Charge symmetry breaking in A = 4 hypernuclei
NASA Astrophysics Data System (ADS)
Achenbach, P.
2016-11-01
Charge symmetry breaking in the A = 4 hypernuclear system is reviewed. The data on binding energies of the mirror nuclei and hypernuclei are examined. At the Mainz Microtron MAMI the high-resolution spectroscopy of decay-pions in strangeness electro-production is used to extract the Λ hyperon ground state binding energy in 4ΛH. This binding energy is used together with the 4ΛHe ground state binding energy from nuclear emulsion experiments and with energy levels of the 1+ excited state for both hypernuclei from γ-ray spectroscopy to address the charge symmetry breaking in the strong interaction. The binding energy difference of the ground states in the mirror pair is reduced from its long accepted value ΔB4Λ(0+g.s.) ≈ 0.35MeV to ≈ 0.24MeV. The energy difference of the excited states becomes ΔB4Λ(1+exc) ≈ -0.08MeV, for the first time with opposite sign. These values were not reproduced by theoretical calculations with the exception of very recent approaches, although with a large systematic dependence. The full understanding of the charge symmetry breaking in the A = 4 hypernuclei still remains one of the open issues of hypernuclear physics.
Charge symmetry breaking in the A = 4 hypernuclei
NASA Astrophysics Data System (ADS)
Gazda, Daniel; Gal, Avraham
2016-10-01
Charge symmetry breaking (CSB) in the Λ-nucleon strong interaction generates a charge dependence of Λ separation energies in mirror hypernuclei, which in the case of the A = 4 mirror hypernuclei 0+ ground states is sizable, ΔBΛJ=0 ≡BΛJ=0 (He4Λ) -BΛJ=0 (H4Λ) = 230 ± 90 keV, and of opposite sign to that induced by the Coulomb repulsion in light hypernuclei. Recent ab initio calculations of the (H4Λ, He4Λ) mirror hypernuclei 0g.s.+ and 1exc+ levels have demonstrated that a Λ -Σ0 mixing CSB model due to Dalitz and von Hippel (1964) is capable of reproducing this large value of ΔBΛJ=0. These calculations are discussed here with emphasis placed on the leading-order chiral EFT hyperon-nucleon Bonn-Jülich strong-interaction potential model used and the no-core shell-model calculational scheme applied. The role of one-pion exchange in producing sizable CSB level splittings in the A = 4 mirror hypernuclei is discussed.
Supersymmetric parameter space of family symmetries
Velasco-Sevilla, L.
2008-11-23
In this talk I have emphasized the effects of considering departures from the minimal flavour violation conditions, in the context of CMSSM-like theories, introduced by boundary conditions at GUT scale from Family Symmetries. In [1] we have shown the results of running these conditions down to EW, where constraints from fermion masses and CKM matrix elements have been used. Only when the expansion parameter in the sdown-squark sector is relatively large it is possible to relax the lower limit from b{yields}s{gamma} on the universal gaugino mass. The expansion parameter associated with the slepton sector needs to be smaller than the analogous in the sdown-squark sector in order to satisfy the bound imposed by the decay of {tau}{yields}{mu}{mu}.
Supersymmetric musings on the predictivity of family symmetries
Kadota, Kenji; Kersten, Joern; Velasco-Sevilla, Liliana
2010-10-15
We discuss the predictivity of family symmetries for the soft supersymmetry breaking parameters in the framework of supergravity. We show that unknown details of the messenger sector and the supersymmetry breaking hidden sector enter into the soft parameters, making it difficult to obtain robust predictions. We find that there are specific choices of messenger fields which can improve the predictivity for the soft parameters.
SU(3) family gauge symmetry and the axion
Appelquist, Thomas; Bai Yang; Piai, Maurizio
2007-04-01
We analyze the structure of a recently proposed effective field theory (EFT) for the generation of quark and lepton mass ratios and mixing angles, based on the spontaneous breaking of an SU(3) family gauge symmetry at a high scale F. We classify the Yukawa operators necessary to seed the masses, making use of the continuous global symmetries that they preserve. One global U(1), in addition to baryon number and electroweak hypercharge, remains unbroken after the inclusion of all operators required by standard model fermion phenomenology. An associated vacuum symmetry insures the vanishing of the first-family quark and charged-lepton masses in the absence of the family gauge interaction. If this U(1) symmetry is taken to be exact in the EFT, broken explicitly by only the QCD-induced anomaly, and if the breaking scale F is taken to lie in the range 10{sup 9}-10{sup 12} GeV, then the associated Nambu-Goldstone boson is a potential QCD axion.
A4 and CP symmetry and a model with maximal CP violation
NASA Astrophysics Data System (ADS)
Li, Cai-Chang; Lu, Jun-Nan; Ding, Gui-Jun
2016-12-01
We study a second CP symmetry compatible with the A4 flavor group, which interchanges the representations 1‧ and 1″. We analyze the lepton mixing patterns arising from the A4 and CP symmetry broken to residual subgroups Z3 and Z2 × CP in the charged lepton and neutrino sectors respectively. One phenomenologically viable mixing pattern is found, and it predicts maximal atmospheric mixing angle as well as maximal Dirac CP phase, trivial Majorana phases and the correlation sin2 θ12cos2 θ13 = 1 / 3. We construct a concrete model based on the A4 and CP symmetry, the above interesting mixing pattern is achieved, the observed charged lepton mass hierarchy is reproduced, and the reactor mixing angle θ13 is of the correct order.
Non-zero θ _{13} and leptonic CP phase with A_4 symmetry
NASA Astrophysics Data System (ADS)
Sruthilaya, M.; Mohanta, R.
2017-03-01
We consider a model based on A_4 symmetry to explain the phenomenon of neutrino mixing. The spontaneous symmetry breaking of A_4 symmetry leads to a co-bimaximal mixing matrix at leading order. We consider the effect of higher order corrections in neutrino sector and find that the mixing angles thus obtained, come well within the 3σ ranges of their experimental values. We study the implications of this formalism on the other phenomenological observables, such as CP violating phase, Jarlskog invariant and the effective Majorana mass |M_{ee}|. We also obtain the branching ratio of the lepton flavour violating decay μ → e γ in the context of this model and find that it can be less than its present experimental upper bound.
Quasi-degenerate neutrinos from an abelian family symmetry
Binetruy, P. |; Lavignac, S.; Petcov, S. |; Ramond, P.
1996-12-31
The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments.
Families of Quintic Calabi Yau 3 Folds with Discrete Symmetries
NASA Astrophysics Data System (ADS)
Doran, Charles; Greene, Brian; Judes, Simon
2008-06-01
At special loci in their moduli spaces, Calabi Yau manifolds are endowed with discrete symmetries. Over the years, such spaces have been intensely studied and have found a variety of important applications. As string compactifications they are phenomenologically favored, and considerably simplify many important calculations. Mathematically, they provided the framework for the first construction of mirror manifolds, and the resulting rational curve counts. Thus, it is of significant interest to investigate such manifolds further. In this paper, we consider several unexplored loci within familiar families of Calabi Yau hypersurfaces that have large but unexpected discrete symmetry groups. By deriving, correcting, and generalizing a technique similar to that of Candelas, de la Ossa and Rodriguez Villegas, we find a calculationally tractable means of finding the Picard Fuchs equations satisfied by the periods of all 3 forms in these families. To provide a modest point of comparison, we then briefly investigate the relation between the size of the symmetry group along these loci and the number of nonzero Yukawa couplings. We include an introductory exposition of the mathematics involved, intended to be accessible to physicists, in order to make the discussion self contained.
Soft A4→Z3 symmetry breaking and cobimaximal neutrino mixing
Ma, Ernest
2016-03-28
In this study, I propose a model of radiative charged-lepton and neutrino masses with A4 symmetry. The soft breaking of A4 to Z3 lepton triality is accomplished by dimension-three terms. The breaking of Z3 by dimension-two terms allows cobimaximal neutrino mixing (θ13 ≠ 0, θ23 = π/4, δcp=π/2) to be realized with only very small finite calculable deviations from the residual Z3 lepton triality. This construction solves a long-standing technical problem inherent in renormalizable A4 models since their inception.
New and trivial C P symmetry for extended A4 flavor
NASA Astrophysics Data System (ADS)
Nishi, C. C.
2016-05-01
The combination of νμ-ντ exchange together with C P conjugation in the neutrino sector (known as CPμ τ symmetry or μ τ reflection) is known to predict the viable pattern θ23=4 5 ° , a maximal Dirac C P phase, and trivial Majorana phases. We implement such a C P symmetry as a new C P symmetry in theories with A4 flavor. The implementation in a complete renormalizable model leads to a new form for the neutrino mass matrix that leads to further predictions: a normal hierarchical spectrum with a lightest mass and mβ β (0 ν 2 β ) of only few meV, and either ν1 or ν2 has opposite C P parity. An approximate Lμ-Lτ symmetry arises naturally and controls the flavor structure of the model. The light neutrino masses are generated by the extended seesaw mechanism with six right-handed neutrinos (RHNs). The requirement of negligible one-loop corrections to light neutrino masses, the validity of the extended seesaw approximation, and not too long-lived beyond-the-Standard-Model states to comply with big bang nucleosynthesis essentially restricts the parameters of the model to a small region: three relatively light right-handed neutrinos at the GeV scale, heavier neutrinos at the electroweak scale, and Yukawa couplings smaller than the electron Yukawa. Such small Yukawa couplings render these RHNs unobservable in terrestrial experiments.
The Lorentz extension as consequence of the family symmetry
Wang Haijun
2008-05-15
In this paper, we postulate an algebraic model to explain how the symmetry of three lepton species plays its role in the Lorentz extension. Inspired by the two-to-one mapping between the SL(2,C) group and the Lorentz group, we design a mapping between the SL(3,C) group, which displays the family symmetry, and a generalized Lorentz group. Following the conventional method, we apply the mapping results to the Dirac equation to discuss its transformation invariance, and it turns out that only when the vertex matrix {gamma}{sub {mu}} is extended to the combination c{sub 1}{gamma}{sub {mu}}+c{sub 2}{gamma}{sub 5}{gamma}{sub {mu}} can the Dirac-equation form be reserved. At the same time, we find that the Lorentz group has to be extended with an additional generator {gamma}{sub 5}. The generalized vertex matrix is helpful in understanding the axial-like form of weak interaction and the neutrino oscillations.
NASA Astrophysics Data System (ADS)
Low, Catherine I.; Volkas, Raymond R.
2003-08-01
Neutrino oscillation experiments (excluding the Liquid Scintillator Neutrino Detector experiment) suggest a tribimaximal form for the lepton mixing matrix. This form indicates that the mixing matrix is probably independent of the lepton masses, and suggests the action of an underlying discrete family symmetry. Using these hints, we conjecture that the contrasting forms of the quark and lepton mixing matrices may both be generated by such a discrete family symmetry. This idea is that the diagonalization matrices out of which the physical mixing matrices are composed have large mixing angles, which cancel out due to a symmetry when the CKM matrix is computed, but do not do so in the MNS case. However, in the cases where the Higgs bosons are singlets under the symmetry, and the family symmetry commutes with SU(2)L, we prove a no-go theorem: no discrete unbroken family symmetry can produce the required mixing patterns. We then suggest avenues for future research.
DERMATOGLYPHIC FLUCTUATING ASYMMETRY AND SYMMETRY IN FAMILIAL AND NON FAMILIAL SCHIZOPHRENIA
Ponnudurai, R.; Menon, M. Sarada; Muthu, M.
1997-01-01
Three dermatoglyphic traits, viz; finger patterns, finger ridge counts, and palmer a-b ridge counts of 57 (M-29; F-28) and 64 (M-29; F-35). Schizophrenics with and without positive family history respectively, and 65 controls (M-30, F-35), were analysed to determine their level of fluctuating asymmetry. Uniformly higher fluctuating asymmetry was observed in the loop ridge counts of second digits of males and females of both the groups of schizophrenics. Significantly increased symmetry in the right and left loop ridge counts in the fifth digits of the family history positive female patients was noted. Barring the family history positive female schizophrenics, the rest of the patient groups manifested higher fluctuating asymmetry in their right and left whorl ridge counts of fourth digits. Family history positive patients of both sexes and female patients with negative family history displayed higher fluctuating asymmetry in the right and left palmer a-b ridge counts. PMID:21584076
Dermatoglyphic fluctuating asymmetry and symmetry in familial and non familial schizophrenia.
Ponnudurai, R; Menon, M S; Muthu, M
1997-07-01
Three dermatoglyphic traits, viz; finger patterns, finger ridge counts, and palmer a-b ridge counts of 57 (M-29; F-28) and 64 (M-29; F-35). Schizophrenics with and without positive family history respectively, and 65 controls (M-30, F-35), were analysed to determine their level of fluctuating asymmetry.Uniformly higher fluctuating asymmetry was observed in the loop ridge counts of second digits of males and females of both the groups of schizophrenics. Significantly increased symmetry in the right and left loop ridge counts in the fifth digits of the family history positive female patients was noted. Barring the family history positive female schizophrenics, the rest of the patient groups manifested higher fluctuating asymmetry in their right and left whorl ridge counts of fourth digits. Family history positive patients of both sexes and female patients with negative family history displayed higher fluctuating asymmetry in the right and left palmer a-b ridge counts.
Generalized gauge U(1) family symmetry for quarks and leptons
NASA Astrophysics Data System (ADS)
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Zakeri, Mohammadreza
2017-03-01
If the standard model of quarks and leptons is extended to include three singlet right-handed neutrinos, then the resulting fermion structure admits an infinite number of anomaly-free solutions with just one simple constraint. Well-known examples satisfying this constraint are B- L, Lμ-Lτ, B- 3Lτ, etc. We derive this simple constraint, and discuss two new examples which offer some insights to the structure of mixing among quark and lepton families, together with their possible verification at the Large Hadron Collider.
Generalized gauge U(1) family symmetry for quarks and leptons
Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; ...
2017-01-11
If the standard model of quarks and leptons is extended to include three singlet right-handed neutrinos, then the resulting fermion structure admits an infinite number of anomaly-free solutions with just one simple constraint. Well-known examples satisfying this constraint are B–L, Lμ–Lτ, B–3Lτ, etc. Here, we derive this simple constraint, and discuss two new examples which offer some insights to the structure of mixing among quark and lepton families, together with their possible verification at the Large Hadron Collider.
Three-family left-right symmetry with low-scale seesaw mechanism
NASA Astrophysics Data System (ADS)
Reig, Mario; Valle, José W. F.; Vaquera-Araujo, C. A.
2017-05-01
We suggest a new left-right symmetric model implementing a low-scale seesaw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the "next" expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z ' gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.
Wen, Zhenchao; Sukegawa, Hiroaki; Furubayashi, Takao; Koo, Jungwoo; Inomata, Koichiro; Mitani, Seiji; Hadorn, Jason Paul; Ohkubo, Tadakatsu; Hono, Kazuhiro
2014-10-08
A 4-fold-symmetry hexagonal Ru emerging in epitaxial MgO/Ru/Co2 FeAl/MgO heterostructures is reported, in which an approximately Ru(022¯3) growth attributes to the lattice matching between MgO, Ru, and Co2 FeAl. Perpendicular magnetic anisotropy of the Co2 FeAl/MgO interface is substantially enhanced. The magnetic tunnel junctions (MTJs) incorporating this structure give rise to the largest tunnel magnetoresistance for perpendicular MTJs using low damping Heusler alloys.
Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s(±) wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface "hot-spots" in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s(±) wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.
Phenomenology in the Higgs triplet model with the A4 symmetry
NASA Astrophysics Data System (ADS)
Fukuyama, Takeshi; Sugiyama, Hiroaki; Tsumura, Koji
2010-08-01
We discuss the phenomenology of doubly and singly charged Higgs bosons [of SU(2)L-triplet fields] in the simplest A4-symmetric version of the Higgs triplet model. Mass eigenstates of these Higgs bosons are obtained explicitly from the Higgs potential. It is shown that their decays into a pair of leptons have unique flavor structures which can be tested at the LHC if some of their masses are below the TeV scale. Sizable decay rates for τ→μ¯ee and τ→ēμμ can be obtained naturally, while other τ→ℓ¯ℓ'ℓ'', μ→ēee, and ℓ→ℓ'γ, are almost forbidden in this model. Contributions of these Higgs bosons to the nonstandard interactions of neutrinos are also considered.
Neutrino mixing model based on an A4×Z3×Z4 flavor symmetry
NASA Astrophysics Data System (ADS)
Ky, Nguyen Anh; Quang Vǎn, Phi; Há»`ng Vân, Nguyen Thi
2016-11-01
A model of a neutrino mixing with an A4×Z3×Z4 flavor symmetry is suggested. In addition to the standard model fields, the present model contains six new fields that transform under different representations of A4×Z3×Z4. The model is constructed to slightly deviate from a tribimaximal model in agreement with the current experimental data; thus, all analysis can be done in the base of the perturbation method. Within this model, as an application, a relation between the mixing angles (θ12 , θ23 , θ13 ) and the Dirac C P -violation phase (δC P) is established. This relation allows a prediction of δC P and the Jarlskog parameter (JC P). The predicted value δC P is in the 1 σ region of the global fit for both the normal and inverse neutrino mass ordering and gives JC P to be within the bound |JC P|≤0.04 . For an illustration, the model is checked numerically and gives values of the neutrino masses (of the order of 0.1 eV) and the mixing angle θ13 (about 9°) very close to the current experimental data.
Neutrino phenomenology and scalar Dark Matter with A4 flavor symmetry in Inverse and type II seesaw
NASA Astrophysics Data System (ADS)
Mukherjee, Ananya; Das, Mrinal Kumar
2016-12-01
We present a TeV scale seesaw mechanism for exploring the dark matter and neutrino phenomenology in the light of recent neutrino and cosmology data. A different realization of the Inverse seesaw (ISS) mechanism with A4 flavor symmetry is being implemented as a leading contribution to the light neutrino mass matrix which usually gives rise to vanishing reactor mixing angle θ13. Using a non-diagonal form of Dirac neutrino mass matrix and 3σ values of mass square differences we parameterize the neutrino mass matrix in terms of Dirac Yukawa coupling "y". We then use type II seesaw as a perturbation which turns out to be active to have a non-vanishing reactor mixing angle without much disturbing the other neutrino oscillation parameters. Then we constrain a common parameter space satisfying the non-zero θ13, Yukawa coupling and the relic abundance of dark matter. Contributions of neutrinoless double beta decay are also included for standard as well as non-standard interaction. This study may have relevance in future neutrino and Dark Matter experiments.
D{sub 6} family symmetry and cold dark matter at CERN LHC
Kajiyama, Yuji; Kubo, Jisuke; Okada, Hiroshi
2007-02-01
We consider a nonsupersymmetric extension of the standard model with a family symmetry based on D{sub 6}xZ{sub 2}xZ{sub 2}, where one of Z{sub 2}'s is exactly conserved. This Z{sub 2} forbids the tree-level neutrino masses and simultaneously ensures the stability of cold dark matter candidates. From the assumption that cold dark matter is fermionic we can single out the D{sub 6} singlet right-handed neutrino as the best cold dark matter candidate. We find that an inert charged Higgs with a mass between 300 and 750 GeV decays mostly into an electron (or a positron) with a large missing energy, where the missing energy is carried away by the cold dark matter candidate. This will be a clean signal at LHC.
Integrability from point symmetries in a family of cosmological Horndeski Lagrangians
NASA Astrophysics Data System (ADS)
Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos
2017-07-01
For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaître-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa.
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less
Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.
2015-01-01
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s+− wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s+− wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375
Theory of nodal s^{±}-wave pairing symmetry in the Pu-based 115 superconductor family
Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.
2015-02-27
The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-T_{c} superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.
Citerne, Hélène L; Reyes, Elisabeth; Le Guilloux, Martine; Delannoy, Etienne; Simonnet, Franck; Sauquet, Hervé; Weston, Peter H; Nadot, Sophie; Damerval, Catherine
2017-02-01
The basal eudicot family Proteaceae (approx. 1700 species) shows considerable variation in floral symmetry but has received little attention in studies of evolutionary development at the genetic level. A framework for understanding the shifts in floral symmetry in Proteaceae is provided by reconstructing ancestral states on an upated phylogeny of the family, and homologues of CYCLOIDEA (CYC), a key gene for the control of floral symmetry in both monocots and eudicots, are characterized. Perianth symmetry transitions were reconstructed on a new species-level tree using parsimony and maximum likelihood. CYC-like genes in 35 species (31 genera) of Proteaceae were sequenced and their phylogeny was reconstructed. Shifts in selection pressure following gene duplication were investigated using nested branch-site models of sequence evolution. Expression patterns of CYC homologues were characterized in three species of Grevillea with different types of floral symmetry. Zygomorphy has evolved 10-18 times independently in Proteaceae from actinomorphic ancestors, with at least four reversals to actinomorphy. A single duplication of CYC-like genes occurred prior to the diversification of Proteaceae, with putative loss or divergence of the ProtCYC1 paralogue in more than half of the species sampled. No shifts in selection pressure were detected in the branches subtending the two ProtCYC paralogues. However, the amino acid sequence preceding the TCP domain is strongly divergent in Grevillea ProtCYC1 compared with other species. ProtCYC genes were expressed in developing flowers of both actinomorphic and zygomorphic Grevillea species, with late asymmetric expression in the perianth of the latter. Proteaceae is a remarkable family in terms of the number of transitions in floral symmetry. Furthermore, although CYC-like genes in Grevillea have unusual sequence characteristics, they display patterns of expression that make them good candidates for playing a role in the establishment
SSB of Scale Symmetry, Fermion Families and Quintessence without the Long-Range Force Problem
NASA Astrophysics Data System (ADS)
Guendelman, E. I.; Kaganovich, A. B.
We study a scale-invariant two measures theory where a dilaton field φ has no explicit potentials. The scale transformations include the translation of a dilaton φ-->φ+ const. The theory demonstrates a new mechanism for generation of the exponential potential: in the conformal Einstein frame (CEF), after SSB of scale invariance, the theory develops the exponential potential and, in general, the nonlinear kinetic term is generated as well. The scale symmetry does not allow the appearance of terms breaking the exponential shape of the potential that solves the problem of the flatness of the scalar field potential in the context of quintessential scenarios. As examples, two different possibilities for the choice of the dimensionless parameters are presented where the theory permits to get interesting cosmological results. For the first choice, the theory has standard scaling solutions for φ usually used in the context of the quintessential scenario. For the second choice, the theory allows three different solutions, one of which is a scaling solution with equation of state pφ=wρφ where w is predicted to be restricted by -1
He, Mingqian; Li, Jianfeng; Tandia, Adama; Sorensen, Michael; Zhang, Feixia; Fong, Hon Hang; Pozdin, Vladimir A.; Smilgies, Detlef-M.; Malliaras, George G.
2010-01-01
We investigated the relationship between molecular structure and field-effect hole mobility in a family of fused-ring polythiophene copolymers that we designed recently. The results suggest that a repeat unit that possesses a C2 axis perpendicular to the conjugation plane is important to achieve a high-mobility. Our finding is supported by a review of literature data: Many polymer semiconductors showing a hole or electron mobility >0.1 cm2/V·s feature a repeat unit with C2 symmetry; however exceptions have been found from some push – pull polymer structures. PMID:20526456
Parental perspectives of a 4-week family-based lifestyle intervention for children with obesity.
Pearson, Erin S; Irwin, Jennifer D; Burke, Shauna M; Shapiro, Sheree
2012-12-17
The childhood obesity epidemic is now recognized as one of the most serious public health challenges of the 21st century. Community-based behaviour modification treatment programs involving both children and their families are warranted. The purpose of this study was to explore the experiences of parents whose children participated in the Children's Health and Activity Modification Program (C.H.A.M.P.): a 4-week lifestyle program delivered as a day-camp for obese children at risk for type II diabetes and their families. Parents were required to attend four half-day education sessions during the intervention period. Seven focus groups were conducted immediately following the 4-week interventions offered in August 2008 and 2009. The perspectives of 38 parents representing 32 children aged 8-14 with obesity (i.e., body mass index > the 95th percentile) were shared. Overall, parents were pleased with the impact of the program and proud of their children's accomplishments (e.g., increased physical activity levels, enhanced self-esteem, weight loss). Several facilitators to success (e.g., social support; a positive environment) and barriers to its maintenance (e.g., time management; unsupportive family members) were identified, and recommendations were made for future programs. Although parents found the half-day sessions valuable, post-programmatic bi-monthly booster session adherence declined over the one-year follow-up period. Delivered as a 4-week day-camp, C.H.A.M.P. represents a unique approach to the treatment of childhood obesity. Future family-based interventions should consider avenues for intensifying the parental program component whilst employing strategies to promote parental adherence in service of enhancing long-term sustainability of health behaviour changes.
The discrete family symmetries as the possible solution to the flavour problem
NASA Astrophysics Data System (ADS)
Dziewit, B.; Holeczek, J.; Richter, M.; Zajac, S.; Zralek, M.
2017-07-01
In order to explain the fermions' masses and mixing parameters appearing in the lepton sector of the Standard Model, one proposes the extension of its symmetry. A discrete, non-Abelian subgroup of U(3) is added to the gauge group SU(3) C × SU(2) L × U(1) Y . Apart from that, one assumes the existence of one extra Higgs doublet. This article focuses mainly on the mathematical theorems and computational techniques which brought us to the results.
Expanding the neurologic phenotype of oculodentodigital dysplasia in a 4-generation Hispanic family.
Amador, Claudia; Mathews, Anne M; Del Carmen Montoya, Maria; Laughridge, Mary E; Everman, David B; Holden, Kenton R
2008-08-01
We report a 4-generation Hispanic family with oculodentodigital dysplasia whose members were found to have typical phenotypic characteristics of this disorder, as well as a variable expression of neurologic manifestations in multiple generations ranging from a mild spastic gait to moderate to severe spastic tetraparesis/quadriplegia with epilepsy and an abnormal brain and spinal cord magnetic resonance imaging result. Gene testing documented a previously reported missense mutation in GJA1 (connexin 43) exon 2 (c.389T>C;p.I130T). Our evaluation not only expands the phenotypes associated with GJA1 gene mutations but also demonstrates that a great degree of variability in neurological defects can exist within a single family without evidence of genetic anticipation. A genotype-phenotype correlation between the p.I130T mutation and neurologic dysfunction appears more likely with the addition of this report's neurologic and GJA1 gene mutation findings. These findings expand the neurologic phenotype and prognosis and underscore the importance of counseling families with oculodentodigital dysplasia about the possibility of neurologic involvement.
Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models
Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.
2016-04-25
In this study, to explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.
Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models
Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.
2016-04-25
In this study, to explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark andmore » lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.« less
Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models
Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.
2016-04-25
In this study, to explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.
Identification of a 4-coumarate:CoA ligase gene family in the moss, Physcomitrella patens.
Silber, Martina V; Meimberg, Harald; Ebel, Jürgen
2008-10-01
Since the early evolution of land plants from primitive green algae, phenylpropanoid compounds have played an important role. In the biosynthesis of phenylpropanoids, 4-coumarate:CoA ligase (4CL; EC 6.2.1.12) has a pivotal role at the divergence point from general phenylpropanoid metabolism to several major branch pathways. Although higher plant 4CLs have been extensively studied, little information is available on the enzymes from bryophytes. In Physcomitrella patens, we have identified a 4CL gene family consisting of four members, taking advantage of the available EST sequences and a draft sequence of the P. patens genome. The encoded proteins of three of the genes display similar substrate utilization profiles with highest catalytic efficiency towards 4-coumarate. Interestingly, the efficiency with cinnamate as substrate is in the same range as with caffeate and ferulate. The deduced proteins of the four genes share sequence identities between 78% and 86%. The intron/exon structures are pair wise similar. Pp4CL2 and Pp4CL3 each consists of four exons and three introns, whereas Pp4CL1 and Pp4CL4 are characterized each by five exons and four introns. Pp4CL1, Pp4CL2 and Pp4CL3 are expressed in both gametophore and protonema tissue of P. patens, unlike Pp4CL4 whose expression could not be demonstrated under the conditions employed. Phylogenetic analysis suggests an early evolutionary divergence of Pp4CL gene family members. Using Streptomyces coelicolor cinnamate:CoA ligase (ScCCL) as an outgroup, the P. patens 4CLs are clearly separated from the spermatophyte proteins, but are intercalated between the angiosperm 4CL class I and class II. A comparison of three P. patens subspecies from diverse geographical locations shows high sequence identities for the four 4CL isoforms.
Family nonuniversal U(1){sup '} gauge symmetries and b{yields}s transitions
Barger, Vernon; Everett, Lisa; Jiang Jing; Langacker, Paul; Liu Tao; Wagner, Carlos E. M.
2009-09-01
We present a correlated analysis for the {delta}B=1, 2 processes which occur via b{yields}s transitions within models with a family nonuniversal U(1){sup '}. We take a model-independent approach and only require family universal charges for the first and second generations and small fermion mixing angles. The results of our analysis show that within this class of models, the anomalies in B{sub s}-B{sub s} mixing and the time-dependent CP asymmetries of the penguin-dominated B{sub d}{yields}({pi},{phi},{eta}{sup '},{rho},{omega},f{sub 0})K{sub S} decays can be accommodated.
Family non-universal U(1)' gauge symmetries and b {r_arrow} s transitions.
Barger, V.; Everett, L.; Jiang, J.; Langacker, P.; Liu, T.; Wagner, C .E. M.; High Energy Physics; Univ. of Chicago; Univ. of Wisconsin at Madison; Inst. for Advanced Study
2009-01-01
We present a correlated analysis for the {Delta}B = 1, 2 processes which occur via b {yields} s transitions within models with a family nonuniversal U(1){prime}. We take a model-independent approach and only require family universal charges for the first and second generations and small fermion mixing angles. The results of our analysis show that within this class of models, the anomalies in B{sub s}-B{sub s}{sup -} mixing and the time-dependent CP asymmetries of the penguin-dominated B{sub d} {yields} ({pi},{psi},{eta}{prime},{rho},{omega},f{sub 0})K{sub S} decays can be accommodated.
Malone, Andrew F; Phelan, Paul J; Hall, Gentzon; Cetincelik, Umran; Homstad, Alison; Alonso, Andrea; Jiang, Ruiji; Lindsey, Thomas; Wu, Guanghong; Sparks, Matthew A; Smith, Stephen R; Webb, Nicholas J A; Kalra, Philip; Adeyemo, Adebowale; Shaw, Andrey S; Conlon, Peter J; Jennette, J Charles; Howell, David N; Winn, Michelle P; Gbadegesin, Rasheed A
2014-01-01
Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes including inherited genetic defects with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome, thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane findings. Secondary FSGS is known to develop in classic Alport Syndrome at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical findings at diagnosis were proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin glomerular basement membrane, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes. PMID:25229338
The double cover of the icosahedral symmetry group and quark mass textures
NASA Astrophysics Data System (ADS)
Everett, Lisa L.; Stuart, Alexander J.
2011-04-01
We investigate the idea that the double cover of the rotational icosahedral symmetry group is the family symmetry group in the quark sector. The icosahedral (A5) group was previously proposed as a viable family symmetry group for the leptons. To incorporate the quarks, it is highly advantageous to extend the group to its double cover, as in the case of tetrahedral (A4) symmetry. We provide the basic group theoretical tools for flavor model-building based on the binary icosahedral group I‧ and construct a model of the quark masses and mixings that yields many of the successful predictions of the well-known U (2) quark texture models.
Symmetry impedes symmetry discrimination.
Tjan, Bosco S; Liu, Zili
2005-12-16
Objects in the world, natural and artificial alike, are often bilaterally symmetric. The visual system is likely to take advantage of this regularity to encode shapes for efficient object recognition. The nature of encoding a symmetric shape, and of encoding any departure from it, is therefore an important matter in visual perception. We addressed this issue of shape encoding empirically, noting that a particular encoding scheme necessarily leads to a specific profile of sensitivity in perceptual discriminations. We studied symmetry discrimination using human faces and random dots. Each face stimulus was a frontal view of a three-dimensional (3-D) face model. The 3-D face model was a linearly weighted average (a morph) between the model of an original face and that of the corresponding mirror face. Using this morphing technique to vary the degree of asymmetry, we found that, for faces and analogously generated random-dot patterns alike, symmetry discrimination was worst when the stimuli were nearly symmetric, in apparent opposition to almost all studies in the literature. We analyzed the previous work and reconciled the old and new results using a generic model with a simple nonlinearity. By defining asymmetry as the minimal difference between the left and right halves of an object, we found that the visual system was disproportionately more sensitive to larger departures from symmetry than to smaller ones. We further demonstrated that our empirical and modeling results were consistent with Weber-Fechner's and Stevens's laws.
Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P
2015-12-31
The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25 K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.
Eichenbaum-Voline, Sophie; Olivier, Michael; Jones, Emma L.; Naoumova, Rossitza P.; Jones, Bethan; Gau, Brian; Seed, Mary; Betteridge,D. John; Galton, David J.; Rubin, Edward M.; Scott, James; Shoulders,Carol C.; Pennacchio, Len A.
2002-09-15
Combined hyperlipidemia (CHL) is a common disorder of lipidmetabolism that leads to an increased risk of cardiovascular disease. Thelipid profile of CHL is characterised by high levels of atherogeniclipoproteins and low levels of high-density-lipoprotein-cholesterol.Apolipoprotein (APO) A5 is a newly discovered gene involved in lipidmetabolism located within 30kbp of the APOA1/C3/A4 gene cluster. Previousstudies have indicated that sequence variants in this cluster areassociated with increased plasma lipid levels. To establish whethervariation at the APOA5 gene contributes to the transmission of CHL, weperformed linkage and linkage disequilibrium (LD) tests on a large cohortof families (n=128) with familial CHL (FCHL). The linkage data producedevidence for linkage of the APOA1/C3/A4/A5 genomic interval to FCHL (NPL= 1.7, P = 0.042). The LD studies substantiated these data. Twoindependent rare alleles, APOA5c.56G and APOC3c.386G of this gene clusterwere over-transmitted in FCHL (P = 0.004 and 0.007, respectively), andthis was associated with a reduced transmission of the most commonAPOA1/C3/A4/A5 haplotype (frequency 0.4425) to affected subjects (P =0.013). The APOA5c.56G allele was associated with increased plasmatriglyceride levels in FCHL probands, whereas the second, andindependent, APOC3c.386G allele was associated with increased plasmatriglyceride levels in FCHL pedigree founders. Thus, this allele (or anallele in LD) may mark a quantitative trait associated with FCHL, as wellas representing a disease susceptibility locus for the condition. Thisstudy establishes that sequence variation in the APOA1/C3/A4/A5 genecluster contributes to the transmission of FCHL in a substantialproportion of affected families, and that these sequence variants mayalso contribute to the lipid abnormalities of the metabolic syndrome,which is present in up to 40 percent of persons with cardiovasculardisease.
ERIC Educational Resources Information Center
Forsythe, Susan K.
