Science.gov

Sample records for a4 hydrolase inhibitors

  1. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography

    SciTech Connect

    Davies, D.; Mamat, B; Magnusson, O

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein-protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4Hmore » representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors.« less

  2. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography†

    PubMed Central

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein−protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors. PMID:19618939

  3. Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor

    PubMed Central

    Stsiapanava, Alena; Olsson, Ulrika; Wan, Min; Kleinschmidt, Thea; Rutishauser, Dorothea; Zubarev, Roman A.; Samuelsson, Bengt; Rinaldo-Matthis, Agnes; Haeggström, Jesper Z.

    2014-01-01

    Leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc metalloenzyme that catalyzes the committed step in the formation of the proinflammatory mediator LTB4. Recently, the chemotactic tripeptide Pro-Gly-Pro was identified as an endogenous aminopeptidase substrate for LTA4 hydrolase. Here, we determined the crystal structure of LTA4 hydrolase in complex with a Pro-Gly-Pro analog at 1.72 Å. From the structure, which includes the catalytic water, and mass spectrometric analysis of enzymatic hydrolysis products of Pro-Gly-Pro, it could be inferred that LTA4 hydrolase cleaves at the N terminus of the palindromic tripeptide. Furthermore, we designed a small molecule, 4-(4-benzylphenyl)thiazol-2-amine, denoted ARM1, that inhibits LTB4 synthesis in human neutrophils (IC50 of ∼0.5 μM) and conversion of LTA4 into LTB4 by purified LTA4H with a Ki of 2.3 μM. In contrast, 50- to 100-fold higher concentrations of ARM1 did not significantly affect hydrolysis of Pro-Gly-Pro. A 1.62-Å crystal structure of LTA4 hydrolase in a dual complex with ARM1 and the Pro-Gly-Pro analog revealed that ARM1 binds in the hydrophobic pocket that accommodates the ω-end of LTA4, distant from the aminopeptidase active site, thus providing a molecular basis for its inhibitory profile. Hence, ARM1 selectively blocks conversion of LTA4 into LTB4, although sparing the enzyme’s anti-inflammatory aminopeptidase activity (i.e., degradation and inactivation of Pro-Gly-Pro). ARM1 represents a new class of LTA4 hydrolase inhibitor that holds promise for improved anti-inflammatory properties. PMID:24591641

  4. Molecular docking and pharmacophore filtering in the discovery of dual-inhibitors for human leukotriene A4 hydrolase and leukotriene C4 synthase.

    PubMed

    Thangapandian, Sundarapandian; John, Shalini; Sakkiah, Sugunadevi; Lee, Keun Woo

    2011-01-24

    Combination of drugs for multiple targets has been a standard treatment in treating various diseases. A single chemical entity that acts upon multiple targets is emerging nowadays because of their predictable pharmacokinetic and pharmacodynamic properties. We have employed a computer-aided methodology combining molecular docking and pharmacophore filtering to identify chemical compounds that can simultaneously inhibit the human leukotriene hydrolase (hLTA4H) and the human leukotriene C4 synthase (hLTC4S) enzymes. These enzymes are the members of arachidonic acid pathway and act upon the same substrate, LTA4, producing different inflammatory products. A huge set of 4966 druglike compounds from the Maybridge database were docked into the active site of hLTA4H using the GOLD program. Common feature pharmacophore models were developed from the known inhibitors of both the targets using Accelrys Discovery Studio 2.5. The hits from the hLTA4H docking were filtered to match the chemical features of both the pharmacophore models. The compounds that resulted from the pharmacophore filtering were docked into the active site of hLTC4S and the hits those bind well at both the active sites and matched the pharmacophore models were identified as possible dual inhibitors for hLTA4H and hLTC4S enzymes. Reverse validation was performed to ensure the results of the study.

  5. Selective N-hydroxyhydantoin carbamate inhibitors of mammalian serine hydrolases

    PubMed Central

    Cognetta, Armand B.; Niphakis, Micah J.; Lee, Hyeon-Cheol; Martini, Michael L.; Hulce, Jonathan J.; Cravatt, Benjamin F.

    2015-01-01

    Serine hydrolase inhibitors, which facilitate enzyme function assignment and are used to treat a range of human disorders, often act by an irreversible mechanism that involves covalent modification of the serine hydrolase catalytic nucleophile. The portion of mammalian serine hydrolases for which selective inhibitors have been developed, however, remains small. Here, we show that N-hydroxyhydantoin (NHH) carbamates are a versatile class of irreversible serine hydrolase inhibitors that can be modified on both the staying (carbamylating) and leaving (NHH) groups to optimize potency and selectivity. Synthesis and screening of a small library of NHH carbamates by competitive activity-based protein profiling furnished selective, in vivo-active inhibitors and tailored activity-based probes for multiple mammalian serine hydrolases, including palmitoyl protein thioesterease-1 (PPT1), mutations of which cause the human disease infantile neuronal ceroid lipofuscinosis. PMID:26120000

  6. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases

    NASA Astrophysics Data System (ADS)

    Morisseau, Christophe; Goodrow, Marvin H.; Dowdy, Deanna; Zheng, Jiang; Greene, Jessica F.; Sanborn, James R.; Hammock, Bruce D.

    1999-08-01

    The soluble epoxide hydrolase (sEH) plays a significant role in the biosynthesis of inflammation mediators as well as xenobiotic transformations. Herein, we report the discovery of substituted ureas and carbamates as potent inhibitors of sEH. Some of these selective, competitive tightbinding inhibitors with nanomolar Ki values interacted stoichiometrically with the homogenous recombinant murine and human sEHs. These inhibitors enhance cytotoxicity of trans-stilbene oxide, which is active as the epoxide, but reduce cytotoxicity of leukotoxin, which is activated by epoxide hydrolase to its toxic diol. They also reduce toxicity of leukotoxin in vivo in mice and prevent symptoms suggestive of acute respiratory distress syndrome. These potent inhibitors may be valuable tools for testing hypotheses of involvement of diol and epoxide lipids in chemical mediation in vitro or in vivo systems.

  7. Peripheral FAAH and soluble epoxide hydrolase inhibitors are synergistically antinociceptive.

    PubMed

    Sasso, Oscar; Wagner, Karen; Morisseau, Christophe; Inceoglu, Bora; Hammock, Bruce D; Piomelli, Daniele

    2015-07-01

    We need better medicines to control acute and chronic pain. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) catalyze the deactivating hydrolysis of two classes of bioactive lipid mediators--fatty acid ethanolamides (FAEs) and epoxidized fatty acids (EpFAs), respectively--which are biogenetically distinct but share the ability to attenuate pain responses and inflammation. In these experiments, we evaluated the antihyperalgesic activity of small-molecule inhibitors of FAAH and sEH, administered alone or in combination, in two pain models: carrageenan-induced hyperalgesia in mice and streptozocin-induced allodynia in rats. When administered separately, the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea (TPPU) and the peripherally restricted FAAH inhibitor URB937 were highly active in the two models. The combination TPPU plus URB937 was markedly synergistic, as assessed using isobolographic analyses. The results of these experiments reveal the existence of a possible functional crosstalk between FAEs and EpFAs in regulating pain responses. Additionally, the results suggest that combinations of sEH and FAAH inhibitors might be exploited therapeutically to achieve greater analgesic efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Novel propanamides as fatty acid amide hydrolase inhibitors.

    PubMed

    Deplano, Alessandro; Morgillo, Carmine Marco; Demurtas, Monica; Björklund, Emmelie; Cipriano, Mariateresa; Svensson, Mona; Hashemian, Sanaz; Smaldone, Giovanni; Pedone, Emilia; Luque, F Javier; Cabiddu, Maria G; Novellino, Ettore; Fowler, Christopher J; Catalanotti, Bruno; Onnis, Valentina

    2017-08-18

    Fatty acid amide hydrolase (FAAH) has a key role in the control of the cannabinoid signaling, through the hydrolysis of the endocannabinoids anandamide and in some tissues 2-arachidonoylglycerol. FAAH inhibition represents a promising strategy to activate the cannabinoid system, since it does not result in the psychotropic and peripheral side effects characterizing the agonists of the cannabinoid receptors. Here we present the discovery of a novel class of profen derivatives, the N-(heteroaryl)-2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino)phenyl)propanamides, as FAAH inhibitors. Enzymatic assays showed potencies toward FAAH ranging from nanomolar to micromolar range, and the most compounds lack activity toward the two isoforms of cyclooxygenase. Extensive structure-activity studies and the definition of the binding mode for the lead compound of the series are also presented. Kinetic assays in rat and mouse FAAH on selected compounds of the series demonstrated that slight modifications of the chemical structure could influence the binding mode and give rise to competitive (TPA1) or non-competitive (TPA14) inhibition modes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Evaluation of NHS Carbamates as a Potent and Selective Class of Endocannabinoid Hydrolase Inhibitors

    PubMed Central

    2013-01-01

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme’s function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors. PMID:23731016

  10. Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors.

    PubMed

    Niphakis, Micah J; Cognetta, Armand B; Chang, Jae Won; Buczynski, Matthew W; Parsons, Loren H; Byrne, Frederika; Burston, James J; Chapman, Victoria; Cravatt, Benjamin F

    2013-09-18

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme's function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors.

  11. Resveratrol, a Red Wine Polyphenol, Suppresses Pancreatic Cancer by Inhibiting Leukotriene A4 Hydrolase

    PubMed Central

    Oi, Naomi; Jeong, Chul-Ho; Nadas, Janos; Cho, Yong-Yeon; Pugliese, Angelo; Bode, Ann M.; Dong, Zigang

    2016-01-01

    The anticancer effects of red wine have attracted considerable attention. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a well-known polyphenolic compound of red wine with cancer chemopreventive activity. However, the basis for this activity is unclear. We studied leukotriene A4 hydrolase (LTA4H) as a relevant target in pancreatic cancer. LTA4H knockdown limited the formation of leukotriene B4 (LTB4), the enzymatic product of LTA4H, and suppressed anchorage-independent growth of pancreatic cancer cells. An in silico shape similarity algorithm predicted that LTA4H might be a potential target of resveratrol. In support of this idea, we found that resveratrol directly bound to LTA4H in vitro and in cells and suppressed proliferation and anchorage-independent growth of pancreatic cancer by inhibiting LTB4 production and expression of the LTB4 receptor 1 (BLT1). Notably, resveratrol exerted relatively stronger inhibitory effects than bestatin, an established inhibitor of LTA4H activity, and the inhibitory effects of resveratrol were reduced in cells where LTA4H was suppressed by shRNA-mediated knockdown. Importantly, resveratrol inhibited tumor formation in a xenograft mouse model of human pancreatic cancer by inhibiting LTA4H activity. Our findings identify LTA4H as a functionally important target for mediating the anticancer properties of resveratrol. PMID:20952510

  12. O-Hydroxyacetamide Carbamates as a Highly Potent and Selective Class of Endocannabinoid Hydrolase Inhibitors

    PubMed Central

    2011-01-01

    The two major endocannabinoid transmitters, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are degraded by distinct enzymes in the nervous system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. FAAH and MAGL inhibitors cause elevations in brain AEA and 2-AG levels, respectively, and reduce pain, anxiety, and depression in rodents without causing the full spectrum of psychotropic behavioral effects observed with direct cannabinoid receptor-1 (CB1) agonists. These findings have inspired the development of several classes of endocannabinoid hydrolase inhibitors, most of which have been optimized to show specificity for either FAAH or MAGL or, in certain cases, equipotent activity for both enzymes. Here, we investigate an unusual class of O-hydroxyacetamide carbamate inhibitors and find that individual compounds from this class can serve as selective FAAH or dual FAAH/MAGL inhibitors in vivo across a dose range (0.125–12.5 mg kg–1) suitable for behavioral studies. Competitive and click chemistry activity-based protein profiling confirmed that the O-hydroxyacetamide carbamate SA-57 is remarkably selective for FAAH and MAGL in vivo, targeting only one other enzyme in brain, the additional 2-AG hydrolase ABHD6. These data designate O-hydroxyacetamide carbamates as a versatile chemotype for creating endocannabinoid hydrolase inhibitors that display excellent in vivo activity and tunable selectivity for FAAH-anandamide versus MAGL (and ABHD6)-2-AG pathways. PMID:22860211

  13. O-hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors.

    PubMed

    Niphakis, Micah J; Johnson, Douglas S; Ballard, T Eric; Stiff, Cory; Cravatt, Benjamin F

    2012-05-16

    The two major endocannabinoid transmitters, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are degraded by distinct enzymes in the nervous system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. FAAH and MAGL inhibitors cause elevations in brain AEA and 2-AG levels, respectively, and reduce pain, anxiety, and depression in rodents without causing the full spectrum of psychotropic behavioral effects observed with direct cannabinoid receptor-1 (CB1) agonists. These findings have inspired the development of several classes of endocannabinoid hydrolase inhibitors, most of which have been optimized to show specificity for either FAAH or MAGL or, in certain cases, equipotent activity for both enzymes. Here, we investigate an unusual class of O-hydroxyacetamide carbamate inhibitors and find that individual compounds from this class can serve as selective FAAH or dual FAAH/MAGL inhibitors in vivo across a dose range (0.125-12.5 mg kg(-1)) suitable for behavioral studies. Competitive and click chemistry activity-based protein profiling confirmed that the O-hydroxyacetamide carbamate SA-57 is remarkably selective for FAAH and MAGL in vivo, targeting only one other enzyme in brain, the additional 2-AG hydrolase ABHD6. These data designate O-hydroxyacetamide carbamates as a versatile chemotype for creating endocannabinoid hydrolase inhibitors that display excellent in vivo activity and tunable selectivity for FAAH-anandamide versus MAGL (and ABHD6)-2-AG pathways.

  14. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH).

    PubMed

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Romagnoli, Romeo; Martinelli, Adriano; Tuccinardi, Tiziano

    2015-06-05

    Fatty acid amide hydrolase (FAAH) inhibitors have gained attention as potential therapeutic targets in the management of neuropathic pain. Here, we report a series of pyrazole phenylcyclohexylcarbamate derivatives standing on the known carbamoyl FAAH inhibitor URB597. Structural modifications led to the recognition of compound 22 that inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM). The most active compounds of this series showed significant selectivity toward monoacylglycerol lipase (MAGL) enzyme. In addition, molecular modeling and reversibility behavior of the new class of FAAH inhibitors are presented in this article. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. N-aryl 2-aryloxyacetamides as a new class of fatty acid amide hydrolase (FAAH) inhibitors.

    PubMed

    Sunduru, Naresh; Svensson, Mona; Cipriano, Mariateresa; Marwaha, Sania; Andersson, C David; Svensson, Richard; Fowler, Christopher J; Elofsson, Mikael

    2017-12-01

    Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC 50 of 2.6 µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC 50 of 0.35 µM.

  16. Structural refinement of inhibitors of urea-based soluble epoxide hydrolases.

    PubMed

    Morisseau, Christophe; Goodrow, Marvin H; Newman, John W; Wheelock, Craig E; Dowdy, Deanna L; Hammock, Bruce D

    2002-05-01

    The soluble epoxide hydrolase (sEH) is involved in the metabolism of arachidonic, linoleic, and other fatty acid epoxides, endogenous chemical mediators that play an important role in blood pressure regulation and inflammation. 1,3-Disubstituted ureas, carbamates, and amides are new potent and stable inhibitors of sEH. However, the poor solubility of the lead compounds limits their use. Inhibitor structure-activity relationships were investigated to better define the structural requirements for inhibition and to identify points in the molecular topography that could accept polar groups without diminishing inhibition potency. Results indicate that lipophilicity is an important factor controlling inhibitor potency. Polar groups could be incorporated into one of the alkyl groups without loss of activity if they were placed at a sufficient distance from the urea function. The resulting compounds had a 2-fold higher water solubility. These findings will facilitate the rational design and optimization of sEH inhibitors with better physical properties.

  17. Role of leukotriene A4 hydrolase aminopeptidase in the pathogenesis of emphysema1

    PubMed Central

    Paige, Mikell; Wang, Kan; Burdick, Marie; Park, Sunhye; Cha, Josiah; Jeffrey, Erin; Sherman, Nicholas; Shim, Y. Michael

    2014-01-01

    The leukotriene A4 hydrolase (LTA4H) is a bi-functional enzyme with an epoxy hydrolase and aminopeptidase activities. We hypothesize that the LTA4H aminopeptidase activity alleviates neutrophilic inflammation, which contributes to cigarette smoke (CS)-induced emphysema by clearing Proline-Glycine-Proline (PGP), a tri-amino acid chemokine known to induce chemotaxis of neutrophils. To investigate the biological contributions made by the LTA4H aminopeptidase activity in CS-induced emphysema, we exposed wild type mice to CS over five months while treating them with a vehicle or a pharmaceutical agent (4MDM) that selectively augments the LTA4H aminopeptidase without affecting the bio-production of leukotriene B4 (LTB4). Emphysematous phenotypes were assessed by pre mortem lung physiology with a small animal ventilator and by postmortem histologic morphometry. CS exposure acidified the airspaces and induced localization of the LTA4H protein into the nuclei of the epithelial cells. This resulted in accumulation of PGP in the airspaces by suppressing the LTA4H aminopeptidase activity. When the LTA4H aminopeptidase activity was selectively augmented by 4MDM, the levels of PGP in the BALF and infiltration of neutrophils into the lungs were significant reduced without affecting the levels of LTB4. This protected murine lungs from CS-induced emphysematous alveolar remodeling. In conclusion, CS exposure promotes the development of CS-induced emphysema by suppressing the enzymatic activities of the LTA4H aminopeptidase in lung tissues and accumulating PGP and neutrophils in the airspaces. However, restoring the LTA4 aminopeptidase activity with a pharmaceutical agent protected murine lungs from developing CS-induced emphysema. PMID:24771855

  18. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    SciTech Connect

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  19. Use of a soluble epoxide hydrolase inhibitor as adjunctive analgesic in a laminitic horse

    PubMed Central

    Guedes, Alonso G. P.; Morisseau, Christophe; Sole, Albert; Soares, Joao H. N.; Ulu, Arzu; Dong, Hua; Hammock, Bruce D.

    2014-01-01

    A 4-year old, 500 kg Thoroughbred female horse diagnosed with bilateral forelimb laminitis and cellulitis on the left forelimb became severely painful and refractory to non-steroidal anti-inflammatory therapy (flunixin meglumine on days 1, 2, 3 and 4; and phenylbutazone on days 5, 6 and 7) alone or in combination with gabapentin (days 6 and 7). Pain scores assessed independently by three individuals with a visual analog scale (VAS; 0= no pain and 10=worst possible pain) were 8.5 on day 6, and it increased to 9.5 on day 7. Non-invasive blood pressure monitoring revealed severe hypertension. As euthanasia was being considered for humane reasons as well as technical and financial constraints, a decision was made to add an experimental new drug, trans-4-{4-[3-(4-Trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB), which is an inhibitor of soluble epoxide hydrolase (sEH), to the treatment protocol. Dose and frequency of administration were selected to produce plasma concentrations within the range of 2.5 μM and 30 nM based on the drug potency against equine sEH. Pain scores decreased sharply and remarkably following t-TUCB administration and blood pressure progressively decreased to physiologic normal values. Plasma concentrations of t-TUCB, measured daily, were within the expected range, whereas phenylbutazone and gabapentin plasma levels were below the suggested efficacious concentrations. No adverse effects were detected on clinical and laboratory examinations during and after t-TUCB administration. The mare did not get any episode of laminitis in the three months following the treatment. PMID:23463912

  20. Characterization of tunable piperidine and piperazine carbamates as inhibitors of endocannabinoid hydrolases

    PubMed Central

    Long, Jonathan Z.; Jin, Xin; Adibekian, Alexander; Li, Weiwei; Cravatt, Benjamin F.

    2010-01-01

    Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are two enzymes from the serine hydrolase superfamily that degrade the endocannabinoids 2-arachidonoylglycerol and anandamide, respectively. We have recently discovered that MAGL and FAAH are both inhibited by carbamates bearing an N-piperidine/piperazine group. Piperidine/piperazine carbamates show excellent in vivo activity, raising brain endocannabinoid levels and producing CB1-dependent behavioral effects in mice, suggesting that they represent a promising class of inhibitors for studying the endogenous functions of MAGL and FAAH. Herein, we disclose a full account of the syntheses, structure-activity relationships, and inhibitory activities of piperidine/piperazine carbamates against members of the serine hydrolase family. These scaffolds can be tuned for MAGL-selective or dual MAGL-FAAH inhibition by the attachment of an appropriately substituted bisarylcarbinol or aryloxybenzyl moiety, respectively, on the piperidine/piperazine ring. Modifications to the piperidine/piperazine ring ablated inhibitory activity, suggesting a strict requirement for a six-member ring to maintain potency. PMID:20099888

  1. Aryl Piperazinyl Ureas as Inhibitors of Fatty Acid Amide Hydrolase (FAAH) in Rat, Dog, and Primate.

    PubMed

    Keith, John M; Apodaca, Rich; Tichenor, Mark; Xiao, Wei; Jones, William; Pierce, Joan; Seierstad, Mark; Palmer, James; Webb, Michael; Karbarz, Mark; Scott, Brian; Wilson, Sandy; Luo, Lin; Wennerholm, Michelle; Chang, Leon; Brown, Sean; Rizzolio, Michele; Rynberg, Raymond; Chaplan, Sandra; Breitenbucher, J Guy

    2012-10-11

    A series of aryl piperazinyl ureas that act as covalent inhibitors of fatty acid amide hydrolase (FAAH) is described. A potent and selective (does not inhibit FAAH-2) member of this class, JNJ-40355003, was found to elevate the plasma levels of three fatty acid amides: anandamide, oleoyl ethanolamide, and palmitoyl ethanolamide, in the rat, dog, and cynomolgous monkey. The elevation of the levels of these lipids in the plasma of monkeys suggests that FAAH-2 may not play a significant role in regulating plasma levels of fatty acid ethanolamides in primates.

  2. The Molecular Structure of Epoxide Hydrolase B From And Its Complex With Urea-Based Inhibitor

    SciTech Connect

    Biswal, B.K.; Morisseau, C.; Garen, G.

    2009-05-11

    Mycobacterium tuberculosis (Mtb), the intracellular pathogen that infects macrophages primarily, is the causative agent of the infectious disease tuberculosis in humans. The Mtb genome encodes at least six epoxide hydrolases (EHs A to F). EHs convert epoxides to trans-dihydrodiols and have roles in drug metabolism as well as in the processing of signaling molecules. Herein, we report the crystal structures of unbound Mtb EHB and Mtb EHB bound to a potent, low-nanomolar (IC(50) approximately 19 nM) urea-based inhibitor at 2.1 and 2.4 A resolution, respectively. The enzyme is a homodimer; each monomer adopts the classical alpha/beta hydrolase fold that composesmore » the catalytic domain; there is a cap domain that regulates access to the active site. The catalytic triad, comprising Asp104, His333 and Asp302, protrudes from the catalytic domain into the substrate binding cavity between the two domains. The urea portion of the inhibitor is bound in the catalytic cavity, mimicking, in part, the substrate binding; the two urea nitrogen atoms donate hydrogen bonds to the nucleophilic carboxylate of Asp104, and the carbonyl oxygen of the urea moiety receives hydrogen bonds from the phenolic oxygen atoms of Tyr164 and Tyr272. The phenolic oxygen groups of these two residues provide electrophilic assistance during the epoxide hydrolytic cleavage. Upon inhibitor binding, the binding-site residues undergo subtle structural rearrangement. In particular, the side chain of Ile137 exhibits a rotation of around 120 degrees about its C(alpha)-C(beta) bond in order to accommodate the inhibitor. These findings have not only shed light on the enzyme mechanism but also have opened a path for the development of potent inhibitors with good pharmacokinetic profiles against all Mtb EHs of the alpha/beta type.« less

  3. Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH).

    PubMed

    Min, Xiaoshan; Thibault, Stephen T; Porter, Amy C; Gustin, Darin J; Carlson, Timothy J; Xu, Haoda; Lindstrom, Michelle; Xu, Guifen; Uyeda, Craig; Ma, Zhihua; Li, Yihong; Kayser, Frank; Walker, Nigel P C; Wang, Zhulun

    2011-05-03

    Fatty acid amide hydrolase (FAAH), an amidase-signature family member, is an integral membrane enzyme that degrades lipid amides including the endogenous cannabinoid anandamide and the sleep-inducing molecule oleamide. Both genetic knock out and pharmacological administration of FAAH inhibitors in rodent models result in analgesic, anxiolytic, and antiinflammatory phenotypes. Targeting FAAH activity, therefore, presents a promising new therapeutic strategy for the treatment of pain and other neurological-related or inflammatory disorders. Nearly all FAAH inhibitors known to date attain their binding potency through a reversible or irreversible covalent modification of the nucleophile Ser241 in the unusual Ser-Ser-Lys catalytic triad. Here, we report the discovery and mechanism of action of a series of ketobenzimidazoles as unique and potent noncovalent FAAH inhibitors. Compound 2, a representative of these ketobenzimidazoles, was designed from a series of ureas that were identified from high-throughput screening. While urea compound 1 is characterized as an irreversible covalent inhibitor, the cocrystal structure of FAAH complexed with compound 2 reveals that these ketobenzimidazoles, though containing a carbonyl moiety, do not covalently modify Ser241. These inhibitors achieve potent inhibition of FAAH activity primarily from shape complementarity to the active site and through numerous hydrophobic interactions. These noncovalent compounds exhibit excellent selectivity and good pharmacokinetic properties. The discovery of this distinctive class of inhibitors opens a new avenue for modulating FAAH activity through nonmechanism-based inhibition.

  4. Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH)

    PubMed Central

    Min, Xiaoshan; Thibault, Stephen T.; Porter, Amy C.; Gustin, Darin J.; Carlson, Timothy J.; Xu, Haoda; Lindstrom, Michelle; Xu, Guifen; Uyeda, Craig; Ma, Zhihua; Li, Yihong; Kayser, Frank; Walker, Nigel P. C.; Wang, Zhulun

    2011-01-01

    Fatty acid amide hydrolase (FAAH), an amidase-signature family member, is an integral membrane enzyme that degrades lipid amides including the endogenous cannabinoid anandamide and the sleep-inducing molecule oleamide. Both genetic knock out and pharmacological administration of FAAH inhibitors in rodent models result in analgesic, anxiolytic, and antiinflammatory phenotypes. Targeting FAAH activity, therefore, presents a promising new therapeutic strategy for the treatment of pain and other neurological-related or inflammatory disorders. Nearly all FAAH inhibitors known to date attain their binding potency through a reversible or irreversible covalent modification of the nucleophile Ser241 in the unusual Ser-Ser-Lys catalytic triad. Here, we report the discovery and mechanism of action of a series of ketobenzimidazoles as unique and potent noncovalent FAAH inhibitors. Compound 2, a representative of these ketobenzimidazoles, was designed from a series of ureas that were identified from high-throughput screening. While urea compound 1 is characterized as an irreversible covalent inhibitor, the cocrystal structure of FAAH complexed with compound 2 reveals that these ketobenzimidazoles, though containing a carbonyl moiety, do not covalently modify Ser241. These inhibitors achieve potent inhibition of FAAH activity primarily from shape complementarity to the active site and through numerous hydrophobic interactions. These noncovalent compounds exhibit excellent selectivity and good pharmacokinetic properties. The discovery of this distinctive class of inhibitors opens a new avenue for modulating FAAH activity through nonmechanism-based inhibition. PMID:21502526

  5. Optimized Inhibitors of Soluble Epoxide Hydrolase Improve in Vitro Target Residence Time and in Vivo Efficacy

    PubMed Central

    2015-01-01

    Diabetes is affecting the life of millions of people. A large proportion of diabetic patients suffer from severe complications such as neuropathic pain, and current treatments for these complications have deleterious side effects. Thus, alternate therapeutic strategies are needed. Recently, the elevation of epoxy-fatty acids through inhibition of soluble epoxide hydrolase (sEH) was shown to reduce diabetic neuropathic pain in rodents. In this report, we describe a series of newly synthesized sEH inhibitors with at least 5-fold higher potency and doubled residence time inside both the human and rodent sEH enzyme than previously reported inhibitors. These inhibitors also have better physical properties and optimized pharmacokinetic profiles. The optimized inhibitor selected from this new series displayed improved efficacy of almost 10-fold in relieving pain perception in diabetic neuropathic rats as compared to the approved drug, gabapentin, and previously published sEH inhibitors. Therefore, these new sEH inhibitors could be an attractive alternative to treat diabetic neuropathy in humans. PMID:25079952

  6. Structure–Activity Relationships of α-Keto Oxazole Inhibitors of Fatty Acid Amide Hydrolase

    PubMed Central

    Hardouin, Christophe; Kelso, Michael J.; Romero, F. Anthony; Rayl, Thomas J.; Leung, Donmienne; Hwang, Inkyu; Cravatt, Benjamin F.; Boger, Dale L.

    2008-01-01

    A systematic study of the structure–activity relationships (SAR) of 2b (OL-135), a potent inhibitor of fatty acid amide hydrolase (FAAH), is detailed targeting the C2 acyl side chain. A series of aryl replacements or substituents for the terminal phenyl group provided effective inhibitors (e.g., 5c, aryl = 1-napthyl, Ki = 2.6 nM) with 5hh (aryl = 3-Cl-Ph, Ki = 900 pM) being 5-fold more potent than 2b. Conformationally-restricted C2 side chains were examined and many provided exceptionally potent inhibitors of which 11j (ethylbiphenyl side chain) was established to be a 750 pM inhibitor. A systematic series of heteroatoms (O, NMe, S), electron-withdrawing groups (SO, SO2), and amides positioned within and hydroxyl substitutions on the linking side chain were investigated which typically led to a loss in potency. The most tolerant positions provided effective inhibitors (12p, 6-position S, Ki = 3 nM or 13d, 2-position OH, Ki = 8 nM) comparable in potency to 2b. Proteomic-wide screening of selected inhibitors from the systematic series of >100 candidates prepared revealed that they are selective for FAAH over all other mammalian serine proteases. PMID:17559203

  7. Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells

    PubMed Central

    Winkler, Katrin; Ramer, Robert; Dithmer, Sophie; Ivanov, Igor; Merkord, Jutta; Hinz, Burkhard

    2016-01-01

    Inhibition of endocannabinoid degradation has been suggested as tool for activation of endogenous tumor defense. One of these strategies lies in blockade of fatty acid amide hydrolase (FAAH) which catalyzes the degradation of endocannabinoids (anandamide [AEA], 2-arachidonoylglycerol [2-AG]) and endocannabinoid-like substances (N-oleoylethanolamine [OEA], N-palmitoylethanolamine [PEA]). This study addressed the impact of two FAAH inhibitors (arachidonoyl serotonin [AA-5HT], URB597) on A549 lung cancer cell metastasis and invasion. LC-MS analyses revealed increased levels of FAAH substrates (AEA, 2-AG, OEA, PEA) in cells incubated with either FAAH inhibitor. In athymic nude mice FAAH inhibitors were shown to elicit a dose-dependent antimetastatic action yielding a 67% and 62% inhibition of metastatic lung nodules following repeated administration of 15 mg/kg AA-5HT and 5 mg/kg URB597, respectively. In vitro, a concentration-dependent anti-invasive action of either FAAH inhibitor was demonstrated, accompanied with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Using siRNA approaches, a causal link between the TIMP-1-upregulating and anti-invasive action of FAAH inhibitors was confirmed. Moreover, knockdown of FAAH by siRNA was shown to confer decreased cancer cell invasiveness and increased TIMP-1 expression. Inhibitor experiments point toward a role of CB2 and transient receptor potential vanilloid 1 in conferring anti-invasive effects of FAAH inhibitors and FAAH siRNA. Finally, antimetastatic and anti-invasive effects were confirmed for all FAAH substrates with AEA and OEA causing a TIMP-1-dependent anti-invasive action. Collectively, the present study provides first-time proof for an antimetastatic action of FAAH inhibitors. As mechanism of its anti-invasive properties an upregulation of TIMP-1 was identified. PMID:26930716

  8. Piperazine and piperidine carboxamides and carbamates as inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

    PubMed

    Korhonen, Jani; Kuusisto, Anne; van Bruchem, John; Patel, Jayendra Z; Laitinen, Tuomo; Navia-Paldanius, Dina; Laitinen, Jarmo T; Savinainen, Juha R; Parkkari, Teija; Nevalainen, Tapio J

    2014-12-01

    The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8-10, while diverse leaving groups are tolerated for FAAH inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Structure-Based Optimization of Arylamides as Inhibitors of Soluble Epoxide Hydrolase

    SciTech Connect

    Eldrup, Anne B.; Soleymanzadeh, Fariba; Taylor, Steven J.

    2009-11-04

    Inhibition of soluble epoxide hydrolase (sEH) is hypothesized to lead to an increase in circulating levels of epoxyeicosatrienoic acids, resulting in the potentiation of their in vivo pharmacological properties. As part of an effort to identify inhibitors of sEH with high and sustained plasma exposure, we recently performed a high throughput screen of our compound collection. The screen identified N-(3,3-diphenyl-propyl)-nicotinamide as a potent inhibitor of sEH. Further profiling of this lead revealed short metabolic half-lives in microsomes and rapid clearance in the rat. Consistent with these observations, the determination of the in vitro metabolic profile of N-(3,3-diphenyl-propyl)-nicotinamide in rat livermore » microsomes revealed extensive oxidative metabolism and a propensity for metabolite switching. Lead optimization, guided by the analysis of the solid-state costructure of N-(3,3-diphenyl-propyl)-nicotinamide bound to human sEH, led to the identification of a class of potent and selective inhibitors. An inhibitor from this class displayed an attractive in vitro metabolic profile and high and sustained plasma exposure in the rat after oral administration.« less

  10. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor

    PubMed Central

    Smith, Kevin R.; Pinkerton, Kent E.; Watanabe, Takaho; Pedersen, Theresa L.; Ma, Seung Jin; Hammock, Bruce D.

    2005-01-01

    Changes in the lungs due to smoking include inflammation, epithelial damage, and remodeling of the airways. Airway inflammation is likely to play a critical role in the genesis and progression of tobacco smoke-induced airway disease. Soluble epoxide hydrolase (sEH) is involved in the metabolism of endogenous chemical mediators that play an important role in inflammation. Epoxyeicosatrienoic acids (EETs) have demonstrated antiinflammatory properties, and hydrolysis of these epoxides by sEH is known to diminish this activity. To examine whether acute tobacco smoke-induced inflammation could be reduced by a sEH inhibitor, 12-(3-adamantane-1-yl-ureido)-dodecanoic acid n-butyl ester was given by daily s.c. injection to spontaneously hypertensive rats exposed to filtered air or tobacco smoke for a period of 3 days (6 h/day). Acute exposure to tobacco smoke significantly increased by 3.2-fold (P < 0.05) the number of cells recovered by bronchoalveolar lavage. The sEH inhibitor significantly decreased total bronchoalveolar lavage cell number by 37% in tobacco smoke-exposed rats with significant reductions noted in neutrophils, alveolar macrophages, and lymphocytes. A combination of sEH inhibitor and EETs was more significant in its ability to further reduce tobacco smoke-induced inflammation compared with the sEH inhibitor alone. The sEH inhibitor led to a shift in some plasma epoxides and diols that are consistent with the hypothetical action of these compounds. We conclude that an sEH inhibitor, in the presence or absence of EETs, can attenuate, in part, inflammation associated with acute exposure to tobacco smoke. PMID:15684051

  11. Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats.

    PubMed

    Panlilio, Leigh V; Thorndike, Eric B; Nikas, Spyros P; Alapafuja, Shakiru O; Bandiera, Tiziano; Cravatt, Benjamin F; Makriyannis, Alexandros; Piomelli, Daniele; Goldberg, Steven R; Justinova, Zuzana

    2016-05-01

    Manipulations of the endocannabinoid system could potentially produce therapeutic effects with minimal risk of adverse cannabis-like side effects. Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of the cannabinoid-receptor agonist, anandamide, and show promise for treating a wide range of disorders. However, their effects on learning and memory have not been fully characterized. We determined the effects of five structurally different FAAH inhibitors in an animal model of working memory known to be sensitive to impairment by delta-9 tetrahydrocannabinol (THC). A delayed nonmatching-to-position procedure was used in rats. Illuminated nosepoke holes were used to provide sample cues (left versus right) and record responses (correct versus incorrect) after delays ranging from 0 to 28 s. Various test drugs were given acutely up to two times per week before daily sessions. One FAAH inhibitor, AM3506 (3 mg/kg), decreased accuracy in the memory task. Four other FAAH inhibitors (URB597, URB694, PF-04457845, and ARN14633) and a monoacylglycerol lipase inhibitor (JZL184, which blocks the degradation of the endocannabinoid 2-arachidonoylglycerol) had no effect. Testing of AM3506 in combination with antagonists for receptors known to be affected by anandamide and other fatty acid amides indicated that the impairment induced by AM3506 was mediated by cannabinoid CB1 receptors, and not by alpha-type peroxisome proliferator-activated receptors (PPAR-alpha) or vanilloid transient receptor potential cation channels (TRPV1). FAAH inhibitors differ with respect to their potential for memory impairment, abuse liability, and probably other cannabis-like effects, and they should be evaluated individually for specific therapeutic and adverse effects.

  12. Soluble epoxide hydrolase inhibitors of indolinone alkaloids and phenolic derivatives from Cimicifuga dahurica (Turcz.) Maxim.

    PubMed

    Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Lee, Ji Sun; Kim, Jang Hoon; Kim, Young Ho

    2017-04-15

    The aim of this study was to search for potential therapeutic agents by identifying novel inhibitors of soluble epoxide hydrolase (sEH) from natural plants using an in silico approach. We found that an ethanolic extract from the roots of Cimicifuga dahurica (Turcz.) Maxim. significantly inhibited sEH in vitro. In a phytochemical investigation using assay-guided fractionation of the dichloromethane extract of C. dahurica, we isolated two new indolinone alkaloids (5 and 6) and five related constituents (1-4, and 7) and established their structures based on an extensive analysis using 1D and 2D NMR, and MS methods. All of the isolated compounds inhibited sEH enzymatic activity in a dose-dependent manner, with IC 50 values ranging from 0.8±0.0 to 2.8±0.4μM. A kinetic analysis of compounds 1-7 revealed that compound 2 was non-competitive; 1, 3, and 7 were mixed-type; and 4-6 were competitive inhibitors. Molecular docking was employed to further elucidate their receptor-ligand binding characteristics. These results demonstrated that compounds from C. dahurica are potential sEH inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of Small-Molecule Inhibitors of Nucleoside Triphosphate Hydrolase in Toxoplasma gondii

    PubMed Central

    Asai, Takashi; Takeuchi, Tsutomu; Diffenderfer, Jeff; Sibley, L. David

    2002-01-01

    Approximately 150,000 small-molecule compounds were tested by a robotic screening assay for their ability to inhibit nucleoside triphosphate hydrolase (NTPase), a novel enzyme of the tachyzoite form of Toxoplasma gondii. Five unrelated species of compounds were found to inhibit the activities of both NTPase isoforms (NTPase isoform I [NTPase-I] and NTPase-II). The 50% inhibitory concentrations (IC50s) ranged from 0.1 to 20 μM, and in general, the IC50s were similar for both NTPase isoforms. However, the activity of NTPase-I was 20 times more sensitive than the activity of NTPase-II to one of the inhibitors: 9-hydroxy-10-(pentachlorophenoxy)stearic acid. The five compounds identified also prevented tachyzoite replication in vitro, with IC50s ranging from ∼7 to ≥50 μM. The most effective of these initial compounds, 2-phenylthio-indole, was used to identify six additional, structurally related compounds, which were tested for their inhibitory effects on enzyme activities and tachyzoite replication. Surprisingly, these compounds were competitive inhibitors of NTPase-I but noncompetitive inhibitors of NTPase-II. Modifications to the indole and phenol rings resulted in alterations of activity, thus providing insight into the structural features that are important for inhibition of T. gondii NTPases. PMID:12121910

  14. Identification of small-molecule inhibitors of nucleoside triphosphate hydrolase in Toxoplasma gondii.

    PubMed

    Asai, Takashi; Takeuchi, Tsutomu; Diffenderfer, Jeff; Sibley, L David

    2002-08-01

    Approximately 150,000 small-molecule compounds were tested by a robotic screening assay for their ability to inhibit nucleoside triphosphate hydrolase (NTPase), a novel enzyme of the tachyzoite form of Toxoplasma gondii. Five unrelated species of compounds were found to inhibit the activities of both NTPase isoforms (NTPase isoform I [NTPase-I] and NTPase-II). The 50% inhibitory concentrations (IC(50)s) ranged from 0.1 to 20 microM, and in general, the IC(50)s were similar for both NTPase isoforms. However, the activity of NTPase-I was 20 times more sensitive than the activity of NTPase-II to one of the inhibitors: 9-hydroxy-10-(pentachlorophenoxy)stearic acid. The five compounds identified also prevented tachyzoite replication in vitro, with IC(50)s ranging from approximately 7 to > or =50 microM. The most effective of these initial compounds, 2-phenylthio-indole, was used to identify six additional, structurally related compounds, which were tested for their inhibitory effects on enzyme activities and tachyzoite replication. Surprisingly, these compounds were competitive inhibitors of NTPase-I but noncompetitive inhibitors of NTPase-II. Modifications to the indole and phenol rings resulted in alterations of activity, thus providing insight into the structural features that are important for inhibition of T. gondii NTPases.

  15. Soluble epoxide hydrolase inhibitor, t-TUCB, protects against myocardial ischaemic injury in rats.

    PubMed

    Shrestha, Ayush; Krishnamurthy, Praveen T; Thomas, Pooja; Hammock, Bruce D; Hwang, Sung H

    2014-09-01

    To determine the protective role of a soluble epoxide hydrolase(sEH) inhibitor, trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido] cyclohexyloxy} benzoic acid (t-TUCB), in isoproterenol (ISO)-induced myocardial ischaemic injury in vivo. Cardioprotective activity of t-TUCB was studied against ISO-induced myocardial ischaemic injury in male Wistar rats. Cardioprotection was assessed by measuring elecrocardiographic (EKG), serum lactate dehydrogenase (LDH) and creatine kinase (CK-MB) levels, cardiac calcium and antioxidant levels, and also by measuring infarct size in the cardiac tissue. Pretreatment with t-TUCB at 3, 10 and 30 mg/kg orally for a period of 14 days significantly prevented the changes in EKG parameters (QTc interval prolongation, ST height depression, pathological Q waves formation and T-wave inversion), serum cardiac biomarkers (CK-MB and LDH), relative heart weight, myocardial calcium levels, infarct size and the oxidative status in the cardiac tissue (lipid peroxidation, catalase and superoxide dismutase levels) when compared with the untreated control animals (P < 0.05). The sEH inhibitor t-TUCB significantly prevents ISO-induced myocardial ischaemic injury in rats. This study provides a preliminary confirmation of the efficacy of t-TUCB by oral administration in rats. © 2014 Royal Pharmaceutical Society.

  16. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales

    PubMed Central

    Kitamura, Seiya; Morisseau, Christophe; Harris, Todd R.; Inceoglu, Bora

    2017-01-01

    Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH) inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1), showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii) roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM) effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya) seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors. PMID:28472063

  17. Exploration of a fundamental substituent effect of alpha-ketoheterocycle enzyme inhibitors: Potent and selective inhibitors of fatty acid amide hydrolase.

    PubMed

    DeMartino, Jessica K; Garfunkle, Joie; Hochstatter, Dustin G; Cravatt, Benjamin F; Boger, Dale L

    2008-11-15

    A series of C4 substituted alpha-ketooxazoles were examined as inhibitors of the serine hydrolase fatty acid amide hydrolase in efforts that further define and generalize a fundamental substituent effect on enzyme inhibitory potency. Thus, a plot of the Hammett sigma(m) versus -logK(i) provided a linear correlation (R(2)=0.90) with a slope of 3.37 (rho=3.37), that is of a magnitude that indicates that of the electron-withdrawing character of the substituent dominates its effects (a one unit change in sigma(m) provides a >1000-fold change in K(i)).

  18. Effects of a Soluble Epoxide Hydrolase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury in Mice

    PubMed Central

    Yang, Liu-Qing; Ma, Yong-Bo

    2016-01-01

    Objectives Inflammation plays a key role in the pathogenesis of acute lung injury (ALI). Soluble epoxide hydrolase (sEH) is suggested as a vital pharmacologic target for inflammation. In this study, we determined whether a sEH inhibitor, AUDA, exerts lung protection in lipopolysaccharide (LPS)-induced ALI in mice. Methods Male BALB/c mice were randomized to receive AUDA or vehicle intraperitoneal injection 4 h after LPS or phosphate buffered saline (PBS) intratracheal instillation. Samples were harvested 24 h post LPS or PBS administration. Results AUDA administration decreased the pulmonary levels of monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α. Improvement of oxygenation and lung edema were observed in AUDA treated group. AUDA significantly inhibited sEH activity, and elevated epoxyeicosatrienoic acids (EETs) levels in lung tissues. Moreover, LPS induced the activation of nuclear factor (NF)-κB was markedly dampened in AUDA treated group. Conclusion Administration of AUDA after the onset of LPS-induced ALI increased pulmonary levels of EETs, and ameliorated lung injury. sEH is a potential pharmacologic target for ALI. PMID:27490848

  19. Anti-Ulcer Efficacy of Soluble Epoxide Hydrolase Inhibitor TPPU on Diclofenac-Induced Intestinal Ulcers

    PubMed Central

    Goswami, Sumanta Kumar; Wan, Debin; Yang, Jun; Trindade da Silva, Carlos A.; Morisseau, Christophe; Kodani, Sean D.; Yang, Guang-Yu; Inceoglu, Bora

    2016-01-01

    Proton pump inhibitors such as omeprazole (OME) reduce the severity of gastrointestinal (GI) ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs) but can also increase the chance of dysbiosis. The aim of this study was to test the hypothesis that preventive use of a soluble epoxide hydrolase inhibitor (sEHI) such as TPPU can decrease NSAID-induced ulcers by increasing anti-inflammatory epoxyeicosatrienoic acids (EETs). Dose- [10, 30, and 100 mg/kg, by mouth (PO)] and time-dependent (6 and 18 hours) ulcerative effects of diclofenac sodium (DCF, an NSAID) were studied in the small intestine of Swiss Webster mice. Dose-dependent effects of TPPU (0.001–0.1 mg/kg per day for 7 days, in drinking water) were evaluated in DCF-induced intestinal toxicity and compared with OME (20 mg/kg, PO). In addition, the effect of treatment was studied on levels of Hb in blood, EETs in plasma, inflammatory markers such as myeloperoxidase (MPO) in intestinal tissue homogenates, and tissue necrosis factor-α (TNF-α) in serum. DCF dose dependently induced ulcers that were associated with both a significant (P < 0.05) loss of Hb and an increase in the level of MPO and TNF-α, with severity of ulceration highest at 18 hours. Pretreatment with TPPU dose dependently prevented ulcer formation by DCF, increased the levels of epoxy fatty acids, including EETs, and TPPU’s efficacy was comparable to OME. TPPU significantly (P < 0.05) reversed the effect of DCF on the level of Hb, MPO, and TNF-α. Thus sEHI might be useful in the management of NSAID-induced ulcers. PMID:26989141

  20. Serine hydrolase inhibitors block necrotic cell death by preventing calcium overload of the mitochondria and permeability transition pore formation.

    PubMed

    Yun, Bogeon; Lee, HeeJung; Ghosh, Moumita; Cravatt, Benjamin F; Hsu, Ku-Lung; Bonventre, Joseph V; Ewing, Heather; Gelb, Michael H; Leslie, Christina C

    2014-01-17

    Perturbation of calcium signaling that occurs during cell injury and disease, promotes cell death. In mouse lung fibroblasts A23187 triggered mitochondrial permeability transition pore (MPTP) formation, lactate dehydrogenase (LDH) release, and necrotic cell death that were blocked by cyclosporin A (CsA) and EGTA. LDH release temporally correlated with arachidonic acid release but did not involve cytosolic phospholipase A2α (cPLA2α) or calcium-independent PLA2. Surprisingly, release of arachidonic acid and LDH from cPLA2α-deficient fibroblasts was inhibited by the cPLA2α inhibitor pyrrophenone, and another serine hydrolase inhibitor KT195, by preventing mitochondrial calcium uptake. Inhibitors of calcium/calmodulin-dependent protein kinase II, a mitochondrial Ca(2+) uniporter (MCU) regulator, also prevented MPTP formation and arachidonic acid release induced by A23187 and H2O2. Pyrrophenone blocked MCU-mediated mitochondrial calcium uptake in permeabilized fibroblasts but not in isolated mitochondria. Unlike pyrrophenone, the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol and CsA blocked cell death and arachidonic acid release not by preventing mitochondrial calcium uptake but by inhibiting MPTP formation. In fibroblasts stimulated with thapsigargin, which induces MPTP formation by a direct effect on mitochondria, LDH and arachidonic acid release were blocked by CsA and 1-oleoyl-2-acetyl-sn-glycerol but not by pyrrophenone or EGTA. Therefore serine hydrolase inhibitors prevent necrotic cell death by blocking mitochondrial calcium uptake but not the enzyme releasing fatty acids that occurs by a novel pathway during MPTP formation. This work reveals the potential for development of small molecule cell-permeable serine hydrolase inhibitors that block MCU-mediated mitochondrial calcium overload, MPTP formation, and necrotic cell death.

