2006-01-01

    This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystalmore » structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was

  13. Orodispersible films in individualized pharmacotherapy: The development of a formulation for pharmacy preparations.

    PubMed

    Visser, J Carolina; Woerdenbag, Herman J; Crediet, Stefan; Gerrits, Edwin; Lesschen, Marjan A; Hinrichs, Wouter L J; Breitkreutz, Jörg; Frijlink, Henderik W

    2015-01-15

    Orodispersible films (ODFs) are promising drug delivery systems for customized small scale pharmacy preparations. The aim of the present study was to develop a versatile casting solution suitable for the extemporaneous production of ODFs to which active pharmaceutical ingredients (APIs) can be added. Different combinations of film forming agents and other excipients and different casting heights were tested for their suitability for production of ODFs. The best suitable casting solution contained hypromellose, carbomer, glycerol, disodium EDTA and trometamol. This casting solution was used to prepare ODFs containing water-soluble APIs (enalapril maleate and prednisolone disodium phosphate) and a poorly water-soluble API (diazepam) for which ethanol 96% was used as co-solvent.The water-soluble APIs as well as ethanol influenced the viscosity of the casting solution, mechanical properties and disintegration time of the ODFs. All ODFs containing API met the requirements on uniformity of mass and uniformity of content set by the European Pharmacopoeia (2014) (Ph. Eur.) 8th edition. In conclusion, ODFs of good pharmaceutical quality can be prepared on small scale. Hereby opening the perspective of using ODFs for individualized pharmacotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslova, Marina V.; Rusanova, Daniela; Naydenov, Valeri

    2008-12-15

    Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formationmore » of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.« less

  15. Current therapy for Lambert-Eaton myasthenic syndrome: development of 3,4-diaminopyridine phosphate salt as first-line symptomatic treatment.

    PubMed

    Quartel, A; Turbeville, S; Lounsbury, D

    2010-06-01

    Lambert-Eaton myasthenic syndrome (LEMS) is a rare pre-synaptic auto-immune disorder of neuromuscular transmission that is characterised by proximal muscle weakness, depressed tendon reflexes and autonomic dysfunction. This review summarises the clinical symptoms, aetiology, diagnosis and treatment options for LEMS. Focus is placed on symptomatic treatment with the potassium channel blocker 3,4-diaminopyridine (3,4-DAP). English-language publications were searched in MEDLINE and EMBASE to retrieve relevant literature on LEMS. The data submitted to obtain regulatory approval of 3,4-DAP phosphate by the European Medicines Agency (EMA) were also used. LEMS is a rare disease with few treatment options which are generally categorised as anti-tumour, immunomodulating or immunosuppressing, and symptomatic treatments. Anti-tumour treatment is recommended for patients with the paraneoplastic form of LEMS. While several immunomodulating or immunosuppressing treatments have been identified, these treatments should be initiated when symptomatic treatments are inadequate. As expected, due to the rarity of the disease, few reports of randomised controlled trials (RCTs) exist. Seven RCTs have been conducted to evaluate treatment of patients with LEMS. One RCT evaluated immunomodulating treatment with intravenous immunoglobulin (ivIg), while six evaluated symptomatic treatment with the potassium channel blocker 3,4-DAP. Improvements in LEMS symptoms after ivIg treatment were observed, leading to the recommendation for treatment in patients when symptomatic treatment does not provide satisfactory improvement. Potassium channel blockers evaluated for the treatment of LEMS include guanidine, 4-aminopyridine (4-AP) and 3,4-DAP. However, only 3,4-DAP has been evaluated in RCTs. Results of these RCTs demonstrated that treatment with 3,4-DAP is efficacious in treatment of LEMS and has an acceptable tolerability profile. Hence, 3,4-DAP has been recommended as first-line symptomatic

  16. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  17. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment

    PubMed Central

    2018-01-01

    Electrolysis of toilet wastewater with TiO2-coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm–2 (∼3.4 V), with greater than 20 m2 m–3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer. PMID:29607266

  18. Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Haijun; Zhang, Patrick; Jin, Zhen

    Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE

  19. Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production

    DOE PAGES

    Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...

    2017-08-01

    Phosphorite, or phosphate rock, is the most significant secondary rare-earth resource. It contains high amounts of phosphate-bearing minerals along with low contents of rare earth elements (REEs). In Florida, about 19 Mt of phosphate rock are mined annually and most are used to manufacture fertilizers using a wet process, in which sulfuric acid reacts with phosphates to produce phosphoric acid and phosphogypsum. In the wet process, REEs are also leached out into solution and eventually get lost in the leaching residue and phosphate fertilizer. Recovering REEs from Florida phosphate rock in the wet process will be beneficial to broadening rare-earthmore » availability, improving the quality of phosphoric acid product and protecting the environment. Here, this study focuses on the influences of wet-process operating conditions on REE leaching efficiency. The results indicate that REE leaching efficiency increases with phosphoric acid addition in the initial pulp. At a temperature of 75 °C, a stoichiometric ratio of sulfuric acid (H2 SO4 ) to calcium oxide (CaO) of 1.05 and a weight ratio of liquid to solid of 3.5, REE leaching efficiency reached a relatively high value of 52.82 percent. The trends of REE leaching efficiency were similar to those for phosphoric acid (P2O5 ). Extensive tests on the leaching residue showed that during leaching, about 90 percent of the REEs were released from the phosphate rock but only 52.82 percent ended up in the leaching solution. This phenomenon can be attributed to two factors: (1) the effect of phosphate ions (PO43-) in the solution, which caused REE ions to form REE phosphates and be precipitated into the leaching residue, and (2) the influence of large amounts of anions such as sulfate (SO42-), dihydrogen phosphate (H2 PO4-) and hydrogen phosphate (HPO42-) anions as well as the polar molecule H3 PO4 , which surrounded the REE cations and formed an ion atmosphere that prevented the PO43- from contacting and combining with REE

  20. Co11Li[(OH)5O][(PO3OH)(PO4)5], a Lithium-Stabilized, Mixed-Valent Cobalt(II,III) Hydroxide Phosphate Framework.

    PubMed

    Ludwig, Jennifer; Geprägs, Stephan; Nordlund, Dennis; Doeff, Marca M; Nilges, Tom

    2017-09-18

    A new metastable phase, featuring a lithium-stabilized mixed-valence cobalt(II,III) hydroxide phosphate framework, Co 11.0(1) Li 1.0(2) [(OH) 5 O][(PO 3 OH)(PO 4 ) 5 ], corresponding to the simplified composition Co 1.84(2) Li 0.16(3) (OH)PO 4 , is prepared by hydrothermal synthesis. Because the pH-dependent formation of other phases such as Co 3 (OH) 2 (PO 3 OH) 2 and olivine-type LiCoPO 4 competes in the process, a pH value of 5.0 is crucial for obtaining a single-phase material. The crystals with dimensions of 15 μm × 30 μm exhibit a unique elongated triangular pyramid morphology with a lamellar fine structure. Powder X-ray diffraction experiments reveal that the phase is isostructural with the natural phosphate minerals holtedahlite and satterlyite, and crystallizes in the trigonal space group P31m (a = 11.2533(4) Å, c = 4.9940(2) Å, V = 547.70(3) Å 3 , Z = 1). The three-dimensional network structure is characterized by partially Li-substituted, octahedral [M 2 O 8 (OH)] (M = Co, Li) dimer units which form double chains that run along the [001] direction and are connected by [PO 4 ] and [PO 3 (OH)] tetrahedra. Because no Li-free P31m-type Co 2 (OH)PO 4 phase could be prepared, it can be assumed that the Li ions are crucial for the stabilization of the framework. Co L-edge X-ray absorption spectroscopy demonstrates that the cobalt ions adopt the oxidation states +2 and +3 and hence provides further evidence for the incorporation of Li in the charge-balanced framework. The presence of three independent hydroxyl groups is further confirmed by infrared spectroscopy. Magnetization measurements imply a paramagnetic to antiferromagnetic transition at around T = 25 K as well as a second transition at around 9-12 K with a ferromagnetic component below this temperature. The metastable character of the phase is demonstrated by thermogravimetric analysis and differential scanning calorimetry, which above 558 °C reveal a two-step decomposition to CoO, Co 3 (PO 4 ) 2

  1. Evaluation of Phosphate Fertilizers for the Immobilization of Cd in Contaminated Soils

    PubMed Central

    Yan, Yin; Zhou, Yi Qun; Liang, Cheng Hua

    2015-01-01

    A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP), potassium phosphate monobasic (MPP), calcium superphosphateon (SSP), and calcium phosphate tribasic (TCP), in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a) the reduction of extractable Cd concentration below the TCLP regulatory level and (b) the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control) to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd) increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1. PMID:25915051

  2. Serum phosphate is associated with aortic valve calcification in the Multi-ethnic Study of Atherosclerosis (MESA).

    PubMed

    Linefsky, Jason P; O'Brien, Kevin D; Sachs, Michael; Katz, Ronit; Eng, John; Michos, Erin D; Budoff, Matthew J; de Boer, Ian; Kestenbaum, Bryan

    2014-04-01

    This study sought to investigate associations of phosphate metabolism biomarkers with aortic valve calcification (AVC). Calcific aortic valve disease (CAVD) is a common progressive condition that involves inflammatory and calcification mediators. Currently there are no effective medical treatments, but mineral metabolism pathways may be important in the development and progression of disease. We examined associations of phosphate metabolism biomarkers, including serum phosphate, urine phosphate, parathyroid hormone (PTH) and serum fibroblast growth factor (FGF)-23, with CT-assessed AVC at study baseline and in short-term follow-up in 6814 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). At baseline, AVC prevalence was 13.2%. Higher serum phosphate levels were associated with significantly greater AVC prevalence (relative risk 1.3 per 1 mg/dL increment, 95% confidence incidence: 1.1 to 1.5, p<0.001). Serum FGF-23, serum PTH, and urine phosphate were not associated with prevalent AVC. Average follow-up CT evaluation was 2.4 years (range 0.9-4.9 years) with an AVC incidence of 4.1%. Overall, phosphate metabolism biomarkers were not associated with incident AVC except in the top FGF-23 quartile. Serum phosphate levels are significantly associated with AVC prevalence. Further study of phosphate metabolism as a modifiable risk factor for AVC is warranted. Published by Elsevier Ireland Ltd.

  3. Serum Phosphate is Associated with Aortic Valve Calcification in the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Linefsky, Jason P.; O’Brien, Kevin D.; Sachs, Michael; Katz, Ronit; Eng, John; Michos, Erin D.; Budoff, Matthew J.; de Boer, Ian; Kestenbaum, Bryan

    2014-01-01

    Objectives This study sought to investigate associations of phosphate metabolism biomarkers with aortic valve calcification (AVC). Background Calcific aortic valve disease (CAVD) is a common progressive condition that involves inflammatory and calcification mediators. Currently there are no effective medical treatments, but mineral metabolism pathways may be important in the development and progression of disease. Methods We examined associations of phosphate metabolism biomarkers, including serum phosphate, urine phosphate, parathyroid hormone (PTH) and serum fibroblast growth factor (FGF)-23, with CT-assessed AVC at study baseline and in short-term follow-up in 6,814 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Results At baseline, AVC prevalence was 13.2%. Higher serum phosphate levels were associated with significantly greater AVC prevalence (relative risk 1.3 per 1mg/dL increment, 95% confidence incidence: 1.1 to 1.5, p < 0.001). Serum FGF-23, serum PTH, and urine phosphate were not associated with prevalent AVC. Average follow-up CT evaluation was 2.4 years (range 0.9–4.9 years) with an AVC incidence of 4.1%. Overall, phosphate metabolism biomarkers were not associated with incident AVC except in the top FGF-23 quartile. Conclusions Serum phosphate levels are significantly associated with AVC prevalence. Further study of phosphate metabolism as a modifiable risk factor for AVC is warranted. PMID:24530958

  4. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate

    NASA Astrophysics Data System (ADS)

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; Boyanov, Maxim I.

    2016-02-01

    The mobility of uranium in subsurface environments depends strongly on its redox state, with UIV phases being significantly less soluble than UVI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of UVI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous UIV-Ca-PO4 analog to ningyoite (CaUIV(PO4)2·1-2H2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for UIVO2 and UIV-phosphate in solutions equilibrated with atmospheric O2 and CO2 at pH 7.0 (kobs,UO2 = 0.17 ± 0.075 h-1 vs. kobs,UIVPO4 = 0.30 ± 0.25 h-1). Addition of up to 400 μM Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and UIV-phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na-uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved UVI (<2.5 × 10-7 M). Oxidation of UIV-phosphate produced a Na-autunite phase (Na2(UO2)PO4·xH2O), resulting in similarly low dissolved U concentrations (<7.3 × 10-8 M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO2 and UIV-phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca-UVI-PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is distributed between

  5. Serum phosphate and cognitive function in older men.

    PubMed

    Slinin, Yelena; Vo, Tien; Taylor, Brent C; Murray, Anne M; Schousboe, John; Langsetmo, Lisa; Ensrud, Kristine

    2018-01-01

    Determine whether serum phosphate is associated with concurrent cognitive impairment and subsequent cognitive decline in older men independent of demographic covariates and atherosclerotic risk factors. In a prospective study of 5529 men enrolled in the Osteoporotic Fractures in Men study, we measured baseline serum phosphate, baseline cognitive function, and change in cognitive function between baseline and follow-up exams an average of 4.6 years later using the Modified Mini-Mental State (3MS) Examination and Trails B. There was no association between serum phosphate and odds of cognitive impairment as assessed by baseline 3MS score or risk of cognitive decline as assessed by longitudinal change in 3MS score. Higher baseline serum phosphate was associated with higher odds of poor executive function as assessed by Trails B with fully adjusted odds ratios 1.12 (95% confidence interval: 0.83-1.52), 1.31 (0.97-1.77), and 1.45 (1.08-1.94) for men in the second, third, and fourth versus the bottom quartile (referent group) of serum phosphate (p-trend 0.007). However, higher phosphate level was not associated with risk of decline in executive function as assessed by longitudinal change in Trails B score with fully adjusted odds ratios 0.94 (95% confidence interval 0.69-1.28), 0.96 (0.70-1.32), and 1.21 (0.89-1.66) for men in the second, third, and fourth versus the bottom quartile (referent group) of serum phosphate (p-trend 0.22). Higher serum phosphate in older men was associated with a higher likelihood of poor executive function, but not with impaired global cognitive function or decline in executive or global cognition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. The structural response of gadolinium phosphate to pressure

    DOE PAGES

    Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.; ...