2015-01-01
This article describes a project using Design Based Research methodology to ascertain whether a pedagogical task based on a dynamic figure designed in a Dynamic Geometry Software (DGS) program could be instrumental in developing students' geometrical reasoning. A dragging strategy which I have named "Dragging Maintaining Symmetry" (DMS)…
ERIC Educational Resources Information Center
Forsythe, Susan K.
2015-01-01
This article describes a project using Design Based Research methodology to ascertain whether a pedagogical task based on a dynamic figure designed in a Dynamic Geometry Software (DGS) program could be instrumental in developing students' geometrical reasoning. A dragging strategy which I have named "Dragging Maintaining Symmetry" (DMS)…
NASA Astrophysics Data System (ADS)
Nucci, M. C.
2016-09-01
We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.
Moubayidin, Laila; Østergaard, Lars
2015-09-01
985 I. 985 II. 986 III. 987 IV. 988 V. 989 989 References 989 SUMMARY: The development of multicellular organisms depends on correct establishment of symmetry both at the whole-body scale and within individual tissues and organs. Setting up planes of symmetry must rely on communication between cells that are located at a distance from each other within the organism, presumably via mobile morphogenic signals. Although symmetry in nature has fascinated scientists for centuries, it is only now that molecular data to unravel mechanisms of symmetry establishment are beginning to emerge. As an example we describe the genetic and hormonal interactions leading to an unusual bilateral-to-radial symmetry transition of an organ in order to promote reproduction.
Structure and Properties of High Symmetry Composites
1990-07-27
utilizing a 4-directional reinforcement. Reducing the close-to-cubic symmetry concept into practice in our laboratory by a three-dimensional braiding...modelled by utilizing the different elastic strain energy expressions produced by different combinations of symmetry elements. Symmetry in Materials The...rings is insignmicant. Utilizing the above assumptions, numerous textile structures possess holosymmetric cubic symmetry. This symmetry state is found in
Lofrano-Porto, Adriana; Barra, Gustavo B; Nascimento, Paula P; Costa, Patrícia G G; Garcia, Erica C; Vaz, Rodrigo F; Batista, Ana R T; Freitas, Ana C R de; Cherulli, Bruno L B; Bahmad, Fayez; Figueiredo, Larissa G; Neves, Francisco A R; Casulari, Luiz Augusto
2008-11-01
Pendred Syndrome (PS) is an autossomal recessive disorder characterized by sensorineural deafness, goiter and iodide organification defect. The hearing loss is associated with inner ear abnormalities, ranging from an isolated enlarged vestibular aqueduct (EVA) to a typical coclear dysplasia. Mutations in the gene that encodes pendrin (SLC26A4), a chloride/iodide transporter, have been shown to be associated with PS. We describe the clinical and molecular characteristics of a large consanguineous family harboring a mutation in the SLC26A4 gene. The proband was a 26-year-old deaf Brazilian woman who presented a bulky multinodular goiter and hypothyroidism since puberty. Five other siblings were deaf: one brother had a similar phenotype, three siblings also had goiters but normal thyroid function tests, and one brother had only a subtle thyroid enlargement. Other 4 siblings had no thyroid or hearing disorder. Parents were first degree cousins and had normal hearing. The mother was healthy, except for subclinical hypothyroidism; the father was deceased. A perchlorate test in the proband showed a discharge of 21% of the incorporated iodide 2h after the administration of 1g of KClO4. Audiological examinations showed profound hearing loss in all deaf subjects; CT and MRI of the temporal bones showed EVA in all of them. Genomic DNA was isolated from whole blood, from the 6 affected and 4 unaffected siblings, the mother and control. The coding region of the PDS gene (exons 2-21), including exon/intron boundaries, were amplified by PCR and sequenced. A single base-pair (T) deletion at position 1197 of exon 10 was detected in homozygous state in the 6 deaf siblings. The mother and 2 unaffected siblings were heterozygous for this mutation, which has been described by Everett et al. The 1197delT mutation is predicted to result in a frameshift and a truncated protein. The existence of PS phenocopies and intrafamilial phenotypic variability are well documented. The definite
Deng, Sheng; Xu, Hongbo; Yuan, Jinzhong; Xiao, Jingjing; Yuan, Lamei; Deng, Xiong; Guan, Liping; Zhu, Anding; Rong, Pengfei; Zhang, Jianguo; Deng, Hao
2016-01-01
Background & objectives: Alport syndrome (AS) is an inherited disorder characterized by glomerulonephritis and end-stage renal disease (ESRD). The aim of this study was to identify the gene responsible for the glomerulopathy in a Chinese family with autosomal dominant AS using exome sequencing. Methods: A 4-generation, 30-member Chinese Han family was enrolled in this study. Exome sequencing was conducted in the proband of the family, and then direct sequencing was performed in family members of the pedigree and 100 normal controls. Results: A novel frameshift mutation, c.3213delA (p.Gly1072Glufs*69), in the collagen type IV alpha-4 gene (COL4A4) was found to be the genetic cause. Neither sensorineural hearing loss nor ocular abnormalities were present in the patients of this family. Other clinical features, such as age of onset, age of ESRD occurring and disease severity, varied among the patients of this family. Interpretation & conclusions: A novel frameshift mutation, c.3213delA (p.Gly1072Glufs*69) in the COL4A4 gene, was identified in the Chinese pedigree with autosomal dominant AS. Our findings may provide new insights into the cause and diagnosis of AS and also have implications for genetic counselling. PMID:27934798
Deng, Sheng; Xu, Hongbo; Yuan, Jinzhong; Xiao, Jingjing; Yuan, Lamei; Deng, Xiong; Guan, Liping; Zhu, Anding; Rong, Pengfei; Zhang, Jianguo; Deng, Hao
2016-08-01
Alport syndrome (AS) is an inherited disorder characterized by glomerulonephritis and end-stage renal disease (ESRD). The aim of this study was to identify the gene responsible for the glomerulopathy in a Chinese family with autosomal dominant AS using exome sequencing. A 4-generation, 30-member Chinese Han family was enrolled in this study. Exome sequencing was conducted in the proband of the family, and then direct sequencing was performed in family members of the pedigree and 100 normal controls. A novel frameshift mutation, c.3213delA (p.Gly1072GlufsFNx0169), in the collagen type IV alpha-4 gene (COL4A4) was found to be the genetic cause. Neither sensorineural hearing loss nor ocular abnormalities were present in the patients of this family. Other clinical features, such as age of onset, age of ESRD occurring and disease severity, varied among the patients of this family. A novel frameshift mutation, c.3213delA (p.Gly1072GlufsFNx0169) in the COL4A4 gene, was identified in the Chinese pedigree with autosomal dominant AS. Our findings may provide new insights into the cause and diagnosis of AS and also have implications for genetic counselling.
ERIC Educational Resources Information Center
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
ERIC Educational Resources Information Center
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
Gray, Erin; Mayan, Maria; Lo, Sanchia; Jhangri, Gian; Wilson, Douglas
2012-03-01
This article assesses the partnership functioning of Families First Edmonton, a multisectored collaborative effort formed to determine the best health and recreation service delivery model for families with low income. Partners' evaluations of the collaborative process are examined across the formation, implementation, and maintenance stages of development. Statistical analyses of questionnaire data reveal a significant decrease in the partnership's capacity to maximize synergy-a main indicator of a successful collaborative process-in the implementation stage of the partnership. Implications for partnership practice are addressed.
Shen, Bin; Han, Xiuqun; Zhang, Junpeng; Rossiter, Stephen J; Zhang, Shuyi
2012-01-01
Frugivorous and nectarivorous bats are able to ingest large quantities of sugar in a short time span while avoiding the potentially adverse side-effects of elevated blood glucose. The glucose transporter 4 protein (GLUT4) encoded by the Slc2a4 gene plays a critical role in transmembrane skeletal muscle glucose uptake and thus glucose homeostasis. To test whether the Slc2a4 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Slc2a4 gene in a number of bat species, including four Old World fruit bats (Pteropodidae) and three New World fruit bats (Phyllostomidae). Our molecular evolutionary analyses revealed evidence that Slc2a4 has undergone a change in selection pressure in Old World fruit bats with 11 amino acid substitutions detected on the ancestral branch, whereas, no positive selection was detected in the New World fruit bats. We noted that in the former group, amino acid replacements were biased towards either Serine or Isoleucine, and, of the 11 changes, six were specific to Old World fruit bats (A133S, A164S, V377F, V386I, V441I and G459S). Our study presents preliminary evidence that the Slc2a4 gene has undergone adaptive changes in Old World fruit bats in relation to their ability to meet the demands of a high sugar diet.
Family symmetries and proton decay
Murayama, Hitoshi |; Kaplan, D.B.
1994-08-01
The proton decay modes p {yields} K{sup 0}e{sup +} and p {yields} K{sup 0}{mu}{sup +} may be visible in certain supersymmetric theories, and if seen would provide evidence for new flavor physics at extremely short distances. These decay modes can arise from the dimension five operator (Q{sub 1}Q{sub 1}Q{sub 2}L{sub 1,2}), where Q{sub i} and L{sub i} are i{sup th} generation quark and lepton superfields respectively. Such an operator is not generated at observable levels due to gauge or Higgs boson exchange in a minimal GUT. However in theories that explain the fermion mass hierarchy, it may be generated at the Planck scale with a strength such that the decays p {yields} K{sup 0}{ell}{sup +} are both compatible with the proton lifetime and visible at Super-Kamiokande. Observable proton decay can even occur in theories without unification.
None
2016-07-12
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not ârenormalizableâ. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged âvectorâ particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of
2011-02-24
- Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of
Dicyclic horizontal symmetries
NASA Astrophysics Data System (ADS)
Kong, Otto Cho Wing
In the very successful standard theory of particle physics, the occurrence of repeated quark and lepton flavors, and especially their peculiar mass spectrum, can be accommodated parametrically but is largely unexplained. The present dissertation is an investigation into dicyclic horizontal symmetries as a theory addressing this elusive problem of flavor, as well as some other related issues in particle physics. A horizontal symmetry is a supplement to the perspective based on the experimentally well-established standard model, and its (supersymmetric) unification theories. Dicyclic groups are a special class of discrete non- abelian groups. The most pressing part of the flavor problem in the standard model is the existence of three families of (fermionic) matter and the unnaturally large hierarchy among the parameters describing their masses and mixing. In particular, the top quark is singled out as the only fermion having a natural mass at electroweak breaking scale. While bottom and tau masses may be suppressed by the Higgs vacuum expectation value, the small masses of the other two families beg an explanation. The supersymmetric counterpart of the problem is the need for a high degree of degeneracy especially among the squarks of the lighter two families. We first analyze the phenomenologically-viable quark and squark mass matrix textures using a simple algebraic method, paying particular attention to a 2 + 1 family structure. These serve as inputs for our model building exercises. We next illustrate how the various theoretical and phenomenological constraints single out a gauged dicyclic group as the most appealing candidate for a horizontal symmetry and discuss systematically our major model building strategies. A few models obtained along this line are then presented. These include a supersymmetric SU(5) /otimes Q12 /otimes U(1) model that successfully produces a phenomenologically-viable mass matrix texture pattern for the quarks and squarks.
Towards a complete A4 × SU(5) SUSY GUT
NASA Astrophysics Data System (ADS)
Björkeroth, Fredrik; de Anda, Francisco J.; de Medeiros Varzielas, Ivo; King, Stephen F.
2015-06-01
We propose a renormalisable model based on A 4 family symmetry with an SU(5) grand unified theory (GUT) which leads to the minimal supersymmetric standard model (MSSM) with a ℤ9 × ℤ6 symmetry provides the fermion mass hierarchy in both the quark and lepton sectors, while ℤ {4/ R } symmetry is broken to ℤ {2/ R }, identified as usual R-parity. Proton decay is highly sup-pressed by these symmetries. The strong CP problem is solved in a similar way to the Nelson-Barr mechanism. We discuss both the A 4 and SU(5) symmetry breaking sectors, including doublet-triplet splitting, Higgs mixing and the origin of the μ term. The model provides an excellent fit (better than one sigma) to all quark and lepton (including neu-trino) masses and mixing with spontaneous CP violation. With the A 4 vacuum alignments, (0, 1, 1) and (1, 3, 1), the model predicts the entire PMNS mixing matrix with no free pa-rameters, up to a relative phase, selected to be 2π/3 from a choice of the nine complex roots of unity, which is identified as the leptogenesis phase. The model predicts a normal neutrino mass hierarchy with leptonic angles θ{13/ ι } ≈ 8.7∘, θ{12/ ι } ≈ 34∘, θ{23/ ι } ≈ 46∘ and an oscillation phase δ ι ≈ - 87∘.
Сhurbanov, Alexander Y; Karafet, Tatiana M; Morozov, Igor V; Mikhalskaia, Valeriia Yu; Zytsar, Marina V; Bondar, Alexander A; Posukh, Olga L
2016-01-01
Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies.
Karafet, Tatiana M.; Morozov, Igor V.; Mikhalskaia, Valeriia Yu.; Zytsar, Marina V.; Bondar, Alexander A.
2016-01-01
Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies. PMID:27082237
Continuous symmetry measures for complex symmetry group.
Dryzun, Chaim
2014-04-05
Symmetry is a fundamental property of nature, used extensively in physics, chemistry, and biology. The Continuous symmetry measures (CSM) is a method for estimating the deviation of a given system from having a certain perfect symmetry, which enables us to formulate quantitative relation between symmetry and other physical properties. Analytical procedures for calculating the CSM of all simple cyclic point groups are available for several years. Here, we present a methodology for calculating the CSM of any complex point group, including the dihedral, tetrahedral, octahedral, and icosahedral symmetry groups. We present the method and analyze its performances and errors. We also introduce an analytical method for calculating the CSM of the linear symmetry groups. As an example, we apply these methods for examining the symmetry of water, the symmetry maps of AB4 complexes, and the symmetry of several Lennard-Jones clusters.
Hidaka, Masafumi; Fushinobu, Shinya; Ohtsu, Naomi; Motoshima, Hidemasa; Matsuzawa, Hiroshi; Shoun, Hirofumi; Wakagi, Takayoshi
2002-09-06
The beta-galactosidase from an extreme thermophile, Thermus thermophilus A4 (A4-beta-Gal), is thermostable and belongs to the glycoside hydrolase family 42 (GH-42). As the first known structures of a GH-42 enzyme, we determined the crystal structures of free and galactose-bound A4-beta-Gal at 1.6A and 2.2A resolution, respectively. A4-beta-Gal forms a homotrimeric structure resembling a flowerpot. Each monomer has an active site located inside a large central tunnel. The N-terminal domain of A4-beta-Gal has a TIM barrel fold, as predicted from hydrophobic cluster analysis. The putative catalytic residues of A4-beta-Gal (Glu141 and Glu312) superimpose well with the catalytic residues of Escherichia coli beta-galactosidase. The environment around the catalytic nucleophile (Glu312) is similar to that in the case of E.coli beta-galactosidase, but the recognition mechanism for a substrate is different. Trp182 of the next subunit of the trimer constitutes a part of the active-site pocket, indicating that the trimeric structure is essential for the enzyme activity. Structural comparison with other glycoside hydrolases revealed that many features of the 4/7 superfamily are conserved in the A4-beta-Gal structure. On the basis of the results of 1H NMR spectroscopy, A4-beta-Gal was determined to be a "retaining" enzyme. Interestingly, the active site was similar with those of retaining enzymes, but the overall fold of the TIM barrel domain was very similar to that of an inverting enzyme, beta-amylase.
Sagong, Borum; Baek, Jeong-In; Lee, Kyu-Yup; Kim, Un-Kyung
2017-01-01
Objectives We aimed to identify the causative mutation for siblings in a Korean family with nonsyndromic hearing loss (HL) and enlarged vestibular aqueduct (EVA). The siblings were a 19-year-old female with bilateral profound HL and an 11-year-old male with bilateral moderately severe HL. Methods We extracted genomic DNA from blood samples of the siblings with HL, their parents, and 100 controls. We performed mutation analysis for SLC26A4 using direct sequencing. Results The two siblings were compound heterozygotes with the novel mutation p.I713LfsX8 and the previously described mutation p.H723R. Their parents had heterozygous mono-allelic mutations. Father had p.I713LfsX8 mutation as heterozygous, and mother had p.H723R mutation as heterozygous. However, novel mutation p.I713LfsX8 was not detected in 100 unrelated controls. Conclusion Both mutations identified in this study were located in the sulfate transporter and anti-sigma factor antagonist domain, the core region for membrane targeting of SulP/SLC26 anion transporters, which strongly suggests that failure in membrane trafficking by SLC26A4 is a direct cause of HL in this family. Our study could therefore provide a foundation for further investigations elucidating the SLC26A4-related mechanisms of HL. PMID:27384033
Symmetries, weak symmetries, and related solutions of the Grad-Shafranov equation
Cicogna, G.; Pegoraro, F.; Ceccherini, F.
2010-10-15
We discuss a new family of solutions of the Grad-Shafranov (GS) equation that describes D-shaped toroidal plasma equilibria with sharp gradients at the plasma edge. These solutions have been derived by exploiting the continuous Lie symmetry properties of the GS equation and in particular a special type of 'weak' symmetries. In addition, we review the continuous Lie symmetry properties of the GS equation and present a short but exhaustive survey of the possible choices for the arbitrary flux functions that yield GS equations admitting some continuous Lie symmetry. Particular solutions related to these symmetries are also discussed.
Escobar, Laura I; Simian, Christopher; Treard, Cyrielle; Hayek, Donia; Salvador, Carolina; Guerra, Norma; Matos, Mario; Medeiros, Mara; Enciso, Sandra; Camargo, María Dolores; Vargas-Poussou, Rosa
2016-05-01
Autosomal recessive distal renal tubular acidosis (dRTA) is a rare disease characterized by a hyperchloremic metabolic acidosis with normal anion gap, hypokalemia, hypercalciuria, hypocitraturia, nephrocalcinosis, and conserved glomerular filtration rate. In some cases, neurosensorial deafness is associated. dRTA is developed during the first months of life and the main manifestations are failure to thrive, vomiting, dehydration, and anorexia. Nine unrelated families were studied: seven children, a teenager, and an adult with dRTA. Hearing was preserved in four children. Coding regions of the genes responsible for recessive dRTA were analysed by Sanger sequencing. Molecular defects were found in the genes ATP6V1B1 and ATP6V0A4. We identified three homozygous variants in ATP6V1B: a frameshift mutation (p.Ile386Hisfs*56), a nucleotide substitution in exon 10 (p.Pro346Arg), and a new splicing mutation in intron 5. Three patients were homozygous for one novel (p.Arg743Trp) and one known (p.Asp411Tyr) missense mutations in the ATP6V0A4 gene. Three patients were compound heterozygous: one proband displayed two novel mutations, the frameshift mutation p.Val52Metfs*25, and a large deletion of exons 18-21; two probands showed the missense mutation p.Asp411Tyr and as a second mutation, p.Arg194Ter and c.1691+2dup, respectively. ATP6V0A4 and ATP6V1B1 genes were involved in recessive dRTA of Mexican families. All ATP6V1B1 mutations detected were homozygous and all patients developed sensorineural hearing loss (SNHL) early in infancy. ATP6V0A4 mutations were found in one infant and three children without SNHL, and in one teenager and one adult with SNHL confirming the phenotypic variability in this trait. The mutation p.Asp411Tyr detected in four Mexican families was due to a founder effect. Screening of these mutations could provide a rapid and valuable tool for diagnosis of dRTA in this population.
Dark Matter from Binary Tetrahedral Flavor Symmetry
NASA Astrophysics Data System (ADS)
Eby, David; Frampton, Paul
2012-03-01
Binary Tetrahedral Flavor Symmetry, originally developed as a quark family symmetry and later adapted to leptons, has proved both resilient and versatile over the past decade. In 2008 a minimal T' model was developed to accommodate quark and lepton masses and mixings using a family symmetry of (T'xZ2). We examine an expansion of this earlier model using an additional Z2 group that facilitates predictions of WIMP dark matter, the Cabibbo angle, and deviations from Tribimaximal Mixing, while giving hints at the nature of leptogenesis.
Discrete symmetries and de Sitter spacetime
Cotăescu, Ion I. Pascu, Gabriel
2014-11-24
Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.
Relativistic Pseudospin Symmetry
Ginocchio, Joseph N.
2011-05-06
We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.
Tri-bimaximal mixing from twisted Friedberg-Lee symmetry
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Takahashi, Ryo
2009-10-01
We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the μ- τ symmetry, and call this the twisted FL symmetry. Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing. In the first scheme, we suggest the semi-uniform translation of the FL symmetry. The second one is based on the S 3 permutation family symmetry. The breaking terms, which are twisted FL symmetric, are introduced. Some viable models in each scheme are also presented.
Searching for Radial Symmetry.
Jennings, Ben J; Kingdom, Frederick A A
2017-01-01
Symmetry is ubiquitous in the natural world. Numerous investigations, dating back over one hundred years, have explored the visual processing of symmetry. However, these studies have been concerned with mirror symmetry, overlooking radial (or rotational) symmetry, which is also prevalent in nature. Using a visual search paradigm, which approximates the everyday task of searching for an object embedded in background clutter, we have measured how quickly and how accurately human observers detect radially symmetric dot patterns. Performance was compared with mirror symmetry. We found that with orders of radial symmetry greater than 5, radial symmetry can be detected more easily than mirror symmetry, revealing for the first time that radial symmetry is a salient property of objects for human vision.
Kingdom, Frederick A. A.
2017-01-01
Symmetry is ubiquitous in the natural world. Numerous investigations, dating back over one hundred years, have explored the visual processing of symmetry. However, these studies have been concerned with mirror symmetry, overlooking radial (or rotational) symmetry, which is also prevalent in nature. Using a visual search paradigm, which approximates the everyday task of searching for an object embedded in background clutter, we have measured how quickly and how accurately human observers detect radially symmetric dot patterns. Performance was compared with mirror symmetry. We found that with orders of radial symmetry greater than 5, radial symmetry can be detected more easily than mirror symmetry, revealing for the first time that radial symmetry is a salient property of objects for human vision. PMID:28855979
The near-symmetry of proteins.
Bonjack-Shterengartz, Maayan; Avnir, David
2015-04-01
The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
NASA Astrophysics Data System (ADS)
Brading, Katherine; Castellani, Elena
2003-12-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
CP as a Symmetry of Symmetries
NASA Astrophysics Data System (ADS)
Trautner, Andreas
2017-07-01
It is explained that the Standard Model combined charge conjugation and parity transformation (CP) is a simultaneous complex conjugation outer automorphism transformation of gauge and space-time symmetries. Simple examples are given for the general concept of outer automorphisms (“symmetries of symmetries”), as well as for their possible actions on physical theories. It is highlighted that complex conjugation outer automorphisms do not, in general, exist for all symmetries. Examples are given for cases in which the physical CP transformation is violated as a consequence of requiring another symmetry. A toy model is illustrated in which CP is spontaneously violated in the broken phase of a continuous gauge symmetry, while an unbroken outer automorphism protects the topological vacuum angle at θ = 0.
Xia, Wei; Lu, Haiqiang; Xia, Mengjuan; Cui, Ying; Bai, Yingguo; Qian, Lichun; Luo, Huiying
2016-01-01
Few members of glycoside hydrolase (GH) family 113 have been characterized, and information on substrate recognition by and the catalytic mechanism of this family is extremely limited. In the present study, a novel endo-β-1,4-mannanase of GH 113, Man113A, was identified in thermoacidophilic Alicyclobacillus sp. strain A4 and found to exhibit both hydrolytic and transglycosylation activities. The enzyme had a broad substrate spectrum, showed higher activities on glucomannan than on galactomannan, and released mannobiose and mannotriose as the main hydrolysis products after an extended incubation. Compared to the only functionally characterized and structure-resolved counterpart Alicyclobacillus acidocaldarius ManA (AaManA) of GH 113, Man113A showed much higher catalytic efficiency on mannooligosaccharides, in the order mannohexaose ≈ mannopentaose > mannotetraose > mannotriose, and required at least four sugar units for efficient catalysis. Homology modeling, molecular docking analysis, and site-directed mutagenesis revealed the vital roles of eight residues (Trp13, Asn90, Trp96, Arg97, Tyr196, Trp274, Tyr292, and Cys143) related to substrate recognition by and catalytic mechanism of GH 113. Comparison of the binding pockets and key residues of β-mannanases of different families indicated that members of GH 113 and GH 5 have more residues serving as stacking platforms to support −4 to −1 subsites than those of GH 26 and that the residues preceding the acid/base catalyst are quite different. Taken as a whole, this study elucidates substrate recognition by and the catalytic mechanism of GH 113 β-mannanases and distinguishes them from counterparts of other families. PMID:26921423
Xia, Wei; Lu, Haiqiang; Xia, Mengjuan; Cui, Ying; Bai, Yingguo; Qian, Lichun; Shi, Pengjun; Luo, Huiying; Yao, Bin
2016-05-01
Few members of glycoside hydrolase (GH) family 113 have been characterized, and information on substrate recognition by and the catalytic mechanism of this family is extremely limited. In the present study, a novel endo-β-1,4-mannanase of GH 113, Man113A, was identified in thermoacidophilic Alicyclobacillus sp. strain A4 and found to exhibit both hydrolytic and transglycosylation activities. The enzyme had a broad substrate spectrum, showed higher activities on glucomannan than on galactomannan, and released mannobiose and mannotriose as the main hydrolysis products after an extended incubation. Compared to the only functionally characterized and structure-resolved counter part Alicyclobacillus acidocaldarius ManA (AaManA) of GH 113, Man113A showed much higher catalytic efficiency on mannooligosaccharides, in the order mannohexaose ≈ mannopentaose > mannotetraose > mannotriose, and required at least four sugar units for efficient catalysis. Homology modeling, molecular docking analysis, and site-directed mutagenesis revealed the vital roles of eight residues (Trp13, Asn90, Trp96, Arg97, Tyr196, Trp274, Tyr292, and Cys143) related to substrate recognition by and catalytic mechanism of GH 113. Comparison of the binding pockets and key residues of β-mannanases of different families indicated that members of GH 113 and GH 5 have more residues serving as stacking platforms to support -4 to -1 subsites than those of GH 26 and that the residues preceding the acid/base catalyst are quite different. Taken as a whole, this study elucidates substrate recognition by and the catalytic mechanism of GH 113 β-mannanases and distinguishes them from counterparts of other families. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Neutrinos and flavor symmetries
Tanimoto, Morimitsu
2015-07-15
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Generalized CP symmetries and special regions of parameter space in the two-Higgs-doublet model
Ferreira, P. M.; Haber, Howard E.; Silva, Joao P.
2009-06-01
We consider the impact of imposing generalized CP symmetries on the Higgs sector of the two-Higgs-doublet model, and identify three classes of symmetries. Two of these classes constrain the scalar potential parameters to an exceptional region of parameter space, which respects either a Z{sub 2} discrete flavor symmetry or a U(1) symmetry. We exhibit a basis-invariant quantity that distinguishes between these two possible symmetries. We also show that the consequences of imposing these two classes of CP symmetry can be achieved by combining Higgs family symmetries, and that this is not possible for the usual CP symmetry. We comment on the vacuum structure and on renormalization in the presence of these symmetries. Finally, we demonstrate that the standard CP symmetry can be used to build all the models we identify, including those based on Higgs family symmetries.
Chiral symmetry and chiral-symmetry breaking
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach
Cicogna, G.; Pegoraro, F.
2015-02-15
We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.
Supersymmetry, grand unification and flavor symmetry
NASA Astrophysics Data System (ADS)
Enkhbat, Tsedenbaljir
In this thesis I have presented the findings of my research pursued during my Ph.D. study. The purpose of this thesis was to study different theoretical ideas in high energy physics model building addressed primarily towards understanding the fermion mass problem and the gauge hierarchy problem. These include: Anomalous flavor U(1) symmetry and its experimental implications, finite GUT models with discrete family symmetry, and a product GUT model in a 2D deconstructed theory space. The second and third chapters of the thesis describe our study of lepton flavor violation (LFV) and electric dipole moments (EDM) induced by a flavor-dependent anomalous U(1) gauge symmetry of string origin. The models considered also address the fermion mass hierarchy problem successfully. We have shown that the U(1) sector induces significant LFV and EDMs through the SUSY breaking parameters. These effects arise via renormalization group evolution of the parameters in the momentum regime between the string and the anomalous U(1) breaking scale. The fourth chapter of the thesis contains our work on a concrete realization of SUSY breaking using interference between the anomalous U(1) flavor gauge symmetry and a strongly coupled SU(N c), leading to the so called Split SUSY spectrum where the sfermions and the gravitino acquire masses of order 105 ÷ 108 GeV while the gauginos and the Higgsinos have masses of order 102 ÷ 103 GeV. We have calculated the leading order supergravity corrections and have presented a class of explicit models of Split SUSY which are phenomenologically consistent. In the fifth chapter I have presented models for realistic quark masses and mixings in the context of finite SU(5) GUT wherein the beta functions for the gauge and the Yukawa couplings vanish to all orders in perturbation theory. The models presented are based on non-Abelian discrete symmetries. In the case of (Z4)3 x P and A4 symmetries we have found models finite to all order of perturbation theory
Pinsky, Mark; Casanova, David; Alemany, Pere; Alvarez, Santiago; Avnir, David; Dryzun, Chaim; Kizner, Ziv; Sterkin, Alexander
2008-01-30
We introduce a new mathematical tool for quantifying the symmetry contents of molecular structures: the Symmetry Operation Measures. In this approach, we measure the minimal distance between a given structure and the structure which is obtained after applying a selected symmetry operation on it. If the given operation is a true symmetry operation for the structure, this distance is zero; otherwise it gives an indication of how different the transformed structure is from the original one. Specifically, we provide analytical solutions for measures of all the improper rotations, S n p, including mirror symmetry and inversion, as well as for all pure rotations, C n p. These measures provide information complementary to the Continuous Symmetry Measures (CSM) that evaluate the distance between a given structure and the nearest structure which belongs to a selected symmetry point-group.
Bai, Yingguo; Wang, Jianshe; Zhang, Zhifang; Shi, Pengjun; Luo, Huiying; Huang, Huoqing; Luo, Chunliang; Yao, Bin
2010-06-01
An endo-beta-1,3(4)-glucanase gene, Agl9A, was cloned from Alicyclobacillus sp. A4 and expressed in Pichia pastoris. Its deduced amino acid sequence shared the highest identity (48%) with an endo-beta-1,4-glucansae from Alicyclobacillus acidocaldarius that belongs to family 9 of the glycoside hydrolases. The purified recombinant Agl9A exhibited relatively wide substrate specificity, including lichenan (109%), barley beta-glucan (100%), CMC-Na (15.02%), and laminarin (6.19%). The optimal conditions for Agl9A activity were pH 5.8 and 55 degrees C. The enzyme was stable over a broad pH range (>60% activity retained after 1-h incubation at pH 3.8-11.2) and at 60 degrees C (>70% activity retained after 1-h incubation). Agl9A was highly resistant to various neutral proteases (e.g., trypsin, alpha-chymotrypsin, and collagenase) and Neutrase 0.8L (Novozymes), a protease widely added to the mash. Under simulated mashing conditions, addition of Agl9A (20 U/ml) or a commercial xylanase (200 U/ml) reduced the filtration rate (26.71% and 20.21%, respectively) and viscosity (6.12% and 4.78%, respectively); furthermore, combined use of Agl9A (10 U/ml) and the xylanase (100 U/ml) even more effectively reduced the filtration rate (31.73%) and viscosity (8.79%). These characteristics indicate that Agl9A is a good candidate to improve glucan degradation in the malting and brewing industry.
Belokoneva, E. L. Shagivaleeva, I. K.
2012-05-15
A topology and symmetry analysis of structures of the Sr-vanadyl-vanadate family Sr{sub 2}VO(VO{sub 4}){sub 2} with a quasi-one-dimensional spin system, which is responsible for magnetic properties, is performed. Based on the known structure with space group I2/a, structures belonging to its subgroups with ordered vanadyl bonds in octahedra containing the magnetic V{sup +4} ion are derived. Structures with a polar orientation of vanadyl bonds in chains of octahedra correspond to space groups P2{sub 1}/c, P2/c, and Pc, and structures with a nonpolar orientation of vanadyl bonds correspond to space groups P2/a, P2, and P2/n. Variants of disordering of vanadyl bonds over two directions, namely, along the b and a axes, are considered for all structures. The predicted structures can be used for the diagnostics of phases obtained in this family and as initial information necessary for studies of magnetic properties of crystals.
CP symmetry in optical systems
NASA Astrophysics Data System (ADS)
Dana, Brenda; Bahabad, Alon; Malomed, Boris A.
2015-04-01
We introduce a model of a dual-core optical waveguide with opposite signs of the group-velocity dispersion in the two cores, and a phase-velocity mismatch between them. The coupler is embedded into an active host medium, which provides for the linear coupling of a gain-loss type between the two cores. The same system can be derived, without phenomenological assumptions, by considering the three-wave propagation in a medium with the quadratic nonlinearity, provided that the depletion of the second-harmonic pump is negligible. This linear system offers an optical realization of the charge-parity symmetry, while the addition of the intracore cubic nonlinearity breaks the symmetry. By means of direct simulations and analytical approximations, it is demonstrated that the linear system generates expanding Gaussian states, while the nonlinear one gives rise to broad oscillating solitons, as well as a general family of stable stationary gap solitons.
From physical symmetries to emergent gauge symmetries
NASA Astrophysics Data System (ADS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-10-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
Baryogenesis from symmetry principle
NASA Astrophysics Data System (ADS)
Fong, Chee Sheng
2016-01-01
In this work, a formalism based on symmetry which allows one to express asymmetries of all the particles in terms of conserved charges is developed. The manifestation of symmetry allows one to easily determine the viability of a baryogenesis scenario and also to identify the different roles played by the symmetry. This formalism is then applied to the standard model and its supersymmetric extension, which constitute two important foundations for constructing models of baryogenesis.
Interparental Aggression and Parent-Adolescent Salivary Alpha Amylase Symmetry
Gordis, Elana B.; Margolin, Gayla; Spies, Lauren; Susman, Elizabeth J.; Granger, Douglas A.
2010-01-01
The present study examined salivary alpha-amylase (sAA), a putative marker of adrenergic activity, in family members engaging in family conflict discussions. We examined symmetry among family members' sAA levels at baseline and in response to a conflict discussion. The relation between a history of interparental aggression on parent-adolescent sAA symmetry also was examined. Participants were 62 families with a mother, father, and biological child age 13-18 (n = 29 girls). After engaging in a relaxation procedure, families participated in a 15-minute triadic family conflict discussion. Participants provided saliva samples at post-relaxation/pre-discussion, immediately post-discussion, and at 10 and 20 min post-discussion. Participants also reported on interparental physical aggression during the previous year. Across the sample we found evidence of symmetry between mothers' and adolescents' sAA levels at baseline and around the discussion. Interparental aggression was associated with lower sAA levels among fathers. Interparental aggression also affected patterns of parent-child sAA response symmetry such that families reporting interparental aggression exhibited greater father-adolescent sAA symmetry than did those with no reports of interparental aggression. Among families with no interparental aggression history, we found consistent mother-adolescent symmetry. These differences suggest different patterns of parent-adolescent physiological attunement among families with interparental aggression. PMID:20096715
Internal symmetry in protein structures: prevalence, functional relevance and evolution.