  1. The fatty acid amide hydrolase inhibitor URB 597: interactions with anandamide in rhesus monkeys

    PubMed Central

    Stewart, Jennifer L; McMahon, Lance R

    2011-01-01

    BACKGROUND AND PURPOSE The fatty acid amide hydrolase inhibitor URB 597 increases brain anandamide levels, suggesting that URB 597 could enhance the behavioural effects of anandamide. The goal of the current study was to examine and characterize the in vivo pharmacology of URB 597 alone and in combination with anandamide and Δ9-tetrahydrocannabinol (Δ9-THC) in two drug discrimination assays in rhesus monkeys. EXPERIMENTAL APPROACH The effects of URB 597 alone and in combination with anandamide were investigated in one group of monkeys (n = 4) that discriminated Δ9-THC (0.1 mg·kg−1 i.v.) from vehicle, and in another group (n = 5) receiving chronic Δ9-THC (1 mg·kg−112 h−1 s.c.) that discriminated the cannabinoid antagonist rimonabant (1 mg·kg−1 i.v.). KEY RESULTS Intravenous anandamide fully substituted for, and had infra-additive effects with, Δ9-THC. URB 597 (up to 3.2 mg·kg−1 i.v.) did not substitute for or modify the effects of Δ9-THC but markedly increased the potency (32-fold) and duration of action of anandamide. The rimonabant discriminative stimulus in Δ9-THC-treated monkeys (i.e. Δ9-THC withdrawal) was attenuated by both Δ9-THC (at doses larger than 1 mg·kg−1 per 12 h) and anandamide but not by URB 597 (3.2 mg·kg−1). URB 597 did not increase the potency of anandamide to attenuate the rimonabant-discriminative stimulus. CONCLUSIONS AND IMPLICATIONS URB 597 enhanced the behavioural effects of anandamide but not other CB1 agonists. However, URB 597 did not significantly enhance the attenuation of Δ9-THC withdrawal induced by anandamide. Collectively, these data suggest that endogenous anandamide in primate brain does not readily mimic the behavioural effects of exogenously administered anandamide. PMID:21449917

  2. The Molecular Structure of Epoxide Hydrolase B from Mycobacterium tuberculosis and Its Complex with a Urea-Based Inhibitor

    PubMed Central

    Biswal, Bichitra K.; Morisseau, Christophe; Garen, Grace; Cherney, Maia M.; Garen, Craig; Niu, Chunying; Hammock, Bruce D.; James, Michael N. G.

    2010-01-01

    Mycobacterium tuberculosis (Mtb), the intracellular pathogen that infects macrophages primarily, is the causative agent of the infectious disease tuberculosis in humans. The Mtb genome encodes at least six epoxide hydrolases (EHs A to F). EHs convert epoxides to trans-dihydrodiols and have roles in drug metabolism as well as in the processing of signaling molecules. Herein, we report the crystal structures of unbound Mtb EHB and Mtb EHB bound to a potent, low-nanomolar (IC50 ≈19 nM) urea-based inhibitor at 2.1 and 2.4 Å resolution, respectively. The enzyme is a homodimer; each monomer adopts the classical α/β hydrolase fold that composes the catalytic domain; there is a cap domain that regulates access to the active site. The catalytic triad, comprising Asp104, His333 and Asp302, protrudes from the catalytic domain into the substrate binding cavity between the two domains. The urea portion of the inhibitor is bound in the catalytic cavity, mimicking, in part, the substrate binding; the two urea nitrogen atoms donate hydrogen bonds to the nucleophilic carboxylate of Asp104, and the carbonyl oxygen of the urea moiety receives hydrogen bonds from the phenolic oxygen atoms of Tyr164 and Tyr272. The phenolic oxygen groups of these two residues provide electrophilic assistance during the epoxide hydrolytic cleavage. Upon inhibitor binding, the binding-site residues undergo subtle structural rearrangement. In particular, the side chain of Ile137 exhibits a rotation of around 120° about its Cα–Cβ bond in order to accommodate the inhibitor. These findings have not only shed light on the enzyme mechanism but also have opened a path for the development of potent inhibitors with good pharmacokinetic profiles against all Mtb EHs of the α/β type. PMID:18585390

  3. Tryptophan fluorescence quenching by enzyme inhibitors as a tool for enzyme active site structure investigation: epoxide hydrolase.

    PubMed

    Matveeva, Evgenia G; Morisseau, Christophe; Goodrow, Marvin H; Mullin, Chris; Hammock, Bruce D

    2009-09-01

    We present the strong fluorescence effect, a new 392 nm emission peak appearing after binding of a naphtol-urea inhibitor XIIa to the enzyme epoxide hydrolase (EH), along with the quenching of the EH tryptophan fluorescence. We have studied the quenching of the 392-nm peak (attributed to XIIa bound inside the active center of the enzyme) of the mixture EH +XIIa by various strong transparent inhibitors (competing with XIIa for binding to EH), and measured the corresponding values of the Stern-Volmer constants, K(mix)(SV). Strong EH inhibitors demonstrate different replacement behavior which can be used to distinguish them. We further demonstrate a novel fluorescent assay which allows to distinguish highly potent inhibitors and to visualize the strongest among them. We generated our assay calibration curve based on the quenching data, by plotting quenching strength K(mix)(SV) versus inhibiting strength, IC(50) values. We used moderate inhibitors for the assay plot generation. We then applied this curve to determine IC(50) values for several highly potent inhibitors, with IC(50) values at the limit of the IC(50) detection sensitivity by colorimetric enzyme assay. IC(50) values determined from our quenching assay show correlation with IC(50) values determined in the literature by more sensitive radioactive-based assay and allow differentiating the inhibitors potency in this group. To our knowledge, this is the first inhibitor assay of such kind. Chemical inhibition of EH is an important technology in the treatment of various cardiovascular diseases, therefore, this tool may play a crucial role in discovering new inhibitor structures for therapeutic EH inhibition.

  4. In Vitro Metabolism of Oprozomib, an Oral Proteasome Inhibitor: Role of Epoxide Hydrolases and Cytochrome P450s.

    PubMed

    Wang, Zhican; Fang, Ying; Teague, Juli; Wong, Hansen; Morisseau, Christophe; Hammock, Bruce D; Rock, Dan A; Wang, Zhengping

    2017-07-01

    Oprozomib is an oral proteasome inhibitor currently under investigation in patients with hematologic malignancies or solid tumors. Oprozomib elicits potent pharmacological actions by forming a covalent bond with the active site N -terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclinical species and in patients due to systemic clearance via metabolism. Potential for drug-drug interactions (DDIs) could alter the exposure of this potent therapeutic; therefore, a thorough investigation of pathways responsible for metabolism is required. In the present study, the major drug-metabolizing enzyme responsible for oprozomib metabolism was identified in vitro. A diol of oprozomib was found to be the predominant metabolite in human hepatocytes, which formed via direct epoxide hydrolysis. Using recombinant epoxide hydrolases (EHs) and selective EH inhibitors in liver microsomes, microsomal EH (mEH) but not soluble EH (sEH) was found to be responsible for oprozomib diol formation. Coincubation with 2-nonylsulfanyl-propionamide, a selective mEH inhibitor, resulted in a significant decrease in oprozomib disappearance (>80%) with concurrent complete blockage of diol formation in human hepatocytes. On the contrary, a selective sEH inhibitor did not affect oprozomib metabolism. Pretreatment of hepatocytes with the pan -cytochrome P450 (P450) inhibitor 1-aminobenzotriazole resulted in a modest reduction (∼20%) of oprozomib metabolism. These findings indicated that mEH plays a predominant role in oprozomib metabolism. Further studies may be warranted to determine whether drugs that are mEH inhibitors cause clinically significant DDIs with oprozomib. On the other hand, pharmacokinetics of oprozomib is unlikely to be affected by coadministered P450 and sEH inhibitors and/or inducers. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Binding and Inactivation Mechanism of a Humanized Fatty Acid Amide Hydrolase by [alpha]-Ketoheterocycle Inhibitors Revealed from Cocrystal Structures

    SciTech Connect

    Mileni, Mauro; Garfunkle, Joie; DeMartino, Jessica K.

    2010-08-17

    The cocrystal X-ray structures of two isomeric {alpha}-ketooxazole inhibitors (1 (OL-135) and 2) bound to fatty acid amide hydrolase (FAAH), a key enzymatic regulator of endocannabinoid signaling, are disclosed. The active site catalytic Ser241 is covalently bound to the inhibitors electrophilic carbonyl groups, providing the first structures of FAAH bound to an inhibitor as a deprotonated hemiketal mimicking the enzymatic tetrahedral intermediate. The work also offers a detailed view of the oxyanion hole and an exceptional 'in-action' depiction of the unusual Ser-Ser-Lys catalytic triad. These structures capture the first picture of inhibitors that span the active site into the cytosolicmore » port providing new insights that help to explain FAAH's interaction with substrate leaving groups and their role in modulating inhibitor potency and selectivity. The role for the activating central heterocycle is clearly defined and distinguished from that observed in prior applications with serine proteases, reconciling the large electronic effect of attached substituents found unique to this class of inhibitors with FAAH. Additional striking active site flexibility is seen upon binding of the inhibitors, providing insights into the existence of a now well-defined membrane access channel with the disappearance of a spatially independent portion of the acyl chain-binding pocket. Finally, comparison of the structures of OL-135 (1) and its isomer 2 indicates that they bind identically to FAAH, albeit with reversed orientations of the central activating heterocycle, revealing that the terminal 2-pyridyl substituent and the acyl chain phenyl group provide key anchoring interactions and confirming the distinguishing role of the activating oxazole.« less

  6. Comparative molecular field analysis and molecular dynamics studies of α/β hydrolase domain containing 6 (ABHD6) inhibitors.

    PubMed

    Kaczor, Agnieszka A; Targowska-Duda, Katarzyna M; Patel, Jayendra Z; Laitinen, Tuomo; Parkkari, Teija; Adams, Yahaya; Nevalainen, Tapio J; Poso, Antti

    2015-10-01

    The endocannabinoid system remains an attractive molecular target for pharmacological intervention due to its roles in the central nervous system in learning, thinking, emotional function, regulation of food intake or pain sensation, as well as in the peripheral nervous system, where it modulates the action of cardiovascular, immune, metabolic or reproductive function. α/β hydrolase domain containing 6 (ABHD6)--an enzyme forming part of the endocannabinoid system--is a newly discovered post-genomic protein acting as a 2-AG (2-arachidonoylglycerol) serine hydrolase. We have recently reported a series of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors. Here, we present comparative molecular field analysis (CoMFA) and molecular dynamics studies of these compounds. First, we performed a homology modeling study of ABHD6 based on the assumption that the catalytic triad of ABHD6 comprises Ser148-His306-Asp 278 and the oxyanion hole is formed by Met149 and Phe80. A total of 42 compounds was docked to the homology model using the Glide module from the Schrödinger suite of software and the selected docking poses were used for CoMFA alignment. A model with the following statistics was obtained: R(2) = 0.98, Q(2) = 0.55. In order to study the molecular interactions of the inhibitors with ABHD6 in detail, molecular dynamics was performed with the Desmond program. It was found that, during the simulations, the hydrogen bond between the inhibitor carbonyl group and the main chain of Phe80 is weakened, whereas a new hydrogen bond with the side chain of Ser148 is formed, facilitating the possible formation of a covalent bond. Graphical Abstract Left-right: Docking pose of 1 in the binding pocket of α/β hydrolase domain containing 6 (ABHD6) selected for molecular alignment; CoMFA steric and electrostatic contour fields; changes in potential energy of the complex during simulations for the complex of 6 and ABHD6.

  7. O-(triazolyl)methyl carbamates as a novel and potent class of fatty acid amide hydrolase (FAAH) inhibitors.

    PubMed

    Colombano, Giampiero; Albani, Clara; Ottonello, Giuliana; Ribeiro, Alison; Scarpelli, Rita; Tarozzo, Glauco; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele; Bandiera, Tiziano

    2015-02-01

    Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed to date; O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives were designed and synthesized exploiting a copper- catalyzed [3+2] cycloaddition reaction between azides and alkynes (click chemistry). Exploration of the structure-activity relationships within this new class of compounds identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. In addition, these derivatives showed improved stability in rat plasma and kinetic solubility in buffer with respect to the lead compound. Based on the results of the study, the novel analogues identified can be considered to be promising starting point for the development of new FAAH inhibitors with improved drug-like properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Covalent inhibitors of fatty acid amide hydrolase (FAAH): A rationale for the activity of piperidine and piperazine aryl ureas

    PubMed Central

    Palermo, Giulia; Branduardi, Davide; Masetti, Matteo; Lodola, Alessio; Mor, Marco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2013-01-01

    Recently, covalent drugs have attracted great interest in the drug discovery community, with successful examples that have demonstrated their therapeutic effects. Here, we focus on the covalent inhibition of the fatty acid amide hydrolase (FAAH), which is a promising strategy in the treatment of pain and inflammation. Among the most recent and potent FAAH inhibitors (FAAHi), there are the cyclic piperidine/piperazine aryl ureas. FAAH hydrolyzes efficiently the amide bond of these compounds, forming a covalent enzyme-inhibitor adduct. To rationalize this experimental evidence, we performed an extensive computational analysis centered on the piperidine-based PF750 (1) and the piperazine-based JNJ1661010 (2), two potent lead compounds used to generating covalent inhibitors as clinical candidates. We found that FAAH induces a distortion of the amide bond of the piperidine/piperazine aryl ureas. QM/MM ΔELUMO-HOMO energies indicate that the observed enzyme-induced distortion of the amide bond favors the formation of a covalent FAAH- inhibitor adduct. These findings could help in the rational structure-based design of novel covalent FAAHi. PMID:21830831

  9. X-ray Crystallographic Analysis of [alpha]-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    SciTech Connect

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine

    2010-11-03

    Three cocrystal X-ray structures of the {alpha}-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the {alpha}-ketoheterocycle inhibitors captured as deprotonated hemiketals mimickingmore » the tetrahedral intermediate of the enzyme-catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure-activity relationships are discussed providing important insights for future design.« less

  10. Development and characterization of endocannabinoid hydrolases FAAH and MAGL inhibitors bearing a benzotriazol-1-yl carboxamide scaffold.

    PubMed

    Morera, Ludovica; Labar, Geoffray; Ortar, Giorgio; Lambert, Didier M

    2012-11-01

    A series of (1H-benzo[d][1,2,3]triazol-1-yl)(4-benzylpiperazin-1-yl)methanones and of (1H-benzo[d][1,2,3]triazol-1-yl)(4-phenylpiperazin-1-yl)methanones has been prepared and tested on human fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). In the benzylpiperazinyl series, compound 29 (ML30) exhibited an IC(50) value of 0.54 nM on MAGL, combined with a 1000-fold selectivity versus FAAH, while compounds 11 and 16 acted as potent dual FAAH-MAGL inhibitors (IC(50)<10 nM). In the phenylpiperazinyl series, compounds 37, 38, 42, and 43 displayed IC(50) values against MAGL in the nanomolar range, whilst being between one and two orders of magnitude less potent on the FAAH, while compounds 31 and 32 were potent FAAH inhibitors (IC(50)<20 nM) and over 12-fold selective versus MAGL. The key structural determinants driving the structure-activity relationships were explored by the minimization of the inhibitors inside the active site of both enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The macamide N-3-methoxybenzyl-linoleamide is a time-dependent fatty acid amide hydrolase (FAAH) inhibitor.

    PubMed

    Almukadi, Haifa; Wu, Hui; Böhlke, Mark; Kelley, Charles J; Maher, Timothy J; Pino-Figueroa, Alejandro

    2013-10-01

    The Peruvian plant Lepidium meyenii (Maca) has been shown to possess neuroprotective activity both in vitro and in vivo. Previous studies have also demonstrated the activity of the pentane extract and its macamides, the most representative lipophilic constituents of Maca, in the endocannabinoid system as fatty acid amide hydrolase (FAAH) inhibitors. One of the most active macamides, N-3-methoxybenzyl-linoleamide, was studied to determine its mechanism of interaction with FAAH and whether it has inhibitory activity on mono-acyl glycerol lipase (MAGL), the second enzyme responsible for endocannabinoid degradation. Macamide concentrations from 1 to 100 μM were tested using FAAH and MAGL inhibitor assay methods and showed no effect on MAGL. Tests with other conditions were performed in order to characterize the inhibitory mechanism of FAAH inhibition. N-3-methoxybenzyl-linoleamide displayed significant time-dependent and dose-dependent FAAH inhibitory activity. The mechanism of inhibition was most likely irreversible or slowly reversible. These results suggest the potential application of macamides isolated from Maca as FAAH inhibitors, as they might act on the central nervous system to provide analgesic, anti-inflammatory, or neuroprotective effects, by modulating the release of neurotransmitters.

  12. (4-Phenoxyphenyl)tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

    PubMed

    Holtfrerich, Angela; Hanekamp, Walburga; Lehr, Matthias

    2013-05-01

    Inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the principle enzymes involved in the degradation of endogenous cannabinoids like anandamide and 2-arachidonoylglycerol, have potential utility in the treatment of several disorders including pain, inflammation and anxiety. In the present study, the effectivity and selectivity of eight known FAAH and MAGL inhibitors for inhibition of the appropriate enzyme were measured applying in vitro assays, which work under comparable conditions. Because many of the known FAAH and MAGL inhibitors simply consist of a lipophilic scaffold to which a heterocyclic system is bound, furthermore, different heterocyclic structures were evaluated for their contribution to enzyme inhibition by attaching them to the same lipophilic backbone, namely 4-phenoxybenzene. One of the most active compound synthesized during this investigation was N,N-dimethyl-5-(4-phenoxyphenyl)-2H-tetrazole-2-carboxamide (16) (IC50 FAAH: 0.012 μM; IC50 MAGL: 0.028 μM). This inhibitor was systematically modified in the lipophilic 4-phenoxyphenyl region. Structure-activity relationship studies revealed that the inhibitory potency against FAAH and MAGL, respectively, could still be increased by replacement of the phenoxy residue of 16 by 3-chlorophenoxy (45) or pyrrol-1-yl groups (49). Finally, the tetrazolecarboxamide 16 and some related compounds were tested for metabolic stability with rat liver S9 fractions showing that these kind of FAAH/MAGL inhibitors are readily inactivated by cleavage of the bond between the tetrazole ring and its carboxamide substituent. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Discovering Drugs with DNA-Encoded Library Technology: From Concept to Clinic with an Inhibitor of Soluble Epoxide Hydrolase.

    PubMed

    Belyanskaya, Svetlana L; Ding, Yun; Callahan, James F; Lazaar, Aili L; Israel, David I

    2017-05-04

    DNA-encoded chemical library technology was developed with the vision of its becoming a transformational platform for drug discovery. The hope was that a new paradigm for the discovery of low-molecular-weight drugs would be enabled by combining the vast molecular diversity achievable with combinatorial chemistry, the information-encoding attributes of DNA, the power of molecular biology, and a streamlined selection-based discovery process. Here, we describe the discovery and early clinical development of GSK2256294, an inhibitor of soluble epoxide hydrolase (sEH, EPHX2), by using encoded-library technology (ELT). GSK2256294 is an orally bioavailable, potent and selective inhibitor of sEH that has a long half life and produced no serious adverse events in a first-time-in-human clinical study. To our knowledge, GSK2256294 is the first molecule discovered from this technology to enter human clinical testing and represents a realization of the vision that DNA-encoded chemical library technology can efficiently yield molecules with favorable properties that can be readily progressed into high-quality drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of human S-adenosyl-homocysteine hydrolase in vitro and identification of its potential inhibitors.

    PubMed

    Hao, Weiwei; Li, Yanhua; Shan, Qiuli; Han, Tian; Li, Wencheng; He, Sheng; Zhu, Kongkai; Li, Yumei; Tan, Xiaojun; Gu, Jinsong

    2017-12-01

    Human S-adenosyl-homocysteine hydrolase (SAHH, E.C.3.3.1.1) has been considered to be an attractive target for the design of medicines to treat human disease, because of its important role in regulating biological methylation reactions to catalyse the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine (Ado) and l-homocysteine (Hcy). In this study, SAHH protein was successfully cloned and purified with optimized, Pichia pastoris (P. pastoris) expression system. The biological activity results revealed that, among the tested compounds screened by ChemMapper and SciFinder Scholar, 4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol (coniferyl alcohol, CAS: 458-35-5, ZINC: 12359045) exhibited the highest inhibition against rSAHH (IC 50 = 34 nM). Molecular docking studies showed that coniferyl alcohol was well docked into the active cavity of SAHH. And several H-bonds formed between them, which stabilized coniferyl alcohol in the active site of rSAHH with a proper conformation.

  15. An Orally Active Epoxide Hydrolase Inhibitor Lowers Blood Pressure and Provides Renal Protection in Salt-Sensitive Hypertension

    PubMed Central

    Imig, John D.; Zhao, Xueying; Zaharis, Constantine Z.; Olearczyk, Jeffrey J.; Pollock, David M.; Newman, John W.; Kim, In-Hae; Watanabe, Takaho; Hammock, Bruce D.

    2006-01-01

    The present study tested the hypothesis that increasing epoxyeicosatrienoic acids by inhibition of soluble epoxide hydrolase (sEH) would lower blood pressure and ameliorate renal damage in salt-sensitive hypertension. Rats were infused with angiotensin and fed a normal-salt diet or an 8% NaCl diet for 14 days. The sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), was given orally to angiotensin-infused animals during the 14-day period. Plasma AUDA metabolite levels were measured, and they averaged 10±2 ng/mL in normal-salt angiotensin hypertension and 19±3 ng/mL in high-salt angiotensin hypertension on day 14 in the animals administered the sEH inhibitor. Mean arterial blood pressure averaged 161±4 mm Hg in normal-salt and 172±5 mmHg in the high-salt angiotensin hypertension groups on day 14. EH inhibitor treatment significantly lowered blood pressure to 140±5 mm Hg in the normal-salt angiotensin hypertension group and to 151±6 mm Hg in the high-salt angiotensin hypertension group on day 14. The lower arterial blood pressures in the AUDA-treated groups were associated with increased urinary epoxide-to-diol ratios. Urinary microalbumin levels were measured, and ED-1 staining was used to determine renal damage and macrophage infiltration in the groups. Two weeks of AUDA treatment decreased urinary microalbumin excretion in the normal-salt and high-salt angiotensin hypertension groups and macrophage number in the high-salt angiotensin hypertension group. These data demonstrate that sEH inhibition lowers blood pressure and ameliorates renal damage in angiotensin-dependent, salt-sensitive hypertension. PMID:16157792

  16. Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibitors in Non-Human Primate Models of Nicotine Reward and Relapse.

    PubMed

    Justinova, Zuzana; Panlilio, Leigh V; Moreno-Sanz, Guillermo; Redhi, Godfrey H; Auber, Alessia; Secci, Maria E; Mascia, Paola; Bandiera, Tiziano; Armirotti, Andrea; Bertorelli, Rosalia; Chefer, Svetlana I; Barnes, Chanel; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R

    2015-08-01

    Inhibition of the enzyme fatty acid amide hydrolase (FAAH) counteracts reward-related effects of nicotine in rats, but it has not been tested for this purpose in non-human primates. Therefore, we studied the effects of the first- and second-generation O-arylcarbamate-based FAAH inhibitors, URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) and URB694 (6-hydroxy-[1,1'-biphenyl]-3-yl-cyclohexylcarbamate), in squirrel monkeys. Both FAAH inhibitors: (1) blocked FAAH activity in brain and liver, increasing levels of endogenous ligands for cannabinoid and α-type peroxisome proliferator-activated (PPAR-α) receptors; (2) shifted nicotine self-administration dose-response functions in a manner consistent with reduced nicotine reward; (3) blocked reinstatement of nicotine seeking induced by reexposure to either nicotine priming or nicotine-associated cues; and (4) had no effect on cocaine or food self-administration. The effects of FAAH inhibition on nicotine self-administration and nicotine priming-induced reinstatement were reversed by the PPAR-α antagonist, MK886. Unlike URB597, which was not self-administered by monkeys in an earlier study, URB694 was self-administered at a moderate rate. URB694 self-administration was blocked by pretreatment with an antagonist for either PPAR-α (MK886) or cannabinoid CB1 receptors (rimonabant). In additional experiments in rats, URB694 was devoid of THC-like or nicotine-like interoceptive effects under drug-discrimination procedures, and neither of the FAAH inhibitors induced dopamine release in the nucleus accumbens shell--consistent with their lack of robust reinforcing effects in monkeys. Overall, both URB597 and URB694 show promise for the initialization and maintenance of smoking cessation because of their ability to block the rewarding effects of nicotine and prevent nicotine priming-induced and cue-induced reinstatement.

  17. Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibitors in Non-Human Primate Models of Nicotine Reward and Relapse

    PubMed Central

    Justinova, Zuzana; Panlilio, Leigh V; Moreno-Sanz, Guillermo; Redhi, Godfrey H; Auber, Alessia; Secci, Maria E; Mascia, Paola; Bandiera, Tiziano; Armirotti, Andrea; Bertorelli, Rosalia; Chefer, Svetlana I; Barnes, Chanel; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R

    2015-01-01

    Inhibition of the enzyme fatty acid amide hydrolase (FAAH) counteracts reward-related effects of nicotine in rats, but it has not been tested for this purpose in non-human primates. Therefore, we studied the effects of the first- and second-generation O-arylcarbamate-based FAAH inhibitors, URB597 (cyclohexyl carbamic acid 3’-carbamoyl-3-yl ester) and URB694 (6-hydroxy-[1,1'-biphenyl]-3-yl-cyclohexylcarbamate), in squirrel monkeys. Both FAAH inhibitors: (1) blocked FAAH activity in brain and liver, increasing levels of endogenous ligands for cannabinoid and α-type peroxisome proliferator-activated (PPAR-α) receptors; (2) shifted nicotine self-administration dose–response functions in a manner consistent with reduced nicotine reward; (3) blocked reinstatement of nicotine seeking induced by reexposure to either nicotine priming or nicotine-associated cues; and (4) had no effect on cocaine or food self-administration. The effects of FAAH inhibition on nicotine self-administration and nicotine priming-induced reinstatement were reversed by the PPAR-α antagonist, MK886. Unlike URB597, which was not self-administered by monkeys in an earlier study, URB694 was self-administered at a moderate rate. URB694 self-administration was blocked by pretreatment with an antagonist for either PPAR-α (MK886) or cannabinoid CB1 receptors (rimonabant). In additional experiments in rats, URB694 was devoid of THC-like or nicotine-like interoceptive effects under drug-discrimination procedures, and neither of the FAAH inhibitors induced dopamine release in the nucleus accumbens shell—consistent with their lack of robust reinforcing effects in monkeys. Overall, both URB597 and URB694 show promise for the initialization and maintenance of smoking cessation because of their ability to block the rewarding effects of nicotine and prevent nicotine priming-induced and cue-induced reinstatement. PMID:25754762

  18. Proteomic Analysis of Oesophagostomum dentatum (Nematoda) during Larval Transition, and the Effects of Hydrolase Inhibitors on Development

    PubMed Central

    Ondrovics, Martina; Silbermayr, Katja; Mitreva, Makedonka; Young, Neil D.; Razzazi-Fazeli, Ebrahim; Gasser, Robin B.; Joachim, Anja

    2013-01-01

    In this study, in vitro drug testing was combined with proteomic and bioinformatic analyses to identify and characterize proteins involved in larval development of Oesophagostomum dentatum, an economically important parasitic nematode. Four hydrolase inhibitors ο-phenanthroline, sodium fluoride, iodoacetamide and 1,2-epoxy-3-(pnitrophenoxy)-propane (EPNP) significantly inhibited (≥90%) larval development. Comparison of the proteomic profiles of the development-inhibited larvae with those of uninhibited control larvae using two-dimensional gel electrophoresis, and subsequent MALDI-TOF mass spectrometric analysis identified a down-regulation of 12 proteins inferred to be involved in various larval developmental processes, including post-embryonic development and growth. Furthermore, three proteins (i.e. intermediate filament protein B, tropomyosin and peptidyl-prolyl cis-trans isomerase) inferred to be involved in the moulting process were down-regulated in moulting- and development-inhibited O. dentatum larvae. This first proteomic map of O. dentatum larvae provides insights in the protein profile of larval development in this parasitic nematode, and significantly improves our understanding of the fundamental biology of its development. The results and the approach used might assist in developing new interventions against parasitic nematodes by blocking or disrupting their key biological pathways. PMID:23717515

  19. Fatty acid amide hydrolase inhibitors produce rapid anti-anxiety responses through amygdala long-term depression in male rodents.

    PubMed

    Duan, Tingting; Gu, Ning; Wang, Ying; Wang, Feng; Zhu, Jie; Fang, Yiru; Shen, Yuan; Han, Jing; Zhang, Xia

    2017-06-01

    Pathological anxiety is the most common type of psychiatric disorder. The current first-line anti-anxiety treatment, selective serotonin/noradrenaline reuptake inhibitors, produces a delayed onset of action with modest therapeutic and substantial adverse effects, and long-term use of the fast-acting anti-anxiety benzodiazepines causes severe adverse effects. Inhibition of the fatty acid amide hydrolase (FAAH), the endocannabinoid N -arachidonoylethanolamine (AEA) degradative enzyme, produces anti-anxiety effects without substantial "unwanted effects" of cannabinoids, but its anti-anxiety mechanism is unclear. We used behavioural, electrophysiological, morphological and mutagenesis strategies to assess the anti-anxiety mechanism of the FAAH inhibitors PF3845 and URB597. PF3845 exerts rapid and long-lasting anti-anxiety effects in mice exposed acutely to stress or chronically to the stress hormone corticosterone. PF3845-induced anti-anxiety effects and in vivo long-term depression (LTD) of synaptic strength at the prefrontal cortical input onto the basolateral amygdala neurons are abolished in mutant mice without CB1 cannabinoid receptors (CB1R) in brain astroglial cells, but are conserved in mice without CB1R in glutamatergic neurons. Blockade of glutamate N -methyl-D-aspartate receptors and of synaptic trafficking of glutamate AMPA receptors also abolishes PF3845-induced anti-anxiety effects in mice and LTD production in rats. URB597 produces similar anti-anxiety effects, which are abolished by blockade of LTD induction in mice. The determination of FAAH in which types of brain cells contribute to AEA degradation for the maintenance of amygdala interstitial AEA has yet to be determined. We propose that the rapid anti-anxiety effects of FAAH inhibition are due to AEA activation of astroglial CB1R and subsequent basolateral amygdala LTD in vivo.

  20. Fully Deacetylated Chitooligosaccharides Act as Efficient Glycoside Hydrolase Family 18 Chitinase Inhibitors*

    PubMed Central

    Chen, Lei; Zhou, Yong; Qu, Mingbo; Zhao, Yong; Yang, Qing

    2014-01-01

    Small molecule inhibitors against chitinases have potential applications as pesticides, fungicides, and antiasthmatics. Here, we report that a series of fully deacetylated chitooligosaccharides (GlcN)2–7 can act as inhibitors against the insect chitinase OfChtI, the human chitinase HsCht, and the bacterial chitinases SmChiA and SmChiB with IC50 values at micromolar to millimolar levels. The injection of mixed (GlcN)2–7 into the fifth instar larvae of the insect Ostrinia furnacalis resulted in 85% of the larvae being arrested at the larval stage and death after 10 days, also suggesting that (GlcN)2–7 might inhibit OfChtI in vivo. Crystal structures of the catalytic domain of OfChtI (OfChtI-CAD) complexed with (GlcN)5,6 were obtained at resolutions of 2.0 Å. These structures, together with mutagenesis and thermodynamic analysis, suggested that the inhibition was strongly related to the interaction between the −1 GlcN residue of the inhibitor and the catalytic Glu148 of the enzyme. Structure-based comparison showed that the fully deacetylated chitooligosaccharides mimic the substrate chitooligosaccharides by binding to the active cleft. This work first reports the inhibitory activity and proposed inhibitory mechanism of fully deacetylated chitooligosaccharides. Because the fully deacetylated chitooligosaccharides can be easily derived from chitin, one of the most abundant materials in nature, this work also provides a platform for developing eco-friendly inhibitors against chitinases. PMID:24828498

  1. Structure-based optimization of cyclopropyl urea derivatives as potent soluble epoxide hydrolase inhibitors for potential decrease of renal injury without hypotensive action.

    PubMed

    Takai, Kentaro; Nakajima, Tomoko; Takanashi, Yosuke; Sone, Toshihiko; Nariai, Tetsuro; Chiyo, Naoki; Nakatani, Shogo; Ishikawa, Chihiro; Yamaguchi, Nobuyuki; Fujita, Katsuya; Yamada, Kazuto

    2014-03-01

    Epoxyeicosatrienoic acids (EETs) are known to have beneficial pharmacological effects on various cardiovascular events. However, EETs are biologically metabolized by soluble epoxide hydrolase (sEH) to less active metabolites. In our search for potent sEH inhibitors, we optimized a series of cyclopropyl urea derivatives and identified compound 38 as a potent sEH inhibitor with minimal CYP inhibition and good oral absorption in rats. Administration of 38 to DOCA-salt rats suppressed urinary albumin and MCP-1 excretion without affecting systolic blood pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. 1,3-disubstituted ureas functionalized with ether groups are potent inhibitors of the soluble epoxide hydrolase with improved pharmacokinetic properties.

    PubMed

    Kim, In-Hae; Tsai, Hsing-Ju; Nishi, Kosuke; Kasagami, Takeo; Morisseau, Christophe; Hammock, Bruce D

    2007-10-18

    Soluble epoxide hydrolase (sEH) is a therapeutic target for treating hypertension and inflammation. 1,3-Disubstituted ureas functionalized with an ether group are potent sEH inhibitors. However, their relatively low metabolic stability leads to poor pharmacokinetic properties. To improve their bioavailability, we investigated the effect of incorporating various polar groups on the ether function on the inhibition potencies, physical properties, in vitro metabolic stability, and pharmacokinetic properties. The structure-activity relationship studies showed that a hydrophobic linker between the urea group and the ether function is necessary to keep their potency. In addition, urea-ether inhibitors having a polar group such as diethylene glycol or morpholine significantly improved their physical properties and metabolic stability without any loss of inhibitory potency. Furthermore, improved pharmacokinetic properties in murine and canine models were obtained with the resulting inhibitors. These findings will facilitate the usage of sEH inhibitors in animal models of hypertension and inflammation.

  3. 1,3-Disubstituted Ureas Functionalized with Ether Groups are Potent Inhibitors of the Soluble Epoxide Hydrolase with Improved Pharmacokinetic Properties

    PubMed Central

    Kim, In-Hae; Tsai, Hsing-Ju; Nishi, Kosuke; Kasagami, Takeo; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    Soluble epoxide hydrolase (sEH) is a therapeutic target for treating hypertension and inflammation. 1,3-Disubstituted ureas functionalized with an ether group are potent sEH inhibitors. However, their relatively low metabolic stability leads to poor pharmacokinetic properties. To improve their bioavailability, we investigated the effect of incorporating various polar groups on the ether function on the inhibition potencies, physical properties, in vitro metabolic stability, and pharmacokinetic properties. The structure-activity relationship (SAR) studies showed that a hydrophobic linker between the urea group and the ether function is necessary to keep their potency. In addition, urea-ether inhibitors having a polar group such as diethylene glycol or morpholine significantly improved their physical properties and metabolic stability without any loss of inhibitory potency. Furthermore, improved pharmacokinetic properties in murine and canine models were obtained with the resulting inhibitors. These findings will facilitate the usage of sEH inhibitors in animal models of hypertension and inflammation. PMID:17894481

  4. Synthesis and Structure-activity Relationship Studies of O-Biphenyl-3-yl Carbamates as Peripherally Restricted Fatty Acid Amide Hydrolase Inhibitors

    PubMed Central

    Moreno-Sanz, Guillermo; Duranti, Andrea; Melzig, Laurin; Fiorelli, Claudio; Ruda, Gian Filippo; Colombano, Giampiero; Mestichelli, Paola; Sanchini, Silvano; Tontini, Andrea; Mor, Marco; Bandiera, Tiziano; Scarpelli, Rita; Tarzia, Giorgio; Piomelli, Daniele

    2014-01-01

    The peripherally restricted fatty acid amide hydrolase (FAAH) inhibitor URB937 (3, cyclohexylcarbamic acid 3’-carbamoyl-6-hydroxybiphenyl-3-yl ester) is extruded from the brain and spinal cord by the Abcg2 efflux transporter. Despite its inability to enter the central nervous system (CNS), 3 exerts profound antinociceptive effects in mice and rats, which result from the inhibition of FAAH in peripheral tissues and the consequent enhancement of anandamide signaling at CB1 cannabinoid receptors localized on sensory nerve endings. In the present study, we examined the structure-activity relationships (SAR) for the biphenyl region of compound 3, focusing on the carbamoyl and hydroxyl groups in the distal and proximal phenyl rings. Our SAR studies generated a new series of peripherally restricted FAAH inhibitors and identified compound 35 (cyclohexylcarbamic acid 3’-carbamoyl-5-hydroxybiphenyl-3-yl ester) as the most potent brain-impermeant FAAH inhibitor disclosed to date. PMID:23822179

  5. An Epoxide Hydrolase Inhibitor, 12-(3-Adamantan-1-yl-ureido)dodecanoic Acid (AUDA), Reduces Ischemic Cerebral Infarct Size in Stroke-Prone Spontaneously Hypertensive Rats

    PubMed Central

    Dorrance, Anne M.; Rupp, Nicole; Pollock, David M.; Newman, John W.; Hammock, Bruce D.; Imig, John D.

    2006-01-01

    Soluble epoxide hydrolase (sEH) inhibitors have been demonstrated to have cardiovascular protective actions. This hydrolase enzyme converts fatty acid epoxides to their corresponding diols, and this conversion can alter the biologic activity of these metabolites. We hypothesized that 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), a sEH inhibitor, would protect stroke-prone spontaneously hypertensive rats from cerebral ischemia. AUDA was administered to 6-week-old male rats for 6 weeks, during which blood pressure was measured by telemetry. Cerebral ischemia was induced by middle cerebral artery occlusion, the size of the cerebral infarct was assessed after 6 hours of ischemia, and the results were expressed as a percentage of the hemisphere infarcted (%HI). Vascular structure and function were assessed using a pressurized arteriograph. Plasma levels of AUDA at the end of the treatment period averaged 5.0 ± 0.4 ng/mL, and the urinary excretion rate was 99 ± 21 ng/d. AUDA-treated rats had significantly smaller cerebral infarcts than control rats (36 ± 4% vs 53 ± 4% HI, treated versus control, P < 0.05, n = 6). This difference occurred independently of changes in blood pressure. AUDA treatment increased the passive compliance of the cerebral vessels but had no effect on vascular structure. The results of this study provide novel evidence suggesting that the sEH inhibitor AUDA is a possible therapeutic agent for ischemic stroke. PMID:16306811

  6. Soluble epoxide hydrolase inhibitors might prevent ischemic arrhythmias via microRNA-1 repression in primary neonatal mouse ventricular myocytes.

    PubMed

    Liu, Qiong; Zhao, Xuan; Peng, Ran; Wang, Mi; Zhao, Wang; Gui, Ya-Jun; Liao, Cai-Xiu; Xu, Dan-Yan

    2017-02-28

    Ischemic arrhythmias are the main causes of sudden cardiac death. It has been reported that soluble epoxide hydrolase inhibitors (sEHis) could prevent arrhythmias; however, the underlying molecular mechanisms remain unclear. In recent years, the proarrhythmic role of microRNA-1 (miR-1) has been investigated. This study aimed to elucidate whether sEHis prevented ischemic arrhythmias by suppressing miR-1. The primary neonatal mouse ventricular myocyte model of miR-1 overexpression was established by incubating with agonist microONTM mmu-miR-1a-3p agomir (DAEDstain TM Dye) (agomiR-1). The sEHi, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), was administered following miR-1 overexpression. Quantitative real-time PCR (qPCR) and western blotting were used to test alterations in the expression of miR-1 and its target mRNAs GJA1 and KCNJ2 and their respective encoded proteins connexin 43 (Cx43) and the K + channel subunit (Kir2.1). The whole-cell patch-clamp technique was used to record the alterations of the inward rectifying K + current (I K1 ). Compared with the control group, miR-1 levels were significantly increased in the agomiR-1 group (p < 0.05), which suggested the successful construction of the miR-1 overexpression model. Compared with the control group, the levels of GJA1 and KCNJ2 mRNAs and Cx43 and Kir2.1 proteins in the agomiR-1 group were significantly decreased, and I K1 was significantly impaired (all p < 0.05). The miR-1 levels were dose-dependently decreased by t-AUCB, whereas t-AUCB dose-dependently increased the levels of GJA1 and KCNJ2 mRNAs and Cx43 and Kir2.1 proteins. Furthermore, t-AUCB restored the impaired I K1 (all p < 0.05). In conclusion, the sEHi t-AUCB has the ability to down-regulate proarrhythmic miR-1 and up-regulate its target genes and proteins, eventually restoring I K1 .

  7. Crystal Structure of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    SciTech Connect

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.

    2010-08-12

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 {angstrom} resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In ordermore » to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 {angstrom}) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.« less

  8. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models

    PubMed Central

    Limebeer, Cheryl L.; Rock, Erin M.; Sticht, Martin A.; Ward, Jordan; Turvey, Greig; Benchama, Othman; Rajarshi, Girija; Wood, JodiAnne T.; Alapafuja, Shakiru O.; Makriyannis, Alexandros

    2017-01-01

    Rationale Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. Objective This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. Materials and methods AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. Results Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. Conclusions Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea. PMID:27048155

  9. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models.

    PubMed

    Parker, Linda A; Limebeer, Cheryl L; Rock, Erin M; Sticht, Martin A; Ward, Jordan; Turvey, Greig; Benchama, Othman; Rajarshi, Girija; Wood, JodiAnne T; Alapafuja, Shakiru O; Makriyannis, Alexandros

    2016-06-01

    Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea.

  10. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening

    NASA Astrophysics Data System (ADS)

    Temml, Veronika; Garscha, Ulrike; Romp, Erik; Schubert, Gregor; Gerstmeier, Jana; Kutil, Zsofia; Matuszczak, Barbara; Waltenberger, Birgit; Stuppner, Hermann; Werz, Oliver; Schuster, Daniela

    2017-02-01

    Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA) with roles in inflammatory and allergic diseases. The biosynthesis of LTs is initiated by transfer of AA via the 5-lipoxygenase-activating protein (FLAP) to 5-lipoxygenase (5-LO). FLAP inhibition abolishes LT formation exerting anti-inflammatory effects. The soluble epoxide hydrolase (sEH) converts AA-derived anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids (di-HETEs). Its inhibition consequently also counteracts inflammation. Targeting both LT biosynthesis and the conversion of EETs with a dual inhibitor of FLAP and sEH may represent a novel, powerful anti-inflammatory strategy. We present a pharmacophore-based virtual screening campaign that led to 20 hit compounds of which 4 targeted FLAP and 4 were sEH inhibitors. Among them, the first dual inhibitor for sEH and FLAP was identified, N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-N’-(3,4-dichlorophenyl)urea with IC50 values of 200 nM in a cell-based FLAP test system and 20 nM for sEH activity in a cell-free assay.

  11. Attenuation of persistent pain-related behavior by fatty acid amide hydrolase (FAAH) inhibitors in a rat model of HIV sensory neuropathy.

    PubMed

    Nasirinezhad, Farinaz; Jergova, Stanislava; Pearson, James P; Sagen, Jacqueline

    2015-08-01

    Distal sensory neuropathies are a hallmark of HIV infections and can result in persistent and disabling pain despite advances in antiretroviral therapies. HIV-sensory neuropathic (HIV-SN) pain may be amenable to cannabinoid treatment, but currently available agonist treatments are limited by untoward side effects and potential for abuse in this patient population. Fatty acid amide hydrolase (FAAH) inhibitors may offer an alternative approach by inhibiting the degradation of endocannabinoids with purportedly fewer untoward CNS side effects. In order to evaluate this potential approach in the management of HIV-SN pain, the recombinant HIV envelope protein gp120 was applied epineurally to the rat sciatic nerve to induce an HIV-SN-like pain syndrome. Two distinct FAAH inhibitory compounds, URB597 and PF-3845 were tested, and contrasted with standard antinociceptive gabapentin or vehicle treatment, for attenuation of tactile allodynia, cold allodynia, and mechanical hyperalgesia. Both FAAH inhibitors markedly reduced cold and tactile allodynia with limited anti-hyperalgesic effects. Peak antinociceptive effects produced by both agents were more modest than gabapentin in reducing tactile allodynia with similar potency ranges. URB597 produced comparable cold anti-allodynic effects to gabapentin, and the effects of both FAAH inhibitors were longer lasting than gabapentin. To assess the contribution of cannabinoid receptors in these antinociceptive effects, CB1 antagonist AM251 or CB2 antagonist SR144528 were tested in conjunction with FAAH inhibitors. Results suggested a contribution of both CB1- and CB2-mediated effects, particularly in reducing tactile allodynia. In summary, these findings support inhibition of endocannabinoid degradation as a promising target for management of disabling persistent HIV-SN pain syndromes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A potent soluble epoxide hydrolase inhibitor, t-AUCB, modulates cholesterol balance and oxidized low density lipoprotein metabolism in adipocytes in vitro.

    PubMed

    Shen, Li; Peng, Hongchun; Zhao, Shuiping; Xu, Danyan

    2014-04-01

    The cholesterol metabolism in adipose tissue is dependent on the balance between cholesterol uptake and efflux. Adipocytes dysfunction and its cholesterol imbalance are associated with obesity. Adipocytes are the site for clearance of oxidized low density lipoprotein (oxLDL) in blood. Soluble epoxide hydrolase (sEH) is highly expressed in adipocytes. sEH converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids, which regulate cholesterol metabolism in adipocytes and block the development of atherosclerosis. In vitro, 3T3-L1 differentiated adipocytes were incubated with the sEH inhibitor t-AUCB (0, 1, 10, 50 or 100 μmol/l) for 24 h with or without the PPARγ inhibitor GW9662. To determine the effect of t-AUCB on oxLDL endocytosis, degradation and cholesterol efflux from adipocytes, we demonstrated that t-AUCB enhances the CD36-mediated recognition and degradation of oxLDL and improves cholesterol efflux via the upregulation of ABCA1 expression. Furthermore, t-AUCB blocked TNF-α secretion and increased adiponectin levels found in adipocytes culture medium. We provide evidence that these effects are PPARγ-dependent. These results suggest that an increase in EETs because of sEH inhibition could maintain cellular cholesterol homeostasis by the regulation of oxLDL clearance and cholesterol efflux via the EETs-PPARγ pathway.

  13. In silico investigation of cycloartane triterpene derivatives from Cimicifuga dahurica (Turcz.) Maxim. roots for the development of potent soluble epoxide hydrolase inhibitors.

    PubMed

    Thao, Nguyen Phuong; Kim, Jang Hoon; Thuy Luyen, Bui Thi; Dat, Nguyen Tien; Kim, Young Ho

    2017-05-01

    In our search for natural soluble epoxide hydrolase (sEH) inhibitors from plants, we found that an ethanolic extract of the roots of Cimicifuga dahurica (Turcz.) Maxim. significantly inhibits sEH in vitro. A phytochemical study on the dichloromethane fraction of C. dahurica resulted in the isolation of two new cycloartane triterpenoids (1 and 6), together with 13 known cycloartane analogues (2-5 and 7-15). The structures of compounds were determined by spectroscopic methods. All of the triterpenoid derivatives inhibited sEH enzymatic activity in a concentration-dependent manner, and 13 of the tested compounds showed significant activity. Among them, compounds 1, 3, 5, 7, 9, and 12 showed the highest levels of inhibitory activity, with IC 50 values of about 5μM or less. Kinetic analysis of compounds 1, 3, 5-9, 11, 12, and 14 revealed that compounds 3, 6, 7, 11, and 14 were non-competitive; 1, 5, 9, and 12 were mixed-type; and 8 was a competitive inhibitor. Furthermore, in silico molecular docking indicated that compounds 3, 6-9, 11, 12, and 14 bound to sEH in a similar manner and had stable binding energies, as calculated by AutoDock 4.2 and processed in a 10,000-ps molecular dynamics simulation to assess the binding stability of compounds 5, 7, and 9. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fatty acid amide hydrolase (FAAH) inhibitors exert pharmacological effects, but lack antinociceptive efficacy in rats with neuropathic spinal cord injury pain.

    PubMed

    Hama, Aldric T; Germano, Peter; Varghese, Matthew S; Cravatt, Benjamin F; Milne, G Todd; Pearson, James P; Sagen, Jacqueline

    2014-01-01

    Amelioration of neuropathic spinal cord injury (SCI) pain is a clinical challenge. Increasing the endocannabinoid anandamide and other fatty acid amides (FAA) by blocking fatty acid amide hydrolase (FAAH) has been shown to be antinociceptive in a number of animal models of chronic pain. However, an antinociceptive effect of blocking FAAH has yet to be demonstrated in a rat model of neuropathic SCI pain. Four weeks following a SCI, rats developed significantly decreased hind paw withdrawal thresholds, indicative of below-level cutaneous hypersensitivity. A group of SCI rats were systemically treated (i.p.) with either the selective FAAH inhibitor URB597 or vehicle twice daily for seven days. A separate group of SCI rats received a single dose (p.o.) of either the selective FAAH inhibitor PF-3845 or vehicle. Following behavioral testing, levels of the FAA N-arachidonoylethanolamide, N-oleoyl ethanolamide and N-palmitoyl ethanolamide were quantified in brain and spinal cord from SCI rats. Four weeks following SCI, FAA levels were markedly reduced in spinal cord tissue. Although systemic treatment with URB597 significantly increased CNS FAA levels, no antinociceptive effect was observed. A significant elevation of CNS FAA levels was also observed following oral PF-3845 treatment, but only a modest antinociceptive effect was observed. Increasing CNS FAA levels alone does not lead to robust amelioration of below-level neuropathic SCI pain. Perhaps utilizing FAAH inhibition in conjunction with other analgesic mechanisms could be an effective analgesic therapy.