    2016-06-16

    In this study, accurate elastic constants for gadolinium phosphate (GdPO 4) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO 4 determined under hydrostatic conditions, 128.1(8) GPa (K'=5.8(2)), is markedly different from that obtained with GdPO 4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. Finally, high pressure Raman and diffraction analysis indicate that the PO 4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO 4 structure is facilitated by bending/twisting of the Gd–O–P links that result inmore » increased distortion in the GdO 9 polyhedra.« less

  7. Polyanion Driven Antiferromagnetic and Insulating Ground State of Olivine Phosphates: LiMPO4

    NASA Astrophysics Data System (ADS)

    Jena, Ajit Kumar; Nanda, B. R. K.; Condensed Matter Theory; Computation Team

    Through density functional calculations we have investigated the electronic and magnetic properties of LiMPO4, where M is a 3d transition metal element. We find that contrary to many transition metal oxides, in these Olivine phosphates the band gap is originated due to crystal field anisotropy as well as weak O-p - M-d covalent interaction. Both of them are attributed to the presence of PO43- polyanion. The anisotropic crystal field, in the absence of covalent interactions, creates atomically localized non-degenerate M-d states and therefore the gap is a natural outcome. Onsite repulsion, due to strong correlation effect, further enhances the gap. These localized d states favor high-spin configuration which leads to antiferromagnetic ordering due to Hund's coupling. Experimentally observed low Neel temperature of this family of compounds is explained from the DFT obtained spin exchange interaction parameters. Work supported by Nissan Research Program.

  8. Production of biomass/energy crops on phosphatic clay soils in central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, J.A.; Prine, G.M.; Woodard, K.R.

    1993-12-31

    Phosphatic clay is a byproduct of phosphate mining. Presently more than 40,470 ha have been created, most in central Florida, and about 810 ha are being added each year. Phosphatic clays have high fertility and high water holding capacity, reducing fertilization costs and producing high yields without irrigation. Based on 10 years of research, scientists have selected tall annual-regenerating perennial C-4 grasses as having the greatest potential for biomass production in Florida. The purpose of this work was to determine the feasibility of growing these tall perennial grasses for biomass on phosphatic clay. Elephantgrass, sugarcane and energycane, and erianthus weremore » planted in duplicate replications on phosphatic clay soil in late August, 1986. yield was measured by one harvest in December or January each year for four years. Nitrogen fertilization included 112 kg ha{sup {minus}1} the first year followed by 134 kg ha{sup {minus}1} for the next three years. Nitrogen is the only supplemental nutrient needed to grow all tall grass crops on phosphatic clay. The average annual oven dry matter yield over the 4-yr period was 36.3 Mg ha{sup {minus}1} for PI 300086 elephantgrass, 45.2 for N51 elephantgrass, 42.5 for L79-1002 energycane, 49.0 for US72-1153 energycane, 49.7 for US78-1009 sugarcane, 52.2 for US56-9 sugarcane, 56.2 for CP72-1210 sugarcane, and 48.8 for 1K-7647 erianthus. More recent work has utilized domestic sewage sludge as a nitrogen source for the tall grasses. Preliminary sugar yields of selected sugarcane accessions & sweet sorghum were 4.7 Mg ha{sup {minus}1} for CP72-1210, 12.5 for US67-2022, 3.4 for US78-1009 and 1.3 Mg ha{sup {minus}1} for sweet sorghum. The high yields of the tall grasses grown on phosphatic clay with low inputs indicate a great potential for these crops as a source of renewable energy. A sustainable cropping system may be maintained by utilizing municipal sewage sludge as a nitrogen source with tall grasses on phosphatic

  9. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2012-12-01

    Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg(2+) and HPO(4) (2-)/PO(4) (3-). Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications.

  10. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method.

    PubMed

    Campbell, Ellen R; Warsko, Kayla; Davidson, Anna-Marie; Bill Campbell, Wilbur H

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: •Small volumes.•An enzymatic reaction.•Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  11. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    PubMed Central

    Campbell, Ellen R.; Warsko, Kayla; Davidson, Anna-Marie; (Bill) Campbell, Wilbur H.

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: • Small volumes. • An enzymatic reaction. • Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app. PMID:26150991

  12. Enhanced attenuation of septic system phosphate in noncalcareous sediments.

    PubMed

    Robertson, W D

    2003-01-01

    Review of phosphate behavior in four mature septic system plumes on similar textured sand has revealed a strong correlation between carbonate mineral content and phosphate concentrations. A plume on calcareous sand (Cambridge site, 27 wt % CaCO3 equiv.) has proximal zone PO4 concentrations (4.8 mg/L P average) that are about 75% of the septic tank effluent value, whereas three plumes on noncalcareous sand (Muskoka, L. Joseph, and Nobel sites, <1 wt % CaCO3 equiv.) have proximal zone phosphate concentrations (<0.1 mg/L P) that are consistently less than 2% of the effluent values. Phosphate attenuation at the noncalcareous sites appears to be an indirect result of the development of acidic conditions (site average pH 3.5 to 5.9) and elevated Al concentrations (up to 24 mg/L), which subsequently causes the precipitation of Al-P minerals such as variscite (AlPO4 x 2H2O). This is supported by scanning electron microscope analyses, which show the widespread occurrence of (Al+P)--rich secondary mineral coatings on sand grains below the infiltration beds. All of these septic systems are more than 10 years old, indicating that these attenuation reactions have substantial longevity. A field lysimeter experiment demonstrated that this reaction sequence can be readily incorporated into engineered waste water treatment systems. We feel this important P removal mechanism has not been adequately recognized, particularly for its potential significance in reducing P loading from septic systems in lakeshore environments.

  13. Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers

    NASA Astrophysics Data System (ADS)

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh S.; Giammar, Daniel E.; Catalano, Jeffrey G.

    2016-02-01

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work

  14. Effect of Phosphate on U(VI) Sorption to Montmorillonite: Ternary Complexation and Precipitation Barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated.more » Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This

  15. Disodium cromoglycate may act as a novel adjuvant for UV-attenuated Toxoplasma gondii vaccine in mouse model.

    PubMed

    Li, Xi; Wu, Yifan; Huang, Shiguang; Lu, Fangli

    2018-06-01

    We have proven the beneficial effects during acute Toxoplasma gondii infection when mast cells were inhibited by disodium cromoglycate (DSCG). Here we investigated the adjuvant effect of DSCG on the protective efficacy of UV-attenuated T. gondii (UV-Tg) vaccine. Mice were infected with 10 2 Tg alone or infected with 10 2 Tg plus DSCG (Tg + DSCG), immunized with 10 5 UV-Tg and challenged with 10 2 Tg (UV-Tg + Tg) or immunized with 10 5 UV-Tg plus DSCG and challenged with 10 2 Tg (UV-Tg + DSCG + Tg). Compared to Tg group, Tg + DSCG, UV-Tg + Tg, and UV-Tg + DSCG + Tg showed significantly prolonged survival times, decreased parasite burdens, reduced liver histopathologies, and increased levels of Th1 and Th2 cytokines and IL-17 in the livers and spleens by using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Compared to UV-Tg + Tg, UV-Tg + DSCG + Tg had significantly longer survival time, lower tissue parasite burden and histopathological score, and higher levels of Th1 and Th2 cytokines and IL-17 in the livers or spleens. Our data suggest that DSCG may play an adjuvant role in the immunization induced by UV-attenuated T. gondii in mice, by promoting cellular immune response against T. gondii challenge. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  17. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  18. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines

    PubMed Central

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-01-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria–Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation. PMID:23398522

  19. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil.

    PubMed

    Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika

    2018-02-01

    In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30  ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Role of a ribosomal RNA phosphate oxygen during the EF-G–triggered GTP hydrolysis

    PubMed Central

    Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert

    2015-01-01

    Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases. PMID:25941362

  1. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  2. Novel Injectable Calcium Phosphate Bone Cement from Wet Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Hablee, S.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    Calcium phosphate cement has been prepared via chemical precipitation method for injectable bone filling materials. Calcium hydroxide, Ca(OH)2, and diammonium hydrogen phosphate, (NH4)2HPO4, were used as calcium and phosphorus precursors respectively. The synthesized powder was mixed with water at different powder-to-liquid (P/L) ratios, which was adjusted at 0.8, 0.9, 1.0, 1.1 and 1.2. The influence of P/L ratio on the injectability, setting time and mechanical strength of calcium phosphate cement paste has been evaluated. The synthesized powder appeared as purely hydroxyapatite with nanosized and agglomerated spherical particles. All cement pastes show excellent injectability except for the paste with P/L ratio 1.2. Calcium phosphate cement with P/L ratio 1.1 shows the ideal cement for bone filler application with good injectability, the initial and final setting times of 30 min and 160 min, and the compression strength of 2.47 MPa. The result indicated that the newly developed calcium phosphate cement is physically suitable for bone filler application. This paper presents our investigation on the effect of P/L ratio on the handling and mechanical properties of calcium phosphate cement prepared via wet chemical precipitation method.

  3. Increased serum phosphate concentrations in patients with advanced chronic kidney disease treated with diuretics.

    PubMed

    Caravaca, Francisco; García-Pino, Guadalupe; Martínez-Gallardo, Rocío; Ferreira-Morong, Flavio; Luna, Enrique; Alvarado, Raúl; Ruiz-Donoso, Enrique; Chávez, Edgar

    2013-01-01

    Serum phosphate concentrations usually show great variability in patients with advanced chronic kidney disease (ACKD) not on dialysis. Diuretics treatment can have an influence over the severity of mineral-bone metabolism alterations related to ACKD, but their effect on serum phosphate levels is less known. This study aims to determine whether diuretics are independently associated with serum phosphate levels, and to investigate the mechanisms by which diuretics may affect phosphate metabolism. 429 Caucasian patients with CKD not on dialysis were included in this cross-sectional study. In addition to conventional serum biochemical measures, the following parameters of renal phosphate excretion were assessed: 24-hours urinary phosphate excretion, tubular maximum phosphate reabsorption (TmP), and fractional excretion of phosphate (FEP). 58% of patients were on treatment with diuretics. Patients on diuretics showed significantly higher mean serum phosphate concentration (4.78 ± 1.23 vs. 4.24 ± 1.04 mg/dl; P<.0001), and higher TmP per GFR (2.77 ± 0.72 vs. 2.43 ± 0.78 mg/dl; P<.0001) than those not treated with diuretics. By multivariate linear and logistic regression, significant associations between diuretics and serum phosphate concentrations or hyperphosphataemia remained after adjustment for potential confounding variables. In patients with the highest phosphate load adjusted to kidney function, those treated with diuretics showed significantly lower FEP than those untreated with diuretics. Treatment with diuretics is associated with increased serum phosphate concentrations in patients with ACKD. Diuretics may indirectly interfere with the maximum renal compensatory capacity to excrete phosphate. Diuretics should be considered in the studies linking the relationship between serum phosphate concentrations and cardiovascular alterations in patients with CKD.

  4. New chemolysis for urological calcium phosphate calculi – a study in vitro

    PubMed Central

    Xiang-bo, Zhang; Zhi-ping, Wang; Jian-min, Duan; Jian-zhong, Lu; Bao-liang, Ma

    2005-01-01

    Background Advances in techniques have left very few indications for open surgical extraction of urinary stones currently. These advances notwithstanding, the search continues for medical approaches to urinary stone management. In this study, we perform an in vitro study analyzing the efficiency and prospect of two new complex solutions in urological calcium phosphate calculi dissolution. Methods Eighteen stones composed mainly of calcium phosphates were taken from patients who underwent kidney stone surgery. These stones were large enough (weight range 0.514–0.928 g) to be fragmented and matched equally into six groups. Chemolysis of phosphate stones was done with six different solvents and was repeated 3 times with 6 stones for each solution. At 24, 48 and 72 h, reduction in weight, percentage weight change, and dissolution rate; the dissolution rates at pH 5.0, 7.0 and 8.5 for each solution, using different cations (Na+, K+ or Ca2+), according to different dilutions (1:1, 1:2, 1:3, 1:4) of S1 and S2 were simultaneously determined. Results Calcium phosphate calculi were poorly dissolved by Phys and Art, and they had a low dissolution rate in pH 8.5 EDTA. The most effective solutions were S1, S2 and R, with 72 h mean dissolution rates: 5.75 ± 0.44 mg/hr (S1), 5.2 ± 0.63 mg/hr (S2), 4.55 ± 0.46 mg/hr (R) ( ± s, p < 0.01 R, S1 and S2 vs Phys, Art and EDTA; p < 0.05, S1 vs R, LSD-test). The mean percentage weight loss at 72 h was: 52.1 ± 15.75 % (S1), 44.4 ± 7.37 % (S2) and 40.5 ± 3.67 % (R) ( ± s, p < 0.01 R, S1 and S2 vs Phys, Art and EDTA, LSD-test). Diluted twice, S1 and S2 had even better effectiveness than their initial solution. The additive of Na+, K+ or Ca2+ greatly reduced the dissolution rates of S1, S2. Conclusion Our data indicate that test solutions S1 and S2 are effective solvents in the chemolysis of calcium phosphate stones. At twice dilutions, these solutions are even more useful in the treatment of stone disease. PMID:15907215

  5. Characterization of Air Particles Giving False Responses with Biological Detectors

    DTIC Science & Technology

    1975-07-01

    Particle size distril)ution of SM particles 63 20- Scanning electron micrographs of typical aggregates of 21. SM bacteria 64 22. Scanning electron...for calcite (density = 2.75) were recalculated for bacteria (density ca 1.15). Both sets of size data are plotted in figure 13. The particle sizes given...Preceding page blank -23- Table 2. Particulate Substances Giving a CL Response >10 mV Algae Disodium phosphate Kelp Dandruff Sheep manure Lemon powder

  6. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Moon, Sungmo; Chang, Doyon; Lee, Kyu Hwan

    2013-01-01

    The effect of the microstructure, particularly of β-Mg17Al12 phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the β-Mg17Al12 phase and it was dissolved into α-Mg phase during heat treatment at 400 °C. The β-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the β-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn3(PO4)2·4H2O (hopeite) and an inner which was mainly composed of MgZn2(PO4)2 and Mg3(PO4)2. A mechanism for the formation of two layers of the coatings was also proposed in this study.

  7. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  8. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  9. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE PAGES

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong; ...

    2017-09-26

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  10. FTIRI Parameters describing Acid Phosphate Substitution in Biologic Hydroxyapatite

    PubMed Central

    Spevak, Lyudmila; Flach, Carol R.; Hunter, Tracey; Mendelsohn, Richard; Boskey, Adele

    2013-01-01

    Acid phosphate substitution into mineralized tissue is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier Transform Infrared Spectroscopic Imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 cm−1 and 1110 cm−1 correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm−1 found in stoichiometric apatite, were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127cm−1/1096cm−1 and 1112cm−1/1096cm−1 demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127 cm−1/1096 cm−1 parameter compared to the 1110 cm−1/1096 cm−1 parameter, and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice. PMID:23380987

  11. Method and apparatus for ion sequestration and a nanostructured metal phosphate

    DOEpatents

    Mattigod, Shas V [Richland, WA; Fryxell, Glen E [Kennewic, WA; Li, Xiaohong [Richland, WA; Parker, Kent E [Kennewick, WA; Wellman, Dawn M [West Richland, WA

    2010-04-06

    A nanostructured substance, a process for sequestration of ionic waste, and an ion-sequestration apparatus are disclosed in the specification. The nanostructured substance can comprise a Lewis acid transition metal bound to a phosphate, wherein the phosphate comprises a primary structural component of the substance and the Lewis acid transition metal is a reducing agent. The nanostructured substance has a Brunner-Emmet-Teller (BET) surface area greater than or equal to approximately 100 m.sup.2/g, and a distribution coefficient for an analyte, K.sub.d, greater than or equal to approximately 5000 ml/g. The process can comprise contacting a fluid and a nanostructured metal phosphate. The apparatus can comprise a vessel and a nanostructured metal phosphate. The vessel defines a volume wherein a fluid contacts the nanostructured metal phosphate.