Balaji, Santhanam
2015-06-01
Symmetry has been found at various levels of biological organization in the protein structural universe. Numerous evolutionary studies have proposed connections between internal symmetry within protein tertiary structures, quaternary associations and protein functions. Recent computational methods, such as SymD and CE-Symm, facilitate a large-scale detection of internal symmetry in protein structures. Based on the results from these methods, about 20% of SCOP folds, superfamilies and families are estimated to have structures with internal symmetry (Figure 1d). All-β and membrane proteins fold classes contain a relatively high number of unique instances of internal symmetry. In addition to the axis of symmetry, anecdotal evidence suggests that, the region of connection or contact between symmetric units could coincide with functionally relevant sites within a fold. General principles that underlie protein internal symmetry and their connections to protein structural integrity and functions remain to be elucidated.
Symmetries in Lagrangian Dynamics
ERIC Educational Resources Information Center
Ferrario, Carlo; Passerini, Arianna
2007-01-01
In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…
Symmetries in Lagrangian Dynamics
ERIC Educational Resources Information Center
Ferrario, Carlo; Passerini, Arianna
2007-01-01
In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…
ERIC Educational Resources Information Center
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
Symmetry and equivalence in Szekeres models
NASA Astrophysics Data System (ADS)
Georg, Ira; Hellaby, Charles
2017-06-01
We solve for all Szekeres metrics that have a single Killing vector. For quasihyperboloidal (ɛ =-1 ) metrics, we find that translational symmetries are possible, but only in metrics that have shell crossings somewhere, while metrics that can be made free of shell crossings only permit rotations. The quasiplanar metrics (ɛ =0 ) either have no Killing vectors, or they admit full planar symmetry. Single symmetries in quasispherical metrics (ɛ =+1 ) are all rotations. The rotations correspond to a known family of axially symmetric metrics, which for each ɛ value, are equivalent to each other. We consider Szekeres metrics in which the line of dipole extrema is required to be geodesic in the 3-space and show the same set of families emerges. We investigate when two Szekeres metrics are physically equivalent and complete a previous list of transformations of the arbitrary functions.
Neutrino mass and mixing with discrete symmetry.
King, Stephen F; Luhn, Christoph
2013-05-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A₄, S₄ and Δ(96).
Flavored Peccei-Quinn symmetry
NASA Astrophysics Data System (ADS)
Ahn, Y. H.
2015-03-01
In an attempt to uncover any underlying physics in the standard model (SM), we suggest a μ - τ power law in the lepton sector, such that relatively large 13 mixing angle with bilarge ones can be derived. On the basis of this, we propose a neat and economical model for both the fermion mass hierarchy problem of the SM and a solution to the strong charge parity (C P ) problem, in a way that no domain wall problem occurs, based on A4×U (1 )X symmetry in a supersymmetric framework. Here we refer to the global U (1 )X symmetry that can explain the above problems as "flavored Peccei-Quinn symmetry." In the model, a direct coupling of the SM gauge singlet flavon fields responsible for spontaneous symmetry breaking to ordinary quarks and leptons, both of which are charged under U (1 )X, comes to pass through Yukawa interactions, and all vacuum expectation values breaking the symmetries are connected to each other. So the scale of Peccei-Quinn symmetry breaking is shown to be roughly located around the 1 012 GeV section through its connection to the fermion masses. The model predictions are shown to lie on the testable regions in the very near future through on-going experiments for neutrino oscillation, neutrinoless double beta decay, and the axion. We examine the model predictions, arisen from the μ - τ power law, on leptonic C P violation, neutrinoless double beta decay, and atmospheric mixing angle, and show that the fermion mass and mixing hierarchies are in good agreement with the present data. Interestingly, we show the model predictions on the axion mass ma≃2.53 ×1 0-5 eV and the axion coupling to photon ga γ γ≃1.33 ×1 0-15 GeV-1 . And subsequently the square of the ratio between them is shown to be one or two orders of magnitude lower than that of the conventional axion model.
Quantum measurements with prescribed symmetry
NASA Astrophysics Data System (ADS)
Bruzda, Wojciech; Goyeneche, Dardo; Życzkowski, Karol
2017-08-01
We introduce a method to determine whether a given generalized quantum measurement is isolated or if it belongs to a family of measurements having the same prescribed symmetry. The technique proposed reduces to solving a linear system of equations in some relevant cases. As a consequence, we provide a simple derivation of the maximal family of symmetric informationally complete positive operator-valued measure SIC-POVM in dimension 3. Furthermore, we show that the following remarkable geometrical structures are isolated, so that free parameters cannot be introduced: (a) maximal sets of mutually unbiased bases in prime power dimensions from 4 to 16, (b) SIC-POVM in dimensions from 4 to 16, and (c) contextual Kochen-Specker sets in dimension 3, 4, and 6, composed of 13, 18, and 21 vectors, respectively.
A universal symmetry detection algorithm.
Maurer, Peter M
2015-01-01
Research on symmetry detection focuses on identifying and detecting new types of symmetry. The paper presents an algorithm that is capable of detecting any type of permutation-based symmetry, including many types for which there are no existing algorithms. General symmetry detection is library-based, but symmetries that can be parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected without using libraries. In many cases it is faster than existing techniques. Furthermore, it is simpler than most existing techniques, and can easily be incorporated into existing software. The algorithm can also be used with virtually any type of matrix-based symmetry, including conjugate symmetry.
Preserving spherical symmetry in axisymmetric coordinates for diffusion problems
Brunner, T. A.; Kolev, T. V.; Bailey, T. S.; Till, A. T.
2013-07-01
Persevering symmetric solutions, even in the under-converged limit, is important to the robustness of production simulation codes. We explore the symmetry preservation in both a continuous nodal and a mixed finite element method. In their standard formulation, neither method preserves spherical solution symmetry in axisymmetric (RZ) coordinates. We propose two methods, one for each family of finite elements, that recover spherical symmetry for low-order finite elements on linear or curvilinear meshes. This is a first step toward understanding achieving symmetry for higher-order elements. (authors)
Dynamical symmetries for fermions
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.
Castanos, Octavio
2010-09-10
The purpose of this course is to study the evolution of the symmetry concept and establish its influence in the knowledge of the fundamental laws of nature. Physicist have been using the symmetry concept in two ways: to solve problems and to search for new understanding of the world around us. In quantum physics symmetry plays a key role in gaining an understanding of the physical laws governing the behavior of matter and field systems. It provides, generally, a shortcut based on geometry for discovering the secrets of the Universe. Because it is believed that the laws of physics are invariant under discrete and continuous transformation operations of the space and time, there are continuous symmetries, for example, energy and momentum together with discrete ones corresponding to charge, parity and time reversal operations.
ERIC Educational Resources Information Center
Groetsch, C. W.
2005-01-01
Resistance destroys symmetry. In this note, a graphical exploration serves as a guide to a rigorous elementary proof of a specific asymmetry in the trajectory of a point projectile in a medium offering linear resistance.
Sekhar Chivukula
2016-07-12
The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was presentÂ at the classical level. Â Quantum Chromodynamics (QCD),Â the modern theoryÂ of the strong interactions, exemplify each ofÂ these possibilities.Â The interplayÂ of these effects determine theÂ spectrum of particles that we observeÂ and, ultimately, account forÂ 99% of the mass of ordinary matter.Â
NASA Astrophysics Data System (ADS)
Lovelady, Benjamin C.; Wheeler, James T.
2016-04-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
NASA Astrophysics Data System (ADS)
Golubitsky, Martin
2012-04-01
Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.
NASA Astrophysics Data System (ADS)
Castaños, Octavio
2010-09-01
The purpose of this course is to study the evolution of the symmetry concept and establish its influence in the knowledge of the fundamental laws of nature. Physicist have been using the symmetry concept in two ways: to solve problems and to search for new understanding of the world around us. In quantum physics symmetry plays a key role in gaining an understanding of the physical laws governing the behavior of matter and field systems. It provides, generally, a shortcut based on geometry for discovering the secrets of the Universe. Because it is believed that the laws of physics are invariant under discrete and continuous transformation operations of the space and time, there are continuous symmetries, for example, energy and momentum together with discrete ones corresponding to charge, parity and time reversal operations.
Gauge symmetry from decoupling
NASA Astrophysics Data System (ADS)
Wetterich, C.
2017-02-01
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
NASA Astrophysics Data System (ADS)
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
Coupled oscillators with parity-time symmetry
NASA Astrophysics Data System (ADS)
Tsoy, Eduard N.
2017-02-01
Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed.
NASA Astrophysics Data System (ADS)
Baldo, M.; Burgio, G. F.
2016-11-01
The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.
Lambert, Sophie; Maystadt, Isabelle; Boulanger, Sébastien; Vrielynck, Pascal; Destrée, Anne; Lederer, Damien; Moortgat, Stéphanie
2016-10-01
Mutations in MECP2 (MIM #312750), located on Xq28 and encoding a methyl CpG binding protein, are classically associated with Rett syndrome in female patients, with a lethal effect in hemizygous males. However, MECP2 mutations have already been reported in surviving males with severe neonatal-onset encephalopathy, or with X-linked intellectual disability associated with psychosis, pyramidal signs, parkinsonian features and macro-orchidism (PPM-X syndrome; MIM3 #300055). Here we report on the identification of the p.Ala140Val mutation in the MECP2 gene in 4 males and 3 females of a large Caucasian family affected with X-linked intellectual disability. Females present with mild cognitive impairment and speech difficulties. Males have moderate intellectual disability, impaired language development, friendly behavior, slowly progressive spastic paraparesis and dystonic movements of the hands. Two of them show microcephaly. The p.Ala140Val mutation is recurrent, as it was already described in 4 families with X-linked mental retardation and in three sporadic male patients with intellectual disability. We further delineate the phenotype associated with the p.Ala140Val mutation, illustrating a variable expressivity even within a given family, and we compare our patients with previous reported cases in the literature.
Topological phases with generalized global symmetries
NASA Astrophysics Data System (ADS)
Yoshida, Beni
2016-04-01
We present simple lattice realizations of symmetry-protected topological phases with q -form global symmetries where charged excitations have q spatial dimensions. Specifically, we construct d space-dimensional models supported on a (d +1 ) -colorable graph by using a family of unitary phase gates, known as multiqubit control-Z gates in quantum information community. In our construction, charged excitations of different dimensionality may coexist and form a short-range entangled state which is protected by symmetry operators of different dimensionality. Nontriviality of proposed models, in a sense of quantum circuit complexity, is confirmed by studying protected boundary modes, gauged models, and corresponding gapped domain walls. We also comment on applications of our construction to quantum error-correcting codes, and discuss corresponding fault-tolerant logical gates.
NASA Astrophysics Data System (ADS)
Cheong, Sang-Wook
2008-03-01
Symmetries govern Nature ubiquitously from the beauty of human faces to the local gauge invariance of quantum field theory. Magnetic order in frustrated magnets can occur without space inversion symmetry. When it relaxes to the magnetically-ordered configuration through exchange-striction, lattice can also loose inversion symmetry, leading to the presence of ferroelectric polarization. In these magnetically-driven ferroelectrics, dielectric properties turn out to be highly susceptible to applied magnetic fields. Both symmetric and antisymmetric exchange coupling can be involved in the exchange-striction. One form of symmetry often broken in Nature is the symmetry between left- and right-handedness. For example, the manner in which light propagates naturally selects one handedness, and is customarily described by a right-handed rule, depicting the relationship among the oscillating electric field, magnetic field and propagation vector of light. Chiral molecules also have a definite handedness, and given the preponderance of chiral molecules, it is not surprising that most complex proteins as well as their constituent amino acids are chiral. What is remarkable however, is that most of naturally occurring amino acids share the same chirality; only left-handedness. Such handedness, or chirality, appears to be a characteristic signature of life. In the multiferroic spinel CoCr2O4, conical magnetic order accompanies ferroelectric polarization as well as ferromagnetic moment. The relevant handedness and chirality in the multiferroic state will be also discussed.
NASA Astrophysics Data System (ADS)
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.
Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.
Adrianov, A V; Malakhov, V V
2001-02-01
Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment.
Symmetry in context: salience of mirror symmetry in natural patterns.
Cohen, Elias H; Zaidi, Qasim
2013-05-31
Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits.
Symmetry in context: Salience of mirror symmetry in natural patterns
Cohen, Elias H.; Zaidi, Qasim
2013-01-01
Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits. PMID:23729773
Seeing Science through Symmetry
NASA Astrophysics Data System (ADS)
Gould, L. I.
Seeing Through Symmetry is a course that introduces non-science majors to the pervasive influence of symmetry in science. The concept of symmetry is usedboth as a link between subjects (such as physics, biology, mathematics, music, poetry, and art) and as a method within a subject. This is done through the development and use of interactive multimedia learning environments to stimulate learning. Computer-based labs enable the student to further explore the concept by being gently led from the arts to science. This talk is an update that includes some of the latest changes to the course. Explanations are given on methodology and how a variety of interactive multimedia tools contribute to both the lecture and lab portion of the course (created in 1991 and taught almost every semester since then, including one in Sweden).
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Weakly broken galileon symmetry
Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
BOOK REVIEW: Symmetry Breaking
NASA Astrophysics Data System (ADS)
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Symmetry constraint for foreground extraction.
Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai
2014-05-01
Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.
Zwart, P.H.; Grosse-Kunstleve, R.W.; Adams, P.D.
2006-07-31
Relatively minor perturbations to a crystal structure can in some cases result in apparently large changes in symmetry. Changes in space group or even lattice can be induced by heavy metal or halide soaking (Dauter et al, 2001), flash freezing (Skrzypczak-Jankun et al, 1996), and Se-Met substitution (Poulsen et al, 2001). Relations between various space groups and lattices can provide insight in the underlying structural causes for the symmetry or lattice transformations. Furthermore, these relations can be useful in understanding twinning and how to efficiently solve two different but related crystal structures. Although (pseudo) symmetric properties of a certain combination of unit cell parameters and a space group are immediately obvious (such as a pseudo four-fold axis if a is approximately equal to b in an orthorhombic space group), other relations (e.g. Lehtio, et al, 2005) that are less obvious might be crucial to the understanding and detection of certain idiosyncrasies of experimental data. We have developed a set of tools that allows straightforward exploration of possible metric symmetry relations given unit cell parameters and a space group. The new iotbx.explore{_}metric{_}symmetry command produces an overview of the various relations between several possible point groups for a given lattice. Methods for finding relations between a pair of unit cells are also available. The tools described in this newsletter are part of the CCTBX libraries, which are included in the latest (versions July 2006 and up) PHENIX and CCI Apps distributions.
ERIC Educational Resources Information Center
Crumpecker, Cheryl
2003-01-01
Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)
Introduction to chiral symmetry
Koch, V.
1996-01-08
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.
Approximate symmetries of Hamiltonians
NASA Astrophysics Data System (ADS)
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
ERIC Educational Resources Information Center
Seidel, Judith Day
1998-01-01
Presents activities that demonstrate how technology can help students discover the mathematics in nature. Claims that these experiences can clarify students' vision of the symmetry of beauty that fills the world beyond the computer. Concludes that the use of flexible software tools helps students explore how a shape is affected when they change…
ERIC Educational Resources Information Center
Renshaw, Barbara S.
1986-01-01
Trademark designs provide a familiar yet innovative way for students to look at a number of mathematical concepts. How line and rotational symmetry can be presented using trademarks is the focus of this article. The emphasis is on the design of bulletin boards. (MNS)
NASA Astrophysics Data System (ADS)
Maes, Christian; Salazar, Alberto
2014-01-01
In contrast with the understanding of fluctuation symmetries for entropy production, similar ideas applied to the time-symmetric fluctuation sector have been less explored. Here we give detailed derivations of time-symmetric fluctuation symmetries in boundary-driven particle systems such as the open Kawasaki lattice gas and the zero-range model. As a measure of time-symmetric dynamical activity over time T we count the difference (Nℓ - Nr)/T between the number of particle jumps in or out at the left edge and those at the right edge of the system. We show that this quantity satisfies a fluctuation symmetry from which we derive a new Green-Kubo-type relation. It will follow then that the system is more active at the edge connected to the particle reservoir with the largest chemical potential. We also apply these exact relations derived for stochastic particle models to a deterministic case, the spinning Lorentz gas, where the symmetry relation for the activity is checked numerically.
New approach to flavor symmetry and an extended naturalness principle
NASA Astrophysics Data System (ADS)
Barr, S. M.
2010-09-01
A class of nonsupersymmetric extensions of the standard model is proposed in which there is a multiplicity of light scalar doublets in a multiplet of a nonabelian family group with the standard model Higgs doublet. Anthropic tuning makes the latter light, and consequently the other scalar doublets remain light because of the family symmetry. The family symmetry greatly constrains the pattern of flavor-changing neutral-current interactions (FCNC) and p decay operators coming from scalar-exchange. Such models show that useful constraints on model-building can come from an extended naturalness principle when the electroweak scale is anthropically tuned.
Structures and Symmetries in Physics
NASA Astrophysics Data System (ADS)
Rangacharyulu, Chary
Symmetries play a very significant role in describing the dynamics of physical structures and phenomena. While preserved symmetries enable physicists to establish systematics and predict regularities, broken symmetries open up new avenues of research as they admit new degrees of freedom. Quite often, physicists resort to mathematical symmetries to define the patterns and use metaphors to convey meaning. A caution is warranted not to take the symbolisms too literally and to be aware of limitations while borrowing physics language into other disciplines.
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Dynamical Symmetries in Classical Mechanics
ERIC Educational Resources Information Center
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Reflections on Symmetry and Proof
ERIC Educational Resources Information Center
Merrotsy, Peter
2008-01-01
The concept of symmetry is fundamental to mathematics. Arguments and proofs based on symmetry are often aesthetically pleasing because they are subtle and succinct and non-standard. This article uses notions of symmetry to approach the solutions to a broad range of mathematical problems. It responds to Krutetskii's criteria for mathematical…
Helical symmetry in linear systems
Bicak, Jiri; Schmidt, Bernd G.
2007-11-15
We investigate properties of solutions of the scalar wave equation and Maxwell's equations on Minkowski space with helical symmetry. Existence of local and global solutions with this symmetry is demonstrated with and without sources. The asymptotic properties of the solutions are analyzed. We show that the Newman-Penrose retarded and advanced scalars exhibit specific symmetries and generalized peeling properties.
NASA Astrophysics Data System (ADS)
de Boer, Jan; Freivogel, Ben; Kabir, Laurens; Lokhande, Sagar F.
2017-07-01
In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large N limit, the difference between two precursors is a BRST exact and ghost-free term. This definition of precursor ambiguities has the advantage that it generalizes to any gauge theory. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that the obtained ambiguity has the right number of parameters to explain the freedom to localize precursors within different spatial regions of the boundary order by order in the large N expansion.
PSEUDOSPIN SYMMETRY IN NUCLEI, SPIN SYMMETRY IN HADRONS
P. PAGE; T. GOLDMAN; J. GINOCCHIO
2000-08-01
Ginocchio argued that chiral symmetry breaking in QCD is responsible for the relativistic pseudospin symmetry in the Dirac equation, explaining the observed approximate pseudospin symmetry in sizable nuclei. On a much smaller scale, it is known that spin-orbit splittings in hadrons are small. Specifically, new experimental data from CLEO indicate small splittings in D-mesons. For heavy-light mesons we identify a cousin of pseudospin symmetry that suppresses these splittings in the Dirac equation, known as spin symmetry. We suggest an experimental test of the implications of spin symmetry for wave functions in electron-positron annihilation. We investigate how QCD can give rise to two different dynamical symmetries on nuclear and hadronic scales.
Chiral symmetry and pentaquarks
Dmitri Diakonov
2004-07-01
Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.
NASA Astrophysics Data System (ADS)
Bojowald, Martin
2016-07-01
The equations of Hamiltonian gravity are often considered ugly cousins of the elegant and manifestly covariant versions found in the Lagrangian theory. However, both formulations are fundamental in their own rights because they make different statements about the nature of spacetime and its symmetries. These implications, along with the history of their derivation and an introduction of recent mathematical support, are the topic of this essay.
NASA Technical Reports Server (NTRS)
Lopez, Hiram
1987-01-01
Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.
NASA Astrophysics Data System (ADS)
Christodoulides, Demetrios
2015-03-01
Interest in complex Hamiltonians has been rekindled after the realization that a wide class of non-Hermitian Hamiltonians can have entirely real spectra as long as they simultaneously respect parity and time reversal operators. In non-relativistic quantum mechanics, governed by the Schrödinger equation, a necessary but not sufficient condition for PT symmetry to hold is that the complex potential should involve real and imaginary parts which are even and odd functions of position respectively. As recently indicated, optics provides a fertile ground to observe and utilize notions of PT symmetry. In optics, the refractive index and gain/loss profiles play the role of the real and imaginary parts of the aforementioned complex potentials. As it has been demonstrated in several studies, PT-symmetric optical structures can exhibit peculiar properties that are otherwise unattainable in traditional Hermitian (conservative) optical settings. Among them, is the possibility for breaking this symmetry through an abrupt phase transition, band merging effects and unidirectional invisibility. Here we review recent developments in the field of -symmetric optics.
Re"CYC"ling molecular regulators in the evolution and development of flower symmetry.
Spencer, Victoria; Kim, Minsung
2017-08-31
Flower forms are both highly diverse and multifaceted. As well as varying in colour, size, organ number, and much more, flowers show different types of symmetry. Floral symmetry can be grouped into three main categories: asymmetry, bilateral symmetry and radial symmetry, characterised by zero, one, and multiple planes of symmetry, respectively. This review will first explore floral symmetry from a classical morphological view, then from a modern molecular perspective. The recent molecular work on symmetry in monocots and eudicots will be discussed, followed by an in-depth discussion into the evolution of CYC genes, particularly in the capitulum of the sunflower family (Asteraceae). Whilst recent studies on non-model species are helping to bring new light to this field, more species coverage is required to understand how traits such as bilateral symmetry have evolved so many times, and whether the same molecular regulators were recruited for this function. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
PREFACE: Symmetries in Science XV
NASA Astrophysics Data System (ADS)
Schuch, Dieter; Ramek, Michael
2012-08-01
Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There
Symmetries in laminated composite plates
NASA Technical Reports Server (NTRS)
Noor, A. K.
1976-01-01
The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.
Symmetry and Condensed Matter Physics
NASA Astrophysics Data System (ADS)
El-Batanouny, M.; Wooten, F.
2008-03-01
Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.
Symmetry methods for option pricing
NASA Astrophysics Data System (ADS)
Davison, A. H.; Mamba, S.
2017-06-01
We obtain a solution of the Black-Scholes equation with a non-smooth boundary condition using symmetry methods. The Black-Scholes equation along with its boundary condition are first transformed into the one dimensional heat equation and an initial condition respectively. We then find an appropriate general symmetry generator of the heat equation using symmetries and the fundamental solution of the heat equation. The symmetry generator is chosen such that the boundary condition is left invariant; the symmetry can be used to solve the heat equation and hence the Black-Scholes equation.
Invariants of broken discrete symmetries.
Kalozoumis, P A; Morfonios, C; Diakonos, F K; Schmelcher, P
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Invariants of Broken Discrete Symmetries
NASA Astrophysics Data System (ADS)
Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
1985-08-01
Symmetry representations can be computed robustly from input images and provide intuitive descriptions of elongated regions. For exam- pie , Figure 5...upper left), a squash (upper right), a pecan (lower left), and an eggplant (lower right). - 77 L 7 04 lI..’. Figure 4-15. Analysis of the images from...agree with my perceptions: some of the figures it analyzes as clearly one region seem to me to be on the borderline, e.g. the pecan in Figures 16 and
NASA Astrophysics Data System (ADS)
Strocchi, Franco
One of the most powerful ideas of modern theoretical physics is the mechanism of spontaneous symmetry breaking. It is at the basis of most of the recent achievements in the description of phase transitions in Statistical Mechanics as well as of collective phenomena in solid state physics. It has also made possible the unification of weak, electromagnetic and strong interactions in elementary particle physics. Philosophically, the idea is very deep and subtle (this is probably why its exploitation is a rather recent achievement) and the popular accounts do not fully do justice to it.
NASA Astrophysics Data System (ADS)
Lee, Allen; Lee, Ha Youn; Kardar, Mehran
2005-09-01
Locomotion of bacteria by actin polymerization and in vitro motion of spherical beads coated with a protein catalyzing polymerization are examples of active motility. Starting from a simple model of forces locally normal to the surface of a bead, we construct a phenomenological equation for its motion. The singularities at a continuous transition between moving and stationary beads are shown to be related to the symmetries of its shape. Universal features of the phase behavior are calculated analytically and confirmed by simulations. Fluctuations in velocity are shown to be generically non-Maxwellian and correlated to the shape of the bead.
Looking for symmetry: fixational eye movements are biased by image mirror symmetry.
Meso, Andrew Isaac; Montagnini, Anna; Bell, Jason; Masson, Guillaume S
2016-09-01
Humans are highly sensitive to symmetry. During scene exploration, the area of the retina with dense light receptor coverage acquires most information from relevant locations determined by gaze fixation. We characterized patterns of fixational eye movements made by observers staring at synthetic scenes either freely (i.e., free exploration) or during a symmetry orientation discrimination task (i.e., active exploration). Stimuli could be mirror-symmetric or not. Both free and active exploration generated more saccades parallel to the axis of symmetry than along other orientations. Most saccades were small (<2°), leaving the fovea within a 4° radius of fixation. Analysis of saccade dynamics showed that the observed parallel orientation selectivity emerged within 500 ms of stimulus onset and persisted throughout the trials under both viewing conditions. Symmetry strongly distorted existing anisotropies in gaze direction in a seemingly automatic process. We argue that this bias serves a functional role in which adjusted scene sampling enhances and maintains sustained sensitivity to local spatial correlations arising from symmetry.
Looking for symmetry: fixational eye movements are biased by image mirror symmetry
Montagnini, Anna; Bell, Jason; Masson, Guillaume S.
2016-01-01
Humans are highly sensitive to symmetry. During scene exploration, the area of the retina with dense light receptor coverage acquires most information from relevant locations determined by gaze fixation. We characterized patterns of fixational eye movements made by observers staring at synthetic scenes either freely (i.e., free exploration) or during a symmetry orientation discrimination task (i.e., active exploration). Stimuli could be mirror-symmetric or not. Both free and active exploration generated more saccades parallel to the axis of symmetry than along other orientations. Most saccades were small (<2°), leaving the fovea within a 4° radius of fixation. Analysis of saccade dynamics showed that the observed parallel orientation selectivity emerged within 500 ms of stimulus onset and persisted throughout the trials under both viewing conditions. Symmetry strongly distorted existing anisotropies in gaze direction in a seemingly automatic process. We argue that this bias serves a functional role in which adjusted scene sampling enhances and maintains sustained sensitivity to local spatial correlations arising from symmetry. PMID:27306681
NASA Technical Reports Server (NTRS)
Rosensteel, George
1995-01-01
Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.
Applications of chiral symmetry
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Extended Friedberg-Lee hidden symmetries, quark masses, and CP violation with four generations
NASA Astrophysics Data System (ADS)
Bar-Shalom, Shaouly; Oaknin, David; Soni, Amarjit
2009-07-01
Motivated in part by the several observed anomalies involving CP asymmetries of B and Bs decays, we consider the standard model with a 4th sequential family (SM4) which seems to offer a rather simple resolution. We initially assume T-invariance by taking the up and down-quark 4×4 mass matrix to be real. Following Friedberg and Lee (FL), we then impose a hidden symmetry on the unobserved (hidden) up and down-quark SU(2) states. The hidden symmetry for four generations ensures the existence of two zero-mass eigenstates, which we take to be the (u,c) and (d,s) states in the up and down-quark sectors, respectively. Then, we simultaneously break T-invariance and the hidden symmetry by introducing two phase factors in each sector. This breaking mechanism generates the small quark masses mu, mc and md, ms, which, along with the orientation of the hidden symmetry, determine the size of CP-violation in the SM4. For illustration we choose a specific physical picture for the hidden symmetry and the breaking mechanism that reproduces the observed quark masses, mixing angles and CP-violation, and at the same time allows us to further obtain very interesting relations/predictions for the mixing angles of t and t'. For example, with this choice we get Vtd˜(Vcb/Vcd-Vts/Vus)+O(λ2) and Vt'b˜Vt'd·(Vcb/Vcd), Vtb'˜Vt'd·(Vts/Vus), implying that Vt'd>Vt'b, Vtb'. We furthermore find that the Cabibbo angle is related to the orientation of the hidden symmetry and that the key CP-violating quantity of our model at high energies, JSM4≡Im(VtbVt'b⋆Vt'b'Vtb'⋆), which is the high-energy analogue of the Jarlskog invariant of the SM, is proportional to the light-quark masses and the measured Cabibbo-Kobayashi-Maskawa quark-mixing matrix angles: |JSM4|˜A3λ5×(mu/mt+mc/mt'-md/mb+ms/mb')˜10-5, where Ã0.81 and λ=0.2257 are the Wolfenstein parameters. Other choices for the orientation of the hidden symmetry and/or the breaking mechanism may lead to different physical outcomes. A
Symmetry and structure of SrTiO3 nanotubes
NASA Astrophysics Data System (ADS)
Evarestov, Robert
2011-06-01
The full study of perovskite type nanotubes with square morphology is given for the first time. The line symmetry group L = ZP (a product of one axial point group P and one infinite cyclic group Z of generalized translations) of single-walled (SW) and double-walled (DW) SrTiO3 nanotubes (NT) is considered. The nanotube is defined by the square lattice translation vector L = l1a + l2b and chiral vector R = n1a + n2b, (l1, l2, n1 and n2 are integers). The nanotube of the chirality (n1,n2) is obtained by folding the (001) slabs of two- layers (with the layer group P4mm) and of three layers (with the layer group P4/mmm) in a way that the chiral vector R becomes circumference of the nanotube. Due to the orthogonality relation (RL) = 0, l1/l2 = -n2/n1 i.e. SW nanotubes with square morphology are commensurate for any rolling vector R(n1,n2). For SW (n,0) NTs the line symmetry groups belong to family 11 (T^Dnh) and are n/mmm or for even and odd n, respectively. For SW (n,n) NTs the line symmetry groups (2n)n/mcm belong to family 13 (T2n1 Dnh). The line symmetry group of a double-wall nanotube is found as intersection L2 = Z2P2 = (L ∩ L') of the symmetry groups L and L' of its single-wall constituents as earlier considered for DW CNTs. The symmetry group of DWNT (n,0)@M(n,0) belongs to the same family 11 (T^Dnh) as its SW constituents. The symmetry group of DWNT (n,n)@M(n,n) depends on the parity of M. For DW NTs with odd M, the line symmetry groups are the same as for their SW constituents and belong to family 13 (T2n1 Dnh). For even M, the rotations about screw axis of order 2n are changed by rotations around pure rotation axis of order n so that DW NT line symmetry groups belong to family 11 (T^Dnh). Commensurate STO DWNTs (n1,0)@(n2,0) and (n1, n1)@(n2, n2) belong to family 11 (T^Dnh) with n equal to the greatest common divisor of n1 and n2.
Wilczek, Frank
2005-01-20
Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).
[Symmetries and homologies of Geomerida].
Zarenkov, N A
2005-01-01
The symmetry of Earths life cover (Geomerida) was described generally by L.A. Zenkevich (1948). It coincides with the symmetry of geographic cover. Its symmetry elements are equatorial plane and three meridonal planes corresponded to oceans and continents. The hypsographic curve with point of inflection (symmetry element) on 3 km depth line should be added to these elements. The plankton and benthos communities as well as fauna of taxons are distributed symmetrically according these symmetry elements. Zenkevich model was successfully extrapolated to plankton by K.V. Beklemishev (1967, 1969) and to abyssal benthos by Sokolova M.N. (1986). The plankton communities inhabiting symmetrically located macrocirculations are considered as homologous. The character of circulation determines the trophic structure of plankton and benthos. In the case of high productivity of plankton, benthic grazing animals feed on sedimented particles have bilateral symmetric mouthpart. Otherwise they have to acquire food from water column and use cyclomeric mouthpart. Thus, the symmetry of macrocirculations determines the symmetry distribution of benthic animals with two major symmetries of mouthparts. The peculiarities of organisms' symmetry are discussed in the context of Pierre Curie principle and the ideas of K.V. Beklemishev concerning evolution of morphological axes.
Symmetry breaking in confined fluids.
Ruckenstein, Eli; Berim, Gersh O
2010-02-26
The recent progress in the theoretical investigation of the symmetry breaking (the existence of a stable state of a system, in which the symmetry is lower than the symmetry of the system itself) for classical and quantum fluids is reviewed. The emphasis is on the conditions which cause symmetry breaking in the density distribution for one component fluids and binary mixtures confined in a closed nanoslit between identical solid walls. The existing studies have revealed that two kinds of symmetry breaking can occur in such systems. First, a one-dimensional symmetry breaking occurs only in the direction normal to the walls as a fluid density profile asymmetric with respect of the middle of the slit and uniform in any direction parallel to the walls. Second, a two-dimensional symmetry breaking occurs in the fluid density distribution which is nonuniform in one of the directions parallel to the walls and asymmetrical in the direction normal to the walls. It manifests through liquid bumps and bridges in the fluid density distribution. For one component fluids, conditions of existence of symmetry breaking are provided in terms of the average fluid density, strength of fluid-solid interactions, distance at which the solid wall generates a hard core repulsion, and temperature. In the case of binary mixtures, the occurrence of symmetry breaking also depends on the composition of the confined mixtures. Copyright 2010 Elsevier B.V. All rights reserved.
From Molecular Point Group Symmetry to Space Group Symmetry.
ERIC Educational Resources Information Center
Hathaway, Brian
1979-01-01
Describes undergraduate chemistry curricula in which the student is asked to either build a model of one asymmetric unit in the unit cell and to indicate the positions of the symmetry-related units by putting in key atoms, or to identify on a prebuild model the asymetric and symmetry-related units. (BB)
Charge Symmetry Breaking in Light Hypernuclei
NASA Astrophysics Data System (ADS)
Achenbach, Patrick
2017-01-01
Recently precise Λ-hyperon ground-state binding energies in light hypernuclei have been determined with novel techniques, in particular with a new generation of magnetic spectrometers. The precision spectroscopy results of Λ hypernuclei isomultiplets contributed considerably to the study of charge symmetry breaking in the strong interaction. At the Mainz Microtron MAMI the high-resolution spectroscopy of decay-pions in strangeness electro-production was used to extract the ground state binding energy in ^4_ΛH. This value was compared to the value of the isospin mirror hypernucleus ^4_ΛHe to confirm a sizable breaking of the charge symmetry. A synopsis for the values in the A = 7, 8, 9, and 10 hypernuclei suggests small or vanishing effects in other isomultiplets. The full understanding of the large and spin-dependent effect in the A = 4 mirror pair remains one of the open issues of hypernuclear physics.