  15. Anti-inflammatory Effects of Omega-3 Polyunsaturated Fatty Acids and Soluble Epoxide Hydrolase Inhibitors in Angiotensin-II Dependent Hypertension

    PubMed Central

    Ulu, Arzu; Harris, Todd R; Morisseau, Christophe; Miyabe, Christina; Inoue, Hiromi; Schuster, Gertrud; Dong, Hua; Iosif, Ana-Maria; Liu, Jun-Yan; Weiss, Robert H; Chiamvimonvat, Nipavan; Imig, John D; Hammock, Bruce D

    2013-01-01

    The mechanisms underlying the anti-inflammatory and anti-hypertensive effects of long chain ω-3 polyunsaturated fatty acids (PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid (epoxyeicosatrienoic acids; EETs) also exhibit anti-hypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may lower blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for three weeks in a murine model of angiotensin-II dependent hypertension. Also, since EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of a sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II increased blood pressure, further increased renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (i.e. prostaglandins and MCP-1), down-regulated an epithelial sodium channel and up-regulated Angiotensin converting enzyme-2 message (ACE-2) and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering SBP and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by up-regulation of ACE-2 in angiotensin-II dependent hypertension. PMID:23676336

  16. Fluoride-Mediated Capture of a Noncovalent Bound State of a Reversible Covalent Enzyme Inhibitor: X-ray Crystallographic Analysis of an Exceptionally Potent [alpha]-Ketoheterocycle Inhibitor of Fatty Acid Amide Hydrolase

    SciTech Connect

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine

    2011-11-02

    Two cocrystal X-ray structures of the exceptionally potent {alpha}-ketoheterocycle inhibitor 1 (K{sub i} = 290 pM) bound to a humanized variant of rat fatty acid amide hydrolase (FAAH) are disclosed, representing noncovalently and covalently bound states of the same inhibitor with the enzyme. Key to securing the structure of the noncovalently bound state of the inhibitor was the inclusion of fluoride ion in the crystallization conditions that is proposed to bind the oxyanion hole precluding inhibitor covalent adduct formation with stabilization of the tetrahedral hemiketal. This permitted the opportunity to detect important noncovalent interactions stabilizing the binding of the inhibitormore » within the FAAH active site independent of the covalent reaction. Remarkably, noncovalently bound 1 in the presence of fluoride appears to capture the active site in the same 'in action' state with the three catalytic residues Ser241-Ser217-Lys142 occupying essentially identical positions observed in the covalently bound structure of 1, suggesting that this technique of introducing fluoride may have important applications in structural studies beyond inhibiting substrate or inhibitor oxyanion hole binding. Key insights to emerge from the studies include the observations that noncovalently bound 1 binds in its ketone (not gem diol) form, that the terminal phenyl group in the acyl side chain of the inhibitor serves as the key anchoring interaction overriding the intricate polar interactions in the cytosolic port, and that the role of the central activating heterocycle is dominated by its intrinsic electron-withdrawing properties. These two structures are also briefly compared with five X-ray structures of {alpha}-ketoheterocycle-based inhibitors bound to FAAH recently disclosed.« less

  17. Fatty acid amide hydrolase (FAAH) inhibitor PF-3845 reduces viability, migration and invasiveness of human colon adenocarcinoma Colo-205 cell line: an in vitro study.

    PubMed

    Wasilewski, Andrzej; Krajewska, Urszula; Owczarek, Katarzyna; Lewandowska, Urszula; Fichna, Jakub

    2017-01-01

    Earlier reports suggest that the endocannabinoids may play a role of endogenous tumor growth modulators. In this study, we investigated whether inhibition of the enzymes involved in the synthesis and degradation of endocannabinoids may reduce colorectal cancer cell invasion and migration. The human colon adenocarcinoma Colo-205 cells were incubated with PF-3845, JZL-184 and RHC-80267 (fatty acid amide hydrolase (FAAH), mono- (MAGL) and diacylglycerol lipase (DAGL) inhibitors, respectively) for 48 h. The MTT colorimetric assay was performed to quantify cell viability. Next, Colo-205 cells were incubated with PF-3845 alone or with PF-3845 together with selected antagonists: AM 251, AM 630, SB 366791, RN 1734 and G-15 (CB 1 , CB 2 , TRPV1, TRPV4 and GPR30 antagonists, respectively). Western blot assay was applied to identify the changes in CB 1 and CB 2 receptor expression. Migration and invasion assays were employed to characterize the effect of PF-3845 on colorectal cancer cell invasion. We found that of all the inhibitors used, the FAAH inhibitor PF-3845 reduced the Colo-205 cell line viability the most effectively (IC 5 0=52.55 μM). We also showed that the effect of decreased cell viability was enhanced when Colo-205 cells were incubated with PF-3845 and RN-1734, a TRPV4 antagonist (IC 5 0=30.54 μM). Western blot assay revealed significantly decreased CB 1 receptor expression levels, while CB 2 expression was increased in response to PF-3845 when compared to control. Furthermore, PF-3845 inhibited migration and invasion of Colo-205 cell line. These results suggest that pharmacological inhibition of FAAH and consequent enhancement of the endocannabinoid levels may reduce the colorectal cancer growth and progression.

  18. Reversible Competitive α-Ketoheterocycle Inhibitors of Fatty Acid Amide Hydrolase Containing Additional Conformational Constraints in the Acyl Side Chain: Orally Active, Long Acting Analgesics

    PubMed Central

    Ezzili, Cyrine; Mileni, Mauro; McGlinchey, Nicholas; Long, Jonathan Z.; Kinsey, Steven G.; Hochstatter, Dustin G.; Stevens, Raymond C.; Lichtman, Aron H.; Cravatt, Benjamin F.; Bilsky, Edward J.; Boger, Dale L.

    2011-01-01

    A series of α-ketooxazoles containing conformational constraints in the C2 acyl side chain of 2 (OL-135) were examined as inhibitors of fatty acid amide hydrolase (FAAH). Only one of the two possible enantiomers displayed potent FAAH inhibition (S vs R enantiomer), and their potency is comparable or improved relative to 2, indicating that the conformational restriction in the C2 acyl side chain is achievable. A cocrystal X-ray structure of the -ketoheterocycle 12 bound to a humanized variant of rat FAAH revealed its binding details, confirmed that the (S)-enantiomer is the bound active inhibitor, shed light on the origin of the enantiomeric selectivity, and confirmed that the catalytic Ser241 is covalently bound to the electrophilic carbonyl as a deprotonated hemiketal. Preliminary in vivo characterization of the inhibitors 12 and 14 is reported demonstrating that they raise brain anandamide levels following either intraperitoneal (i.p.) or oral (p.o.) administration indicative of effective in vivo FAAH inhibition. Significantly, the oral administration of 12 caused dramatic accumulation of anandamide in the brain, with peak levels achieved between 1.5–3 h and these elevations were maintained over 9 h. Additional studies of these two representative members of the series (12 and 14) in models of thermal hyperalgesia and neuropathic pain are reported, including the demonstration that 12 administered orally significantly attenuated mechanical (>6 h) and cold (>9 h) allodynia for sustained periods consistent with its long acting effects in raising the endogenous concentration of anandamide. PMID:21428410

  19. Soluble Epoxide Hydrolase Inhibitor Suppresses the Expression of Triggering Receptor Expressed on Myeloid Cells-1 by Inhibiting NF-kB Activation in Murine Macrophage.

    PubMed

    Dong, Liang; Zhou, Yong; Zhu, Zhao-Qiong; Liu, Tian; Duan, Jia-Xi; Zhang, Jun; Li, Ping; Hammcok, Bruce D; Guan, Cha-Xiang

    2017-02-01

    Triggering receptors expressed on myeloid cell-1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells. TREM-1 amplifies the inflammatory response. Epoxyeicosatrienoic acids (EETs), the metabolites of arachidonic acid derived from the cytochrome P450 enzyme, have anti-inflammatory properties. However, the effects of EETs on TREM-1 expression under inflammatory stimulation remain unclear. Therefore, inhibition of soluble epoxide hydrolase (sEH) with a highly selective inhibitor [1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea, TPPU] was used to stabilize EETs. LPS was intratracheally injected into mice to induce pulmonary inflammation, after TPPU treatment for 3 h. Histological examination showed TPPU treatment-alleviated LPS-induced pulmonary inflammation. TPPU decreased TREM-1 expression, but not DAP12 or MyD88 expression. Murine peritoneal macrophages were challenged with LPS in vitro. We found that TPPU reduced LPS-induced TREM-1 expression in a dose-dependent manner, but not DAP12 or MyD88 expression. TPPU also decreased downstream signal from TREM-1, reducing pro-inflammatory cytokine TNF-α and IL-1β mRNA expression. Furthermore, TPPU treatment inhibited IkB degradation in vivo and in vitro. Our results indicate that the inhibition of sEH suppresses LPS-induced TREM-1 expression and inflammation via inhibiting NF-kB activation in murine macrophage.

  20. Mechanistic and Pharmacological Characterization of PF-04457845: A Highly Potent and Selective Fatty Acid Amide Hydrolase Inhibitor That Reduces Inflammatory and Noninflammatory Pain

    PubMed Central

    Smith, Sarah E.; Liimatta, Marya B.; Beidler, David; Sadagopan, Nalini; Dudley, David T.; Young, Tim; Wren, Paul; Zhang, Yanhua; Swaney, Steven; Van Becelaere, Keri; Blankman, Jacqueline L.; Nomura, Daniel K.; Bhattachar, Shobha N.; Stiff, Cory; Nomanbhoy, Tyzoon K.; Weerapana, Eranthie; Johnson, Douglas S.; Cravatt, Benjamin F.

    2011-01-01

    The endogenous cannabinoid (endocannabinoid) anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH). Pharmacological blockade of FAAH has emerged as a potentially attractive strategy for augmenting endocannabinoid signaling and retaining the beneficial effects of cannabinoid receptor activation, while avoiding the undesirable side effects, such as weight gain and impairments in cognition and motor control, observed with direct cannabinoid receptor 1 agonists. Here, we report the detailed mechanistic and pharmacological characterization of N-pyridazin-3-yl-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene)piperidine-1-carboxamide (PF-04457845), a highly efficacious and selective FAAH inhibitor. Mechanistic studies confirm that PF-04457845 is a time-dependent, covalent FAAH inhibitor that carbamylates FAAH's catalytic serine nucleophile. PF-04457845 inhibits human FAAH with high potency (kinact/Ki = 40,300 M−1s−1; IC50 = 7.2 nM) and is exquisitely selective in vivo as determined by activity-based protein profiling. Oral administration of PF-04457845 produced potent antinociceptive effects in both inflammatory [complete Freund's adjuvant (CFA)] and noninflammatory (monosodium iodoacetate) pain models in rats, with a minimum effective dose of 0.1 mg/kg (CFA model). PF-04457845 displayed a long duration of action as a single oral administration at 1 mg/kg showed in vivo efficacy for 24 h with a concomitant near-complete inhibition of FAAH activity and maximal sustained elevation of anandamide in brain. Significantly, PF-04457845-treated mice at 10 mg/kg elicited no effect in motility, catalepsy, and body temperature. Based on its exceptional selectivity and in vivo efficacy, combined with long duration of action and optimal pharmacokinetic properties, PF-04457845 is a clinical candidate for the treatment of pain and other nervous system disorders. PMID:21505060

  1. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury.

    PubMed

    Tchantchou, Flaubert; Tucker, Laura B; Fu, Amanda H; Bluett, Rebecca J; McCabe, Joseph T; Patel, Sachin; Zhang, Yumin

    2014-10-01

    Traumatic brain injury (TBI) is the leading cause of death in young adults in the United States, but there is still no effective agent for treatment. N-arachidonoylethanolamine (anandamide, AEA) is a major endocannabinoid in the brain. Its increase after brain injury is believed to be protective. However, the compensatory role of AEA is transient due to its rapid hydrolysis by the fatty acid amide hydrolase (FAAH). Thus, inhibition of FAAH can boost the endogenous levels of AEA and prolong its protective effect. Using a TBI mouse model, we found that post-injury chronic treatment with PF3845, a selective and potent FAAH inhibitor, reversed TBI-induced impairments in fine motor movement, hippocampus dependent working memory and anxiety-like behavior. Treatment with PF3845 inactivated FAAH activity and enhanced the AEA levels in the brain. It reduced neurodegeneration in the dentate gyrus, and up-regulated the expression of Bcl-2 and Hsp70/72 in both cortex and hippocampus. PF3845 also suppressed the increased production of amyloid precursor protein, prevented dendritic loss and restored the levels of synaptophysin in the ipsilateral dentate gyrus. Furthermore, PF3845 suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 post-TBI, suggesting a shift of microglia/macrophages from M1 to M2 phenotype. The effects of PF3845 on TBI-induced behavioral deficits and neurodegeneration were mediated by activation of cannabinoid type 1 and 2 receptors and might be attributable to the phosphorylation of ERK1/2 and AKT. These results suggest that selective inhibition of FAAH is likely to be beneficial for TBI treatment. Published by Elsevier Ltd.

  2. Effect of footshock stress on place conditioning produced by Δ9-tetrahydrocannabinol and the fatty acid amide hydrolase (FAAH) inhibitor, URB597, in Sprague-Dawley rats.

    PubMed

    DeVuono, Marieka V; Wills, Kiri L; MacPherson, Danielle V; Hrelja, Kelly M; Parker, Linda A

    2017-11-01

    Unlike other drugs of abuse, Δ 9 -tetrahydrocanabinol (THC) is generally aversive in rodent conditioned place preference models, but little is known about how stress may modify THC affective properties. We evaluate the potential of footshock stress to enhance the rewarding effects of THC and the fatty acid amide hydrolase inhibitor, URB597, as it has been shown to enhance their anxiolytic effects. The effect of footshock stress 24 h prior to each conditioning trial on the rewarding/aversive effects of THC (1, 0.1, 0.5 mg/kg, ip) and URB597 (0.3 mg/kg, ip) was evaluated in an unbiased place conditioning procedure in rats. Subsequently, the same stressor was given immediately prior to conditioning with THC (1 and 0.1 mg/kg). Locomotor activity was also measured during conditioning. A dose of 1 mg/kg THC, but not 0.1-0.5 mg/kg, produced a conditioned place aversion (CPA) that was not modified by footshock delivered 24 h prior to conditioning trials; however, footshock delivered immediately prior to conditioning trials prevented that CPA. Lower doses of THC and URB597 produced no place conditioning regardless of footshock conditions. A dose of 1 mg/kg THC produced locomotor suppression during conditioning trials that was prevented by footshock delivered 24 h before and reversed to locomotor activation by footshock delivered immediately before conditioning. Unlike the effect of footshock on THC- and URB597-induced anxiolytic effects, footshock does not promote THC or URB597-induced reward in a conditioned place preference paradigm. However, footshock stress reverses the sedative effects of 1 mg/kg THC.

  3. The fatty acid amide hydrolase inhibitor URB597 modulates serotonin-dependent emotional behaviour, and serotonin1A and serotonin2A/C activity in the hippocampus.

    PubMed

    Bambico, Francis R; Duranti, Andrea; Nobrega, José N; Gobbi, Gabriella

    2016-03-01

    The fatty acid amide hydrolase (FAAH) inhibitor URB597 increases anandamide, resulting in antidepressant/anxiolytic-like activity, likely via CB1 receptor-mediated modulation of serotonin (5-HT) and norepinephrine (NE) neurotransmission. However, the relative importance of the 5-HT and NE systems in these effects and on effects of URB597 on postsynaptic 5-HT receptors remain to be determined. Using behavioural and electrophysiological approaches, we assessed the effects of acute-single and repeated URB597 treatment on responses predicting antidepressant/anxiolytic activity, and on hippocampal 5-HT1A and 5-HT2A/C receptor sensitivity. Acute-single or serial URB597 treatment, compared to vehicle, reduced immobility in the forced swim test (FST), increased open arm visits in the elevated plus maze and shortened feeding latency in the novelty-suppressed feeding test (NSFT). Repeated URB597 treatment yielded more profound behavioural effects, which were associated with an increase in hippocampal brain-derived neurotrophic factor (BDNF). The 5-HT synthesis inhibitor para-chlorophenylalanine (pCPA), but not the NE neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) prevented URB597-mediated antidepressant/anxiolytic-like response in the FST and NSFT, while DSP4 did not further affect URB597-mediated increase in raphe 5-HT neuron firing. Repeated URB597 administration decreased hippocampal pyramidal firing in response to 5-HT2A/C and 5-HT1A stimulation with 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) and 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT), respectively, suggesting plastic adaptation of these receptors. The effects of acute-single and repeated URB597 administration on hippocampal cell firing in response to DOI or 8-OH-DPAT were similar in magnitude and intensity to the positive control citalopram. These data indicate that URB597 acts, either directly or indirectly, on the 5-HT system, increases hippocampal BDNF expression, and modifies 5-HT1A

  4. Early blockade of joint inflammation with a fatty acid amide hydrolase inhibitor decreases end-stage osteoarthritis pain and peripheral neuropathy in mice.

    PubMed

    McDougall, Jason J; Muley, Milind M; Philpott, Holly T; Reid, Allison; Krustev, Eugene

    2017-05-25

    The endocannabinoid system has been shown to reduce inflammatory flares and pain in rodent models of arthritis. A limitation of endocannabinoids is that they are rapidly denatured by hydrolysing enzymes such as fatty acid amide hydrolase (FAAH) which renders them physiologically inert. Osteoarthritis (OA) is primarily a degenerative joint disease; however, it can incorporate mild inflammation and peripheral neuropathy. The aim of this study was to determine whether early blockade of FAAH bioactivity could reduce OA-associated inflammation and joint neuropathy. The ability of this treatment to prevent end-stage OA pain development was also tested. Physiological saline or sodium monoiodoacetate (MIA; 0.3 mg) was injected into the right knee of male C57Bl/6 mice (20-42 g) and joint inflammation (oedema, blood flow and leukocyte trafficking) was measured over 14 days. Joint inflammation was also measured in a separate cohort of animals treated on day 1 with either saline or the FAAH inhibitor URB597 (0.03-0.3 mg/kg topical onto the knee joint). In other experiments, von Frey hair tactile sensitivity was determined on days 1 and 14 in MIA-injected mice treated prophylactically with URB597 (0.3 mg/kg s.c. over the knee joint on days 0-3). Saphenous nerve myelination was also assessed in these animals on day 14 by G-ratio analysis. Intra-articular injection of MIA caused an increase in joint oedema (P < 0.0001), blood flow (P < 0.05), leukocyte rolling (P < 0.05) and adherence (P < 0.001) on day 1 after treatment which subsequently resolved over later time points. This acute inflammatory response was ameliorated by local URB597 treatment. Prophylactic local administration of URB597 prevented MIA-induced saphenous nerve demyelination, and chronic joint pain was also attenuated. These data indicate that local inhibition of FAAH in MIA-injected knees can reduce acute inflammatory changes associated with the model. Prophylactic treatment of OA mice with

  5. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice

    PubMed Central

    Booker, Lamont; Kinsey, Steven G; Abdullah, Rehab A; Blankman, Jacqueline L; Long, Jonathan Z; Ezzili, Cyrine; Boger, Dale L; Cravatt, Benjamin F; Lichtman, Aron H

    2012-01-01

    BACKGROUND AND PURPOSE Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ9-tetrahydrocannabinol (THC). EXPERIMENTAL APPROACH Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses. KEY RESULTS FAAH (−/−) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role. CONCLUSIONS AND IMPLICATIONS AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To

  6. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice.

    PubMed

    Booker, Lamont; Kinsey, Steven G; Abdullah, Rehab A; Blankman, Jacqueline L; Long, Jonathan Z; Ezzili, Cyrine; Boger, Dale L; Cravatt, Benjamin F; Lichtman, Aron H

    2012-04-01

    Inflammatory pain presents a problem of clinical relevance and often elicits allodynia, a condition in which non-noxious stimuli are perceived as painful. One potential target to treat inflammatory pain is the endogenous cannabinoid (endocannabinoid) system, which is comprised of CB1 and CB2 cannabinoid receptors and several endogenous ligands, including anandamide (AEA). Blockade of the catabolic enzyme fatty acid amide hydrolase (FAAH) elevates AEA levels and elicits antinociceptive effects, without the psychomimetic side effects associated with Δ(9) -tetrahydrocannabinol (THC). Allodynia was induced by intraplantar injection of LPS. Complementary genetic and pharmacological approaches were used to determine the strategy of blocking FAAH to reverse LPS-induced allodynia. Endocannabinoid levels were quantified using mass spectroscopy analyses. FAAH (-/-) mice or wild-type mice treated with FAAH inhibitors (URB597, OL-135 and PF-3845) displayed an anti-allodynic phenotype. Furthermore, i.p. PF-3845 increased AEA levels in the brain and spinal cord. Additionally, intraplantar PF-3845 produced a partial reduction in allodynia. However, the anti-allodynic phenotype was absent in mice expressing FAAH exclusively in the nervous system under a neural specific enolase promoter, implicating the involvement of neuronal fatty acid amides (FAAs). The anti-allodynic effects of FAAH-compromised mice required activation of both CB1 and CB2 receptors, but other potential targets of FAA substrates (i.e. µ-opioid, TRPV1 and PPARα receptors) had no apparent role. AEA is the primary FAAH substrate reducing LPS-induced tactile allodynia. Blockade of neuronal FAAH reverses allodynia through the activation of both cannabinoid receptors and represents a promising target to treat inflammatory pain. This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view

  7. Glycoside hydrolases having multiple hydrolase activities

    DOEpatents

    Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A

    2017-08-08

    Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.

  8. Twisting of glycosidic bonds by hydrolases

    USDA-ARS?s Scientific Manuscript database

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  9. Molecular mechanisms involved in the side effects of fatty acid amide hydrolase inhibitors: a structural phenomics approach to proteome-wide cellular off-target deconvolution and disease association

    PubMed Central

    Dider, Shihab; Ji, Jiadong; Zhao, Zheng; Xie, Lei

    2016-01-01

    Fatty acid amide hydrolase (FAAH) is a promising therapeutic target for the treatment of pain and CNS disorders. However, the development of potent and safe FAAH inhibitors is hindered by their off-target mediated side effect that leads to brain cell death. Its physiological off-targets and their associations with phenotypes may not be characterized using existing experimental and computational techniques as these methods fail to have sufficient proteome coverage and/or ignore native biological assemblies (BAs; i.e., protein quaternary structures). To understand the mechanisms of the side effects from FAAH inhibitors and other drugs, we develop a novel structural phenomics approach to identifying the physiological off-targets binding profile in the cellular context and on a structural proteome scale, and investigate the roles of these off-targets in impacting human physiology and pathology using text mining-based phenomics analysis. Using this integrative approach, we discover that FAAH inhibitors may bind to the dimerization interface of NMDA receptor (NMDAR) and several other BAs, and thus disrupt their cellular functions. Specifically, the malfunction of the NMDAR is associated with a wide spectrum of brain disorders that are directly related to the observed side effects of FAAH inhibitors. This finding is consistent with the existing literature, and provides testable hypotheses for investigating the molecular origin of the side effects of FAAH inhibitors. Thus, the in silico method proposed here, which can for the first time predict proteome-wide drug interactions with cellular BAs and link BA–ligand interaction with clinical outcomes, can be valuable in off-target screening. The development and application of such methods will accelerate the development of more safe and effective therapeutics. PMID:28725477

  10. A Novel Glycoside Hydrolase Family 113 Endo-β-1,4-Mannanase from Alicyclobacillus sp. Strain A4 and Insight into the Substrate Recognition and Catalytic Mechanism of This Family.

    PubMed

    Xia, Wei; Lu, Haiqiang; Xia, Mengjuan; Cui, Ying; Bai, Yingguo; Qian, Lichun; Shi, Pengjun; Luo, Huiying; Yao, Bin

    2016-05-01

    Few members of glycoside hydrolase (GH) family 113 have been characterized, and information on substrate recognition by and the catalytic mechanism of this family is extremely limited. In the present study, a novel endo-β-1,4-mannanase of GH 113, Man113A, was identified in thermoacidophilic Alicyclobacillus sp. strain A4 and found to exhibit both hydrolytic and transglycosylation activities. The enzyme had a broad substrate spectrum, showed higher activities on glucomannan than on galactomannan, and released mannobiose and mannotriose as the main hydrolysis products after an extended incubation. Compared to the only functionally characterized and structure-resolved counter part Alicyclobacillus acidocaldarius ManA (AaManA) of GH 113, Man113A showed much higher catalytic efficiency on mannooligosaccharides, in the order mannohexaose ≈ mannopentaose > mannotetraose > mannotriose, and required at least four sugar units for efficient catalysis. Homology modeling, molecular docking analysis, and site-directed mutagenesis revealed the vital roles of eight residues (Trp13, Asn90, Trp96, Arg97, Tyr196, Trp274, Tyr292, and Cys143) related to substrate recognition by and catalytic mechanism of GH 113. Comparison of the binding pockets and key residues of β-mannanases of different families indicated that members of GH 113 and GH 5 have more residues serving as stacking platforms to support -4 to -1 subsites than those of GH 26 and that the residues preceding the acid/base catalyst are quite different. Taken as a whole, this study elucidates substrate recognition by and the catalytic mechanism of GH 113 β-mannanases and distinguishes them from counterparts of other families. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Isolation of CYP3A4 Inhibitors from the Black Cohosh (Cimicifuga racemosa)

    PubMed Central

    2005-01-01

    Recent investigation on drug interaction has shown that some foods and herbal medicines increase the oral availability of a variety of CYP3A4 substrates, which is caused by the reduction of CYP3A4 in intestinal epithelium. During the course of our investigation on CYP3A4 interaction, we found that the commercially available dietary supplement made from black cohosh (Cimicifuga racemosa) showed CYP3A4 inhibition. Black cohosh has been used for the treatment of menopausal and post-menopausal symptoms as a dietary supplement. Bioassay-guided isolation from the supplement afforded six active principles, which were identified as cycloartanoid triterpene glycosides. PMID:15937564

  12. Synthesis and Structure-Activity Relationship Studies of Urea-Containing Pyrazoles as Dual Inhibitors of Cyclooxygenase-2 and Soluble Epoxide Hydrolase

    PubMed Central

    Hwang, Sung Hee; Wagner, Karen M.; Morisseau, Christophe; Liu, Jun-Yan; Dong, Hua; Wecksler, Aaron T.; Hammock, Bruce D.

    2012-01-01

    A series of dual inhibitors containing a 1,5-diarylpyrazole and a urea were designed, synthesized, and evaluated as novel COX-2/sEH dual inhibitors in vitro using recombinant enzyme assays and in vivo using a lipopolysaccharide (LPS) induced model of pain in rats. The best inhibition potencies and selectivity for sEH and COX-2 over COX-1 were obtained with compounds (21b, 21i and 21j) in which both the 1,5-diaryl-pyrazole group and the urea group are linked with a three-methylene group. Compound 21i showed the best pharmacokinetic profiles in both mice and rats (higher AUC and longer half-life). Following subcutaneous administration at 10 mg/kg, compound 21i exhibited anti-allodynic activity that is more effective than the same dose of either a COX-2 inhibitor (celecoxib) or a sEH inhibitor (t-AUCB) alone, as well as co-administration of both inhibitors. Thus, these novel dual inhibitors exhibited enhanced in vivo anti-allodynic activity in a nociceptive behavioral assay. PMID:21434686

  13. Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue.

    PubMed

    Behnam, Mira A M; Graf, Dominik; Bartenschlager, Ralf; Zlotos, Darius P; Klein, Christian D

    2015-12-10

    The dengue virus (DENV) and West Nile Virus (WNV) NS2B-NS3 proteases are attractive targets for the development of dual-acting therapeutics against these arboviral pathogens. We present the synthesis and extensive biological evaluation of inhibitors that contain benzyl ethers of 4-hydroxyphenylglycine as non-natural peptidic building blocks synthesized via a copper-complex intermediate. A three-step optimization strategy, beginning with fragment growth of the C-terminal 4-hydroxyphenylglycine to the benzyloxy ether, followed by C- and N-terminal optimization, and finally fragment merging generated compounds with in vitro affinities in the low nanomolar range. The most promising derivative reached Ki values of 12 nM at the DENV-2 and 39 nM at the WNV proteases. Several of the newly discovered protease inhibitors yielded a significant reduction of dengue and West Nile virus titers in cell-based assays of virus replication, with an EC50 value of 3.4 μM at DENV-2 and 15.5 μM at WNV for the most active analogue.

  14. Oral treatment of rodents with soluble epoxide hydrolase inhibitor 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU): Resulting drug levels and modulation of oxylipin pattern.

    PubMed

    Ostermann, Annika I; Herbers, Jan; Willenberg, Ina; Chen, Rongjun; Hwang, Sung Hee; Greite, Robert; Morisseau, Christophe; Gueler, Faikah; Hammock, Bruce D; Schebb, Nils Helge

    2015-09-01

    Epoxides from polyunsaturated fatty acids (PUFAs) are potent lipid mediators. In vivo stabilization of these epoxides by blockade of the soluble epoxide hydrolase (sEH) leads to anti-inflammatory, analgesic and normotensive effects. Therefore, sEH inhibitors (sEHi) are a promising new class of drugs. Herein, we characterized pharmacokinetic (PK) and pharmacodynamic properties of a commercially available potent sEHi 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU). Cell culture studies suggest its high absorption and metabolic stability. Following administration in drinking water to rats (0.2, 1, and 5mg TPPU/L with 0.2% PEG400), TPPU's blood concentration increased dose dependently within the treatment period to reach an almost steady state after 8 days. TPPU was found in all the tissues tested. The linoleic epoxide/diol ratios in most tissues were dose dependently increased, indicating significant sEH inhibition. Overall, administration of TPPU with the drinking water led to systemic distribution as well as high drug levels and thus makes chronic sEH inhibition studies possible. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition

    PubMed Central

    Chang, Jae Won; Cognetta, Armand B.; Niphakis, Micah J.; Cravatt, Benjamin F.

    2013-01-01

    Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Inhibitors of serine hydrolases are used to treat many diseases, including obesity, diabetes, cognitive dementia, and bacterial and viral infections. Nonetheless, the majority of the 200+ serine hydrolases in mammals still lack selective inhibitors for their functional characterization. We and others have shown that activated carbamates, through covalent reaction with the conserved serine nucleophile of serine hydrolases, can serve as useful inhibitors for members of this enzyme family. The extent to which carbamates, however, cross-react with other protein classes remains mostly unexplored. Here, we address this problem by investigating the proteome-wide reactivity of a diverse set of activated carbamates in vitro and in vivo using a combination of competitive and click chemistry (CC)-activity-based protein profiling (ABPP). We identify multiple classes of carbamates, including O-aryl, O-hexafluoroisopropyl (HFIP), and O-N-hydroxysuccinimidyl (NHS) carbamates that react selectively with serine hydrolases across entire mouse tissue proteomes in vivo. We exploit the proteome-wide specificity of HFIP carbamates to create in situ imaging probes for the endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and alpha-beta hydrolase-6 (ABHD6). These findings, taken together, designate the carbamate as a privileged reactive group for serine hydrolases that can accommodate diverse structural modifications to produce inhibitors that display exceptional potency and selectivity across the mammalian proteome. PMID:23701408

  16. Inhibition of Chronic Pancreatitis and Murine Pancreatic Intraepithelial Neoplasia by a Dual Inhibitor of c-RAF and Soluble Epoxide Hydrolase in LSL-KrasG12D/Pdx-1-Cre Mice

    PubMed Central

    LIAO, JIE; HWANG, SUNG HEE; LI, HAONAN; LIU, JUN-YAN; HAMMOCK, BRUCE D.; YANG, GUANG-YU

    2016-01-01

    Mutation of Kirsten rat sarcoma viral oncogene homolog (KRAS) and chronic pancreatitis are the most common pathogenic events involved in human pancreatic carcinogenesis. In the process of long-standing chronic inflammation, aberrant metabolites of arachidonic acid play a crucial role in promoting carcinogenesis, in which the soluble epoxide hydrolase (sEH), as a pro-inflammatory enzyme, generally inactivates anti-inflammatory epoxyeicosatrienoic acids (EETs). Herein, we determined the effect of our newly-synthesized novel compound trans-4-{4-[3-(4-chloro-3-trifluoromethyl-phenyl)-ureido]-cyclohexyloxy}-pyridine-2-carboxylic acid methylamide (t-CUPM), a dual inhibitor of sEH and RAF1 proto-oncogene serine/threonine kinase (c-RAF), on inhibiting the development of pancreatitis and pancreatic intraepithelial neoplasia (mPanIN) in LSL-KrasG12D/Pdx1-Cre mice. The results showed that t-CUPM significantly reduced the severity of chronic pancreatitis, as measured by the extent of acini loss, inflammatory cell infiltration and stromal fibrosis. The progression of low-grade mPanIN I to high-grade mPanIN II/III was significantly suppressed. Inhibition of mutant Kras-transmitted phosphorylation of mitogen-activated protein kinase’s kinase/extracellular signal-regulated kinases was demonstrated in pancreatic tissues by western blots. Quantitative real-time polymerase chain reaction analysis revealed that t-CUPM treatment significantly reduced the levels of inflammatory cytokines including tumor necrosis facor-α, monocyte chemoattractant protein-1, as well as vascular adhesion molecule-1, and the levels of Sonic hedgehog and Gli transcription factor (Hedgehog pathway). Analysis of the eicosanoid profile revealed a significant increase of the EETs/dihydroxyeicosatrienoic acids ratio, which further confirmed sEH inhibition by t-CUPM. These results indicate that simultaneous inhibition of sEH and c-RAF by t-CUPM is important in preventing chronic pancreatitis and carcinogenesis

  17. Sorafenib has soluble epoxide hydrolase inhibitory activity, which contributes to its effect profile in vivo.

    PubMed

    Liu, Jun-Yan; Park, See-Hyoung; Morisseau, Christophe; Hwang, Sung Hee; Hammock, Bruce D; Weiss, Robert H

    2009-08-01

    The advent of multikinase inhibitors targeting the vascular endothelial growth factor (VEGF) receptor has revolutionized the treatment of highly angiogenic malignancies such as renal cell carcinoma. Interestingly, several such inhibitors are commercially available, and they each possess diverse specific beneficial and adverse effect profiles. In examining the structure of sorafenib, it was hypothesized that this compound would possess inhibitory effects on the soluble epoxide hydrolase, an enzyme with pleiotropic effects on inflammation and vascular disease. We now show that sorafenib but not another VEGF receptor targeted inhibitor sunitinib is a potent inhibitor of the human soluble epoxide hydrolase in vitro (K(I) = 17 +/- 4 nmol/L). Furthermore, sorafenib causes the expected in vivo shift in oxylipid profile resulting from soluble epoxide hydrolase inhibition, evidence of a reduction in the acute inflammatory response. Lipopolysaccharide-induced hypotension was reversed with sorafenib but not sunitinib treatment, suggesting that soluble epoxide hydrolase inhibition accounts for at least part of the anti-inflammatory effect of sorafenib. The pharmacokinetic studies presented here in light of the known potency of sorafenib as a soluble epoxide hydrolase inhibitor indicate that the soluble epoxide hydrolase will be largely inhibited at therapeutic doses of sorafenib. Thus, it is likely that soluble epoxide hydrolase inhibition contributes to the beneficial effects from the inhibition of the VEGF receptor and other kinases during treatment with sorafenib.

  18. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  19. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  20. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2017-07-11

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  1. Variants of glycoside hydrolases

    SciTech Connect

    Teter, Sarah; Ward, Connie; Cherry, Joel

    2017-07-11

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positionsmore » corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.« less

  2. A fluorine scan of a tubulin polymerization inhibitor isocombretastatin A-4: Design, synthesis, molecular modelling, and biological evaluation.

    PubMed

    Naret, Timothée; Bignon, Jérôme; Bernadat, Guillaume; Benchekroun, Mohamed; Levaique, Helene; Lenoir, Christine; Dubois, Joelle; Pruvost, Alain; Saller, François; Borgel, Delphine; Manoury, Boris; Leblais, Veronique; Darrigrand, Romain; Apcher, Sébastien; Brion, Jean-Daniel; Schmitt, Etienne; Leroux, Frédéric R; Alami, Mouad; Hamze, Abdallah

    2018-01-01

    A novel series of tubulin polymerization inhibitors, based on fluorinated derivatives of isocombretastatin A-4 was synthesized with the goal of evaluating the effect of these compounds on the proliferative activity. The introduction of fluorine atom was performed on the phenyl ring or at the linker between the two aromatic rings. The modification of isoCA-4 by introduction of difluoromethoxy group at the para-position (3i) and substitution of the two protons of the linker by two fluorine atoms (3m), produced the most active compounds in the series, with IC 50 values of 0.15-2.2 nM (3i) and 0.1-2 nM (3m) respectively, against a panel of six cancer cell lines. Compounds 3i and 3m had greater antiproliferative activity in comparison with references CA-4 or isoCA-4, the presence of fluorine group leads to a significant enhancement of the antiproliferative activity. Molecular docking studies indicated that compounds 3i and 3m occupy the colchicine binding site of tubulin. Evaluation of cytotoxicity in Human noncancer cells indicated that the compounds 3i and 3m were practically ineffective in quiescent peripheral blood lymphocytes, and may have a selective antiproliferative activity against cancer cells. Analyses of cell cycle distribution, and morphological microtubules organization showed that compound 3m induced G 2 /M phase arrest and, dramatically disrupted the microtubule network. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  4. Toward the comprehensive systematic enumeration and synthesis of novel kinase inhibitors based on a 4-anilinoquinazoline binding mode.

    PubMed

    Kettle, Jason G; Ward, Richard A

    2010-04-26

    There are currently eight small-molecule kinase inhibitors approved as cancer treatments, and a significantly larger number of compounds are in the earlier stages of clinical development. Although kinase inhibitors are most commonly developed in a cancer setting, other disease areas have been targeted. The vast majority of reported kinase small-molecule inhibitors contain functionalities that interact with the adenosine triphosphate (ATP) binding site of the kinase. The 4-anilinoquinazolines have previously been reported as potent epidermal growth factor receptor (EGFR) inhibitors, binding at the 'hinge' region of the ATP site. Subsequently, this chemical series has been optimized against a number of different kinases including Src and Aurora B. Here, we detail the computational enumeration of ring systems that have the ability to make comparable interactions to the 4-anilinoquinazoline core. These were prioritized by computational, medicinal, and synthetic chemistry input, and a number of libraries were subsequently synthesized.

  5. Development of a concise, asymmetric synthesis of a smoothened receptor (SMO) inhibitor: enzymatic transamination of a 4-piperidinone with dynamic kinetic resolution.

    PubMed

    Peng, Zhihui; Wong, John W; Hansen, Eric C; Puchlopek-Dermenci, Angela L A; Clarke, Hugh J

    2014-02-07

    A concise, asymmetric synthesis of a smoothened receptor inhibitor (1) is described. The synthesis features an enzymatic transamination with concurrent dynamic kinetic resolution (DKR) of a 4-piperidone (4) to establish the two stereogenic centers required in a single step. This efficient reaction affords the desired anti amine (3) in >10:1 dr and >99% ee. The title compound is prepared in only five steps with 40% overall yield.

  6. Polyglycine hydrolases secreted by pathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    Pathogens are known to produce proteases that target host defense proteins. Here we describe polyglycine hydrolases, fungal proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine interdomain linker of targeted plant defense chitinases. Polyglycine hydrolases were puri...

  7. Effects of Cytochrome P450 3A4 Inhibitors-Ketoconazole and Erythromycin-on Bitopertin Pharmacokinetics and Comparison with Physiologically Based Modelling Predictions.

    PubMed

    Boetsch, Christophe; Parrott, Neil; Fowler, Stephen; Poirier, Agnes; Hainzl, Dominik; Banken, Ludger; Martin-Facklam, Meret; Hofmann, Carsten

    2016-02-01

    To assess the effect of strong and moderate cytochrome P450 (CYP) 3A4 inhibition on exposure of bitopertin, a glycine reuptake inhibitor primarily metabolized by CYP3A4, and to compare the results with predictions based on physiologically based pharmacokinetic (PBPK) modelling. The effects of ketoconazole and erythromycin were assessed in two male volunteer studies with open-label, two-period, fixed-sequence designs. Twelve subjects were enrolled in each of the studies. In period 1, a single dose of bitopertin was administered; in period 2, 400 mg ketoconazole was administered once daily for 17 days or 500 mg erythromycin was administered twice daily for 21 days. A single dose of bitopertin was coadministered on day 5. Pharmacokinetic parameters were derived by non-compartmental methods. Simulated bitopertin profiles using dynamic PBPK modelling for a typical healthy volunteer in GastroPlus(®) were used to predict changes in pharmacokinetic parameters. In healthy volunteers, coadministration of ketoconazole increased the bitopertin area under the plasma concentration-time curve (AUC) from 0 to 312 h (AUC0-312h) 4.2-fold (90 % confidence interval [CI] 3.5-5.0) and erythromycin increased the AUC from time zero to infinity (AUC0-inf) 2.1-fold (90 % CI 1.9-2.3). The peak concentration (C max) increased by <25 % in both studies. Simulated bitopertin profiles using PBPK modelling showed good agreement with the observed AUC ratios in both studies. The predicted AUC0-inf ratios for the interaction with ketoconazole and erythromycin were 7.7 and 1.9, respectively. Strong CYP3A4 inhibitors increase AUC0-inf of bitopertin 7- to 8-fold and hence should not be administered concomitantly with bitopertin. Moderate CYP3A4 inhibitors double AUC0-inf.

  8. Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom

    PubMed Central

    Dodge, Anthony G.; Preiner, Chelsea S.

    2013-01-01

    The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

  9. Effects of strong CYP2D6 and 3A4 inhibitors, paroxetine and ketoconazole, on the pharmacokinetics and cardiovascular safety of tamsulosin

    PubMed Central

    Troost, Joachim; Tatami, Shinji; Tsuda, Yasuhiro; Mattheus, Michaela; Mehlburger, Ludwig; Wein, Martina; Michel, Martin C

    2011-01-01

    AIM To determine the effect of the strong CYP2D6 inhibitor paroxetine and strong CYP3A4 inhibitor ketoconazole on the pharmacokinetics and safety (orthostatic challenge) of tamsulosin. METHODS Two open-label, randomized, two-way crossover studies were conducted in healthy male volunteers (extensive CYP2D6 metabolizers). RESULTS Co-administration of multiple oral doses of 20 mg paroxetine once daily with a single oral dose of the 0.4 mg tamsulosin HCl capsule increased the adjusted geometric mean (gMean) values of Cmax and AUC(0,∞) of tamsulosin by factors of 1.34 (90% CI 1.21, 1.49) and 1.64 (90% CI 1.44, 1.85), respectively, and increased the terminal half-life (t1/2) of tamsulosin HCl from 11.4 h to 15.3 h. Co-administration of multiple oral doses of 400 mg ketoconazole once dailywith a single oral dose of the 0.4 mg tamsulosin increased the gMean values of Cmax and AUC(0,∞) of tamsulosin by a factor of 2.20 (90% CI 1.96, 2.45) and 2.80 (90% CI 2.56, 3.07), respectively. The terminal half-life was slightly increased from 10.5 h to 11.8 h. These pharmacokinetic changes were not accompanied by clinically significant alterations of haemodynamic responses during orthostatic stress testing. CONCLUSION The exposure to tamsulosin is increased upon co-administration of strong CYP2D6 inhibitors and even more so of strong 3A4 inhibitors, but neither PK alteration was accompanied by clinically significant haemodynamic changes during orthostatic stress testing. PMID:21496064

  10. Rhabdomyolysis caused by the moderate CYP3A4 inhibitor fluconazole in a patient on stable atorvastatin therapy: a case report and literature review.

    PubMed

    Hsiao, S-H; Chang, H-J; Hsieh, T-H; Kao, S-M; Yeh, P-Y; Wu, T-J

    2016-10-01

    Rhabdomyolysis is a severe potential adverse drug reaction of statin therapy. We report a case of rhabdomyolysis due to drug-drug interaction (DDI) between atorvastatin and fluconazole and review the literature. A 70-year-old woman received atorvastatin for hyperlipidaemia without any problem for 4 years. When intravenous fluconazole was added for treating a fungal infection, rhabdomyolysis developed 2 weeks later. Removal of atorvastatin led to the resolution of her rhabdomyolysis. Our case demonstrates that in some subjects even a moderate CYP3A4 inhibitor such as fluconazole may lead to rhabdomyolysis in subjects receiving a statin. © 2016 John Wiley & Sons Ltd.

  11. In vitro interaction of the HIV protease inhibitor ritonavir with herbal constituents: changes in P-gp and CYP3A4 activity.

    PubMed

    Patel, Jignesh; Buddha, Balasubrahmanyam; Dey, Surajit; Pal, Dhananjay; Mitra, Ashim K

    2004-01-01

    The purpose of this study was to evaluate in vitro interactions of commercially obtained pure herbal constituents with p-glycoprotein P-gp and cytochrome P-450 3A4 (CYP3A4) activities, which can further modulate the transcellular transport and metabolism kinetics of orally administered drugs. Caco-2 cells grown in the presence of 0.25 micromol/L 1alpha,25-dihydroxy vitamin D3 and multidrug-resistant 1 (MDR1) transfected MDCK cells were used as models to evaluate the effect of purified herbal constituents (quercetin, hypericin, hyperforin from St. John's wort, kaempferol from ginseng, silibinin from milk thistle, and allicin from garlic) on P-gp-mediated efflux of the human immunodeficiency virus (HIV) protease inhibitor ritonavir. In addition, the inhibitory effect of these constituents on CYP3A4-mediated metabolism was determined by using cortisol as a model compound. Silibinin and hyperforin did not significantly alter cellular uptake of H-ritonavir in Caco-2 cells. A similar result was also observed for silibinin when tested in MDR1-MDCK cells. Quercetin, hypericin, and kaempferol exhibited a remarkable inhibition of P-gp-mediated efflux of ritonavir by increasing its cellular uptake in these models. These values were also comparable with the inhibitory effect of quinidine in Caco-2 cells, a well-known inhibitor of P-gp, on ritonavir efflux from Caco-2 cells. Allicin exhibited a concentration-dependent inhibition of ritonavir efflux when tested on MDR1-MDCK cells. There was a significant decrease in the Apical to Basal/Basal to Apical (AP-BL/BL-AP) transport ratio of ritonavir in presence of hypericin, kaempferol, and quercetin. These herbal constituents inhibited the CYP3A4 activity when tested with the Vivid CYP3A4 assay kit, whereas silibinin did not alter cortisol metabolism. Hypericin showed a significant inhibition in reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent metabolism of cortisol with 64.6% of intact drug at the end of a 1

  12. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    PubMed

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Identification of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with no evidence of CYP3A4 time-dependent inhibition and improved aqueous solubility.

    PubMed

    Zak, Mark; Liederer, Bianca M; Sampath, Deepak; Yuen, Po-Wai; Bair, Kenneth W; Baumeister, Timm; Buckmelter, Alexandre J; Clodfelter, Karl H; Cheng, Eric; Crocker, Lisa; Fu, Bang; Han, Bingsong; Li, Guangkun; Ho, Yen-Ching; Lin, Jian; Liu, Xiongcai; Ly, Justin; O'Brien, Thomas; Reynolds, Dominic J; Skelton, Nicholas; Smith, Chase C; Tay, Suzanne; Wang, Weiru; Wang, Zhongguo; Xiao, Yang; Zhang, Lei; Zhao, Guiling; Zheng, Xiaozhang; Dragovich, Peter S

    2015-02-01

    Herein we report the optimization efforts to ameliorate the potent CYP3A4 time-dependent inhibition (TDI) and low aqueous solubility exhibited by a previously identified lead compound from our NAMPT inhibitor program (1, GNE-617). Metabolite identification studies pinpointed the imidazopyridine moiety present in 1 as the likely source of the TDI signal, and replacement with other bicyclic systems was found to reduce or eliminate the TDI finding. A strategy of reducing the number of aromatic rings and/or lowering cLogD7.4 was then employed to significantly improve aqueous solubility. These efforts culminated in the discovery of 42, a compound with no evidence of TDI, improved aqueous solubility, and robust efficacy in tumor xenograft studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Fatty acid amide hydrolase: from characterization to therapeutics.

    PubMed

    Labar, Geoffray; Michaux, Catherine

    2007-08-01

    Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family that terminates the action of several endogenous lipid messengers, including oleamide and the endocannabinoid anandamide. The hydrolysis of such messengers leads to molecules devoid of biological activity, and, therefore, modulates a number of neurobehavioral processes in mammals, including pain, sleep, feeding, and locomotor activity. Investigations into the structure and function of FAAH, its biological and therapeutic implications, as well as a description of different families of FAAH inhibitors are the topic of this review.