  12. [Effects of different amounts of phosphate fertilizers on copper, zinc transfer in red soil under the application of KH2PO4].

    PubMed

    Guo, Liang; Li, Zhong-wu; Huang, Bin; Wang, Yan; Zhang, Yan

    2014-09-01

    In order to study the effects of different phosphate addition amounts on migration and transformation of heavy metals (Cu, Zn) in soil, an indoor leaching experiment using soil columns was carry out to study the leaching behavior of Cu and Zn. The KH2PO4 was chosen as the fertilizer application at the doses of 5 mg.kg-1, 15 mg.kg-1 and 25 mg.kg-1. The results showed that KH2PO4, could reduce the leachate pH, but different phosphate amounts had little effect on leachate pH, pH in leachate kept rising in the whole leaching process. With the application of KH2PO4, Cu migration was mainly in the surface layer while Zn migrated into deeper soil. Concentrations of Cu, Zn in deep soil leachate were low indicating that it was harmless to the shallow groundwater. After leaching, heavy metals mainly existed in the residual form in soil, the proportion of residual form of Cu was around 60% and the proportion of residual form of Zn was around 40%. High concentration of KH2PO4 helps the transformation of Zn from residual organic combination state to exchange state.

  13. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    PubMed

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  15. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review

    PubMed Central

    Tarayre, Cédric; Nguyen, Huu-Thanh; Brognaux, Alison; Delepierre, Anissa; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Delvigne, Frank

    2016-01-01

    Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells. PMID:27258275

  16. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R 0.33Zr2(PO4)3 ( R = Nd, Eu, Er) and Er0.33(1- x) Zr0.25 x Zr2(PO4)3

    NASA Astrophysics Data System (ADS)

    Volgutov, V. Yu.; Orlova, A. I.

    2015-09-01

    Phosphates R 0.33Zr2(PO4)3 ( R = Nd, Eu, or Er) and Er0.33(1- х)Zr0.25Zr2(PO4)3 ( х = 0, 0.25, 0.5, 0.75, 1.0) of the NaZr2(PO4)3 family have been synthesized and investigated by high-temperature X-ray diffraction. The crystallochemical approach is used to obtain compounds with expected small and controllable thermal-expansion parameters. Phosphates with close-to-zero thermal-expansion parameters, including those with low thermal-expansion anisotropy, have been obtained: Nd0.33Zr2(PO4)3 with α a =-2.21 × 10-6 °С-1, α c = 0.81 × 10-6 °С-1, and Δα = 3.02 × 10-6 °С-1 and Er0.08Zr0.19Zr2(PO4)3 with α a =-1.86 × 10-6 °С-1, α c = 1.73 × 10-6 °С-1, and Δα = 3.58 × 10-6 °С-1.

  17. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.

    PubMed

    Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I

    2015-08-15

    Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines.

    PubMed

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-06-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria-Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N)more » analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized.

  20. Calcium phosphates: what is the evidence?

    PubMed

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  1. Phosphate recovery through struvite precipitation by CO2 removal: effect of magnesium, phosphate and ammonium concentrations.

    PubMed

    Korchef, Atef; Saidou, Hassidou; Ben Amor, Mohamed

    2011-02-15

    In the present study, the precipitation of struvite (MgNH(4)PO(4)·6H(2)O) using the CO(2) degasification technique is investigated. The precipitation of struvite was done from supersaturated solutions in which precipitation was induced by the increase of the solution supersaturation concomitant with the removal of dissolved carbon dioxide. The effect of magnesium, phosphate and ammonium concentrations on the kinetics and the efficiency of struvite precipitation was measured monitoring the respective concentrations in solution. In all cases struvite precipitated exclusively and the solid was characterized by powder XRD and FTIR. The morphology of the precipitated crystals was examined by scanning electronic microscopy and it was found that it exhibited the typical prismatic pattern of the struvite crystals with sizes in the range between 100 and 300 μm. The increase of magnesium concentration in the supersaturated solutions, resulted for all phosphate concentration tested, in significantly higher phosphate removal efficiency. Moreover, it is interesting to note that in this case the adhesion of the suspended struvite crystals to the reactor walls was reduced suggesting changes in the particle characteristics. The increase of phosphate concentration in the supersaturated solutions, for the magnesium concentrations tested resulted to the reduction of struvite suppression which reached complete suppression of the precipitate formation. Excess of ammonium in solution was found favour struvite precipitation. Contrary to the results found with increasing the magnesium concentration in solution, higher ammonium concentrations resulted to higher adhesion of the precipitated crystallites to the reactor walls. The results of the present work showed that it is possible to recover phosphorus in the form of struvite from wastewater reducing water pollution and at the same time saving valuable resources. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements.

    PubMed

    Mestres, G; Abdolhosseini, M; Bowles, W; Huang, S-H; Aparicio, C; Gorr, S-U; Ginebra, M-P

    2013-09-01

    The main objective of this work was to assess the antimicrobial properties and the dentin-bonding strength of novel magnesium phosphate cements (MPC). Three formulations of MPC, consisting of magnesium oxide and a phosphate salt, NH4H2PO4, NaH2PO4 or a mixture of both, were evaluated. As a result of the setting reaction, MPC transformed into either struvite (MgNH4PO4·6H2O) when NH4H2PO4 was used or an amorphous magnesium sodium phosphate when NaH2PO4 was used. The MPC had appropriate setting times for hard tissue applications, high early compressive strengths and higher strength of bonding to dentin than commercial mineral trioxide aggregate cement. Bacteriological studies were performed with fresh and aged cements against three bacterial strains, Escherichia coli, Pseudomonas aeruginosa (planktonic and in biofilm) and Aggregatibacter actinomycetemcomitans. These bacteria have been associated with infected implants, as well as other frequent hard tissue related infections. Extracts of different compositions of MPC had bactericidal or bacteriostatic properties against the three bacterial strains tested. This was associated mainly with a synergistic effect between the high osmolarity and alkaline pH of the MPC. These intrinsic antimicrobial properties make MPC preferential candidates for applications in dentistry, such as root fillers, pulp capping agents and cavity liners. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system

  4. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base.

    PubMed

    Rokita, M

    2011-08-15

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    NASA Astrophysics Data System (ADS)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  6. L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides.

    PubMed

    Benaroya, Rony Oren; Zamski, Eli; Tel-Or, Elisha

    2004-02-01

    L-Myo-inositol 1-phosphate synthase (INPS EC 5.5.1.4) catalyzes the conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate. INPS is a key enzyme involved in the biosynthesis of phytate which is a common form of stored phosphates in higher plants. The present study monitored the increase of INPS expression in Azolla filiculoides resulting from exposure to inorganic phosphates, metals and salt stress. The expression of INPS was significantly higher in Azolla plants that were grown in rich mineral growth medium than those maintained on nutritional growth medium. The expression of INPS protein and corresponding mRNA increased in plants cultured in minimal nutritional growth medium when phosphate or Zn2+, Cd2+ and NaCl were added to the growth medium. When employing rich mineral growth medium, INPS protein content increased with the addition of Zn2+, but decreased in the presence of Cd2+ and NaCl. These results indicated that accumulation of phytate in Azolla is a result of the intensified expression of INPS protein and mRNA, and its regulation may be primarily derived by the uptake of inorganic phosphate, and Zn2+, Cd2+ or NaCl.

  7. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    PubMed

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adherence to phosphate binders in hemodialysis patients: prevalence and determinants.

    PubMed

    Van Camp, Yoleen P M; Vrijens, Bernard; Abraham, Ivo; Van Rompaey, Bart; Elseviers, Monique M

    2014-12-01

    Phosphate control is a crucial treatment goal in end-stage renal disease, but poor patient adherence to phosphate binder therapy remains a challenge. This study aimed to estimate the extent of phosphate binder adherence in hemodialysis patients and to identify potential determinants. Phosphate binder adherence was measured blindly in 135 hemodialysis patients for 2 months using the medication event monitoring system. Patient data, gathered at inclusion through medical records, ad hoc questionnaires and the short form (SF)-36 health survey, included: (1) demographics, (2) perceived side-effects, belief in benefit, self-reported adherence to the therapy, (3) knowledge about phosphate binder therapy, (4) social support, and (5) quality of life (SF-36). Phosphatemia data was collected from charts. 'Being adherent' was defined as missing <1 total daily dose/week and 'being totally adherent' as missing <1 total daily dose/week, every week. Mean age of patients was 67 years and 64 % of the sample was male. Over the 2 months, 78 % of the prescribed doses were taken. Every week, about half of patients were adherent. Over the entire 8-week period, 22 % of patients were totally adherent. Mean phosphatemia levels were 0.55 mg/dl lower in adherent than nonadherent patients (4.76 vs. 5.31 mg/dl). Determinants for being totally adherent were living with a partner, higher social support (both were interrelated) and higher physical quality of life. Experiencing intake-related inconvenience negatively affected adherence. The social support and quality of life physical score explained 26 % of the variance in adherence. Phosphate binder nonadherence remains a major problem. Interventions should aim, at least, to improve social support. With few associated factors found and yet low adherence, an individualized approach seems indicated.

  9. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps ...

  10. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.

    PubMed

    Gebril, Hoda M; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A; Jekabsons, Mika B

    2016-02-01

    Glycolysis, mitochondrial substrate oxidation, and the pentose phosphate pathway (PPP) are critical for neuronal bioenergetics and oxidation-reduction homeostasis, but quantitating their fluxes remains challenging, especially when processes such as hexose phosphate (i.e., glucose/fructose-6-phosphate) recycling in the PPP are considered. A hexose phosphate recycling model was developed which exploited the rates of glucose consumption, lactate production, and mitochondrial respiration to infer fluxes through the major glucose consuming pathways of adherent cerebellar granule neurons by replicating [(13)C]lactate labeling from metabolism of [1,2-(13)C2]glucose. Flux calculations were predicated on a steady-state system with reactions having known stoichiometries and carbon atom transitions. Non-oxidative PPP activity and consequent hexose phosphate recycling, as well as pyruvate production by cytoplasmic malic enzyme, were optimized by the model and found to account for 28 ± 2% and 7.7 ± 0.2% of hexose phosphate and pyruvate labeling, respectively. From the resulting fluxes, 52 ± 6% of glucose was metabolized by glycolysis, compared to 19 ± 2% by the combined oxidative/non-oxidative pentose cycle that allows for hexose phosphate recycling, and 29 ± 8% by the combined oxidative PPP/de novo nucleotide synthesis reactions. By extension, 62 ± 6% of glucose was converted to pyruvate, the metabolism of which resulted in 16 ± 1% of glucose oxidized by mitochondria and 46 ± 6% exported as lactate. The results indicate a surprisingly high proportion of glucose utilized by the pentose cycle and the reactions synthesizing nucleotides, and exported as lactate. While the in vitro conditions to which the neurons were exposed (high glucose, no lactate or other exogenous substrates) limit extrapolating these results to the in vivo state, the approach provides a means of assessing a number of metabolic fluxes within the context of hexose phosphate recycling in the PPP from a

  11. Effect of Tenapanor on Serum Phosphate in Patients Receiving Hemodialysis

    PubMed Central

    Rosenbaum, David P.; Leonsson-Zachrisson, Maria; Åstrand, Magnus; Johansson, Susanne; Knutsson, Mikael; Langkilde, Anna Maria; Chertow, Glenn M.

    2017-01-01

    Hyperphosphatemia is common among patients with CKD stage 5D and is associated with morbidity and mortality. Current guidelines recommend lowering serum phosphate concentrations toward normal. Tenapanor is a minimally absorbed small molecule inhibitor of the sodium/hydrogen exchanger isoform 3 that functions in the gut to reduce sodium and phosphate absorption. This randomized, double-blind, placebo-controlled trial assessed the effects of tenapanor on serum phosphate concentration in patients with hyperphosphatemia receiving hemodialysis. After a 1- to 3-week washout of phosphate binders, we randomly assigned 162 eligible patients (serum phosphate =6.0 to <10.0 mg/dl and a 1.5-mg/dl increase from before washout) to one of six tenapanor regimens (3 or 30 mg once daily or 1, 3, 10, or 30 mg twice daily) or placebo for 4 weeks. The primary efficacy end point was change in serum phosphate concentration from baseline (randomization) to end of treatment. In total, 115 patients (71%) completed the study. Mean serum phosphate concentrations at baseline (after washout) were 7.32–7.92 mg/dl for tenapanor groups and 7.87 mg/dl for the placebo group. Tenapanor provided dose-dependent reductions in serum phosphate level from baseline (least squares mean change: tenapanor =0.47–1.98 mg/dl; placebo =0.54 mg/dl; P=0.01). Diarrhea was the most common adverse event (tenapanor =18%–68%; placebo =12%) and frequent at the highest tenapanor doses. In conclusion, tenapanor treatment resulted in statistically significant, dose-dependent reductions in serum phosphate concentrations in patients with hyperphosphatemia receiving hemodialysis. Additional studies are required to clarify the optimal dosing of tenapanor in patients with CKD-related hyperphosphatemia. PMID:28159782

  12. Phosphate uptake studies of cross-linked chitosan bead materials.

    PubMed

    Mahaninia, Mohammad H; Wilson, Lee D

    2017-01-01

    A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO 4 2- ) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO 4 2- uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO 4 2- species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Q m ) of bead systems with HPO 4 2- at equilibrium was 52.1mgg -1 ; whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min -1 ) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    PubMed Central

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2016-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50–70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. PMID:26601944

  14. Craters of the Moon National Monument as a Terrestrial Mars Analog: Examination of Mars Analog Phosphate Minerals, Phosphate Mineral Shock-Recovery Experiments, and Phosphate Minerals in Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Adcock, C. T.; Hausrath, E.; Tschauner, O. D.; Udry, A.