Symmetry and surface symmetry energies in finite nuclei
Lee, S. J.; Mekjian, A. Z.
2010-12-15
A study of the properties of the symmetry energy of nuclei is presented based on density-functional theory. Calculations for finite nuclei are given so that the study includes isospin-dependent surface symmetry considerations as well as isospin-independent surface effects. Calculations are done at both zero and nonzero temperature. It is shown that the surface symmetry energy term is the most sensitive to the temperature while the bulk energy term is the least sensitive. It is also shown that the temperature-dependence terms are insensitive to the force used and even more insensitive to the existence of neutron skin. Results for a symmetry energy with both volume and surface terms are compared with a symmetry energy with only volume terms along the line of {beta} stability. Differences of several MeV are shown over a good fraction of the total mass range in A. Also given are calculations for the bulk, surface and Coulomb terms.
Symmetry reduction related with nonlocal symmetry for Gardner equation
NASA Astrophysics Data System (ADS)
Ren, Bo
2017-01-01
Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.
NASA Astrophysics Data System (ADS)
Weber, S. V.; Casey, D. T.; Pino, J. E.; Rowley, D. P.; Smalyuk, V. A.; Spears, B. K.; Tipton, R. E.
2013-10-01
NIF CH ablator symmetry capsules are filled with hydrogen or helium gas. SymCaps have more moderate convergence ratios ~ 15 as opposed to ~ 35 for ignition capsules with DT ice layers, and better agreement has been achieved between simulations and experimental data. We will present modeling of capsules with CD layers and tritium fill, for which we are able to match the dependence of DT yield on recession distance of the CD layer from the gas. We can also match the performance of CH capsules with D3 He fill. The simulations include surface roughness, drive asymmetry, a mock-up of modulation introduced by the tent holding the capsule, and an empirical prescription for ablator-gas atomic mix. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
Discrete flavour symmetries from the Heisenberg group
NASA Astrophysics Data System (ADS)
Floratos, E. G.; Leontaris, G. K.
2016-04-01
Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular, on the PSL2 (p) groups which contain the phenomenologically interesting cases.
Symmetry in Sign Language Poetry
ERIC Educational Resources Information Center
Sutton-Spence, Rachel; Kaneko, Michiko
2007-01-01
This paper considers the range of ways that sign languages use geometric symmetry temporally and spatially to create poetic effect. Poets use this symmetry in sign language art to highlight duality and thematic contrast, and to create symbolic representations of beauty, order and harmony. (Contains 8 tables, 14 figures and 6 notes.)
ERIC Educational Resources Information Center
Hancock, Karen
2007-01-01
In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…
Symmetry in the basic sciences
NASA Astrophysics Data System (ADS)
Toole, Joseph E.; Jensen, David W.; Rogers, Mark E.; Chernek, Paul J.; Erstfeld, Thomas E.
1989-04-01
The basic mathematical theory behind plane symmetry groups is presented. This theory is then applied in classifying the symmetry of bounded figures, frieze patterns and wallpaper patterns. Recently developed algorithms are included to help analyze complex designs. Symmetry operations relevant to 3-D crystallography are discussed. In particular, the seven crystal systems that classify the 32 crystallographic point groups are described. These are then used to construct the Bravais lattices. The role is investigated of symmetry in biological forms. Specifically, work on growth and form of molluscan shells is reviewed with an attempt to explain the consequences of that growth and form to the natural history of the Chambered Nautilus and its ancestors. The central role symmetry has increasingly played in physics is looked at by examining the Principle of Least Action and the invariance of the Lagrangian under a transformation. Noether's Theorem guarantees that a conservation law is associated with each of these symmetries. Examples include the conservation of energy, linear momentum, and angular momentum, as well as the purely quantum mechanical symmetry of invariance under an exchange operation. A brief look at gauge theories is the final example of how symmetry has become a guiding principle in the formulation of new theories.
ERIC Educational Resources Information Center
Hancock, Karen
2007-01-01
In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…
Asymptotic symmetries on Killing horizons
NASA Astrophysics Data System (ADS)
Koga, Jun-Ichirou
2001-12-01
We investigate asymptotic symmetries regularly defined on spherically symmetric Killing horizons in Einstein theory with or without the cosmological constant. These asymptotic symmetries are described by asymptotic Killing vectors, along which the Lie derivatives of perturbed metrics vanish on a Killing horizon. We derive the general form of the asymptotic Killing vectors and find that the group of asymptotic symmetries consists of rigid O(3) rotations of a horizon two-sphere and supertranslations along the null direction on the horizon, which depend arbitrarily on the null coordinate as well as the angular coordinates. By introducing the notion of asymptotic Killing horizons, we also show that local properties of Killing horizons are preserved not only under diffeomorphisms but also under nontrivial transformations generated by the asymptotic symmetry group. Although the asymptotic symmetry group contains the Diff(S1) subgroup, which results from supertranslations dependent only on the null coordinate, it is shown that the Poisson brackets algebra of the conserved charges conjugate to asymptotic Killing vectors does not acquire nontrivial central charges. Finally, by considering extended symmetries, we discuss the fact that unnatural reduction of the symmetry group is necessary in order to obtain the Virasoro algebra with nontrivial central charges, which is not justified when we respect the spherical symmetry of Killing horizons.
Symmetry in Sign Language Poetry
ERIC Educational Resources Information Center
Sutton-Spence, Rachel; Kaneko, Michiko
2007-01-01
This paper considers the range of ways that sign languages use geometric symmetry temporally and spatially to create poetic effect. Poets use this symmetry in sign language art to highlight duality and thematic contrast, and to create symbolic representations of beauty, order and harmony. (Contains 8 tables, 14 figures and 6 notes.)
Symmetries in geology and geophysics.
Turcotte, D L; Newman, W I
1996-12-10
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth's topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Symmetry and repetition in perspective.
van der Vloed, Gert; Csathó, Arpád; van der Helm, Peter A
2005-09-01
Although ecologically relevant, perspective views of symmetries and repetitions have hardly been investigated. Any symmetry or repetition that is not oriented orthogonally to the line of sight yields perspective distortions on the retina. In this study, these distortions are analyzed in terms of first-order structures (i.e., virtual lines between corresponding points) and second-order structures (i.e., correlation quadrangles formed by two virtual lines). In the literature, these structures have been proposed to guide the detection of fron to parallel symmetry and repetition. But what about perspective views? First, the analysis in this study shows that perspective distorts the retinal first-order and second-order structures of symmetry and repetition differently. Second, the results of two experiments on this distortion difference suggest that, in perspective views, symmetry and repetition detection is not preceded by normalization but occurs directly on the basis of the retinal first-order and second-order structures.
PREFACE: Symmetries in Science XVI
NASA Astrophysics Data System (ADS)
2014-10-01
-session, topics ranging from theoretical chemistry and molecular physics via fundamental problems in quantum theory to thermodynamics, nonlinear dynamics, soliton theory and finally cosmology, were examined and lively discussed. Nearly all the talks can also be viewed on the conference website. The majority of participants contributed to these Proceedings but some were unable to do so as their results were either previously submitted or published elsewhere. We refer to: · Quesne C 2013, J. Math. Phys. 54, 102102. · Spera M 2013, (Nankai Series in Pure, Applied Mathematics and Theoretical Physics): 11 Symmetries and Groups in Contemporary Physics: pp. 593-598 Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics Tianjin, China, 20 - 26 August 2012 (World Scientific, Singapore) · Snobl L and Winternitz P 2014, Classification and Identification of Lie Algebras, CRM Monograph Series 33 (Montreal) ISBN-10: 0-8218-4355-9, ISBN-13: 978-0-8218-4355-0 (http://www.ams.org/bookstore?fn=20&arg1=crmmseries&ikey=CRMM-33). Our personal thanks to Daniel and family! Endless support from the Schenk Family who, among other things, sponsored (yet again) the entire conference dinner (including wines and banquet hall) meant that some costs could be alleviated. We could therefore assist various colleagues from economically-weak countries, despite the lack of external funding. A financial deficit meant we would have had to forego the Conference Proceedings, published in previous years by IOP. After long deliberations, and with donations from Gerhard Berssenbrügge, Dr. Dr. Stephan Hauk and Dr. Volker Weisswange, this could be facilitated. We are very grateful to these private donors for their generous and wholehearted support. The staff of Collegium Mehrerau is also to be thanked for their hospitality. Finally, our sincere thanks to Yvette not only for her preparatory work and support during the conference, but also for her persistent interest and help in producing
PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard
NASA Astrophysics Data System (ADS)
Bittner, S.; Dietz, B.; Günther, U.; Harney, H. L.; Miski-Oglu, M.; Richter, A.; Schäfer, F.
2012-01-01
We demonstrate the presence of parity-time (PT) symmetry for the non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP. An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.
Functional Symmetry of Endomembranes
2007-01-01
In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral (“early”) and centralized (“late”) structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived “mirror compartments” at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation. PMID:17267686
Peskin, M.E.
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
Symmetry algebras of linear differential equations
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Shirokov, I. V.
1992-07-01
The local symmetries of linear differential equations are investigated by means of proven theorems on the structure of the algebra of local symmetries of translationally and dilatationally invariant differential equations. For a nonparabolic second-order equation, the absence of nontrivial nonlinear local symmetries is proved. This means that the local symmetries reduce to the Lie algebra of linear differential symmetry operators. For the Laplace—Beltrami equation, all local symmetries reduce to the enveloping algebra of the algebra of the conformal group.
Nonlinear electromagnetic fields and symmetries
NASA Astrophysics Data System (ADS)
Barjašić, Irena; Gulin, Luka; Smolić, Ivica
2017-06-01
We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.
PREFACE: Symmetries in Science XIV
NASA Astrophysics Data System (ADS)
Schuch, Dieter; Ramek, Michael
2010-04-01
also included in these Proceedings. It was especially rewarding and greatly appreciated that symposium-founder Bruno Gruber attended all the sessions and that Dr. Hubert Regner, a distinguished official of the provincial administration and ardent supporter of the symposia for over twenty years, honoured us with a visit and an encouraging address to the participants. We wish to express our sincere gratitude to the local community, particularly the Schenk Family and the staff of Collegium Mehrerau for the selfless friendship, generosity and kind hospitality they offered our gathering. It made a lasting impression on participants and guests alike and provided an excellent basis for fruitful scientific discussions and personal interactions. This and the positive resonance from participants have encouraged us to take the experiment a step further to "Symmetries in Science 2011"! Thanks also to Yvette for continuous and reliable support. The conference and proceedings would probably not have materialized without her. Frankfurt am Main and Graz, June 2010 Dieter Schuch Michael Ramek Conference photograph
Partial Dynamical Symmetry in Molecules
NASA Astrophysics Data System (ADS)
Ping, Jia-Lun; Chen, Jin-Quan
1997-03-01
It is shown that any Hamiltonian involving only one- and two-bond interactions for a molecule withnbonds and having a point groupPas its symmetry group may have theSn⊃Ppartial dynamical symmetry, i.e., the Hamiltonian can be solved analytically for a part of the states, called the unique states. For example, theXY6molecule has theS6⊃Ohpartial dynamical symmetry. The model of Iachello and Oss forncoupled anharmonic oscillators is revisited in terms of the partial dynamical symmetry. The energies are obtained analytically for the nine unique levels of theXY6molecule and the structures of the eigenstates are disclosed for the first time, while for non-unique states they are obtained by diagonalizing the Hamiltonian in theS6⊃Ohsymmetry adapted basis with greatly reduced dimension.
Classification of spacetimes with symmetry
NASA Astrophysics Data System (ADS)
Hicks, Jesse W.
Spacetimes with symmetry play a critical role in Einstein's Theory of General Relativity. Missing from the literature is a correct, usable, and computer accessible classification of such spacetimes. This dissertation fills this gap; specifically, we. i) give a new and different approach to the classification of spacetimes with symmetry using modern methods and tools such as the Schmidt method and computer algebra systems, resulting in ninety-two spacetimes; ii) create digital databases of the classification for easy access and use for researchers; iii) create software to classify any spacetime metric with symmetry against the new database; iv) compare results of our classification with those of Petrov and find that Petrov missed six cases and incorrectly normalized a significant number of metrics; v) classify spacetimes with symmetry in the book Exact Solutions to Einstein's Field Equations Second Edition by Stephani, Kramer, Macallum, Hoenselaers, and Herlt and in Komrakov's paper Einstein-Maxwell equation on four-dimensional homogeneous spaces using the new software.
Symmetries from the solution manifold
NASA Astrophysics Data System (ADS)
Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco
2015-07-01
We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.
Electroweak Symmetry Breaking: With Dynamics
Chivukula, R. Sekhar
2005-03-22
In this note I provide a brief description of models of dynamical electroweak symmetry breaking, including walking technicolor, top-color assisted technicolor, the top-quark seesaw model, and little higgs theories.
Broken Symmetries and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.
Some symmetry group aspects of a perfect plane plasticity system
NASA Astrophysics Data System (ADS)
Senashov, S. I.; Yakhno, A.
2013-09-01
In this paper, all the known classical solutions of a plane perfect plasticity system under the Saint Venant-Tresca-von Mises yield criterion are associated with some group of point symmetries. The equations of slip-line families for all solutions are constructed, which allows one to explicitly determine the boundaries of the plastic areas. It is shown how one can determine the compatible velocity solution for known stresses by considering symmetries. Some invariant solutions of velocities for Prandtl stresses are constructed. The mechanical sense of the obtained velocity fields is discussed. To the blessed memory of our teacher D D Ivlev
Unifying left-right symmetry and 331 electroweak theories
NASA Astrophysics Data System (ADS)
Reig, Mario; Valle, José W. F.; Vaquera-Araujo, C. A.
2017-03-01
We propose a realistic theory based on the SU (3)c ⊗ SU (3)L ⊗ SU (3)R ⊗ U(1)X gauge group which requires the number of families to match the number of colors. In the simplest realization neutrino masses arise from the canonical seesaw mechanism and their smallness correlates with the observed V-A nature of the weak force. Depending on the symmetry breaking path to the Standard Model one recovers either a left-right symmetric theory or one based on the SU (3)c ⊗ SU (3)L ⊗ U (1) symmetry as the ;next; step towards new physics.
Possible violations of spacetime symmetries
NASA Astrophysics Data System (ADS)
Urrutia, Luis
2016-10-01
The identification of symmetries has played a fundamental role in our understanding of physical phenomena. Nevertheless, in most cases such symmetries constitute only a zeroth-order approximation and they need to be broken so that the predictions of the theory are consistent with experimental observation. In particular, the almost sacred CPT and Lorentz symmetries, which are certainly part of the fundamental ideas of modern physics, need to be probed experimentally. Recently, such efforts have been intensified because different theoretical approaches aiming to understand the microstructure of space-time suggest the possibility that such symmetries could present minute violations. Up to now, and with increasing experimental sensitivities, no signs of violation have been found. Nevertheless, we observe that even the persistence of such negative results will have a profound impact. On one hand, they will provide those symmetries with a firm experimental basis. On the other, they will set stringent experimental bounds to be compared with the possible emergence of such violations in quantum gravity models based upon a discrete structure of space. We present a very general perspective of the research on Lorentz symmetry breaking, together with a review of a few specific topics.
Symmetry in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.
1993-01-01
Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is
Symmetry in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.
1993-01-01
Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is
Comparing dualities and gauge symmetries
NASA Astrophysics Data System (ADS)
De Haro, Sebastian; Teh, Nicholas; Butterfield, Jeremy N.
2017-08-01
We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the 'flavour' that two dual theories are 'closer in content' than you might think. For both points, we adopt a simple conception of a duality as an 'isomorphism' between theories: more precisely, as appropriate bijections between the two theories' sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being 'gauge related' in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be 'gauge'. The second point (Sections 4-6) is much more specific. We give a result about gauge/gravity duality that shows its relation to gauge symmetries (in the physical sense of symmetry transformations that are spacetime-dependent) to be subtler than you might expect. For gauge theories, you might expect that the duality bijections relate only gauge-invariant quantities and states, in the sense that gauge symmetries in one theory will be unrelated to any symmetries in the other theory. This may be so in general; and indeed, it is suggested by discussions of Polchinski and Horowitz. But we show that in gauge/gravity duality, each of a certain class of gauge symmetries in the gravity/bulk theory, viz. diffeomorphisms, is related by the duality to a position-dependent symmetry of the gauge/boundary theory.
Anticoherence of spin states with point-group symmetries
NASA Astrophysics Data System (ADS)
Baguette, D.; Damanet, F.; Giraud, O.; Martin, J.
2015-11-01
We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group-symmetric sets of points. We provide three different characterizations of anticoherence and establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic local operations with classical communication. We then investigate in detail the case of small numbers of qubits and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.
Quantum graphs: PT -symmetry and reflection symmetry of the spectrum
NASA Astrophysics Data System (ADS)
Kurasov, P.; Majidzadeh Garjani, B.
2017-02-01
Not necessarily self-adjoint quantum graphs—differential operators on metric graphs—are considered. Assume in addition that the underlying metric graph possesses an automorphism (symmetry) P . If the differential operator is P T -symmetric, then its spectrum has reflection symmetry with respect to the real line. Our goal is to understand whether the opposite statement holds, namely, whether the reflection symmetry of the spectrum of a quantum graph implies that the underlying metric graph possesses a non-trivial automorphism and the differential operator is P T -symmetric. We give partial answer to this question by considering equilateral star-graphs. The corresponding Laplace operator with Robin vertex conditions possesses reflection-symmetric spectrum if and only if the operator is P T -symmetric with P being an automorphism of the metric graph.
Localization of Nonlocal Symmetries and Symmetry Reductions of Burgers Equation
NASA Astrophysics Data System (ADS)
Wu, Jian-Wen; Lou, Sen-Yue; Yu, Jun
2017-05-01
The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method. The auto-Bäcklund transformation and group invariant solutions are obtained via the localization procedure for the nonlocal residual symmetries. Furthermore, the interaction solutions of the solition-Kummer waves and the solition-Airy waves are obtained. Supported by the Global Change Research Program China under Grant No. 2015CB953904, the National Natural Science Foundations of China under Grant Nos. 11435005, 11175092, and 11205092, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213, and K. C. Wong Magna Fund in Ningbo University
Symmetry in finite phase plane
NASA Astrophysics Data System (ADS)
Zak, J.
2010-03-01
The known symmetries in one-dimensional systems are inversion and translations. These symmetries persist in finite phase plane, but a novel symmetry arises in view of the discrete nature of the coordinate xi and the momentum pi : xi and pi can undergo permutations. Thus, if xi assumes M discrete values, i = 0, 1,2,..., M - 1, a permutation will change the order of the set x0,x1,..., xM-1 into a new ordered set. Such a symmetry element does not exist for a continuous x-coordinate in an infinite phase plane. Thus, in a finite phase plane, translations can be replaced by permutations. This is also true for the inversion operator. The new permutation symmetry has been used for the construction of conjugate representations and for the splitting of the M-dimensional vector space into independent subspaces. This splitting is exhaustive in the sense that if M = iMi with Mi being prime numbers, the M-dimensional space splits into M1,M2,...Mn-dimensional independent subspaces. It is shown that following this splitting one can design new potentials with appropriate constants of motion. A related problem is the Weyl-Heisenberg group in the M-dimensional space which turns into a direct product of its subgroups in the Mi-dimensional subspaces. As an example we consider the case of M = 8.
Symmetry Guide to Ferroaxial Transitions
NASA Astrophysics Data System (ADS)
Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.
2016-04-01
The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .
Fearful symmetry in aposematic plants.
Lev-Yadun, Simcha
2011-11-01
Symmetry has been proposed to increase the efficiency of visual aposematic displays in animals, and I suggest that it may also be true for many aposematic spiny or poisonous plants. For instance, in the very spiny plant taxa cacti, Aloe sp., Agave sp. and Euphorbia sp., which have been proposed to be aposematic because of their colorful spine system, the shoots, and in cacti, the spiny fruits as well, are usually radially symmetric. Moreover, in the radial symmetric shoots of Agave and Aloe their individual spiny leaves are also bilaterally symmetric. Spiny or poisonous fruits of various other taxa, the symmetric spiny leaf rosettes and flowering spiny heads of many Near Eastern species of the Asteraceae and other taxa, and poisonous colorful flowers in taxa that were proposed to be aposematic are also symmetric. Thus, in plants, like in animals, symmetry seems to be commonly associated with visual aposematism and probably contributes to its effectiveness. Symmetry may stem from developmental constraints, or like in flowers, have other signaling functions. However, because of the better perception of symmetry by animals it may exploit inherited modes of animal sensing that probably result in paying more attention to symmetric shapes. All these possible alternatives do not negate the probable deterring role of symmetry in plant aposematism.
Structural Symmetry in Membrane Proteins.
Forrest, Lucy R
2015-01-01
Symmetry is a common feature among natural systems, including protein structures. A strong propensity toward symmetric architectures has long been recognized for water-soluble proteins, and this propensity has been rationalized from an evolutionary standpoint. Proteins residing in cellular membranes, however, have traditionally been less amenable to structural studies, and thus the prevalence and significance of symmetry in this important class of molecules is not as well understood. In the past two decades, researchers have made great strides in this area, and these advances have provided exciting insights into the range of architectures adopted by membrane proteins. These structural studies have revealed a similarly strong bias toward symmetric arrangements, which were often unexpected and which occurred despite the restrictions imposed by the membrane environment on the possible symmetry groups. Moreover, membrane proteins disproportionately contain internal structural repeats resulting from duplication and fusion of smaller segments. This article discusses the types and origins of symmetry in membrane proteins and the implications of symmetry for protein function.
Symmetries in Three-Dimensional Superconformal Quantum Field Theories
NASA Astrophysics Data System (ADS)
Bashkirov, Denis
Many examples of gauge-gravity duality and quantum equivalences of different-looking three-dimensional Quantum Field Theories indicate the existence of continuous symmetries whose currents are not built from elementary, or perturbative, fields used to write down the Lagrangian. These symmetries are called hidden or nonperturbative. We describe a method for studying continuous symmetries in a large class of three-dimensional supersymmetric gauge theories which, in particular, enables one to explore nonperturbative global symmetries and supersymmetries. As an application of the method, we prove conjectured supersymmetry enhancement in strongly coupled ABJM theory from N = 6 to N = 8 and find additional nonperturbative evidence for its duality to the N = 8 U(N) SYM theory for the minimal value of the Chern-Simons coupling. Hidden supersymmetry is also shown to occur in N = 4 d = 3 SQCD with one fundamental and one adjoint hypermultiplets. An infinite family of N = 6 d = 3 ABJ theories is proved to have hidden N = 8 superconformal symmetry and hidden parity on the quantum level. We test several conjectural dualities between ABJ theories and theories proposed by Bagger and Lambert, and Gustavsson by comparing superconformal indices of these theories. Comparison of superconformal indices is also used to test dualities between N = 2 d = 3 theories proposed by Aharony, the analysis of whose chiral rings teaches some general lessons about nonperturbative chiral operators of strongly coupled 3d supersymmetric gauge theories. As another application of our method we consider examples of hidden global symmetries in a class of quiver three-dimensional N = 4 superconformal gauge theories. Finally, we point out to the relations between some basic propeties of superconformal N ≥ 6 theories and their symmetries. The results presented in this thesis were obtained in a series of papers [1, 2, 3, 4, 5].
Symmetries, Large Leptonic Mixing and a Fourth Generation
NASA Astrophysics Data System (ADS)
Silva-Marcos, Joaquim I.
2002-12-01
We show that large leptonic mixing occurs most naturally in the framework of the Sandard Model just by adding a fourth generation. One can then construct a small Z4 discrete symmetry, instead of the large S4L × S4R, which requires that the neutrino as well as the charged lepton mass matrices be proportional to a 4 × 4 democratic mass matrix, where all entries are equal to unity. Without considering the see-saw mechanism, or other more elaborate extensions of the SM, and contrary to the case with only 3 generations, large leptonic mixing is obtained when the symmetry is broken.
Molecular Eigensolution Symmetry Analysis and Fine Structure
Harter, William G.; Mitchell, Justin C.
2013-01-01
Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041
Resonantly amplified vibronic symmetry breaking
NASA Astrophysics Data System (ADS)
Poliakoff, E. D.; Rathbone, G. J.; Bozek, J. D.; Lucchese, R. R.
2002-05-01
In photoelectron spectroscopy, it is normally assumed that excitation of a single quantum of a non-totally symmetric vibrational mode is forbidden owing to symmetry constraints. Using vibrationally resolved photoelectron spectroscopy over a broad spectral range, we have shown that a previously overlooked mechanism can lead to these nominally forbidden transitions. Specifically, the photoelectron can mediate the oscillator strength for such a transition via resonantly amplified vibronic symmetry breaking, and this effect results from intrachannel rather than interchannel coupling. In our first experiments, we focused on bending excitation accompanying CO2 photoionization. Photoelectron spectroscopy on the CO_2^+(C^2Σ_g^+) state showed that the excitation of the (010) vibrational mode is mediated by a shape resonant continuum electron. The degree of vibrational excitation can be substantial, and extensions to other types of symmetry breaking are currently being investigated.
Gravitation and spontaneous symmetry breaking
Bekenstein, J.D.
1986-05-01
It is pointed out that the Higgs field may be supplanted by an ordinary Klien-Gordon Field conformally coupled to the space-time curvature, and with very small, real, rest mass. Provided there is a bare cosmological constant of order of its square mass, this field can induce spontaneous symmetry breaking with a mass scale that can be as large as the Planck-Wheeler mass, but may be smaller. It can thus play a natural role in grand unified theroies. In the theory presented here the physical cosmological constant is small, being of order of the squared mass, and can meet observational constraints without having to be cancelled accurately. The physical gravitational constant differs somewhat from the coupling constant in Einstein's equation, and is temperature dependent in the broken symmetry regime. Symmetry restoration occurs at high temperature.
Nonholonomic Mechanical Systems with Symmetry
NASA Astrophysics Data System (ADS)
Bloch, Anthony M.; Krishnaprasad, P. S.; Marsden, Jerrold E.; Murray, Richard M.
1996-12-01
This work develops the geometry and dynamics of mechanical systems with nonholonomic constraints and symmetry from the perspective of Lagrangian mechanics and with a view to control-theoretical applications. The basic methodology is that of geometric mechanics applied to the Lagrange-d'Alembert formulation, generalizing the use of connections and momentum maps associated with a given symmetry group to this case. We begin by formulating the mechanics of nonholonomic systems using an Ehresmann connection to model the constraints, and show how the curvature of this connection enters into Lagrange's equations. Unlike the situation with standard configuration-space constraints, the presence of symmetries in the nonholonomic case may or may not lead to conservation laws. However, the momentum map determined by the symmetry group still satisfies a useful differential equation that decouples from the group variables. This momentum equation, which plays an important role in control problems, involves parallel transport operators and is computed explicitly in coordinates. An alternative description using a “body reference frame” relates part of the momentum equation to the components of the Euler-Poincaré equations along those symmetry directions consistent with the constraints. One of the purposes of this paper is to derive this evolution equation for the momentum and to distinguish geometrically and mechanically the cases where it is conserved and those where it is not. An example of the former is a ball or vertical disk rolling on a flat plane and an example of the latter is the snakeboard, a modified version of the skateboard which uses momentum coupling for locomotion generation. We construct a synthesis of the mechanical connection and the Ehresmann connection defining the constraints, obtaining an important new object we call the nonholonomic connection. When the nonholonomic connection is a principal connection for the given symmetry group, we show how to
Bell Inequalities and Group Symmetry
NASA Astrophysics Data System (ADS)
Bolonek-Lasoń, Katarzyna
2017-03-01
Recently the method based on irreducible representations of finite groups has been proposed as a tool for investigating the more sophisticated versions of Bell inequalities (V. Ugǔr Gűney, M. Hillery, Phys. Rev. A90, 062121 ([2014]) and Phys. Rev. A91, 052110 ([2015])). In the present paper an example based on the symmetry group S 4 is considered. The Bell inequality violation due to the symmetry properties of regular tetrahedron is described. A nonlocal game based on the inequalities derived is described and it is shown that the violation of Bell inequality implies that the quantum strategies outperform their classical counterparts.
Nonsupersymmetric Dualities from Mirror Symmetry
NASA Astrophysics Data System (ADS)
Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia
2017-01-01
We study supersymmetry breaking perturbations of the simplest dual pair of (2 +1 )-dimensional N =2 supersymmetric field theories—the free chiral multiplet and N =2 super QED with a single flavor. We find dual descriptions of a phase diagram containing four distinct massive phases. The equivalence of the intervening critical theories gives rise to several nonsupersymmetric avatars of mirror symmetry: we find dualities relating scalar QED to a free fermion and Wilson-Fisher theories to both scalar and fermionic QED. Thus, mirror symmetry can be viewed as the multicritical parent duality from which these nonsupersymmetric dualities directly descend.
Symmetries of coupled harmonic oscillators
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.
1993-01-01
It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).
Iterates of maps with symmetry
NASA Technical Reports Server (NTRS)
Chossat, Pascal; Golubitsky, Martin
1988-01-01
Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.
Unparticles and electroweak symmetry breaking
Lee, Jong-Phil
2008-11-23
We investigate a scalar potential inspired by the unparticle sector for the electroweak symmetry breaking. The scalar potential contains the interaction between the standard model fields and unparticle sector. It is described by the non-integral power of fields that originates from the nontrivial scaling dimension of the unparticle operator. It is found that the electroweak symmetry is broken at tree level when the interaction is turned on. The scale invariance of unparticle sector is also broken simultaneously, resulting in a physical Higgs and a new lighter scalar particle.
Symmetry analysis of cellular automata
NASA Astrophysics Data System (ADS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Chiral symmetry in quarkyonic matter
Kojo, T.
2012-05-15
The 1/N{sub c} expansion classifies nuclear matter, deconfined quark matter, and Quarkyonic matter in low temperature region. We investigate the realization of chiral symmetry in Quarkyonic matter by taking into account condensations of chiral particle-hole pairs. It is argued that chiral symmetry and parity are locally violated by the formation of chiral spirals, <{psi}-bar exp (2i{mu}{sub q} z{gamma}{sup 0} {gamma}{sup z}){psi}> . An extension to multiple chiral spirals is also briefly discussed.
Quantum Symmetries and Exceptional Collections
NASA Astrophysics Data System (ADS)
Karp, Robert L.
2011-01-01
We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the {{mathbb Z}_5} symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity.
Kastner, Ruth E.
2011-11-29
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
BRST symmetry and fictitious parameters
NASA Astrophysics Data System (ADS)
Nogueira, A. A.; Pimentel, B. M.
2017-03-01
Our goal in this work is to present the variational method of fictitious parameters and its connection with the Bechi-Rouet-Stora-Tyutin (BRST) symmetry. First, we implement the method in QED at zero temperature and then we extend the analysis to generalized QED at finite temperature. As we see the core of the study is the general statement in gauge theories at finite temperature, assigned by Tyutin work, that the physical degrees of freedom do not depend on the gauge choices, covariant or not, due to BRST symmetry.
Chiral symmetry on the lattice
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Dynamical signatures of molecular symmetries in nonequilibrium quantum transport
NASA Astrophysics Data System (ADS)
Thingna, Juzar; Manzano, Daniel; Cao, Jianshu
2016-06-01
Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder.
Dynamical signatures of molecular symmetries in nonequilibrium quantum transport.
Thingna, Juzar; Manzano, Daniel; Cao, Jianshu
2016-06-17
Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder.
Dynamical signatures of molecular symmetries in nonequilibrium quantum transport
Thingna, Juzar; Manzano, Daniel; Cao, Jianshu
2016-01-01
Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder. PMID:27311717
Charge symmetry at the partonic level
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Type-II Symmetry-Protected Topological Dirac Semimetals.
Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M Zahid
2017-07-14
The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, MA_{3} (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl_{3} family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl_{3} is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.
Type-II Symmetry-Protected Topological Dirac Semimetals
NASA Astrophysics Data System (ADS)
Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S.; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A.; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid
2017-07-01
The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, M A3 (M =V , Nb, Ta; A =Al , Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl3 is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.
Platonic Symmetry and Geometric Thinking
ERIC Educational Resources Information Center
Zsombor-Murray, Paul
2007-01-01
Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…
Turning Students into Symmetry Detectives
ERIC Educational Resources Information Center
Wilders, Richard; VanOyen, Lawrence
2011-01-01
Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…
ERIC Educational Resources Information Center
Brown, Laurie M.
This document is a monograph intended for advanced undergraduate students, or beginning graduate students, who have some knowledge of modern physics as well as classical physics, including the elementary quantum mechanical treatment of the hydrogen atom and angular momentum. The first chapter introduces symmetry and relates it to the mathematical…
Symmetry of integrable cellular automaton
NASA Astrophysics Data System (ADS)
Hikami, Kazuhiro; Inoue, Rei
2001-03-01
We study an integrable cellular automaton which is called the box-ball system (BBS). The BBS can be derived directly from the integrable differential-difference equation by either ultradiscretization or crystallization. We clarify the integrable structure and the hidden symmetry of the BBS.
Superdeformations and fermion dynamical symmetries
Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.
Baryon and chiral symmetry breaking
Gorsky, A.; Krikun, A.
2014-07-23
We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.
Concomitant Ordering and Symmetry Lowering
ERIC Educational Resources Information Center
Boo, William O. J.; Mattern, Daniell L.
2008-01-01
Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…
Hidden local symmetry and beyond
NASA Astrophysics Data System (ADS)
Yamawaki, Koichi
Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L ×SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, “SM ρ meson”, in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call “dark SM skyrmion (DSMS)”.
Resonantly amplified vibronic symmetry breaking
NASA Astrophysics Data System (ADS)
Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.
2001-05-01
The energy dependence of the vibrational branching ratio for exciting one quantum of bending is determined for CO2 4σg-1 photoionization. This nominally forbidden transition becomes allowed for a photoionization transition as a result of instantaneous symmetry breaking due to zero point motion, and is strongly enhanced by a continuum shape resonance.
Quantitative Analysis of Face Symmetry.
Tamir, Abraham
2015-06-01
The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait.
Symmetry-protected topological entanglement
NASA Astrophysics Data System (ADS)
Marvian, Iman
2017-01-01
We propose an order parameter for the symmetry-protected topological (SPT) phases which are protected by Abelian on-site symmetries. This order parameter, called the SPT entanglement, is defined as the entanglement between A and B , two distant regions of the system, given that the total charge (associated with the symmetry) in a third region C is measured and known, where C is a connected region surrounded by A , B , and the boundaries of the system. In the case of one-dimensional systems we prove that in the limit where A and B are large and far from each other compared to the correlation length, the SPT entanglement remains constant throughout a SPT phase, and furthermore, it is zero for the trivial phase while it is nonzero for all the nontrivial phases. Moreover, we show that the SPT entanglement is invariant under the low-depth quantum circuits which respect the symmetry, and hence it remains constant throughout a SPT phase in the higher dimensions as well. Also, we show that there is an intriguing connection between SPT entanglement and the Fourier transform of the string order parameters, which are the traditional tool for detecting SPT phases. This leads to an algorithm for extracting the relevant information about the SPT phase of the system from the string order parameters. Finally, we discuss implications of our results in the context of measurement-based quantum computation.