  15. Effect of coadministration of ketoconazole, a strong CYP3A4 inhibitor, on pharmacokinetics and tolerability of motesanib diphosphate (AMG 706) in patients with advanced solid tumors.

    PubMed

    Lorusso, Patricia; Heath, Elisabeth I; McGreivy, Jesse; Sun, Yu-Nien; Melara, Rebeca; Yan, Lucy; Malburg, Lisa; Ingram, Megan; Wiezorek, Jeffrey; Chen, Li; Pilat, Mary Jo

    2008-10-01

    Motesanib diphosphate is a novel angiogenesis inhibitor selectively targeting vascular endothelial growth factor receptors 1, 2, and 3; platelet-derived growth factor receptor and stem cell factor receptor. The purpose of this phase 1b, drug-drug interaction study was to investigate the effect of ketoconazole, a strong inhibitor of the cytochrome P450 3A4 isoenzyme, on the pharmacokinetics and tolerability of motesanib diphosphate. Fourteen patients with advanced solid tumors refractory to standard treatment were enrolled and received motesanib diphosphate 50 mg once daily from day 1 through 15. Patients were randomized to receive a single oral dose of ketoconazole 400 mg either on day 8 (Sequence 1; n = 7) or day 15 (Sequence 2; n = 7), while pharmacokinetic samples were collected. After completion of this part (day 16), 13 patients received an escalated once-daily dose of motesanib diphosphate 125 mg. Evaluable pharmacokinetic data (n = 12) suggest that ketoconazole modestly increased motesanib exposure. The motesanib area under the concentration-time curve (AUC) from 0 to 24 h increased by 86% (90% CI, 1.50-2.29; P < 0.001) and the maximum plasma concentration (C (max)) by 35% (90% CI, 1.12-1.64; P = 0.02), compared with motesanib diphosphate administration alone. The tolerability profile (with or without ketoconazole coadministration) was consistent with that from other motesanib diphosphate monotherapy studies. Treatment-related adverse events were mild to moderate and commonly included fatigue (50% of patients), hypertension (43%), diarrhea (21%), dizziness (14%), paresthesia (14%), and vomiting (14%). Hypertension was the most common related grade 3 event (21%). No grade 4 or 5 treatment-related adverse events occurred.

  16. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models.

    PubMed

    Vossen, Michaela; Sevestre, Michael; Niederalt, Christoph; Jang, In-Jin; Willmann, Stefan; Edginton, Andrea N

    2007-03-26

    Drug-drug interactions resulting from the inhibition of an enzymatic process can have serious implications for clinical drug therapy. Quantification of the drugs internal exposure increase upon administration with an inhibitor requires understanding to avoid the drug reaching toxic thresholds. In this study, we aim to predict the effect of the CYP3A4 inhibitors, itraconazole (ITZ) and its primary metabolite, hydroxyitraconazole (OH-ITZ) on the pharmacokinetics of the anesthetic, midazolam (MDZ) and its metabolites, 1' hydroxymidazolam (1OH-MDZ) and 1' hydroxymidazolam glucuronide (1OH-MDZ-Glu) using mechanistic whole body physiologically-based pharmacokinetic simulation models. The model is build on MDZ, 1OH-MDZ and 1OH-MDZ-Glu plasma concentration time data experimentally determined in 19 CYP3A5 genotyped adult male individuals, who received MDZ intravenously in a basal state. The model is then used to predict MDZ, 1OH-MDZ and 1OH-MDZ-Glu concentrations in an CYP3A-inhibited state following ITZ administration. For the basal state model, three linked WB-PBPK models (MDZ, 1OH-MDZ, 1OH-MDZ-Glu) for each individual were elimination optimized that resulted in MDZ and metabolite plasma concentration time curves that matched individual observed clinical data. In vivo Km and Vmax optimized values for MDZ hydroxylation were similar to literature based in vitro measures. With the addition of the ITZ/OH-ITZ model to each individual coupled MDZ + metabolite model, the plasma concentration time curves were predicted to greatly increase the exposure of MDZ as well as to both increase exposure and significantly alter the plasma concentration time curves of the MDZ metabolites in comparison to the basal state curves. As compared to the observed clinical data, the inhibited state curves were generally well described although the simulated concentrations tended to exceed the experimental data between approximately 6 to 12 hours following MDZ administration. This deviations appeared

  17. Curcuminoids inhibit multiple human cytochromes P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes, while piperine is a relatively selective CYP3A4 inhibitor

    PubMed Central

    Volak, Laurie P.; Ghirmai, Senait; Cashman, John R.; Court, Michael H.

    2008-01-01

    Curcuminoid extract and piperine are being evaluated for beneficial effects in Alzheimer’s disease, among other intractable disorders. Consequently, we studied the potential for herb-drug interactions involving cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes. The curcuminoid extract inhibited SULT > CYP2C19 > CYP2B6 > UGT > CYP2C9 > CYP3A activities with IC50 values ranging from 0.99 ± 0.04 to 25.3 ± 1.3 μM, while CYP2D6, CYP1A2, and CYP2E1 activities were less affected (IC50 values >60 μM). Inhibition of CYP3A activity by curcuminoid extract was consistent with competitive inhibition (Ki = 11.0 ± 1.3 μM), while inhibition of both CYP2C9 and CYP2C19 activities were consistent with mixed competitive-noncompetitive inhibition (10.6 ± 1.1 μM and 7.8 ± 0.9 μM, respectively). Piperine was a relatively selective noncompetitive inhibitor of CYP3A (IC50 5.5 ± 0.7 μM, Ki = 5.4 ± 0.3 μM) with less effect on other enzymes evaluated (IC50 >29 μM). Curcuminoid extract and piperine inhibited recombinant CYP3A4 much more potently (by >5-fold) than CYP3A5. Pure synthetic curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were also evaluated for their effects on CYP3A, CYP2C9, UGT, and SULT activities. All three curcuminoids had similar effects on CYP3A, UGT, and SULT activity, but demethoxycurcumin (IC50 = 8.8 ± 1.2 μM) was more active against CYP2C9 than either curcumin or bisdemethoxycurcumin (IC50 >50 μM). Based on these data and expected tissue concentrations of inhibitors, we predict that an orally administered curcuminoid/piperine combination is most likely to inhibit CYP3A, CYP2C9, UGT, and SULT metabolism within the intestinal mucosa. PMID:18480186

  18. Crystallization and preliminary X-ray diffraction study of two complexes of a TAXI-type xylanase inhibitor with glycoside hydrolase family 11 xylanases from Aspergillus niger and Bacillus subtilis.

    PubMed

    Sansen, Stefaan; De Ranter, Camiel J; Gebruers, Kurt; Brijs, Kristof; Courtin, Christophe M; Delcour, Jan A; Rabijns, Anja

    2004-03-01

    Endo-beta-1,4-xylanases hydrolyze arabinoxylan, a major constituent of cereal cell walls, and are nowadays widely used in biotechnological processes. Purified complexes of family 11 xylanases from Aspergillus niger and Bacillus subtilis with TAXI I, a TAXI-type xylanase inhibitor from Triticum aestivum L., were prepared. In both cases the complex was crystallized using the hanging-drop vapour-diffusion method. The needle-like crystals of TAXI I in complex with A. niger xylanase belong to the trigonal space group P3(1) or P3(2), with unit-cell parameters a = b = 88.43, c = 128.99 A, and diffract to 1.8 A resolution. TAXI I in complex with B. subtilis xylanase crystallizes in the monoclinic space group C2, with a = 107.89, b = 95.33, c = 66.31 A, beta = 122.24 degrees. Complete data sets were collected for both crystal types using synchrotron radiation.

  19. An anatomical and temporal portrait of physiological substrates for fatty acid amide hydrolase[S

    PubMed Central

    Long, Jonathan Z.; LaCava, Melanie; Jin, Xin; Cravatt, Benjamin F.

    2011-01-01

    Fatty acid amide hydrolase (FAAH) regulates amidated lipid transmitters, including the endocannabinoid anandamide and its N-acyl ethanolamine (NAE) congeners and transient receptor potential channel agonists N-acyl taurines (NATs). Using both the FAAH inhibitor PF-3845 and FAAH(−/−) mice, we present a global analysis of changes in NAE and NAT metabolism caused by FAAH disruption in central and peripheral tissues. Elevations in anandamide (and other NAEs) were tissue dependent, with the most dramatic changes occurring in brain, testis, and liver of PF-3845-treated or FAAH(−/−) mice. Polyunsaturated NATs accumulated to very high amounts in the liver, kidney, and plasma of these animals. The NAT profile in brain tissue was markedly different and punctuated by significant increases in long-chain NATs found exclusively in FAAH(−/−), but not in PF-3845-treated animals. Suspecting that this difference might reflect a slow pathway for NAT biosynthesis, we treated mice chronically with PF-3845 for 6 days and observed robust elevations in brain NATs. These studies, taken together, define the anatomical and temporal features of FAAH-mediated NAE and NAT metabolism, which are complemented and probably influenced by kinetically distinguishable biosynthetic pathways that produce these lipids in vivo. PMID:21097653

  20. Molecular characterization of aspartylglucosaminidase, a lysosomal hydrolase upregulated during strobilation in the moon jellyfish, Aurelia aurita.

    PubMed

    Tsujita, Natsumi; Kuwahara, Hiroyuki; Koyama, Hiroki; Yanaka, Noriyuki; Arakawa, Kenji; Kuniyoshi, Hisato

    2017-05-01

    The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.

  1. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  2. Development of Guanfacine Extended-Release Dosing Strategies in Children and Adolescents with ADHD Using a Physiologically Based Pharmacokinetic Model to Predict Drug-Drug Interactions with Moderate CYP3A4 Inhibitors or Inducers.

    PubMed

    Li, Aiqun; Yeo, Karen; Welty, Devin; Rong, Haojing

    2018-04-01

    Guanfacine extended-release (GXR) is an orally administered, non-stimulant treatment for children and adolescents with attention-deficit/hyperactivity disorder (ADHD) and is primarily metabolized by the 3A4 isozyme of cytochrome P450 (CYP3A4). The results of clinical pharmacokinetic (PK) studies indicate that guanfacine is sensitive to drug-drug interactions (DDIs) perpetrated by strong inhibitors and inducers of CYP3A4. The aim was to provide guidance on the possible requirement for GXR dose adjustment in children and adolescents with ADHD by predicting DDIs following co-administration with moderate CYP3A4 inhibitors and inducers. A physiologically based PK model for GXR orally administered to healthy adults was developed based on physicochemical, in vitro and clinical PK data. The model was validated using clinical PK data for co-administration of GXR with ketoconazole (strong CYP3A4 inhibitor) or rifampicin (strong CYP3A4 inducer). Model predictions indicated that co-administration of GXR with the moderate CYP3A4 inhibitors erythromycin 500 mg three times a day or fluconazole 200 mg daily (q.d.) increased the guanfacine area under the plasma concentration-time curve (AUC) by 2.31-fold or 1.98-fold, respectively, compared with GXR monotherapy. The moderate CYP3A4 inducer efavirenz 400 mg or 600 mg q.d. was predicted to reduce guanfacine AUC to 58 or 33% of its value for GXR monotherapy, respectively. Without the requirement for additional clinical studies, the following GXR dose recommendations were developed and approved for US labeling for use in children and adolescents with ADHD: (1) decrease GXR to 50% of the usual target dose when it is co-administered with strong or moderate CYP3A4 inhibitors; (2) consider titrating GXR up to double the usual target dose over 1-2 weeks when it is co-administered with strong or moderate CYP3A4 inducers.

  3. Structure and function of polyglycine hydrolases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave polyglycine linkers of targeted plant defense chitinases. Unlike typical endoproteases that cleave a specific peptide bond, these 640 amino acid glycoproteins selectively cleave one of multiple peptide bonds within polyglyci...

  4. Cavities create a potential back door in epoxide hydrolase Rv1938 from Mycobacterium tuberculosis-A molecular dynamics simulation study.

    PubMed

    Selvan, Anitha; Anishetty, Sharmila

    2015-10-01

    Mycobacterium tuberculosis (Mtb) is the causative organism of tuberculosis. Extensively drug resistant strains and latency have posed formidable challenges in the treatment of tuberculosis. The current study addresses an alpha/beta hydrolase fold bearing enzyme, epoxide hydrolase Rv1938 from Mtb. Epoxide hydrolases are involved in detoxification processes, catabolism and regulation of signaling molecules. Using GROMACS, a 100ns Molecular Dynamics (MD) simulation was performed for Rv1938. Cavities were identified within the protein at various time frames of the simulation and their volumes were computed. During MD simulation, in addition to the substrate binding cavity, opening of two new cavities located behind the active site was observed. These cavities may be similar to the backdoor proposed for acetylcholinesterase. Structural superimposition of epoxide hydrolase from Mtb with the epoxide hydrolase of Agrobacterium radiobacter1 AD1 (Ephy) indicates that cavity1 in Mtb lies at an identical position to that of the water tunnel in Ephy. Further, docking of the substrate and an inhibitor with protein structures obtained from MD simulation at various time frames was also performed. The potential role of these cavities is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Soluble epoxide hydrolase inhibitory activity of components from Leonurus japonicus.

    PubMed

    Leem, Hyun Hee; Lee, Ga Young; Lee, Ji Sun; Lee, Hanna; Kim, Jang Hoon; Kim, Young Ho

    2017-10-01

    One new compound, 10-methoxy-leonurine (1), and four known compounds (2-5) were purified by silica gel, C-18, and Sephadex LH-20 column chromatography from Leonurus japonicus. Their structures were elucidated using one-dimensional (1D)/two-dimensional (2D)-nuclear magnetic resonance (NMR), high-resolution (HR)-electrospray ionization (ESI) mass spectrometry (MS). The compounds were evaluated to determine their inhibition of the catalysis of soluble epoxide hydrolase (sEH). According to the results from in vitro analyses, compounds 1 and 2, which contain guanidine and flavonoid (3), were determined to be potential inhibitors of this enzyme. All compounds were revealed to be non-competitive inhibitors according to Lineweaver-Burk plots. Furthermore, in silico molecular docking indicated that compounds 1-3 are bound to sEH in a similar fashion and have stable binding energies, as calculated by AutoDock 4.2. Molecular dynamics determined the root-mean-square deviation (RMSD), total energy, RMS fluctuation (RMSF), hydrogen bonds, and distance of the complex according to time. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  7. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    DTIC Science & Technology

    1986-07-01

    carboxylester hydrolases and pancreatic proteinases (3). The choice of organophosphinate candidates for pretreatment agents should be made with these factors...M 4 Q r 000 44 Table 11. Purification of arylester hydrolase Specific Total Total Activity Volume Activity Proteina (Umoles/ Purifi- Fraction (mL...reaction products after the racemic mixture was exposed to arylester hydrolase (EC 3.1.1.2) or proteinases ; chiral-phase capillary gas-liquid

  8. Evaluation of fish models of soluble epoxide hydrolase inhibition.

    PubMed Central

    Newman, J W; Denton, D L; Morisseau, C; Koger, C S; Wheelock, C E; Hinton, D E; Hammock, B D

    2001-01-01

    Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrolysis and inhibitor susceptibility. Low lethality was observed in either larval or embryonic fish exposed to diuron [N-(3,4-dichlorophenyl), N'-dimethyl urea], desmethyl diuron [N-(3,4-dichlorophenyl), N'-methyl urea], or siduron [N-(1-methylcyclohexyl), N'-phenyl urea]. Dose-dependent inhibition of sEH was a sublethal effect of substituted urea exposure with the potency of siduron < desmethyl diuron = diuron, differing from the observed in vitro sEH inhibition potency of siduron > desmethyl diuron > diuron. Further, siduron exposure synergized the toxicity of trans-stilbene oxide in fathead minnows. Medaka embryos exposed to diuron, desmethyl diuron, or siduron displayed dose-dependent delays in hatch, and elevated concentrations of diuron and desmethyl diuron produced developmental toxicity. The dose-dependent toxicity and in vivo sEH inhibition correlated, suggesting a potential, albeit undefined, relationship between these factors. Additionally, the observed inversion of in vitro to in vivo potency suggests that these fish models may provide tools for investigating the in vivo stability of in vitro inhibitors while screening for untoward effects. PMID:11171526

  9. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis

    SciTech Connect

    Lack, Nathan; Lowe, Edward D.; Liu, Jie

    2008-01-01

    The structure of HsaD, a carbon–carbon bond serine hydrolase involved in steroid catabolism that is critical for the survival of M. tuberculosis inside human macrophages, has been solved by X-ray crystallography. Data were collected at the Diamond Light Source in Oxfordshire, England: this paper describes one of the first structures determined at the new synchrotron. Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavagemore » product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon–carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 Å resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors’ knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors.« less

  10. S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism.

    PubMed

    Baric, Ivo; Fumic, Ksenija; Glenn, Byron; Cuk, Mario; Schulze, Andreas; Finkelstein, James D; James, S Jill; Mejaski-Bosnjak, Vlatka; Pazanin, Leo; Pogribny, Igor P; Rados, Marko; Sarnavka, Vladimir; Scukanec-Spoljar, Mira; Allen, Robert H; Stabler, Sally; Uzelac, Lidija; Vugrek, Oliver; Wagner, Conrad; Zeisel, Steven; Mudd, S Harvey

    2004-03-23

    We report studies of a Croatian boy, a proven case of human S-adenosylhomocysteine (AdoHcy) hydrolase deficiency. Psychomotor development was slow until his fifth month; thereafter, virtually absent until treatment was started. He had marked hypotonia with elevated serum creatine kinase and transaminases, prolonged prothrombin time and low albumin. Electron microscopy of muscle showed numerous abnormal myelin figures; liver biopsy showed mild hepatitis with sparse rough endoplasmic reticulum. Brain MRI at 12.7 months revealed white matter atrophy and abnormally slow myelination. Hypermethioninemia was present in the initial metabolic study at age 8 months, and persisted (up to 784 microM) without tyrosine elevation. Plasma total homocysteine was very slightly elevated for an infant to 14.5-15.9 microM. In plasma, S-adenosylmethionine was 30-fold and AdoHcy 150-fold elevated. Activity of AdoHcy hydrolase was approximately equal to 3% of control in liver and was 5-10% of the control values in red blood cells and cultured fibroblasts. We found no evidence of a soluble inhibitor of the enzyme in extracts of the patient's cultured fibroblasts. Additional pretreatment abnormalities in plasma included low concentrations of phosphatidylcholine and choline, with elevations of guanidinoacetate, betaine, dimethylglycine, and cystathionine. Leukocyte DNA was hypermethylated. Gene analysis revealed two mutations in exon 4: a maternally derived stop codon, and a paternally derived missense mutation. We discuss reasons for biochemical abnormalities and pathophysiological aspects of AdoHcy hydrolase deficiency.

  11. Bile acids and their oxo derivatives: Potential inhibitors of carbonic anhydrase I and II, androgen receptor antagonists and CYP3A4 substrates.

    PubMed

    Trifunović, Jovana; Borčić, Vladan; Mikov, Momir

    2017-05-01

    Some biological properties of bile acids and their oxo derivatives have not been sufficiently investigated, although the interest in bile acids as signaling molecules is rising. The aim of this work was to evaluate physico-chemical parametar b (slope) that represents the lipophilicity of the examined molecules and to investigate interactions of bile acids with carbonic anhydrase I, II, androgen receptor and CYP450s. Thirteen candidates were investigated using normal-phase thin-layer chromatography in two solvent systems. Retention parameters were used in further quantitative structure-activity relationship analysis and docking studies to predict interactions and binding affinities of examined molecules with enzymes and receptors. Prediction of activity on androgen receptor showed that compounds 3α-hydroxy-12-oxo-5β-cholanoic and 3α-hydroxy-7-oxo-5β-cholanoic acid have stronger antiandrogen activity than natural bile acids. The inhibitory potential for carbonic anhydrase I and II was tested and it was concluded that molecules 3α-hydroxy-12-oxo-5β-cholanoic, 3α-hydroxy-7-oxo-5β-cholanoic, 3,7,12-trioxo-5β-cholanoic acid and hyodeoxycholic acid show the best results. Substrate behavior for CYP3A4 was confirmed for all investigated compounds. Oxo derivatives of bile acids show stronger interactions with enzymes and receptors as classical bile acids and lower membranolytic activity compared with them. These significant observations could be valuable in consideration of oxo derivatives as building blocks in medicinal chemistry. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Epoxide hydrolase affects estrogen production in the human ovary.

    PubMed

    Hattori, N; Fujiwara, H; Maeda, M; Fujii, S; Ueda, M

    2000-09-01

    To investigate the mechanisms of ovarian cell differentiation, we raised a new monoclonal antibody, HCL-3, which reacted with human luteal cells. It also reacted with human and porcine hepatocytes. The immunoaffinity-purified HCL-3 antigen from human corpora lutea (CL) was shown to be a 46-kDa protein. The N-terminal 22 amino acids of the 46-kDa protein from porcine liver exhibited high homology (82%) to human microsomal epoxide hydrolase (mEH). The purified HCL-3 antigen from human CL or porcine liver showed EH enzyme activity, confirming that HCL-3 antigen is identical to mEH, which is reported to detoxify the toxic substrates in the liver. In human follicles, mEH was immunohistochemically detected on granulosa and theca interna cells. In the menstrual and pregnant CL, mEH was also expressed on large and small luteal cells. A competitive inhibitor of EH, 1,2-epoxy-3,3,3-trichloropropane, inhibited the conversion of estradiol from testosterone by granulosa cells cultured in vitro, indicating the involvement of mEH in ovarian estrogen production. Because anticonvulsant sodium valproate and its analogues were reported to inhibit EH enzyme activity, these findings provide a new insight into the etiology of endocrine disorders that are frequently observed among epileptic patients taking anticonvulsant drugs.

  13. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    PubMed

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Inhibition of polygylcine hydrolases by substrate analog peptides

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases are proteases secreted by fungal pathogens that target corn defense chitinases. They cleave interdomain glycine-glycine bonds within a polyglycine linker, separating substrate chitinases into two single domain proteins. Polyglycine hydrolases consist of 640 amino acids with a ...

  15. Protein Complexes and Proteolytic Activation of the Cell Wall Hydrolase RipA Regulate Septal Resolution in Mycobacteria

    PubMed Central

    Minami, Shoko; Mavrici, Daniela; Aldridge, Bree B.; Fortune, Sarah M.; Alber, Tom; Rubin, Eric J.

    2013-01-01

    Peptidoglycan hydrolases are a double-edged sword. They are required for normal cell division, but when dysregulated can become autolysins lethal to bacteria. How bacteria ensure that peptidoglycan hydrolases function only in the correct spatial and temporal context remains largely unknown. Here, we demonstrate that dysregulation converts the essential mycobacterial peptidoglycan hydrolase RipA to an autolysin that compromises cellular structural integrity. We find that mycobacteria control RipA activity through two interconnected levels of regulation in vivo—protein interactions coordinate PG hydrolysis, while proteolysis is necessary for RipA enzymatic activity. Dysregulation of RipA protein complexes by treatment with a peptidoglycan synthase inhibitor leads to excessive RipA activity and impairment of correct morphology. Furthermore, expression of a RipA dominant negative mutant or of differentially processed RipA homologues reveals that RipA is produced as a zymogen, requiring proteolytic processing for activity. The amount of RipA processing differs between fast-growing and slow-growing mycobacteria and correlates with the requirement for peptidoglycan hydrolase activity in these species. Together, the complex picture of RipA regulation is a part of a growing paradigm for careful control of cell wall hydrolysis by bacteria during growth, and may represent a novel target for chemotherapy development. PMID:23468634

  16. Recognition of corn defense chitinases by fungal polyglycine hydrolases.

    PubMed

    Naumann, Todd A; Bakota, Erica L; Price, Neil P J

    2017-06-01

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn (Zea mays ssp. mays). These target-specific endoproteases are unusual because they do not cut a specific peptide bond but select one of many Gly-Gly bonds within the polyglycine region. Some Gly-Gly bonds are cleaved frequently while others are never cleaved. Moreover, we have previously shown that PGHs from different fungal pathogens prefer to cleave different Gly-Gly peptide bonds. It is not understood how PGHs selectively cleave the ChitA linker, especially because its polyglycine structure lacks peptide sidechains. To gain insights into this process we synthesized several peptide analogs of ChitA to evaluate them as potential substrates and inhibitors of Es-cmp, a PGH from the plant pathogenic fungus Epicoccum sorghi. Our results showed that part of the PGH recognition site for substrate chitinases is adjacent to the polyglycine linker on the carboxy side. More specifically, four amino acid residues were implicated, each spaced four residues apart on an alpha helix. Moreover, analogous peptides with selective Gly->sarcosine (N-methylglycine) mutations or a specific Ser->Thr mutation retained inhibitor activity but were no longer cleaved by PGH. Additonally, our findings suggest that peptide analogs of ChitA that inhibit PGH activity could be used to strengthen plant defenses. Published by Wiley-Blackwell. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  17. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase[S

    PubMed Central

    Hayes, Alexander C.; Stupak, Jacek; Li, Jianjun; Cox, Andrew D.

    2013-01-01

    N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling. PMID:23187822

  18. Computational insights into function and inhibition of fatty acid amide hydrolase.

    PubMed

    Palermo, Giulia; Rothlisberger, Ursula; Cavalli, Andrea; De Vivo, Marco

    2015-02-16

    The Fatty Acid Amide Hydrolase (FAAH) enzyme is a membrane-bound serine hydrolase responsible for the deactivating hydrolysis of a family of naturally occurring fatty acid amides. FAAH is a critical enzyme of the endocannabinoid system, being mainly responsible for regulating the level of its main cannabinoid substrate anandamide. For this reason, pharmacological inhibition of FAAH, which increases the level of endogenous anandamide, is a promising strategy to cure a variety of diseases including pain, inflammation, and cancer. Much structural, mutagenesis, and kinetic data on FAAH has been generated over the last couple of decades. This has prompted several informative computational investigations to elucidate, at the atomic-level, mechanistic details on catalysis and inhibition of this pharmaceutically relevant enzyme. Here, we review how these computational studies - based on classical molecular dynamics, full quantum mechanics, and hybrid QM/MM methods - have clarified the binding and reactivity of some relevant substrates and inhibitors of FAAH. We also discuss the experimental implications of these computational insights, which have provided a thoughtful elucidation of the complex physical and chemical steps of the enzymatic mechanism of FAAH. Finally, we discuss how computations have been helpful for building structure-activity relationships of potent FAAH inhibitors. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening

    PubMed Central

    Bachovchin, Daniel A.; Ji, Tianyang; Li, Weiwei; Simon, Gabriel M.; Blankman, Jacqueline L.; Adibekian, Alexander; Hoover, Heather; Niessen, Sherry; Cravatt, Benjamin F.

    2010-01-01

    Serine hydrolases (SHs) are one of the largest and most diverse enzyme classes in mammals. They play fundamental roles in virtually all physiological processes and are targeted by drugs to treat diseases such as diabetes, obesity, and neurodegenerative disorders. Despite this, we lack biological understanding for most of the 110+ predicted mammalian metabolic SHs, in large part because of a dearth of assays to assess their biochemical activities and a lack of selective inhibitors to probe their function in living systems. We show here that the vast majority (> 80%) of mammalian metabolic SHs can be labeled in proteomes by a single, active site-directed fluorophosphonate probe. We exploit this universal activity-based assay in a library-versus-library format to screen 70+ SHs against 140+ structurally diverse carbamates. Lead inhibitors were discovered for ∼40% of the screened enzymes, including many poorly characterized SHs. Global profiles identified carbamate inhibitors that discriminate among highly sequence-related SHs and, conversely, enzymes that share inhibitor sensitivity profiles despite lacking sequence homology. These findings indicate that sequence relatedness is not a strong predictor of shared pharmacology within the SH superfamily. Finally, we show that lead carbamate inhibitors can be optimized into pharmacological probes that inactivate individual SHs with high specificity in vivo. PMID:21084632

  20. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    SciTech Connect

    Vose, Sarah C.; Center for Children's Environmental Health Research, School of Public Health, University of California, Berkeley, CA 94720; Holland, Nina T.

    2007-10-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC{sub 50} valuesmore » of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.« less

  1. The role of epoxide hydrolases in health and disease.

    PubMed

    El-Sherbeni, Ahmed A; El-Kadi, Ayman O S

    2014-11-01

    Epoxide hydrolases (EH) are ubiquitously expressed in all living organisms and in almost all organs and tissues. They are mainly subdivided into microsomal and soluble EH and catalyze the hydration of epoxides, three-membered-cyclic ethers, to their corresponding dihydrodiols. Owning to the high chemical reactivity of xenobiotic epoxides, microsomal EH is considered protective enzyme against mutagenic and carcinogenic initiation. Nevertheless, several endogenously produced epoxides of fatty acids function as important regulatory mediators. By mediating the formation of cytotoxic dihydrodiol fatty acids on the expense of cytoprotective epoxides of fatty acids, soluble EH is considered to have cytotoxic activity. Indeed, the attenuation of microsomal EH, achieved by chemical inhibitors or preexists due to specific genetic polymorphisms, is linked to the aggravation of the toxicity of xenobiotics, as well as the risk of cancer and inflammatory diseases, whereas soluble EH inhibition has been emerged as a promising intervention against several diseases, most importantly cardiovascular, lung and metabolic diseases. However, there is reportedly a significant overlap in substrate selectivity between microsomal and soluble EH. In addition, microsomal and soluble EH were found to have the same catalytic triad and identical molecular mechanism. Consequently, the physiological functions of microsomal and soluble EH are also overlapped. Thus, studying the biological effects of microsomal or soluble EH alterations needs to include the effects on both the metabolism of reactive metabolites, as well as epoxides of fatty acids. This review focuses on the multifaceted role of EH in the metabolism of xenobiotic and endogenous epoxides and the impact of EH modulations.

  2. Soluble epoxide hydrolase disruption as therapeutic target for wound healing.

    PubMed

    Sander, Anna L; Sommer, Katharina; Neumayer, Thomas; Fleming, Ingrid; Marzi, Ingo; Barker, John H; Frank, Johannes; Jakob, Heike

    2013-06-15

    Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) possess angiogenic effects. However, the effect of CYP-derived EETs and soluble epoxide hydrolase (sEH) deletion on wound healing in vivo has not been rigorously investigated. In this study, we measured the effect of exogenous CYP-derived EETs and targeted disruption of sEH in an in vivo wound model. Standardized full-thickness dermal wounds were created on the dorsum of mouse ears. Wound epithelialization was directly viewed and measured using intravital microscopy and computerized planimetry every second day until healing was complete. Wound sections were analyzed by immunostaining for metalloproteinase (MMP) 2, MMP7, MMP9, tissue inhibitor of metalloproteinases (TIMP) 1, and tumor necrosis factor (TNF) α on days 2, 4, and 12. Treatment with 11,12-EETs, 14,15-EETs, and sEH deletion significantly accelerated wound closure. This effect was attenuated by the EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) in sEH(-/-) mice. Neither 11,12- nor 14,15-EETs caused significant alterations in MMP9 expression in wounds. In contrast, MMP2 and MMP7 were significantly upregulated in the EET-treated groups, whereas TIMP1 and TNF-α were downregulated. Collectively, these data demonstrated that potentiation of the CYP epoxy-genase pathway by either exogenous CYP-derived EETs or sEH deletion significantly accelerated wound epithelialization in vivo. This beneficial effect might be due to downregulation of TNF-α production and, to a lesser degree, to the release of MMPs and could be used as a viable angiogenic therapeutic strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Trehalose-6-phosphate hydrolase of Escherichia coli.

    PubMed Central

    Rimmele, M; Boos, W

    1994-01-01

    The disaccharide trehalose acts as an osmoprotectant as well as a carbon source in Escherichia coli. At high osmolarity of the growth medium, the cells synthesize large amounts of trehalose internally as an osmoprotectant. However, they can also degrade trehalose as the sole source of carbon under both high- and low-osmolarity growth conditions. The modes of trehalose utilization are different under the two conditions and have to be well regulated (W. Boos, U. Ehmann, H. Forkl, W. Klein, M. Rimmele, and P. Postma, J. Bacteriol. 172:3450-3461, 1990). At low osmolarity, trehalose is transported via a trehalose-specific enzyme II of the phosphotransferase system, encoded by treB. The trehalose-6-phosphate formed internally is hydrolyzed to glucose and glucose 6-phosphate by the key enzyme of the system, trehalose-6-phosphate hydrolase, encoded by treC. We have cloned treC, contained in an operon with treB as the promoter-proximal gene. We have overproduced and purified the treC gene product and identified it as a protein consisting of a single polypeptide with an apparent molecular weight of 62,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme hydrolyzes trehalose-6-phosphate with a Km of 6 mM and a Vmax of at least 5.5 mumol of trehalose-6-phosphate hydrolyzed per min per mg of protein. The enzyme also very effectively hydrolyzes p-nitrophenyl-alpha-D-glucopyranoside, but it does not recognize trehalose, sucrose, maltose, isomaltose, or maltodextrins. treC was sequenced and found to encode a polypeptide with a calculated molecular weight of 63,781. The amino acid sequence deduced from the DNA sequence shows homology (50% identity) with those of oligo-1,6-glucosidases (sucrase-isomaltases) of Bacillus spp. but not with those of other disaccharide phosphate hydrolases. This report corrects our previous view on the function of the treC gene product as an amylotrehalase, which was based on the analysis of the metabolic products of

  4. Crystallization and preliminary X-ray diffraction studies of cyanuric acid hydrolase from Azorhizobium caulinodans.

    PubMed

    Cho, Seunghee; Shi, Ke; Wackett, Lawrence P; Aihara, Hideki

    2013-08-01

    Cyanuric acid is synthesized industrially and forms during the microbial metabolism of s-triazine herbicides. Cyanuric acid is metabolized by some microorganisms via cyanuric acid hydrolase (CAH), which opens the s-triazine ring as a prelude to further metabolism. CAH is a member of the rare cyanuric acid hydrolase/barbiturase family. Here, the crystallization and preliminary X-ray diffraction analysis of CAH from Azorhizobium caulinodans are reported. CAH was cocrystallized with barbituric acid, a close analog of cyanuric acid that is a tight-binding competitive inhibitor. Crystals suitable for X-ray diffraction experiments were grown in conditions containing PEG 8K or magnesium sulfate as precipitants. An X-ray diffraction data set was collected from CAH-barbituric acid crystals to 2.7 Å resolution. The crystals were found to belong to space group I4₁22, with unit-cell parameters a = b = 237.9, c = 105.3 Å, α = β = γ = 90°.

  5. Crystallization and preliminary X-ray diffraction studies of cyanuric acid hydrolase from Azorhizobium caulinodans

    PubMed Central

    Cho, Seunghee; Shi, Ke; Wackett, Lawrence P.; Aihara, Hideki

    2013-01-01

    Cyanuric acid is synthesized industrially and forms during the microbial metabolism of s-triazine herbicides. Cyanuric acid is metabolized by some microorganisms via cyanuric acid hydrolase (CAH), which opens the s-triazine ring as a prelude to further metabolism. CAH is a member of the rare cyanuric acid hydrolase/barbiturase family. Here, the crystallization and preliminary X-ray diffraction analysis of CAH from Azorhizobium caulinodans are reported. CAH was cocrystallized with barbituric acid, a close analog of cyanuric acid that is a tight-binding competitive inhibitor. Crystals suitable for X-ray diffraction experiments were grown in conditions containing PEG 8K or magnesium sulfate as precipitants. An X-ray diffraction data set was collected from CAH–barbituric acid crystals to 2.7 Å resolution. The crystals were found to belong to space group I4122, with unit-cell parameters a = b = 237.9, c = 105.3 Å, α = β = γ = 90°. PMID:23908033

  6. Crystallization of dienelactone hydrolase in two space groups: structural changes caused by crystal packing

    PubMed Central

    Porter, Joanne L.; Carr, Paul D.; Collyer, Charles A.; Ollis, David L.

    2014-01-01

    Dienelactone hydrolase (DLH) is a monomeric protein with a simple α/β-hydrolase fold structure. It readily crystallizes in space group P212121 from either a phosphate or ammonium sulfate precipitation buffer. Here, the structure of DLH at 1.85 Å resolution crystallized in space group C2 with two molecules in the asymmetric unit is reported. When crystallized in space group P212121 DLH has either phosphates or sulfates bound to the protein in crucial locations, one of which is located in the active site, preventing substrate/inhibitor binding. Another is located on the surface of the enzyme coordinated by side chains from two different molecules. Crystallization in space group C2 from a sodium citrate buffer results in new crystallographic protein–protein interfaces. The protein backbone is highly similar, but new crystal contacts cause changes in side-chain orientations and in loop positioning. In regions not involved in crystal contacts, there is little change in backbone or side-chain configuration. The flexibility of surface loops and the adaptability of side chains are important factors enabling DLH to adapt and form different crystal lattices. PMID:25005082

  7. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis.

    PubMed

    Lack, Nathan; Lowe, Edward D; Liu, Jie; Eltis, Lindsay D; Noble, Martin E M; Sim, Edith; Westwood, Isaac M

    2008-01-01

    Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon-carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 A resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors' knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors.

  8. Alteration of the mutagenicity 3,3'-dichlorobenzidine by modifiers of rat hepatic epoxide hydrolase activity

    SciTech Connect

    Iba, M.M.

    1986-03-05

    The involvement of arene oxides in the activation of benzidines was assessed by examining the effect of (I) the epoxide hydrolase inhibitor trichloropropylene oxide (TCPO), (II) purified rat liver microsomal (P) epoxide hydrolase (EH), and (III) pretreatment of rats with phenobarbital (PB) on hepatic Sg- or P-catalyzed mutagenicity of benzidine (BZ) and 3,3'-dichlorobenzidine (DCB) to Salmonella TA 98. When catalyzed by Sg from untreated rats, the mutagenicity of DCB and BZ was 601 +/- 101 and 79 +/- 25 (His/sup +/ revertants/plate) respectively, but was 345 +/- 55 and 226 +/- 30 respectively, when catalyzed by microsomes (P) from untreatedmore » rats. PB-pretreatment enhanced the Sg-catalyzed mutagenicity of DCB and BZ (2.3-fold and 1.7-fold, respectively) and the P-catalyzed mutagenicity of DCB (1.7-fold), but totally inhibited the P-catalyzed mutagenicity of BZ. In TCPO-supplemented activating systems from PB-pretreated rats, the mutagenicity of DCB was enhanced in both Sg and P (1.9-fold and 1.6-fold, respectively), whereas that of BZ was unchanged. Added EH enhanced the P-catalyzed mutagenicity of DCB (1.4-fold) but had no effect on that of BZ, suggesting that the activity of the enzyme on DCB metabolites may not be entirely detoxifying. The data suggest that epoxidation may contribute to the activation of DCB but not BZ.« less

  9. Detoxification of environmental mutagens and carcinogens: Structure, mechanism, and evolution of liver epoxide hydrolase

    PubMed Central

    Argiriadi, Maria A.; Morisseau, Christophe; Hammock, Bruce D.; Christianson, David W.

    1999-01-01

    The crystal structure of recombinant murine liver cytosolic epoxide hydrolase (EC 3.3.2.3) has been determined at 2.8-Å resolution. The binding of a nanomolar affinity inhibitor confirms the active site location in the C-terminal domain; this domain is similar to that of haloalkane dehalogenase and shares the α/β hydrolase fold. A structure-based mechanism is proposed that illuminates the unique chemical strategy for the activation of endogenous and man-made epoxide substrates for hydrolysis and detoxification. Surprisingly, a vestigial active site is found in the N-terminal domain similar to that of another enzyme of halocarbon metabolism, haloacid dehalogenase. Although the vestigial active site does not participate in epoxide hydrolysis, the vestigial domain plays a critical structural role by stabilizing the dimer in a distinctive domain-swapped architecture. Given the genetic and structural relationships among these enzymes of xenobiotic metabolism, a structure-based evolutionary sequence is postulated. PMID:10485878

  10. Molecular cloning of a novel cDNA from Mus muscular BALB/c mice encoding glycosyl hydrolase family 1: a homolog of human lactase-phlorizin hydrolase.

    PubMed

    He, Wei; Ji, Zhen-Yu; Huang, Cheng-Yu

    2006-10-01

    To study the mechanism of lactose intolerance (LI) by cloning the mouse lactase cDNA and recombining a vector. METHODS Total murine RNA was isolated from the small intestine of a 4-week-old BALB/c mouse (d). Gene-specific primers were designed and synthesized according to the cDNA sequences of lactase-phlorizin hydrolase (LPH) in human, rat, and rabbit. A coding sequence (CDS) fragment was obtained using RT-PCR, and inserted into a clone vector pNEB-193, then the cDNA was sequenced and analyzed using bioinformatics. The cDNA from the BALB/c mouse with 912 bp encoding 303 amino acid residues. Analysis of the deduced amino acid sequence using bioinformatics revealed that this cDNA shared extensive sequence homology with human LPH containing a conserved glycosyl hydrolase family 1 motif important for regulating lactase intolerance. BALB/c mouse LPH cDNA (GenBank accession No: AY751548) provides a necessary foundation for study of the biological function and regulatory mechanism of the lactose intolerance in mice.

  11. Multiplex fluorescent, activity-based protein profiling identifies active α-glycosidases and other hydrolases in plants.

    PubMed

    Husaini, Amjad M; Morimoto, Kyoko; Chandrasekar, Balakumaran; Kelly, Steven; Kaschani, Farnusch; Palmero, Daniel; Jiang, Jianbing; Kaiser, Markus; Ahrazem, Oussama; Overkleeft, Hermen S; van der Hoorn, Renier A L

    2018-03-19

    With nearly 140 α-glycosidases in 14 different families, plants are well equipped with enzymes that can break the α-glucosidic bonds in a large diversity of molecules. Here, we introduce activity-based protein profiling (ABPP) of α-glycosidases in plants using α-configured cyclophellitol aziridine probes carrying various fluorophores or biotin. In Arabidopsis (Arabidopsis thaliana), these probes label members of the GH31 family of Glycosyl Hydrolases, including ER-resident α-glucosidase-II RSW3/PSL5 (Radial Swelling-3/Priority for Sweet Life-5) and Golgi-resident α-mannosidase-II HGL1, both of which trim N-glycans on glycoproteins. We detected the active state of extracellular α-glycosidases such as α-xylosidase XYL1, which acts on xyloglucans in the cell wall to promote cell expansion, and α-glucosidase AGLU1, which acts in starch hydrolysis and can suppress fungal invasion. Labelling of α-glycosidases generates pH-dependent signals that can be suppressed by α-glycosidase inhibitors in a broad range of plant species. To demonstrate its use on a non-model plant species, we applied ABPP on saffron crocus (Crocus sativa L.), a cash crop for the production of saffron spice. Using a combination of biotinylated glycosidase probes, we identified and quantified 67 active glycosidases in saffron crocus stigma, of which ten are differentially active. We also uncovered massive changes in hydrolase activities in the corms upon infection with Fusarium oxysporum using multiplex fluorescent labelling in combination with probes for serine hydrolases and cysteine proteases. These experiments demonstrate the ease with which active α-glycosidases and other hydrolases can be analysed through ABPP in model and non-model plants. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  12. Structure of XC6422 from Xanthomonas campestris at 1.6 Å resolution: a small serine α/β-hydrolase

    SciTech Connect

    Yang, Chao-Yu; Chin, Ko-Hsin; Chou, Chia-Cheng

    2006-06-01

    The crystal structure of a conserved hypothetical protein from X. campestris has been determined to a resolution of 1.6 Å. The determined X. campestris structure shows that it belongs to the superfamily of serine α/β hydrolase, with an extra strand preceding the first β-strand to lead to extensive subunit interactions in the crystal. XC6422 is a conserved hypothetical protein from Xanthomonas campestris pathovar campestris (Xcc), a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. The protein consists of 220 amino acids and its structure has been determined to 1.6 Å resolutionmore » using the multi-wavelength anomalous dispersion (MAD) method. Although it has very low sequence identity to protein sequences in the PDB (less than 20%), the determined structure nevertheless shows that it belongs to the superfamily of serine α/β-hydrolases, with an active site that is fully accessible to solvent owing to the absence of a lid domain. Modelling studies with the serine esterase inhibitor E600 indicate that XC6422 adopts a conserved Ser-His-Asp catalytic triad common to this superfamily and has a preformed oxyanion hole for catalytic activation. These structural features suggest that XC6422 is most likely to be a hydrolase active on a soluble ester or a small lipid. An extra strand preceding the first β-strand in the canonical α/β-hydrolase fold leads to extensive subunit interactions between XC6422 monomers, which may explain why XC6422 crystals of good diffraction quality can grow to dimensions of up to 1.5 mm in a few days.« less

  13. Development and Properties of a Wax Ester Hydrolase in the Cotyledons of Jojoba Seedlings 1

    PubMed Central

    Huang, Anthony H. C.; Moreau, Robert A.; Liu, Kitty D. F.

    1978-01-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent Km value for N-methylindoxylmyristate was 93 μM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax). PMID:16660288

  14. Structural Snapshots for Mechanism‐Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars

    PubMed Central

    Adamson, Christopher; Pengelly, Robert J.; Shamsi Kazem Abadi, Saeideh; Chakladar, Saswati; Draper, Jason

    2016-01-01

    Abstract Glycoside hydrolases (GHs) have attracted considerable attention as targets for therapeutic agents, and thus mechanism‐based inhibitors are of great interest. We report the first structural analysis of a carbocyclic mechanism‐based GH inactivator, the results of which show that the two Michaelis complexes are in 2H3 conformations. We also report the synthesis and reactivity of a fluorinated analogue and the structure of its covalently linked intermediate (flattened 2H3 half‐chair). We conclude that these inactivator reactions mainly involve motion of the pseudo‐anomeric carbon atom, knowledge that should stimulate the design of new transition‐state analogues for use as chemical biology tools. PMID:27783466

  15. Selective Inhibition of Plant Serine Hydrolases by Agrochemicals Revealed by Competitive ABPP

    PubMed Central

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F.; Kaiser, Markus; van der Hoorn, Renier A. L.

    2013-01-01

    Organophosphate and –phosphonates and their thiol derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant and their consumers are poorly investigated. Here, we use competitive Activity-based Protein Profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. PMID:21764588

  16. Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.

    PubMed

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F; Kaiser, Markus; van der Hoorn, Renier A L

    2012-01-15

    Organophosphate and -phosphonates and their thio derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant are poorly investigated. Here, we use competitive activity-based protein profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Long-term consequences of perinatal fatty acid amino hydrolase inhibition

    PubMed Central

    Wu, Chia-Shan; Morgan, Daniel; Jew, Chris P; Haskins, Chris; Andrews, Mary-Jeanette; Leishman, Emma; Spencer, Corinne M; Czyzyk, Traci; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2014-01-01

    Background and PurposeFatty acid amide hydrolase inhibitors show promise as a treatment for anxiety, depression and pain. Here we investigated whether perinatal exposure to URB597, a fatty acid amide hydrolase inhibitor, alters brain development and affects behaviour in adult mice. Experimental ApproachMouse dams were treated daily from gestational day 10.5 to 16.5 with 1, 3 or 10 mg kg−1 URB597. MS was used to measure a panel of endocannabinoids and related lipid compounds and brain development was assessed at embryonic day 16.5. Separate cohorts of mouse dams were treated with 10 mg kg−1 URB597, from gestational day 10.5 to postnatal day 7, and the adult offspring were assessed with a battery of behavioural tests. Key ResultsPerinatal URB597 exposure elevated anandamide and related N-acyl amides. URB597 did not induce signs of toxicity or affect dam weight gain, neurogenesis or axonal development at embryonic day 16.5. It did lead to subtle behavioural deficits in adult offspring, manifested by reduced cocaine-conditioned preference, increased depressive behaviours and impaired working memory. Anxiety levels, motor function and sensory-motor gating were not significantly altered. Conclusions and ImplicationsTaken together, the present results highlight how exposure to elevated levels of anandamide and related N-acyl amides during brain development can lead to subtle alterations in behaviour in adulthood. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24730060

  18. Physarum polymalic acid hydrolase: Recombinant expression and enzyme activation.

    PubMed

    Mueller, Wolfgang; Haindl, Markus; Holler, Eggehard

    2008-12-19

    As a platform for syntheses of nanoconjugates in antitumor drug delivery, polymalic acid together with its tailoring specific exohydrolase is purified from plasmodium cultures of the slime mold Physarum polycephalum, a member of the phylum myxomycota. Polymalic acid hydrolase is expressed in an inactive form that functions as a molecular adapter for polymalic acid trafficking within the plasmodium and is activated only during secretion. Activation follows specific protein tyrosine phosphorylation and dissociation from plasma membranes. Purified inactive Physarum polymalic acid hydrolase, recombinantly expressed in yeast Saccharomyces, is activated on a preparative basis by the addition of plasma membrane fragments from plasmodia of P. polycephalum. Activation of polymalic acid hydrolase and inhibition of polymalic acid synthesis by protein tyrosine phosphorylation are complementary events and could indicate a joint signal response to plasma membrane damage.