    2015-12-01

    Martian analogs, meteorites, and data from unmanned missions have greatly advanced our understanding of martian surface and near-surface processes. In particular, terrestrial analogs allow us to investigate Mars-relevant geomorphic, geochemical, petrogenetic, and hydrologic processes, as well as potential habitability. Craters of the Moon National Monument (COTM), located on the Snake River Plain of Idaho in the United States, represents a valuable phosphate-rich Mars analog, allowing us to examine phosphate minerals, important as volatile indicators and potential nutrient providers, under Mars-relevant conditions. COTM is in an arid to semi-arid environment with sub-freezing lows much of the year. Though wetter than present day Mars (24 - 38 cm MAP) [1], COTM may be analogous to a warmer and wetter past Mars. The area is also the locale of numerous lava flows, a number of which have been dated (2,000 to >18,000 y.b.p.) [2]. The flows have experienced weathering over time and thus represent a chronosequence with application to weathering on Mars. The flows have unusual chemistries, including high average phosphate contents (P2O5 1.75 wt% n=23 flows) [2], close to those in rocks analyzed at Gusev Crater, Mars (P2O5 1.79 wt% n=18 rocks) [3]. The Mars-like high phosphorus contents indicate a potential petrogenetic link and are also of astrobiological interest. Further, current samples of Mars phosphate minerals are limited to meteorites which have been heavily shocked - COTM represents a potential pre-shock and geochemical analog to Mars. We investigated weathering on COTM basalts and shock effects on Mars-relevant phosphate minerals. We used scanning electron microscopy, backscattered electron imagery, and X-Ray analysis/mapping to investigate COTM thin sections. Synchrotron diffraction was used to investigate martian meteorites and laboratory shocked Mars/COTM-relevant minerals for comparison. Results of our investigations indicate porosity development correlates

  15. Preclinical studies of VS‐505: a non‐absorbable highly effective phosphate binder

    PubMed Central

    Chen, Yung‐wu; Wong, Jonathan T; Wessale, Jerry L

    2016-01-01

    Abstract Background and Purpose Phosphate imbalance is often present in chronic kidney disease (CKD), and it contributes to a higher cardiovascular mortality rate. A phosphate binder is typically part of a treatment strategy for controlling phosphate imbalance. However, safety concerns and low compliance are two well‐recognized disadvantages of on‐market phosphate binders. This report describes the preclinical studies of VS‐505, a non‐absorbable, calcium‐ and aluminum‐free, plant‐derived polymer currently being evaluated in haemodialysis patients in Australia. Experimental Approach Normal Sprague Dawley (SD) rats or uraemic SD rats induced by 5/6 nephrectomy fed a high‐phosphate diet were treated with VS‐505 or sevelamer (0.05–10% in food) for 5 and 28 days respectively. Key Results Urinary and serum phosphate levels were significantly elevated in untreated rats, and were decreased by VS‐505 and sevelamer. VS‐505 increased faecal phosphate levels in a dose‐dependent manner. High‐phosphate diet also caused an increase in serum FGF‐23 and parathyroid hormone in nephrectomized (NX) rats, effects prevented by VS‐505 or sevelamer. Significant aortic calcification was observed in NX rats treated with 5% sevelamer, whereas VS‐505 at all doses tested did not show effects. VS‐505 had no effects on small intestine histomorphology and intestinal sodium‐dependent phosphate cotransporter gene expression. In vitro characterizations showed that VS‐505 has a relatively high density and low expansion volume when exposed to simulated gastric fluid. Conclusions and Implications VS‐505 is a safe and effective phosphate binder and may offer the advantage of having a reduced pill burden and minimal GI side effects for CKD patients. PMID:27156057

  16. Effect of the Antioxidant Supplement Pyrroloquinoline Quinone Disodium Salt (BioPQQ™) on Cognitive Functions.

    PubMed

    Itoh, Yuji; Hine, Kyoko; Miura, Hiroshi; Uetake, Tatsuo; Nakano, Masahiko; Takemura, Naohiro; Sakatani, Kaoru

    2016-01-01

    Pyrroloquinoline quinone (PQQ) is a quinone compound first identified in 1979. It has been reported that rats fed a PQQ-supplemented diet showed better learning ability than controls, suggesting that PQQ may be useful for improving memory in humans. In the present study, a randomized, placebo-controlled, double-blinded study to examine the effect of PQQ disodium salt (BioPQQ™) on cognitive functions was conducted with 41 elderly healthy subjects. Subjects were orally given 20 mg of BioPQQ™ per day or placebo, for 12 weeks. For cognitive functions, selective attention by the Stroop and reverse Stroop test, and visual-spatial cognitive function by the laptop tablet Touch M, were evaluated. In the Stroop test, the change of Stroop interference ratios (SIs) for the PQQ group was significantly smaller than for the placebo group. In the Touch M test, the stratification analyses dividing each group into two groups showed that only in the lower group of the PQQ group (initial score<70), did the score significantly increase. Measurements of physiological parameters indicated no abnormal blood or urinary adverse events, nor adverse internal or physical examination findings at any point in the study. The preliminary experiment using near-infrared spectrometry (NIRS) suggests that cerebral blood flow in the prefrontal cortex was increased by the administration of PQQ. The results suggest that PQQ can prevent reduction of brain function in aged persons, especially in attention and working memory.

  17. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.

    PubMed

    Liang, Xinjin; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2016-06-01

    In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.

  18. Fluoride and phosphate release from carbonate-rich fluorapatite during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Schafer, David; Donn, Michael; Atteia, Olivier; Sun, Jing; MacRae, Colin; Raven, Mark; Pejcic, Bobby; Prommer, Henning

    2018-07-01

    Managed aquifer recharge (MAR) is increasingly used as a water management tool to enhance water availability and to improve water quality. Until now, however, the risk of fluoride release during MAR with low ionic strength injectate has not been recognised or examined. In this study we analyse and report the mobilisation of fluoride (up to 58 μM) and filterable reactive phosphorus (FRP) (up to 55 μM) during a field groundwater replenishment experiment in which highly treated, deionised wastewater (average TDS 33 mg/L) was injected into a siliciclastic Cretaceous aquifer. In the field experiment, maximum concentrations, which coincided with a rise in pH, exceeded background groundwater concentrations by an average factor of 3.6 for fluoride and 24 for FRP. The combined results from the field experiment, a detailed mineralogical characterisation and geochemical modelling suggested carbonate-rich fluorapatite (CFA: Ca10(PO4)5(CO3,F)F2) to be the most likely source of fluoride and phosphate release. An anoxic batch experiment with powdered CFA-rich nodules sourced from the target aquifer and aqueous solutions of successively decreasing ionic strength closely replicated the field-observed fluoride and phosphate behaviour. Based on the laboratory experiment and geochemical modelling, we hypothesise that the release of fluoride and phosphate results from the incongruent dissolution of CFA and the simultaneous formation of a depleted layer that has hydrated di-basic calcium phosphate (CaHPO4·nH2O) composition at the CFA-water interface. Disequilibrium caused by calcium removal following breakthrough of the deionised injectate triggered the release of fluoride and phosphate. Given the increasing use of highly treated, deionised water for MAR and the ubiquitous presence of CFA and fluorapatite (Ca10(PO4)6F2) in aquifer settings worldwide, the risk of fluoride and phosphate release needs to be considered in the MAR design process.

  19. In Vitro Degradation Behaviors of Manganese-Calcium Phosphate Coatings on an Mg-Ca-Zn Alloy

    PubMed Central

    Su, Yichang; Su, Yingchao; Zai, Wei

    2018-01-01

    In order to decrease the degradation rate of magnesium (Mg) alloys for the potential orthopedic applications, manganese-calcium phosphate coatings were prepared on an Mg-Ca-Zn alloy in calcium phosphating solutions with different addition of Mn2+. Influence of Mn content on degradation behaviors of phosphate coatings in the simulated body fluid was investigated to obtain the optimum coating. With the increasing Mn addition, the corrosion resistance of the manganese-calcium phosphate coatings was gradually improved. The optimum coating prepared in solution containing 0.05 mol/L Mn2+ had a uniform and compact microstructure and was composed of MnHPO4·3H2O, CaHPO4·2H2O, and Ca3(PO4)2. The electrochemical corrosion test in simulated body fluid revealed that polarization resistance of the optimum coating is 36273 Ωcm2, which is about 11 times higher than that of phosphate coating without Mn addition. The optimum coating also showed the most stable surface structure and lowest hydrogen release in the immersion test in simulated body fluid. PMID:29643970

  20. Phosphovanadylite: a new vanadium phosphate mineral with a zeolite-type structure

    USGS Publications Warehouse

    Medrano, M.D.; Evans, H.T.; Wenk, H.-R.; Piper, D.Z.

    1998-01-01

    Phosphovanadylite, whose simplified formula is (Ba,Ca,K,Na)x([(Va,Al)4P2(P,OH)16].12H2), is a new vanadium phosphate zeolite mineral found in the Phosphoria Formation at Monsanto's Enoch Valley Mine, Soda Springs, Idaho. Its formula in more detail is (Ba0.38Ca0.20K0.006Na0.02)??0.66 [P2(V3.44Al0.046)??3.90O10.34(OH)5.66] .12H2O. The drusy mineral occurs as pale greenish-blue euhedral cubes (20-50 ??m edge) coating phosphatic, organic-rich mudstone. The chemical composition determined by electron microprobe is (in weight percent) V-28.02, P-9.91, Al-1.97, Ca-1.31, Ba-8.28, Cd-0.09, Zn-0.34, Na-0.15, K-0.73, O-46.57, and F-0.03. The index of refraction is nD = 1.566 (4) and specific gravity is 2.16 (3). The X-ray powder pattern shows strong reflections at 3.16 A (422), 2.58 (600), 2.44 (620), and 7.73 (200), which are indexed on the basis of a cubic body-centered unit cell with a = 15.470 (4) A. From the single-crystal structure analysis, its space group was determined to be I43m, Z = 6, and its structure consists of V4O18 16 octahedral clusters linked to each other by P atoms to form a cubic lattice, creating cavities 7.0 and 5.5 A in diameter where mainly H2O resides. Final residual indexes are R = 0.066, Rw = 0.061, goodness-of-fit = 0.75, and 93 observations and 24 parameters.

  1. Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, I.; Park, B. K.; Kim, J.

    2014-12-01

    Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.

  2. Infrared and Raman Spectra of Magnesium Ammonium Phosphate Hexahydrate (Struvite) and its Isomorphous Analogues. VIII. Spectra of Protiated and Partially Deuterated Magnesium Rubidium Phosphate Hexahydrate and Magnesium Thallium Phosphate Hexahydrate.

    PubMed

    Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor

    2011-09-01

    The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.

  3. Precaecal phosphorus digestibility of inorganic phosphate sources in male broilers

    PubMed Central

    Bikker, P.; Spek, J. W.; Van Emous, R. A.; Van Krimpen, M. M.

    2016-01-01

    Abstract The aim of this study, comprising two experiments, was (1) to determine in Experiment 1 the relationship of incremental dietary P (phosphorus) content on precaecal digestible P in male broilers and (2) to determine in Experiment 2 the precaecal P digestibility of various inorganic P sources at marginal levels of P supply.In Experiment 1, a total of 260 male Ross 308 broilers were divided into groups of 10 birds per pen resulting in 8 replicates for treatment 1 and 6 replicates for treatments 2–4. Experimental diets were formulated to contain 4 incremental concentrations of digestible P by means of increasing concentrations of monocalcium phosphate (MCP). In the second experiment, 480-d-old male Ross 308 broilers were divided in groups of 12 birds per pen resulting in 16 replicates for the basal diet and 6 replicates for each test diet. A total of 4 inorganic P sources, MCP, monodicalcium phosphate (MDCP), dicalcium phosphate (DCP) and defluorinated phosphate (DFP) were added to the basal diet to determine the precaecal P digestibility. Three of the 4 inorganic P sources (MCP, MDCP and DCP) represented a mix of batches from different producers. At the end of both experiments, the chyme of the posterior part of the small intestine was collected. Digestibility of P and Ca was determined using titanium dioxide as indigestible marker.In Experiment 1, a reduction in precaecal digestibility of P was observed above an estimated precaecal digestible dietary P concentration of 4.8 g/kg.The precaecal P digestibility of the tested inorganic P sources in Experiment 2 was 78.3% for MCP, 59.0% for DCP, 70.7% for MDCP and 31.5% for DFP. PMID:27635437

  4. Cyclic-2,3-diphosphoglycerate levels in Methanobacterium thermoautotrophicum reflect inorganic phosphate availability.

    PubMed

    Seely, R J; Krueger, R D; Fahrney, D E

    1983-11-15

    Methanobacterium thermoautotrophicum was grown in phosphate-limited chemostat cultures at a dilution rate corresponding to a doubling time of 13.2 h. The cyclic-2,3-diphospho-D-glycerate content of these cells was 8 to 10-fold lower than that of cells grown in batch cultures having a doubling time of 11.5 h. This metabolite accounted for 5% of cell dry weight during batch growth on 2 mM phosphate. In the chemostat the steady-state concentration of phosphate was 4 microM, showing that this methanogen is adapted to highly efficient growth at low phosphate concentrations. Since growth rates were similar in both cultures, the growth rate clearly does not depend on intracellular levels of cyclic-2,3-diphosphoglycerate.

  5. Effect of phosphate additive on the nitrogen transformation during pig manure composting.

    PubMed

    Wu, Juan; He, Shengzhou; Liang, Ying; Li, Guoxue; Li, Song; Chen, Shili; Nadeem, Faisal; Hu, Jingwei

    2017-07-01

    Previous studies revealed that phosphate, as an additive to composting, could significantly reduce NH 3 emission and nitrogen loss through change of pH and nitrogen fixation to form ammonium phosphate. However, few studies have explored the influence of pH change and phosphate additive on NO x - -N, NH 4 + -N, NH 3 , and N 2 O, which are dominate forms of nitrogen in composting. In this study, the equimolar H 3 PO 4 , H 2 SO 4 , and K 2 HPO 4 were added into pig manure composting to evaluate the effect of H + and PO 4 3- on nitrogen transformation. As a result, we reached the conclusion that pH displays significant influence on adsorption from PO 4 3- to NH 4 + . The NH 4 + -N concentration in H 3 PO 4 treatment kept over 3 g kg -1 DM (dry matter) which is obviously higher than that in H 2 SO 4 treatment, and NH 4 + -N concentration in K 2 HPO 4 treatment (pH>8.5) is lower than 0.5 g kg -1 DM because adsorption capacity of PO 4 3- is greatly weakened and NH 4 + -N rapidly transformed to NH 3 -N influenced by high pH value. The N 2 O emission of composting is significantly correlated with incomplete denitrification of NO x - -N, and PO 4 3- addition could raise NO x - -N contents to restrict denitrification and further to promote N 2 O emission. The study reveals the influence mechanism of phosphate additive to nitrogen transformation during composting, presents theoretical basis for additive selection in nitrogen fixation, and lays foundation for study about nitrogen circulation mechanism during composting.

  6. Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L) Merr.: comprehending its evolutionary conservancy at functional level.

    PubMed

    Marathe, Ashish; Krishnan, Veda; Mahajan, Mahesh M; Thimmegowda, Vinutha; Dahuja, Anil; Jolly, Monica; Praveen, Shelly; Sachdev, Archana

    2018-01-01

    Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 ( GmItpk2 ), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk 2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that Gm ITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 β barrel sheets with ATP-binding site close to β sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.

  7. Iron phosphate glasses: Bulk properties and atomic scale structure

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  8. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous U IV–phosphate

    DOE PAGES

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; ...