Strong coupling electroweak symmetry breaking
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Circular codes, symmetries and transformations.
Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz
2015-06-01
Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes.
Platonic Symmetry and Geometric Thinking
ERIC Educational Resources Information Center
Zsombor-Murray, Paul
2007-01-01
Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…
Hidden local symmetry and beyond
NASA Astrophysics Data System (ADS)
Yamawaki, Koichi
Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L × SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, "SM ρ meson", in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call "dark SM skyrmion (DSMS)".
Turning Students into Symmetry Detectives
ERIC Educational Resources Information Center
Wilders, Richard; VanOyen, Lawrence
2011-01-01
Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…
Concomitant Ordering and Symmetry Lowering
ERIC Educational Resources Information Center
Boo, William O. J.; Mattern, Daniell L.
2008-01-01
Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…
Monster symmetry and extremal CFTs
NASA Astrophysics Data System (ADS)
Gaiotto, Davide
2012-11-01
We test some recent conjectures about extremal selfdual CFTs, which are the candidate holographic duals of pure gravity in AdS 3. We prove that no c = 48 extremal selfdual CFT or SCFT may possess Monster symmetry. Furthermore, we disprove a recent argument against the existence of extremal selfdual CFTs of large central charge.
From symmetries to number theory
Tempesta, P.
2009-05-15
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
Symmetry Breaking During Drosophila Oogenesis
Roth, Siegfried; Lynch, Jeremy A.
2009-01-01
The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal–ventral symmetry of the egg and embryo. PMID:20066085
Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study
Zohar, Erez; Wahl, Thorsten B.; Burrello, Michele; Cirac, J. Ignacio
2016-11-15
Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.
Two elementary proofs of the Wigner theorem on symmetry in quantum mechanics
NASA Astrophysics Data System (ADS)
Simon, R.; Mukunda, N.; Chaturvedi, S.; Srinivasan, V.
2008-11-01
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.
PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2017-09-01
We present some interesting connections between PT symmetry and conformal symmetry. We use them to develop a metricated theory of electromagnetism in which the electromagnetic field is present in the geometric connection. However, unlike Weyl who first advanced this possibility, we do not take the connection to be real but to instead be PT symmetric, with it being iA_{μ } rather than A_{μ } itself that then appears in the connection. With this modification the standard minimal coupling of electromagnetism to fermions is obtained. Through the use of torsion we obtain a metricated theory of electromagnetism that treats its electric and magnetic sectors symmetrically, with a conformal invariant theory of gravity being found to emerge. An extension to the non-Abelian case is provided.
Universal Formulation For Symmetries In Computed Flows
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1995-01-01
Universal formulation for high-order symmetries in boundary conditions on flows devised. Eliminates need for special procedures to incorporate symmetries and corresponding boundary conditions into computer codes solving Navier-Stokes and Euler equations of flow.
An Elementary Course in Mathematical Symmetry.
ERIC Educational Resources Information Center
Rose, Bruce I.; Stafford, Robert D.
1981-01-01
A college course designed to teach students about the mathematics of symmetry using pieces of wallpaper and cloth designs is presented. Mathematical structures and the symmetry of graphic designs provide the starting point for instruction. (MP)
An Elementary Course in Mathematical Symmetry.
ERIC Educational Resources Information Center
Rose, Bruce I.; Stafford, Robert D.
1981-01-01
A college course designed to teach students about the mathematics of symmetry using pieces of wallpaper and cloth designs is presented. Mathematical structures and the symmetry of graphic designs provide the starting point for instruction. (MP)
Noether symmetries of Bianchi type II spacetimes
NASA Astrophysics Data System (ADS)
Hickman, Mark; Yazdan, Shair-a.
2017-05-01
This paper is devoted to investigate Noether symmetries of Bianchi type II spacetimes. We use the reduced involutive form of the determining equations to classify their possible algebras. We show that Noether symmetries contain both Killing vectors and homothetic motions.
Symmetry fractionalization and anomaly detection in three-dimensional topological phases
NASA Astrophysics Data System (ADS)
Chen, Xie; Hermele, Michael
2016-11-01
In a phase with fractional excitations, topological properties are enriched in the presence of global symmetry. In particular, fractional excitations can transform under symmetry in a fractionalized manner, resulting in different symmetry enriched topological (SET) phases. While a good deal is now understood in 2D regarding what symmetry fractionalization patterns are possible, the situation in 3D is much more open. A new feature in 3D is the existence of loop excitations, so to study 3D SET phases, first we need to understand how to properly describe the fractionalized action of symmetry on loops. Using a dimensional reduction procedure, we show that these loop excitations exist as the boundary between two 2D SET phases, and the symmetry action is characterized by the corresponding difference in SET orders. Moreover, similar to the 2D case, we find that some seemingly possible symmetry fractionalization patterns are actually anomalous and cannot be realized strictly in 3D. We detect such anomalies using the flux fusion method we introduced previously in 2D. To illustrate these ideas, we use the 3 D Z2 gauge theory with Z2 global symmetry as an example, and enumerate and describe the corresponding SET phases. In particular, we find four nonanomalous SET phases and one anomalous SET phase, which we show can be realized as the surface of a 4D system with symmetry protected topological order.
Symmetry perception in humans and macaques.
Beck, Diane M; Pinsk, Mark A; Kastner, Sabine
2005-09-01
The human ability to detect symmetry has been a topic of interest to psychologists and philosophers since the 19th century, yet surprisingly little is known about the neural basis of symmetry perception. In a recent fMRI study, Sasaki and colleagues begin to remedy this situation. By identifying the neural structures that respond to symmetry in both humans and macaques, the authors lay the groundwork for understanding the neural mechanisms underlying symmetry perception.
NASA Astrophysics Data System (ADS)
Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.
2017-05-01
The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.
Superalgebra and fermion-boson symmetry
Miyazawa, Hironari
2010-01-01
Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617
Generalized partial dynamical symmetry in nuclei.
Leviatan, A; Isacker, P Van
2002-11-25
We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.
Symmetry Breaking for Black-Scholes Equations
NASA Astrophysics Data System (ADS)
Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng
2007-06-01
Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.
Noether symmetries and duality transformations in cosmology
NASA Astrophysics Data System (ADS)
Paliathanasis, Andronikos; Capozziello, Salvatore
2016-09-01
We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.
Snake states and their symmetries in graphene
NASA Astrophysics Data System (ADS)
Tiwari, Rakesh; Liu, Yang; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.
Snake states are open trajectories for charged particles moving in two dimensions under the influence of a spatially varying perpendicular magnetic field. They can also occur in a constant perpendicular magnetic field when the particle density is made nonuniform as realized at a pn junction in a semiconductor, or in graphene. We examine the correspondence of such trajectories in monolayer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric perpendicular magnetic field and (b) antisymmetric carrier density distribution in a uniform perpendicular magnetic field. Although, these families support different internal symmetries, the pattern of the boundary and interface currents is the same in both cases. We demonstrate that these two physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these two problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p-wave paired state.
Snake states and their symmetries in graphene
NASA Astrophysics Data System (ADS)
Liu, Yang; Tiwari, Rakesh P.; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.
2015-12-01
Snake states are open trajectories for charged particles propagating in two dimensions under the influence of a spatially varying perpendicular magnetic field. In the quantum limit they are protected edge modes that separate topologically inequivalent ground states and can also occur when the particle density rather than the field is made nonuniform. We examine the correspondence of snake trajectories in single-layer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric field profile and (b) antisymmetric carrier distribution in a uniform field. These families support different internal symmetries but the same pattern of boundary and interface currents. We demonstrate that these physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p -wave paired state. A variational model is introduced to interpret the interfacial solutions of both domain wall problems.
Soft terms from broken symmetries
NASA Astrophysics Data System (ADS)
Buican, Matthew; Komargodski, Zohar
2010-02-01
In theories of phyiscs beyond the Standard Model (SM), visible sector fields often carry quantum numbers under additional gauge symmetries. One could then imagine a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper we present a general formalism for studying the resulting hidden sectors and calculating the corresponding gauge mediated soft parameters. We find that a large class of generic models features a leading universal contribution to the soft scalar masses that only depends on the scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis, we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We also discuss possible phenomenological applications.
Symmetry of cardiac function assessment
Bai, Xu-Fang; Ma, Amy X
2016-01-01
Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768
Symmetry breaking around a wormhole
NASA Astrophysics Data System (ADS)
Choudhury, A. L.
1996-11-01
We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.
Broken symmetries in multilayered perceptrons
NASA Astrophysics Data System (ADS)
Barkai, E.; Hansel, D.; Sompolinsky, H.
1992-03-01
The statistical mechanics of two-layered perceptrons with N input units, K hidden units, and a single output unit that makes a decision based on a majority rule (Committee Machine) are studied. Two architectures are considered. In the nonoverlapping case the hidden units do not share common inputs. In the fully connected case each hidden unit is connected to the entire input layer. In both cases the network realizes a random dichotomy of P inputs. The statistical properties of the space of solutions as a function of P is studied, using the replica method, and by numerical simulations, in the regime where N>>K. In the nonoverlapping architecture with continuously varying weights the capacity, defined as the maximal number of P per weight, (αc) is calculated under a replica-symmetric (RS) ansatz. At large K, αc diverges as K1/2 in contradiction with the rigorous upper bound, αc
Facial symmetry in robust anthropometrics.
Kalina, Jan
2012-05-01
Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.
Geometric symmetries in light nuclei
NASA Astrophysics Data System (ADS)
Bijker, R.
2017-06-01
The algebraic cluster model is is applied to study cluster states in the nuclei12C and16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the α-particles, i.e. an equilateral triangle for12C, and a regular tetrahedron for16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of α-particles.
Explaining quantum spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Liu, Chuang; Emch, Gérard G.
Two accounts of quantum symmetry breaking (SSB) in the algebraic approach are compared: the representational and the decompositional account. The latter account is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account: the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
Fermion mass without symmetry breaking
NASA Astrophysics Data System (ADS)
Catterall, Simon
2016-01-01
We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan [1]. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. Massless and massive phases appear to be separated by a continuous phase transition.
Symmetries in Lagrangian Field Theory
NASA Astrophysics Data System (ADS)
Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia
2015-06-01
By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.
Fermion mass without symmetry breaking
Catterall, Simon
2016-01-20
We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. As a result, massless and massive phases appear to be separated by a continuous phase transition.
Exact control of parity-time symmetry in periodically modulated nonlinear optical couplers
NASA Astrophysics Data System (ADS)
Yang, Baiyuan; Luo, Xiaobing; Hu, QiangLin; Yu, XiaoGuang
2016-10-01
We propose a mechanism for the realization of exact control of parity-time (PT ) symmetry by using a periodically modulated nonlinear optical coupler with balanced gain and loss. It is shown that for certain appropriately chosen values of the modulation parameters, we can construct a family of exact analytical solutions for the two-mode equations describing the dynamics of such nonlinear couplers. These exact solutions give explicit examples that allow us to precisely manipulate the system from nonlinearity-induced symmetry breaking to PT symmetry, thus providing an analytical approach to all-optical signal control in nonlinear PT -symmetric structures.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
Dark matter and global symmetries
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-08-03
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Here, assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O(1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime
Dark matter and global symmetries
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-08-03
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Sawmore » models. Here, assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O(1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime« less
Dark matter and global symmetries
NASA Astrophysics Data System (ADS)
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-09-01
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.
Generalization of Friedberg-Lee symmetry
NASA Astrophysics Data System (ADS)
Huang, Chao-Shang; Li, Tianjun; Liao, Wei; Zhu, Shou-Hua
2008-07-01
We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the Friedberg-Lee symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via the seesaw mechanism. If the right-handed neutrinos transform nontrivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale seesaw mechanism. Second, we present two models with the SO(3)×U(1) global flavor symmetry in the lepton sector. After the flavor symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via the seesaw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in the neutrino mass matrix after the SO(3)×U(1) flavor symmetry breaking.
Relativity symmetries and Lie algebra contractions
NASA Astrophysics Data System (ADS)
Cho, Dai-Ning; Kong, Otto C. W.
2014-12-01
We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m , n) symmetry as an isometry on an m + n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m , n) preserving a symmetry of the same type at dimension m + n - 1, e.g. a G(m , n - 1) , together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2 , 4) , which is the particular case for our interest on the physics side as the proposed relativity symmetry for "quantum spacetime". The contractions from G(1 , 3) may be relevant to real physics.
Symmetries in nuclei: New methods and applications
NASA Astrophysics Data System (ADS)
Caprio, Mark A.
2011-04-01
When a symmetry is a ``good'' symmetry of the nuclear system, as in the dynamical symmetries of the shell model and interacting boson model, this symmetry can directly give the spectroscopic properties of the nucleus, without the need for involved calculations. However, even if a symmetry is strongly broken, it nonetheless provides a calculational tool, classifying the basis states used in a full computational treatment of the many-body problem and greatly simplifying the underlying computational machinery. The symmetry then serves as the foundation for a physically meaningful truncation scheme for the calculation. This talk will provide an introduction to new applications of symmetry approaches to the nuclear problem, including the required mathematical developments. Supported by the US DOE under grant DE-FG02-95ER-40934 and by the Research Corporation for Science Advancement under a Cottrell Scholar Award.
Symmetry constraints on many-body localization
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Vasseur, Romain
2016-12-01
We derive general constraints on the existence of many-body localized (MBL) phases in the presence of global symmetries, and show that MBL is not possible with symmetry groups that protect multiplets (e.g., all non-Abelian symmetry groups). Based on simple representation theoretic considerations, we derive general Mermin-Wagner-type principles governing the possible alternative fates of nonequilibrium dynamics in isolated, strongly disordered quantum systems. Our results rule out the existence of MBL symmetry-protected topological phases with non-Abelian symmetry groups, as well as time-reversal symmetry-protected electronic topological insulators, and in fact all fermion topological insulators and superconductors in the 10-fold way classification. Moreover, extending our arguments to systems with intrinsic topological order, we rule out MBL phases with non-Abelian anyons as well as certain classes of symmetry-enriched topological orders.
Enhanced Facial Symmetry Assessment in Orthodontists
Jackson, Tate H.; Clark, Kait; Mitroff, Stephen R.
2013-01-01
Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff—orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness. PMID:24319342
Enhanced Facial Symmetry Assessment in Orthodontists.
Jackson, Tate H; Clark, Kait; Mitroff, Stephen R
2013-01-01
Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff-orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness.
The atomic basis of biological symmetry and periodicity.
Lima-de-Faria, A
1997-01-01
a large number of plant families which are not closely related in evolutionary terms; (8) the re-emergence of the same symmetry at different levels of organization is also elucidated by the fact that different atom combinations can display the same form and even the same function. This is what has been called molecular mimicry. Examples are the minerals with quite different chemical compositions which display the same symmetry and the proteins, that although they consist of different amino acid sequences, result in the same structural pattern and the same function. Due to the occurrence of molecular mimicry, in the cell's main macromolecules, an organism does not even need to have the same genes to exhibit a symmetry that appeared long ago in evolution; and (9) support for the concept that the biological periodicity is anchored on the chemical periodicity is found, among other features, on the fact that the six atoms that build the main macromolecules of the cell: the nucleic acids and proteins are all simple atoms that are located in a 'niche' on the right side of the Periodic Table of the chemical elements. The basis of biological symmetry and periodicity is now starting to be elucidated in atomic terms.
Symmetry breaking and wake instabilities
NASA Astrophysics Data System (ADS)
Sengupta, Raja
A numerical technique has been developed in the context of spatio-temporal stability analysis. The convective/absolute nature of instability determines the time-asymptotic response of a linearly unstable flow, either in the form an oscillator or in the form of a noise amplifier. This depends on the location of pinch point singularities of the dispersion relations obtained via linear stability analyses. A new and efficient approach to locate such singularities is presented. Local analyticity of the dispersion relations was exploited via the Cauchy-Riemann equations in a quasi-Newton's root- finding procedure employing numerical Jacobians. Initial guesses provided by temporal stability analyses have been shown to converge to the pinch points even in the presence of multiple saddle points for various Falkner- Skan wedge profiles. This effort was motivated by the phenomenon of spontaneous symmetry breaking in flow over a cone. At large enough incidence, a pair of vortices develop on the leeward side of the cone which eventually become asymmetric as the angle of attack is increased further. A conical, thin-layer Navier-Stokes solver was employed to investigate the effect of flowfield saddles in this process. The approximate factorization scheme incorporated in the solver was shown analytically to be symmetric to eliminate possible sources of asymmetry. Local grid resolution studies were performed to demonstrate the importance of correctly computing the leeside saddle point and the secondary separation and reattchment points. Topological studies of the flow field as it loses symmetry agreed well with previous qualitative experimental observations. However, the original goal of this study, to settle an ongoing controversy regarding the nature of the instability responsible for symmetry breaking, could not be realized due to computational inadequacy. It is conjectured that the process is governed by an absolute instability similar to that observed in a flow over a circular
Duality symmetries and G+++ theories
NASA Astrophysics Data System (ADS)
Riccioni, Fabio; Steele, Duncan; West, Peter
2008-02-01
We show that the nonlinear realizations of all the very extended algebras G+++, except the B and C series which we do not consider, contain fields corresponding to all possible duality symmetries of the on-shell degrees of freedom of these theories. This result also holds for G+++2 and we argue that the nonlinear realization of this algebra accounts precisely for the form fields present in the corresponding supersymmetric theory. We also find a simple necessary condition for the roots to belong to a G+++ algebra.
Geometric Baryogenesis from Shift Symmetry.
De Simone, Andrea; Kobayashi, Takeshi; Liberati, Stefano
2017-03-31
We present a new scenario for generating the baryon asymmetry of the Universe that is induced by a Nambu-Goldstone (NG) boson. The shift symmetry naturally controls the operators in the theory while allowing the NG boson to couple to the spacetime geometry as well as to the baryons. The cosmological background thus sources a coherent motion of the NG boson, which leads to baryogenesis. Good candidates of the baryon-generating NG boson are the QCD axion and axionlike fields. In these cases, the axion induces baryogenesis in the early Universe and can also serve as dark matter in the late Universe.
Killing symmetries as Hamiltonian constraints
NASA Astrophysics Data System (ADS)
Lusanna, Luca
2016-02-01
The existence of a Killing symmetry in a gauge theory is equivalent to the addition of extra Hamiltonian constraints in its phase space formulation, which imply restrictions both on the Dirac observables (the gauge invariant physical degrees of freedom) and on the gauge freedom. When there is a time-like Killing vector field only pure gauge electromagnetic fields survive in Maxwell theory in Minkowski space-time, while in ADM canonical gravity in asymptotically Minkowskian space-times only inertial effects without gravitational waves survive.
History of electroweak symmetry breaking
NASA Astrophysics Data System (ADS)
Kibble, T. W. B.
2015-07-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.
Fermion mass without symmetry breaking
Catterall, Simon
2016-01-20
We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. As a result, massless and massive phases appear to be separated by a continuous phase transition.
Dispersion relation for bianisotropic materials and its symmetry properties
NASA Technical Reports Server (NTRS)
Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.; Zich, Riccardo E.
1991-01-01
The dispersion relation for an arbitrary general bianisotropic medium is derived in Cartesian coordinates, in a form well suited to imposing the boundary conditions when dealing with layered media with planar and parallel interfaces. Special cases of practical interest are also considered. Eleven fundamental coefficient families are identified by considering in detail all the symmetries present in the dispersion relation. An ad hoc expression of the determinant of the sum of two 3 x 3 matrices permits the use of a simple procedure to obtain the coefficients of the dispersion equation. The discussed symmetry properties have general validity, and this technique to evaluate the coefficients may be useful in other fields of application where dispersion relations are of importance.
Matter inflation with A{sub 4} flavour symmetry breaking
Antusch, Stefan; Nolde, David E-mail: david.nolde@unibas.ch
2013-10-01
We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A{sub 4} family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index α{sub s}. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.
Spinor Bose gases: Symmetries, magnetism, and quantum dynamics
NASA Astrophysics Data System (ADS)
Stamper-Kurn, Dan M.; Ueda, Masahito
2013-07-01
Spinor Bose gases form a family of quantum fluids manifesting both magnetic order and superfluidity. This article reviews experimental and theoretical progress in understanding the static and dynamic properties of these fluids. The connection between system properties and the rotational symmetry properties of the atomic states and their interactions are investigated. Following a review of the experimental techniques used for characterizing spinor gases, their mean-field and many-body ground states, both in isolation and under the application of symmetry-breaking external fields, are discussed. These states serve as the starting point for understanding low-energy dynamics, spin textures, and topological defects, effects of magnetic-dipole interactions, and various nonequilibrium collective spin-mixing phenomena. The paper aims to form connections and establish coherence among the vast range of works on spinor Bose gases, so as to point to open questions and future research opportunities.
Yukawa textures with an anomalous horizontal abelian symmetry
Binetruy, P.; Lavignac, S.; Ramond, P.
1996-01-01
The observed hierarchy of quark and lepton masses and mixings may be obtained by adding an abelian family symmetry to the Minimal Supersymmetric Model and coupling quarks and leptons to an electroweak singlet scalar field. In a large class of such models, this symmetry suffers from anomalies which must be compensated by the Green-Schwarz mechanism; this in turn fixes the electroweak mixing angle to be sin{sup 2}{theta}{sub W} = 3/8 at the string scale, without any assumed GUT structure. The analysis is extended to two distinct generalizations of the Standard Model: neutrino masses and mixings and R-parity violating interactions. (author). 31 refs., 2 tabs.
NASA Technical Reports Server (NTRS)
Matteson, J.
1979-01-01
Observations of galactic sources, extragalactic sources and gamma bursts with the A-4 instrument at energy 1 energies of between 0.1 to 10 MeV are discussed. Aximuthal scans are presented. The Crab Nebula and its spectrum and the spectrum of Cygnus Z-1 are described.
Contact symmetries and Hamiltonian thermodynamics
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-10-15
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.
Introduction to Electroweak Symmetry Breaking
Dawson,S.
2008-10-02
The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.
Extreme lattices: symmetries and decorrelation
NASA Astrophysics Data System (ADS)
Andreanov, A.; Scardicchio, A.; Torquato, S.
2016-11-01
We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.
Spinor Structure and Internal Symmetries
NASA Astrophysics Data System (ADS)
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Duality symmetries in string theory
Nunez, Carmen A.
1999-10-25
The search for a unified theory of quantum gravity and gauge interactions leads naturally to string theory. This field of research has received a revival of interest after the discovery of duality symmetries in recent years. We present a self contained account of some non-perturbative aspects of string theory which have been recently understood. The spectrum and interactions of the five consistent superstring theories in ten dimensions are recollected and the fundamental principles underlying this initial stage in the construction of the theory are briefly reviewed. We next discuss some evidences that these apparently different superstrings are just different aspects of one unique theory. The key to this development is given by the non-perturbative duality symmetries which have modified and improved our understanding of string dynamics in many ways. In particular, by relating the fundamental objects of one theory to solitons of another theory, they have unraveled the presence of extended objects in the theory which stand on an equal footing with strings. We introduce these higher dimensional objects, named D-branes, and discuss applications of D-brane physics.
Thermal symmetry of the Markovian master equation
Tay, B. A.; Petrosky, T.
2007-10-15
The quantum Markovian master equation of the reduced dynamics of a harmonic oscillator coupled to a thermal reservoir is shown to possess thermal symmetry. This symmetry is revealed by a Bogoliubov transformation that can be represented by a hyperbolic rotation acting on the Liouville space of the reduced dynamics. The Liouville space is obtained as an extension of the Hilbert space through the introduction of tilde variables used in the thermofield dynamics formalism. The angle of rotation depends on the temperature of the reservoir, as well as the value of Planck's constant. This symmetry relates the thermal states of the system at any two temperatures. This includes absolute zero, at which purely quantum effects are revealed. The Caldeira-Leggett equation and the classical Fokker-Planck equation also possess thermal symmetry. We compare the thermal symmetry obtained from the Bogoliubov transformation in related fields and discuss the effects of the symmetry on the shape of a Gaussian wave packet.
Interface gapless states from interfacial symmetries
NASA Astrophysics Data System (ADS)
Takahashi, Ryuji; Murakami, Shuichi
2015-03-01
Previously we have shown that at an interface between two topological insulators with opposite Dirac velocities, gapless interface states protected by mirror symmetry appear. We can calculate the interface dispersion using the Fu-Kane-Mele (FKM) tight-binding model, and it typically consists of Dirac cones. In this presentation, we report another kind of interface metallic states; the Fermi surface forms loops (``Fermi loop''), rather than isolated Dirac points, sometimes seen in the interface of the FKM models. Such a degeneracy along a loop is unexpected. This Fermi loop appears when the whole junction system preserves particle-hole symmetry, while each system breaks particle-hole symmetry. We call this symmetry ``interfacial particle-hole symmetry'' (IPHS). We discuss the IPHS in general systems and show that the Fermi loop results from a sign change of a Pfaffian of some matrix, defined only in junctions with IPHS symmetry.
Symmetry energy of dilute warm nuclear matter.
Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H
2010-05-21
The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.
Symmetry properties in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.
1992-01-01
This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.
Classification of topological phases with reflection symmetry
NASA Astrophysics Data System (ADS)
Yoshida, Tsuneya; Morimoto, Takahiro; Furusaki, Akira
2015-03-01
In Z2 topological band insulators, the time-reversal symmetry protects their topological structure. In these years such a notion is extended to correlated systems including bosonic systems, and these nontrivial phases are referred to as symmetry protected topological (SPT) phases. Parallel to this progress, a topological crystalline insulator, protected by spatial symmetry, is found for SnTe. Thus, SPT phases protected by this type of symmetry are naturally expected, and classifications of such phases are desired. In this article, we address this issue by focusing on a reflection symmetry. Our analysis based on the Chern-Simons approach proposes periodic tables for bosonic and fermionic SPT phases in two dimensions. Besides that, we show an SPT phase with the reflection symmetry is stabilized in a spin model of honeycomb lattice.
Dynamics-dependent symmetries in Newtonian mechanics
NASA Astrophysics Data System (ADS)
Holland, Peter
2014-01-01
We exhibit two symmetries of one-dimensional Newtonian mechanics whereby a solution is built from the history of another solution via a generally nonlinear and complex potential-dependent transformation of the time. One symmetry intertwines the square roots of the kinetic and potential energies and connects solutions of the same dynamical problem (the potential is an invariant function). The other symmetry connects solutions of different dynamical problems (the potential is a scalar function). The existence of corresponding conserved quantities is examined using Noether's theorem and it is shown that the invariant-potential symmetry is correlated with energy conservation. In the Hamilton-Jacobi picture the invariant-potential transformation provides an example of a ‘field-dependent’ symmetry in point mechanics. It is shown that this transformation is not a symmetry of the Schrödinger equation.
Dynamical symmetries of the Kepler problem
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Silva Araújo, Eduardo
2013-09-01
This paper comes from a first-year undergraduate research project on hidden symmetries of the dynamics for classical Hamiltonian systems. For pedagogical reasons the main subject chosen was Kepler’s problem of motion under a central potential, since it is a completely solved system. It is well known that for this problem the group of dynamical symmetries is strictly larger than the isometry group O(3), the extra symmetries corresponding to hidden symmetries of the dynamics. By taking the point of view of examining the group action of the dynamical symmetries on the allowed trajectories, it is possible to teach the basic elements of many important physics subjects in the same project, including the Hamiltonian formalism, hidden symmetries, integrable systems, group theory and the use of manifolds.
Quasi-periodic continuation along a continuous symmetry
NASA Astrophysics Data System (ADS)
Salomone, Matthew David
Given a system of differential equations which admits a continuous group of symmetries and possesses a periodic solution, we show that under certain nondegeneracy assumptions there always exists a continuous family containing infinitely many periodic and quasi-periodic trajectories. This generalizes the continuation method of Poincaré to orbits which are not necessarily periodic. We apply these results in the setting of the Lagrangian N -body problem of homogeneous potential to characterize an infinite family of rotating nonplanar "hip-hop" orbits in the four-body problem of equal masses, and show how some other trajectories in the N -body theory may be extended to infinite families of periodic and quasi-periodic trajectories.
Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry
2011-01-01
Background Studies of symmetric structures have made important contributions to evolutionary biology, for example, by using fluctuating asymmetry as a measure of developmental instability or for investigating the mechanisms of morphological integration. Most analyses of symmetry and asymmetry have focused on organisms or parts with bilateral symmetry. This is not the only type of symmetry in biological shapes, however, because a multitude of other types of symmetry exists in plants and animals. For instance, some organisms have two axes of reflection symmetry (biradial symmetry; e.g. many algae, corals and flowers) or rotational symmetry (e.g. sea urchins and many flowers). So far, there is no general method for the shape analysis of these types of symmetry. Results We generalize the morphometric methods currently used for the shape analysis of bilaterally symmetric objects so that they can be used for analyzing any type of symmetry. Our framework uses a mathematical definition of symmetry based on the theory of symmetry groups. This approach can be used to divide shape variation into a component of symmetric variation among individuals and one or more components of asymmetry. We illustrate this approach with data from a colonial coral that has ambiguous symmetry and thus can be analyzed in multiple ways. Our results demonstrate that asymmetric variation predominates in this dataset and that its amount depends on the type of symmetry considered in the analysis. Conclusions The framework for analyzing symmetry and asymmetry is suitable for studying structures with any type of symmetry in two or three dimensions. Studies of complex symmetries are promising for many contexts in evolutionary biology, such as fluctuating asymmetry, because these structures can potentially provide more information than structures with bilateral symmetry. PMID:21958045
Symmetry-protected single-photon subradiance
NASA Astrophysics Data System (ADS)
Cai, Han; Wang, Da-Wei; Svidzinsky, Anatoly A.; Zhu, Shi-Yao; Scully, Marlan O.
2016-05-01
We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shifts cannot be neglected. We find that antisymmetric states are subradiant states for distributions with reflection symmetry. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.
Asymptotic Symmetries of Spacelike Stretched ADS Gravity
NASA Astrophysics Data System (ADS)
Blagojević, Milutin; Cvetković, Branislav
We study asymptotic symmetries in the spacelike stretched AdS sector of topologically massive gravity. The Poisson bracket algebra of the canonical generators is shown to be centrally extended semi-direct sum of the Virasoro and u(1) Kac-Moody algebra. By using the Sugawara construction, we prove that the asymptotic symmetry coincides with the conformal symmetry, described by two independent Virasoro algebras with central charges.
Lie symmetry analysis of the Heisenberg equation
NASA Astrophysics Data System (ADS)
Zhao, Zhonglong; Han, Bo
2017-04-01
The Lie symmetry analysis is performed on the Heisenberg equation from the statistical physics. Its Lie point symmetries and optimal system of one-dimensional subalgebras are determined. The similarity reductions and invariant solutions are obtained. Using the multipliers, some conservation laws are obtained. We prove that this equation is nonlinearly self-adjoint. The conservation laws associated with symmetries of this equation are constructed by means of Ibragimov's method.
Dark matter reflection of particle symmetry
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
2017-05-01
In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.
Symmetry and symmetry breaking in Rydberg-atom intrashell dynamics
Pilskog, I.; Fregenal, D.; Frette, O.; Foerre, M.; Horsdal, E.; Waheed, A.
2011-04-15
We have investigated experimentally and theoretically the dynamics of Stark-Zeeman split states in Li(n=25) Rydberg atoms when they are exposed to a superposition of a slowly varying field and a harmonic RF field. Regular oscillatory structures are observed in the intrashell transitions. By solving the time-dependent Schroedinger equation for the problem it is shown that the dynamics is strongly influenced by the nonhydrogenic core which breaks the dynamical symmetry of the Coulomb problem. It is also shown that the dynamics effectively reduces to that of a two-level atom. The oscillations are remnants of interferences that arise partly due to a phase difference which develops between the two levels when they go through two consecutive one-photon resonances, and partly due to an effective change of the carrier-envelope phase of the coupling field.
NASA Astrophysics Data System (ADS)
Bustamante, Miguel D.
2014-11-01
We consider 3D Euler fluids endowed with a discrete symmetry whereby the velocity field is invariant under mirror reflections about a 2D surface known as the ``symmetry plane.'' This type of flow is widely used in numerical simulations of classical/magnetic/quantum turbulence and vortex reconnection. On the 2D symmetry plane, the governing equations are best written in terms of two scalars: vorticity and stretching rate of vorticity. These determine the velocity field on the symmetry plane. However, the governing equations are not closed, because of the contribution of a single pressure term that depends on the full 3D velocity profile. By modelling this pressure term we propose a one-parameter family of sensible models for the flow along the 2D symmetry plane. We apply the method of infinitesimal Lie symmetries and solve the governing equations analytically for the two scalars as functions of time. We show how the value of the model's parameter determines if the analytical solution has a finite-time blowup and obtain explicit formulae for the blowup time. We validate the models by showing that a particular choice of the model's parameter corresponds to a well-known exact solution of 3D Euler equations [Gibbon et al., Physica D 132, 497 (1999)]. We discuss practical applications. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.
Nonlinear (super)symmetries and amplitudes
NASA Astrophysics Data System (ADS)
Kallosh, Renata
2017-03-01
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E 7(7) scalar sector symmetries as well as the fermionic goldstino symmetries.
Functional ferroic heterostructures with tunable integral symmetry.
Becher, C; Trassin, M; Lilienblum, M; Nelson, C T; Suresha, S J; Yi, D; Yu, P; Ramesh, R; Fiebig, M; Meier, D
2014-07-02
The relation between symmetry and functionality was pinpointed by Pierre Curie who stated that it is the symmetry breaking that creates physical properties. This fundamental principle is nowadays used for engineering heterostructures whose integral symmetry leads to exotic phenomena such as one-way transparency. For switching devices, however, such symmetry-related functionalities cannot be used because the symmetry in conventional heterostructures is immutable once the material has been synthesized. Here we demonstrate a concept for post-growth symmetry control in PbZr0.2Ti0.8O3 and BiFeO3-based heterostructures. A conducting oxide is sandwiched between two ferroelectric layers, and inversion symmetry is reversibly switched on or off by layer-selective electric-field poling. The generalization of our approach to other materials and symmetries is discussed. We thus establish ferroic trilayer structures as device components with reversibly tunable symmetry and demonstrate their use as light emitters that can be activated and deactivated by applying moderate electric voltages.
Functional ferroic heterostructures with tunable integral symmetry
NASA Astrophysics Data System (ADS)
Becher, C.; Trassin, M.; Lilienblum, M.; Nelson, C. T.; Suresha, S. J.; Yi, D.; Yu, P.; Ramesh, R.; Fiebig, M.; Meier, D.