  19. DL-endopeptidases function as both cell wall hydrolases and poly-γ-glutamic acid hydrolases.

    PubMed

    Fukushima, Tatsuya; Uchida, Natsuki; Ide, Masatoshi; Kodama, Takeko; Sekiguchi, Junichi

    2018-03-01

    Biopolymers on the cell surface are very important for protecting microorganisms from environmental stresses, as well as storing nutrients and minerals. Synthesis of biopolymers is well studied, while studies on the modification and degradation processes of biopolymers are limited. One of these biopolymers, poly-γ-glutamic acid (γ-PGA), is produced by Bacillus species. Bacillus subtilis PgdS, possessing three NlpC/P60 domains, hydrolyses γ-PGA. Here, we have demonstrated that several dl-endopeptidases with an NlpC/P60 domain (LytE, LytF, CwlS, CwlO, and CwlT) in B. subtilis digest not only an amide bond of d-γ-glutamyl-diaminopimelic acid in peptidoglycans but also linkages of γ-PGA produced by B. subtilis. The hydrolase activity of dl-endopeptidases towards γ-PGA was inhibited by IseA, which also inhibits their hydrolase activity towards peptidoglycans, while the hydrolysis of PgdS towards γ-PGA was not inhibited. PgdS hydrolysed only the d-/l-Glu‒d-Glu linkages of d-Glu-rich γ-PGA (d-Glu:l-Glu=7 : 3) and l-Glu-rich γ-PGA (d-Glu:l-Glu=1 : 9), indicating that PgdS can hydrolyse only restricted substrates. On the other hand, the dl-endopeptidases in B. subtilis cleaved d-/l-Glu‒d-/l-Glu linkages of d-Glu-rich γ-PGA (d-Glu:l-Glu=7 : 3), indicating that these enzymes show different substrate specificities. Thus, the dl-endopeptidases digest γ-PGA more flexibly than PgdS, even though they are annotated as "dl-endopeptidase, digesting the d-γ-glutamyl-diaminopimelic acid linkage (d‒l amino acid bond)".

  20. Development of fluorescent substrates for microsomal epoxide hydrolase and application to inhibition studies

    PubMed Central

    Morisseau, Christophe; Bernay, Maud; Escaich, Aurélie; Sanborn, James R.; Lango, Jozsef; Hammock, Bruce D.

    2011-01-01

    The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of numerous xenobiotics. Additionally, it has a potential role in sexual development and bile acid transport, and it is associated with a number of diseases, such as emphysema, spontaneous abortion, eclampsia and several forms of cancer. Toward developing chemical tools to study mEH biological role, we designed and synthesized a series of absorbent and fluorescent substrates. The highest activity for both rat and human mEH was obtained with the fluorescent substrate cyano(6-methoxy-naphthalen-2-yl)methyl glycidyl carbonate (11). An in vitro inhibition assay using this substrate ranked a series of known inhibitors similarly to the assay that used radioactive cis-stilbene oxide, but with a greater discrimination between inhibitors. These results demonstrate that the new fluorescence-based assay is a useful tool for the discovery of structure-activity relationships among mEH inhibitors. Further, this substrate could also be used for the screening chemical library with high accuracy and with a Z' value about 0.7. This new assay permits a significant decrease in labor and cost as well as offering the advantage of a continuous readout. However, it should not be used with crude enzyme preparations due to interfering reactions. PMID:21371418

  1. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    SciTech Connect

    Misaghi, S.; Galardy, P.J.; Meester, W.J.

    2009-03-24

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structuremore » confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.« less

  2. Pharmacological inhibition of soluble epoxide hydrolase or genetic deletion reduces diclofenac-induced gastric ulcers.

    PubMed

    Goswami, Sumanta Kumar; Rand, Amelia Ann; Wan, Debin; Yang, Jun; Inceoglu, Bora; Thomas, Melany; Morisseau, Christophe; Yang, Guang-Yu; Hammock, Bruce D

    2017-07-01

    This research was conducted to evaluate the hypothesis that gastric ulcers caused by the NSAID diclofenac sodium (DCF) can be prevented by the soluble epoxide hydrolase inhibitor TPPU. Mice were administered a single dose of 10, 30 or 100mg/kg of DCF. Once an ulcerative dose of DCF was chosen, mice were pretreated with TPPU for 7days at 0.1mg/kg to evaluate anti-ulcer effects of the sEH inhibitor on anatomy, histopathology, pH, inflammatory markers and epithelial apoptosis of stomachs. Diclofenac caused ulceration of the stomach at a dose of 100mg/kg and a time post dose of 6h. Ulcers generated under these conditions were associated with a significant increase in the levels of TNF-α and IL-6 in serum and increased apoptosis compared to control mice. Pretreatment with TPPU resulted in a decrease of ulceration in mice treated with DCF with a significant decrease in the level of apoptosis, TNF-α and IL-6 in the serum in comparison to diclofenac-treated mice. TPPU did not affect the pH of the stomach, whereas omeprazole elevated the pH of the stomach as expected. A similar anti-ulcer effect was observed in sEH gene knockout mice treated with DCF. The sEH inhibitor TPPU decreases the NSAID-induced stomach ulcers. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Diadenosine polyphosphate hydrolase from presynaptic plasma membranes of Torpedo electric organ.

    PubMed Central

    Mateo, J; Rotllan, P; Marti, E; Gomez De Aranda, I; Solsona, C; Miras-Portugal, M T

    1997-01-01

    The diadenosine polyphosphate hydrolase present in presynaptic plasma membranes from the Torpedo electric organ has been characterized using fluorogenic substrates of the form di-(1, N6-ethenoadenosine) 5',5'''-P1,Pn-polyphosphate. The enzyme hydrolyses diadenosine polyphosphates (ApnA, where n=3-5), producing AMP and the corresponding adenosine (n-1) 5'-phosphate, Ap(n-1). The Km values of the enzyme were 0.543+/-0.015, 0.478+/-0.043 and 0. 520+/-0.026 microM, and the Vmax values were 633+/-4, 592+/-18 and 576+/-45 pmol/min per mg of protein, for the etheno derivatives of Ap3A (adenosine 5',5'''-P1,P3-triphosphate), Ap4A (adenosine 5',5"'-P1,P4-tetraphosphate) and Ap5A (adenosine 5',5'''-P1,P5-pentaphosphate) respectively. Ca2+, Mg2+ and Mn2+ are enzyme activators, with EC50 values of 0.86+/-0.11, 1.35+/-0.24 and 0.58+/-0.10 mM respectively. The fluoride ion is an inhibitor with an IC50 value of 1.38+/-0.19 mM. The ATP analogues adenosine 5'-tetraphosphate and adenosine 5'-[gamma-thio]triphosphate are potent competitive inhibitors and adenosine 5'-[alpha,beta-methylene]diphosphate is a less potent competitive inhibitor, the Ki values being 0.29+/-0.03, 0.43+/-0.05 and 7.18+/-0.8 microM respectively. The P2-receptor antagonist pyridoxal phosphate 6-azophenyl-2',4'-disulphonic acid behaves as a non-competitive inhibitor with a Ki value of 29.7+/-3.1 microM, and also exhibits a significant inhibitory effect on Torpedo apyrase activity. The effect of pH on the Km and Vmax values, together with inhibition by diethyl pyrocarbonate, strongly suggests the presence of functional histidine residues in Torpedo diadenosine polyphosphate hydrolase. The enzyme from Torpedo shows similarities with that of neural origin from neurochromaffin cells, and significant differences compared with that from endothelial vascular cells. PMID:9169600

  4. Soluble epoxide hydrolase activity and pharmacologic inhibition in horses with chronic severe laminitis.

    PubMed

    Guedes, A; Galuppo, L; Hood, D; Hwang, S H; Morisseau, C; Hammock, B D

    2017-05-01

    The roles of soluble epoxide hydrolase and lipid mediators in inflammatory and neuropathic pain could be relevant in laminitis pain management. To determine soluble epoxide hydrolase (sEH) activity in the digital laminae, sEH inhibitor potency in vitro, and efficacy of a sEH inhibitor as an adjunct analgesic therapy in chronic laminitic horses. In vitro experiments and clinical case series. sEH activity was measured in digital laminae from euthanised healthy and laminitic horses (n = 5-6/group). Potency of 7 synthetic sEH inhibitors was determined in vitro using equine liver cytosol. One of them (t-TUCB; 0.1 mg/kg bwt i.v. every 24 h) was selected based on potency and stability, and used as adjunct therapy in 10 horses with severe chronic laminitis (Obel grades 2, one horse; 3-4, nine horses). Daily assessments of forelimb lifts, pain scores, physiologic and laboratory examinations were performed before (baseline) and during t-TUCB treatment. Data are presented as mean ± s.d. and 95% confidence intervals (CI). sEH activity in the digital laminae from laminitic horses (0.9±0.6 nmol/min/mg; 95% CI 0.16-1.55 nmol/min/mg) was significantly greater (P = 0.01) than in healthy horses (0.17±0.09 nmol/min/mg; CI 0.07-0.26 nmol/min/mg). t-TUCB as an adjunct analgesic up to 10 days (4.3±3 days) in laminitic horses was associated with significant reduction in forelimb lifts (36±22%; 95% CI 9-64%) and in pain scores (18±23%; 95% CI 2-35%) compared with baseline (P = 0.04). One horse developed gas colic and another corneal vascularisation in a blind eye during treatment. No other significant changes were observed. Absence of control group and evaluator blinding in case series. sEH activity is significantly higher in the digital laminae of actively laminitic compared with healthy horses, and use of a potent inhibitor of equine sEH as adjunct analgesic therapy appears to decrease signs of pathologic pain in laminitic horses. © 2016 EVJ Ltd.

  5. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    SciTech Connect

    John, George; Nagarajan, Subbiah; Chapman, Kent

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  6. ORGANOPHOSPHORUS HYDROLASE-BASED ASSAY FOR ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    We report a rapid and versatile Organophosphorus hydrolase (OPH)-based method for measurement of organophosphates. This assay is based on a substrate-dependent change in pH at the local vicinity of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC), ...

  7. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    DOEpatents

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  8. Recognition of corn defense chitinases by fungal polyglycine hydrolases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn (Zea mays ssp. mays). These target-specific endoproteases are unusual because they do not cut a specific pe...

  9. ENGINEERING OF PEPTIDOGLYCAN HYDROLASES FOR CONTROL OF PATHOGENIC BACTERIA

    USDA-ARS?s Scientific Manuscript database

    Bacteriophages are viruses exclusively infecting bacteria and therefore offer suitable tools for their detection and control. At the end of their multiplication cycle, most phages lyse their hosts from within by means of an endolysin (peptidoglycan hydrolase), thereby enabling release of the phage p...

  10. Consolidation of glycosyl hydrolase family 30 : a dual domain 4/7 hydrolase family consisting of two structurally distinct groups

    Treesearch

    Franz J. St John; Javier M. Gonzalez; Edwin Pozharski

    2010-01-01

    In this work glycosyl hydrolase (GH) family 30 (GH30) is analyzed and shown to consist of its currently classified member sequences as well as several homologous sequence groups currently assigned within family GH5. A large scale amino acid sequence alignment and a phylogenetic tree were generated and GH30 groups and subgroups were designated. A partial rearrangement...

  11. PspAG97A: A Halophilic α-Glucoside Hydrolase with Wide Substrate Specificity from Glycoside Hydrolase Family 97.

    PubMed

    Li, Wei; Fan, Han; He, Chao; Zhang, Xuecheng; Wang, Xiaotang; Yuan, Jing; Fang, Zemin; Fang, Wei; Xiao, Yazhong

    2016-11-28

    A novel α-glucoside hydrolase (named PspAG97A) from glycoside hydrolase family 97 (GH97) was cloned from the deep-sea bacterium Pseudoalteromonas sp. K8, which was screened from the sediment of Kongsfjorden. Sequence analysis showed that PspAG97A belonged to GH97, and shared 41% sequence identity with the characterized α-glucosidase BtGH97a. PspAG97A possessed three key catalytically related glutamate residues. Mutation of the glutamate residues indicated that PspAG97A belonged to the inverting subfamily of GH97. PspAG97A showed significant reversibility against changes in salt concentration. It exhibited halophilic ability and improved thermostability in NaCl solution, with maximal activity at 1.0 M NaCl/KCl, and retained more than 80% activity at NaCl concentrations ranging from 0.8 to 2.0 M for over 50 h. Furthermore, PspAG97A hydrolyzed not only α-1,4-glucosidic linkage, but also α-1,6- and α-1,2-glucosidic linkages. Interestingly, PspAG97A possessed high catalytic efficiency for long-chain substrates with α-1,6-linkage. These characteristics are clearly different from other known α-glucoside hydrolases in GH97, implying that PspAG97A is a unique α-glucoside hydrolase of GH97.

  12. Combined Cocaine Hydrolase Gene Transfer and Anti-Cocaine Vaccine Synergistically Block Cocaine-Induced Locomotion

    PubMed Central

    Carroll, Marilyn E.; Zlebnik, Natalie E.; Anker, Justin J.; Kosten, Thomas R.; Orson, Frank M.; Shen, Xiaoyun; Kinsey, Berma; Parks, Robin J.; Gao, Yang; Brimijoin, Stephen

    2012-01-01

    Mice and rats were tested for reduced sensitivity to cocaine-induced hyper-locomotion after pretreatment with anti-cocaine antibody or cocaine hydrolase (CocH) derived from human butyrylcholinesterase (BChE). In Balb/c mice, direct i.p. injection of CocH protein (1 mg/kg) had no effect on spontaneous locomotion, but it suppressed responses to i.p. cocaine up to 80 mg/kg. When CocH was injected i.p. along with a murine cocaine antiserum that also did not affect spontaneous locomotion, there was no response to any cocaine dose. This suppression of locomotor activity required active enzyme, as it was lost after pretreatment with iso-OMPA, a selective BChE inhibitor. Comparable results were obtained in rats that developed high levels of CocH by gene transfer with helper-dependent adenoviral vector, and/or high levels of anti-cocaine antibody by vaccination with norcocaine hapten conjugated to keyhole limpet hemocyanin (KLH). After these treatments, rats were subjected to a locomotor sensitization paradigm involving a “training phase" with an initial i.p. saline injection on day 1 followed by 8 days of repeated cocaine injections (10 mg/kg, i.p.). A 15-day rest period then ensued, followed by a final “challenge" cocaine injection. As in mice, the individual treatment interventions reduced cocaine-stimulated hyperactivity to a modest extent, while combined treatment produced a greater reduction during all phases of testing compared to control rats (with only saline pretreatment). Overall, the present results strongly support the view that anti-cocaine vaccine and cocaine hydrolase vector treatments together provide enhanced protection against the stimulatory actions of cocaine in rodents. A similar combination therapy in human cocaine users might provide a robust therapy to help maintain abstinence. PMID:22912888

  13. Combined cocaine hydrolase gene transfer and anti-cocaine vaccine synergistically block cocaine-induced locomotion.

    PubMed

    Carroll, Marilyn E; Zlebnik, Natalie E; Anker, Justin J; Kosten, Thomas R; Orson, Frank M; Shen, Xiaoyun; Kinsey, Berma; Parks, Robin J; Gao, Yang; Brimijoin, Stephen

    2012-01-01

    Mice and rats were tested for reduced sensitivity to cocaine-induced hyper-locomotion after pretreatment with anti-cocaine antibody or cocaine hydrolase (CocH) derived from human butyrylcholinesterase (BChE). In Balb/c mice, direct i.p. injection of CocH protein (1 mg/kg) had no effect on spontaneous locomotion, but it suppressed responses to i.p. cocaine up to 80 mg/kg. When CocH was injected i.p. along with a murine cocaine antiserum that also did not affect spontaneous locomotion, there was no response to any cocaine dose. This suppression of locomotor activity required active enzyme, as it was lost after pretreatment with iso-OMPA, a selective BChE inhibitor. Comparable results were obtained in rats that developed high levels of CocH by gene transfer with helper-dependent adenoviral vector, and/or high levels of anti-cocaine antibody by vaccination with norcocaine hapten conjugated to keyhole limpet hemocyanin (KLH). After these treatments, rats were subjected to a locomotor sensitization paradigm involving a "training phase" with an initial i.p. saline injection on day 1 followed by 8 days of repeated cocaine injections (10 mg/kg, i.p.). A 15-day rest period then ensued, followed by a final "challenge" cocaine injection. As in mice, the individual treatment interventions reduced cocaine-stimulated hyperactivity to a modest extent, while combined treatment produced a greater reduction during all phases of testing compared to control rats (with only saline pretreatment). Overall, the present results strongly support the view that anti-cocaine vaccine and cocaine hydrolase vector treatments together provide enhanced protection against the stimulatory actions of cocaine in rodents. A similar combination therapy in human cocaine users might provide a robust therapy to help maintain abstinence.

  14. Podocyte-specific soluble epoxide hydrolase deficiency in mice attenuates acute kidney injury.

    PubMed

    Bettaieb, Ahmed; Koike, Shinichiro; Chahed, Samah; Zhao, Yi; Bachaalany, Santana; Hashoush, Nader; Graham, James; Fatima, Huma; Havel, Peter J; Gruzdev, Artiom; Zeldin, Darryl C; Hammock, Bruce D; Haj, Fawaz G

    2017-07-01

    Podocytes play an important role in maintaining glomerular function, and podocyte injury is a significant component in the pathogenesis of proteinuria. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose genetic deficiency and pharmacological inhibition have beneficial effects on renal function, but its role in podocytes remains unexplored. The objective of this study was to investigate the contribution of sEH in podocytes to lipopolysaccharide (LPS)-induced kidney injury. We report increased sEH transcript and protein expression in murine podocytes upon LPS challenge. To determine the function of sEH in podocytes in vivo we generated podocyte-specific sEH-deficient (pod-sEHKO) mice. Following LPS challenge, podocyte sEH-deficient mice exhibited lower kidney injury, proteinuria, and blood urea nitrogen concentrations than controls suggestive of preserved renal function. Also, renal mRNA and serum concentrations of inflammatory cytokines IL-6, IL-1β, and TNFα were significantly lower in LPS-treated pod-sEHKO than control mice. Moreover, podocyte sEH deficiency was associated with decreased LPS-induced NF-κB and MAPK activation and attenuated endoplasmic reticulum stress. Furthermore, the protective effects of podocyte sEH deficiency in vivo were recapitulated in E11 murine podocytes treated with a selective sEH pharmacological inhibitor. Altogether, these findings identify sEH in podocytes as a contributor to signaling events in acute renal injury and suggest that sEH inhibition may be of therapeutic value in proteinuria. Soluble epoxide hydrolase: EC 3.3.2.10. © 2017 Federation of European Biochemical Societies.

  15. Lead optimization toward proof-of-concept tools for Huntington's disease within a 4-(1H-pyrazol-4-yl)pyrimidine class of pan-JNK inhibitors.

    PubMed

    Wityak, John; McGee, Kevin F; Conlon, Michael P; Song, Ren Hua; Duffy, Bryan C; Clayton, Brent; Lynch, Michael; Wang, Gwen; Freeman, Emily; Haber, James; Kitchen, Douglas B; Manning, David D; Ismail, Jiffry; Khmelnitsky, Yuri; Michels, Peter; Webster, Jeff; Irigoyen, Macarena; Luche, Michele; Hultman, Monica; Bai, Mei; Kuok, IokTeng D; Newell, Ryan; Lamers, Marieke; Leonard, Philip; Yates, Dawn; Matthews, Kim; Ongeri, Lynette; Clifton, Steve; Mead, Tania; Deupree, Susan; Wheelan, Pat; Lyons, Kathy; Wilson, Claire; Kiselyov, Alex; Toledo-Sherman, Leticia; Beconi, Maria; Muñoz-Sanjuan, Ignacio; Bard, Jonathan; Dominguez, Celia

    2015-04-09

    Through medicinal chemistry lead optimization studies focused on calculated properties and guided by X-ray crystallography and computational modeling, potent pan-JNK inhibitors were identified that showed submicromolar activity in a cellular assay. Using in vitro ADME profiling data, 9t was identified as possessing favorable permeability and a low potential for efflux, but it was rapidly cleared in liver microsomal incubations. In a mouse pharmacokinetics study, compound 9t was brain-penetrant after oral dosing, but exposure was limited by high plasma clearance. Brain exposure at a level expected to support modulation of a pharmacodynamic marker in mouse was achieved when the compound was coadministered with the pan-cytochrome P450 inhibitor 1-aminobenzotriazole.

  16. Synthesis of Phenoxyacyl-Ethanolamides and Their Effects on Fatty Acid Amide Hydrolase Activity*

    PubMed Central

    Faure, Lionel; Nagarajan, Subbiah; Hwang, Hyeondo; Montgomery, Christa L.; Khan, Bibi Rafeiza; John, George; Koulen, Peter; Blancaflor, Elison B.; Chapman, Kent D.

    2014-01-01

    N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals. PMID:24558037

  17. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis.

    PubMed

    Mancini, Daiana T; Matos, Karina S; da Cunha, Elaine F F; Assis, Tamiris M; Guimarães, Ana P; França, Tanos C C; Ramalho, Teodorico C

    2012-01-01

    Brucella suis is a dangerous biological warfare agent already used for military purposes. This bacteria cause brucellosis, a zoonosis highly infective and difficult to fight. An important selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. We present here the first three-dimensional structure of B. suis NH (BsNH) and propose this enzyme as a molecular target to the drug design in the fight against brucellosis. In addition, we performed molecular docking studies, aiming to analyze the three-dimensional positioning of nine known inhibitors of Chritidia fasciculata NH (CfNH) in the active sites of BsNH and CfNH. We also analyzed the main interactions of some of these compounds inside the active site of BsNH and the relevant factors to biological activity. These results, together with further molecular dynamics (MD) simulations, pointed out to the most promising compound as lead for the design of potential inhibitors of BsNH. Most of the docking and MD results corroborated to each other and the docking results also suggested a good correlation with experimental data.

  18. Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Diet-Induced Metabolic Syndrome in Rats

    PubMed Central

    Iyer, Abishek; Kauter, Kathleen; Alam, Md. Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D.; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome. PMID:22007192

  19. Optimization of 1,2,5-Thiadiazole Carbamates as Potent and Selective ABHD6 Inhibitors #

    PubMed Central

    Patel, Jayendra Z.; Nevalainen, Tapio J.; Savinainen, Juha R.; Adams, Yahaya; Laitinen, Tuomo; Runyon, Robert S.; Vaara, Miia; Ahenkorah, Stephen; Kaczor, Agnieszka A.; Navia-Paldanius, Dina; Gynther, Mikko; Aaltonen, Niina; Joharapurkar, Amit A.; Jain, Mukul R.; Haka, Abigail S.; Maxfield, Frederick R.; Laitinen, Jarmo T.; Parkkari, Teija

    2015-01-01

    At present, inhibitors of α/β-hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the optimization of 1,2,5-thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4-morpholino-1,2,5-thiadiazol-3-yl cyclooctyl(methyl)carbamate (JZP-430, 55) potently and irreversibly inhibited hABHD6 (IC50 44 nM) and showed good selectivity (∼230 fold) over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off-targets of related compounds. Additionally, activity-based protein profiling (ABPP) indicated that compound 55 (JZP-430) displayed good selectivity among the serine hydrolases of mouse brain membrane proteome. PMID:25504894

  20. The Nodulation Factor Hydrolase of Medicago truncatula: Characterization of an Enzyme Specifically Cleaving Rhizobial Nodulation Signals1[W][OPEN

    PubMed Central

    Tian, Ye; Liu, Wei; Cai, Jie; Zhang, Lan-Yue; Wong, Kam-Bo; Feddermann, Nadja; Boller, Thomas; Xie, Zhi-Ping; Staehelin, Christian

    2013-01-01

    Nodule formation induced by nitrogen-fixing rhizobia depends on bacterial nodulation factors (NFs), modified chitin oligosaccharides with a fatty acid moiety. Certain NFs can be cleaved and inactivated by plant chitinases. However, the most abundant NF of Sinorhizobium meliloti, an O-acetylated and sulfated tetramer, is resistant to hydrolysis by all plant chitinases tested so far. Nevertheless, this NF is rapidly degraded in the host rhizosphere. Here, we identify and characterize MtNFH1 (for Medicago truncatula Nod factor hydrolase 1), a legume enzyme structurally related to defense-related class V chitinases (glycoside hydrolase family 18). MtNFH1 lacks chitinase activity but efficiently hydrolyzes all tested NFs of S. meliloti. The enzyme shows a high cleavage preference, releasing exclusively lipodisaccharides from NFs. Substrate specificity and kinetic properties of MtNFH1 were compared with those of class V chitinases from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), which cannot hydrolyze tetrameric NFs of S. meliloti. The Michaelis-Menten constants of MtNFH1 for NFs are in the micromolar concentration range, whereas nonmodified chitin oligosaccharides represent neither substrates nor inhibitors for MtNFH1. The three-dimensional structure of MtNFH1 was modeled on the basis of the known structure of class V chitinases. Docking simulation of NFs to MtNFH1 predicted a distinct binding cleft for the fatty acid moiety, which is absent in the class V chitinases. Point mutation analysis confirmed the modeled NF-MtNFH1 interaction. Silencing of MtNFH1 by RNA interference resulted in reduced NF degradation in the rhizosphere of M. truncatula. In conclusion, we have found a novel legume hydrolase that specifically inactivates NFs. PMID:24082029

  1. Structural insight into catalytic mechanism of PET hydrolase.

    PubMed

    Han, Xu; Liu, Weidong; Huang, Jian-Wen; Ma, Jiantao; Zheng, Yingying; Ko, Tzu-Ping; Xu, Limin; Cheng, Ya-Shan; Chen, Chun-Chi; Guo, Rey-Ting

    2017-12-13

    PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

  2. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates.

    DTIC Science & Technology

    1983-07-01

    to 20% 2-propanol in hexane as mobile phase resulted in satisfactory chromatograms for all except the most polar phosphinates. This method was useful...hydroxyapatite, and an 22 --- MATREX RED A S"A280 10 : 30 40 50 TUBE NUMBER Figure 7. Dye-ligand affinity chromotography in purification of arylester hydrolase...time of organophosphinates in the phenyl series was directly related to polarity (Table 9). For comparison, 4-nitrophenol and paraoxon were retained

  3. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    PubMed Central

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51), we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for

  4. In Vivo Delivery and Activation of Masked Fluorogenic Hydrolase Substrates by Endogenous Hydrolases in C. elegans.

    PubMed

    Dube, Shataakshi; Dube, Hitesh; Green, Nicole B; Larsen, Erik M; White, Alex; Johnson, R Jeremy; Kowalski, Jennifer R

    2017-09-19

    Protein expression and localization are often studied in vivo by tagging molecules with green fluorescent protein (GFP), yet subtle changes in protein levels are not easily detected. To develop a sensitive in vivo method to amplify fluorescence signals and allow cell-specific quantification of protein abundance changes, we sought to apply an enzyme-activated cellular fluorescence system in vivo by delivering ester-masked fluorophores to Caenorhabditis elegans neurons expressing porcine liver esterase (PLE). To aid uptake into sensory neuron membranes, we synthesized two novel fluorogenic hydrolase substrates with long hydrocarbon tails. Recombinant PLE activated these fluorophores in vitro. In vivo activation occurred in sensory neurons, along with potent activation in intestinal lysosomes quantifiable by imaging and microplate and partially attributable to gut esterase 1 (GES-1) activity. These data demonstrate the promise of biorthogonal hydrolases and their fluorogenic substrates as in vivo neuronal imaging tools and for characterizing endogenous C. elegans hydrolase substrate specificities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Responses of Rat Intestinal Brush Border and Cytosol Peptide Hydrolase Activities to Variation in Dietary Protein Content DIETARY REGULATION OF INTESTINAL PEPTIDE HYDROLASES

    PubMed Central

    Nicholson, J. Alex; McCarthy, Denis M.; Kim, Young S.

    1974-01-01

    The effects of variation in dietary protein content on small intestinal brush border and cytosol peptide hydrolase activities have been investigated. One group of rats was fed a high protein diet (55% casein) and another group was fed a low protein diet (10% casein). After 1 wk, brush border peptide hydrolase activity (L-leucyl-β-naphthylamide as substrate) and cytosol peptide hydrolase activity (L-prolyl-L-leucine as substrate) were determined in mucosae taken from the proximal, middle, and distal small intestine. As judged by several parameters, brush border peptide hydrolase activity was significantly greater in rats fed the high protein diet when data for corresponding segments were compared. In contrast, no significant difference was seen in cytosol peptide hydrolase activity. In a second study, brush border and cytosol peptide hydrolase activities were determined in the proximal intestine by utilizing an additional three peptide substrates: L-leucyl-L-alanine, L-phenylalanylglycine, and glycyl-L-phenylalanine. Sucrase, maltase, and alkaline phosphatase activities were also determined. As before, brush border peptide hydrolase activities were significantly greater in rats fed the high protein diet. However, activities of the nonproteolytic brush border enzymes did not vary significantly with diet. In contrast to the results obtained with L-prolyl-L-leucine as substrate for the cytosol enzymes, cytosol activity against the three additional peptide substrates was greater in rats fed the high protein diet. It is suggested that the brush border peptide hydrolase response to variation in dietary protein content represents a functional adaptation analogous to the regulation of intestinal disaccharidases by dietary carbohydrates. The implication of the differential responses of the cytosol peptide hydrolases is uncertain, since little is known of the functional role of these nonorgan-specific enzymes. PMID:4430719

  6. Rationale, design and baseline characteristics of a 4-year (208-week) phase III trial of empagliflozin, an SGLT2 inhibitor, versus glimepiride as add-on to metformin in patients with type 2 diabetes mellitus with insufficient glycemic control

    PubMed Central

    2013-01-01

    Background Sulfonylureas (SUs) are commonly used in the treatment of type 2 diabetes (T2DM), usually as second-line treatment after the failure of metformin. However, SUs are associated with poor durability, hypoglycemia and weight gain. Empagliflozin is a sodium glucose cotransporter 2 (SGLT2) inhibitor in development for the treatment of T2DM. In Phase II/III trials, empagliflozin reduced hyperglycemia, body weight and blood pressure, with a low incidence of hypoglycemia. The aim of this Phase III study is to compare the effects of empagliflozin and the SU glimepiride as second-line therapy in patients with T2DM inadequately controlled with metformin immediate release (IR) and diet/exercise. Method After a 2-week placebo run-in, patients were randomized to receive empagliflozin 25 mg once daily (qd) or glimepiride 1–4 mg qd double-blind for 2 years, in addition to metformin IR. Patients who participate in the initial 2-year randomization period will be eligible for a 2-year double-blind extension. The primary endpoint is change from baseline in HbA1c. Secondary endpoints are change from baseline in body weight, the incidence of confirmed hypoglycemia and changes in systolic and diastolic blood pressure. Exploratory endpoints include markers of insulin secretion, body composition and responder analyses. Safety endpoints include the incidence of adverse events (AEs) (including macro- and microvascular adverse events) and changes from baseline in clinical laboratory parameters. Results Between August 2010 and June 2011, 1549 patients were randomized and 1545 patients were treated. At baseline, mean (SD) age was 55.9 (10.4) years, HbA1c was 7.92 (0.84)%, body mass index was 30.11 (5.59) kg/m2, systolic blood pressure was 133.5 (15.9) mmHg and diastolic blood pressure was 79.5 (9.4) mmHg. Discussion This is the largest study to compare the efficacy and safety of an SGLT2 inhibitor with an SU in patients with T2DM inadequately controlled on metformin to date. In

  7. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    SciTech Connect

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolasemore » genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta

  8. Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells

    PubMed Central

    Li, H; Wood, J T; Whitten, K M; Vadivel, S K; Seng, S; Makriyannis, A; Avraham, H K

    2013-01-01

    BACKGROUND AND PURPOSE Endocannabinoids such as anandamide (AEA) are important lipid ligands regulating cell proliferation, differentiation and apoptosis. Their levels are regulated by hydrolase enzymes, the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Here, we investigated whether FAAH or AEA are involved in NF (erythroid-derived 2)-like 2 (Nrf2)/antioxidant responsive element (ARE) pathway. EXPERIMENTAL APPROACH The aim of this study was to analyse the effects of AEA or FAAH inhibition by the URB597 inhibitor or FAAH/siRNA on the activation of Nrf2-ARE signalling pathway and heme oxygenase-1 (HO-1) induction and transcription. KEY RESULTS Endogenous AEA was detected in the immortalized human mammary epithelial MCF-10A cells (0.034 ng per 106 cells) but not in MCF-7 or MDA-MB-231 breast cancer cells. Because breast tumour cells express FAAH abundantly, we examined the effects of FAAH on Nrf2/antioxidant pathway. We found that inhibition of FAAH by the URB597 inhibitor induced antioxidant HO-1 in breast cancer cells and MCF-10A cells. RNAi-mediated knockdown of FAAH or treatment with AEA-activated ARE-containing reporter induced HO-1 mRNA and protein expression, independent of the cannabinoid receptors, CB1, CB2 or TRPV1. Furthermore, URB597, AEA and siRNA-FAAH treatments induced the nuclear translocation of Nrf2, while siRNA-Nrf2 treatment and Keap1 expression blocked AEA, URB597 and si-FAAH from activation of ARE reporter and HO-1 induction. siRNA-HO-1 treatment decreased the viability of breast cancer cells and MCF-10A cells. CONCLUSIONS AND IMPLICATIONS These data uncovered a novel mechanism by which inhibition of FAAH or exposure to AEA induced HO-1 transcripts and implicating AEA and FAAH as direct modifiers in signalling mediated activation of Nrf2-HO-1 pathway, independent of cannabinoid receptors. PMID:23347118

  9. Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells.

    PubMed

    Li, H; Wood, J T; Whitten, K M; Vadivel, S K; Seng, S; Makriyannis, A; Avraham, H K

    2013-10-01

    Endocannabinoids such as anandamide (AEA) are important lipid ligands regulating cell proliferation, differentiation and apoptosis. Their levels are regulated by hydrolase enzymes, the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). Here, we investigated whether FAAH or AEA are involved in NF (erythroid-derived 2)-like 2 (Nrf2)/antioxidant responsive element (ARE) pathway. The aim of this study was to analyse the effects of AEA or FAAH inhibition by the URB597 inhibitor or FAAH/siRNA on the activation of Nrf2-ARE signalling pathway and heme oxygenase-1 (HO-1) induction and transcription. Endogenous AEA was detected in the immortalized human mammary epithelial MCF-10A cells (0.034 ng per 10(6) cells) but not in MCF-7 or MDA-MB-231 breast cancer cells. Because breast tumour cells express FAAH abundantly, we examined the effects of FAAH on Nrf2/antioxidant pathway. We found that inhibition of FAAH by the URB597 inhibitor induced antioxidant HO-1 in breast cancer cells and MCF-10A cells. RNAi-mediated knockdown of FAAH or treatment with AEA-activated ARE-containing reporter induced HO-1 mRNA and protein expression, independent of the cannabinoid receptors, CB1, CB2 or TRPV1. Furthermore, URB597, AEA and siRNA-FAAH treatments induced the nuclear translocation of Nrf2, while siRNA-Nrf2 treatment and Keap1 expression blocked AEA, URB597 and si-FAAH from activation of ARE reporter and HO-1 induction. siRNA-HO-1 treatment decreased the viability of breast cancer cells and MCF-10A cells. These data uncovered a novel mechanism by which inhibition of FAAH or exposure to AEA induced HO-1 transcripts and implicating AEA and FAAH as direct modifiers in signalling mediated activation of Nrf2-HO-1 pathway, independent of cannabinoid receptors. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  10. Aberrant soluble epoxide hydrolase and oxylipin levels in a porcine arteriovenous graft stenosis model.

    PubMed

    Terry, Christi M; Carlson, Mary L; He, Yuxia; Ulu, Arzu; Morisseau, Christophe; Blumenthal, Donald K; Hammock, Bruce D; Cheung, Alfred K

    2014-01-01

    Synthetic arteriovenous grafts (AVGs) used for hemodialysis frequently fail due to the development of neointimal hyperplasia (NH) at the vein-graft anastomosis. Inflammation and smooth-muscle cell (SMC) and myofibroblast proliferation and migration likely play an important role in the pathogenesis of NH. Epoxyeicosatrienoic acids (EETs), the products of the catabolism of arachidonic acid by cytochrome P450 enzymes, possess anti-inflammatory, antiproliferative, antimigratory and vasodilatory properties that should reduce NH. The degradation of vasculoprotective EETs is catalyzed by the enzyme, soluble epoxide hydrolase (sEH). sEH upregulation may thus contribute to NH development by the enhanced removal of vasculoprotective EETs. In this study, sEH, cytochrome P450 and EETs were examined after AVG placement in a porcine model to explore their potential roles in AVG stenosis. Increased sEH protein expression, decreased P450 epoxygenase activity and dysregulation of 5 oxylipin mediators were observed in the graft-venous anastomotic tissues when compared to control veins. Pharmacological inhibitors of sEH decreased the growth factor-induced migration of SMCs and fibroblasts, although they had no significant effect on the proliferation of these cells. These results provide insights on epoxide biology in vascular disorders and a rationale for the development of novel pharmacotherapeutic strategies to prevent AVG failure due to NH and stenosis. © 2014 S. Karger AG, Basel.

  11. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. The mouse lethal nonagouti (a(x)) mutation deletes the S-adenosylhomocysteine hydrolase (Ahcy) gene.

    PubMed

    Miller, M W; Duhl, D M; Winkes, B M; Arredondo-Vega, F; Saxon, P J; Wolff, G L; Epstein, C J; Hershfield, M S; Barsh, G S

    1994-04-15

    The lethal nonagouti (a(x)) mutation is a hypomorphic allele of the agouti coat color locus which, when homozygous, also leads to embryonic death around the time of implantation. To understand the molecular basis of these phenotypes, we identified and cloned a deletion breakpoint junction present in the ax chromosome. Long range restriction mapping demonstrated a simple deletion of approximately 100 kb, which does not affect agouti coding sequences, but begins only 4 kb 3' of the last exon, and thus may affect coat color by removing an agouti 3' enhancer. The Ahcy gene, which codes for the enzyme S-adenosylhomocysteine hydrolase (SAHase), is contained within a 20 kb region within the a(x) deletion. SAHase RNA and protein were detectable in early blastocysts and in embryonic stem cells, respectively, and analysis of embryos derived from an a(x)/a x a(x)/a embryo intercross indicated that a(x)/a embryos die between the late blastocyst and early implantation stages. Treatment of cultured embryos with an SAHase inhibitor, 3-deazaaristeromycin, or with metabolites that can result in elevated levels of cellular SAH, resulted in an inhibition of inner cell mass development, suggesting that loss of SAHase activity in a(x)/a(x) embryos is sufficient to explain their death around the time of implantation.

  13. The mouse lethal nonagouti (a(x)) mutation deletes the S-adenosylhomocysteine hydrolase (Ahcy) gene.

    PubMed Central

    Miller, M W; Duhl, D M; Winkes, B M; Arredondo-Vega, F; Saxon, P J; Wolff, G L; Epstein, C J; Hershfield, M S; Barsh, G S

    1994-01-01

    The lethal nonagouti (a(x)) mutation is a hypomorphic allele of the agouti coat color locus which, when homozygous, also leads to embryonic death around the time of implantation. To understand the molecular basis of these phenotypes, we identified and cloned a deletion breakpoint junction present in the ax chromosome. Long range restriction mapping demonstrated a simple deletion of approximately 100 kb, which does not affect agouti coding sequences, but begins only 4 kb 3' of the last exon, and thus may affect coat color by removing an agouti 3' enhancer. The Ahcy gene, which codes for the enzyme S-adenosylhomocysteine hydrolase (SAHase), is contained within a 20 kb region within the a(x) deletion. SAHase RNA and protein were detectable in early blastocysts and in embryonic stem cells, respectively, and analysis of embryos derived from an a(x)/a x a(x)/a embryo intercross indicated that a(x)/a embryos die between the late blastocyst and early implantation stages. Treatment of cultured embryos with an SAHase inhibitor, 3-deazaaristeromycin, or with metabolites that can result in elevated levels of cellular SAH, resulted in an inhibition of inner cell mass development, suggesting that loss of SAHase activity in a(x)/a(x) embryos is sufficient to explain their death around the time of implantation. Images PMID:8168479

  14. Soluble Epoxide Hydrolase Pharmacological Inhibition Ameliorates Experimental Acute Pancreatitis in Mice

    PubMed Central

    Bettaieb, Ahmed; Chahed, Samah; Bachaalany, Santana; Griffey, Stephen; Hammock, Bruce D.

    2015-01-01

    Acute pancreatitis (AP) is an inflammatory disease, and is one of the most common gastrointestinal disorders worldwide. Soluble epoxide hydrolase (sEH; encoded by Ephx2) deficiency and pharmacological inhibition have beneficial effects in inflammatory diseases. Ephx2 whole-body deficiency mitigates experimental AP in mice, but the suitability of sEH pharmacological inhibition for treating AP remains to be determined. We investigated the effects of sEH pharmacological inhibition on cerulein- and arginine-induced AP using the selective sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered before and after induction of pancreatitis. Serum amylase and lipase levels were lower in TPPU-treated mice compared with controls. In addition, circulating levels and pancreatic mRNA of the inflammatory cytokines tumor necrosis factor-α, interleukin Il-1β, and Il-6 were reduced in TPPU-treated mice. Moreover, sEH pharmacological inhibition before and after induction of pancreatitis was associated with decreased cerulein- and arginine-induced nuclear factor-κB inflammatory response, endoplasmic reticulum stress, and cell death. sEH pharmacological inhibition before and after induction of pancreatitis mitigated cerulein- and arginine-induced AP. This work suggests that sEH pharmacological inhibition may be of therapeutic value in acute pancreatitis. PMID:25993999

  15. Soluble epoxide hydrolase in podocytes is a significant contributor to renal function under hyperglycemia.

    PubMed

    Bettaieb, Ahmed; Koike, Shinichiro; Hsu, Ming-Fo; Ito, Yoshihiro; Chahed, Samah; Bachaalany, Santana; Gruzdev, Artiom; Calvo-Rubio, Miguel; Lee, Kin Sing Stephen; Inceoglu, Bora; Imig, John D; Villalba, Jose M; Zeldin, Darryl C; Hammock, Bruce D; Haj, Fawaz G

    2017-11-01

    Diabetic nephropathy (DN) is the leading cause of renal failure, and podocyte dysfunction contributes to the pathogenesis of DN. Soluble epoxide hydrolase (sEH, encoded by Ephx2) is a conserved cytosolic enzyme whose inhibition has beneficial effects on renal function. The aim of this study is to investigate the contribution of sEH in podocytes to hyperglycemia-induced renal injury. Mice with podocyte-specific sEH disruption (pod-sEHKO) were generated, and alterations in kidney function were determined under normoglycemia, and high-fat diet (HFD)- and streptozotocin (STZ)-induced hyperglycemia. sEH protein expression increased in murine kidneys under HFD- and STZ-induced hyperglycemia. sEH deficiency in podocytes preserved renal function and glucose control and mitigated hyperglycemia-induced renal injury. Also, podocyte sEH deficiency was associated with attenuated hyperglycemia-induced renal endoplasmic reticulum (ER) stress, inflammation and fibrosis, and enhanced autophagy. Moreover, these effects were recapitulated in immortalized murine podocytes treated with a selective sEH pharmacological inhibitor. Furthermore, pharmacological-induced elevation of ER stress or attenuation of autophagy in immortalized podocytes mitigated the protective effects of sEH inhibition. These findings establish sEH in podocytes as a significant contributor to renal function under hyperglycemia. These data suggest that sEH is a potential therapeutic target for podocytopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Soluble Epoxide Hydrolase Pharmacological Inhibition Ameliorates Experimental Acute Pancreatitis in Mice.

    PubMed

    Bettaieb, Ahmed; Chahed, Samah; Bachaalany, Santana; Griffey, Stephen; Hammock, Bruce D; Haj, Fawaz G

    2015-08-01

    Acute pancreatitis (AP) is an inflammatory disease, and is one of the most common gastrointestinal disorders worldwide. Soluble epoxide hydrolase (sEH; encoded by Ephx2) deficiency and pharmacological inhibition have beneficial effects in inflammatory diseases. Ephx2 whole-body deficiency mitigates experimental AP in mice, but the suitability of sEH pharmacological inhibition for treating AP remains to be determined. We investigated the effects of sEH pharmacological inhibition on cerulein- and arginine-induced AP using the selective sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered before and after induction of pancreatitis. Serum amylase and lipase levels were lower in TPPU-treated mice compared with controls. In addition, circulating levels and pancreatic mRNA of the inflammatory cytokines tumor necrosis factor-α, interleukin Il-1β, and Il-6 were reduced in TPPU-treated mice. Moreover, sEH pharmacological inhibition before and after induction of pancreatitis was associated with decreased cerulein- and arginine-induced nuclear factor-κB inflammatory response, endoplasmic reticulum stress, and cell death. sEH pharmacological inhibition before and after induction of pancreatitis mitigated cerulein- and arginine-induced AP. This work suggests that sEH pharmacological inhibition may be of therapeutic value in acute pancreatitis. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency

    PubMed Central

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J.; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A.; Puffenberger, Erik G.; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status. PMID:26974671

  18. Recognition and cleavage of corn defense chitinases by fungal polyglycine hydrolases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn. Polyglycine hydrolases are novel proteins in terms of activity and sequence. The objective of the study is to und...

  19. Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE.

    PubMed

    Cibik, R; Chapot-Chartier, M P

    2000-11-01

    The autolysis of lactic acid bacteria plays a major role during cheese ripening. The aim of this study was to evaluate the autolytic properties and peptidoglycan hydrolase content of dairy leuconostocs. Autolysis of 59 strains of dairy Leuconostoc was examined under starvation conditions in potassium phosphate buffer. The ability of dairy leuconostocs to lyse is strain dependant and not related to the species. The peptidoglycan hydrolase profile of Leuc. mesenteroides subsp. mesenteroides 10L was analysed by renaturing gel electrophoresis. Two major activity bands migrating at 41 and 52 kDa were observed. According to the specificity analysis, strain 10L seems to contain a glycosidase and an N-acetyl-muramyl-L-alanine amidase, or an endopeptidase. The peptidoglycan hydrolase profiles of various Leuconostoc species were also compared. Several peptidoglycan hydrolase activities could be detected in the different Leuconostoc species. Further characterization of the peptidoglycan hydrolases will help to control autolysis of leuconostocs in cheese.

  20. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    PubMed

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. The phytoalexins brassilexin and camalexin inhibit cyclobrassinin hydrolase, a unique enzyme from the fungal pathogen Alternaria brassicicola.

    PubMed

    Pedras, M Soledade C; Minic, Zoran

    2014-01-01

    Alternaria brassicicola is a fungal pathogen of many agriculturally important cruciferous crops. Cyclobrassinin hydrolase (CH) is an enzyme produced by A. brassicicola that catalyzes the transformation of the cruciferous phytoalexin cyclobrassinin into S-methyl[(2-sulfanyl-1H-indolyl-3)methyl]carbamothioate. The purification and characterization of CH was performed using a four-step chromatography method. SDS-PAGE and gel exclusion chromatography indicated that CH is a tetrameric protein with molecular mass of 330 kDa. Sequence analysis and chemical modification of CH with selective reagents suggested that the enzyme mediates hydrolysis of cyclobrassinin using a catalytic amino acid triad. Enzyme kinetic studies using cyclobrassinin and 1-methylcyclobrassinin as substrates revealed that CH displayed positive substrate cooperativity. Investigation of the effect of nine phytoalexins and two derivatives on the activity of CH indicated that six compounds displayed inhibitory activity: brassilexin, 1-methylbrassilexin, dioxibrassinin, camalexin, brassicanal A and sinalexin. The enzyme kinetics of CH strongly suggested that brassilexin and 1-methylbrassilexin are noncompetitive inhibitors of CH activity, and that camalexin is a competitive inhibitor while dioxibrassinin inhibits CH through a mixed mechanism. The phytoalexin brassilexin is the most effective inhibitor of CH (K(i)=32 ± 9 μM). These results suggest that crops able to accumulate higher concentration of brassilexin would display higher resistance levels to the fungus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo

    PubMed Central

    Kundu, Suman; Roome, Talat; Bhattacharjee, Ashish; Carnevale, Kevin A.; Yakubenko, Valentin P.; Zhang, Renliang; Hwang, Sung Hee; Hammock, Bruce D.; Cathcart, Martha K.

    2013-01-01

    Monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis is a major event in inflammatory disease. Our prior studies have demonstrated that MCP-1-dependent chemotaxis requires release of arachidonic acid (AA) by activated cytosolic phospholipase A2 (cPLA2). Here we investigated the involvement of AA metabolites in chemotaxis. Neither cyclooxygenase nor lipoxygenase pathways were required, whereas pharmacologic inhibitors of both the cytochrome-P450 (CYP) and the soluble epoxide hydrolase (sEH) pathways blocked monocyte chemotaxis to MCP-1. To verify specificity, we demonstrated that the CYP and sEH products epoxyeiscosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), respectively, restored chemotaxis in the presence of the inhibitors, indicating that sEH-derived products are essential for MCP-1-driven chemotaxis. Importantly, DHETs also rescued chemotaxis in cPLA2-deficient monocytes and monocytes with blocked Erk1/2 activity, because Erk controls cPLA2 activation. The in vitro findings regarding the involvement of CYP/sEH pathways were further validated in vivo using two complementary approaches measuring MCP-1-dependent chemotaxis in mice. These observations reveal the importance of sEH in MCP-1-regulated monocyte chemotaxis and may explain the observed therapeutic value of sEH inhibitors in treatment of inflammatory diseases, cardiovascular diseases, pain, and even carcinogenesis. Their effectiveness, often attributed to increasing EET levels, is probably influenced by the impairment of DHET formation and inhibition of chemotaxis. PMID:23160182

  3. Inhibition of fatty acid amide hydrolase (FAAH) reduces spinal nociceptive responses and expression of spinal long-term potentiation (LTP).