    2015-11-17

    The mobility of uranium in subsurface environments depends strongly on its redox state, with U IV phases being significantly less soluble than U VI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of U VI reduction in natural systems, a nanoparticulate UO 2 phase and an amorphous U IV–Ca–PO 4 analog to ningyoite (CaU IV(PO 4) 2·1–2H 2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for U IVO 2 and U IV–phosphate in solutions equilibrated with atmospheric O 2 and CO 2 at pH 7.0more » (k obs,UO2 = 0.17 ± 0.075 h -1 vs. k obs,U IV PO4 = 0.30 ± 0.25 h -1). Addition of up to 400 μM Ca and PO 4 decreased the oxidation rate constant by an order of magnitude for both UO 2 and U IV–phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO 4, the product of UO 2 oxidation is Na–uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO 4 and low carbonate concentration), resulting in low concentrations of dissolved U VI (<2.5 × 10 -7 M). Oxidation of U IV–phosphate produced a Na-autunite phase (Na 2(UO 2)PO 4·xH 2O), resulting in similarly low dissolved U concentrations (<7.3 × 10 -8 M). When Ca and PO 4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO 2 and UIV–phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca–UVI–PO 4 layer on the UO 2 surface and suggest a passivation layer mechanism for the decreased rate of UO 2 oxidation in the presence of Ca and PO 4. Interestingly, the extractions were unable to remove all of the oxidized U from partially

  9. A phase I study of etoposide phosphate plus paclitaxel.

    PubMed

    Brooks, D J; Alberts, D S

    1996-12-01

    Etoposide phosphate (Etopophos; Bristol-Myers Squibb Company, Princeton, NJ) is a water-soluble derivative of etoposide, a semisynthetic podophyllotoxin that is important in the treatment of a variety of malignancies, including lung cancer, germ cell tumors, non-Hodgkin's lymphoma, Hodgkin's lymphoma, acute leukemia, etc. Because etoposide is poorly water soluble, it must be dissolved in a polysorbate 80-based solvent mixture, which is moderately allergenic and requires a large volume of saline for administration. Etoposide phosphate is water soluble and is rapidly converted in vivo to etoposide by endogenous phosphatases. Because it is water soluble, etoposide phosphate can be administered in volumes much smaller than those required with etoposide therapy, permitting rapid intravenous administration in the outpatient setting. We recently reported the results of a phase I study using etoposide phosphate on a bolus, daily x 5 schedule. Like others, we demonstrated that etoposide phosphate has pharmacokinetic properties virtually identical to those of etoposide. Our dose-finding study indicated that etoposide phosphate can be used in doses up to 100 mg/m2/d x 5 every 3 weeks in patients who have not had extensive prior chemotherapy, and that a dose of 75 mg/m2 would be appropriate for patients who had undergone multiple prior therapies or who had prior radiotherapy. The dose-limiting toxicity was neutropenia. Paclitaxel, a microtubule-stabilizing agent, is active against a variety of solid and hematopoietic malignancies that overlap with those against which etoposide is active. Because the mechanisms of action of these two agents differ, it is logical to suppose that the combination of the two agents might produce some additive effect when used to treat cancers that respond to both individual agents. We therefore undertook a phase I study using paclitaxel as a 3-hour infusion in combination with a 5-minute infusion of etoposide phosphate daily x 3 every 21 days. We

  10. Proton transport by phosphate diffusion--a mechanism of facilitated CO2 transfer

    PubMed Central

    1976-01-01

    We have measured CO2 fluxes across phosphate solutions at different carbonic anhydrase concentrations, bicarbonate concentration gradients, phosphate concentrations, and mobilities. Temperature was 22-25 degrees C, the pH of the phosphate solutions was 7.0-7.3. We found that under physiological conditions of pH and pCO2 a facilitated diffusion of CO2 occurs in addition to free diffusion when (a) sufficient carbonic anhydrase is present, and (b) a concentration gradient of HCO3- is established along with a pCO2 gradient, and (c) the phosphate buffer has a mobility comparable to that of bicarbonate. When the phosphate was immobilized by attaching 0.25-mm-long cellulose particles, no facilitation of CO2 diffusion was detectable. A mechanism of facilitated CO2 diffusion in phosphate solutions analogous to that in albumin solutions was proposed on the basis of these findings: bicarbonate diffusion together with a facilitated proton transport by phosphate diffusion. A mathematical model of this mechanism was formulated. The CO2 fluxed predicted by the model agree quantitatively with the experimentally determined fluxes. It is concluded that a highly effective proton transport mechanism acts in solutions of mobile phosphate buffers. By this mechanism; CO2 transfer may be increased up to fivefold and proton transfer may be increased to 10,000-fold. PMID:6619

  11. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.

    PubMed

    Ergun, Celaletdin; Liu, Huinan; Webster, Thomas J

    2009-06-01

    Lanthanum phosphate (LaPO(4), LP) was combined with either hydroxyapatite (HA) or tricalcium phosphate (TCP) to form novel composites for orthopedic applications. In this study, these composites were prepared by wet chemistry synthesis and subsequent powder mixing. These HA/LP and TCP/LP composites were characterized in terms of phase stability and microstructure evolution during sintering using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their machinability was evaluated using a direct drilling test. For HA/LP composites, LP reacted with HA during sintering and formed a new phase, Ca(8)La(2)(PO(4))(6)O(2), as a reaction by-product. However, TCP/LP composites showed phase stability and the formation of a weak interface between TCP and LP machinability when sintered at 1100 degrees C, which is crucial for achieving desirable properties. Thus, these novel TCP/LP composites fulfilled the requirements for machinability, a key consideration for manufacturing orthopedic implants. Moreover, the biocompatibility of these novel LP composites was studied, for the first time, in this paper. In vitro cell culture tests demonstrated that the LP and its composites supported osteoblast (bone-forming cell) adhesion similar to natural bioceramics (such as HA and TCP). In conclusion, these novel LP composites should be further studied and developed for more effectively treating bone related diseases or injuries. 2008 Wiley Periodicals, Inc.

  12. Tailoring the structure of biphasic calcium phosphate via synthesis procedure

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-12-01

    Nano calcium phosphate ceramics (CaPC) were synthesized using simple co-precipitation method at different preparation conditions. The selected Ca/P ratio with a variation of pH value lead to formation of dicalcium phosphate dihydrate (DCPD) at pH 5 and 6 while, hydroxyapatite (HAP) nano particles were formed at pH 9 and 12 at room temperature. The crystallite size was in the range of 15-55 nm depending on the obtained crystalline phase. The study displayed variation of decomposition depending on the annealing temperature. The significant note is the different transformation trend of each phase depending on the starting pH value. The HRTEM illustrated that the DCPD phase was formed as fibers with diameter around 4-6 nm, while HAP was formed in rod shape. The aspect ratio decreased from 6.6 at pH 9 to 4 at pH 12 which refer to the great influence of pH value on the morphology of calcium phosphates.

  13. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis.

    PubMed

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban

    2013-09-20

    Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effect of carbonate and phosphate ratios on the transformation of calcium orthophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliassi, Mohammad Daoud, E-mail: eliassi2007@gmail.com; Zhao, Wei; Tan, Wen Feng, E-mail: wenfeng.tan@hotmail.com

    2014-07-01

    Graphical abstract: Complexes among phosphate, carbonate and calcium have been prepared via a facile hydrothermal route. The synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate and hydroxylapatite (HAp), respectively. Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are effective on the reduction of carbonate activity during the crystallization of HAp. - Highlights: • Formation of different complexes from CO{sub 3}{sup 2−}, PO{sub 4}{sup 3−} and Ca{sup 2+} solutions at 60 °C. • Molar ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2} cause changes in phase and sizemore » of synthesized products. • Addition of PO{sub 4}{sup 3} inhibited the activity of CO{sub 3}{sup 2−} during bound with Ca{sup 2+}. • The phase transformation was completed, when CO{sub 3}{sup 2−} peaks disappeared in FTIR. • PO{sub 4}{sup 3−}, CO{sub 3}{sup 2−} and Ca{sup 2+} distributed heterogeneously on the surface of precipitation. - Abstract: Complexes among phosphate, carbonate and calcium have been synthesized by a designed hydrothermal method. Effects of carbonate and phosphate ratios on the transformation of calcium-orthophosphates were investigated. With X-ray diffraction measurement the synthesized product at the low (0.15) and the high (1.8) molar ratio of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} is calcium phosphate hydrate at pH 9.0, and hydroxylapatite (HAp) at pH 8.0, respectively. Fourier transform infrared spectroscopy of product at the high ratio (1.8) of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} shows that the CO{sub 3}{sup 2−} peaks disappear, and the strong peaks at 1412 and 1460 cm{sup −1} are assigned to the vibrations of PO{sub 4}{sup 3−} in HAp. {sup 31}P nuclear magnetic resonance spectra of products at the low (0.15–0.6) to the high (1.2–1.8) ratios of PO{sub 4}{sup 3−}/CO{sub 3}{sup 2−} are obtained at 2.9 and 2.7 ppm, respectively. Molar ratios

  15. Can features of phosphate toxicity appear in normophosphatemia?

    PubMed

    Osuka, Satoko; Razzaque, Mohammed S

    2012-01-01

    Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels.

  16. Can features of phosphate toxicity appear in normophosphatemia?

    PubMed Central

    Osuka, Satoko; Razzaque, Mohammed S.

    2013-01-01

    Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels. PMID:22219005

  17. Degradation of glyceraldehyde-3-phosphate dehydrogenase triggered by 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal.

    PubMed

    Tsuchiya, Yukihiro; Yamaguchi, Mitsune; Chikuma, Toshiyuki; Hojo, Hiroshi

    2005-06-15

    Lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) may be responsible for various pathophysiological events under oxidative stress, since they injure cellular components such as proteins and DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a key enzyme of glycolysis and has been reported to be a multifunctional enzyme, is one of the enzymes inhibited by HNE. Previous studies showed that GAPDH is degraded when incubated with acetylleucine chloromethyl ketone (ALCK), resulting in the liberation of a 23-kDa fragment. In this study, we examined whether GAPDH incubated with HNE or other aldehydes of lipid peroxidation products are degraded similarly to that with ALCK. The U937 cell extract was incubated with these aldehydes at 37 degrees C and analyzed by Western blotting using anti-GAPDH antibodies. Incubation with HNE or 4-hydroxy-2-hexenal (HHE) decreased GAPDH activity and GAPDH protein level, and increased the 23-kDa fragment, in time- and dose-dependent manners, but that with other aldehydes did not. Gel filtration using the Superose 6 showed that the GAPDH-degrading activity was eluted in higher molecular fractions than proteasome activity. The enzyme activity was detected at the basic range of pH and inhibited by serine protease inhibitors, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, but not by other protease inhibitors including a proteasome inhibitor, MG-132, and a tripeptidyl peptidase II (TPP II) inhibitor, AAF-CMK. These results suggest that GAPDH modified by HNE and HHE is degraded by a giant serine protease, releasing the 23-kDa fragment, not by proteasome or TPP II.

  18. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    NASA Technical Reports Server (NTRS)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  19. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration.

    PubMed

    Miyagawa, Atsumi; Tatsumi, Sawako; Takahama, Wako; Fujii, Osamu; Nagamoto, Kenta; Kinoshita, Emi; Nomura, Kengo; Ikuta, Kayo; Fujii, Toru; Hanazaki, Ai; Kaneko, Ichiro; Segawa, Hiroko; Miyamoto, Ken-Ichi

    2018-05-01

    Circulating inorganic phosphate exhibits a remarkable daily oscillation based on food intake. In humans and rodents, the daily oscillation in response to food intake may be coordinated to control the intestinal absorption, renal excretion, cellular shifts, and extracellular concentration of inorganic phosphate. However, mechanisms regulating the resulting oscillation are unknown. Here we investigated the roles of the sodium phosphate cotransporter SLC34 (Npt2) family and nicotinamide phosphoribosyltransferase (Nampt) in the daily oscillation of plasma inorganic phosphate levels. First, it is roughly linked to urinary inorganic phosphate excretion. Second, expression of renal Npt2a and Npt2c, and intestinal Npt2b proteins also exhibit a dynamic daily oscillation. Analyses of Npt2a, Npt2b, and Npt2c knockout mice revealed the importance of renal inorganic phosphate reabsorption and cellular inorganic phosphate shifts in the daily oscillation. Third, experiments in which nicotinamide and a specific Nampt inhibitor (FK866) were administered in the active and rest phases revealed that the Nampt/NAD + system is involved in renal inorganic phosphate excretion. Additionally, for cellular shifts, liver-specific Nampt deletion disturbed the daily oscillation of plasma phosphate during the rest but not the active phase. In systemic Nampt +/- mice, NAD levels were significantly reduced in the liver, kidney, and intestine, and the daily oscillation (active and rest phases) of the plasma phosphate concentration was attenuated. Thus, the Nampt/NAD + system for Npt2 regulation and cellular shifts to tissues such as the liver play an important role in generating daily oscillation of plasma inorganic phosphate levels. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Calcium phosphate coating on magnesium alloy for modification of degradation behavior

    NASA Astrophysics Data System (ADS)

    Cui, Fu-zhai; Yang, Jing-xin; Jiao, Yan-peng; Yin, Qing-shui; Zhang, Yu; Lee, In-Seop

    2008-06-01

    Magnesium alloy has similar mechanical properties with natural bone, but its high susceptibility to corrosion has limited its application in orthopedics. In this study, a calcium phosphate coating is formed on magnesium alloy (AZ31) to control its degradation rate and enhance its bioactivity and bone inductivity. Samples of AZ31 plate were placed in the supersaturated calcification solution prepared with Ca(NO3)2, NaH2PO4 and NaHCO3, then the calcium phosphate coating formed. Through adjusting the immersion time, the thickness of uniform coatings can be changed from 10 to 20 μm. The composition, phase structure and morphology of the coatings were investigated. Bonding strength of the coatings and substrate was 2-4 MPa in this study. The coatings significantly decrease degradation rate of the original Mg alloy, indicating that the Mg alloy with calcium phosphate coating is a promising degradable bone material.

  1. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.

    PubMed

    Li, Lingxiangyu; Schuster, Michael

    2014-02-15

    The mobility of nanoparticles (NPs) strongly depends on the chemical characterization of the environmental medium. However, the influence of phosphate on NPs mobility was ignored by scientists despite the serious phosphate contamination in natural environments. Hence, the influence of phosphate and solution pH on the mobility of zinc oxide nanoparticles (ZnO-NPs) was investigated in water-saturated sand representative of groundwater aquifers, which encompassed a range of P/Zn molar ratios (P/Zn: 0-4) and pH (4.8-10.0). The transport of ZnO-NPs was dramatically enhanced in the presence of phosphate, even at a low P/Zn molar ratio namely 0.25, and the retention of ZnO-NPs in the saturated sand decreased with increasing P/Zn molar ratio. Moreover, attachment efficiencies (α) and deposition rates (kd) of ZnO-NPs rapidly decreased with increasing P/Zn molar ratio. In contrast, the solution pH had negligible effects on ZnO-NP transport behavior under phosphate-abundant condition (P/Zn: 4). The distinct effects may be explained by the energy interaction between ZnO-NPs and sand surface under different conditions. Interestingly, under phosphate-abundant condition (P/Zn: 4), solution pH could strongly affect the transport of Zn(2+) in the water-saturated sand. Overall, this study outlines the importance of taking account of phosphate into risk assessment of NPs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of phosphate supplementation on oxygen delivery at high altitude

    NASA Astrophysics Data System (ADS)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  3. Raman spectroscopic study of the mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3, a pegmatite phosphate mineral from Santa Ana pegmatite, Argentina.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Moreira, Caio; de Lena, Jorge Carvalho

    2013-10-01

    The pegmatite mineral qingheiite Na2(Mn(2+),Mg,Fe(2+))2(Al,Fe(3+))(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm(-1) assigned to the PO4(3-) symmetric stretching mode. Multiple Raman bands are observed in the PO4(3-) antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the ν4 and ν2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm(-1) are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered.