2014-07-01
The relation between symmetry and functionality was pinpointed by Pierre Curie who stated that it is the symmetry breaking that creates physical properties. This fundamental principle is nowadays used for engineering heterostructures whose integral symmetry leads to exotic phenomena such as one-way transparency. For switching devices, however, such symmetry-related functionalities cannot be used because the symmetry in conventional heterostructures is immutable once the material has been synthesized. Here we demonstrate a concept for post-growth symmetry control in PbZr0.2Ti0.8O3 and BiFeO3-based heterostructures. A conducting oxide is sandwiched between two ferroelectric layers, and inversion symmetry is reversibly switched on or off by layer-selective electric-field poling. The generalization of our approach to other materials and symmetries is discussed. We thus establish ferroic trilayer structures as device components with reversibly tunable symmetry and demonstrate their use as light emitters that can be activated and deactivated by applying moderate electric voltages.
Asymptotic symmetries of Yang-Mills theory
NASA Astrophysics Data System (ADS)
Strominger, Andrew
2014-07-01
Asymptotic symmetries at future null infinity ( +) of Minkowski space for electrodynamics with massless charged fields, as well as nonabelian gauge theories with gauge group G, are considered at the semiclassical level. The possibility of charge/color flux through + suggests the symmetry group is infinite-dimensional. It is conjectured that the symmetries include a G Kac-Moody symmetry whose generators are "large" gauge transformations which approach locally holomorphic functions on the conformal two-sphere at + and are invariant under null translations. The Kac-Moody currents are constructed from the gauge field at the future boundary of +. The current Ward identities include Weinberg's soft photon theorem and its colored extension.
Interpretation of symmetry experiments on Omega
NASA Astrophysics Data System (ADS)
Lours, Laurence; Bastian, Josiane; Monteil, Marie-Christine; Philippe, Franck; Jadaud, Jean-Paul
2006-10-01
The interpretation of the symmetry experiments performed on Omega in 2005 with 3 cone LMJ-like irradiation is presented here. The goal of this campaign was the characterization of the irradiation symmetry by X-ray imaging of the D2Ar capsule. Images of backlit implosion (as done in earlier campaigns with foam balls) and core emission were obtained on the same shot, and can be compared to FCI2 simulations. This set of shots comfirms former results with foam balls of a good symmetry control with 3 cones in empty hohlraums. The influence of the hohlraum shape on symmetry is also studied by comparison of cylindrical hohlraums vs rugby ones.
Topological phases protected by point group symmetry
Song, Hao; Huang, Sheng -Jie; Fu, Liang; ...
2017-02-21
We consider symmetry-protected topological (SPT) phases with crystalline point group symmetry, dubbed point group SPT (pgSPT) phases. We show that such phases can be understood in terms of lower-dimensional topological phases with on-site symmetry and that they can be constructed as stacks and arrays of these lower-dimensional states. This provides the basis for a general framework to classify and characterize bosonic and fermionic pgSPT phases, which can be applied for arbitrary crystalline point group symmetry and in arbitrary spatial dimensions. We develop and illustrate this framework by means of a few examples, focusing on three-dimensional states. We classify bosonic pgSPTmore » phases and fermionic topological crystalline superconductors with ZP2 (reflection) symmetry, electronic topological crystalline insulators (TCIs) with U(1)×ZP2 symmetry, and bosonic pgSPT phases with C2v symmetry, which is generated by two perpendicular mirror reflections. We also study surface properties, with a focus on gapped, topologically ordered surface states. For electronic TCIs, we find a Z8 × Z2 classification, where the Z8 corresponds to known states obtained from noninteracting electrons, and the Z2 corresponds to a “strongly correlated” TCI that requires strong interactions in the bulk. Lastly, our approach may also point the way toward a general theory of symmetry-enriched topological phases with crystalline point group symmetry.« less
Fake conformal symmetry in unimodular gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-08-01
We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.
Discrete gauge symmetry in continuum theories
Krauss, L.M.; Wilczek, F.
1989-03-13
We point out that local symmetries can masquerade as discrete global symmetries to an observer equipped with only low-energy probes. The existence of the underlying local gauge invariance can, however, result in observable Aharonov-Bohm-type effects. Black holes can therefore carry discrete gauge charges: a form of nonclassical ''hair.'' Neither black-hole evaporation, wormholes, nor anything else can violate discrete gauge symmetries. In supersymmetric unified theories such discrete symmetries can forbid proton-decay amplitudes that might otherwise be catastrophic.
PREFACE: Symmetries and Integrability of Difference Equations
NASA Astrophysics Data System (ADS)
Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane
2007-10-01
to integrability. The first section contains a paper by T Hamamoto and K Kajiwara on hypergeometric solutions to the q-Painlevé equation of type A4(1). Discrete geometry. In this category there are three papers. J Cielinski offers a geometric definition and a spectral approach on pseudospherical surfaces on time scales, while A Doliwa considers generalized isothermic lattices. The paper by U Pinkall, B Springborn and S Weiss mann is concerned with a new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. Integrable systems in statistical physics. Under this heading there is a paper by R J Baxter on corner transfer matrices in statistical mechanics, and a paper by S Boukraa, S Hassani, J-M Maillard, B M McCoy, J-A Weil and N Zenine where the authors consider Fuchs-Painlevé elliptic representation of the Painlevé VI equation. KP lattices and differential-difference hierarchies. In this section we have seven articles. C R Gilson, J J C Nimmo and Y Ohta consider quasideterminant solutions of a non-Abelian Hirota-Miwa equation, while B Grammaticos, A Ramani, V Papageorgiou, J Satsuma and R Willox discuss the construction of lump-like solutions of the Hirota-Miwa equation. J Hietarinta and C Viallet analyze the factorization process for lattice maps searching for integrable cases, the paper by X-B Hu and G-F Yu is concerned with integrable discretizations of the (2+1)-dimensional sinh-Gordon equation, and K Kajiwara, M Mazzocco and Y Ohta consider the Hankel determinant formula of the tau-functions of the Toda equation. Finally, V G Papageorgiou and A G Tongas study Yang-Baxter maps and multi-field integrable lattice equations, and H-Y Wang, X-B Hu and H-W Tam consider the two-dimensional Leznov lattice equation with self-consistent sources. Quantum integrable systems. This category contains a paper on q-extended eigenvectors of the integral and finite Fourier transforms by N M Atakishiyev, J P Rueda and K B Wolf, and an article by S
Symplectic and Killing symmetries of AdS3 gravity: holographic vs boundary gravitons
NASA Astrophysics Data System (ADS)
Compère, G.; Mao, P.; Seraj, A.; Sheikh-Jabbari, M. M.
2016-01-01
The set of solutions to the AdS3 Einstein gravity with Brown-Henneaux boundary conditions is known to be a family of metrics labeled by two arbitrary periodic functions, respectively left and right-moving. It turns out that there exists an appropriate presymplectic form which vanishes on-shell. This promotes this set of metrics to a phase space in which the Brown-Henneaux asymptotic symmetries become symplectic symmetries in the bulk of spacetime. Moreover, any element in the phase space admits two global Killing vectors. We show that the conserved charges associated with these Killing vectors commute with the Virasoro symplectic symmetry algebra, extending the Virasoro symmetry algebra with two U(1) generators. We discuss that any element in the phase space falls into the coadjoint orbits of the Virasoro algebras and that each orbit is labeled by the U(1) Killing charges. Upon setting the right-moving function to zero and restricting the choice of orbits, one can take a near-horizon decoupling limit which preserves a chiral half of the symplectic symmetries. Here we show two distinct but equivalent ways in which the chiral Virasoro symplectic symmetries in the near-horizon geometry can be obtained as a limit of the bulk symplectic symmetries.
``Gauging'' Non-on-site Symmetries and Symmetry Protected Topological Phases
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Tse; Cho, Gil Young; Ryu, Shinsei
2015-03-01
We gauge non-on-site symmetries, such as parity symmetries, for a general (1+1)D conformal field theory (CFT) which is the boundary of (2+1)D symmetry protected topological (SPT) phases. This provides an efficient method to diagnose stability of SPT phases with the discrete non-on-site symmetries. To gauge the non-on- site symmetries, we are naturally led to consider field theories defined on a non-orientied manifold, such as Klein bottle. The partner states of the ``vortices'' (or twist operators) of the gauged non-on-site symmetries, the so-called crosscap states, provide information about the classification of the corresponding SPT phases. Our method also provide a way to gauging time-reversal symmetry, which is ``topologically'' related to parity symmetry by CPT theorem. NSF Grants DMR-1064319.
Neutrino sector with Majorana mass terms and Friedberg-Lee symmetry
NASA Astrophysics Data System (ADS)
Jarlskog, C.
2008-04-01
We examine a recently proposed symmetry/condition by Friedberg and Lee in a framework where three right-handed neutrinos are added to the spectrum of the three-family minimal standard model. It is found that the right-handed neutrinos are very special, with respect to this symmetry. In the symmetry limit the neutrinos are massless, which could possibly be a hint about why they are light. Imposed as a condition and not as a full symmetry, we find that one of the three right-handed neutrinos simply decouples (has only gravitational interactions) and one of the interacting neutrinos is massless. The possible relation of the model to the seesaw mechanism is briefly discussed.
The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation
NASA Astrophysics Data System (ADS)
Dong, Huanhe; Zhang, Yong; Zhang, Xiaoen
2016-07-01
A discrete matrix spectral problem is presented and the hierarchy of discrete integrable systems is derived. Their Hamiltonian structures are established. As to the discrete integrable system, nonlinearization of the spatial parts of the Lax pairs and the adjoint Lax pairs generate a new integrable symplectic map. Based on the theory, a new integrable symplectic map and a family of finite-dimension completely integrable systems are given. Especially, two explicit equations are obtained under the Bargmann constraint. Finally, the symmetry of the discrete equation is provided according to the recursion operator and the seed symmetry. Although the solutions of the discrete equations have been gained by many methods, there are few articles that solving the discrete equation via the symmetry. So the solution of the discrete lattice equation is obtained through the symmetry theory.
Discrete symmetries for electroweak natural type-I seesaw mechanism
NASA Astrophysics Data System (ADS)
Chattopadhyay, Pratik; Patel, Ketan M.
2017-08-01
The naturalness of electroweak scale in the models of type-I seesaw mechanism with O (1) Yukawa couplings requires TeV scale masses for the fermion singlets. In this case, the tiny neutrino masses have to arise from the cancellations within the seesaw formula which are arranged by fine-tuned correlations between the Yukawa couplings and the masses of fermion singlets. We motivate such correlations through the framework of discrete symmetries. In the case of three Majorana fermion singlets, it is shown that the exact cancellation arranged by the discrete symmetries in seesaw formula necessarily leads to two mass degenerate fermion singlets. The remaining fermion singlet decouples completely from the standard model. We provide two candidate models based on the groups A4 and Σ (81) and discuss the generic perturbations to this approach which can lead to the viable neutrino masses.
Model dependence of the neutron-skin thickness on the symmetry energy
NASA Astrophysics Data System (ADS)
Mondal, C.; Agrawal, B. K.; Centelles, M.; Colò, G.; Roca-Maza, X.; Paar, N.; Viñas, X.; Singh, S. K.; Patra, S. K.
2016-06-01
The model dependence in the correlations of the neutron-skin thickness in heavy nuclei with various symmetry-energy parameters is analyzed by using several families of systematically varied microscopic mean-field models. Such correlations show a varying degree of model dependence once the results for all the different families are combined. Some mean-field models associated with similar values of the symmetry-energy slope parameter at saturation density L , and pertaining to different families, yield a greater-than-expected spread in the neutron-skin thickness of the 208Pb nucleus. The effective value of the symmetry-energy slope parameter Leff, determined by using the nucleon density profiles of the finite nucleus and the density derivative S'(ρ ) of the symmetry energy starting from about saturation density up to low densities typical of the surface of nuclei, seems to account for the spread in the neutron-skin thickness for the models with similar L . The differences in the values of Leff are mainly due to the small differences in the nucleon density distributions of heavy nuclei in the surface region and the behavior of the symmetry energy at subsaturation densities.
Mirror symmetry for Enriques surfaces
NASA Astrophysics Data System (ADS)
Lakuriqi, Enkeleida
In this thesis, we investigate three separate but related projects. In the first one, we describe the geometric backgrounds of Type II string theory which are given by Enriques surfaces and their mirrors. We also study the effect of various string dualities on such backgrounds, in particular phase change in Gauged Linear Sigma Models and mirror symmetry. In the second project, we investigate special Kahler geometry in order to find canonical coordinates on the moduli of generalised Calabi-Yau spaces and the associated (2, 2) superconformal field theories. In the third project, we develop a general technique for computing the massless spectrum of (0, 2) quantum field theory compactified on a proper stack or an orbifold. We produce general formulas for the contribution of the twisted sectors and compute specific examples of compactifications on gerbes on projective spaces and Calabi-Yau threefolds.
Permutation symmetry for theta functions
Carlson, B.C.
2011-01-21
This paper does for combinations of theta functions most of what Carlson (2004) [1] did for Jacobian elliptic functions. In each case the starting point is the symmetric elliptic integral R{sub F} of the first kind. Its three arguments (formerly squared Jacobian elliptic functions but now squared combinations of theta functions) differ by constants. Symbols designating the constants can often be used to replace 12 equations by three with permutation symmetry (formerly in the letters c, d, n for the Jacobian case but now in the subscripts 2, 3, 4 for theta functions). Such equations include derivatives and differential equations, bisection and duplication relations, addition formulas (apparently new for theta functions), and an example of pseudoaddition formulas.
Electroweak symmetry breaking via QCD.
Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred
2014-08-29
We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350 GeV≲mS≲3 TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem.
Mirror symmetry in emergent gravity
NASA Astrophysics Data System (ADS)
Yang, Hyun Seok
2017-09-01
Given a six-dimensional symplectic manifold (M , B), a nondegenerate, co-closed four-form C introduces a dual symplectic structure B ˜ = * C independent of B via the Hodge duality *. We show that the doubling of symplectic structures due to the Hodge duality results in two independent classes of noncommutative U (1) gauge fields by considering the Seiberg-Witten map for each symplectic structure. As a result, emergent gravity suggests a beautiful picture that the variety of six-dimensional manifolds emergent from noncommutative U (1) gauge fields is doubled. In particular, the doubling for the variety of emergent Calabi-Yau manifolds allows us to arrange a pair of Calabi-Yau manifolds such that they are mirror to each other. Therefore, we argue that the mirror symmetry of Calabi-Yau manifolds is the Hodge theory for the deformation of symplectic and dual symplectic structures.
Wormhole dynamics in spherical symmetry
Hayward, Sean A.
2009-06-15
A dynamical theory of traversable wormholes is detailed in spherical symmetry. Generically a wormhole consists of a tunnel of trapped surfaces between two mouths, defined as temporal outer trapping horizons with opposite senses, in mutual causal contact. In static cases, the mouths coincide as the throat of a Morris-Thorne wormhole, with surface gravity providing an invariant measure of the radial curvature or ''flaring-out''. The null energy condition must be violated at a wormhole mouth. Zeroth, first, and second laws are derived for the mouths, as for black holes. Dynamic processes involving wormholes are reviewed, including enlargement or reduction, and interconversion with black holes. A new area of wormhole thermodynamics is suggested.
Inflation, symmetry, and B-modes
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.
2015-05-01
We examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by envoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with a cosmological constant and a massless scalar carries conformal symmetry. They claim this conformal symmetry is hidden when the action is written in the Einstein frame, and so has not been fully appreciated in the literature. They further claim that such a theory carries another hidden symmetry; a global SO (1 , 1) symmetry. By deforming around the global SO (1 , 1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend to give rise to B-modes with small amplitude. Here we explain that standard Einstein gravity does not in fact possess conformal symmetry. Instead these authors are merely introducing a redundancy into the description, not an actual conformal symmetry. Furthermore, we explain that the only real (global) symmetry in these models is not at all hidden, but is completely manifest when expressed in the Einstein frame; it is in fact the shift symmetry of a scalar field. When analyzed systematically as an effective field theory, deformations do not generally produce asymptotically flat potentials and small B-modes as suggested in these recent papers. Instead, deforming around the shift symmetry systematically, tends to produce models of inflation with B-modes of appreciable amplitude. Such simple models typically
Inflation, symmetry, and B-modes
Hertzberg, Mark P.
2015-04-20
Here, we examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by envoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with amore » cosmological constant and a massless scalar carries conformal symmetry. They claim this conformal symmetry is hidden when the action is written in the Einstein frame, and so has not been fully appreciated in the literature. They further claim that such a theory carries another hidden symmetry; a global SO(1,1) symmetry. By deforming around the global SO(1,1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend to give rise to B-modes with small amplitude. Here we explain that standard Einstein gravity does not in fact possess conformal symmetry. Instead these authors are merely introducing a redundancy into the description, not an actual conformal symmetry. Furthermore, we explain that the only real (global) symmetry in these models is not at all hidden, but is completely manifest when expressed in the Einstein frame; it is in fact the shift symmetry of a scalar field. When analyzed systematically as an effective field theory, deformations do not generally produce asymptotically flat potentials and small B-modes as suggested in these recent papers. Instead, deforming around the shift symmetry systematically, tends to produce models of inflation with B-modes of appreciable amplitude. Such simple models
Neutrino properties and fundamental symmetries
Bowles, T.J.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.
Flavor symmetries and fermion masses
Rasin, Andrija
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V_{ub}/V_{cb} = √m_{u}/m_{c} and V_{td}/V_{ts} = √m_{d}/m_{s}, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanβ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.
Rare Isotopes and Fundamental Symmetries
NASA Astrophysics Data System (ADS)
Brown, B. Alex; Engel, Jonathan; Haxton, Wick; Ramsey-Musolf, Michael; Romalis, Michael; Savard, Guy
2009-01-01
Experiments searching for new interactions in nuclear beta decay / Klaus P. Jungmann -- The beta-neutrino correlation in sodium-21 and other nuclei / P. A. Vetter ... [et al.] -- Nuclear structure and fundamental symmetries/ B. Alex Brown -- Schiff moments and nuclear structure / J. Engel -- Superallowed nuclear beta decay: recent results and their impact on V[symbol] / J. C. Hardy and I. S. Towner -- New calculation of the isospin-symmetry breaking correlation to superallowed Fermi beta decay / I. S. Towner and J. C. Hardy -- Precise measurement of the [symbol]H to [symbol]He mass difference / D. E. Pinegar ... [et al.] -- Limits on scalar currents from the 0+ to 0+ decay of [symbol]Ar and isospin breaking in [symbol]Cl and [symbol]Cl / A. Garcia -- Nuclear constraints on the weak nucleon-nucleon interaction / W. C. Haxton -- Atomic PNC theory: current status and future prospects / M. S. Safronova -- Parity-violating nucleon-nucleon interactions: what can we learn from nuclear anapole moments? / B. Desplanques -- Proposed experiment for the measurement of the anapole moment in francium / A. Perez Galvan ... [et al.] -- The Radon-EDM experiment / Tim Chupp for the Radon-EDM collaboration -- The lead radius Eexperiment (PREX) and parity violating measurements of neutron densities / C. J. Horowitz -- Nuclear structure aspects of Schiff moment and search for collective enhancements / Naftali Auerbach and Vladimir Zelevinsky -- The interpretation of atomic electric dipole moments: Schiff theorem and its corrections / C. -P. Liu -- T-violation and the search for a permanent electric dipole moment of the mercury atom / M. D. Swallows ... [et al.] -- The new concept for FRIB and its potential for fundamental interactions studies / Guy Savard -- Collinear laser spectroscopy and polarized exotic nuclei at NSCL / K. Minamisono -- Environmental dependence of masses and coupling constants / M. Pospelov.
Nonlinear gauge realization of spacetime symmetries including translations
NASA Astrophysics Data System (ADS)
Julve, J.; López-Pinto, A.; Tiemblo, A.; Tresguerres, R.
1996-06-01
We present a general scheme for the nonlinear gauge realizations of spacetime groups on coset spaces of the groups considered. In order to show the relevance of the method for the rigorous treatment of the translations in gravitational gauge theories, we apply it in particular to the affine group. This is an illustration of the family of spacetime symmetries having the form of a semidirect productH ⊗ T, whereH is the stability subgroup andT are the translations. The translational component of the connection behaves like a true tensor underH when coset realizations are involved.
Exotic Hadrons and Underlying Z2,3 Symmetries
NASA Astrophysics Data System (ADS)
Adil, Belhaj; Salah Eddine, Ennadifi; Moulay Brahim, Sedra
2015-12-01
The recent observation of higher quark combinations, tetraquarks and pentaquarks, is a strong indication of more exotic hadrons. Using Z2 and Z3 symmetries and standard model data, a general quark combination producing new hadronic states is proposed in terms of polygon geometries according to the Dynkin diagrams of Ân affine Lie algebras. It has been shown that Z2,3 invariance is crucial in the determination of the mesonic or the baryonic nature of these states. The hexagonal geometry is considered in some details producing both mesonic and baryonic states. A general class of this family is also presented.
Order in the Universe: The Symmetry Principle.
ERIC Educational Resources Information Center
Foundation for Integrative Education, Inc., New York, NY.
The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…
Continuous point symmetries in group field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2017-03-01
We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them.
Symmetries in flat space-times
Duncan, D.C.
1989-01-01
In the following flat spacetimes with a high degree of symmetry are studied. The first part completes the classification of all homogeneous flat spacetimes begun by Wolf. The second part explores classification of flat spacetimes with symmetry groups having codimension one orbits. In this case attention is restricted to spacetimes which model a centrally symmetric gravitational field.
The role of symmetry in nuclear physics
NASA Astrophysics Data System (ADS)
Iachello, Francesco
2015-02-01
The role of discrete symmetries in nuclear physics is briefly reviewed within the context of the algebraic cluster model (ACM). The symmetries D3 (triangle) for 3α and Td (tetrahedron) for 4α are discussed and evidence shown for their occurrence in 12C (D3) and 16O (Td).
Cubic Icosahedra? A Problem in Assigning Symmetry
ERIC Educational Resources Information Center
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
Symmetry in critical random Boolean network dynamics.
Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E
2014-04-01
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.
Symmetry is less than meets the eye.
Apthorp, Deborah; Bell, Jason
2015-03-30
Symmetry is a ubiquitous feature in the visual environment and can be detected by a variety of species, ranging from insects through to humans [1,2]. Here we show it can also bias estimates of basic scene properties. Mirror (reflective) symmetry can be detected in as little as 50 ms, in both natural and artificial visual scenes, and even when embedded within cluttered backgrounds [1]. In terms of its biological relevance, symmetry is a key determinant in mate selection; the degree of symmetry in a face is positively associated with perceived healthiness and attractiveness ratings [3]. In short, symmetry processing mechanisms are an important part of the neural machinery of vision. We reveal that the importance of symmetry extends beyond the processing of shape and objects. Mirror symmetry biases our perception of scene content, with symmetrical patterns appearing to have fewer components than their asymmetric counterparts. This demonstrates an interaction between two fundamental dimensions of visual analysis: symmetry [1] and number [4]. We propose that this numerical underestimation results from a processing bias away from the redundant information within mirror symmetrical displays, extending existing theories regarding redundancy in visual analysis [5,6].
Broken chiral symmetry on a null plane
Beane, Silas R.
2013-10-15
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.
A nilpotent symmetry of quantum gauge theories
NASA Astrophysics Data System (ADS)
Lahiri, Amitabha
2001-09-01
For the Becchi-Rouet-Stora-Tyutin invariant extended action for any gauge theory, there exists another off-shell nilpotent symmetry. For linear gauges, it can be elevated to a symmetry of the quantum theory and used in the construction of the quantum effective action. Generalizations for nonlinear gauges and actions with higher-order ghost terms are also possible.
Teaching symmetry in the introductory physics curriculum
Hill, C. T.; Lederman, L. M.
2000-01-01
Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.
Topological symmetry breaking by quantum wormholes
Mignemi, S.; Moss, I. )
1993-10-15
In multiply connected spacetimes which contain quantum wormholes it may be possible to break gauge symmetries without the usual Higgs fields. In a simple model, symmetry breaking is favored by the quantum effects of Dirac Fermions and leads to vector boson masses related to the wormhole separation.
Order in the Universe: The Symmetry Principle.
ERIC Educational Resources Information Center
Foundation for Integrative Education, Inc., New York, NY.
The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…
Partial dynamical symmetry in a fermion system
Escher; Leviatan
2000-02-28
The relevance of the partial dynamical symmetry concept for an interacting fermion system is demonstrated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications are discussed for the deformed light nucleus 20Ne.
Symmetry Breaking Study with Random Matrix Ensembles
Hussein, M. S.; Carvalho, J. X. de; Pato, M. P.; Sargeant, A. J.
2008-04-04
A random matrix model to describe the coupling of m-fold symmetry is constructed. The particular threefold case is used to analyze data on eigenfrequencies of elastomechanical vibration of an anisotropic quartz block. It is suggested that such experimental/theoretical study may supply a powerful means to discern intrinsic symmetry of physical systems.
Symmetry in Critical Random Boolean Networks Dynamics
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Hossein, Shabnam
2014-03-01
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used to both greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. Classes of functions occur at the same frequency. These classes are orbits of the controlling symmetry group. We find the nature of the symmetry that controls the dynamics of critical random Boolean networks by determining the frequency of output functions utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using symmetry to characterize complex network dynamics, and introduce a novel approach to the analysis of heterogeneous complex systems. This work was supported by the NSF through grants DMR-0908286 and DMR-1206839, and by the AFSOR and DARPA through grant FA9550-12-1-0405.
Symmetry in critical random Boolean network dynamics
NASA Astrophysics Data System (ADS)
Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.
2014-04-01
Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.
Cubic Icosahedra? A Problem in Assigning Symmetry
ERIC Educational Resources Information Center
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
NOTE: Circular symmetry in topologically massive gravity
NASA Astrophysics Data System (ADS)
Deser, S.; Franklin, J.
2010-05-01
We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null.
Electroweak symmetry breaking: Top quard condensates
Bardeen, W.A.
1990-12-01
The fundamental mechanisms for the dynamical breaking of the electroweak gauge symmetries remain a mystery. This paper examines the possible role of heavy fermions, particularly the top quark, in generating the observed electroweak symmetry breaking, the masses of the W and Z bosons and the masses of all observed quarks and leptons. 27 refs., 10 figs., 4 tabs.
Structure relations for the symmetry algebras of quantum superintegrable systems
NASA Astrophysics Data System (ADS)
Kalnins, E. G.; Kress, J. M.; Miller, W., Jr.
2012-02-01
A quantum superintegrable system is an integrable n-dimensional Hamiltonian system with potential H = Δn + V that admits 2n - 1 algebraically independent partial differential operators commuting with the Hamiltonian, the maximum number possible. Here, n >= 2. The system is of order l if the maximum order of the symmetry operators other than the Hamiltonian is l Typically, the algebra generated by the symmetry operators has been shown to close. There is an analogous definition for classical superintegrable systems with the operator commutator replaced by the Poisson bracket. Superintegrability captures what it means for a Hamiltonian system to be explicitly algebraically and analytically solvable, not just solvable numerically. Until recently there were very few examples of superintegrable systems of order l with l > 3 and and virtually no structure results. The situation has changed dramatically in the last two years with the discovery of families of systems depending on a rational parameter κ = p/q that are superintegrable for all κ and of arbitrarily high order, such as l = p + q + 1. We review a method, based on recurrence formulas for special functions, that proves superintegrability of these higher order quantum systems, and allows us to determine the structure of the symmetry algebra. Just a few months ago, these constructions seemed out of reach.
Teaching Point-Group Symmetry with Three-Dimensional Models
ERIC Educational Resources Information Center
Flint, Edward B.
2011-01-01
Three tools for teaching symmetry in the context of an upper-level undergraduate or introductory graduate course on the chemical applications of group theory are presented. The first is a collection of objects that have the symmetries of all the low-symmetry and high-symmetry point groups and the point groups with rotational symmetries from 2-fold…
Teaching Point-Group Symmetry with Three-Dimensional Models
ERIC Educational Resources Information Center
Flint, Edward B.
2011-01-01
Three tools for teaching symmetry in the context of an upper-level undergraduate or introductory graduate course on the chemical applications of group theory are presented. The first is a collection of objects that have the symmetries of all the low-symmetry and high-symmetry point groups and the point groups with rotational symmetries from 2-fold…
On Gauging Symmetry of Modular Categories
NASA Astrophysics Data System (ADS)
Cui, Shawn X.; Galindo, César; Plavnik, Julia Yael; Wang, Zhenghan
2016-12-01
Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the {H^4}-obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.
Bilateral symmetry breaking in nonlinear circular cylinders.
Yuan, Lijun; Lu, Ya Yan
2014-12-01
Symmetry breaking is a common phenomenon in nonlinear systems, it refers to the existence of solutions that do not preserve the original symmetries of the underlying system. In nonlinear optics, symmetry breaking has been previously investigated in a number of systems, usually based on simplified model equations or temporal coupled mode theories. In this paper, we analyze the scattering of an incident plane wave by one or two circular cylinders with a Kerr nonlinearity, and show the existence of solutions that break a lateral reflection symmetry. Although symmetry breaking is a known phenomenon in nonlinear optics, it is the first time that this phenomenon was rigorously studied in simple systems with one or two circular cylinders.
Natural Electroweak Breaking from a Mirror Symmetry
Chacko, Z.; Goh, Hock-Seng; Harnik, Roni
2006-06-16
We present ''twin Higgs models,'' simple realizations of the Higgs boson as a pseudo Goldstone boson that protect the weak scale from radiative corrections up to scales of order 5-10 TeV. In the ultraviolet these theories have a discrete symmetry which interchanges each standard model particle with a corresponding particle which transforms under a twin or a mirror standard model gauge group. In addition, the Higgs sector respects an approximate global symmetry. When this global symmetry is broken, the discrete symmetry tightly constrains the form of corrections to the pseudo Goldstone Higgs potential, allowing natural electroweak symmetry breaking. Precision electroweak constraints are satisfied by construction. These models demonstrate that, contrary to the conventional wisdom, stabilizing the weak scale does not require new light particles charged under the standard model gauge groups.
Preference for symmetry: Only on Mars?
Shepherd, Kathrine; Bar, Moshe
2013-01-01
Preference for symmetry is a robust bias found throughout the animal kingdom. In humans, the bias for symmetry has been documented in numerous domains, including faces and visual patterns. The function of this potent aesthetic bias still eludes us, but prominent accounts focus on its role in mate selection and perceptual fluency. Previous studies have shown that both males and females find symmetrical faces to be more attractive, but here we show that the preference for symmetry in neutral stimuli (ie everyday and meaningless visual objects) is, on the other hand, unique to male participants. Our findings indicate that symmetry preference cannot be explained exclusively by perceptual or computational efficiency, because such an account is domain-independent yet females did not show any bias for the objects tested here. Further studies are needed to elucidate the utility of the male preference for visual object symmetry. PMID:22308897
Ermakov's Superintegrable Toy and Nonlocal Symmetries
NASA Astrophysics Data System (ADS)
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Symmetries in geology and geophysics
Turcotte, Donald L.; Newman, William I.
1996-01-01
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth’s topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters. PMID:11607719
NASA Astrophysics Data System (ADS)
Cheng, Meng; Zaletel, Michael; Barkeshli, Maissam; Vishwanath, Ashvin; Bonderson, Parsa
2016-10-01
The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a "spinon" excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of "anyonic spin-orbit coupling," which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.
Cattaneo, Zaira; Bona, Silvia; Silvanto, Juha
2017-08-12
Visual mirror symmetry plays an important role in visual perception in both human and animal vision; its importance is reflected in the fact that it can be extracted automatically during early stages of visual processing. However, how this extraction is implemented at the cortical level remains an open question. Given the importance of symmetry in visual perception, one possibility is that there is a network which extracts all types of symmetry irrespective of axis of orientation; alternatively, symmetry along different axes might be encoded by different brain regions, implying that there is no single neural mechanism for symmetry processing. Here we used fMRI-guided transcranial magnetic stimulation (TMS) to compare the neural basis of the two main types of symmetry found in the natural world, vertical and horizontal symmetry. TMS was applied over either right Lateral Occipital Cortex (LO), right Occipital Face Area (OFA) or Vertex while participants were asked to detect symmetry in low-level dot configurations. Whereas detection of vertical symmetry was impaired by TMS over both LO and OFA, detection of horizontal symmetry was delayed by stimulation of LO only. Thus, different types of visual symmetry rely on partially distinct cortical networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
1992-12-30
quality service delivery to meet the needs of the DoD personnel and their families, in accordance with DoD Directive 1342.17 (reference (a)). 4...facility, and program standards. f. Develop and forward to ASD(FM&P), for review and approval, a comprehensive evaluation system to measure the...of future services and the continuation, expansion, or termination of others. (3) Service-wide measurement criteria for monitoring and evaluating the
Natural quasicrystal with decagonal symmetry.
Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S; Andronicos, Christopher L; Distler, Vadim V; Eddy, Michael P; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J; Steinhardt, William M; Yudovskaya, Marina; Steinhardt, Paul J
2015-03-13
We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula.
Bilateral symmetry across Aphrodite Terra
NASA Technical Reports Server (NTRS)
Crumpler, L. S.; Head, J. W.; Campbell, D. B.
1987-01-01
There are three main highland areas on Venus: Beta Regio, Ishtar Terra and Aphrodite Terra. The latter is least known and the least mapped, yet existing analyses of Aphrodite Terra based on available Pioneer-Venus orbiter data suggest that it may be the site of extensive rifting. Some of the highest resolution (30 km) PV data (SAR) included most of the western half of Aphrodite Terra. Recent analysis of the SAR data together with Arecibo range-doppler topographic profiling (10 X 100 km horizontal and 10 m vertical resolution) across parts of Aphrodite, further characterized the nature of possible tectonic processes in the equatorial highlands. The existence of distinct topographic and radar morphologic linear discontinuities across the nearly east-west strike of Aphrodite Terra is indicated. Another prominent set of linear features is distinctly parallel to and orthogonal to the ground tracks of the PV spacecraft and are not included because of the possibility that they are artifacts. Study of the northwest trending cross-strike discontinuities (CSD's) and the nature of topographic and morphologic features along their strike suggest the presence of bilateral topographic and morphologic symmetry about the long axis of Aphrodite Terra.
Anisotropic Weyl symmetry and cosmology
Moon, Taeyoon; Oh, Phillial; Sohn, Jongsu E-mail: ploh@skku.edu
2010-11-01
We construct an anisotropic Weyl invariant theory in the ADM formalism and discuss its cosmological consequences. It extends the original anisotropic Weyl invariance of Hořava-Lifshitz gravity using an extra scalar field. The action is invariant under the anisotropic transformations of the space and time metric components with an arbitrary value of the critical exponent z. One of the interesting features is that the cosmological constant term maintains the anisotropic symmetry for z = −3. We also include the cosmological fluid and show that it can preserve the anisotropic Weyl invariance if the equation of state satisfies P = zρ/3. Then, we study cosmology of the Einstein-Hilbert-anisotropic Weyl (EHaW) action including the cosmological fluid, both with or without anisotropic Weyl invariance. The correlation of the critical exponent z and the equation of state parameter ω-bar provides a new perspective of the cosmology. It is also shown that the EHaW action admits a late time accelerating universe for an arbitrary value of z when the anisotropic conformal invariance is broken, and the anisotropic conformal scalar field is interpreted as a possible source of dark energy.