    PubMed

    Eriksen, Guro S; Jacobsen, Line Melå; Mahmood, Aqsa; Pedersen, Linda M; Gjerstad, Johannes

    2012-02-10

    Fatty acid amide hydrolase (FAAH) is an enzyme that metabolizes endocannabinoids and fatty acid amides possibly linked to activation of the opioid system. To examine how this enzyme affects spinal signalling, electrophysiological recordings in the dorsal horn and qPCR on dorsal horn tissue following systemic administration of the FAAH inhibitor URB597 (0.3 and 1.0mg/kg i.v.) and spinal administration of the opioid receptor antagonist naloxone (0.1 μg/μl i.th.), were performed. The present data showed that the suppressive effect of the FAAH inhibitor URB597 (1.0mg/kg i.v.) on the spinal nociceptive responses was prevented by spinal administration of the opioid receptor antagonist naloxone (0.1 μg/μl i.th.). Moreover, the present findings demonstrated that the FAAH inhibitor URB597 (1.0mg/kg i.v.) partly reversed expression of spinal long-term potentiation (LTP) and also attenuated the LTP-associated increased Zif expression. We conclude that pharmacological inactivation of FAAH may be a promising strategy to inhibit the development of central hyperalgesia; thereby reinforcing the role of FAAH as a potential therapeutic target. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Marine extremophiles: a source of hydrolases for biotechnological applications.

    PubMed

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-04-03

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  5. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    PubMed Central

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-01-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643

  6. Remarkably selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates

    PubMed Central

    Chang, Jae Won; Niphakis, Micah J.; Lum, Kenneth M.; Cognetta, Armand B.; Wang, Chu; Matthews, Megan L.; Niessen, Sherry; Buczynski, Matthew W.; Parsons, Loren H.; Cravatt, Benjamin F.

    2012-01-01

    The endocannabinoids 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide) are principally degraded by monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. The recent discovery of O-aryl carbamates such as JZL184 as selective MAGL inhibitors has enabled the functional investigation of 2-AG signaling pathways in vivo. Nonetheless, JZL184 and other reported MAGL inhibitors still display low-level cross-reactivity with FAAH and peripheral carboxylesterases, which can complicate their use in certain biological studies. Here, we report a distinct class of O-hexafluoroisopropyl (HFIP) carbamates that inhibit MAGL in vitro and in vivo with excellent potency and greatly improved selectivity, including showing no detectable cross-reactivity with FAAH. These findings designate HFIP-carbamates as a versatile chemotype for inhibiting MAGL and should encourage the pursuit of other serine hydrolase inhibitors that bear reactive groups resembling the structures of natural substrates. PMID:22542104

  7. Salivary secretions from the ectoparasitic wasp, Eulophus pennicornis contain hydrolases, and kill host hemocytes by apoptosis.

    PubMed

    Richards, Elaine H

    2012-02-01

    The current work demonstrates that larvae of the ectoparasitic wasp, Eulophus pennicornis, produce salivary secretions (Ep S) that contain a variety of hydrolases. This includes medium to high levels of N-acetyl-β-glucosaminidase activity, relatively low levels of esterase (C 4) and lipase (C 14) activity, and trace levels of esterase lipase (C 8), acid phosphatise, β-galactosidase, β-glucuronidase, and α-glucosidase activity. In addition, in vitro monolayer assays indicate that both a 4 h and an 18 h incubation of hemocytes from host Lacanobia oleracea larvae in Ep S significantly increases (P < 0.001) the percentage of cells dying by apoptosis compared to the controls. Moreover, an 18 h incubation of hemocytes in Ep S (but not a 4 h incubation), also significantly increased the percentage of dead cells detected using a trypan-blue exclusion assay. The role of ectoparasitoid salivary secretions in conditioning the host by disabling hemocyte-mediated wound healing responses, and providing food for the developing wasp larvae is discussed. © 2012 Wiley Periodicals, Inc.

  8. Refined homology model of monoacylglycerol lipase: toward a selective inhibitor

    NASA Astrophysics Data System (ADS)

    Bowman, Anna L.; Makriyannis, Alexandros

    2009-11-01

    Monoacylglycerol lipase (MGL) is primarily responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), an endocannabinoid with full agonist activity at both cannabinoid receptors. Increased tissue 2-AG levels consequent to MGL inhibition are considered therapeutic against pain, inflammation, and neurodegenerative disorders. However, the lack of MGL structural information has hindered the development of MGL-selective inhibitors. Here, we detail a fully refined homology model of MGL which preferentially identifies MGL inhibitors over druglike noninhibitors. We include for the first time insight into the active-site geometry and potential hydrogen-bonding interactions along with molecular dynamics simulations describing the opening and closing of the MGL helical-domain lid. Docked poses of both the natural substrate and known inhibitors are detailed. A comparison of the MGL active-site to that of the other principal endocannabinoid metabolizing enzyme, fatty acid amide hydrolase, demonstrates key differences which provide crucial insight toward the design of selective MGL inhibitors as potential drugs.

  9. Adult-onset liver disease and hepatocellular carcinoma in S-adenosylhomocysteine hydrolase deficiency

    PubMed Central

    Stender, Stefan; Chakrabarti, Rima S.; Xing, Chao; Gotway, Garrett; Cohen, Jonathan C.; Hobbs, Helen H.

    2016-01-01

    Background The etiology of liver disease remains elusive in some adults presenting with severe hepatic dysfunction. Methods and results Here we describe a woman of Pakistani descent who had elevated aminotransferases at age 23. She developed muscle weakness in her mid-20s, and was diagnosed with hepatocellular carcinoma at age 29. She died without a diagnosis at age 32 after having a liver transplant. Exome sequencing revealed that she was homozygous for a missense mutation (R49H) in AHCY, the gene encoding S-adenosylhomocysteine (SAH) hydrolase. SAH hydrolase catalyzes the final step in conversion of methionine to homocysteine and inactivating mutations in this enzyme cause a rare autosomal recessive disorder, SAH hydrolase deficiency, that typically presents in infancy. An asymptomatic 7-year old son of the proband is also homozygous for the AHCY-R49H mutation and has elevated serum aminotransferase levels, as well as markedly elevated serum levels of SAH, S-adenosylmethionine (SAM), and methionine, which are hallmarks of SAH hydrolase deficiency. Conclusion This report reveals several new aspects of SAH hydrolase deficiency. Affected women with SAH hydrolase deficiency can give birth to healthy children. SAH hydrolase deficiency can remain asymptomatic in childhood, and the disorder can be associated with early onset hepatocellular carcinoma. The measurement of serum amino acids should be considered in patients with liver disease or hepatocellular carcinoma of unknown etiology. PMID:26527160

  10. Combined virtual screening, MMPBSA, molecular docking and dynamics studies against deadly anthrax: An in silico effort to inhibit Bacillus anthracis nucleoside hydrolase.

    PubMed

    Karami, Masoumeh; Jalali, Chiya; Mirzaie, Sako

    2017-05-07

    Anthrax is a deadly disease caused by Bacillus anthracis, a dangerous biological warfare agent employed for both military and terrorist purposes. A critical selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. In the current study, we have performed molecular docking and dynamics studies, aiming to propose the new potent inhibitors of B. anthracis NH among National Cancer Institute (NCI) Diversity Set. We also analyzed the principal interactions of proposed compounds with the active site residues of NH and the relevant factors to biological activity. Additionally, the physic-chemical properties of free and inhibitor bound NH were evaluated and discussed. Our data showed that compound NSC79887 is a good candidate to inhibit NH and also for biological tests and further development. Also, ADMET prediction revealed that all physic-chemical parameters are within the acceptable range defined for human use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Discover potential inhibitors of 5-LOX and LTA4H from Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix based on molecular simulation methods].

    PubMed

    Gu, Yu; Zhang, Xu; Chen, Yan-Kun; Zhao, Bo-Wen; Zhang, Yan-Ling

    2017-12-01

    5-lipoxygenase (5-LOX) and leukotriene A4 hydrolase (LTA4H), as the major targets of 5-LOX branch in the arachidonic acid (AA) metabolic pathway, play an important role in the treatment of inflammation. Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix have clear anti-inflammation activities. In this paper, the targets of 5-LOX and LTA4H were used as the research carrier, and Hiphop module in DS4.0 (Discovery studio) was used to construct ingredients database for preliminary screening of three traditional Chinese medicines based on target inhibitor pharmacophore, so as to obtain 5-LOX and LTA4H potential active ingredients. The ingredients obtained in initial pharmacophore screening were further screened by using CDOCKER module, and the screening rules were established based on the score of initial compound and the key amino acids to obtain 12 potential 5-LOX inhibitors and 7 potential LTA4H inhibitors. To be more specific, the potential 5-LOX inhibitors included 6 ingredients in Rhei Radix et Rhizoma, such as procyanidins B2-3,3'-O-double gallate and revandchinone 2; four ingredients in notopterygium, such as dodecanoic acid and so on. On the other hand, potential LTA4H inhibitors included revandchinone 1, revandchinone 4 in Rhei Radix et Rhizoma, tridecanoic acid, tetracosanoic acid and methyl eicosanoate in Notopterygii Rhizoma et Radix, montanic acid methyl ester and N-docosanoyl-O-aminobenzoate in Genitana Macrophyllae Radix and so on. The molecular simulation methods were highly efficient and time-saving to obtain the potential inhibitors of 5-LOX and LTA4H, which could provide assistance for discovering the chemical quality indicators of anti-inflammatory efficacy of three Chinese herbs, and may be helpful to promote the whole-process quality control of three Chinese herbs. Copyright© by the Chinese Pharmaceutical Association.

  12. Studies on the cholesterol ester hydrolase of Trogoderma (Coleoptera).

    PubMed Central

    Agarwal, H C; Nair, A M

    1976-01-01

    The enzyme cholesterol ester hydrolase (EC 3.1.1.13) was detected in the larvae of the khapra beetle, Trogoderma granarium (Everts). The pH and temperature optima for the enzyme were 6.6 degrees and 37 degrees C respectively. The mol.wt. of the enzyme was 76000-80000. The enzyme was equally effective in hydrolysing cholesteryl acetate, stearate and oleate. Cholesterol derivatives, namely the chloride and the methyl ether, inhibited the enzyme activity almost completely. It was also inhibited completely by p-hydroxymercuribenzoate. This inhibition was reversed by the addition of dithiothreitol, reduced glutathione or cysteine. The enzyme activity was associated predominantly with the 104000 g fraction. PMID:962852

  13. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    PubMed Central

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  14. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles.

    PubMed

    Gauthier, Kathryn M; Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D; Gutterman, David D; Falck, J R; Campbell, William B

    2011-10-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs.

  15. Reward and Toxicity of Cocaine Metabolites Generated by Cocaine Hydrolase

    PubMed Central

    Murthy, Vishakantha; Geng, Liyi; Gao, Yang; Zhang, Bin; Miller, Jordan D.; Reyes, Santiago; Brimijoin, Stephen

    2015-01-01

    Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the non-invasive tail cuff method. These observations confirm that the drug metabolites generated after cocaine hydrolase gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal. PMID:25814464

  16. Active site and laminarin binding in glycoside hydrolase family 55

    DOE PAGES

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; ...

    2015-03-09

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium. Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define themore » active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ~30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Furthermore, application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties.« less

  17. Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis.

    PubMed

    Zou, Shu-Ping; Zheng, Yu-Guo; Wu, Qun; Wang, Zhi-Cai; Xue, Ya-Ping; Liu, Zhi-Qiang

    2018-01-01

    Enantioselective hydrolysis of epoxides by epoxide hydrolase (EH) is one of the most attractive approaches for the synthesis of chiral epoxides. So far, attempts to develop an efficient epoxide hydrolase -mediated biotransformation have been limited by either the low activity or insufficient enantioselectivity of epoxide hydrolase. In this study, iterative saturation mutagenesis (ISM) of epoxide hydrolase from Agrobacterium radiobacter AD1 (ArEH) was performed for efficient production of (R)-epichlorohydrin. Six amino acid residues, I108, A110, D131, I133, T247, and G245, were selected for site saturation mutagenesis, and a sequential combination of positive mutants using ISM was constructed. Targeted mutagenesis generated five mutants (T247K, I108L, D131S, T247K/I108L, and T247K/I108L/D131S) with improved activity and enantioselectivity. Kinetics analysis showed that the best mutant, T247K/I108L/D131S, exhibited a 4.5-fold higher catalytic efficiency (k cat /K m ) value and a 2.1-fold higher enantioselectivity (E value) towards epichlorohydrin than the wild-type (WT) enzyme. Molecular docking computations support the source of notably improved enantioselectivity. In addition, the triple mutant also displayed a significantly enhanced thermostability, with > 8-fold longer half-life at 50 °C than WT. A gram-scale kinetic resolution of (R,S)-epichlorohydrin was performed using T247K/I108L/D131S mutant as biocatalyst, affording a (R)-epichlorohydrin yield of 40.2% (> 99.9% enantiomeric excess) and an average productivity of 1410 g L -1  d -1 . The engineered T247K/I108L/D131S variant is a promising biocatalyst for the enzymatic synthesis of (R)-epichlorohydrin.

  18. Interfacial inhibitors.

    PubMed

    Pommier, Yves; Kiselev, Evgeny; Marchand, Christophe

    2015-09-15

    Targeting macromolecular interface is a general mechanism by which natural products inactivate macromolecular complexes by stabilizing normally transient intermediates. Demonstrating interfacial inhibition mechanism ultimately relies on the resolution of drug-macromolecule structures. This review focuses on medicinal drugs that trap protein-DNA complexes by binding at protein-DNA interfaces. It provides proof-of-concept and detailed structural and mechanistic examples for topoisomerase inhibitors and HIV integrase inhibitors. Additional examples of recent interfacial inhibitors for protein-DNA interfaces are provided, as well as prospects for targeting previously 'undruggable' targets including transcription, replication and chromatin remodeling complexes. References and discussion are included for interfacial inhibitors of protein-protein interfaces. Published by Elsevier Ltd.

  19. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism*

    PubMed Central

    Gregg, Katie J.; Suits, Michael D. L.; Deng, Lehua; Vocadlo, David J.; Boraston, Alisdair B.

    2015-01-01

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the −1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. PMID:26304114

  20. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain

    PubMed Central

    Inceoglu, Bora; Jinks, Steven L.; Schmelzer, Kara R.; Waite, Troy; Kim, In Hae; Hammock, Bruce D.

    2007-01-01

    Soluble epoxide hydrolases catalyze the hydrolysis of epoxides in acyclic systems. In man this enzyme is the product of a single copy gene (EPXH-2) present on chromosome 8. The human sEH is of interest due to emerging roles of its endogenous substrates, epoxygenated fatty acids, in inflammation and hypertension. One of the consequences of inhibiting sEH in rodent inflammation models is a profound decrease in the production of pro-inflammatory and proalgesic lipid metabolites including prostaglandins. This prompted us to hypothesize that sEH inhibitors may have antinociceptive properties. Here we tested if sEH inhibitors can reduce inflammatory pain. Hyperalgesia was induced by intraplantar LPS injection and sEH inhibitors were delivered topically. We found that two structurally dissimilar but equally potent sEH inhibitors can be delivered through the transdermal route and that sEH inhibitors effectively attenuate thermal hyperalgesia and mechanical allodynia in rats treated with LPS. In addition we show that epoxydized arachidonic acid metabolites, EETs, are also effective in attenuating thermal hyperalgesia in this model. In parallel with the observed biological activity metabolic analysis of oxylipids showed that inhibition of sEH resulted with a decrease in PGD2 levels and sEH generated degradation products of linoleic and arachidonic acid metabolites with a concomitant increase in epoxides of linoleic acid. These data show that inhibition of sEH may become a viable therapeutic strategy to attain analgesia. PMID:16962614

  1. Bilge Inhibitors

    DTIC Science & Technology

    1982-02-01

    Candidate Commercial Inhibitors 17 Water -Displacement Compounds and Candidate Materials 41 PHASE III - OPTIMIZATION OF INHIBITOR FORMULATION 47 Polarization...provided excellent corrosion pro- tection for aluminum, copper, and high-strength steels in normal as well as the chloride-contaminated water of the Air...formulations consiating of nontoxic water -soluble inorganic compounds such as borax, nitrite, phosphate, and silicate. Numerous other combinations

  2. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    PubMed Central

    Liu, Jun-Yan; Qiu, Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2011-01-01

    The increasing use of the anti-microbial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. PMID:21741984

  3. Radiosynthesis and Evaluation of [11C-Carbonyl]-Labeled Carbamates as Fatty Acid Amide Hydrolase Radiotracers for Positron Emission Tomography

    PubMed Central

    2012-01-01

    Fatty acid amide hydrolase (FAAH) plays a key role in regulating the tone of the endocannabinoid system. Radiotracers are required to image and quantify FAAH activity in vivo. We have synthesized a series of potent FAAH inhibitors encompassing two classes of N-alkyl-O-arylcarbamates and radiolabeled eight of them with carbon-11. The [11C-carbonyl]-radiotracers were evaluated in vitro and ex vivo in rats as potential FAAH imaging agents for positron emission tomography (PET). Both sets of [11C]O-arylcarbamates showed good to excellent brain penetration and an appropriate regional distribution. Pretreatments with a FAAH inhibitor demonstrated that 80–95% of brain uptake of radioactivity constituted binding of the radiotracers to FAAH. Brain extraction measurements showed that binding to FAAH was irreversible and kinetically different for the two classes of carbamates. These promising results are discussed in terms of the requirements of a suitable radiotracer for the in vivo imaging of FAAH using PET. PMID:23214511

  4. Design of Selective Substrates and Activity-Based Probes for Hydrolase Important for Pathogenesis 1 (HIP1) from Mycobacterium tuberculosis.

    PubMed

    Lentz, Christian S; Ordonez, Alvaro A; Kasperkiewicz, Paulina; La Greca, Florencia; O'Donoghue, Anthony J; Schulze, Christopher J; Powers, James C; Craik, Charles S; Drag, Marcin; Jain, Sanjay K; Bogyo, Matthew

    2016-11-11

    Although serine proteases are important mediators of Mycobacterium tuberculosis (Mtb) virulence, there are currently no tools to selectively block or visualize members of this family of enzymes. Selective reporter substrates or activity-based probes (ABPs) could provide a means to monitor infection and response to therapy using imaging methods. Here, we use a combination of substrate selectivity profiling and focused screening to identify optimized reporter substrates and ABPs for the Mtb "Hydrolase important for pathogenesis 1" (Hip1) serine protease. Hip1 is a cell-envelope-associated enzyme with minimal homology to host proteases, making it an ideal target for probe development. We identified substituted 7-amino-4-chloro-3-(2-bromoethoxy)isocoumarins as irreversible inhibitor scaffolds. Furthermore, we used specificity data to generate selective reporter substrates and to further optimize a selective chloroisocoumarin inhibitor. These new reagents are potentially useful in delineating the roles of Hip1 during pathogenesis or as diagnostic imaging tools for specifically monitoring Mtb infections.

  5. In vivo selection of transplanted hepatocytes by pharmacological inhibition of fumarylacetoacetate hydrolase in wild-type mice.

    PubMed

    Paulk, Nicole K; Wursthorn, Karsten; Haft, Annelise; Pelz, Carl; Clarke, Gregory; Newell, Amy H; Olson, Susan B; Harding, Cary O; Finegold, Milton J; Bateman, Raymond L; Witte, John F; McClard, Ronald; Grompe, Markus

    2012-10-01

    Genetic fumarylacetoacetate hydrolase (Fah) deficiency is unique in that healthy gene-corrected hepatocytes have a strong growth advantage and can repopulate the diseased liver. Unfortunately, similar positive selection of gene-corrected cells is absent in most inborn errors of liver metabolism and it is difficult to reach the cell replacement index required for therapeutic benefit. Therefore, methods to transiently create a growth advantage for genetically modified hepatocytes in any genetic background would be advantageous. To mimic the selective pressure of Fah deficiency in normal animals, an efficient in vivo small molecule inhibitor of FAH, 4-[(2-carboxyethyl)-hydroxyphosphinyl]-3-oxobutyrate (CEHPOBA) was developed. Microarray analysis demonstrated that pharmacological inhibition of FAH produced highly similar gene expression changes to genetic deficiency. As proof of principle, hepatocytes lacking homogentisic acid dioxygenase (Hgd) and hence resistant to FAH inhibition were transplanted into sex-mismatched wild-type recipients. Time course analyses of 4-6 weeks of CEHPOBA administration after transplantation showed a linear relationship between treatment length and replacement index. Compared to controls, recipients treated with the FAH-inhibitor had 20-100-fold increases in liver repopulation. We conclude that pharmacological inhibition of FAH is a promising approach to in vivo selection of hepatocytes.

  6. DETOXIFICATION OF ORGANOPHOSPHATE PESTICIDES BY IMMOBILIZED ESCHERICHIA COLI EXPRESSING ORGANOPHOSPHORUS HYDROLASE ON CELL SURFACE. (R823663)

    EPA Science Inventory

    An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...

  7. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity

    Treesearch

    Franz J. St John; Diane Dietrich; Casey Crooks; Edwin Pozharski; Javier M. González; Elizabeth Bales; Kennon Smith; Jason C. Hurlbert

    2014-01-01

    Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the

  8. Release of peptide hydrolases during incubation of intact intestinal segments in vitro.

    PubMed Central

    Silk, D B; Kim, Y S

    1976-01-01

    1. Rat intestinal segments have been incubated in isotonic saline in vitro and release of peptide hydrolase enzymes into the incubation media examined over a 90 min study period. 2. Chemical assay data, as well as analysis of electrophoretic mobilities of release enzymes on starch gel, indicate that peptide hydrolase enzymes in the incubation media originate predominantly from the cytoplasm of the mucosal cells. 3. Peptide hydrolases were released rapidly from intact intestinal segments. Release occurred from the start of the in vitro incubations and was not affected by temperature and shaking. 4. It is concluded that compared to the in vivo situation, cytoplasmic peptide hydrolases are released from intestinal tissue very rapidly in vitro. Caution is therefore required when comparing results of in vivo and in vitro peptide absorption experiments. Images Plate 1 PMID:957171

  9. An integrated molecular docking and rescoring method for predicting the sensitivity spectrum of various serine hydrolases to organophosphorus pesticides.

    PubMed

    Yang, Ling-Ling; Yang, Xiao; Li, Guo-Bo; Fan, Kai-Ge; Yin, Peng-Fei; Chen, Xiang-Gui

    2016-04-01

    The enzymatic chemistry method is currently the most widely used method for the rapid detection of organophosphorus (OP) pesticides, but the enzymes used, such as cholinesterases, lack sufficient sensitivity to detect low concentrations of OP pesticides present in given samples. Serine hydrolase is considered an ideal enzyme source in seeking high-sensitivity enzymes used for OP pesticide detection. However, it is difficult to systematically evaluate sensitivities of various serine hydrolases to OP pesticides by in vitro experiments. This study aimed to establish an in silico method to predict the sensitivity spectrum of various serine hydrolases to OP pesticides. A serine hydrolase database containing 219 representative serine hydrolases was constructed. Based on this database, an integrated molecular docking and rescoring method was established, in which the AutoDock Vina program was used to produce the binding poses of OP pesticides to various serine hydrolases and the ID-Score method developed recently by us was adopted as a rescoring method to predict their binding affinities. In retrospective case studies, this method showed good performance in predicting the sensitivities of known serine hydrolases to two OP pesticides: paraoxon and diisopropyl fluorophosphate. The sensitivity spectrum of the 219 collected serine hydrolases to 37 commonly used OP pesticides was finally obtained using this method. Overall, this study presented a promising in silico tool to predict the sensitivity spectrum of various serine hydrolases to OP pesticides, which will help in finding high-sensitivity serine hydrolases for OP pesticide detection. © 2015 Society of Chemical Industry.

  10. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis.

    PubMed Central

    Elkins, Jonathan M; Clifton, Ian J; Hernández, Helena; Doan, Linh X; Robinson, Carol V; Schofield, Christopher J; Hewitson, Kirsty S

    2002-01-01

    During biosynthesis of the clinically used beta-lactamase inhibitor clavulanic acid, one of the three steps catalysed by clavaminic acid synthase is separated from the other two by a step catalysed by proclavaminic acid amidino hydrolase (PAH), in which the guanidino group of an intermediate is hydrolysed to give proclavaminic acid and urea. PAH shows considerable sequence homology with the primary metabolic arginases, which hydrolyse arginine to ornithine and urea, but does not accept arginine as a substrate. Like other members of the bacterial sub-family of arginases, PAH is hexameric in solution and requires Mn2+ ions for activity. Other metal ions, including Co2+, can substitute for Mn2+. Two new substrates for PAH were identified, N-acetyl-(L)-arginine and (3R)-hydroxy-N-acetyl-(L)-arginine. Crystal structures of PAH from Streptomyces clavuligerus (at 1.75 A and 2.45 A resolution, where 1 A=0.1 nm) imply how it binds beta-lactams rather than the amino acid substrate of the arginases from which it evolved. The structures also suggest how PAH selects for a particular alcohol intermediate in the clavam biosynthesis pathway. As observed for the arginases, each PAH monomer consists of a core of beta-strands surrounded by alpha-helices, and its active site contains a di-Mn2+ centre with a bridging water molecule responsible for hydrolytic attack on to the guanidino group of the substrate. Comparison of structures obtained under different conditions reveals different conformations of a flexible loop, which must move to allow substrate binding. PMID:12020346

  11. Stable isotope liquid chromatography-tandem mass spectrometry assay for fatty acid amide hydrolase activity.

    PubMed

    Rakers, Christin; Zoerner, Alexander A; Engeli, Stefan; Batkai, Sandor; Jordan, Jens; Tsikas, Dimitrios

    2012-02-15

    Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the hydrolysis of the endocannabinoid anandamide (arachidonoyl ethanolamide, AEA) to arachidonic acid (AA) and ethanolamine (EA). Published FAAH activity assays mostly employ radiolabeled anandamide or synthetic fluorogenic substrates. We report a stable isotope liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for specific, sensitive, and high-throughput capable FAAH activity measurements. The assay uses AEA labeled with deuterium on the EA moiety (d₄-AEA) as substrate and measures the specific reaction product tetradeutero-EA (d₄-EA) and the internal standard ¹³C₂-EA. Selected reaction monitoring of m/z 66→m/z 48 (d₄-EA) and m/z 64→m/z 46 (¹³C₂-EA) in the positive electrospray ionization mode after liquid chromatographic separation on a HILIC (hydrophilic interaction liquid chromatography) column is performed. The assay was developed and thoroughly validated using recombinant human FAAH (rhFAAH) and then was applied to human blood and dog liver samples. rhFAAH-catalyzed d₄-AEA hydrolysis obeyed Michaelis-Menten kinetics (K(M)=12.3 μM, V(max)=27.6 nmol/min mg). Oleoyl oxazolopyridine (oloxa) was a potent, partial noncompetitive inhibitor of rhFAAH (IC₅₀=24.3 nM). Substrate specificity of other fatty acid ethanolamides decreased with decreasing length, number of double bonds, and lipophilicity of the fatty acid skeleton. In human whole blood, we detected FAAH activity that was inhibited by oloxa. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Identification and biochemical characterization of a GDSL-motif carboxylester hydrolase from Carica papaya latex.

    PubMed

    Abdelkafi, Slim; Ogata, Hiroyuki; Barouh, Nathalie; Fouquet, Benjamin; Lebrun, Régine; Pina, Michel; Scheirlinckx, Frantz; Villeneuve, Pierre; Carrière, Frédéric

    2009-11-01

    An esterase (CpEst) showing high specific activities on tributyrin and short chain vinyl esters was obtained from Carica papaya latex after an extraction step with zwitterionic detergent and sonication, followed by gel filtration chromatography. Although the protein could not be purified to complete homogeneity due to its presence in high molecular mass aggregates, a major protein band with an apparent molecular mass of 41 kDa was obtained by SDS-PAGE. This material was digested with trypsin and the amino acid sequences of the tryptic peptides were determined by LC/ESI/MS/MS. These sequences were used to identify a partial cDNA (679 bp) from expressed sequence tags (ESTs) of C. papaya. Based upon EST sequences, a full-length gene was identified in the genome of C. papaya, with an open reading frame of 1029 bp encoding a protein of 343 amino acid residues, with a theoretical molecular mass of 38 kDa. From sequence analysis, CpEst was identified as a GDSL-motif carboxylester hydrolase belonging to the SGNH protein family and four potential N-glycosylation sites were identified. The putative catalytic triad was localised (Ser(35)-Asp(307)-His(310)) with the nucleophile serine being part of the GDSL-motif. A 3D-model of CpEst was built from known X-ray structures and sequence alignments and the catalytic triad was found to be exposed at the surface of the molecule, thus confirming the results of CpEst inhibition by tetrahydrolipstatin suggesting a direct accessibility of the inhibitor to the active site.

  13. Erectogenic and Aphrodisiac Property of Moringa oleifera: Involvement of Soluble Epoxide Hydrolase Enzyme.

    PubMed

    Goswami, Sumanta Kumar; Inamdar, Mohammed Naseeruddin; Dethe, Shekhar M; Gururaj, Giligar M; Jamwal, Rohitash; Bhaskar, Anirban; Mundkinajeddu, Deepak; Agarwal, Amit

    2016-07-01

    Soluble epoxide hydrolase (sEH) inhibitors have been reported to improve penile erection; therefore, sEH could be useful for management of erectile dysfunction. Methanolic and aqueous extracts of 30 Indian medicinal plants were screened for their sEH inhibition potential. Fifteen extracts showed >50% inhibition when screened at 50 µg/mL in sEH inhibition assay. Methanolic extract of Moringa oleifera Lam. (Moringaceae) seeds (MEMO) was most potent with IC50 1.7 ± 0.1 µg/mL and was selected for in vitro studies on isolated rat corpus cavernosum smooth muscle and in vivo sexual behaviour studies on healthy and diabetic rats. Rats were divided into five groups, each containing six animals and treated orally with either water, vehicle (1% Tween-20), MEMO (45 and 90 mg/kg/day for 21 days), and standard drug, sildenafil (5 mg/kg/day for 7 days). An equal number of female rats were used, and the effect of MEMO and sildenafil was compared with that of vehicle. MEMO significantly relaxed isolated rat corpus cavernosum smooth muscle at 0.1-100 µg/mL in vitro and significantly increased (p < 0.05) sexual activity, intracavernous pressure/mean arterial pressure in normal and diabetic rats. The increase in erectile function of rats by MEMO could be because of its sEH inhibitory activity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Soluble Epoxide Hydrolase Inhibition and Epoxyeicosatrienoic Acid Treatment Improve Vascularization of Engineered Skin Substitutes

    PubMed Central

    Hahn, Jennifer M.; McFarland, Kevin L.; Combs, Kelly A.; Lee, Kin Sing Stephen; Inceoglu, Bora; Wan, Debin; Boyce, Steven T.; Hammock, Bruce D.

    2016-01-01

    Background: Autologous engineered skin substitutes comprised of keratinocytes, fibroblasts, and biopolymers can serve as an adjunctive treatment for excised burns. However, engineered skin lacks a vascular plexus at the time of grafting, leading to slower vascularization and reduced rates of engraftment compared with autograft. Hypothetically, vascularization of engineered skin grafts can be improved by treatment with proangiogenic agents at the time of grafting. Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are inactivated by soluble epoxide hydrolase (sEH). EETs have multiple biological activities and have been shown to promote angiogenesis. Inhibitors of sEH (sEHIs) represent attractive therapeutic agents because they increase endogenous EET levels. We investigated sEHI administration, alone or combined with EET treatment, for improved vascularization of engineered skin after grafting to mice. Methods: Engineered skin substitutes, prepared using primary human fibroblasts and keratinocytes, were grafted to full-thickness surgical wounds in immunodeficient mice. Mice were treated with the sEHI 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered in drinking water throughout the study period, with or without topical EET treatment, and were compared with vehicle-treated controls. Vascularization was quantified by image analysis of CD31-positive areas in tissue sections. Results: At 2 weeks after grafting, significantly increased vascularization was observed in the TPPU and TPPU + EET groups compared with controls, with no evidence of toxicity. Conclusions: The results suggest that sEH inhibition can increase vascularization of engineered skin grafts after transplantation, which may contribute to enhanced engraftment and improved treatment of full-thickness wounds. PMID:28293507

  15. Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice

    PubMed Central

    Bashashati, M; Storr, MA; Nikas, SP; Wood, JT; Godlewski, G; Liu, J; Ho, W; Keenan, CM; Zhang, H; Alapafuja, SO; Cravatt, BF; Lutz, B; Mackie, K; Kunos, G; Patel, KD; Makriyannis, A; Davison, JS; Sharkey, KA

    2012-01-01

    BACKGROUND AND PURPOSE Gastrointestinal (GI) motility is regulated in part by fatty acid ethanolamides (FAEs), including the endocannabinoid (EC) anandamide (AEA). The actions of FAEs are terminated by fatty acid amide hydrolase (FAAH). We investigated the actions of the novel FAAH inhibitor AM3506 on normal and enhanced GI motility. EXPERIMENTAL APPROACH We examined the effect of AM3506 on electrically-evoked contractility in vitro and GI transit and colonic faecal output in vivo, in normal and FAAH-deficient mice treated with saline or LPS (100 µg·kg−1, i.p.), in the presence and absence of cannabinoid (CB) receptor antagonists. mRNA expression was measured by quantitative real time-PCR, EC levels by liquid chromatography-MS and FAAH activity by the conversion of [3H]-AEA to [3H]-ethanolamine in intestinal extracts. FAAH expression was examined by immunohistochemistry. KEY RESULTS FAAH was dominantly expressed in the enteric nervous system; its mRNA levels were higher in the ileum than the colon. LPS enhanced ileal contractility in the absence of overt inflammation. AM3506 reversed the enhanced electrically-evoked contractions of the ileum through CB1 and CB2 receptors. LPS increased the rate of upper GI transit and faecal output. AM3506 normalized the enhanced GI transit through CB1 and CB2 receptors and faecal output through CB1 receptors. LPS did not increase GI transit in FAAH-deficient mice. CONCLUSIONS AND IMPLICATIONS Inhibiting FAAH normalizes various parameters of GI dysmotility in intestinal pathophysiology. Inhibition of FAAH represents a new approach to the treatment of disordered intestinal motility. PMID:21883147

  16. Inhibition of soluble epoxide hydrolase attenuates eosinophil recruitment and food allergen-induced gastrointestinal inflammation.

    PubMed

    Bastan, Idil; Ge, Xiao Na; Dileepan, Mythili; Greenberg, Yana G; Guedes, Alonso G; Hwang, Sung Hee; Hammock, Bruce D; Washabau, Robert J; Rao, Savita P; Sriramarao, P

    2018-01-17

    Prevalence of food allergies in the United States is on the rise. Eosinophils are recruited to the intestinal mucosa in substantial numbers in food allergen-driven gastrointestinal (GI) inflammation. Soluble epoxide hydrolase (sEH) is known to play a pro-inflammatory role during inflammation by metabolizing anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory diols. We investigated the role of sEH in a murine model of food allergy and evaluated the potential therapeutic effect of a highly selective sEH inhibitor (trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]-cyclohexyloxy}-benzoic acid [t-TUCB]). Oral exposure of mice on a soy-free diet to soy protein isolate (SPI) induced expression of intestinal sEH, increased circulating total and antigen-specific IgE levels, and caused significant weight loss. Administration of t-TUCB to SPI-challenged mice inhibited IgE levels and prevented SPI-induced weight loss. Additionally, SPI-induced GI inflammation characterized by increased recruitment of eosinophils and mast cells, elevated eotaxin 1 levels, mucus hypersecretion, and decreased epithelial junction protein expression. In t-TUCB-treated mice, eosinophilia, mast cell recruitment, and mucus secretion were significantly lower than in untreated mice and SPI-induced loss of junction protein expression was prevented to variable levels. sEH expression in eosinophils was induced by inflammatory mediators TNF-α and eotaxin-1. Treatment of eosinophils with t-TUCB significantly inhibited eosinophil migration, an effect that was mirrored by treatment with 11,12-EET, by inhibiting intracellular signaling events such as ERK (1/2) activation and eotaxin-1-induced calcium flux. These studies suggest that sEH induced by soy proteins promotes allergic responses and GI inflammation including eosinophilia and that inhibition of sEH can attenuate these responses. ©2018 Society for Leukocyte Biology.

  17. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    PubMed

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    PubMed Central

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  19. Cloning and expression of a urate oxidase and creatinine hydrolase fusion gene in Escherichia coli.

    PubMed

    Cheng, Xin; Liu, Fang; Zhang, Yanxin; Jiang, Yunsheng

    2013-01-01

    To construct a plasmid containing a urate oxidase and creatinine hydrolase fusion gene and transform the plasmid into Escherichia coli to decompose uric acid and creatinine. According to the GenBank data for the urate oxidase gene, specific primers were designed to amplify and remove the stop codon for the urate oxidase gene. The gene was then ligated into the plasmid pMG36e to construct pMG36e-U. Then, using the GenBank database for the creatinine hydrolase gene, primers were designed to amplify the creatinine hydrolase gene. This gene was ligated into pMG36e-U to form pMG36e-U/C. Next, this construct was transformed into E. coli, which was confirmed by screening the recombinant E. coli and sodium dodecylsulfonate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The engineered bacteria were cultured with a specific concentration of creatinine and uric acid for 24 h. Then, the concentrations of creatinine and uric acid in the culture fluid were measured. The recombinant gene fragment was approximately 1.68 kb, and it contained the urate oxidase and creatinine hydrolase genes. The transformed E. coli expressed creatinine hydrolase and uric acid oxidase. The creatinine decomposition rate increased by 43.5%, and the uric acid decomposition rate increased by 42.32%. The constructed recombinant plasmid containing a fusion gene of creatinine hydrolase and uric acid oxidase was transformed into E. coli, and the enzymatic activities were expressed.

  20. Diversity of Serine Hydrolase Activities of Unchallenged and Botrytis-infected Arabidopsis thaliana*S⃞

    PubMed Central

    Kaschani, Farnusch; Gu, Christian; Niessen, Sherry; Hoover, Heather; Cravatt, Benjamin F.; van der Hoorn, Renier A. L.

    2009-01-01

    Activity-based protein profiling is a powerful method to display enzyme activities in proteomes and provides crucial information on enzyme activity rather than protein or transcript abundance. We applied activity-based protein profiling using fluorophosphonate-based probes to display the activities of Ser hydrolases in the model plant Arabidopsis thaliana. Multidimensional protein identification technology and in-gel analysis of fluorophosphonate-labeled leaf extracts revealed over 50 Ser hydrolases, including dozens of proteases, esterases, and lipases, representing over 10 different enzyme families. Except for some well characterized Ser hydrolases like subtilases TPP2 and ARA12, prolyl oligopeptidase acylamino acid-releasing enzyme, serine carboxypeptidase-like SNG1 and BRS1, carboxylesterase-like CXE12, methylesterases MES2 and MES3, and S-formylglutathione hydrolase, the majority of these serine hydrolases have not been described before. We studied transiently expressed SNG1 and investigated plants infected with the fungal pathogen Botrytis cinerea. Besides the down-regulation of several Arabidopsis Ser hydrolase activities during Botrytis infection, we detected the activities of Botrytis-derived cutinases and lipases, which are thought to contribute to pathogenicity. PMID:19136719

  1. A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism

    PubMed Central

    Cameron, Stephan M.; Durchschein, Katharina; Richman, Jack E.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2011-01-01

    Biuret is an intermediate in the bacterial metabolism of s-triazine ring compounds and is occasionally used as a ruminant feed supplement. We used bioinformatics to identify a biuret hydrolase, an enzyme that has previously resisted efforts to stabilize, purify and characterize. This newly discovered enzyme is a member of the cysteine hydrolase superfamily, a family of enzymes previously not found to be involved in s-triazine metabolism. The gene from Rhizobium leguminosarum bv. viciae strain 3841 encoding biuret hydrolase was synthesized, transformed into Escherichia coli, and expressed. The enzyme was purified and found to be stable. Biuret hydrolase catalyzed the hydrolysis of biuret to allophanate and ammonia. The kcat/KM of 1.7 × 105 M−1s−1 and the relatively low KM of 23 ± 4 μM together suggested that this enzyme acts uniquely on biuret physiologically. This is supported by the fact that of the 34 substrate analogs of biuret tested, only two demonstrated reactivity, both at less than 5% of the rate determined for biuret. Biuret hydrolase does not react with carboxybiuret, the product of the enzyme immediately preceding biuret hydrolase in the metabolic pathway for cyanuric acid. This suggests an unusual metabolic strategy of an enzymatically-produced intermediate undergoing non-enzymatic decarboxylation to produce the substrate for the next enzyme in the pathway. PMID:21897878

  2. A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism.

    PubMed

    Cameron, Stephan M; Durchschein, Katharina; Richman, Jack E; Sadowsky, Michael J; Wackett, Lawrence P

    2011-08-01

    Biuret is an intermediate in the bacterial metabolism of s-triazine ring compounds and is occasionally used as a ruminant feed supplement. We used bioinformatics to identify a biuret hydrolase, an enzyme that has previously resisted efforts to stabilize, purify and characterize. This newly discovered enzyme is a member of the cysteine hydrolase superfamily, a family of enzymes previously not found to be involved in s-triazine metabolism. The gene from Rhizobium leguminosarum bv. viciae strain 3841 encoding biuret hydrolase was synthesized, transformed into Escherichia coli, and expressed. The enzyme was purified and found to be stable. Biuret hydrolase catalyzed the hydrolysis of biuret to allophanate and ammonia. The k(cat)/K(M) of 1.7 × 10(5) M(-1)s(-1) and the relatively low K(M) of 23 ± 4 μM together suggested that this enzyme acts uniquely on biuret physiologically. This is supported by the fact that of the 34 substrate analogs of biuret tested, only two demonstrated reactivity, both at less than 5% of the rate determined for biuret. Biuret hydrolase does not react with carboxybiuret, the product of the enzyme immediately preceding biuret hydrolase in the metabolic pathway for cyanuric acid. This suggests an unusual metabolic strategy of an enzymatically-produced intermediate undergoing non-enzymatic decarboxylation to produce the substrate for the next enzyme in the pathway.

  3. Expression of Nudix hydrolase genes in barley under UV irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  4. Piperidinyl thiazole isoxazolines: A new series of highly potent, slowly reversible FAAH inhibitors with analgesic properties.

    PubMed

    Pember, Stephen O; Mejia, Galo L; Price, Theodore J; Pasteris, Robert J

    2016-06-15

    Fatty acid amide hydrolase (FAAH) is a membrane anchored serine hydrolase that has a principle role in the metabolism of the endogenous cannabinoid anandamide. Docking studies using representative FAAH crystal structures revealed that compounds containing a novel piperidinyl thiazole isoxazoline core fit within the ligand binding domains. New potential FAAH inhibitors were designed and synthesized incorporating urea, carbamate, alkyldione and thiourea reactive centers as potential pharmacophores. A small library of candidate compounds (75) was then screened against human FAAH leading to the identification of new carbamate and urea based inhibitors (Ki=pM and nM, respectively). Representative carbamate and urea based chemotypes displayed slow, time dependent inhibition kinetics leading to enzyme inactivation which was slowly reversible. However, evidence indicated that features of the mechanism of inactivation differ between the two pharmacophore types. Selected compounds were also evaluated for analgesic activity in the mouse-tail flick test. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs).

    PubMed

    Deutsch, Dale G

    2016-01-01

    This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to

  6. Proton shuttles and phosphatase activity in soluble epoxide hydrolase.

    PubMed

    De Vivo, Marco; Ensing, Bernd; Dal Peraro, Matteo; Gomez, German A; Christianson, David W; Klein, Michael L

    2007-01-17

    Recently, a novel metal Mg2+-dependent phosphatase activity has been discovered in the N-terminal domain of the soluble epoxide hydrolase (sEH), opening a new branch of fatty acid metabolism and providing an additional site for drug targeting. Importantly, the sEH N-terminal fold belongs to the haloacid dehalogenase (HAD) superfamily, which comprises a vast majority of phosphotransferases. Herein, we present the results of a computational study of the sEH phosphatase activity, which includes classical molecular dynamics (MD) simulations and mixed quantum mechanical/molecular mechanics (QM/MM) calculations. On the basis of experimental results, a two-step mechanism has been proposed and herein investigated: (1) phosphoenzyme intermediate formation and (2) phosphoenzyme intermediate hydrolysis. Building on our earlier work, we now provide a detailed description of the reaction mechanism for the whole catalytic cycle along with its free energy profile. The present computations suggest metaphosphate-like transition states for these phosphoryl transfers. They also reveal that the enzyme promotes water deprotonation and facilitates shuttling of protons via a metal-ligand connecting water bridge (WB). These WB-mediated proton shuttles are crucial for the activation of the solvent nucleophile and for the stabilization of the leaving group. Moreover, due to the conservation of structural features in the N-terminal catalytic site of sEH and other members of the HAD superfamily, we suggest a generalization of our findings to these other metal-dependent phosphatases.

  7. Proton Shuttles and Phosphatase Activity in Soluble Epoxide Hydrolase

    PubMed Central

    De Vivo, Marco; Ensing, Bernd; Peraro, Matteo Dal; Gomez, German A.; Christianson, David W.; Klein, Michael L.

    2008-01-01

    Recently, a novel metal (Mg2+)-dependent phosphatase activity has been discovered in the N-terminal domain of the soluble epoxide hydrolase (sEH), opening a new branch of fatty acid metabolism and providing an additional site for drug targeting. Importantly, the sEH N-terminal fold belongs to the haloacid dehalogenase (HAD) superfamily, which comprises a vast majority of phosphotransferases. Herein we present the results of a computational study of the sEH phosphatase activity, which includes classical molecular dynamics (MD) simulations and mixed quantum mechanical/molecular mechanics (QM/MM) calculations. Based on experimental results, a two-step mechanism has been proposed and herein investigated: 1) phosphoenzyme intermediate formation; 2) phosphoenzyme intermediate hydrolysis. Building on our earlier work, we now provide a detailed description of the reaction mechanism for the whole catalytic cycle along with its free energy profile. The present computations suggest metaphosphate-like transition states for these phosphoryl transfers. They also reveal that the enzyme promotes water deprotonation and facilitates shuttling of protons via a metal-ligand connecting water-bridge (WB). These WB mediated proton shuttles are crucial for the activation of the solvent nucleophile and for the stabilization of the leaving-group. Moreover, due to the conservation of structural features in the N-terminal catalytic site of sEH and other members of the HAD superfamily, we suggest a generalization of our findings to these other metal-dependent phosphatases. PMID:17212419

  8. Nudix hydrolases degrade protein-conjugated ADP-ribose

    PubMed Central

    Daniels, Casey M.; Thirawatananond, Puchong; Ong, Shao-En; Gabelli, Sandra B.; Leung, Anthony K. L.

    2015-01-01

    ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD+ to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP—the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR. PMID:26669448

  9. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites.

    PubMed

    Shimizu, Motoyuki; Masuo, Shunsuke; Fujita, Tomoya; Doi, Yuki; Kamimura, Yosuke; Takaya, Naoki

    2012-09-01

    Cellular levels of NAD(+) and NADH are thought to be controlled by de novo and salvage mechanisms, although evidence has not yet indicated that they are regulated by NAD(+) degradation. Here we show that the conserved nudix hydrolase isozyme NdxA hydrolyzes and decreases cellular NAD(+) and NADH in Aspergillus nidulans. The NdxA-deficient fungus accumulated more NAD(+) during the stationary growth phase, indicating that NdxA maintains cellular NAD(+)/NADH homeostasis. The deficient strain also generated less of the secondary metabolites sterigmatocystin and penicillin G and of their gene transcripts than did the wild type. These defects were associated with a reduction in acetylated histone H4 on the gene promoters of aflR and ipnA that are involved in synthesizing secondary metabolites. Thus, NdxA increases acetylation levels of histone H4. We discovered that the novel fungal sirtuin isozyme SirA uses NAD(+) as a cosubstrate to deacetylate the lysine 16 residue of histone H4 on the gene promoter and represses gene expression. The impaired acetylation of histone and secondary metabolite synthesis in the NdxA-deficient strain were restored by eliminating functional SirA, indicating that SirA mediates NdxA-dependent regulation. These results indicated that NdxA controls total levels of NAD(+)/NADH and negatively regulates sirtuin function and chromatin structure.

  10. Soluble epoxide hydrolase: gene structure, expression and deletion.

    PubMed

    Harris, Todd R; Hammock, Bruce D

    2013-09-10

    Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Expression of the human soluble epoxide hydrolase in Escherichia coli by auto-induction for the study of high-throughput inhibition assays.