  5. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools.

    PubMed

    Goto, Asako; Charman, Mark; Ridgway, Neale D

    2016-01-15

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Zinc speciation in proximity to phosphate application points in a lead/zinc smelter-contaminated soil.

    PubMed

    Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew

    2012-01-01

    The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminated soil would induce Zn phosphate mineral formation and fluid P sources would be more effective than granular P amendments. A combination of different synchrotron-based techniques, namely, spatially resolved micro-X-ray fluorescence (μ-XRF), micro-extended X-ray absorption fine structure spectroscopy (μ-EXAFS), and micro-X-ray diffraction (μ-XRD), were used to speciate Zn at two incubation times in the proximity of application points (0 to 4 mm) for fluid and granular P amendments in a Pb/Zn smelter-contaminated soil. Phosphate rock (PR), triple super phosphate (TSP), monoammonium phosphate (MAP), and fluid ammonium polyphosphate induced Zn phosphate formation. Ammonium polyphosphate was more effective at greater distances (up to 3.7 mm) from the point of P application. Phosphoric acid increased the presence of soluble Zn species because of increased acidity. Soluble Zn has implications with respect to Zn bioavailability, which may negatively impact vegetation and other sensitive organisms. Although additions of P immobilize Pb, this practice needs close monitoring due to potential increases in Zn solubility in a Pb/Zn smelter-contaminated soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Phosphate analysis of natural sausage casings preserved in brines with phosphate additives as inactivating agent - Method validation.

    PubMed

    Wijnker, J J; Tjeerdsma-van Bokhoven, J L M; Veldhuizen, E J A

    2009-01-01

    Certain phosphates have been identified as suitable additives for the improvement of the microbial and mechanical properties of processed natural sausage casings. When mixed with NaCl (sodium chloride) and used under specific treatment and storage conditions, these phosphates are found to prevent the spread of foot-and-mouth disease and classical swine fever via treated casings. The commercially available Quantichrom™ phosphate assay kit has been evaluated as to whether it can serve as a reliable and low-tech method for routine analysis of casings treated with phosphate. The outcome of this study indicates that this particular assay kit has sufficient sensitivity to qualitatively determine the presence of phosphate in treated casings without interference of naturally occurring phosphate in salt used for brines in which casings are preserved.

  8. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    USGS Publications Warehouse

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  9. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  10. Bone regeneration capacity of magnesium phosphate cements in a large animal model.

    PubMed

    Kanter, Britta; Vikman, Anna; Brückner, Theresa; Schamel, Martha; Gbureck, Uwe; Ignatius, Anita

    2018-03-15

    Magnesium phosphate minerals have captured increasing attention during the past years as suitable alternatives for calcium phosphate bone replacement materials. Here, we investigated the degradation and bone regeneration capacity of experimental struvite (MgNH 4 PO 4 ·6H 2 O) forming magnesium phosphate cements in two different orthotopic ovine implantation models. Cements formed at powder to liquid ratios (PLR) of 2.0 and 3.0 g ml -1 were implanted into trabecular bone using a non-load-bearing femoral drill-hole model and a load-bearing tibial defect model. After 4, 7 and 10 months the implants were retrieved and cement degradation and new bone formation was analyzed by micro-computed tomography (µCT) and histomorphometry. The results showed cement degradation in concert with new bone formation at both defect locations. Both cements were almost completely degraded after 10 months. The struvite cement formed with a PLR of 2.0 g ml -1 exhibited a slightly accelerated degradation kinetics compared to the cement with a PLR of 3.0 g ml -1 . Tartrat-resistant acid phosphatase (TRAP) staining indicated osteoclastic resorption at the cement surface. Energy dispersive X-ray analysis (EDX) revealed that small residual cement particles were mostly accumulated in the bone marrow in between newly formed bone trabeculae. Mechanical loading did not significantly increase bone formation associated with cement degradation. Concluding, struvite-forming cements might be promising bone replacement materials due to their good degradation which is coupled with new bone formation. Recently, the interest in magnesium phosphate cements (MPC) for bone substitution increased, as they exhibit high initial strength, comparably elevated degradation potential and the release of valuable magnesium ions. However, only few in vivo studies, mostly including non-load-bearing defects in small animals, have been performed to analyze the degradation and regeneration capability of MPC

  11. The roles of phosphate and tungstate species in surface acidities of TiO2-ZrO2 binary oxides - A comparison study

    NASA Astrophysics Data System (ADS)

    Chaudhary, Manchal; Shen, Po-fan; Chang, Sue-min

    2018-05-01

    Porous tungstated and phosphated TiO2-ZrO2 (TZ) binary oxides with high and strong acidity were successfully prepared by means of sol-gel or impregnation approaches. In addition, the influences of the two types of modifiers on the microstructures and acidity were systematically examined, compared, and clarified. The TZ oxide derived from a surfactant-templating method exhibited a high surface area of 195 m2/g with a pore size of 6.3 nm. Moreover, it had a high acidity of 859 μmol/g with a density of 4.4 μmol/nm2 because of defective surface. Phosphation significantly increased the acidity to 1547 μmol/g and showed the highest acid density of 6.7 μmol/nm2 at a surface P density of 22.7P/nm2. On the other hand, tungstated compounds just showed the highest acidity of 972 μmol/g and the highest acid density of 4.8 μmol/nm2 at 4.7 W/nm2. Compared to tungstate species, phosphate anions are more capable of promoting the acidity because they are able to distort the host network and inhibit elemental rearrangement. While Lewis acidity prevailed in the tungstated compounds, Brønsted acidity was dominant in the phosphated oxides. The Wdbnd O and Psbnd OH groups were responsible for strong acidity in the modified compounds. Phosphated compounds formed strong Brønsted acid sites on the Psbnd OH groups with a particular strength, and tungstation produced Lewis acid sites with a continuous strength on the metal ions adjacent to the tungstate moieties. Cyclic NH3 adsorption-desorption processes revealed that the active sites for NH3 adsorption were stable in both the tungstate and phosphate modified compounds, revealing that these solid acids are promising as the adsorbents for removal of base gases.

  12. Randomized tolerability analysis of clindamycin phosphate 1.2%-tretinoin 0.025% gel used with benzoyl peroxide wash 4% for acne vulgaris.

    PubMed

    Draelos, Zoe Diana; Potts, Aaron; Alió Saenz, Alessandra B

    2010-12-01

    The multiple etiologic factors involved in acne vulgaris make the use of several medications necessary to treat the condition. Use of a fixed combination of clindamycin phosphate 1.2% and tretinoin 0.025% in conjunction with a benzoyl peroxide (BPO) wash 4% targets several pathologic factors simultaneously and mitigates the potential for clindamycin-induced Propionibacterium acnes-resistant strains. New formulations may allow such regimens to be effectively used without overly reduced tolerability resulting from the irritation potential of tretinoin and BPO. This randomized, single-blind study investigated the local tolerability, irritation potential, and safety of an aqueous-based gel (clindamycin phosphate 7.2%-tretinoin 0.025% [CT gel]) when used in conjunction with a BPO wash 4% in participants with mild to moderate acne vulgaris. Participants applied the CT gel once daily in the evening for 4 weeks in conjunction with once-daily morning use of either BPO wash 4% or nonmedicated soap-free cleanser lotion (SFC). Local tolerability and irritation potential were assessed by participants and investigators using separate 6-point scales. The frequency and severity of dryness, scaling, erythema, burning/stinging, and itching increased during the first week of treatment in both treatment arms but decreased thereafter. Local tolerability reactions were slightly more frequent in the CT gel + BPO wash group versus the CT gel + SFC group at week 1 but were generally mild and improved within 1 to 2 weeks. In conclusion, therapy with CT gel + BPO wash appears safe and well-tolerated in participants with mild to moderate acne vulgaris.

  13. Development of magnesium calcium phosphate biocement for bone regeneration.

    PubMed

    Jia, Junfeng; Zhou, Huanjun; Wei, Jie; Jiang, Xin; Hua, Hong; Chen, Fangping; Wei, Shicheng; Shin, Jung-Woog; Liu, Changsheng

    2010-08-06

    Magnesium calcium phosphate biocement (MCPB) with rapid-setting characteristics was fabricated by using the mixed powders of magnesium oxide (MgO) and calcium dihydrogen phosphate (Ca(H(2)PO(4))(2).H(2)O). The results revealed that the MCPB hardened after mixing the powders with water for about 7 min, and the compressive strength reached 43 MPa after setting for 1 h, indicating that the MCPB had a short setting time and high initial mechanical strength. After the acid-base reaction of MCPB containing MgO and Ca(H(2)PO(4))(2).H(2)O in a molar ratio of 2 : 1, the final hydrated products were Mg(3)(PO(4))(2) and Ca(3)(PO(4))(2). The MCPB was degradable in Tris-HCl solution and the degradation ratio was obviously higher than calcium phosphate biocement (CPB) because of its fast dissolution. The attachment and proliferation of the MG(63) cells on the MCPB were significantly enhanced in comparison with CPB, and the alkaline phosphatase activity of MG(63) cells on the MCPB was significantly higher than on the CPB at 7 and 14 days. The MG(63) cells with normal phenotype spread well on the MCPB surfaces, and were attached in close proximity to the substrate, as seen by scanning electron microscopy (SEM). The results demonstrated that the MCPB had a good ability to support cell attachment, proliferation and differentiation, and exhibited good cytocompatibility.

  14. Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers.

    PubMed

    El-Bahi, S M; Sroor, A; Mohamed, Gehan Y; El-Gendy, N S

    2017-05-01

    In this study, the activity concentrations of the natural radionuclides in phosphate rocks and its products were measured using a high- purity germanium detector (HPGe). The obtained activity results show remarkable wide variation in the radioactive contents for the different phosphate samples. The average activity concentration of 235 U, 238 U, 226 Ra, 232 Th and 40 K was found as (45, 1031, 786, 85 and 765Bq/kg) for phosphate rocks, (28, 1234, 457, 123 and 819Bq/kg) for phosphate fertilizers, (47, 663, 550, 79 and 870Bq/kg) for phosphogypsum and (25, 543, 409, 54 and 897Bq/kg) for single super phosphate respectively. Based on the measured activities, the radiological parameters (activity concentration index, absorbed gamma dose rate in outdoor and indoor and the corresponding annual effective dose rates and total excess lifetime cancer risk) were estimated to assess the radiological hazards. The total excess lifetime cancer risk (ELCR) has been calculated and found to be high in all samples, which related to high radioactivity, representing radiological risk for the health of the population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Most consumed processed foods by patients on hemodialysis: Alert for phosphate-containing additives and the phosphate-to-protein ratio.

    PubMed

    Watanabe, Marcela T; Araujo, Raphael M; Vogt, Barbara P; Barretti, Pasqual; Caramori, Jacqueline C T

    2016-08-01

    Hyperphosphatemia is common in patients with chronic kidney disease (CKD) stages IV and V because of decreased phosphorus excretion. Phosphatemia is closely related to dietary intake. Thus, a better understanding of sources of dietary phosphate consumption, absorption and restriction, particularly inorganic phosphate found in food additives, is key to prevent consequences of this complication. Our aims were to investigate the most commonly consumed processed foods by patients with CKD on hemodialysis, to analyze phosphate and protein content of these foods using chemical analysis and to compare these processed foods with fresh foods. We performed a cross-sectional descriptive analytical study using food frequency questionnaires to rank the most consumed industrialized foods and beverages. Total phosphate content was determined by metavanadate colorimetry, and nitrogen content was determined by the Kjeldahl method. Protein amounts were estimated from nitrogen content. The phosphate-to-protein ratio (mg/g) was then calculated. Processed meat protein and phosphate content were compared with the nutritional composition of fresh foods using the Brazilian Food Composition Table. Phosphate measurement results were compared with data from the Food Composition Table - Support for Nutritional Decisions. An α level of 5% was considered significant. Food frequency questionnaires were performed on 100 patients (mean age, 59 ± 14 years; 57% male). Phosphate additives were mentioned on 70% of the product labels analyzed. Proteins with phosphate-containing additives provided approximately twice as much phosphate per gram of protein compared with that of fresh foods (p < 0.0001). Protein and phosphate content of processed foods are higher than those of fresh foods, as well as phosphate-to-protein ratio. A better understanding of phosphate content in foods, particularly processed foods, may contribute to better control of phosphatemia in patients with CKD. Copyright © 2016

  16. Biological and medical significance of calcium phosphates.

    PubMed

    Dorozhkin, Sergey V; Epple, Matthias

    2002-09-02

    The inorganic part of hard tissues (bones and teeth) of mammals consists of calcium phosphate, mainly of apatitic structure. Similarly, most undesired calcifications (i.e. those appearing as a result of various diseases) of mammals also contain calcium phosphate. For example, atherosclerosis results in blood-vessel blockage caused by a solid composite of cholesterol with calcium phosphate. Dental caries result in a replacement of less soluble and hard apatite by more soluble and softer calcium hydrogenphosphates. Osteoporosis is a demineralization of bone. Therefore, from a chemical point of view, processes of normal (bone and teeth formation and growth) and pathological (atherosclerosis and dental calculus) calcifications are just an in vivo crystallization of calcium phosphate. Similarly, dental caries and osteoporosis can be considered to be in vivo dissolution of calcium phosphates. On the other hand, because of the chemical similarity with biological calcified tissues, all calcium phosphates are remarkably biocompatible. This property is widely used in medicine for biomaterials that are either entirely made of or coated with calcium phosphate. For example, self-setting bone cements made of calcium phosphates are helpful in bone repair and titanium substitutes covered with a surface layer of calcium phosphates are used for hip-joint endoprostheses and tooth substitutes, to facilitate the growth of bone and thereby raise the mechanical stability. Calcium phosphates have a great biological and medical significance and in this review we give an overview of the current knowledge in this subject.

  17. Anionic surfactant enhanced phosphate desorption from Mg/Al-layered double hydroxides by micelle formation.

    PubMed

    Shimamura, Akihiro; Jones, Mark I; Metson, James B

    2013-12-01

    Desorption of interlayer hydrogen phosphate (HPO4) from hydrogen phosphate intercalated Mg/Al-layered double hydroxide (LDH-HPO4) by anion exchange with surfactant anions has been investigated under controlled conditions. Three types of surfactant, Dodecylbenzenesulphonate (DBS), Dodecylsulphate (DS) and 1-Octanesulphonate (OS), anions were used for intercalation experiments over a range of concentrations, and for all solutions, it was shown that the desorption of hydrogen phosphate is enhanced at concentrations close to the critical micelle concentration (CMC). Intercalation of the surfactant anions into LDH-HPO4 was confirmed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning electron microscopy (SEM). More than 90% removal of the hydrogen phosphate was achieved at CMC. Repeat adsorption tests to investigate recyclability showed that desorption with 0.005 M DBS improved subsequent phosphate re-adsorption, allowing around 90% of the original adsorption over three cycles. This is much higher than when desorption was conducted using either Na2CO3 or NaCl-NaOH solutions, even at much higher concentrations. This study suggests potential economic and environmental advantages in using these surfactants in improving the cycling performance of LDH materials as absorbents for clean-up of water systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.