Higher spins and Yangian symmetries
Gaberdiel, Matthias R.; Gopakumar, Rajesh; Li, Wei; ...
2017-04-26
The relation between the bosonic higher spin W∞[λ]W∞[λ] algebra, the affine Yangian of gl1, and the SHc algebra is established in detail. For generic λ we find explicit expressions for the low-lying W∞[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ = 0 and λ = 1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W∞ modes and those of the affine Yangianmore » is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SHc generators. Lastly, given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.« less
Natural quasicrystal with decagonal symmetry
Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S.; Andronicos, Christopher L.; Distler, Vadim V.; Eddy, Michael P.; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J.; Steinhardt, William M.; Yudovskaya, Marina; Steinhardt, Paul J.
2015-01-01
We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula. PMID:25765857
Symmetry and twinning in boltwoodite
Strunz, H.; Tennyson, C.
1981-11-01
The authors give the results of an x-ray diffraction and chemical analysis of boltwoodite from Namibia. Chemical analysis revealed that as well as potassium there was a considerable amount of sodium; thus one may speak of sodium boltwoodite with the molecular ratio K/sub 2/O:Na/sub 2/O = 2 : 1. The potassium and sodium are partly replaced by H/sub 3/O. The idealized formula is (K,Na)/sub 2-x/(H/sub 2/O)/sub x/ x (UO/sub 2/SiO/sub 4/) x H/sub 2/O; the symmetry is monoclinic, the space group being C/sup 2//sub 2h/ = P2/sub 1//m, with a = 6.65 A, b = 7.07 A, c = 7.11 A, ..beta.. = 105/sup 0/30', Z = 2. The acicular crystals are elongated along (010) with a very pronounced cleavage in 001. The cleavage plane is (101). The mineral bears a very marked resemblance to kasolite.
Structural symmetry in evolutionary games
McAvoy, Alex; Hauert, Christoph
2015-01-01
In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436
Sufficient symmetry conditions for Topological Quantum Order.
Nussinov, Zohar; Ortiz, Gerardo
2009-10-06
We prove sufficient conditions for Topological Quantum Order at zero and finite temperatures. The crux of the proof hinges on the existence of low-dimensional Gauge-Like Symmetries, thus providing a unifying framework based on a symmetry principle. These symmetries may be actual invariances of the system, or may emerge in the low-energy sector. Prominent examples of Topological Quantum Order display Gauge-Like Symmetries. New systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. We analyze the physical consequences of Gauge-Like Symmetries (including topological terms and charges) and show the insufficiency of the energy spectrum, topological entanglement entropy, maximal string correlators, and fractionalization in establishing Topological Quantum Order. General symmetry considerations illustrate that not withstanding spectral gaps, thermal fluctuations may impose restrictions on suggested quantum computing schemes. Our results allow us to go beyond standard topological field theories and engineer systems with Topological Quantum Order.
Symmetry and range limits in importance indices.
Seifan, Tal; Seifan, Merav
2015-10-01
Recently, Mingo has analyzed the properties of I imp, an importance index, and demonstrated that its range is not symmetrical. While agreeing with this comment, we believe that more light needs to be shed on the issue of symmetry in relation to such indices. Importance indices are calculated using three values: performance of the organism in the absence and in the presence of neighbors and maximum performance of the organism in ideal conditions. Because of this structure, importance indices can hardly ever achieve symmetry along the whole range of potential performances. We discuss the limitation of the symmetry range for different symmetry types and for both additive and multiplicative indices. We conclude that importance indices, as other interactions indices, are practical tools for interpreting ecological outcomes, especially while comparing between studies. Nevertheless, the current structure of importance indices prevents symmetry along their whole range. While the lack of "perfect" symmetry may call for the development of more sophisticated importance metrics, the current indices are still helpful for the understanding of biological systems and should not be discarded before better alternatives are well established. To prevent potential confusion, we suggest that ecologists present the relevant index symmetry range in addition to their results, thus minimizing the probability of misinterpretation.
Relativity symmetries and Lie algebra contractions
Cho, Dai-Ning; Kong, Otto C.W.
2014-12-15
We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m,n) symmetry as an isometry on an m+n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m,n) preserving a symmetry of the same type at dimension m+n−1, e.g. a G(m,n−1), together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2,4), which is the particular case for our interest on the physics side as the proposed relativity symmetry for “quantum spacetime”. The contractions from G(1,3) may be relevant to real physics.
Symmetries in fluctuations far from equilibrium.
Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L
2011-05-10
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.
Symmetries in fluctuations far from equilibrium
Hurtado, Pablo I.; Pérez-Espigares, Carlos; del Pozo, Jesús J.; Garrido, Pedro L.
2011-01-01
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865
Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking
NASA Astrophysics Data System (ADS)
Miransky, Vladimir A.
2011-05-01
I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.
Symmetry properties with pupil phase-filters.
Ledesma, Silvia; Campos, J; Escalera, J; Yzuel, M
2004-05-31
Pupil filters can modify the three dimensional response of an optical system. In this paper, we study different pupil symmetries that produce a predictable image behavior. We show that different pupil-filters that satisfy certain symmetry conditions can produce axial responses which are either identical or mirror reflected. We also establish the differences in the symmetry properties between amplitude-only filters and phase-only filters. In particular, we are interested in phase filters that produce transverse superresolution with axial superresolution or high depth of focus.
Hairs of discrete symmetries and gravity
NASA Astrophysics Data System (ADS)
Choi, Kang Sin; Kim, Jihn E.; Kyae, Bumseok; Nam, Soonkeon
2017-06-01
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Interdependence of different symmetry energy elements
NASA Astrophysics Data System (ADS)
Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.
2017-08-01
Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.
Yang-Mills origin of gravitational symmetries.
Anastasiou, A; Borsten, L; Duff, M J; Hughes, L J; Nagy, S
2014-12-05
By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the biadjoint representation, we derive in linearized approximation, the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance, and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincaré symmetry. As a concrete example, we focus on the new minimal (12+12) off shell version of simple four-dimensional supergravity obtained by tensoring the off shell Yang-Mills multiplets (4+4, N_{L}=1) and (3+0, N_{R}=0).
Exploring Symmetry to Assist Alzheimer's Disease Diagnosis
NASA Astrophysics Data System (ADS)
Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.
Homogeneous sphere packings with triclinic symmetry.
Fischer, W; Koch, E
2002-11-01
All homogeneous sphere packings with triclinic symmetry have been derived by studying the characteristic Wyckoff positions P -1 1a and P -1 2i of the two triclinic lattice complexes. These sphere packings belong to 30 different types. Only one type exists that has exclusively triclinic sphere packings and no higher-symmetry ones. The inherent symmetry of part of the sphere packings is triclinic for 18 types. Sphere packings of all but six of the 30 types may be realized as stackings of parallel planar nets.
Electromagnetic radiation under explicit symmetry breaking.
Sinha, Dhiraj; Amaratunga, Gehan A J
2015-04-10
We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.
Superstrings,. kappa. -symmetry and superspace constraints
Tonin, M. . Ist. di Fisica)
1988-01-01
This paper deals with the Green-Schwarz formulation of heterotic superstrings, propagating in a background superspace, and its characteristic {kappa}-symmetry. The role of {kappa}-symmetry anomalies, in implementing the superspace constraints, is clarified. A cohomological consistency condition for these anomalies, that strongly restricts their structure, is obtained. The superspace constraints, which follow by requiring that BRST {kappa}-symmetry is preserved at the quantum level, agree with these found recently in the framework of a superspace formulation of SUGRA-SYM models.
Symmetry energy III: Isovector skins
NASA Astrophysics Data System (ADS)
Danielewicz, Paweł; Singh, Pardeep; Lee, Jenny
2017-02-01
Isoscalar density is a sum of neutron and proton densities and isovector is a normalized difference. Here, we report the experimental evidence for the displacement of the isovector and isoscalar surfaces in nuclei, by ∼ 0.9 fm from each other. We analyze data on quasielastic (QE) charge exchange (p,n) reactions, concurrently with proton and neutron elastic scattering data for the same target nuclei, following the concepts of the isoscalar and isovector potentials combined into Lane optical potential. The elastic data largely probe the geometry of the isoscalar potential and the (p,n) data largely probe a relation between the geometries of the isovector and isoscalar potentials. The targets include 48Ca, 90Zr, 120Sn and 208Pb and projectile incident energy values span the range of (10-50) MeV. In our fit to elastic and QE charge-exchange data, we allow the values of isoscalar and isovector radii, diffusivities and overall potential normalizations to float away from those in the popular Koning and Delaroche parametrization. We find that the best-fit isovector radii are consistently larger than isoscalar and the best-fit isovector surfaces are steeper. Upon identifying the displacement of the potential surfaces with the displacement of the surfaces for the densities in the Skyrme-Hartree-Fock calculations, and by supplementing the results with those from analyzing excitation energies to isobaric analog states in the past, we arrive at the slope and value of the symmetry energy at normal density of 70 < L < 101 MeV and 33.5 < aaV < 36.4 MeV, respectively.
Symmetry and the Cosmic Microwave Background
NASA Technical Reports Server (NTRS)
Wollock, Edward J.
2012-01-01
A brief historical introduction to the development of observational astronomy and cosmology will be presented. The close relationship between the properties of light, symmetry, and our understanding the contents of our universe will be explored.
Spontaneous chiral symmetry breaking in metamaterials.
Liu, Mingkai; Powell, David A; Shadrivov, Ilya V; Lapine, Mikhail; Kivshar, Yuri S
2014-07-18
Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.
Diagonal symmetries beyond the standard model
NASA Astrophysics Data System (ADS)
Batra, Puneet
We use diagonal symmetries to address experimental and conceptual shortcomings of theories "Beyond the Standard Model". We first show that embedding the Weak gauge group, SU(2)W, as the diagonal subgroup of a gauged SU(2) x SU(2) symmetry can open up dramatic new regions of parameter space for Supersymmetric models: regions where the CP-even Higgs mass is as large as ˜350 GeV (Chapter 2), where tan beta < 1 (Chapter 3), and where the lightest Higgs state is charged (Chapter 3). In Chapter 4 we show that a Little Higgs theory (with a gauged SU(12) diagonal symmetry) can form the Ultraviolet completion for another Little Higgs theory (with a gauged SU(4) diagonal symmetry). This theory remains perturbative up to 100 TeV and allows for further structural extensions to yet higher cutoffs---all without introducing quadratic instability in the Weak scale.
Personal recollections on chiral symmetry breaking
NASA Astrophysics Data System (ADS)
Kobayashi, Makoto
2016-07-01
The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.
FJRW-Rings and Mirror Symmetry
NASA Astrophysics Data System (ADS)
Krawitz, Marc; Priddis, Nathan; Acosta, Pedro; Bergin, Natalie; Rathnakumara, Himal
2010-05-01
The Landau-Ginzburg Mirror Symmetry Conjecture states that for an invertible quasi-homogeneous singularity W and its maximal group G of diagonal symmetries, there is a dual singularity W T such that the orbifold A-model of W/ G is isomorphic to the B-model of W T . The Landau-Ginzburg A-model is the Frobenius algebra {fancyscript{H}_{W,G}} constructed by Fan, Jarvis, and Ruan, and the B-model is the orbifold Milnor ring of W T . We verify the Landau-Ginzburg Mirror Symmetry Conjecture for Arnol’d’s list of unimodal and bimodal quasi-homogeneous singularities with G the maximal diagonal symmetry group, and include a discussion of eight axioms which facilitate the computation of FJRW-rings.
Space and time from translation symmetry
Schwarz, A.
2010-01-15
We show that the notions of space and time in algebraic quantum field theory arise from translation symmetry if we assume asymptotic commutativity. We argue that this construction can be applied to string theory.
Matrix Models, Emergent Spacetime and Symmetry Breaking
Grosse, Harald; Steinacker, Harold; Lizzi, Fedele
2009-12-15
We discuss how a matrix model recently shown to describe emergent gravity may contain extra degrees of freedom which reproduce some characteristics of the standard model, in particular the breaking of symmetries and the correct quantum numbers of fermions.
R parity violation from discrete R symmetries
Chen, Mu-Chun; Ratz, Michael; Takhistov, Volodymyr
2014-12-15
We consider supersymmetric extensions of the standard model in which the usual R or matter parity gets replaced by another R or non–R discrete symmetry that explains the observed longevity of the nucleon and solves the µ problem of MSSM. In order to identify suitable symmetries, we develop a novel method of deriving the maximal Z(R) N symmetry that satisfies a given set of constraints. We identify R parity violating (RPV) and conserving models that are consistent with precision gauge unification and also comment on their compatibility with a unified gauge symmetry such as the Pati–Salam group. Finally, we providemore » a counter– example to the statement found in the recent literature that the lepton number violating RPV scenarios must have µ term and the bilinear κ L Hu operator of comparable magnitude.« less
Soliton surfaces in the generalized symmetry approach
NASA Astrophysics Data System (ADS)
Grundland, A. M.
2016-09-01
We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas-Gel'fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas-Gel'fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the C P N-1 sigma-model equation.
Noether symmetries and the Swinging Atwood Machine
NASA Astrophysics Data System (ADS)
Moreira, I. C.; Almeida, M. A.
1991-07-01
In this work we apply the Noether theorem with generalised symmetries for discussing the integrability of the Swinging Atwood Machine (SAM) model. We analyse also the limitations of this procedure and compare it with the Yoshida method.
Symmetry in normal modes and its strong dependence on symmetry in structure.
Song, Guang
2017-08-01
In this work, we look at the symmetry of normal modes in symmetric structures, particularly structures with cyclic symmetry. We show that normal modes of symmetric structures have different levels of symmetry, or symmetricity. One novel theoretical result of this work is that, for a ring structure with m subunits, the symmetricity of the normal modes falls into m groups of equal size, with normal modes in each group having the same symmetricity. The normal modes in each group can be computed separately, using a much smaller amount of memory and time (up to m(3) less). Lastly, we show that symmetry in normal modes depends strongly on symmetry in structure. This work suggests a deeper reason for the existence of symmetric complexes: that they may be formed not only for structural purpose, but likely also for a dynamical reason, that certain structural symmetry is needed to obtain certain symmetric motions that are functionally critical. Copyright © 2017 Elsevier Inc. All rights reserved.
Leptogenesis with Friedberg-Lee Symmetry
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Geng, C. Q.
We consider the µ - τ symmetric Friedberg-Lee (FL) symmetry for the neutrino sector and show that a specific FL translation leads to the tribimaximal mixing pattern of the Maki-Nakagawa-Sakata (MNS) matrix. We also apply the symmetry to the type-I seesaw framework and address the baryon asymmetry of the universe through the leptogenesis mechanism. We try to establish a relation between the net baryon asymmetry and CP phases included in the MNS matrix.
Nanostructure symmetry: Relevance for physics and computing
Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.; Dalessi, S.; Gallinet, B.; Svendsen, G.
2014-03-31
We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.
Algebraic cluster model with tetrahedral symmetry
Bijker, Roelof
2010-12-23
We propose an algebraic treatment of a four-body system in terms of a U(10) spectrum generating algebra. The formalism for the case of four identical objects is developed in detail. This includes a discussion of the permutation symmetry, a study of special solutions which are shown to correspond to the harmonic oscillator, the deformed oscillator and the spherical top with tetrahedral symmetry.
Symmetry breaking of quasihelical stellarator equilibria
Weening, R.H. )
1993-04-01
A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.
Noether symmetries in the phase space
NASA Astrophysics Data System (ADS)
Díaz, Bogar; Galindo-Linares, Elizabeth; Ramírez-Romero, Cupatitzio; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Torres del Castillo, Gerardo F.; Velázquez, Mercedes
2014-09-01
The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.
Spontaneously broken spacetime symmetries and Goldstone's theorem.
Low, Ian; Manohar, Aneesh V
2002-03-11
Goldstone's theorem states that there is a massless mode for each broken symmetry generator. It has been known for a long time that the naive generalization of this counting fails to give the correct number of massless modes for spontaneously broken spacetime symmetries. We explain how to get the right count of massless modes in the general case, and discuss examples involving spontaneously broken Poincaré and conformal invariance.
Multichannel dynamical symmetry and heavy ion resonances
Cseh, J. H-4001 Debrecen Pf. 51 )
1994-10-01
The concept of the multichannel dynamical symmetry is introduced. This symmetry may show up in an atomic nucleus due to its different cluster configurations, and connects the interactions of distinct reaction channels. The correlated distribution of different cluster states at low and high energies can serve as a signature of it. An application of the [sup 28]Si nucelus is performed in terms of the [sup 24]Mg+[alpha] and [sup 12]C+[sup 16]O fragmentations.
Density dependence of nuclear symmetry energy
NASA Astrophysics Data System (ADS)
Behera, B.; Routray, T. R.; Tripathy, S. K.
2016-10-01
High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.
Roy, Amitava; Post, Carol Beth
2011-01-01
A large number of viral capsids, as well as other macromolecular assemblies, have icosahedral structure or structures with other rotational symmetries. This symmetry can be exploited during molecular dynamics (MD) to model in effect the full viral capsid using only a subset of primary atoms plus copies of image atoms generated from rotational symmetry boundary conditions (RSBC). A pure rotational symmetry operation results in both primary and image atoms at short range, and within nonbonded interaction distance of each other, so that nonbonded interactions can not be specified by the minimum image convention and explicit treatment of image atoms is required. As such an unavoidable consequence of RSBC is that the enumeration of nonbonded interactions in regions surrounding certain rotational axes must include both a primary atom and its copied image atom, thereby imposing microscopic symmetry for some forces. We examined the possibility of artifacts arising from this imposed microscopic symmetry of RSBC using two simulation systems: a water shell and human rhinovirus 14 (HRV14) capsid with explicit water. The primary unit was a pentamer of the icosahedron, which has the advantage of direct comparison of icosahedrally equivalent spatial regions, for example regions near a 2-fold symmetry axis with imposed symmetry and a 2-fold axis without imposed symmetry. Analysis of structural and dynamic properties of water molecules and protein atoms found similar behavior near symmetry axes with imposed symmetry and where the minimum image convention fails compared with that in other regions in the simulation system, even though an excluded volume effect was detected for water molecules near the axes with imposed symmetry. These results validate the use of RSBC for icosahedral viral capsids or other rotationally symmetric systems. PMID:22096451
The emergence of a heavy quark family on a lattice
NASA Astrophysics Data System (ADS)
Preparata, Giuliano; Xue, She-Sheng
1996-02-01
Within the framework of the “Rome approach” for a lattice chiral gauge theory, the four-quark interaction with flavour symmetry is included. We analyse spontaneous symmetry breaking and compute composite modes and their contributions to the ground state energy. As a result, it is shown that the emergence of a heavy quark family is the energetically favoured solution.
The Emergence of a Heavy Quark Family on a Lattice
NASA Astrophysics Data System (ADS)
Xue, She-Sheng
1996-03-01
Within the framework of the "Rome approach" for a lattice chiral gauge theory, the four-quark interaction with flavour symmetry is included. We analyse spontaneous symmetry breaking and compute composite modes and their contributions to the ground state energy. As a result, it is shown that the emergence of a heavy quark family is the energetically favoured solution.
Fluency Expresses Implicit Knowledge of Tonal Symmetry
Ling, Xiaoli; Li, Fengying; Qiao, Fuqiang; Guo, Xiuyan; Dienes, Zoltan
2016-01-01
The purposes of the present study were twofold. First, we sought to establish whether tonal symmetry produces processing fluency. Second, we sought to explore whether symmetry and chunk strength express themselves differently in fluency, as an indication of different mechanisms being involved for sub- and supra-finite state processing. Across two experiments, participants were asked to listen to and memorize artificial poetry showing a mirror symmetry (an inversion, i.e., a type of cross serial dependency); after this training phase, people completed a four-choice RT task in which they were presented with new artificial poetry. Participants were required to identify the stimulus displayed. We found that symmetry sped up responding to the second half of strings, indicating a fluency effect. Furthermore, there was a dissociation between fluency effects arising from symmetry vs. chunk strength, with stronger fluency effects for symmetry rather than chunks in the second half of strings. Taken together, we conjecture a divide between finite state and supra-finite state mechanisms in learning grammatical sequences. PMID:26869960
Symmetry calculation for molecules and transition states.
Vandewiele, Nick M; Van de Vijver, Ruben; Van Geem, Kevin M; Reyniers, Marie-Françoise; Marin, Guy B
2015-01-30
The symmetry of molecules and transition states of elementary reactions is an essential property with important implications for computational chemistry. The automated identification of symmetry by computers is a very useful tool for many applications, but often relies on the availability of three-dimensional coordinates of the atoms in the molecule and hence becomes less useful when these coordinates are a priori unavailable. This article presents a new algorithm that identifies symmetry of molecules and transition states based on an augmented graph representation of the corresponding structures, in which both topology and the presence of stereocenters are accounted for. The automorphism group order of the graph associated with the molecule or transition state is used as a starting point. A novel concept of label-stereoisomers, that is, stereoisomers that arise after labeling homomorph substituents in the original molecule so that they become distinguishable, is introduced and used to obtain the symmetry number. The algorithm is characterized by its generic nature and avoids the use of heuristic rules that would limit the applicability. The calculated symmetry numbers are in agreement with expected values for a large and diverse set of structures, ranging from asymmetric, small molecules such as fluorochlorobromomethane to highly symmetric structures found in drug discovery assays. The new algorithm opens up new possibilities for the fast screening of the degree of symmetry of large sets of molecules.
A new paradigm for animal symmetry.
Holló, Gábor
2015-12-06
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution.
Fluency Expresses Implicit Knowledge of Tonal Symmetry.
Ling, Xiaoli; Li, Fengying; Qiao, Fuqiang; Guo, Xiuyan; Dienes, Zoltan
2016-01-01
The purposes of the present study were twofold. First, we sought to establish whether tonal symmetry produces processing fluency. Second, we sought to explore whether symmetry and chunk strength express themselves differently in fluency, as an indication of different mechanisms being involved for sub- and supra-finite state processing. Across two experiments, participants were asked to listen to and memorize artificial poetry showing a mirror symmetry (an inversion, i.e., a type of cross serial dependency); after this training phase, people completed a four-choice RT task in which they were presented with new artificial poetry. Participants were required to identify the stimulus displayed. We found that symmetry sped up responding to the second half of strings, indicating a fluency effect. Furthermore, there was a dissociation between fluency effects arising from symmetry vs. chunk strength, with stronger fluency effects for symmetry rather than chunks in the second half of strings. Taken together, we conjecture a divide between finite state and supra-finite state mechanisms in learning grammatical sequences.
A new paradigm for animal symmetry
Holló, Gábor
2015-01-01
My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution. PMID:26640644
Symmetry energy in cold dense matter
NASA Astrophysics Data System (ADS)
Jeong, Kie Sang; Lee, Su Houng
2016-01-01
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.
Optical chirality in gyrotropic media: symmetry approach
NASA Astrophysics Data System (ADS)
Proskurin, Igor; Ovchinnikov, Alexander S.; Nosov, Pavel; Kishine, Jun-ichiro
2017-06-01
We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined.
SUGRA new inflation with Heisenberg symmetry
Antusch, Stefan; Cefalà, Francesco E-mail: stefan.antusch@unibas.ch
2013-10-01
We propose a realisation of ''new inflation'' in supergravity (SUGRA), where the flatness of the inflaton potential is protected by a Heisenberg symmetry. Inflation can be associated with a particle physics phase transition, with the inflaton being a (D-flat) direction of Higgs fields which break some symmetry at high energies, e.g. of GUT Higgs fields or of Higgs fields for flavour symmetry breaking. This is possible since compared to a shift symmetry, which is usually used to protect a flat inflaton potential, the Heisenberg symmetry is compatible with a (gauge) non-singlet inflaton field. In contrast to conventional new inflation models in SUGRA, where the predictions depend on unknown parameters of the Kaehler potential, the model with Heisenberg symmetry makes discrete predictions for the primordial perturbation parameters which depend only on the order n at which the inflaton appears in the effective superpotential. The predictions for the spectral index n{sub s} can be close to the best-fit value of the latest Planck 2013 results.
Exploring symmetry in near-vacuum hohlraums
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L.; Le Pape, S.; Divol, L.; Meezan, N.; MacKinnon, A.; Ho, D. D.; Jones, O.; Khan, S.; Ma, T.; Milovich, J.; Pak, A.; Ross, J. S.; Thomas, C.; Turnbull, D.; Amendt, P.; Wilks, S.; Zylstra, A.; Rinderknecht, H.; Sio, H.; Petrasso, R.
2015-11-01
Recent experiments with near-vacuum hohlraums, which utilize a minimal but non-zero helium fill, have demonstrated performance improvements relative to conventional gas-filled (0.96 - 1.6 mg/cc helium) hohlraums: minimal backscatter, reduced capsule drive degradation, and minimal suprathermal electron generation. Because this is a low laser-plasma interaction platform, implosion symmetry is controlled via pulse-shaping adjustments to laser power balance. Extending this platform to high-yield designs with high-density carbon capsules requires achieving adequate symmetry control throughout the pulse. In simulations, laser propagation is degraded suddenly by hohlraum wall expansion interacting with ablated capsule material. Nominal radiation-hydrodynamics simulations have not yet proven predictive on symmetry of the final hotspot, and experiments show more prolate symmetry than preshot calculations. Recent efforts have focused on understanding the discrepancy between simulated and measured symmetry and on alternate designs for symmetry control through varying cone fraction, trade-offs between laser power and energy, and modifications to case-to-capsule ratio. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Perception of Mirror Symmetry in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Falter, Christine M.; Bailey, Anthony J.
2012-01-01
Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…
Seitz notation for symmetry operations of space groups.
Litvin, Daniel B; Kopský, Vojtěch
2011-07-01
Space-group symmetry operations are given a geometric description and a short-hand matrix notation in International Tables for Crystallography, Volume A, Space-Group Symmetry. We give here the space-group symmetry operations subtables with the corresponding Seitz (R∣t) notation for each included symmetry operation.
Perception of Mirror Symmetry in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Falter, Christine M.; Bailey, Anthony J.
2012-01-01
Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…
High-Energy Symmetries of String Theory.
NASA Astrophysics Data System (ADS)
Lee, Jen-Chi
1990-01-01
We study the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. We have derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized sigma-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-"spin" symmetry for the different "spin" states at each fixed mass level. Specifically, the four physical propagating states with "spins" up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a sigma-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, we explicitly demonstrate that the "spin" two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher "spin" fields at the same mass level. It is conjectured that this phenomenon comes from the well -known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation. The conditions to preserve worldsheet superconformal symmetry for the Heterotic string on a flat background are also discussed. The Schwinger terms and the associated anomalous seagull terms of the super-Virasoro algebra are calculated directly from the Lorentz and super-Weyl anomalies using the (1,0) superspace formalism.
A ;gauged; U(1) Peccei-Quinn symmetry
NASA Astrophysics Data System (ADS)
Fukuda, Hajime; Ibe, Masahiro; Suzuki, Motoo; Yanagida, Tsutomu T.
2017-08-01
The Peccei-Quinn (PQ) solution to the strong CP problem requires an anomalous global U (1) symmetry, the PQ symmetry. The origin of such a convenient global symmetry is quite puzzling from the theoretical point of view in many aspects. In this paper, we propose a simple prescription which provides an origin of the PQ symmetry. There, the global U (1) PQ symmetry is virtually embedded in a gauged U (1) PQ symmetry. Due to its simplicity, this mechanism can be implemented in many conventional models with the PQ symmetry.
Noether symmetries and exact solutions of an Euler-Bernoulli beam model
NASA Astrophysics Data System (ADS)
Fatima, Aeeman; Mahomed, Fazal M.; Khalique, Chaudry Masood
2016-07-01
In this paper, a Noether symmetry analysis is carried out for an Euler-Bernoulli beam equation via the standard Lagrangian of its reduced scalar second-order equation which arises from the standard Lagrangian of the fourth-order beam equation via its Noether integrals. The Noether symmetries corresponding to the reduced equation is shown to be the inherited Noether symmetries of the standard Lagrangian of the beam equation. The corresponding Noether integrals of the reduced Euler-Lagrange equations are deduced which remarkably allows for three families of new exact solutions of the static beam equation. These are shown to contain all the previous solutions obtained from the standard Lie analysis and more.
ERIC Educational Resources Information Center
Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.
2016-01-01
A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…
ERIC Educational Resources Information Center
Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.
2016-01-01
A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…
Group Parametrized Tunneling and Local Symmetry Conditions
NASA Astrophysics Data System (ADS)
Harter, William; Mitchell, Justin
2010-06-01
Recently, Hougen showed an ad hoc symmetry-based parameterization scheme for analyzing tunneling dynamics and high resolution spectra of fluxional molecular structure similar to S-parameter analysis of superfine structure in SF_6 or NH_3 maser inversion dynamics by Feynman et.al. The problem is that ad hoc parametrization, like path integration in general, can lead to logjams of parameters or ``paths'' with no way to pick out the relevant ones. We show a way to identify and use relevant parameters for a tunneling Hamiltonian H having global G-symmetry-defined bases by first expressing H as a linear combination bar γ ^i {bar g}_i of operators in dual symmetry group bar G. The coefficients bar γ ^i are parameters that define a complete set of allowed paths for any H with G-symmetry and are related thru spectral decomposition of G to eigensolutions of H. Quantum G vs.bar G duality generalizes lab -vs. -body and state -vs. -particle. The number of relevant bar γ ^i-parameters is reduced if a system tends to stick in states of a local symmetry subgroup LsubsetG so the H spectrum forms level clusters labeled by induced representations d(ℓ)(L)\\uparrowG. A cluster-(ℓ) has one E(epsilon)-level labeled by G species (epsilon) for each L species (ℓ) in Depsilon(G)downarrowL by Frobenius reciprocity. Then we apply local symmetry conditions to each irrep Depsilon(bar γ ^i {bar g}_i) that has already been reduced with respect to local symmetry L. This amounts to setting each off-diagonal component Dj,kepsilon(H) to zero. Local symmetry conditions may tell which bar γ ^i-parameters are redundant or zero and directly determine d(ℓ)\\uparrowG tunneling matrix eigenvalues that give E(epsilon)-levels as well as eigenvectors. Otherwise one may need to choose a particular localizing subgroup chain LsubsetL_1subsetL_2...G and further reduce the number of path parameters to facilitate spectral fitting. J.T. Hougen, 2009 MSS RJ01, {J Mol Spect 123, 197 (1987) W.G. Harter and
Graph fibrations and symmetries of network dynamics
NASA Astrophysics Data System (ADS)
Nijholt, Eddie; Rink, Bob; Sanders, Jan
2016-11-01
Dynamical systems with a network structure can display remarkable phenomena such as synchronisation and anomalous synchrony breaking. A methodology for classifying patterns of synchrony in networks was developed by Golubitsky and Stewart. They showed that the robustly synchronous dynamics of a network is determined by its quotient networks. This result was recently reformulated by DeVille and Lerman, who pointed out that the reduction from a network to a quotient is an example of a graph fibration. The current paper exploits this observation and demonstrates the importance of self-fibrations of network graphs. Self-fibrations give rise to symmetries in the dynamics of a network. We show that every network admits a lift with a semigroup or semigroupoid of self-fibrations. The resulting symmetries impact the global dynamics of the network and can therefore be used to explain and predict generic scenarios for synchrony breaking. Also, when the network has a trivial symmetry groupoid, then every robust synchrony in the lift is determined by symmetry. We finish this paper with a discussion of networks with interior symmetries and nonhomogeneous networks.
Discrete R symmetries and low energy supersymmetry
Dine, Michael; Kehayias, John
2010-09-01
If nature exhibits low energy supersymmetry, discrete (non-Z{sub 2}) R symmetries may well play an important role. In this paper, we explore such symmetries. We generalize gaugino condensation, constructing large classes of models which are classically scale invariant, and which spontaneously break discrete R symmetries (but not supersymmetry). The order parameters for the breaking include chiral singlets. These simplify the construction of models with metastable dynamical supersymmetry breaking. We explain that in gauge mediation, the problem of the cosmological constant makes ''retrofitting'' particularly natural--almost imperative. We describe new classes of models, with interesting scales for supersymmetry breaking, and which allow simple solutions of the {mu} problem. We argue that models exhibiting such R symmetries can readily solve not only the problem of dimension four operators and proton decay, but also dimension five operators. On the other hand, in theories of ''gravity mediation,'' the breaking of an R symmetry is typically of order M{sub p}; R parity is required to suppress dimension four B and L violating operators, and dimension five operators remain problematic.
Axisymmetric photonic structures with PT-symmetry
NASA Astrophysics Data System (ADS)
Ahmed, Waqas W.; Herrero, Ramon; Botey, Muriel; Staliunas, Kestutis
2016-09-01
PT-symmetric structures in photonic crystals, combining refractive index and gain-loss modulations is becoming a research field with increasing interest due to the light directionality induced by these particular potentials. Here, we consider PT-symmetric potentials with axial symmetry to direct light to the crystal central point obtaining a localization effect. The axial and PT-symmetric potential intrinsically generates an exceptional central point in the photonic crystal by the merge of both symmetries. This particular point in the crystal lattice causes field amplitude gradients with exponential slopes around the crystal center. The field localization strongly depends on the phase of the central point and on the complex amplitude of the PT-potential. The presented work analyzes in a first stage 1D linear PT-axisymmetric crystals and the role of the central point phase that determines the defect character, i.e. refractive index defect, gain-loss defect or a combination of both. The interplay of the directional light effect induced by the PT-symmetry and the light localization around the central point through the axial symmetry enhances localization and allows higher field concentration for certain phases. The linearity of the studied crystals introduces an exponential growth of the field that mainly depends on the complex amplitude of the potential. The work is completed by the analysis of 2D PT-axisymmetric potentials showing different spatial slopes and growth rates caused by symmetry reasons.
Seiberg duality versus hidden local symmetry
NASA Astrophysics Data System (ADS)
Abel, Steven; Barnard, James
2012-05-01
It is widely believed that the emergent magnetic gauge symmetry of SQCD is analogous to a hidden local symmetry (HLS). We explore this idea in detail, deriving the entire (spontaneously broken) magnetic theory by applying the HLS formalism to spontaneously broken SU( N) SQCD. We deduce the Kähler potential in the HLS description, and show that gauge and flavour symmetry are smoothly restored along certain scaling directions in moduli space. We propose that it is these symmetry restoring directions, associated with the R-symmetry of the theory, that allow full Seiberg duality. Reconsidering the origin of the magnetic gauge bosons as the ρ-mesons of the electric theory, colour-flavour locking allows a simple determination of the parameter a. Its value continuously interpolates between a = 2 on the baryonic branch of moduli space — corresponding to "vector meson dominance" — and a = 1 on the mesonic branch. Both limiting values are consistent with previous results in the literature. The HLS formalism is further applied to SO and Sp groups, where the usual Seiberg duals are recovered, as well as adjoint SQCD. Finally we discuss some possible future applications, including (naturally) the unitarisation of composite W scattering, blended Higgs/technicolour models, real world QCD and non-supersymmetric dualities.