    PubMed

    Nishi, Kosuke; Kim, In-Hae; Ma, Seung-Jin

    2010-01-01

    Soluble epoxide hydrolase (sEH) is a key enzyme involved in the metabolism of epoxy fatty acid mediators such as epoxyeicosatrienoic acids with emerging roles in the regulations of hypertension and inflammation. Inhibitors of human sEH (hsEH) are effective drug candidates for the treatment of cardiovascular diseases. Preparation of hsEH for enzyme inhibition studies has been carried out by using baculovirus expression system. We herein explored the feasibility of expression of hsEH in Escherichia coli cells for the study of high-throughput screening assays of enzyme inhibitors, because the bacterial expression system is easier to handle and more cost-effective than the baculovirus expression system. The functional target enzyme was successfully produced in prokaryotic expression system by an auto-induction method and exhibited comparable enzyme activity to that yielded in baculovirus expression system. The bacterial-hsEH showed similar sensitivity to the baculovirus-hsEH against six reported inhibitors. Overalls indicate that bacterial expression of hsEH employed in the present study is useful for preparing enzymatically active hsEH, leading to effective performance of high-throughput screening assay of hsEH inhibitors and to rapid identification of novel drug candidates for the treatment of cardiovascular diseases.

  12. Optimization of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors.

    PubMed

    Patel, Jayendra Z; Nevalainen, Tapio J; Savinainen, Juha R; Adams, Yahaya; Laitinen, Tuomo; Runyon, Robert S; Vaara, Miia; Ahenkorah, Stephen; Kaczor, Agnieszka A; Navia-Paldanius, Dina; Gynther, Mikko; Aaltonen, Niina; Joharapurkar, Amit A; Jain, Mukul R; Haka, Abigail S; Maxfield, Frederick R; Laitinen, Jarmo T; Parkkari, Teija

    2015-02-01

    At present, inhibitors of α/β-hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the development of 1,2,5-thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized, and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4-morpholino-1,2,5-thiadiazol-3-yl cyclooctyl(methyl)carbamate (JZP-430) potently and irreversibly inhibited hABHD6 (IC50 =44 nM) and showed ∼230-fold selectivity over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off-targets of related compounds. Additionally, activity-based protein profiling indicated that JZP-430 displays good selectivity among the serine hydrolases of the mouse brain membrane proteome. JZP-430 has been identified as a highly selective, irreversible inhibitor of hABHD6, which may provide a novel approach in the treatment of obesity and type II diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification and characterization of diarylimidazoles as hybrid inhibitors of butyrylcholinesterase and amyloid beta fibril formation.

    PubMed

    Karlsson, Daniela; Fallarero, Adyary; Brunhofer, Gerda; Guzik, Przemyslaw; Prinz, Michaela; Holzgrabe, Ulrike; Erker, Thomas; Vuorela, Pia

    2012-01-23

    In this contribution, a chemical collection of aromatic compounds was screened for inhibition on butyrylcholinesterase (BChE)'s hydrolase activity using Ellman's reaction. A set of diarylimidazoles was identified as highly selective inhibitors of BChE hydrolase activity and amyloid β (Aβ) fibril formation. New derivatives were synthesized resulting in several additional hits, from which the most active was 6c, 4-(3-ethylthiophenyl)-2-(3-thienyl)-1H-imidazole, an uncompetitive inhibitor of BChE hydrolase activity (IC₅₀ BChE=0.10 μM; K(i)=0.073 ± 0.011 μM) acting also on Aβ fibril formation (IC₅₀=5.8 μM). With the aid of structure-activity relationship (SAR) studies, chemical motifs influencing the BChE inhibitory activity of these imidazoles were proposed. These bifunctional inhibitors represent good tools in basic studies of BChE and/or promising lead molecules for AD therapy. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Simultaneous Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Shares Discriminative Stimulus Effects with Δ9-Tetrahydrocannabinol in Mice

    PubMed Central

    Hruba, Lenka; Seillier, Alexandre; Zaki, Armia; Cravatt, Benjamin F.; Lichtman, Aron H.; Giuffrida, Andrea

    2015-01-01

    Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Δ9-tetrahydrocannabinol (Δ9-THC; 5.6 mg/kg i.p.) discrimination assay predictive of subjective effects associated with cannabis use, and the relative contribution of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the prefrontal cortex, hippocampus, and caudate putamen to those effects was examined. Δ9-THC dose-dependently increased Δ9-THC appropriate responses (ED50 value = 2.8 mg/kg), whereas the FAAH inhibitors PF-3845 [N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide] and URB597 [(3′-​(aminocarbonyl)[1,​1′-​biphenyl]-​3-​yl)-​cyclohexylcarbamate] or a MAGL inhibitor JZL184 [4-​nitrophenyl-​4-​(dibenzo[d][1,​3]dioxol-​5-​yl(hydroxy)methyl)piperidine-​1-​carboxylate] alone did not substitute for the Δ9-THC discriminative stimulus. The nonselective FAAH/MAGL inhibitors SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] and JZL195 [4-​nitrophenyl 4-​(3-​phenoxybenzyl)piperazine-​1-​carboxylate] fully substituted for Δ9-THC with ED50 values equal to 2.4 and 17 mg/kg, respectively. Full substitution for Δ9-THC was also produced by a combination of JZL184 and PF-3845, but not by a combination of JZL184 and URB597 (i.e., 52% maximum). Cannabinoid receptor type 1 antagonist rimonabant attenuated the discriminative stimulus effects of Δ9-THC, SA-57, JZL195, and the combined effects of JZL184 and PF-3845. Full substitution for the Δ9-THC discriminative stimulus occurred only when both 2-AG and AEA were significantly elevated, and the patterns of increased endocannabinoid content were

  15. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    SciTech Connect

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in themore » liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.« less

  16. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: a proposed xylan hydrolysis mechanism.

    PubMed

    Lee, Brady D; Apel, William A; Sheridan, Peter P; DeVeaux, Linda C

    2018-01-01

    Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX. Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolases were downregulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, showing a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius . Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases were not tested as part of the research

  17. Reward and Toxicity of Cocaine Metabolites Generated by Cocaine Hydrolase.

    PubMed

    Murthy, Vishakantha; Geng, Liyi; Gao, Yang; Zhang, Bin; Miller, Jordan D; Reyes, Santiago; Brimijoin, Stephen

    2015-08-01

    Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and, at best, only weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near-lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the noninvasive tail-cuff method. These observations confirm that the drug metabolites generated after CocH gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal.

  18. Long-acting cocaine hydrolase for addiction therapy.

    PubMed

    Chen, Xiabin; Xue, Liu; Hou, Shurong; Jin, Zhenyu; Zhang, Ting; Zheng, Fang; Zhan, Chang-Guo

    2016-01-12

    Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Administration-approved medication. An ideal anticocaine medication would accelerate cocaine metabolism, producing biologically inactive metabolites by administration of an efficient cocaine-specific exogenous enzyme. Our recent studies have led to the discovery of the desirable, highly efficient cocaine hydrolases (CocHs) that can efficiently detoxify and inactivate cocaine without affecting normal functions of the CNS. Preclinical and clinical data have demonstrated that these CocHs are safe for use in humans and are effective for accelerating cocaine metabolism. However, the actual therapeutic use of a CocH in cocaine addiction treatment is limited by its short biological half-life (e.g., 8 h or shorter in rats). Here we demonstrate a novel CocH form, a catalytic antibody analog, which is a fragment crystallizable (Fc)-fused CocH dimer (CocH-Fc) constructed by using CocH to replace the Fab region of human IgG1. The CocH-Fc not only has a high catalytic efficiency against cocaine but also, like an antibody, has a considerably longer biological half-life (e.g., ∼107 h in rats). A single dose of CocH-Fc was able to accelerate cocaine metabolism in rats even after 20 d and thus block cocaine-induced hyperactivity and toxicity for a long period. Given the general observation that the biological half-life of a protein drug is significantly longer in humans than in rodents, the CocH-Fc reported in this study could allow dosing once every 2-4 wk, or longer, for treatment of cocaine addiction in humans.

  19. Inactivation of Chloramphenicol and Florfenicol by a Novel Chloramphenicol Hydrolase

    PubMed Central

    Tao, Weixin; Lee, Myung Hwan; Wu, Jing; Kim, Nam Hee; Kim, Jin-Cheol; Chung, Eunsook; Hwang, Eul Chul

    2012-01-01

    Chloramphenicol and florfenicol are broad-spectrum antibiotics. Although the bacterial resistance mechanisms to these antibiotics have been well documented, hydrolysis of these antibiotics has not been reported in detail. This study reports the hydrolysis of these two antibiotics by a specific hydrolase that is encoded by a gene identified from a soil metagenome. Hydrolysis of chloramphenicol has been recognized in cell extracts of Escherichia coli expressing a chloramphenicol acetate esterase gene, estDL136. A hydrolysate of chloramphenicol was identified as p-nitrophenylserinol by liquid chromatography-mass spectroscopy and proton nuclear magnetic resonance spectroscopy. The hydrolysis of these antibiotics suggested a promiscuous amidase activity of EstDL136. When estDL136 was expressed in E. coli, EstDL136 conferred resistance to both chloramphenicol and florfenicol on E. coli, due to their inactivation. In addition, E. coli carrying estDL136 deactivated florfenicol faster than it deactivated chloramphenicol, suggesting that EstDL136 hydrolyzes florfenicol more efficiently than it hydrolyzes chloramphenicol. The nucleotide sequences flanking estDL136 encode proteins such as amidohydrolase, dehydrogenase/reductase, major facilitator transporter, esterase, and oxidase. The most closely related genes are found in the bacterial family Sphingomonadaceae, which contains many bioremediation-related strains. Whether the gene cluster with estDL136 in E. coli is involved in further chloramphenicol degradation was not clear in this study. While acetyltransferases for chloramphenicol resistance and drug exporters for chloramphenicol or florfenicol resistance are often detected in numerous microbes, this is the first report of enzymatic hydrolysis of florfenicol resulting in inactivation of the antibiotic. PMID:22752166

  20. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase.

    PubMed

    Tao, Weixin; Lee, Myung Hwan; Wu, Jing; Kim, Nam Hee; Kim, Jin-Cheol; Chung, Eunsook; Hwang, Eul Chul; Lee, Seon-Woo

    2012-09-01

    Chloramphenicol and florfenicol are broad-spectrum antibiotics. Although the bacterial resistance mechanisms to these antibiotics have been well documented, hydrolysis of these antibiotics has not been reported in detail. This study reports the hydrolysis of these two antibiotics by a specific hydrolase that is encoded by a gene identified from a soil metagenome. Hydrolysis of chloramphenicol has been recognized in cell extracts of Escherichia coli expressing a chloramphenicol acetate esterase gene, estDL136. A hydrolysate of chloramphenicol was identified as p-nitrophenylserinol by liquid chromatography-mass spectroscopy and proton nuclear magnetic resonance spectroscopy. The hydrolysis of these antibiotics suggested a promiscuous amidase activity of EstDL136. When estDL136 was expressed in E. coli, EstDL136 conferred resistance to both chloramphenicol and florfenicol on E. coli, due to their inactivation. In addition, E. coli carrying estDL136 deactivated florfenicol faster than it deactivated chloramphenicol, suggesting that EstDL136 hydrolyzes florfenicol more efficiently than it hydrolyzes chloramphenicol. The nucleotide sequences flanking estDL136 encode proteins such as amidohydrolase, dehydrogenase/reductase, major facilitator transporter, esterase, and oxidase. The most closely related genes are found in the bacterial family Sphingomonadaceae, which contains many bioremediation-related strains. Whether the gene cluster with estDL136 in E. coli is involved in further chloramphenicol degradation was not clear in this study. While acetyltransferases for chloramphenicol resistance and drug exporters for chloramphenicol or florfenicol resistance are often detected in numerous microbes, this is the first report of enzymatic hydrolysis of florfenicol resulting in inactivation of the antibiotic.

  1. Inhibition Potential of Cycloartane-Type Glycosides from the Roots of Cimicifuga dahurica against Soluble Epoxide Hydrolase.

    PubMed

    Thao, Nguyen Phuong; Luyen, Bui Thi Thuy; Lee, Ji Sun; Kim, Jang Hoon; Dat, Nguyen Tien; Kim, Young Ho

    2017-06-23

    A phytochemical assay-guided fractionation of the 95% ethanol extract of Cimicifuga dahurica roots afforded 29 9,19-cycloartane triterpenoid glycosides, including the new cimiricasides A-F (1-6). The structures of 1-6 were established using contemporary NMR methods and from the HRESIMS data, and the sugar moiety in each case was confirmed by acid hydrolysis and subsequent GC/MS analysis. Compounds 2, 4, 5, 7-9, 18, 25, and 29 showed soluble epoxide hydrolase inhibitory effects with IC 50 values of 0.4 ± 0.1 to 24.0 ± 0.2 μM. The compounds were analyzed by enzyme kinetic studies to explore the binding mode between the ligand and receptor. Compounds 4 (mixed type), 8, 18, and 29 (noncompetitive type) bound to a preferred allosteric site, while compounds 2, 5, 7, 9, and 25 had competitive interactions at the active site. The binding mechanism of selected inhibitors was investigated using molecular docking and dynamics simulations.

  2. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging With the Novel Radiotracer [11C]CURB.

    PubMed

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F; Huestis, Marilyn A; Payer, Doris E; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J; Tong, Junchao

    2016-11-01

    One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Brain FAAH binding was measured with positron emission tomography and [ 11 C]CURB in 22 healthy control subjects and ten chronic cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine, and hair levels of cannabinoids and metabolites were determined. In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects (overall Cohen's d = 0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  3. A fluorescence-based assay for the measurement of S-adenosylhomocysteine hydrolase activity in biological samples.

    PubMed

    Hudec, Roman; Hamada, Kozo; Mikoshiba, Katsuhiko

    2013-02-15

    The methylation of DNA, RNA, and proteins plays crucial roles in numerous biological processes, including epigenetic control, virus replication, and cell differentiation. In mammals, the rate-limiting step of the S-adenosylmethionine-dependent methylation process is exclusively controlled by S-adenosylhomocysteine (S-AdoHcy) hydrolase (SAHH). SAHH hydrolyzes S-AdoHcy to adenosine and homocysteine (Hcy) and is therefore a potential therapeutic target for various diseases, including cancer, malaria, and viral diseases. However, a simple and highly sensitive assay for the evaluation of SAHH activity, particularly for drug discovery, had not yet been developed. Here we present the development of a fluorescence-based assay for the measurement of SAHH activity in biological samples. We combined the advantages of the detection of fluorescent thiol groups in Hcy by ThioGlo1 with the S-AdoHcy-driven enzyme-coupled reaction. Our results confirmed the reliability of the proposed assay for the measurement of the SAHH activity of purified SAHH and showed the potential of this assay for the measurement of the SAHH activity of biological samples. Therefore, the proposed SAHH activity assay may be utilized in clinical laboratories and in high-throughput screenings for the identification of new SAHH inhibitors with potentially beneficial effects on numerous pathologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Fatty acid amide hydrolase blockade attenuates the development of collagen-induced arthritis and related thermal hyperalgesia in mice

    PubMed Central

    Kinsey, Steven G.; Naidu, Pattipati S.; Cravatt, Benjamin F.; Dudley, David T.; Lichtman, Aron H.

    2011-01-01

    Fatty acid amide hydrolase (FAAH) is the primary degradative enzyme of the endocannabinoid anandamide (N-arachidonoylethanolamine), which activates cannabinoid CB1 and CB2 receptors. FAAH disruption reduces nociception in a variety of acute rodent models of inflammatory pain. The present study investigated whether these actions extend to the chronic, collagen-induced arthritis (CIA) model. We investigated the anti-arthritic and anti-hyperalgesic effects of genetic deletion or pharmacological inhibition of FAAH in the CIA model. FAAH (−/ −) mice, and FAAH-NS mice that express FAAH exclusively in nervous tissue, displayed decreased severity of CIA and associated hyperalgesia. These phenotypic anti-arthritic effects were prevented by repeated daily injections of the CB2 receptor antagonist, SR144528, but not the CB1 receptor antagonist rimonabant. Similarly, repeated administration of URB597 reduced CIA severity, and acute administration of rimonabant, but not SR144528, blocked the anti-hyperalgesic effects of prolonged FAAH inhibition, suggesting that prolonged CB2 receptor activation reduces the severity of CIA, whereas acute CB1 receptor activation reduces CIA-induced hyperalgesia. In contrast, acute administration of the FAAH inhibitor, URB597, elicited a CB1 receptor-dependent anti-hyperalgesic effect. The observed anti-arthritic and anti-hyperalgesic properties of FAAH inhibition, coupled with a lack of apparent behavioral alterations, suggest that endocannabinoid modulating enzymes offer a promising therapeutic target for the development of novel pharmacological approaches to treat rheumatoid arthritis and associated hyperalgesia. PMID:21740924

  5. Spinal neuronal cannabinoid receptors mediate urodynamic effects of systemic fatty acid amide hydrolase (FAAH) inhibition in rats.

    PubMed

    Füllhase, Claudius; Schreiber, Andrea; Giese, Armin; Schmidt, Michael; Montorsi, Francesco; Gratzke, Christian; La Croce, Giovanni; Castiglione, Fabio; Stief, Christian; Hedlund, Petter

    2016-04-01

    To test if urodynamic effects from systemic Fatty Acid Amide Hydrolase (FAAH) inhibition involve sacral spinal cannabinoid type 1 (CB1) or type 2 (CB2) receptors. Male rats with or without partial urethral obstruction were used for cystometry or immunohistochemistry. Urodynamic effects of intravenous (IV) 0.3 mg/kg Oleoyl Ethyl Amide (OEtA; FAAH inhibitor), and intrathecal (IT) 5 μg rimonabant (CB1 antagonist) or 5 μg SR144528 (CB2 antagonist) were studied in awake rats. After administration of rimonabant or SR144528, non-obstructed rats with normal bladder function developed bladder overactivity (BO), which was counteracted by OEtA. OEtA also counteracted BO in obstructed rats. SR144528 did not affect bladder function in obstructed rats but counteracted the urodynamic effects of OEtA. Surprisingly, rimonabant (and AM251, another CB1 antagonist) reduced BO in obstructed rats, whereafter OEtA produced no additional urodynamic effects. CB1 expression increased in the sacral spinal cord of obstructed rats whereas no changes were observed for CB2 or FAAH. Urodynamic effects of systemic FAAH inhibition involve activities at spinal neuronal CB1 and CB2 receptors in normal and obstructed rats. Endogenous spinal CB receptor ligands seem to regulate normal micturition and BO. Altered spinal CB receptor functions may be involved in the pathogenesis of obstruction-induced BO. Neurourol. Urodynam. 35:464-470, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging with the Novel Radiotracer [11C]CURB

    PubMed Central

    Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F.; Huestis, Marilyn A.; Payer, Doris E.; Wilson, Alan A.; Houle, Sylvain; Kish, Stephen J.; Tong, Junchao

    2016-01-01

    Background One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH) and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Methods Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic, frequent cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine and hair levels of cannabinoids and metabolites were determined. Results In cannabis users FAAH binding was significantly lower by 14–20% across the brain regions examined as compared to matched control subjects (overall Cohen’s d=0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Conclusions Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. PMID:27345297

  7. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    SciTech Connect

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton

    2014-10-15

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c =more » 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.« less

  8. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation

    PubMed Central

    Kodani, Sean D.; Overby, Haley B.; Morisseau, Christophe; Chen, Jiangang; Zhao, Ling; Hammock, Bruce D.

    2016-01-01

    Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB1)-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB1 by endocannabinoids. PMID:27659731

  9. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation.

    PubMed

    Kodani, Sean D; Overby, Haley B; Morisseau, Christophe; Chen, Jiangang; Zhao, Ling; Hammock, Bruce D

    2016-11-16

    Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB 1 )-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB 1 by endocannabinoids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.

    PubMed

    Amitai, Gabi; Adani, Rellie; Yacov, Guy; Yishay, Shelly; Teitlboim, Shai; Tveria, Liat; Limanovich, Osnat; Kushnir, Moshe; Meshulam, Haim

    2007-04-20

    In order to enhance the enzymatic detoxification rate of organophosphorus (OP) nerve agents we have searched for more active variants of recombinant mammalian paraoxonase (PON1). We have previously identified three key positions in PON1 that affect OP hydrolysis: Leu69, Val346 and His115, that significantly enhance the hydrolysis of cyclosarin (GF), soman, chlorpyrifos-oxon (ChPo), O-isopropyl-O-(p-nitrophenyl)methylphosphonate (IMP-pNP) and diisopropyl fluorophosphate (DFP). GC/FPD analysis compared to residual AChE inhibition assay displayed stereoselective hydrolysis of GF, soman and IMP-pNP, indicating that wild type PON1 and its variant V346A are more active toward the less toxic P(+) optical isomer. In order to obtain new PON1 variants with reversed stereoselectivity, displaying augmented activity toward the more toxic isomer P(-) of nerve agents, we synthesized new asymmetric fluorogenic OPs (Flu-OPs). Six Flu-OPs were prepared containing either ethyl (E), cyclohexyl (C) or pinacolyl (P) alkyl radicals attached to methyl-phosphonyl (MP) moiety analogous to the structure of VX, GF and soman, respectively. The fluorescent moieties are either 3-cyano-4-methyl-7-hydroxy coumarin (MeCyC) or 1,3-dichloro-7-hydroxy-9,9-dimethyl-9H-acridin-2-one (DDAO). The kinetics of AChE and BChE inhibition by these new Flu-OPs display k(i) values 8.5x10(4) to 8.5x10(7) and 5x10(4) to 2x10(6)M(-1)min(-1), respectively. EMP-MeCyC and EMP-DDAO are the most active inhibitors of AChE whereas CMP-MeCyC and CMP-DDAO are better inhibitors of BChE than AChE, indicating accommodation of bulky cyclohexyl group inside the active site of BChE. PMP-MeCyC and PMP-DDAO are the least active inhibitors of both AChE and BChE. CMP-MeCyC and CMP-DDAO were significantly detoxified only by the five-site mutations PON1 variant L69V/S138L/S193P/N287D/V346A. Degradation kinetics of Flu-OPs measured by increase in absorbance of the released fluorogenic group was fit by a two exponential function

  11. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  12. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.

    PubMed

    Viveros-Paredes, J M; Gonzalez-Castañeda, R E; Escalante-Castañeda, A; Tejeda-Martínez, A R; Castañeda-Achutiguí, F; Flores-Soto, M E

    2017-01-16

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum. Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP. Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations. Copyright © 2016 Sociedad Española de Neurología. Publicado

  13. Purification and Characterization of Allophanate Hydrolase (AtzF) from Pseudomonas sp. Strain ADP

    PubMed Central

    Shapir, Nir; Sadowsky, Michael J.; Wackett, Lawrence P.

    2005-01-01

    AtzF, allophanate hydrolase, is a recently discovered member of the amidase signature family that catalyzes the terminal reaction during metabolism of s-triazine ring compounds by bacteria. In the present study, the atzF gene from Pseudomonas sp. strain ADP was cloned and expressed as a His-tagged protein, and the protein was purified and characterized. AtzF had a deduced subunit molecular mass of 66,223, based on the gene sequence, and an estimated holoenzyme molecular mass of 260,000. The active protein did not contain detectable metals or organic cofactors. Purified AtzF hydrolyzed allophanate with a kcat/Km of 1.1 × 104 s−1 M−1, and 2 mol of ammonia was released per mol allophanate. The substrate range of AtzF was very narrow. Urea, biuret, hydroxyurea, methylcarbamate, and other structurally analogous compounds were not substrates for AtzF. Only malonamate, which strongly inhibited allophanate hydrolysis, was an alternative substrate, with a greatly reduced kcat/Km of 21 s−1 M−1. Data suggested that the AtzF catalytic cycle proceeds through a covalent substrate-enzyme intermediate. AtzF reacts with malonamate and hydroxylamine to generate malonohydroxamate, potentially derived from hydroxylamine capture of an enzyme-tethered acyl group. Three putative catalytically important residues, one lysine and two serines, were altered by site-directed mutagenesis, each with complete loss of enzyme activity. The identity of a putative serine nucleophile was probed using phenyl phosphorodiamidate that was shown to be a time-dependent inhibitor of AtzF. Inhibition was due to phosphoroamidation of Ser189 as shown by liquid chromatography/matrix-assisted laser desorption ionization mass spectrometry. The modified residue corresponds in sequence alignments to the nucleophilic serine previously identified in other members of the amidase signature family. Thus, AtzF affects the cleavage of three carbon-to-nitrogen bonds via a mechanism similar to that of enzymes

  14. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase

    PubMed Central

    Carey, Lawrence M; Slivicki, Richard A; Leishman, Emma; Cornett, Ben; Mackie, Ken; Bradshaw, Heather

    2016-01-01

    Fatty-acid amide hydrolase (FAAH) is the major enzyme responsible for degradation of anandamide, an endocannabinoid. Pharmacological inhibition or genetic deletion of FAAH (FAAH KO) produces antinociception in preclinical pain models that is largely attributed to anandamide-induced activation of cannabinoid receptors. However, FAAH metabolizes a wide range of structurally related, biologically active lipid signaling molecules whose functions remain largely unknown. Some of these endogenous lipids, including anandamide itself, may exert pro-nociceptive effects under certain conditions. In our study, FAAH KO mice exhibited a characteristic analgesic phenotype in the tail flick test and in both formalin and carrageenan models of inflammatory nociception. Nonetheless, intradermal injection of the transient receptor potential channel V1 (TRPV1) agonist capsaicin increased nocifensive behavior as well as mechanical and heat hypersensitivity in FAAH KO relative to wild-type mice. This pro-nociceptive phenotype was accompanied by increases in capsaicin-evoked Fos-like immunoreactive (FLI) cells in spinal dorsal horn regions implicated in nociceptive processing and was attenuated by CB1 (AM251) and TRPV1 (AMG9810) antagonists. When central sensitization was established, FAAH KO mice displayed elevated levels of anandamide, other fatty-acid amides, and endogenous TRPV1 agonists in both paw skin and lumbar spinal cord relative to wild-type mice. Capsaicin decreased spinal cord 2-AG levels and increased arachidonic acid and prostaglandin E2 levels in both spinal cord and paw skin irrespective of genotype. Our studies identify a previously unrecognized pro-nociceptive phenotype in FAAH KO mice that was unmasked by capsaicin challenge. The heightened nociceptive response was mediated by CB1 and TRPV1 receptors and accompanied by enhanced spinal neuronal activation. Moreover, genetic deletion of FAAH has a profound impact on the peripheral and central lipidome. Thus, genetic

  15. Screening of soluble epoxide hydrolase inhibitory ingredients from traditional Chinese medicines for anti-inflammatory use.

    PubMed

    Liu, Jun-Yan; Morisseau, Christophe; Huang, Huazhang; Hammock, Bruce D

    2016-12-24

    Inhibition of soluble epoxide hydrolase (sEH) has been extensively reported to be anti-inflammatory in multiple animal models. Some anti-inflammatory traditional Chinese medicines (TCMs) and a few natural compounds were also found to be inhibitory to sEH in vitro. To determine whether the active intergradient (AI) against sEH of anti-inflammatory TCMs in vitro is anti-inflammatory in vivo and the sEH inhibitory action of the AI contributes to its anti-inflammatory effect in vivo. In vitro inhibition assay of the sEH was conducted for the methanol and ethanol extracts of 27 anti-inflammatory TCMs. Two potent extracts were subject to further separation guided by bioassay to afford promising AI against sEH in vitro [Fr.5 of the crude ethanol extract of Rhizoma coptidis (FFCERC)]. Finally, the in vivo anti-inflammatory effect and sEH inhibitory potency of FFCERC was evaluated in a lipopolysacchride (LPS)-challenged murine model of acute systemic inflammation. The inflammatory status was characterized by the inflammatory cytokines TNF-α and interleukin-6 (IL-6) and sEH inhibitory function was evaluated by the plasma levels of epoxyeicosantrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), which are the sEH mediated substrates and products, respectively. At the concentration of 25µg/mL, the crude ethanol extracts of 6 TCMs including Herba Asari, Radix Polygalae, Fructus Amomi, Radix Astragali, Radix Scutellariae, and Rhizoma Coptidis were potent against sEH. The crude extracts of Herba Asari and Rhizoma Coptidis were selected for further separation to afford FFCERC as the most promising AI for in vivo evaluation. Oral administration of FFCERC attenuated the significant increase in TNF-α and IL-6 caused by LPS challenge in a dose-dependent manner. In parallel, oral administration of FFCERC shifted the changes in plasma levels of EETs and DHETs caused by LPS-challenge like a synthetic sEH inhibitor. A sEH inhibitory AI from Rhizoma Coptidis is anti

  16. Epoxide hydrolase-lasalocid a structure provides mechanistic insight into polyether natural product biosynthesis.

    PubMed

    Wong, Fong T; Hotta, Kinya; Chen, Xi; Fang, Minyi; Watanabe, Kenji; Kim, Chu-Young

    2015-01-14

    Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.

  17. Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2003-01-01

    Peptidase family U34 consists of enzymes with unclear catalytic mechanism, for instance, dipeptidase A from Lactobacillus helveticus. Using extensive sequence similarity searches, we infer that U34 family members are homologous to penicillin V acylases (PVA) and thus potentially adopt the N-terminal nucleophile (Ntn) hydrolase fold. Comparative sequence and structural analysis reveals a cysteine as the catalytic nucleophile as well as other conserved residues important for catalysis. The PVA/U34 family is variable in sequence and exhibits great diversity in substrate specificity, to include enzymes such as choloyglycine hydrolases, acid ceramidases, isopenicillin N acyltransferases, and a subgroup of eukaryotic proteins with unclear function. PMID:12717035

  18. Streptococcus pneumoniae Endohexosaminidase D, Structural and Mechanistic Insight into Substrate-Assisted Catalysis in Family 85 Glycoside Hydrolases

    SciTech Connect

    Abbott, D.; Macauley, M; Vocadlo, D

    2009-01-01

    Endo-?-d-glucosaminidases from family 85 of glycoside hydrolases (GH85 endohexosaminidases) act to cleave the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. Endohexosaminidase D (Endo-D), produced by Streptococcus pneumoniae, is believed to contribute to the virulence of this organism by playing a role in the deglycosylation of IgG antibodies. Endohexosaminidases have received significant attention for this reason and, moreover, because they are powerful tools for chemoenzymatic synthesis of proteins having defined glycoforms. Here we describe mechanistic and structural studies of the catalytic domain (SpGH85) of Endo-D that provide compelling support for GH85 enzymes usingmore » a catalytic mechanism involving substrate-assisted catalysis. Furthermore, the structure of SpGH85 in complex with the mechanism-based competitive inhibitor NAG-thiazoline (Kd = 28 ?m) provides a coherent rationale for previous mutagenesis studies of Endo-D and other related GH85 enzymes. We also find GH85, GH56, and GH18 enzymes have a similar configuration of catalytic residues. Notably, GH85 enzymes have an asparagine in place of the aspartate residue found in these other families of glycosidases. We propose that this residue, as the imidic acid tautomer, acts analogously to the key catalytic aspartate of GH56 and GH18 enzymes. This topographically conserved arrangement of the asparagine residue and a conserved glutamic acid, coupled with previous kinetic studies, suggests these enzymes may use an unusual proton shuttle to coordinate effective general acid and base catalysis to aid cleavage of the glycosidic bond. These results collectively provide a blueprint that may be used to facilitate protein engineering of these enzymes to improve their function as biocatalysts for synthesizing glycoproteins having defined glycoforms and also may serve as a guide for generating inhibitors of GH85 enzymes.« less

  19. Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation

    PubMed Central

    Shamran, Haidar; Singh, Narendra P.; Zumbrun, Elizabeth E.; Murphy, Angela; Taub, Dennis D.; Mishra, Manoj K.; Price, Robert L.; Chatterjee, Saurabh; Nagarkatti, Mitzi; Nagarkatti, Prakash S.; Singh, Udai P.

    2016-01-01

    Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), which is thought to result from immune-mediated inflammatory disorders, leads to high morbidity and health care cost. Fatty acid amide hydrolase (FAAH) is an enzyme crucially involved in the modulation of intestinal physiology through anandamide (AEA) and other endocannabinoids. Here we examined the effects of an FAAH inhibitor (FAAH-II), on dextran sodium sulphate (DSS)-induced experimental colitis in mice. Treatments with FAAH-II improved overall clinical scores by reversing weight loss and colitis-associated pathogenesis. The frequencies of activated CD4+ T cells in spleens, mesenteric lymph nodes (MLNs), Peyer's patches (PPs), and colon lamina propiria (LP) were reduced by FAAH inhibition. Similarly, the frequencies of macrophages, neutrophils, natural killer (NK), and NKT cells in the PPs and LP of mice with colitis declined after FAAH blockade, as did concentrations of systemic and colon inflammatory cytokines. Microarray analysis showed that 26 miRNAs from MLNs and 217 from PPs had a 1.5-fold greater difference in expression after FAAH inhibition. Among them, 8 miRNAs were determined by reverse-transcription polymerase chain reaction (RT-PCR) analysis to have anti-inflammatory properties. Pathway analysis demonstrated that differentially regulated miRNAs target mRNA associated with inflammation. Thus, FAAH-II ameliorates experimental colitis by reducing not only the number of activated T cells but also the frequency of macrophages, neutrophils, and NK/NKT cell, as well as inflammatory miRNAs and cytokine at effector sites in the colon. These studies demonstrate for the first time that FAAH-II inhibitor may suppress colitis through regulation of pro-inflammatory miRNAs expression. PMID:27327245

  20. Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation.

    PubMed

    Shamran, Haidar; Singh, Narendra P; Zumbrun, Elizabeth E; Murphy, Angela; Taub, Dennis D; Mishra, Manoj K; Price, Robert L; Chatterjee, Saurabh; Nagarkatti, Mitzi; Nagarkatti, Prakash S; Singh, Udai P

    2017-01-01

    Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), which is thought to result from immune-mediated inflammatory disorders, leads to high morbidity and health care cost. Fatty acid amide hydrolase (FAAH) is an enzyme crucially involved in the modulation of intestinal physiology through anandamide (AEA) and other endocannabinoids. Here we examined the effects of an FAAH inhibitor (FAAH-II), on dextran sodium sulphate (DSS)-induced experimental colitis in mice. Treatments with FAAH-II improved overall clinical scores by reversing weight loss and colitis-associated pathogenesis. The frequencies of activated CD4 + T cells in spleens, mesenteric lymph nodes (MLNs), Peyer's patches (PPs), and colon lamina propiria (LP) were reduced by FAAH inhibition. Similarly, the frequencies of macrophages, neutrophils, natural killer (NK), and NKT cells in the PPs and LP of mice with colitis declined after FAAH blockade, as did concentrations of systemic and colon inflammatory cytokines. Microarray analysis showed that 26 miRNAs from MLNs and 217 from PPs had a 1.5-fold greater difference in expression after FAAH inhibition. Among them, 8 miRNAs were determined by reverse-transcription polymerase chain reaction (RT-PCR) analysis to have anti-inflammatory properties. Pathway analysis demonstrated that differentially regulated miRNAs target mRNA associated with inflammation. Thus, FAAH-II ameliorates experimental colitis by reducing not only the number of activated T cells but also the frequency of macrophages, neutrophils, and NK/NKT cell, as well as inflammatory miRNAs and cytokine at effector sites in the colon. These studies demonstrate for the first time that FAAH-II inhibitor may suppress colitis through regulation of pro-inflammatory miRNAs expression. Published by Elsevier Inc.

  1. Dual Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Blockade Produces THC-Like Morris Water Maze Deficits in Mice

    PubMed Central

    2012-01-01

    Acute administration of Δ9-tetrahydrocannabinol (THC) or exposure to marijuana smoke impairs short-term spatial memory in water maze tasks through a CB1 receptor mechanism of action. N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) are endogenous cannabinoids that are predominantly metabolized by the respective enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Although the MAGL inhibitor JZL184 enhances short-term synaptic plasticity, it has yet to be evaluated in the Morris water maze. Previous research demonstrated that simultaneous, complete blockade of FAAH and MAGL produces full blown THC-like effects. Thus, in the following studies we tested whether dual blockade of FAAH and MAGL would impair learning in a repeated acquisition Morris water maze task. Mice treated with the dual FAAH/MAGL inhibitor JZL195 (20 mg/kg) as well as JZL184-treated FAAH −/– mice displayed robust deficits in Morris water maze performance that were similar in magnitude to THC-treated mice. While 20 or 40 mg/kg impaired water maze performance in FAAH −/– mice, only the high dose of JZL184 disrupted performance in FAAH +/+ mice. The memory impairing effects of JZL184 were blocked by the CB1 receptor antagonist rimonabant. Neither JZL184 nor JZL195 impaired performance in a cued version of the water maze task, arguing against the notion that sensorimotor or motivational deficits accounted for the impaired acquisition performance. JZL184 increased 2-AG levels in the hippocampus, prefrontal cortex, and cerebellum to a similar degree in FAAH −/– and +/+ mice. FAAH −/– mice, regardless of drug treatment, possessed elevated AEA levels in each brain region assessed. The results of this study reveal that concomitant increases in AEA and 2-AG disrupt short-term spatial memory performance in a manner similar to that of THC. PMID:22860205

  2. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    SciTech Connect

    Liu Junyan; Qiu Hong; Morisseau, Christophe

    2011-09-01

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined.more » TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.« less

  3. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    SciTech Connect

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethylmore » p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from

  4. Glycoside hydrolase gene transcription by Alicyclobacillus acidocaldarius during growth on wheat arabinoxylan and monosaccharides: A proposed xylan hydrolysis mechanism

    SciTech Connect

    Lee, Brady D.; Apel, William A.; Sheridan, Peter P.

    2018-04-16

    Background Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Results Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolasesmore » were down-regulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Conclusions Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases was not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a

  5. Outstanding impact of soil tillage on the abundance of soil hydrolases revealed by a metagenomic approach.

    PubMed

    Souza, Renata Carolini; Cantão, Maurício Egídio; Nogueira, Marco Antonio; Vasconcelos, Ana Tereza Ribeiro; Hungria, Mariangela

    2018-03-31

    The soil represents the main source of novel biocatalysts and biomolecules of industrial relevance. We searched for hydrolases in silico in four shotgun metagenomes (4,079,223 sequences) obtained in a 13-year field trial carried out in southern Brazil, under the no-tillage (NT), or conventional tillage (CT) managements, with crop succession (CS, soybean/wheat), or crop rotation (CR, soybean/maize/wheat/lupine/oat). We identified 42,631 hydrolases belonging to five classes by comparing with the KEGG database, and 44,928 sequences by comparing with the NCBI-NR database. The abundance followed the order: lipases>laccases>cellulases>proteases>amylases>pectinases. Statistically significant differences were attributed to the tillage system, with the NT showing about five times more hydrolases than the CT system. The outstanding differences can be attributed to the management of crop residues, left on the soil surface in the NT, and mechanically broken and incorporated into the soil in the CT. Differences between the CS and the CR were slighter, 10% higher for the CS, but not statistically different. Most of the sequences belonged to fungi (Verticillium, and Colletotrichum for lipases and laccases, and Aspergillus for proteases), and to the archaea Sulfolobus acidocaldarius for amylases. Our results indicate that agricultural soils under conservative managements may represent a hotspot for bioprospection of hydrolases. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis.

    PubMed

    Leclerc, D; Asselin, A

    1989-08-01

    Cell walls from various Gram-positive bacteria were incorporated at a concentration of 0.2% (w/v) into polyacrylamide gels as a substrate for detection of cell wall hydrolases. Bacterial extracts from crude cell wall preparations were denatured with sodium dodecyl sulfate and 2-mercaptoethanol and subjected to denaturing polyacrylamide gel electrophoresis in gels containing bacterial cell walls. After renaturation in the presence of purified and buffered 1% (v/v) Triton X-100, cell wall hydrolases were visualized as clear lytic zones against the opaque cell wall background. One to fifteen bands with lytic activity could be detected, depending on bacterial extracts and on the nature of the cell walls incorporated into gels. Crude cell wall extracts were the best source of cell wall hydrolases from various Gram-positive bacteria such as Clostridium perfringens (15 bands), Micrococcus luteus (1 band), Bacillus megaterium (4 bands), Bacillus sp. (6 bands), B. cereus (3 bands), B. subtilis (7 bands), Staphylococcus aureus (13 bands), Streptococcus faecalis (3 bands), and Strep. pyogenes (5 bands). Molecular masses of cell wall hydrolases ranged from 17 to 114.6 kDa. Lytic activities against cell walls of Corynebacterium sepedonicum (Clavibacter michiganense pv. sepedonicum) could be shown with the cell wall extracts of Strep. pyogenes (45.7 kDa), Strep. faecalis (67 kDa), B. megaterium (67 kDa), and Staph. aureus (67 kDa).

  7. Rehabilitation of faulty kinetic determinations and misassigned glycoside hydrolase family of retaining mechanism ß-xylosidases

    USDA-ARS?s Scientific Manuscript database

    We obtained Cx1 from a commercial supplier, whose catalog listed it as a ß-xylosidase of glycoside hydrolase family 43. NMR experiments indicate retention of anomeric configuration in its reaction stereochemistry, opposing the assignment of GH43, which follows an inverting mechanism. Partial protein...

  8. Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase

    Treesearch

    Franz St. Johns; Jason C. Hurlbert; John D. Rice; James F. Preston; Edwin. Pozharski

    2011-01-01

    Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGXn) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGXn by...

  9. Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61▿†

    PubMed Central

    Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.

    2011-01-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  10. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  11. Purification and Characterization of TrzF: Biuret Hydrolysis by Allophanate Hydrolase Supports Growth

    PubMed Central

    Shapir, Nir; Cheng, Gang; Sadowsky, Michael J.; Wackett, Lawrence P.

    2006-01-01

    TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of α2 and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret. PMID:16597948

  12. Purification and characterization of TrzF: biuret hydrolysis by allophanate hydrolase supports growth.

    PubMed

    Shapir, Nir; Cheng, Gang; Sadowsky, Michael J; Wackett, Lawrence P

    2006-04-01

    TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of alpha(2) and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.

  13. ORGANOPHOSPHORUS HYDROLASE-BASED AMPEROMETRIC SENSOR: MODULATION OF SENSITIVITY AND SUBSTRATE SELECTIVITY

    EPA Science Inventory

    The detection of organophosphate (OP) insecticides with nitrophenyl substituents is reported using an enzyme electrode composed of Organophosphorus Hydrolase (OPH) and albumin co-immobilized to a nylon net and attached to a carbon paste electrode. The mechanism for this biosen...

  14. An enhancer activates the pig lactase phlorizin hydrolase promoter in intestinal cells.

    PubMed

    Troelsen, Jesper T; Mitchelmore, Cathy; Olsen, Jørgen

    2003-02-13

    Lactase phlorizin hydrolase is a small intestinal-specific brush border protein commonly used as a specific marker of differentiated enterocytes. A number of transcription factors involved in the enterocyte-specific expression of lactase phlorizin hydrolase have been identified. An upstream regulatory region, which we have named the "LPH enhancer", located at position -894 to -798 in the porcine lactase phlorizin hydrolase gene, is necessary for high differentiation-dependent LPH expression in intestinal cells. The LPH enhancer was studied by mutation analysis, transfection experiments and electrophoretical mobility shift assays. The LPH enhancer is active in intestinal cells (Caco-2) and not in non-intestinal cells (HeLa). The LPH enhancer is only able to enhance expression when it is located in front of an intestinal-specific promoter such as the lactase phlorizin hydrolase promoter or the sucrase-isomaltase promoter. In front of an SV40-derived promoter the LPH enhancer has no stimulatory effect. In addition to the lack of promoter-promiscuity, the LPH enhancer is not a classical enhancer in the sense that it is not orientation-independent and it cannot function when located 3' of a reporter gene. The LPH enhancer contains at least three cis-elements (at -894 to -880, -880 to -875 and -833 to -814) with functional importance for the LPH enhancer activity.

  15. In vitro effects of a beer-foam stabilizer on the activities of three pancreatic hydrolases.

    PubMed

    Uwaifo, A O

    1983-01-01

    The chemical composition of a foam stabilizer and its in vitro effects on the activities of trypsin, amylase and lipase in the pancreatic extract of male albino Wistar rats have been studied. Activities of two of the three hydrolases (amylase and trypsin) were stimulated while that of lipase was inhibited. Lineweaver--Burk reciprocal plot indicates non-competitive inhibition of lipase.

  16. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    EPA Science Inventory

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface of
    Escherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membrane
    fractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus
    ...

  17. Esterase SeE of Streptococcus equi ssp. equi is a novel nonspecific carboxylic ester hydrolase.

    PubMed

    Xie, Gang; Liu, Mengyao; Zhu, Hui; Lei, Benfang

    2008-12-01

    Extracellular carboxylic ester hydrolases are produced by many bacterial pathogens and have been shown recently to be important for virulence of some pathogens. However, these hydrolases are poorly characterized in enzymatic activity. This study prepared and characterized the secreted ester hydrolase of Streptococcus equi ssp. equi (designated SeE for S. equi esterase). SeE hydrolyzes ethyl acetate, acetylsalicylic acid, and tributyrin but not ethyl butyrate. This substrate specificity pattern does not match those of the three conventional types of nonspecific carboxylic ester hydrolases (carboxylesterases, arylesterases, and acetylesterases). To determine whether SeE has lipase activity, a number of triglycerides and vinyl esters were tested in SeE-catalyzed hydrolysis. SeE does not hydrolyze triglycerides and vinyl esters of long-chain carboxylic acids nor display interfacial activation, indicating that SeE is not a lipase. Like the conventional carboxylesterases, SeE is inhibited by di-isopropylfluorophosphate. These findings indicate that SeE is a novel carboxylesterase with optimal activity for acetyl esters.

  18. Encoded Library Synthesis Using Chemical Ligation and the Discovery of sEH Inhibitors from a 334-Million Member Library

    PubMed Central

    Litovchick, Alexander; Dumelin, Christoph E.; Habeshian, Sevan; Gikunju, Diana; Guié, Marie-Aude; Centrella, Paolo; Zhang, Ying; Sigel, Eric A.; Cuozzo, John W.; Keefe, Anthony D.; Clark, Matthew A.

    2015-01-01

    A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase. PMID:26061191

  19. Encoded Library Synthesis Using Chemical Ligation and the Discovery of sEH Inhibitors from a 334-Million Member Library.

    PubMed

    Litovchick, Alexander; Dumelin, Christoph E; Habeshian, Sevan; Gikunju, Diana; Guié, Marie-Aude; Centrella, Paolo; Zhang, Ying; Sigel, Eric A; Cuozzo, John W; Keefe, Anthony D; Clark, Matthew A

    2015-06-10

    A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase.

  20. Encoded Library Synthesis Using Chemical Ligation and the Discovery of sEH Inhibitors from a 334-Million Member Library

    NASA Astrophysics Data System (ADS)

    Litovchick, Alexander; Dumelin, Christoph E.; Habeshian, Sevan; Gikunju, Diana; Guié, Marie-Aude; Centrella, Paolo; Zhang, Ying; Sigel, Eric A.; Cuozzo, John W.; Keefe, Anthony D.; Clark, Matthew A.

    2015-06-01

    A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase.

  1. Identification of a novel bean alpha-amylase inhibitor with chitinolytic activity.

    PubMed

    Dayler, Charles S A; Mendes, Paulo A M; Prates, Maura V; Bloch, Carlos; Franco, Octavio L; Grossi-de-Sá, Maria F

    2005-10-24

    Zabrotes subfasciatus is a devastating starch-dependent storage bean pest. In this study, we attempted to identify novel alpha-amylase inhibitors from wild bean seeds, with efficiency toward pest alpha-amylases. An inhibitor named Phaseolus vulgaris chitinolytic alpha-amylase inhibitor (PvCAI) was purified and mass spectrometry analyses showed a protein with 33330 Da with the ability to form dimers. Purified PvCAI showed significant inhibitory activity against larval Z. subfasciatus alpha-amylases with no activity against mammalian enzymes. N-terminal sequence analyses showed an unexpected high identity to plant chitinases from the glycoside hydrolase family 18. Furthermore, their chitinolytic activity was also detected. Our data provides compelling evidence that PvCAI also possessed chitinolytic activity, indicating the emergence of a novel alpha-amylase inhibitor class.

  2. Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase.

    PubMed Central

    Schmitt, E; Mechulam, Y; Fromant, M; Plateau, P; Blanquet, S

    1997-01-01

    Peptidyl-tRNA hydrolase activity from Escherichia coli ensures the recycling of peptidyl-tRNAs produced through abortion of translation. This activity, which is essential for cell viability, is carried out by a monomeric protein of 193 residues. The structure of crystalline peptidyl-tRNA hydrolase could be solved at 1.2 A resolution. It indicates a single alpha/beta globular domain built around a twisted mixed beta-sheet, similar to the central core of an aminopeptidase from Aeromonas proteolytica. This similarity allowed the characterization by site-directed mutagenesis of several residues of the active site of peptidyl-tRNA hydrolase. These residues, strictly conserved among the known peptidyl-tRNA hydrolase sequences, delineate a channel which, in the crystal, is occupied by the C-end of a neighbouring peptidyl-tRNA hydrolase molecule. Hence, several main chain atoms of three residues belonging to one peptidyl-tRNA hydrolase polypeptide establish contacts inside the active site of another peptidyl-tRNA hydrolase molecule. Such an interaction is assumed to represent the formation of a complex between the enzyme and one product of the catalysed reaction. PMID:9303320

  3. Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme.