    PubMed

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-03-02

    In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Bio-solid-State processes for synthesis of Li-Fe-phosphate.

    PubMed

    Kim, Hyoung-Bum; Park, Byungno; Lee, Insung; Roh, Yul

    2008-10-01

    Lithium-Fe-phosphates have become of great interest as storage cathodes for rechargeable Li-batteries because of their high density, environmental friendliness, and safety. The objective of this study was to examine bio-solid-state synthesis of LiFePO4 by microbial processes at room temperature. The microbial reduction of Fe(III)-citrate using an organic carbon, glucose, as an electron donor in the presence of NaHPO4 and lithium that resulted in the formation of Li-substituted iron phosphate. Our studies showed that bacteria enriched from inter-tidal flat sediments, designated as Haejae-1, synthesized Li-substituted iron phosphate. Characterization by X-ray diffraction showed the reduction of Fe(III)-citrate in the presence of NaHPO4 and LiCl2 resulted in the precipitation of Li-substituted vivianite [Li(x)Fe(3-x)(PO4)2 x 8H2O]. SEM-EDX, FTIR, and ESCA analyses showed the chemical composition of the synthesized phases was Li, Fe, P, C, and O. Based on the chemical and physical structure of the mineral, the novel bio-nano-material may be potentially useful to the development of energy storage materials.

  20. Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Ghosh, Upasana; Subhashini, Ponnambalam; Dilipan, Elangovan; Raja, Subramanian; Thangaradjou, Thirunavukarassu; Kannan, Lakshmanan

    2012-03-01

    Phosphate-solubilizing bacterial strains (6 Nos.) were isolated from the rhizosphere soils of two seagrasses ( Halophila ovalis (R. Br.) Hook and Halodule pinifolia (Miki) Hartog) in the Vellar estuary. Experimental studies found that the strain PSSG6 was effective in phosphate solubilization with Phosphate Solubilization efficiency index E = 375 ± 8.54, followed by the strain PSSG5 with Phosphate Solubilization efficiency index E = 275 ± 27.3. Of the 6 strains isolated, the strains PSSG4 and PSSG5 belonged to the genus Bacillus, and PSSG1, PSSG2 and PSSG3 were identified as Citrobacter sp., Shigella sp., and Klebsiella sp., respectively, by conventional method, and PSSG6 was identified as Bacillus circulans using conventional and molecular methods.

  1. Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH

    PubMed Central

    Fischer, Ralf-Jörg; Oehmcke, Sonja; Meyer, Uta; Mix, Maren; Schwarz, Katrin; Fiedler, Tomas; Bahl, Hubert

    2006-01-01

    The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in Pi-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to Pi pulses. Specific mRNA transcripts were found only when external Pi concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5. PMID:16855236

  2. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites.

    PubMed

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of phosphate treatment of Acid-etched implants on mineral apposition rates near implants in a dog model.

    PubMed

    Foley, Christine Hyon; Kerns, David G; Hallmon, William W; Rivera-Hidalgo, Francisco; Nelson, Carl J; Spears, Robert; Dechow, Paul C; Opperman, Lynne A

    2010-01-01

    This study evaluated the effects of phosphate coating of acid-etched titanium on the mineral apposition rate (MAR) and new bone-to-implant contact (BIC) in a canine model. Titanium implants (2.2 3 4 mm) with acid-etched surfaces that were electrolytically phosphated or not were placed in 48 mandibular sites in six foxhounds. Tetracycline and calcein dyes were administered 1 week after implant placement and 1 week before sacrifice. At 12 weeks after implant placement, the animals were sacrificed. MAR and BIC were evaluated using fluorescence microscopy. Light microscopic and histologic evaluations were performed on undecalcified sections. Microscopic evaluation showed the presence of healthy osteoblasts lining bone surfaces near implants. Similar BIC was observed in phosphated and nonphosphated titanium implant sites. MAR was significantly higher around the nonphosphated titanium implant surfaces than around the phosphated titanium samples. No significant differences were found between dogs or implant sites. Acid-etched implants showed significantly higher MARs compared to acid-etched, phosphate-coated implants. Int J Maxillofac Implants 2010;25:278-286.

  4. Effect of mineral phosphates on growth and nitrogen fixation of diazotrophic cyanobacteria Anabaena variabilis and Westiellopsis prolifica.

    PubMed

    Yandigeri, Mahesh S; Yadav, Arvind K; Meena, Kamlesh Kumar; Pabbi, Sunil

    2010-03-01

    The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.

  5. 21 CFR 74.101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... Blue No. 1 is principally the disodium salt of ethyl [4-[p-[ethyl (m-sulfobenzyl) amino]-α-(o... with smaller amounts of the isomeric disodium salts of ethyl [4-[p-[ethyl(p-sulfobenzyl) amino]-α-(o...

  6. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR...&C Blue No. 1 is principally the disodium salt of ethyl[4-[p-[ethyl(m-sulfobenzyl)amino]-α-(o... amounts of the isomeric disodium salts of ethyl[4-[p-[ethyl(p-sulfobenzyl)amino]-α-(o-sulfophenyl...

  7. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR...&C Blue No. 1 is principally the disodium salt of ethyl[4-[p-[ethyl(m-sulfobenzyl)amino]-α-(o... amounts of the isomeric disodium salts of ethyl[4-[p-[ethyl(p-sulfobenzyl)amino]-α-(o-sulfophenyl...

  8. 21 CFR 74.101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... Blue No. 1 is principally the disodium salt of ethyl [4-[p-[ethyl (m-sulfobenzyl) amino]-α-(o... with smaller amounts of the isomeric disodium salts of ethyl [4-[p-[ethyl(p-sulfobenzyl) amino]-α-(o...

  9. One-stop-shop preoperative evaluation for living liver donors with gadoxetic acid disodium-enhanced magnetic resonance imaging: efficiency and additional benefit.

    PubMed

    Xie, Shuangshuang; Liu, Chenhao; Yu, Zichuan; Ren, Tao; Hou, Jiancun; Chen, Lihua; Huang, Lixiang; Cheng, Yue; Ji, Qian; Yin, Jianzhong; Zhang, Longjiang; Shen, Wen

    2015-12-01

    To explore the efficiency, cost, and time for examination of one-stop-shop gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) in preoperative evaluation for parent donors by comparing with multidetector computer tomography combined with conventional MR cholangiopancreatography (MDCT-MRCP). Forty parent donors were evaluated with MDCT-MRCP, and the other 40 sex-, age-, and weight-matched donors with Gd-EOB-DTPA-enhanced MRI. Anatomical variations and graft volume determined by pre- and intra-operative findings, costs and time for imaging were recorded. Image quality was ranked on a 4-point scale and compared between both groups. Gd-EOB-DTPA-enhanced MRI provided better image quality than MDCT-MRCP for the depiction of portal veins and bile ducts by both reviewers (p < 0.05), hepatic veins by one reviewer (p < 0.05), rather hepatic arteries by both reviewers (p < 0.01). Sixty-nine living donors proceeded to liver donation with all anatomical findings accurately confirmed by intra-operative findings. The "in-room" time of Gd-EOB-DTPA-enhanced MRI was 12 min longer than MDCT-MRCP. Gd-EOB-DTPA-enhanced MRI was cheaper than MDCT-MRCP (US$519.72 vs. US$631.85). One-stop-shop Gd-EOB-DTPA-enhanced MRI has similar diagnostic accuracy as MDCT-MRCP and can provide additional benefit in terms of costs and convenience in preoperative evaluation for parent donors. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Maxillary sinus floor augmentation using a beta-tricalcium phosphate (Cerasorb) alone compared to autogenous bone grafts.

    PubMed

    Zijderveld, Steven A; Zerbo, Ilara R; van den Bergh, Johan P A; Schulten, Engelbert A J M; ten Bruggenkate, Chris M

    2005-01-01

    A prospective human clinical study was conducted to determine the clinical and histologic bone formation ability of 2 graft materials, a beta-tricalcium phosphate (Cerasorb; Curasan, Kleinostheim, Germany) and autogenous chin bone, in maxillary sinus floor elevation surgery. Ten healthy patients underwent a bilateral (n = 6) or unilateral (n = 4) maxillary sinus floor elevation procedure under local anesthesia. In each case, residual posterior maxillary bone height was between 4 and 8 mm. In cases of bilateral sinus floor elevation, the original bone was augmented with a split-mouth design with 100% beta-tricalcium phosphate on the test side and 100% chin bone on the contralateral control side. The unilateral cases were augmented with 100% beta-tricalcium phosphate. After a healing period of 6 months, ITI full body screw-type implants (Straumann, Waldenburg, Switzerland) were placed. At the time of implant surgery, biopsy samples were removed with a 3.5-mm trephine drill. Sixteen sinus floor elevations were performed. Forty-one implants were placed, 26 on the test side and 15 on the control side. The clinical characteristics at the time of implantation differed, especially regarding clinical appearance and drilling resistance. The increase in height was examined radiographically prior to implantation and was found to be sufficient in all cases. After a mean of nearly 1 year of follow-up, no implant losses or failures had occurred. The promising clinical results of the present study and the lack of implant failures are probably mainly the result of requiring an original bone height of at least 4 mm at the implant location. Although autogenous bone grafting is still the gold standard, according to the clinical results, the preimplantation sinus floor elevation procedure used, which involved a limited volume of beta-tricalcium phosphate, appeared to be a clinically reliable procedure in this patient population.

  11. Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine.

    PubMed

    Forte, Lucia; Torricelli, Paola; Bonvicini, Francesca; Boanini, Elisa; Gentilomi, Giovanna Angela; Lusvardi, Gigliola; Della Bella, Elena; Fini, Milena; Vecchio Nepita, Edoardo; Bigi, Adriana

    2018-01-01

    In this work we developed new antibacterial composite materials using polydopamine (PDA) to trigger the deposition of silver nanoparticles (AgNPs) onto calcium phosphates, namely octacalcium phosphate (OCP) and α-tricalcium phosphate (αTCP). Functionalization of OCP and αTCP with a self-polymerized polydopamine layer was obtained by soaking the calcium phosphates in dopamine solution. The PDA surface of functionalized calcium phosphates (OCPd and αTCPd) promoted the deposition of AgNPs by reducing silver ions when soaked in a silver nitrate solution. The amount of deposited AgNPs can be modulated by varying the concentration of silver nitrate solution and the type of substrate. The results of in vitro tests carried out with osteoblast-like MG63 cells indicate that the combination of AgNPs with OCP provides more biocompatible materials than those obtained using αTCP as substrate. In particular, the study of osteoblast activity and differentiation was focused on the samples OCPdAg5 (silver content=8.2wt%) and αTCPdAg5 (silver content=4.7wt%), which did not show any cytotoxicity, and compared with those obtained on pure OCP and αTCP. The results demonstrate that the AgNPs loaded materials support osteoblast viability and differentiation, whereas they significantly inhibit the growth of relevant antibiotic-resistant pathogenic bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive

  13. Remnants of an Ancient Metabolism without Phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldford, Joshua E.; Hartman, Hyman; Smith, Temple F.

    Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecksmore » are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a ‘‘metabolic fossil’’ of an early phosphate-free nonenzymatic biochemistry. Thus, our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.« less

  14. Remnants of an Ancient Metabolism without Phosphate

    DOE PAGES

    Goldford, Joshua E.; Hartman, Hyman; Smith, Temple F.; ...

    2017-03-09

    Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecksmore » are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a ‘‘metabolic fossil’’ of an early phosphate-free nonenzymatic biochemistry. Thus, our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system.« less

  15. Adherence to phosphate binder therapy is the primary determinant of hyperphosphatemia incidence in patients receiving peritoneal dialysis.

    PubMed

    Hung, Kai-Yin; Liao, Shang-Chih; Chen, Tzu-Hsiu; Chao, Mei-Chen; Chen, Jin-Bor

    2013-02-01

    We investigated the major determinant of hyperphosphatemia incidence among patients receiving peritoneal dialysis. Seventy-six patients aged 25-55 years who had received peritoneal dialysis for more than 3 months were recruited. The patients were divided into three groups according to their serum phosphorus levels (Group 1, ≥ 6 mg/dL; Group 2, 5.9-4.8 mg/dL; and Group 3, <4.8 mg/dL). Renal dietitians interviewed the patients to determine their phosphate intake and adherence to phosphate binder therapy. No statistical differences in demographics or phosphate intake were identified among the groups. However, adherence to phosphate binders was greater in Group 3 than in Groups 1 and 2 (96.3% vs. 21.4% and 52.4%, respectively; P < 0.001). Multivariate analysis showed that adherence to phosphate binder therapy was the only significant contributor to serum phosphorus levels (P= 0.0001). Adherence to diet was better than adherence to phosphate binder therapy among patients receiving peritoneal dialysis, and the latter determined the incidence of hyperphosphatemia. © 2012 The Authors. Therapeutic Apheresis and Dialysis © 2012 International Society for Apheresis.

  16. Evaluation of a boron-nitrogen, phosphate-free fire-retardant treatment. Part III, Evaluation of full-size 2 by 4 lumber per ASTM Standard D 5664-95 Method C

    Treesearch

    Jerrold E. Winandy; Douglas Herdman

    2003-01-01

    The purpose of this work was to evaluate the effects of a new boron-nitrogen, phosphate-free fire-rerardant (FR) formulation on the initial strength of No. 1 southern pine 2 by 4 lumber and its potential for in-service thermal degradation. The lumber was evaluated according to Method C of the D 5664 standard test method. The results indicated that for lumber exposed at...

  17. A rapid fluorescence assay for sphingosine-1-phosphate lyase enzyme activity.

    PubMed

    Bandhuvula, Padmavathi; Fyrst, Henrik; Saba, Julie D

    2007-12-01

    Sphingosine-1-phosphate (S1P) lyase (SPL) catalyzes the conversion of S1P to ethanolamine phosphate and hexadecenal. This enzyme plays diverse roles in physiology and disease and, thus, may be useful as a disease marker and/or drug target. Unfortunately, the radioisotope-based assay currently used to quantify SPL activity is suboptimal. We have devised an assay using a commercially available omega(7-nitro-2-1,3-benzoxadiazol-4-yl)-d-erythro (NBD)-labeled fluorescent substrate. Alternatively, we provide a method for synthesis of the substrate from NBD-sphingosine. Enzyme activity is determined by following the formation of NBD-aldehyde product, which is isolated from unreacted substrate by lipid extraction and quantified after separation by HPLC using a C18 column. A fluorescent NBD-C18-sphingosine internal standard is used to control for extraction efficiency. The reaction is linear over 20 min and total protein concentrations of 20-200 mg/l. The sensitivity of the fluorescence assay is comparable to or better than that of the radioactive assay, and SPL levels as low as 8 pmol/mg/min were readily detected. Semicarbazide, a nonspecific SPL inhibitor, reduced SPL activity in vitro by approximately 70% using both standard and fluorescence methods. Product inhibition was not observed using ethanolamine phosphate and a commercially available source of hexadecenal. This method is suitable for quantifying SPL activity in a variety of cell and tissue sources.