The symmetries of the Carroll superparticle
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Gomis, Joaquim; Parra, Lorena
2016-05-01
Motivated by recent applications of Carroll symmetries we investigate, using the method of nonlinear realizations, the geometry of flat and curved (AdS) Carroll space and the symmetries of a particle moving in such a space both in the bosonic as well as in the supersymmetric case. In the bosonic case we find that the Carroll particle possesses an infinite-dimensional symmetry which only in the flat case includes dilatations. The duality between the Bargmann and Carroll algebra, relevant for the flat case, does not extend to the curved case. In the supersymmetric case we study the dynamics of the { N }=1 AdS Carroll superparticle. Only in the flat limit we find that the action is invariant under an infinite-dimensional symmetry that includes a supersymmetric extension of the Lifshitz Carroll algebra with dynamical exponent z = 0. We also discuss in the flat case the extension to { N }=2 supersymmetry and show that the flat { N }=2 superparticle is equivalent to the (non-moving) { N }=1 superparticle and that therefore it is not BPS unlike its Galilei counterpart. This is due to the fact that in this case kappa-symmetry eliminates the linearized supersymmetry. In an appendix we discuss the { N }=2 curved case in three-dimensions only and show that there are two { N }=2 theories that are physically different.
Symmetry in social exchange and health
NASA Astrophysics Data System (ADS)
Siegrist, Johannes
2005-10-01
Symmetry is a relevant concept in sociological theories of exchange. It is rooted in the evolutionary old norm of social reciprocity and is particularly important in social contracts. Symmetry breaking through violation of the norm of reciprocity generates strain in micro-social systems and, above all, in victims of non-symmetric exchange. In this contribution, adverse healthconsequences of symmetry breaking in contractual social exchange are analysed, with a main focus on the employment contract. Scientific evidence is derived from prospective epidemiological studies testing the model of effort-reward imbalance at work. Overall, a twofold elevated risk of incident disease is observed in employed men and women who are exposed to non-symmetric exchange. Health risks include coronary heart disease, depression and alcohol dependence, among others. Preliminary results suggest similar effects on health produced by symmetry breaking in other types of social relationships (e.g. partnership, parental roles). These findings underline the importance of symmetry in contractual social exchange for health and well-being.
Weyl-gauge symmetry of graphene
Iorio, Alfredo
2011-05-15
Research Highlights: > Graphene action's Weyl symmetry identifies shapes for which the DOS is invariant. > Electrons on graphene might experience a general-relativistic-like spacetime. > Rich mathematical structures, such as the Liouville's equation, naturally arise. - Abstract: The conformal invariance of the low energy limit theory governing the electronic properties of graphene is explored. In particular, it is noted that the massless Dirac theory in point enjoys local Weyl symmetry, a very large symmetry. Exploiting this symmetry in the two spatial dimensions and in the associated three dimensional spacetime, we find the geometric constraints that correspond to specific shapes of the graphene sheet for which the electronic density of states is the same as that for planar graphene, provided the measurements are made in accordance to the inner reference frame of the electronic system. These results rely on the (surprising) general relativistic-like behavior of the graphene system arising from the combination of its well known special relativistic-like behavior with the less explored Weyl symmetry. Mathematical structures, such as the Virasoro algebra and the Liouville equation, naturally arise in this three-dimensional context and can be related to specific profiles of the graphene sheet. Speculations on possible applications of three-dimensional gravity are also proposed.
Multi-Higgs model with Abelian and non-Abelian discrete symmetries
NASA Astrophysics Data System (ADS)
Machado, A. C. B.; Pleitez, V.
2008-11-01
Usually in the context of the standard model and its multi-Higgs extensions the fermions mass matrices has the form Mαβ = Σi(Γi)αβlangleΦ0irangle, where Γi, denotes an arbitrary complex dimensionless 3 x 3 matrices (for Majorana it is symmetric), and langleΦ0irangle denotes the set of vacuum expectation values (VEVs) of one or more neutral scalar field. The mixing matrix and the mass pattern of each charged sector depend on the structure of the respective Γi's. It is well known that explicit, and predictive, forms of these matrices can be obtained by imposing flavor symmetries. Here we will turn the problem upside down. Mass matrices will be of the form Mαβ = f()αβ, where f denotes some dimensionless (Script O(1)) parameters. In general we need at most two f's and αβ is a matrix built with the VEVs of several scalar fields. At first sight, there is no gain in predictive power, we are just changing a dimensionless general matrix ΓαAbT by another one with mass dimension ()αβ. However it seems easier, at least in principle, to explain patterns of dynamical variables like VEVs, than dimensionless numbers. The value of the former can be explained by the dynamics (for instance by studying the scalar potential) and extra flavor symmetries that we can impose to the model. Therefore, we propose a multi-Higgs extension of the standard model with A4 otimes Z3 otimes Z'3 otimes Z''3 symmetries in which the mass matrices of the charged fermions, obtained from renormalizable interactions, are diagonal. Corrections induced by non-renormalizable interactions deviate these matrices from the diagonal form. Active neutrinos acquire mass only from non-renormalizable interactions. The main entries of the neutrino mass matrix arise only through dimension five operators, while the diagonal entries arise only from dimension six operators. The basic idea is to consider SU(2)l fermions doublets in the triplet representation of the A4 symmetry and Higgs doublets or right
Mirror symmetry in three dimensions via gauged linear quivers
NASA Astrophysics Data System (ADS)
Dey, Anindya; Hanany, Amihay; Koroteev, Peter; Mekareeya, Noppadol
2014-06-01
Starting from mirror pairs consisting only of linear (framed A-type) quivers, we demonstrate that a wide class of three-dimensional quiver gauge theories with = 4 supersymmetry and their mirror duals can be obtained by suitably gauging flavor symmetries. Infinite families of mirror pairs including various quivers of D and E-type and their affine extensions, star-shaped quivers, and quivers with symplectic gauge groups may be generated in this fashion. We present two different computational strategies to perform the aforementioned gauging procedure — one of them involves = 2* classical parameter space description, while the other one uses partition functions of the = 4 theories on S 3. The partition function, in particular, turns out to be an extremely efficient tool for implementing this gauging procedure as it readily generalizes to arbitrary size of the quiver and arbitrary rank of the gauge group at each node. For most examples of mirror pairs obtained via this procedure, we perform additional checks of mirror symmetry using the Hilbert series.
Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry
2012-01-01
Background Flower bilateral symmetry (zygomorphy) has evolved multiple times independently across angiosperms and is correlated with increased pollinator specialization and speciation rates. Functional and expression analyses in distantly related core eudicots and monocots implicate independent recruitment of class II TCP genes in the evolution of flower bilateral symmetry. Furthermore, available evidence suggests that monocot flower bilateral symmetry might also have evolved through changes in B-class homeotic MADS-box gene function. Methods In order to test the non-exclusive hypotheses that changes in TCP and B-class gene developmental function underlie flower symmetry evolution in the monocot family Commelinaceae, we compared expression patterns of teosinte branched1 (TB1)-like, DEFICIENS (DEF)-like, and GLOBOSA (GLO)-like genes in morphologically distinct bilaterally symmetrical flowers of Commelina communis and Commelina dianthifolia, and radially symmetrical flowers of Tradescantia pallida. Results Expression data demonstrate that TB1-like genes are asymmetrically expressed in tepals of bilaterally symmetrical Commelina, but not radially symmetrical Tradescantia, flowers. Furthermore, DEF-like genes are expressed in showy inner tepals, staminodes and stamens of all three species, but not in the distinct outer tepal-like ventral inner tepals of C. communis. Conclusions Together with other studies, these data suggest parallel recruitment of TB1-like genes in the independent evolution of flower bilateral symmetry at early stages of Commelina flower development, and the later stage homeotic transformation of C. communis inner tepals into outer tepals through the loss of DEF-like gene expression. PMID:22394484
Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory
Pons, Josep M.
2011-01-15
In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.
Supersymmetric defect models and mirror symmetry
Hook, Anson; Kachru, Shamit; Torroba, Gonzalo
2013-11-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Spontaneous Symmetry Breaking in Interdependent Networked Game
NASA Astrophysics Data System (ADS)
Jin, Qing; Wang, Lin; Xia, Cheng-Yi; Wang, Zhen
2014-02-01
Spatial evolution game has traditionally assumed that players interact with direct neighbors on a single network, which is isolated and not influenced by other systems. However, this is not fully consistent with recent research identification that interactions between networks play a crucial rule for the outcome of evolutionary games taking place on them. In this work, we introduce the simple game model into the interdependent networks composed of two networks. By means of imitation dynamics, we display that when the interdependent factor α is smaller than a threshold value αC, the symmetry of cooperation can be guaranteed. Interestingly, as interdependent factor exceeds αC, spontaneous symmetry breaking of fraction of cooperators presents itself between different networks. With respect to the breakage of symmetry, it is induced by asynchronous expansion between heterogeneous strategy couples of both networks, which further enriches the content of spatial reciprocity. Moreover, our results can be well predicted by the strategy-couple pair approximation method.
A torus bifurcation theorem with symmetry
NASA Technical Reports Server (NTRS)
Vangils, S. A.; Golubitsky, M.
1989-01-01
Hopf bifurcation in the presence of symmetry, in situations where the normal form equations decouple into phase/amplitude equations is described. A theorem showing that in general such degeneracies are expected to lead to secondary torus bifurcations is proved. By applying this theorem to the case of degenerate Hopf bifurcation with triangular symmetry it is proved that in codimension two there exist regions of parameter space where two branches of asymptotically stable two-tori coexist but where no stable periodic solutions are present. Although a theory was not derived for degenerate Hopf bifurcations in the presence of symmetry, examples are presented that would have to be accounted for by any such general theory.
Preserving Symmetry in Preconditioned Krylov Subspace Methods
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Chow, E.; Saad, Y.; Yeung, M. C.
1996-01-01
We consider the problem of solving a linear system Ax = b when A is nearly symmetric and when the system is preconditioned by a symmetric positive definite matrix M. In the symmetric case, one can recover symmetry by using M-inner products in the conjugate gradient (CG) algorithm. This idea can also be used in the nonsymmetric case, and near symmetry can be preserved similarly. Like CG, the new algorithms are mathematically equivalent to split preconditioning, but do not require M to be factored. Better robustness in a specific sense can also be observed. When combined with truncated versions of iterative methods, tests show that this is more effective than the common practice of forfeiting near-symmetry altogether.
Discrete Abelian gauge symmetries and axions
NASA Astrophysics Data System (ADS)
Honecker, Gabriele; Staessens, Wieland
2015-07-01
We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.
Breaking the Symmetry in Molecular Nanorings
2016-01-01
Because of their unique electronic properties, cyclic molecular structures ranging from benzene to natural light-harvesting complexes have received much attention. Rigid π-conjugated templated porphyrin nanorings serve as excellent model systems here because they possess well-defined structures that can readily be controlled and because they support highly delocalized excitations. In this study, we have deliberately modified a series of six-porphyrin nanorings to examine the impact of lowering the rotational symmetry on their photophysical properties. We reveal that as symmetry distortions increase in severity along the series of structures, spectral changes and an enhancement of radiative emission strength occur, which derive from a transfer of oscillator strength into the lowest (k = 0) state. We find that concomitantly, the degeneracy of the dipole-allowed first excited (k = ±1) state is lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings. PMID:26735906
Approximate gauge symmetry of composite vector bosons
NASA Astrophysics Data System (ADS)
Suzuki, Mahiko
2010-08-01
It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in a more intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.
Geometric symmetries in superfluid vortex dynamics
Kozik, Evgeny; Svistunov, Boris
2010-10-01
Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z), describing the instant shape of the line. Along with a natural set of Noether's constants of motion, which - apart from their rather specific expressions in terms of w(z) - are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.
Cylindrical polarization symmetry for nondestructive nanocharacterization
NASA Astrophysics Data System (ADS)
Zhan, Qiwen
2003-07-01
Recently there is an increasing interest in laser beams with radial symmetry in polarization. Due to the cylindrical symmetry in polarization, these beams have unique focusing properties, which may find wide applications in a variety of nanometer scale applications, including high-resolution metrology, high-density data storage, and multi-functional optical microtool. In this paper, simple method of generating cylindrically polarized beams is presented and their potential applications to nondestructive nano-characterization are discussed. A high resolution surface plasmon microscope and a surface plasmon enhanced apertureless near-field scanning optical microscope are proposed. An automatic scanning microellipsometer that uses the cylindrical symmetry to enhance the signal-to-noise-ratio in high-spatial-resolution ellipsometric measurement will also be presented.
Arbitrary lattice symmetries via block copolymer nanomeshes
Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.
2015-01-01
Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566
Symmetry laws for interaction between helical macromolecules.
Kornyshev, A A; Leikin, S
1998-01-01
The power of symmetry laws is applied in many scientific areas from elementary particle physics to structural biology. The structures of many biological helices, including DNA, were resolved with the use of pertinent symmetry constraints. It was not recognized, however, that similar constraints determine cardinal features of helix-helix interactions vital for many recognition and assembly reactions in living cells. We now formulate such symmetry-determined interaction laws and apply them to explain DNA "over-winding" from 10.5 base pairs per turn in solution to 10 in hydrated fibers, counterion specificity in DNA condensation, and forces observed over the last 15 A of separation between DNA, collagen, and four-stranded guanosine helices. PMID:9788947
Asymptotic analysis and symmetry in MHD convection
Alboussiere, T.; Garandet, J.P.
1996-08-01
The motion of an electrically conducting fluid in the presence of a steady magnetic field is analyzed. For any non-uniform magnetic field and any non-electromagnetic driving force, a high Hartmann number asymptotic analysis is developed using curvilinear coordinates based on the magnetic field. This analysis yields the structure of the electric current density and velocity fields. In a second step, orthogonal planar symmetries lead to a significant simplification of the asymptotic structure, depending on the nature of the symmetry. The asymptotic solution is applied to some configurations, some of them corresponding to crystal growth from a melt. In the case of electrically insulating boundaries, the nature of the symmetry is found to govern the magnitude and structure of the damped velocity. {copyright} {ital 1996 American Institute of Physics.}
Approximate flavor symmetries in the lepton sector
Rasin, A. ); Silva, J.P. )
1994-01-01
Approximate flavor symmetries in the quark sector have been used as a handle on physics beyond the standard model. Because of the great interest in neutrino masses and mixings and the wealth of existing and proposed neutrino experiments it is important to extend this analysis to the leptonic sector. We show that in the seesaw mechanism the neutrino masses and mixing angles do not depend on the details of the right-handed neutrino flavor symmetry breaking, and are related by a simple formula. We propose several [ital Ansa]$[ital uml]---[ital tze] which relate different flavor symmetry-breaking parameters and find that the MSW solution to the solar neutrino problem is always easily fit. Further, the [nu][sub [mu]-][nu][sub [tau
Symmetry-breaking oscillations in membrane optomechanics
NASA Astrophysics Data System (ADS)
Wurl, C.; Alvermann, A.; Fehske, H.
2016-12-01
We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by following the route to chaos for the membrane dynamics.
Superconductivity in quantum wires: A symmetry analysis
NASA Astrophysics Data System (ADS)
Samokhin, K. V.
2017-10-01
We study properties of quantum wires with spin-orbit coupling and time reversal symmetry breaking, in normal and superconducting states. Electronic band structures are classified according to quasi-one-dimensional magnetic point groups, or magnetic classes. The latter belong to one of three distinct types, depending on the way the time reversal operation appears in the group elements. The superconducting gap functions are constructed using antiunitary operations and have different symmetry properties depending on the type of the magnetic point group. We obtain the spectrum of the Andreev boundary modes near the end of the wire in a model-independent way, using the semiclassical approach with the boundary conditions described by a phenomenological scattering matrix. Explicit expressions for the bulk topological invariants controlling the number of the boundary zero modes are presented in the general multiband case for two types of the magnetic point groups with real order parameters, corresponding to DIII and BDI symmetry classes.
Test of Relativistic Eigenfunctions for Pseudospin Symmetry
NASA Astrophysics Data System (ADS)
Ginocchio, Joseph N.
2001-10-01
Pseudospin symmetry has been shown to be a relativistic symmetry of the Dirac Hamiltonian [1] and the generators of this symmetry have been determined [2]. Although the measured energy splittings between pseudospin doublets are small, the eigenfunctions of the doublets have been examined only recently [3]. We show to what extent the pseudospin partners of realistic relativistic mean field eigenfunctions [4] are themselves eigenfunctions of the same Dirac Hamiltonian. 1) J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997). 2) J. N. Ginocchio and A. Leviatan, Phys. Lett. B 425, 1 (1998). 3) J. N. Ginocchio and A. Leviatan, to be published in Phys. Rev. Lett. (2001). 4) J. N. Ginocchio and D. G. Madland, Phys. Rev. C 57, 1167 (1998).
Lynch, Michael
2017-08-01
This essay takes up a series of questions about the connection between 'symmetry' in Science and Technology Studies (STS) and 'post-truth' in contemporary politics. A recent editorial in this journal by Sergio Sismondo argues that current discussions of 'post-truth' have little to do with conceptions of 'symmetry' or with concerns about 'epistemic democracy' in STS, while others, such as Steve Fuller and Harry Collins, insist that there are such connections. The present essay discusses a series of questions about the meaning of 'post-truth' and 'symmetry', and the connections of those concepts to each other and to 'epistemic democracy'. The essay ends with a series of other questions about STS and contemporary politics, and an invitation to further discussions.
The geometry of spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Abud, M.; Sartori, G.
1983-10-01
The problem of classifying the theoretically allowed patterns of spontaneous symmetry breading, in theories where the ground state is determined as a minimum of a G-invariant potential ( G a compact group of transformations), is analyzed. A detailed, complete, and rigorous justification of a recently proposed approach to the determination of the minima of G-invariant potentials (M. Abud and G. Sartori, Phys. Lett. B104 (1981), 147) is presented. The results are obtained through an analysis of the geometry of the finite-dimensional representations of G, which leads to a complete characterization of the structure of orbit space and its partition in subsets (strata) formed by orbits with the same symmetry under G-transformations (orbit type), and to a new theorem stating that the gradients of complex analytic G-invariant functions annihilate on one-dimensional strata. Polynomial potentials in particular are studied. Conditions for instability of the residual symmetry (second-order phase transitions) are determined.
Mutual information and spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Hamma, A.; Giampaolo, S. M.; Illuminati, F.
2016-01-01
We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g., at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly nontrivial. We prove this result in general, by considering the quantum mutual information based on the two-Rényi entanglement entropy and using a locality result stemming from quasiadiabatic continuation. Moreover, in the paradigmatic case of the exactly solvable one-dimensional quantum X Y model, we further verify the general result by considering also the quantum mutual information based on the von Neumann entanglement entropy.
Workshop on electroweak symmetry breaking: proceedings
Hinchliffe, I.
1984-10-01
A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.
Symmetries and Boundary Conditions with a Twist
NASA Astrophysics Data System (ADS)
Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.
2017-10-01
Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.
Nonlinear realization and hidden local symmetries
NASA Astrophysics Data System (ADS)
Bando, Masako; Kugo, Taichiro; Yamawaki, Koichi
1988-07-01
The idea of dynamical gauge bosons of hidden local symmetries in nonlinear sigma models is reviewed. Starting with a fresh look at the Goldstone theorem and low energy theorems, we present a modern review of the general theory of nonlinear realization both in nonsupersymmetric and supersymmetric cases. We then show that any nonlinear sigma model based on the manifold G/ H is gauge equivalent to a “linear” model possessing a Gglobal × Hlocal symmetry, Hlocal being a hidden local symmetry. The corresponding supersymmetric formulation is also presented. The above gauge equivalence can be extended to a model having a larger symmetry Gglobal × Glocal. Also reviewed are dynamical calculatio ns showing that in some two-, three- and four-dimensional models, the gauge bosons of the hidden local symmetries acquire the kinetic terms via quantum effects, thus becoming “dynamical”. We suggest that such a dynamical gauge boson may be a rather common phenomenon realized in Nature. As a realistic example, we examine the QCD case where we identify the vector mesons (ϱ,ω,ф,K ∗) with the dynamical gauge bosons of the hidden U(3) v local symmetry in the U(3) L × U(3) R/U(3) V nonlinear sigma model. The totality of the vector meson phenomenology seems to support our basic idea. The axial-vector mesons are also incorporated into our framework. Also given is a brief sketch of some applications of this formalism to unified models beyond the standard model, such as technicolor, composite W/Z boson and supergravity models.
Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators.
Ashwin, Peter; Borresen, Jon
2004-08-01
We study properties of the dynamics underlying slow cluster oscillations in two systems of five globally coupled oscillators. These slow oscillations are due to the appearance of structurally stable heteroclinic connections between cluster states in the noise-free dynamics. In the presence of low levels of noise they give rise to long periods of residence near cluster states interspersed with sudden transitions between them. Moreover, these transitions may occur between cluster states of the same symmetry, or between cluster states with conjugate symmetries given by some rearrangement of the oscillators. We consider the system of coupled phase oscillators studied by Hansel et al. [Phys. Rev. E 48, 3470 (1993)] in which one can observe slow, noise-driven oscillations that occur between two families of two cluster periodic states; in the noise-free case there is a robust attracting heteroclinic cycle connecting these families. The two families consist of symmetric images of two inequivalent periodic orbits that have the same symmetry. For N=5 oscillators, one of the periodic orbits has one unstable direction and the other has two unstable directions. Examining the behavior on the unstable manifold for the two unstable directions, we observe that the dimensionality of the manifold can give rise to switching between conjugate symmetry orbits. By applying small perturbations to the system we can easily steer it between a number of different marginally stable attractors. Finally, we show that similar behavior occurs in a system of phase-energy oscillators that are a natural extension of the phase model to two dimensional oscillators. We suggest that switching between conjugate symmetries is a very efficient method of encoding information into a globally coupled system of oscillators and may therefore be a good and simple model for the neural encoding of information.
NASA Astrophysics Data System (ADS)
Orlando, Roberto; De La Pierre, Marco; Zicovich-Wilson, Claudio M.; Erba, Alessandro; Dovesi, Roberto
2014-09-01
Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of self-consistent-field ab initio calculations for molecular and crystalline systems. Crucial for running time is symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock, and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the symmetry adapted crystalline orbital basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative examples, referring to the implementation in the CRYSTAL code, are given for high symmetry families of compounds such as carbon fullerenes and nanotubes.
Orlando, Roberto Erba, Alessandro; Dovesi, Roberto; De La Pierre, Marco; Zicovich-Wilson, Claudio M.
2014-09-14
Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of self-consistent-field ab initio calculations for molecular and crystalline systems. Crucial for running time is symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock, and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the symmetry adapted crystalline orbital basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative examples, referring to the implementation in the CRYSTAL code, are given for high symmetry families of compounds such as carbon fullerenes and nanotubes.
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Trifonov, A. Yu; Lisok, A. L.
2016-01-01
We consider an integro-differential 2-component multidimensional Gross-Pitaevskii equation with a Manakov-type cubic nonlocal nonlinearity. In the framework of the WKB-Maslov semiclassical formalism, we obtain a semiclassically reduced 2-component nonlocal Gross- Pitaevskii equation determining the leading term of the semiclassical asymptotic solution. For the reduced Gross-Pitaevskii equation we construct symmetry operators which transform arbitrary solution of the equation into another solution. Constructing the symmetry operator is based on the Cauchy problem solution technique and uses an intertwining operator which connects two solutions of the reduced Gross-Pitaevskii equation. General structure of the symmetry operator is illustrated with a 1D case for which a family of symmetry operators is found explicitly and a set of exact solutions is generated.
Routh symmetry in the Chaplygin's rolling ball
NASA Astrophysics Data System (ADS)
Kim, Byungsoo
2011-12-01
The Routh integral in the symmetric Chaplygin's rolling ball has been regarded as a mysterious conservation law due to its interesting form of sqrt {I_1 I_3 + m< {I_s ,s} rangle } Ω _3 . In this paper, a new form of the Routh integral is proposed as a Noether's pairing form of a conservation law. An explicit symmetry vector for the Routh integral is proved to associate the conserved quantity with the invariance of the Lagrangian function under the rollingly constrained nonholonomic variation. Then, the form of the Routh symmetry vector is discussed for its origin as the linear combination of the configurational vectors.
Non-standard symmetries and quantum anomalies
Visinescu, Anca; Visinescu, Mihai
2008-08-31
Quantum anomalies are investigated on curved spacetimes. The intimate relation between Killing-Yano tensors and non-standard symmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. The axial anomaly in a background gravitational field is directly related with the index of the Dirac operator. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures. The general results are applied to the 4-dimensional Euclidean Taub-NUT space.
The symmetry energy: Predictions and constraints
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca
2017-09-01
After recalling basic phenomenological features of isospin asymmetric nuclear matter, we review predictions for the interaction part of the symmetry energy obtained from different microscopic approaches. The predictions are compared to updated constraints extracted from heavy-ion (HI) reaction observables of a recent GSI experiment. The discussion is extended to the neutron skin thickness in 208Pb and its relation to the density derivative of the symmetry energy. We underline the importance of giving proper consideration to the theoretical uncertainties of microscopic predictions in order to guide phenomenological analyses. In the end, we report briefly on preliminary neutron star calculations based on chiral nuclear forces and outline future plans.
High-symmetry organic scintillator systems
Feng, Patrick L.
2017-06-14
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
Broken symmetry in ideal magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1993-01-01
A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.
Mellin space bootstrap for global symmetry
NASA Astrophysics Data System (ADS)
Dey, Parijat; Kaviraj, Apratim; Sinha, Aninda
2017-07-01
We apply analytic conformal bootstrap ideas in Mellin space to conformal field theories with O( N) symmetry and cubic anisotropy. We write down the conditions arising from the consistency between the operator product expansion and crossing symmetry in Mellin space. We solve the constraint equations to compute the anomalous dimension and the OPE coefficients of all operators quadratic in the fields in the epsilon expansion. We reproduce known results and derive new results up to O( ɛ 3). For the O( N) case, we also study the large N limit in general dimensions and reproduce known results at the leading order in 1 /N.
A symmetry principle for topological quantum order
NASA Astrophysics Data System (ADS)
Nussinov, Zohar; Ortiz, Gerardo
2009-05-01
We present a unifying framework to study physical systems which exhibit topological quantum order (TQO). The major guiding principle behind our approach is that of symmetries and entanglement. These symmetries may be actual symmetries of the Hamiltonian characterizing the system, or emergent symmetries. To this end, we introduce the concept of low-dimensional Gauge-like symmetries (GLSs), and the physical conservation laws (including topological terms, fractionalization, and the absence of quasi-particle excitations) which emerge from them. We prove then sufficient conditions for TQO at both zero and finite temperatures. The physical engine for TQO are topological defects associated with the restoration of GLSs. These defects propagate freely through the system and enforce TQO. Our results are strongest for gapped systems with continuous GLSs. At zero temperature, selection rules associated with the GLSs enable us to systematically construct general states with TQO; these selection rules do not rely on the existence of a finite gap between the ground states to all other excited states. Indices associated with these symmetries correspond to different topological sectors. All currently known examples of TQO display GLSs. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin-exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. The symmetry based framework discussed herein allows us to go beyond standard topological field theories and systematically engineer new physical models with finite temperature TQO (both Abelian and non-Abelian). Furthermore, we analyze the insufficiency of entanglement entropy (we introduce SU( N) Klein models on small world networks to make the argument even sharper), spectral structures, maximal string correlators, and fractionalization in establishing TQO. We show that Kitaev's Toric code model and Wen
Neutron matter, symmetry energy and neutron stars
Stefano, Gandolfi; Steiner, Andrew W
2016-01-01
Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.
Partial restoration of chiral symmetry inside hadrons
Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji
2016-01-22
We investigate the spatial distribution of the chiral condensate around static color sources for both quark-antiquark and three-quark systems. In the QCD vacuum a tube-like structure of chromo fields appears between color sources, which leads to a linearly confining potential. We show that the magnitude of the condensate is reduced inside the flux-tube, which suggests that chiral symmetry is partially restored inside the hadrons. By using a static baryon source in a periodic box as a model of the nuclear matter, we estimate the restoration of chiral symmetry with finite baryon number density.
Hopf bifurcation in the presence of symmetry
NASA Technical Reports Server (NTRS)
Golubitsky, M.; Stewart, I.
1985-01-01
Group theory is applied to obtain generalized differential equations from the Hopf bifurcation theory on branching to periodic solutions. The conditions under which the symmetry group will admit imaginary eigenvalues are delimited. The action of the symmetry group on the circle group are explored and the Liapunov-Schmidt reduction is used to prove the Hopf theorem in the symmetric case. The emphasis is on simplifying calculations of the stability of bifurcating branches. The resulting general theory is demonstrated in terms of O(2) acting on a plane, O(n) in n-space, and O(3) and an irreducible model for spherical harmonics.
Symmetry energy II: Isobaric analog states
NASA Astrophysics Data System (ADS)
Danielewicz, Pawel; Lee, Jenny
2014-02-01
Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, representing a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from aa˜10 MeV at mass A˜10 to aa˜22 MeV at A˜240. Variation with mass can be understood in terms of dependence of nuclear symmetry energy on density and the rise in importance of low densities within nuclear surface in smaller systems. At A≳30, the dependence of coefficients on mass can be well described in terms of a macroscopic volume-surface competition formula with aaV≃33.2 MeV and aaS≃10.7 MeV. Our further investigation shows, though, that the fitted surface symmetry coefficient likely significantly underestimates that for the limit of half-infinite matter. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In our further analysis, we retain only those parametrizations which yield systems that are adequately stable both in the long- and short-wavelength limits. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (±2.4 MeV) constraints on the symmetry-energy values S(ρ) at 0.04≲ρ≲0.13 fm. Towards normal density the constraints significantly widen, but the normal value of energy aaV and the slope parameter L are found to be strongly correlated. To narrow the constraints, we reach for the
High-symmetry organic scintillator systems
Feng, Patrick L.
2017-09-05
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
High-symmetry organic scintillator systems
Feng, Patrick L.
2017-07-18
An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.
Neutron matter, symmetry energy and neutron stars
NASA Astrophysics Data System (ADS)
Gandolfi, S.; Steiner, A. W.
2016-01-01
Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.
Wormholes and Peccei-Quinn symmetries
Choi, K.; Holman, R. )
1990-01-08
We show how wormholes and Peccei-Quinn symmetries are in fact complementary in solving the strong {ital CP} problem. On the one hand, Peccei-Quinn symmetries are shown to provide us with a wormhole parameter that couples only to the QCD anomaly. This then allows us to implement the wormhole solution to the strong {ital CP} problem constructed previously by the present authors as well as by Preskill, Trivedi, and Wise. On the other hand, wormholes are shown to drive the axion mass to zero or to the wormhole scale, thus avoiding the axion-energy-density crisis in either case.
Constraining the physical state by symmetries
NASA Astrophysics Data System (ADS)
Fatibene, L.; Ferraris, M.; Magnano, G.
2017-03-01
After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed.
The Scalar Mesons and Z(3) Symmetry
Toernqvist, Nils A.
2007-02-27
It is pointed out that the det{sigma} + det{sigma}{dagger} term, which resolves the UA(1) problem in effective theories, gives rise to three classical minima along the UA(1) circle when Nf = 3. The three minima are related to the center Z(3) of SU(3). This Z(3) symmetry can be retained if the SU(3)L x SU(3)R symmetry breaking is assumed to be trilinear in the fields. The three vacua suggests a connection to the strong CP problem and confinement.
Weak Lie symmetry and extended Lie algebra
Goenner, Hubert
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
Super-Laplacians and their symmetries
NASA Astrophysics Data System (ADS)
Howe, P. S.; Lindström, U.
2017-05-01
A super-Laplacian is a set of differential operators in superspace whose highestdimensional component is given by the spacetime Laplacian. Symmetries of super-Laplacians are given by linear differential operators of arbitrary finite degree and are determined by superconformal Killing tensors. We investigate these in flat superspaces. The differential operators determining the symmetries give rise to algebras which can be identified in many cases with the tensor algebras of the relevant superconformal Lie algebras modulo certain ideals. They have applications to Higher Spin theories.
A symmetry principle for topological quantum order
Nussinov, Zohar Ortiz, Gerardo
2009-05-15
We present a unifying framework to study physical systems which exhibit topological quantum order (TQO). The major guiding principle behind our approach is that of symmetries and entanglement. These symmetries may be actual symmetries of the Hamiltonian characterizing the system, or emergent symmetries. To this end, we introduce the concept of low-dimensional Gauge-like symmetries (GLSs), and the physical conservation laws (including topological terms, fractionalization, and the absence of quasi-particle excitations) which emerge from them. We prove then sufficient conditions for TQO at both zero and finite temperatures. The physical engine for TQO are topological defects associated with the restoration of GLSs. These defects propagate freely through the system and enforce TQO. Our results are strongest for gapped systems with continuous GLSs. At zero temperature, selection rules associated with the GLSs enable us to systematically construct general states with TQO; these selection rules do not rely on the existence of a finite gap between the ground states to all other excited states. Indices associated with these symmetries correspond to different topological sectors. All currently known examples of TQO display GLSs. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin-exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. The symmetry based framework discussed herein allows us to go beyond standard topological field theories and systematically engineer new physical models with finite temperature TQO (both Abelian and non-Abelian). Furthermore, we analyze the insufficiency of entanglement entropy (we introduce SU(N) Klein models on small world networks to make the argument even sharper), spectral structures, maximal string correlators, and fractionalization in establishing TQO. We show that Kitaev's Toric code model and Wen
Quregisters, Symmetry Groups and Clifford Algebras
NASA Astrophysics Data System (ADS)
Cervantes, D.; Morales-Luna, G.
2016-03-01
Natural one-to-one and two-to-one homomorphisms from SO(3) into SU(2) are built conventionally, and the collection of qubits, is identified with a subgroup of SU(2). This construction is suitable to be extended to corresponding tensor powers. The notions of qubits, quregisters and qugates are translated into the language of symmetry groups. The corresponding elements to entangled states in the tensor product of Hilbert spaces reflect entanglement properties as well, and in this way a notion of entanglement is realised in the tensor product of symmetry groups.
Mirror symmetry breaking at the molecular level.
Avetisov, V; Goldanskii, V
1996-01-01
Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the kinetics of enantioselective processes? This study is an attempt to survey all existing hypotheses containing this phenomenon. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8876153
Conformal and projective symmetries in Newtonian cosmology
NASA Astrophysics Data System (ADS)
Duval, C.; Gibbons, G. W.; Horváthy, P. A.
2017-02-01
Definitions of non-relativistic conformal transformations are considered both in the Newton-Cartan and in the Kaluza-Klein-type Eisenhart/Bargmann geometrical frameworks. The symmetry groups that come into play are exemplified by the cosmological, and also the Newton-Hooke solutions of Newton's gravitational field equations. It is shown, in particular, that the maximal symmetry group of the standard cosmological model is isomorphic to the 13-dimensional conformal-Newton-Cartan group whose conformal-Bargmann extension is explicitly worked out. Attention is drawn to the appearance of independent space and time dilations, in contrast with the Schrödinger group or the Conformal Galilei Algebra.