  18. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  19. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  20. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  2. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono...

  3. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  4. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  5. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  6. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  7. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  8. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  9. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  10. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  11. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  12. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  14. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  15. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  16. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  17. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  18. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  19. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  20. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  2. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  3. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  4. Precipitation and Dissolution of Uranyl Phosphates in a Microfluidic Pore Structure

    NASA Astrophysics Data System (ADS)

    Werth, C. J.; Fanizza, M.; Strathmann, T.; Finneran, K.; Oostrom, M.; Zhang, C.; Wietsma, T. W.; Hess, N. J.

    2011-12-01

    The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore structure (i.e. micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater and mitigate the risk of this contaminant to potential down-gradient receptor sites. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42-), in the presence or absence of calcium (Ca2+) or sulfate (SO42-), in order to identify precipitation rates, the morphology and types of minerals formed, and the stability of these minerals to dissolution with and without bicarbonate (HCO3-) present. Raman backscattering spectroscopy and micro X-ray diffraction (μ-XRD) results both showed that the only mineral precipitated was chernikovite (also known as hydrogen uranyl phosphate; UO2HPO4), even though the formation of other minerals were thermodynamically favored depending on the experimental conditions. Precipitation and dissolution rates varied with influent conditions. Relative to when only U(VI) and HPO42- were present, precipitation rates were 2.3 times slower when SO42- was present, and 1.4 times faster when Ca2+ was present. These rates were inversely related to the size of crystals formed during precipitation. Dissolution rates for chernikovite increased with increasing HCO3- concentrations, consistent with formation of uranyl carbonate complexes in aqueous solution, and they were the fastest for chernikovite formed in the presence of SO42-, and slowest for the chernikovite formed in the presence of Ca2+. These rates are related to the ratios of mineral-water interfacial area to mineral volume. Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that changes in the solute conditions evaluated affect precipitation rates, crystal morphology, and crystal stability, but not mineral type.

  5. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  6. Pentose phosphates in nucleoside interconversion and catabolism.

    PubMed

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  7. A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru

    NASA Astrophysics Data System (ADS)

    Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.

    2016-02-01

    The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20<220 m) and with a patchy distribution mainly between 10 and 16°S, is confirmed and characterized in details from the complementary hydrological data acquired during the German Meteor cruise M77 (Legs 3 and 4, January-February 2009). The significant Pmin present an intense minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.

  8. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  9. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  10. Detection of cresyl phosphate-modified butyrylcholinesterase in human plasma for chemical exposure associated with aerotoxic syndrome

    PubMed Central

    Schopfer, Lawrence M.; Masson, Patrick; Lamourette, Patricia; Simon, Stéphanie; Lockridge, Oksana

    2014-01-01

    Aircrew complain of illness following a fume event in aircraft. A chemical in jet engine oil, the neurotoxicant, tri-o-cresyl phosphate, after metabolic activation to cresyl saligenin phosphate, makes a covalent adduct on butyrylcholinesterase (BChE). We developed a mass spectrometry method for detection of the cresyl phosphate adduct on human BChE, as an indicator of exposure. Monoclonal mAb2, whose amino acid sequence is provided, was crosslinked to cyanogen bromide-activated Sepharose 4B and used to immunopurify plasma BChE treated with cresyl saligenin phosphate. BChE was released with acetic acid, digested with pepsin, and analyzed by LC-MSMS on the 5600 Triple TOF mass spectrometer. Peptide FGES198AGAAS with an added mass of 170 Da from cresyl phosphate on serine 198 was detected as parent ion 966.4 Da. When characteristic daughter ions were monitored in the MSMS spectrum the limit of detection was 0.1% cresyl saligenin phosphate inhibited plasma BChE. This corresponds to 2×10−9 g in 0.5 ml, or 23×10−15 moles of inhibited BChE in 0.5 ml plasma. In conclusion, a sensitive assay for exposure to tri-o-cresyl phosphate was developed. Laboratories that plan to use this method are cautioned that a positive result gives no proof that tri-o-cresyl phosphate is toxic at low levels. PMID:24892986

  11. Detection of cresyl phosphate-modified butyrylcholinesterase in human plasma for chemical exposure associated with aerotoxic syndrome.

    PubMed

    Schopfer, Lawrence M; Masson, Patrick; Lamourette, Patricia; Simon, Stéphanie; Lockridge, Oksana

    2014-09-15

    Flight crews complain of illness following a fume event in aircraft. A chemical in jet engine oil, the neurotoxicant tri-o-cresyl phosphate, after metabolic activation to cresyl saligenin phosphate makes a covalent adduct on butyrylcholinesterase (BChE). We developed a mass spectrometry method for detection of the cresyl phosphate adduct on human BChE as an indicator of exposure. Monoclonal mAb2, whose amino acid sequence is provided, was crosslinked to cyanogen bromide-activated Sepharose 4B and used to immunopurify plasma BChE treated with cresyl saligenin phosphate. BChE was released with acetic acid, digested with pepsin, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MSMS) on the Triple TOF 5600 mass spectrometer. Peptide FGES198AGAAS with an added mass of 170 Da from cresyl phosphate on serine 198 (Ser198) was detected as parent ion 966.4 Da. When characteristic daughter ions were monitored in the MSMS spectrum, the limit of detection was 0.1% cresyl saligenin phosphate inhibited plasma BChE. This corresponds to 2×10(-9) g in 0.5 ml or 23×10(-15) moles of inhibited BChE in 0.5 ml of plasma. In conclusion, a sensitive assay for exposure to tri-o-cresyl phosphate was developed. Laboratories that plan to use this method are cautioned that a positive result gives no proof that tri-o-cresyl phosphate is toxic at low levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inactivation of phosphorylase b by potassium ferrate, a new reactive analogue of the phosphate group.

    PubMed

    Lee, Y M; Benisek, W F

    1976-03-25

    Rabbit muscle phosphorylase b reacts with the phosphate-like reagent potassium ferrate, K2FeO4, a potent oxidizing agent. The reaction results in inactivation of the enzyme and abolition of the ability of the enzyme to bind 5'-AMP. Activating and nonactivating nucleotides which bind at the 5'-AMP binding site such as 5'-AMP, 2'-AMP, 3'-AMP, and 5'-IMP substantially protect the enzyme from inactivation by ferrate. One to two residues of tyrosine and approximately 1 residue of cysteine are modified by ferrate under the conditions employed. Tyrosine is protected by 5-AMP, whereas cysteine is not. The tyrosine modification is suggested as the inactivating chemical reaction. The location of the inactivating reaction is suggested to be in or near the 5'-AMP binding site. The structural and chemical properties of ferrate ion are discussed and compared to those of phosphate. Ferrate ion may be a reagent useful for phosphate group binding site-directed modification of proteins.

  13. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  14. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  15. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  16. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  17. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  18. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  20. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  1. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di...

  2. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono...

  3. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  4. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  5. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally...

  6. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  7. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica).

    PubMed

    Ceasar, S Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  8. Phosphate Concentration and Arbuscular Mycorrhizal Colonisation Influence the Growth, Yield and Expression of Twelve PHT1 Family Phosphate Transporters in Foxtail Millet (Setaria italica)

    PubMed Central

    Ceasar, S. Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A.

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet. PMID:25251671

  9. Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal.

    PubMed

    Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla

    2011-05-15

    A homogeneous layer of nano-sized magnetite particles (<4 nm) was synthesized by impregnation of modified granular activated carbon (GAC) with ferric chloride, for effective removal of phosphate. A proposed mechanism for the modification and formation of magnetite onto the GAC is specified. BET results showed a significant increase in the surface area of the matrix following iron loading, implying that a porous nanomagnetite layer was formed. Batch adsorption experiments revealed high efficiency of phosphate removal, by the newly developed adsorbent, attaining maximum adsorption capacity of 435 mg PO(4)/g Fe (corresponding to 1.1 mol PO(4)/mol Fe(3)O(4)). It was concluded that initially phosphate was adsorbed by the active sites on the magnetite surface, and then it diffused into the interior pores of the nanomagnetite layer. It was demonstrated that the latter is the rate-determining step for the process. Innovative correlation of the diffusion mechanism with the unique adsorption properties of the synthesized adsorbent is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  11. Hydrothermal synthesis, crystal structure, and magnetic properties of a new inorganic vanadium(III) phosphate with a chain structure.

    PubMed

    Ferdov, Stanislav; Reis, Mario S; Lin, Zhi; Ferreira, Rute A Sá

    2008-11-03

    A new vanadium(III) phosphate, Na3V(OH)(HPO4)(PO4), has been synthesized by using mild hydrothermal conditions under autogeneous pressure. This material represents a very rare example of sodium vanadium(III) phosphate with a chain structure. The crystal structure has been determined by refinement of powder X-ray diffraction data, starting from the atomic coordinates of an isotypic compound, Na3Al(OH)(HPO4)(PO4), which was obtained under high temperature and high pressure. The phase crystallizes in monoclinic space group C2/m (No. 12) with lattice parameters a = 15.423(9) A, b = 7.280(0) A, c = 7.070(9) A, beta = 96.79(7) degrees, V = 788.3(9) A(3), and Z = 4. The structure consists of one-dimensional chains composed of corner-sharing VO5(OH) octahedra running along the b direction. They are decorated by isolated PO4 and HPO4 tetrahedra sharing two of their corners with the ones of the vanadium octahedra. The interconnection between the chains is assured by three crystallographically distinct Na(+) cations. Magnetic investigation confirms the 3+ oxidation state of the vanadium ions and reveals an antiferromagnetic arrangement between those ions through the chain.

  12. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics.

    PubMed

    Glorieux, Seline; Goemaere, Olivier; Steen, Liselot; Fraeye, Ilse

    2017-09-01

    Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality.

  13. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics

    PubMed Central

    2017-01-01

    Summary Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality. PMID:29089852

  14. Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production.

    PubMed

    Leaungvutiviroj, Chaveevan; Ruangphisarn, Pimtida; Hansanimitkul, Pikul; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Biofertilizers that possess a high capacity for N(2) fixation (Azotobacter tropicalis), and consist of phosphate solubilizing bacteria (Burkhoderia unamae), and potassium solubilizing bacteria (Bacillus subtilis) and produce auxin (KJB9/2 strain), have a high potential for growth and yield enhancement of corn and vegetables (Chinese kale). For vegetables, the addition of biofertilizer alone enhanced growth 4 times. Moreover, an enhancement of growth by 7 times was observed due to the addition of rock phosphate and K-feldspar, natural mineral fertilizers, in combination with the biofertilizer.

  15. [Phosphate-solubilizing activity of aerobic methylobacteria].

    PubMed

    Agafonova, N V; Kaparullina, E N; Doronina, N V; Trotsenko, Iu A

    2014-01-01

    Phosphate-solubilizing activity was found in 14 strains of plant-associated aerobic methylobacteria belonging to the genera Methylophilus, Methylobacillus, Methylovorus, Methylopila, Methylobacterium, Delftia, and Ancyclobacter. The growth of methylobacteria on medium with methanol as the carbon and energy source and insoluble tricalcium phosphate as the phosphorus source was accompanied by a decrease in pH due to the accumulation of up to 7 mM formic acid as a methanol oxidation intermediate and by release of 120-280 μM phosphate ions, which can be used by both bacteria and plants. Phosphate-solubilizing activity is a newly revealed role of methylobacteria in phytosymbiosis.

  16. Vibrational spectroscopy of synthetic stercorite H(NH 4)Na(PO 44H 2O—A comparison with the natural cave mineral

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.; Millar, Graeme J.; Tan, Keqin; Pogson, Ross E.

    2011-12-01

    In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH 4)Na(PO 44H 2O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm -1 (Cave) and 922 cm -1 (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm -1. Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO 43-, H 2O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.

  17. The role of phosphate in a multistep enzymatic reaction: reactions of the substrate and intermediate in pieces.

    PubMed

    Kholodar, Svetlana A; Allen, C Leigh; Gulick, Andrew M; Murkin, Andrew S

    2015-02-25

    Several mechanistically unrelated enzymes utilize the binding energy of their substrate's nonreacting phosphoryl group to accelerate catalysis. Evidence for the involvement of the phosphodianion in transition state formation has come from reactions of the substrate in pieces, in which reaction of a truncated substrate lacking its phosphorylmethyl group is activated by inorganic phosphite. What has remained unknown until now is how the phosphodianion group influences the reaction energetics at different points along the reaction coordinate. 1-Deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase (DXR), which catalyzes the isomerization of DXP to 2-C-methyl-D-erythrose 4-phosphate (MEsP) and subsequent NADPH-dependent reduction, presents a unique opportunity to address this concern. Previously, we have reported the effect of covalently linked phosphate on the energetics of DXP turnover. Through the use of chemically synthesized MEsP and its phosphate-truncated analogue, 2-C-methyl-D-glyceraldehyde, the current study revealed a loss of 6.1 kcal/mol of kinetic barrier stabilization upon truncation, of which 4.4 kcal/mol was regained in the presence of phosphite dianion. The activating effect of phosphite was accompanied by apparent tightening of its interactions within the active site at the intermediate stage of the reaction, suggesting a role of the phosphodianion in disfavoring intermediate release and in modulation of the on-enzyme isomerization equilibrium. The results of kinetic isotope effect and structural studies indicate rate limitation by physical steps when the covalent linkage is severed. These striking differences in the energetics of the natural reaction and the reactions in pieces provide a deeper insight into the contribution of enzyme-phosphodianion interactions to the reaction coordinate.

  18. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  19. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.

    PubMed

    Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu

    2012-08-01

    The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.

  20. Antiwashout behavior of calcium phosphate cement incorporated with Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Hablee, S.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.

    2018-01-01

    The effect of powder-to-liquid ratio and addition of poly(ethylene glycol) on the antiwashout behavior of calcium phosphate cement has been investigated. Calcium hydroxide, Ca(OH)2, and diammonium hydrogen phosphate, (NH4)2HPO4, were used as precursors with distilled water as the solvent in the wet chemical precipitation synthesis of hydroxyapatite powder. Cement paste was prepared by mixing the as-synthesized powder with distilled water at certain ratios, varied at 1.0, 1.3, 1.5 and 1.6. Poly(ethylene glycol) was added into distilled water, varied at 1, 2, 3, 4 and 5 wt% using the powder-to-liquid ratio of 1.3. The antiwashout properties of the cement has been investigated by soaking in Ringer’s solution for 3 and 7 days. The evolution of compressive strength of calcium phosphate cement before and after soaking have been determined. After 7 days soaking, the strength of the cement increased by 94.4%, 2.98%, 11.39% and 111.29% for powder-to-liquid ratios 1.0, 1.3, 1.5 and 1.6 respectively. The addition of poly(ethylene glycol) up to 3% shows an increase in strength after 7 days soaking, with 57.75%, 16.4% and 19.97% increase for 1, 2 and 3% poly(ethylene glycol) contents respectively. The calcium phosphate cement produced in this current study shows excellent antiwashout behavior since no cement dissolution happened and the compressive strength of the cement increased with soaking time throughout 7 days soaking in Ringer’s solution.