    PubMed Central

    Mantei, N; Villa, M; Enzler, T; Wacker, H; Boll, W; James, P; Hunziker, W; Semenza, G

    1988-01-01

    We report the primary structures of human and rabbit brush border membrane beta-glycosidase complexes (pre-pro-lactase-phlorizin hydrolase, or pre-pro-LPH, EC 3.2.1.23-62), as deduced from cDNA sequences. The human and rabbit primary translation products contain 1927 and 1926 amino acids respectively. Based on the data, as well as on peptide sequences and further biochemical data, we conclude that the proteins comprise five domains: (i) a cleaved signal sequence of 19 amino acids; (ii) a large 'pro' portion of 847 amino acids (rabbit), none of which appears in mature, membrane-bound LPH; (iii) the mature LPH, which contains both the lactase and phlorizin hydrolase activities in a single polypeptide chain; (iv) a membrane-spanning hydrophobic segment near the carboxy terminus, which serves as membrane anchor; and (v) a short hydrophilic segment at the carboxy terminus, which must be cytosolic (i.e. the protein has an Nout-Cin orientation). The genes have a 4-fold internal homology, suggesting that they evolved by two cycles of partial gene duplication. This repetition also implies that parts of the 'pro' portion are very similar to parts of mature LPH, and hence that the 'pro' portion may be a water-soluble beta-glycosidase with another cellular location than LPH. Our results have implications for the decline of LPH after weaning and for human adult-type alactasia, and for the evolutionary history of LPH. Images PMID:2460343

  4. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    SciTech Connect

    Lundeen, S.G.; Savage, D.C.

    1990-08-01

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less

  5. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria.

    PubMed Central

    Schlömann, M; Schmidt, E; Knackmuss, H J

    1990-01-01

    Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222. PMID

  6. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast.

    PubMed

    Pogorelko, Gennady; Fursova, Oksana; Lin, Ming; Pyle, Eric; Jass, Johanna; Zabotina, Olga A

    2011-11-01

    The systematic creation of defined cell wall modifications in the model plant Arabidopsis thaliana by expression of microbial hydrolases with known specific activities is a promising approach to examine the impacts of cell wall composition and structure on both plant fitness and cell wall recalcitrance. Moreover, this approach allows the direct evaluation in living plants of hydrolase specificity, which can differ from in vitro specificity. To express genes encoding microbial hydrolases in A. thaliana, and target the hydrolases to the apoplast compartment, we constructed an expression cassette composed of the Cauliflower Mosaic Virus 35S RNA promoter, the A. thaliana β-expansin signal peptide, and the fluorescent marker protein YFP. Using this construct we successfully introduced into Colombia-0 plants three Aspergillus nidulans hydrolases, β-xylosidase/α-arabinosidase, feruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-L: -arabinofuranosidase. Fusion with YFP permitted quick and easy screening of transformants, detection of apoplastic localization, and protein size confirmation. Compared to wild-type Col-0, all transgenic lines showed a significant increase in the corresponding hydrolytic activity in the apoplast and changes in cell wall composition. Examination of hydrolytic activity in the transgenic plants also showed, for the first time, that the X. oryzae gene indeed encoded an enzyme with α-L: -arabinofuranosidase activity. None of the transgenic plants showed a visible phenotype; however, the induced compositional changes increased the degradability of biomass from plants expressing feruloyl esterase and β-xylosidase/α-arabinosidase. Our results demonstrate the viability of creating a set of transgenic A. thaliana plants with modified cell walls to use as a toolset for investigation of how cell wall composition contributes to recalcitrance and affects plant fitness.

  7. Supplementing with Non-Glycoside Hydrolase Proteins Enhances Enzymatic Deconstruction of Plant Biomass

    PubMed Central

    Su, Xiaoyun; Zhang, Jing; Mackie, Roderick I.; Cann, Isaac K. O.

    2012-01-01

    The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry. PMID:22952777

  8. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass.

    PubMed

    Su, Xiaoyun; Zhang, Jing; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry.

  9. Antihypertensive and renoprotective actions of soluble epoxide hydrolase inhibition in ANG II-dependent malignant hypertension are abolished by pretreatment with L-NAME

    PubMed Central

    Honetschlägerová, Zuzana; Kitada, Kento; Husková, Zuzana; Sporková, Alexandra; Kopkan, Libor; Bürgelová, Marcela; Varcabová, Šárka; Nishiyama, Akira; Hwang, Sung Hee; Hammock, Bruce D.; Imig, John D.; Kramer, Herbert J.; Kujal, Petr; Vernerová, Zdenka; Červenka, Luděk

    2013-01-01

    Objective The present study was performed to investigate in a model of malignant hypertension if the antihypertensive actions of soluble epoxide hydrolase (sEH) inhibition are nitric oxide (NO)-dependent. Methods ANG II-dependent malignant hypertension was induced through dietary administration for 3 days of the natural xenobiotic indole-3-carbinol (I3C) in Cyp1a1-Ren-2 transgenic rats. Blood pressure (BP) was monitored by radiotelemetry and treatment with the sEH inhibitor [cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyl-oxy]-benzoic acid (c-AUCB)] was started 48h before administration of the diet containing I3C. In separate groups of rats, combined administration of the sEH inhibitor and the nonspecific NO synthase inhibitor [Nω-nitro-l-arginine methyl ester (L-NAME)] on the course of BP in I3C-induced and noninduced rats were evaluated. In addition, combined blockade of renin–angiotensin system (RAS) was superimposed on L-NAME administration in separate groups of rats. After 3 days of experimental protocols, the rats were prepared for renal functional studies and renal concentrations of epoxyeicosatrienoic acids (EETs) and their inactive metabolites dihydroxyeicosatrienoic acids (DHETEs) were measured. Results Treatment with c-AUCB increased the renal EETs/DHETEs ratio, attenuated the increases in BP, and prevented the decreases in renal function and the development of renal damage in I3C-induced Cyp1a1-Ren-2 rats. The BP lowering and renoprotective actions of the treatment with the sEH inhibitor c-AUCB were completely abolished by concomitant administration of L-NAME and not fully rescued by double RAS blockade without altering the increased EETs/DHETEs ratio. Conclusion Our current findings indicate that the antihypertensive actions of sEH inhibition in this ANG II-dependent malignant form of hypertension are dependent on the interactions of endogenous bioavailability of EETs and NO. PMID:23307303

  10. Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice.

    PubMed

    Ghosh, Sudeshna; Kinsey, Steven G; Liu, Qing-Song; Hruba, Lenka; McMahon, Lance R; Grim, Travis W; Merritt, Christina R; Wise, Laura E; Abdullah, Rehab A; Selley, Dana E; Sim-Selley, Laura J; Cravatt, Benjamin F; Lichtman, Aron H

    2015-08-01

    Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-​3-​pyridinyl-​4-​[[3-​[[5-​(trifluoromethyl)-​2-​pyridinyl]oxy]phenyl]methyl]-​1-​piperidinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Δ(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition

  11. Radiosynthesis and evaluation of [¹¹C-carbonyl]-labeled carbamates as fatty acid amide hydrolase radiotracers for positron emission tomography.

    PubMed

    Wilson, Alan A; Hicks, Justin W; Sadovski, Oleg; Parkes, Jun; Tong, Junchao; Houle, Sylvain; Fowler, Christopher J; Vasdev, Neil

    2013-01-10

    Fatty acid amide hydrolase (FAAH) plays a key role in regulating the tone of the endocannabinoid system. Radiotracers are required to image and quantify FAAH activity in vivo. We have synthesized a series of potent FAAH inhibitors encompassing two classes of N-alkyl-O-arylcarbamates and radiolabeled eight of them with carbon-11. The [¹¹C-carbonyl]-radiotracers were evaluated in vitro and ex vivo in rats as potential FAAH imaging agents for positron emission tomography (PET). Both sets of [¹¹C]O-arylcarbamates showed good to excellent brain penetration and an appropriate regional distribution. Pretreatments with a FAAH inhibitor demonstrated that 80-95% of brain uptake of radioactivity constituted binding of the radiotracers to FAAH. Brain extraction measurements showed that binding to FAAH was irreversible and kinetically different for the two classes of carbamates. These promising results are discussed in terms of the requirements of a suitable radiotracer for the in vivo imaging of FAAH using PET.

  12. Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH).

    PubMed

    Sałaga, M; Mokrowiecka, A; Zakrzewski, P K; Cygankiewicz, A; Leishman, E; Sobczak, M; Zatorski, H; Małecka-Panas, E; Kordek, R; Storr, M; Krajewska, W M; Bradshaw, H B; Fichna, J

    2014-09-01

    Pharmacological treatment and/or maintenance of remission in inflammatory bowel diseases (IBD) is currently one of the biggest challenge in the field of gastroenterology. Available therapies are mostly limited to overcoming the symptoms, but not the cause of the disease. Recently, the endocannabinoid system has been proposed as a novel target in the treatment of IBD. Here we aimed to assess the anti-inflammatory action of the novel fatty acid amide hydrolase (FAAH) inhibitor PF-3845 and its effect on the endocannabinoid and related lipid metabolism during the course of experimental colitis. We used two models of experimental colitis in mice (TNBS- and DSS-induced) and additionally, we employed LC/MS/MS spectrometry to determine the changes in biolipid levels in the mouse colon during inflammation. We showed that the FAAH inhibitor PF-3845 reduced experimental TNBS-induced colitis in mice and its anti-inflammatory action is associated with altering the levels of selected biolipids (arachidonic and oleic acid derivatives, prostaglandins and biolipids containing glycine in the mouse colon). We show that FAAH is a promising pharmacological target and the FAAH-dependent biolipids play a major role in colitis. Our results highlight and promote therapeutic strategy based on targeting FAAH-dependent metabolic pathways in order to alleviate intestinal inflammation. Copyright © 2014 European Crohn's and Colitis Organisation. All rights reserved.

  13. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil; Servinsky, Matthew D.; Gerlach, Elliot S.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes themore » unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  14. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus.

    PubMed

    Verhaest, Maureen; Van den Ende, Wim; Roy, Katrien Le; De Ranter, Camiel J; Laere, André Van; Rabijns, Anja

    2005-02-01

    Fructan 1-exohydrolase, an enzyme involved in fructan degradation, belongs to the glycosyl hydrolase family 32. The structure of isoenzyme 1-FEH IIa from Cichorium intybus is described at a resolution of 2.35 A. The structure consists of an N-terminal fivefold beta-propeller domain connected to two C-terminal beta-sheets. The putative active site is located entirely in the beta-propeller domain and is formed by amino acids which are highly conserved within glycosyl hydrolase family 32. The fructan-binding site is thought to be in the cleft formed between the two domains. The 1-FEH IIa structure is compared with the structures of two homologous but functionally different enzymes: a levansucrase from Bacillus subtilis (glycosyl hydrolase family 68) and an invertase from Thermotoga maritima (glycosyl hydrolase family 32).

  15. Epoxy Fatty Acids and Inhibition of the Soluble Epoxide Hydrolase Selectively Modulate GABA Mediated Neurotransmission to Delay Onset of Seizures

    PubMed Central

    Inceoglu, Bora; Zolkowska, Dorota; Yoo, Hyun Ju; Wagner, Karen M.; Yang, Jun; Hackett, Edward; Hwang, Sung Hee; Lee, Kin Sing Stephen; Rogawski, Michael A.; Morisseau, Christophe; Hammock, Bruce D.

    2013-01-01

    In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA). ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs). The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH), the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders. PMID:24349022

  16. The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors.

    PubMed

    Sato, Mayo; Liebschner, Dorothee; Yamada, Yusuke; Matsugaki, Naohiro; Arakawa, Takatoshi; Wills, Siobhán S; Hattie, Mitchell; Stubbs, Keith A; Ito, Tasuku; Senda, Toshiya; Ashida, Hisashi; Fushinobu, Shinya

    2017-07-21

    The α- N -acetylgalactosaminidase from the probiotic bacterium Bifidobacterium bifidum (NagBb) belongs to the glycoside hydrolase family 129 and hydrolyzes the glycosidic bond of Tn-antigen (GalNAcα1-Ser/Thr). NagBb is involved in assimilation of O -glycans on mucin glycoproteins by B. bifidum in the human gastrointestinal tract, but its catalytic mechanism has remained elusive because of a lack of sequence homology around putative catalytic residues and of other structural information. Here we report the X-ray crystal structure of NagBb, representing the first GH129 family structure, solved by the single-wavelength anomalous dispersion method based on sulfur atoms of the native protein. We determined ligand-free, GalNAc, and inhibitor complex forms of NagBb and found that Asp-435 and Glu-478 are located in the catalytic domain at appropriate positions for direct nucleophilic attack at the anomeric carbon and proton donation for the glycosidic bond oxygen, respectively. A highly conserved Asp-330 forms a hydrogen bond with the O4 hydroxyl of GalNAc in the -1 subsite, and Trp-398 provides a stacking platform for the GalNAc pyranose ring. Interestingly, a metal ion, presumably Ca 2+ , is involved in the recognition of the GalNAc N -acetyl group. Mutations at Asp-435, Glu-478, Asp-330, and Trp-398 and residues involved in metal coordination (including an all-Ala quadruple mutant) significantly reduced the activity, indicating that these residues and the metal ion play important roles in substrate recognition and catalysis. Interestingly, NagBb exhibited some structural similarities to the GH101 endo-α- N -acetylgalactosaminidases, but several critical differences in substrate recognition and reaction mechanism account for the different activities of these two enzymes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Inhibiting parabrachial fatty acid amide hydrolase activity selectively increases the intake of palatable food via cannabinoid CB1 receptors

    PubMed Central

    DiPatrizio, Nicholas V.; Simansky, Kenny J.

    2008-01-01

    These studies investigated feeding responses to indirect activation of parabrachial cannabinoid CB1 receptors. Arachidonoyl serotonin (AA5HT), an inhibitor of the endocannabinoid degradative enzyme, fatty acid amide hydrolase (FAAH), was infused into the parabrachial nucleus of male Sprague-Dawley rats, and intakes of high-fat/sucrose pellets and standard rodent chow were subsequently evaluated under various feeding schedules. FAAH blockade stimulated the intake of high-fat/sucrose pellets that were presented daily for 4 h during the light period, with compensatory decreases in the consumption of standard chow during the ensuing 20 h. These diet-selective changes were repeated on the next day, indicating a shift in feeding toward the more palatable diet that lasted for 48 h after a single infusion. The cannabinoid CB1 receptor antagonist, AM251, blocked the orexigenic actions of AA5HT, implicating CB1 receptors in mediating the feeding responses to FAAH inactivation. When the feeding schedule was reversed, AA5HT produced nominal increases in the consumption of standard chow for the 4-h access period, but substantial increases in the intake of high-fat/sucrose during the following 20-h interval. When presented with only high-fat/sucrose diet for 24 h, AA5HT increased 24-h food intake. In contrast, when given 24-h access only to standard chow, AA5HT failed to affect intake. Therefore, indirectly activating parabrachial CB1 receptors by blocking the degradation of native ligands selectively stimulates the intake of palatable food, with differential actions on total energy intake depending upon the feeding schedule. Our results support a role for parabrachial cannabinoid mechanisms in providing physiological regulation to neural substrates modulating feeding, energy balance, and behavioral responses for natural reward. PMID:18768763

  18. A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on Au nanoparticles.

    PubMed

    Karami, Rezvan; Mohsenifar, Afshin; Mesbah Namini, Seyede Maryam; Kamelipour, Nahid; Rahmani-Cherati, Tavoos; Roodbar Shojaei, Taha; Tabatabaei, Meisam

    2016-08-17

    Organophosphorus (OP) compounds are one of the most hazardous chemicals used as insecticides/pesticide in agricultural practices. A large variety of OP compounds are hydrolyzed by organophosphorus hydrolases (OPH; EC 3.1.8.1). Therefore, OPHs are among the most suitable candidates that could be used in designing enzyme-based sensors for detecting OP compounds. In this work, a novel nanobiosensor for the detection of paraoxon was designed and fabricated. More specifically, OPH was covalently embedded onto chitosan and the enzyme-chitosan bioconjugate was then immobilized on negatively charged gold nanoparticles (AuNPs) electrostatically. The enzyme was immobilized on AuNPs without chitosan as well, to compare the two systems in terms of detection limit and enzyme stability under different pH and temperature conditions. Coumarin 1, a competitive inhibitor of the enzyme, was used as a fluorogenic probe. The emission of coumarin 1 was effectively quenched by the immobilized Au-NPs when bound to the developed nanobioconjugates. However, in the presence of paraoxon, coumarin 1 left the nanobioconjugate, leading to enhanced fluorescence intensity. Moreover, compared to the immobilized enzyme without chitosan, the chitosan-immobilized enzyme was found to possess decreased Km value by more than 50%, and increased Vmax and Kcat values by around 15% and 74%, respectively. Higher stability within a wider range of pH (2-12) and temperature (25-90°C) was also achieved. The method worked in the 0 to 1050 nM concentration ranges, and had a detection limit as low as 5 × 10(-11) M.

  19. Impaired neurogenesis by HIV-1-Gp120 is rescued by genetic deletion of fatty acid amide hydrolase enzyme

    PubMed Central

    Avraham, H K; Jiang, S; Fu, Y; Rockenstein, E; Makriyannis, A; Wood, J; Wang, L; Masliah, E; Avraham, S

    2015-01-01

    Background and Purpose The HIV-envelope glycoprotein Gp120 is involved in neuronal injury and is associated with neuro-AIDS pathogenesis in the brain. Endocannabinoids are important lipid ligands in the CNS regulating neural functions, and their degeneration is controlled by hydrolysing enzymes such as the fatty acid amide hydrolase (FAAH). Here, we examined whether in vivo genetic deletion of Faah gene prevents HIV-1 Gp120-mediated effects on neurogenesis. Experimental Approach We generated new GFAP/Gp120 transgenic (Tg) mice that have genetic deletion of Faah gene by mating glial fribillary acidic protein (GFAP)/Gp120 Tg mice with Faah−/− mice. Neurogenesis and cell death were assessed by immunocytochemical analysis. Key Results Endocannabinoid levels in the brain of the double GFAP/Gp120//Faah−/− mice were similar to those observed in Faah−/− mice. However, unlike the impaired neurogenesis observed in GFAP/Gp120 Tg mice and Faah−/− mice, these GFAP/Gp120//Faah-/ mice showed significantly improved neurogenesis in the hippocampus, indicated by a significant increase in neuroblasts and neuronal cells, an increase in BrdU+ cells and doublecortin positive cells (DCX+), and an increase in the number of PCNA. Furthermore, a significant decrease in astrogliosis and gliogenesis was observed in GFAP/Gp120//Faah−/−mice and neurogenesis was stimulated by neural progenitor cells (NPCs) and/or the newly formed NPC niches characterized by increased COX-2 expression and elevated levels of PGE2. Conclusions and Implications In vivo genetic ablation of Faah, resulted in enhanced neurogenesis through modulation of the newly generated NPC niches in GFAP/Gp120//Faah−/− mice. This suggests a novel approach of using FAAH inhibitors to enhance neurogenesis in HIV-1 infected brain. PMID:24571443

  20. Disruption of Fatty Acid Amide Hydrolase Activity Prevents the Effects of Chronic Stress on Anxiety and Amygdalar Microstructure

    PubMed Central

    Hill, Matthew N.; Kumar, Shobha Anil; Filipski, Sarah B.; Iverson, Moriah; Stuhr, Kara L.; Keith, John M.; Cravatt, Benjamin F.; Hillard, Cecilia J.; Chattarji, Sumantra; McEwen, Bruce S.

    2014-01-01

    Hyperactivation of the amygdala following chronic stress is believed to be one of the primary mechanisms underlying the increased propensity for anxiety-like behaviors and pathological states; however, the mechanisms by which chronic stress modulates amygdalar function are not well characterized. The aim of the current study was to determine the extent to which the endocannabinoid system, which is known to regulate emotional behavior and neuroplasticity, contributes to changes in amygdalar structure and function following chronic stress. To examine the hypothesis, we have exposed C57/Bl6 mice to chronic restraint stress which results in an increase in fatty acid amide hydrolase (FAAH) activity and a reduction in the concentration of the endocannabinoid N-arachidonylethanolamine (AEA) within the amygdala. Chronic restraint stress also increased dendritic arborization, complexity and spine density of pyramidal neurons in the basolateral nucleus of the amygdala (BLA) and increased anxiety-like behavior in wild-type mice. All of the stress-induced changes in amygdalar structure and function were absent in mice deficient in FAAH. Further, the anti-anxiety effect of FAAH deletion was recapitulated in rats treated orally with a novel pharmacological inhibitor of FAAH, JNJ5003 (50 mg/kg/day), during exposure to chronic stress. These studies suggest that FAAH is required for chronic stress to induce hyperactivity and structural remodeling of the amygdala. Collectively, these studies indicate that FAAH-mediated decreases in AEA occur following chronic stress and that this loss of AEA signaling is functionally relevant to the effects of chronic stress. These data support the hypothesis that inhibition of FAAH has therapeutic potential in the treatment of anxiety disorders, possibly by maintaining normal amygdalar function in the face of chronic stress. PMID:22776900

  1. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo.

    PubMed

    Motoki, Atsuko; Merkel, Matthias J; Packwood, William H; Cao, Zhiping; Liu, Lijuan; Iliff, Jeffrey; Alkayed, Nabil J; Van Winkle, Donna M

    2008-11-01

    Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.

  2. Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from Saccharophagus degradans 2-40

    PubMed Central

    Lee, Saeyoung; Lee, Jonas Yun; Ha, Sung Chul; Jung, Jina; Shin, Dong Hae; Kim, Kyoung Heon; Choi, In-Geol

    2009-01-01

    Many agarolytic bacteria degrade agar polysaccharide into the disaccharide unit neoagarobiose [O-3,6-anhydro-α-l-galactopyranosyl-(1→3)-d-galactose] using various β-agarases. Neoagarobiose hydrolase is an enzyme that acts on the α-­1,3 linkage in neoagarobiose to yield d-galactose and 3,6-anhydro-l-galactose. This activity is essential in both the metabolism of agar by agarolytic bacteria and the production of fermentable sugars from agar biomass for bioenergy production. Neoagarobiose hydrolase from the marine bacterium Saccharophagus degradans 2-40 was overexpressed in Escherichia coli and crystallized in the monoclinic space group C2, with unit-cell parameters a = 129.83, b = 76.81, c = 90.11 Å, β = 101.86°. The crystals diffracted to 1.98 Å resolution and possibly contains two molecules in the asymmetric unit. PMID:20054134

  3. Molecular Models to Emulate Confinement Effects on the Internal Dynamics of Organophosphorous Hydrolase

    SciTech Connect

    Gomes, Diego Enry B.; Lins, Roberto D.; Pascutti, Pedro G.

    2008-09-28

    The confinement of the metalloenzyme organophosphorous hydrolase in functionalized mesoporous silica (FMS) enhances the stability and increases catalytic specific activity by 200% compared to the enzyme in solution. The mechanism by which these processes take place is not well understood. We have developed two coarse-grain models of confinement to provide insights into how the nanocage environment steers enzyme conformational dynamics towards enhanced stability and enzymatic activity. The structural dynamics of organophosphorous hydrolase under the two confinement models are very distinct from each other. Comparisons of the present simulations show that only one model leads to an accurate depiction of themore » internal dynamics of the enzyme.« less

  4. Divergent evolution for diverse substrate recognition by family 31 glycoside hydrolases.

    PubMed

    Chaudet, M M; Rose, D R

    2016-08-01

    Carbohydrates make up an important component of our diet, contributing a significant portion to our total caloric intake. The ability to harvest these molecules for energy is reliant on the activity of carbohydrate-active enzymes. Family 31 α-glucosidases are a group of glycoside hydrolases that has been shown to play a key role in the metabolic process of hydrolyzing dietary starch into monomers of glucose. The purpose of the research presented here is to explore evolutionary changes that occurred within this family of glycoside hydrolases, and to relate these divergences to observed structural differences in relation to predicted substrate preferences. Here we report specific single amino acid changes that are believed to have arisen through evolution, and are directly related to the ability of these enzymes to bind different starch-based glycans. Through phylogenetic analysis we observed a number of evolutionary adaptions that we believe resulted in duplicated genes that allow for the efficient utilization of dietary starch.

  5. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.

    PubMed

    Grosse-Holz, Friederike M; van der Hoorn, Renier A L

    2016-05-01

    Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Lasting reduction of cocaine action in neostriatum--a hydrolase gene therapy approach.

    PubMed

    Gao, Yang; Brimijoin, Stephen

    2009-08-01

    We previously found that a quadruple mutant cocaine hydrolase derived from human butyrylcholinesterase [termed cocaine esterase (CocE)] can suppress or reverse cocaine toxicity and abolish drug-primed reinstatement in rats. Here, we examined whether gene transfer of CocE reduces cocaine actions in brain reward centers. Early experiments used a standard, early region 1-deleted adenoviral vector, which, after intravenous delivery of 10(10) plaque-forming units, caused plasma cocaine hydrolase activity to rise 25,000-fold between day 4 and day 7. During this period, under a protocol that typically induces FosB expression in the caudate nucleus, these rats and unprotected controls given only empty vector or saline were subjected to repeated twice-daily injections of cocaine (30 mg/kg i.p.). Immunohistochemistry of the neostriatum on day 7 showed many FosB-reactive nuclei in unprotected rats but few if any in rats pretreated with active vector, which resembled rats never exposed to cocaine. Western blots confirmed this result. In contrast there was a more localized protection against cocaine-elicited FosB induction when hydrolase vector was injected directly into the ventral striatum, which generated high transgene expression in many neurons of the target area. Similar results were obtained with systemic and local injection of a more efficient helper-dependent adenoviral vector, which transduced high levels of hydrolase for at least 2 months, with lesser expression continued up to 1 year. Behavioral tests are now warranted to determine whether such effects can reduce drug-seeking behavior and lower the probability of relapse.

  7. Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification

    SciTech Connect

    Nomura, Daniel K.; Fujioka, Kazutoshi; Issa, Roger S.

    2008-04-01

    Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC{sub 50} 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although theremore » was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.« less

  8. Biochemical Effects of Cadmium Exposure and the Potential Pharmacologic Significance of Cadmium Mediated Hydrolase Inhibition

    DTIC Science & Technology

    1997-04-18

    the literature description of hydrolase 34 41 enzymes. 43 Table 4 Tissue distribution reported by Tsujita (1988) for carboxylesterase in rats...methylphenidate (MPH) is a drug that has a long history of clinical use and research, both areas are well represented in the scientific literature ...confusion and inaccuracy in the literature . Hydrolysis of therapeutically used drugs is often not limited to one esterase, or location. This reduces

  9. Functional analysis of the Escherichia coli genome for members of the alpha/beta hydrolase family.

    PubMed

    Zhang, L; Godzik, A; Skolnick, J; Fetrow, J S

    1998-01-01

    Database-searching methods based on sequence similarity have become the most commonly used tools for characterizing newly sequenced proteins. Due to the often underestimated functional diversity in protein families and superfamilies, however, it is difficult to make the characterization specific and accurate. In this work, we have extended a method for active-site identification from predicted protein structures. The structural conservation and variation of the active sites of the alpha/beta hydrolases with known structures were studied. The similarities were incorporated into a three-dimensional motif that specifies essential requirements for the enzymatic functions. A threading algorithm was used to align 651 Escherichia coli open reading frames (ORFs) to one of the members of the alpha/beta hydrolase fold family. These ORFs were then screened according to our three-dimensional motif and with an extra requirement that demands conservation of the key active-site residues among the proteins that bear significant sequence similarity to the ORFs. 17 ORFs from E. coli were predicted to have hydrolase activity and their putative active-site residues were identified. Most were in agreement with the experiments and results of other database-searching methods. The study further suggests that YHET_ECOLI, a hypothetical protein classified as a member of the UPF0017 family (an uncharacterized protein family), bears all the hallmarks of the alpha/beta hydrolase family. The novel feature of our method is that it uses three-dimensional structural information for function prediction. The results demonstrate the importance and necessity of such a method to fill the gap between sequence alignment and function prediction; furthermore, the method provides a way to verify the structure predictions, which enables an expansion of the applicable scope of the threading algorithms.

  10. Carboxylic ester hydrolases: Classification and database derived from their primary, secondary, and tertiary structures.

    PubMed

    Chen, Yingfei; Black, Daniel S; Reilly, Peter J

    2016-11-01

    We classified the carboxylic ester hydrolases (CEHs) into families and clans by use of multiple sequence alignments, secondary structure analysis, and tertiary structure superpositions. Our work for the first time has fully established their systematic structural classification. Family members have similar primary, secondary, and tertiary structures, and their active sites and reaction mechanisms are conserved. Families may be gathered into clans by their having similar secondary and tertiary structures, even though primary structures of members of different families are not similar. CEHs were gathered from public databases by use of Basic Local Alignment Search Tool (BLAST) and divided into 91 families, with 36 families being grouped into five clans. Members of one clan have standard α/β-hydrolase folds, while those of other two clans have similar folds but with different sequences of their β-strands. The other two clans have members with six-bladed β-propeller and three-α-helix bundle tertiary structures. Those families not in clans have a large variety of structures or have no members with known structures. At the time of writing, the 91 families contained 321,830 primary structures and 1378 tertiary structures. From these data, we constructed an accessible database: CASTLE (CArboxylic eSTer hydroLasEs, http://www.castle.cbe.iastate.edu). © 2016 The Protein Society.

  11. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel.

    PubMed

    Bera, Asim K; Aukema, Kelly G; Elias, Mikael; Wackett, Lawrence P

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.

  12. Isolation and characterization of arginine ester hydrolase from Heloderma horridum (beaded lizard) venom.

    PubMed

    Nikai, T; Imai, K; Komori, Y; Sugihara, H

    1992-03-01

    1. An arginine ester hydrolase was isolated from Heloderma horridum (beaded lizard) venom by Sephadex G-75, DEAE-Sephacel and Q-Sepharose column chromatography, resulting in 5.4 mg of purified enzyme from 320.0 mg of crude venom. 2. The enzyme was shown to be homogeneous by both SDS and non-SDS disc electrophoresis on polyacrylamide gel at pH 8.3. 3. The enzyme possesses arginine ester hydrolase and transglutaminase-like activities, but did not exhibit clotting activity. 4. Molecular weight was determined to be ca 29 kDa, with an isoelectric point of 4.4. 5. The enzyme was stable to heat treatment (95 degrees C, 10 min) and to pH changes over the range 2-11. 6. The arginine ester hydrolase was inactivated by diisopropylfluorophosphate (DFP), beta-mercaptoethanol and N-bromosuccinimide, suggesting that serine, disulfide bonds and tryptophan are involved in enzymatic activity. 7. Amino terminal sequences were determined and appear to be similar to porcine pancreatic kallikrein.

  13. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    PubMed Central

    Bera, Asim K; Aukema, Kelly G.; Elias, Mikael; Wackett, Lawrence P.

    2017-01-01

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel. PMID:28345631

  14. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    SciTech Connect

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas themore » two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.« less

  15. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases

    SciTech Connect

    Chen, Mo; Bu, Lintao; Alahuhta, Markus

    2016-02-01

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the productmore » inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. As a result, the theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.« less

  16. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad

    PubMed Central

    Sarian, Fean D.; Janeček, Štefan; Pijning, Tjaard; Ihsanawati; Nurachman, Zeily; Radjasa, Ocky K.; Dijkhuizen, Lubbert; Natalia, Dessy; van der Maarel, Marc J. E. C.

    2017-01-01

    α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13. PMID:28287181

  17. Crystallographic insight into the evolutionary origins of xyloglucan endo-transglycosylases and endo-hydrolases

    PubMed Central

    McGregor, Nicholas; Yin, Victor; Tung, Ching-Chieh; Van Petegem, Filip; Brumer, Harry

    2016-01-01

    SUMMARY The xyloglucan endo-transglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodelling. The evolutionary history of plant XTH gene products is incompletely understood vis-à-vis the larger body of bacterial endo-glycanases in Glycoside Hydrolase Family 16 (GH16). To provide molecular insight into this issue, high-resolution X-ray crystal structures and detailed enzyme kinetics of an extant transitional plant endo-glucanase (EG) were determined. Functionally intermediate between plant XTH gene products and bacterial licheninases of GH16, Vitis vinifera EG16 (VvEG16) effectively catalyzes the hydrolysis of the backbones of two dominant plant cell wall matrix glycans, xyloglucan (XyG) and β(1,3)/β(1,4)-mixed-linkage glucan (MLG). Crystallographic complexes with extended oligosaccharide substrates reveal the structural basis for the accommodation of both unbranched, mixed-linked (MLG) and highly decorated, linear (XyG) polysaccharide chains in a broad, extended active-site cleft. Structural comparison with representative bacterial licheninases, a xyloglucan endo-tranglycosylase (XET), and a xyloglucan endo-hydrolase (XEH) outline the functional ramifications of key sequence deletions and insertions across the phylogenetic landscape of GH16. Although the biological role(s) of EG16 orthologs remains to be fully resolved, the present biochemical and tertiary structural characterization provides key insight into plant cell wall enzyme evolution, which will continue to inform genomic analyses and functional studies across species. PMID:27859885

  18. Testicular distribution and toxicity of a novel LTA4H inhibitor in rats

    SciTech Connect

    Ward, P.D., E-mail: pward4@its.jnj.com; La, D.

    2014-07-01

    JNJ 40929837, a novel leukotriene A4 hydrolase inhibitor in drug development, was reported to induce testicular toxicity in rats. The mechanism of toxicity was considered to be rodent specific and not relevant to humans. To further investigate this finding in rats, the distribution and toxicokinetics of JNJ 40929837 and its two metabolites, M1 and M2, were investigated. A quantitative whole body autoradiography study showed preferential distribution and retention of JNJ 40929837-derived radioactivity in the testes consistent with the observed site of toxicity. Subsequent studies with unlabeled JNJ 40929837 showed different metabolite profiles between the plasma and testes. Following a singlemore » oral 50 mg/kg dose of JNJ 40929837, M2 was the primary metabolite in plasma whereas M1 was the primary metabolite in testes. The exposure of M1 was 386-fold higher in the testes compared to plasma whereas M2 had limited exposure in testes. Furthermore, the T{sub max} of M1 was 48 h in testes suggesting a large accumulation potential of this metabolite in testes compared to plasma. Following six months of repeated daily oral dosing, M1 accumulated approximately five-fold in the testes whereas the parent did not accumulate. These results indicate that the toxicokinetic profiles of JNJ 40929837 and its two metabolites in testes are markedly different compared to plasma and support the importance of understanding the toxicokinetic profiles of compounds and their metabolites in organs/tissues where toxicity is observed. - Highlights: • JNJ 40929837-derived radioactivity preferentially distributed into testes • Primary metabolite flip-flop in plasma and testes • The primary metabolite in testes accumulated 5-fold but not parent.« less

  19. The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases

    PubMed Central

    Shayman, James A.; Larsen, Scott D.

    2014-01-01

    Glycosphingolipid (GSL) storage diseases have been the focus of efforts to develop small molecule therapeutics from design, experimental proof of concept studies, and clinical trials. Two primary alternative strategies that have been pursued include pharmacological chaperones and GSL synthase inhibitors. There are theoretical advantages and disadvantages to each of these approaches. Pharmacological chaperones are specific for an individual glycoside hydrolase and for the specific mutation present, but no candidate chaperone has been demonstrated to be effective for all mutations leading to a given disorder. Synthase inhibitors target single enzymes such as glucosylceramide synthase and inhibit the formation of multiple GSLs. A glycolipid synthase inhibitor could potentially be used to treat multiple diseases, but at the risk of lowering nontargeted cellular GSLs that are important for normal health. The basis for these strategies and specific examples of compounds that have led to clinical trials is the focus of this review. PMID:24534703

  20. Supported inhibitor for fishing lipases in complex biological media and mass spectrometry identification.

    PubMed

    Delorme, Vincent; Raux, Brigitt; Puppo, Rémy; Leclaire, Julien; Cavalier, Jean-François; Marc, Sylvain; Kamarajugadda, Pavan-Kumar; Buono, Gérard; Fotiadu, Frédéric; Canaan, Stéphane; Carrière, Frédéric

    2014-12-01

    A synthetic phosphonate inhibitor designed for lipase inhibition but displaying a broader range of activity was covalently immobilized on a solid support to generate a function-directed tool targeting serine hydrolases. To achieve this goal, straightforward and reliable analytical techniques were developed, allowing the monitoring of the solid support's chemical functionalization, enzyme capture processes and physisorption artifacts. This grafted inhibitor was tested on pure lipases and serine proteases from various origins, and assayed for the selective capture of lipases from several complex biological extracts. The direct identification of captured enzymes by mass spectrometry brought the proof of concept on the efficiency of this supported covalent inhibitor. The features and limitations of this "enzyme-fishing" proteomic tool provide new insight on solid-liquid inhibition process. Copyright © 2014. Published by Elsevier B.V.

  1. O-(Triazolyl)methyl carbamates as a novel and potent class of FAAH inhibitors

    PubMed Central

    Colombano, Giampiero; Albani, Clara; Ottonello, Giuliana; Ribeiro, Alison; Scarpelli, Rita; Tarozzo, Glauco; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele; Bandiera, Tiziano

    2015-01-01

    Inhibition of fatty acid amide hydrolase (FAAH) activity is under investigation as a valuable strategy for the treatment of several disorders, including pain and drug addiction. A number of potent FAAH inhibitors belonging to different chemical classes have been disclosed. O-aryl carbamates are one of the most representative families. In the search for novel FAAH inhibitors, we synthesized a series of O-(1,2,3-triazol-4-yl)methyl carbamate derivatives exploiting the copper-catalyzed [3 + 2] cycloaddition reaction between azides and alkynes (click chemistry). We explored structure-activity relationships within this new class of compounds and identified potent inhibitors of both rat and human FAAH with IC50 values in the single-digit nanomolar range. PMID:25338703

  2. [Azoindoxyl methods for the investigation of hydrolases. IV. Suitability of various diazonium salts (author's transl)].

    PubMed

    Gossrau, R

    1978-09-28

    Using fresh frozen, freeze-dried or cryostate sections from aldehyde fixed rat tissues 13 diazonium salts were tested as simultaneous coupling reagents for the localization of acid, neutral and alkaline hydrolases with azo indoxyl methods. Hexazotized new fuchsine and/or Fast blue B are the diazonium salts of choice for the demonstration of acid beta-galactosidase, neuraminidase, beta-N-acetylglucosaminidase, acid phosphatase, and non-specific esterase followed by hexazotized p-rosaniline. Fast blue VB, BB and RR and Fast violet B are recommended for the investigation of alkaline phosphatase and lactase, Fast garnet GBC for acid beta-galactosidase, glucosaminidase and lactase. Fast red B, RC, RL and TR and Fast black K can only be employed for lactase studies. The exact concentration of the coupling reagent depends on the activity of the enzyme and the organ imvestigated. On the average 0.01-0.02 ml unstable diazonium salt/ml and 0.3--1 microgram stable diazonium salt/ml are sufficient for the correct localization of these hydrolases. Freeze-dried cryostat sections yield the best results in the demonstration of lactase and alkaline phosphatase independent on the coupling reagent used. Sections from formaldehyde or glutaraldehyde fixed organs are superior for the localization of the other hydrolases; an exception is the investigation of acid beta-galactosidase and glucosaminidase with Fast garnet GBC. Then, excellent results are obtained also with freeze-dried material. Fresh frozen sections are suitable for the localization of lactase with hexazotized new fuchsine or p-rosaniline and of alkaline phosphatase with Fast blue VB and BB or violet B. The total activity of acid, neutral and alkaline hydrolases can be investigated using semipermeable membranes in combination with all unstable and stable diazonium salts of choice. Reliable osmification of the azoindoxyl dye is only possible if hexazotized p-rosaniline is employed for coupling; without further posttreatment

  3. Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor.

    PubMed

    Johnson, Douglas S; Stiff, Cory; Lazerwith, Scott E; Kesten, Suzanne R; Fay, Lorraine K; Morris, Mark; Beidler, David; Liimatta, Marya B; Smith, Sarah E; Dudley, David T; Sadagopan, Nalini; Bhattachar, Shobha N; Kesten, Stephen J; Nomanbhoy, Tyzoon K; Cravatt, Benjamin F; Ahn, Kay

    2011-02-10

    Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic and anti-inflammatory phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for the treatment of inflammatory pain and other nervous system disorders. Herein, we report the discovery and characterization of a highly efficacious and selective FAAH inhibitor PF-04457845 (23). Compound 23 inhibits FAAH by a covalent, irreversible mechanism involving carbamylation of the active-site serine nucleophile of FAAH with high in vitro potency (k(inact)/K(i) and IC(50) values of 40300 M(-1) s(-1) and 7.2 nM, respectively, for human FAAH). Compound 23 has exquisite selectivity for FAAH relative to other members of the serine hydrolase superfamily as demonstrated by competitive activity-based protein profiling. Oral administration of 23 at 0.1 mg/kg results in efficacy comparable to that of naproxen at 10 mg/kg in a rat model of inflammatory pain. Compound 23 is being evaluated in human clinical trials.

  4. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    SciTech Connect

    Vito, Stephen T., E-mail: stvito@ucdavis.edu; Austin, Adam T., E-mail: aaustin@ucdavis.edu; Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizuresmore » and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide

  5. The exploration of thienothiazines as selective butyrylcholinesterase inhibitors.

    PubMed

    Karlsson, Daniela; Fallarero, Adyary; Brunhofer, Gerda; Mayer, Claudia; Prakash, Ohm; Mohan, C Gopi; Vuorela, Pia; Erker, Thomas

    2012-08-30

    The role of butyrylcholinesterase (BChE) in the progression of Alzheimer's disease (AD) has recently become more crucial. In the AD brain, selective BChE inhibitors have been demonstrated to have a beneficial effect in vivo, probably by recovering cholinergic activity and/or by restoring AChE:BChE activity ratios to the levels observed in the healthy brain. Thienothiazines are compounds sharing some structural features with phenothiazines, which are known to be potent BChE inhibitors. Thus, in this contribution 45 thienothiazines were investigated for their BChE inhibitory activity. Six of them were proven to be potent and selective inhibitors of equine BChE's hydrolase activity. Structure-activity relationships were laid out, and a tentative pharmacophore model for BChE inhibitors of the thienothiazine type was proposed. The most active compound, 3f, displayed a mixed type of inhibition and was also active against the human BChE (huBChE) with an IC(50) huBChE of 0.51 ± 0.07 μM. Computational studies suggested that 3f likely binds to the catalytic site and nearby to the peripheral site of the huBChE in an extended form. In addition, the chemical space occupied by the active thienothiazines, as opposed to phenothiazines and other representative chemical classes of BChE inhibitors, was explored with the aid of ChemGPS-NP, and the relevant chemical space regions were identified. This study shows for the first time that thienothiazines represent a new group of BChE inhibitors that can be used as molecular probes for studying the role of BChE in the brain or for developing newer drug leads for AD therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Preclinical Characterization of the FAAH Inhibitor JNJ-42165279.

    PubMed

    Keith, John M; Jones, William M; Tichenor, Mark; Liu, Jing; Seierstad, Mark; Palmer, James A; Webb, Michael; Karbarz, Mark; Scott, Brian P; Wilson, Sandy J; Luo, Lin; Wennerholm, Michelle L; Chang, Leon; Rizzolio, Michele; Rynberg, Raymond; Chaplan, Sandra R; Breitenbucher, J Guy

    2015-12-10

    The pre-clinical characterization of the aryl piperazinyl urea inhibitor of fatty acid amide hydrolase (FAAH) JNJ-42165279 is described. JNJ-42165279 covalently inactivates the FAAH enzyme, but is highly selective with regard to other enzymes, ion channels, transporters, and receptors. JNJ-42165279 exhibited excellent ADME and pharmacodynamic properties as evidenced by its ability to block FAAH in the brain and periphery of rats and thereby cause an elevation of the concentrations of anandamide (AEA), oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA). The compound was also efficacious in the spinal nerve ligation (SNL) model of neuropathic pain. The combination of good physical, ADME, and PD properties of JNJ-42165279 supported it entering the clinical portfolio.

  7. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  8. Systemic and spinal administration of FAAH, MAGL inhibitors and dual FAAH/MAGL inhibitors produce antipruritic effect in mice.

    PubMed

    Yesilyurt, Ozgur; Cayirli, Mutlu; Sakin, Yusuf Serdar; Seyrek, Melik; Akar, Ahmet; Dogrul, Ahmet

    2016-07-01

    The increase of endocannabinoid tonus by inhibiting fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) represents a promising therapeutic approach in a variety of disease to overcome serious central side effects of exocannabinoids. Recent studies reported that systemic administration of FAAH and MAGL inhibitors produce antipruritic action. Dual FAAH/MAGL inhibitors have also been described to get enhanced endocannabinoid therapeutic effect. In this study, we examined and compared dose-related antipruritic effects of systemic (intraperitoneal; ip) or intrathecal (it) administration of selective FAAH inhibitor PF-3845 (5, 10, and 20 mg/kg, i.p.; 1, 5, and 10 µg, i.t.), MAGL inhibitor JZL184 (4, 20, and 40 mg/kg, i.p.; 1, 5, and 10 µg, i.t.) and dual FAAH/MAGL inhibitor JZL195 (2, 5, and 20 mg/kg, i.p.; 1, 5, and 10 µg, i.t.) on serotonin (5-HT)-induced scratching model. Serotonin (25 μg) was injected intradermally in a volume of 50 μl into the rostral part of skin on the back of male Balb-C mice. Both systemic or intrathecal administration of PF-3845, JZL184 or JZL195 produced similar dose-dependent antipruritic effects. Our results suggest that endocannabinoid-degrading enzymes FAAH and MAGL are involved in pruritic process at spinal level. FAAH, MAGL or dual FAAH/MAGL inhibitors have promising antipruritic effects, at least, in part through spinal site of action.

  9. Defining Sequence Space and Reaction Products within the Cyanuric Acid Hydrolase (AtzD)/Barbiturase Protein Family

    PubMed Central

    Seffernick, Jennifer L.; Erickson, Jasmine S.; Cameron, Stephan M.; Cho, Seunghee; Dodge, Anthony G.; Richman, Jack E.; Sadowsky, Michael J.

    2012-01-01

    Cyanuric acid hydrolases (AtzD) and barbiturases are homologous, found almost exclusively in bacteria, and comprise a rare protein family with no discernible linkage to other protein families or an X-ray structural class. There has been confusion in the literature and in genome projects regarding the reaction products, the assignment of individual sequences as either cyanuric acid hydrolases or barbiturases, and spurious connection of this family to another protein family. The present study has addressed those issues. First, the published enzyme reaction products of cyanuric acid hydrolase are incorrectly identified as biuret and carbon dioxide. The current study employed 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to show that cyanuric acid hydrolase releases carboxybiuret, which spontaneously decarboxylates to biuret. This is significant because it revealed that homologous cyanuric acid hydrolases and barbiturases catalyze completely analogous reactions. Second, enzymes that had been annotated incorrectly in genome projects have been reassigned here by bioinformatics, gene cloning, and protein characterization studies. Third, the AtzD/barbiturase family has previously been suggested to consist of members of the amidohydrolase superfamily, a large class of metallohydrolases. Bioinformatics and the lack of bound metals both argue against a connection to the amidohydrolase superfamily. Lastly, steady-state kinetic measurements and observations of protein stability suggested that the AtzD/barbiturase family might be an undistinguished protein family that has undergone some resurgence with the recent introduction of industrial s-triazine compounds such as atrazine and melamine into the environment. PMID:22730121

  10. Defining sequence space and reaction products within the cyanuric acid hydrolase (AtzD)/barbiturase protein family.

    PubMed

    Seffernick, Jennifer L; Erickson, Jasmine S; Cameron, Stephan M; Cho, Seunghee; Dodge, Anthony G; Richman, Jack E; Sadowsky, Michael J; Wackett, Lawrence P

    2012-09-01

    Cyanuric acid hydrolases (AtzD) and barbiturases are homologous, found almost exclusively in bacteria, and comprise a rare protein family with no discernible linkage to other protein families or an X-ray structural class. There has been confusion in the literature and in genome projects regarding the reaction products, the assignment of individual sequences as either cyanuric acid hydrolases or barbiturases, and spurious connection of this family to another protein family. The present study has addressed those issues. First, the published enzyme reaction products of cyanuric acid hydrolase are incorrectly identified as biuret and carbon dioxide. The current study employed (13)C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to show that cyanuric acid hydrolase releases carboxybiuret, which spontaneously decarboxylates to biuret. This is significant because it revealed that homologous cyanuric acid hydrolases and barbiturases catalyze completely analogous reactions. Second, enzymes that had been annotated incorrectly in genome projects have been reassigned here by bioinformatics, gene cloning, and protein characterization studies. Third, the AtzD/barbiturase family has previously been suggested to consist of members of the amidohydrolase superfamily, a large class of metallohydrolases. Bioinformatics and the lack of bound metals both argue against a connection to the amidohydrolase superfamily. Lastly, steady-state kinetic measurements and observations of protein stability suggested that the AtzD/barbiturase family might be an undistinguished protein family that has undergone some resurgence with the recent introduction of industrial s-triazine compounds such as atrazine and melamine into the environment.

  11. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    NASA Astrophysics Data System (ADS)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  12. Mandelamide hydrolase from Pseudomonas putida: characterization of a new member of the amidase signature family.

    PubMed

    Gopalakrishna, Kota N; Stewart, Betty H; Kneen, Malea M; Andricopulo, Adriano D; Kenyon, George L; McLeish, Michael J

    2004-06-22

    A recently discovered enzyme in the mandelate pathway of Pseudomonas putida, mandelamide hydrolase (MAH), catalyzes the hydrolysis of mandelamide to mandelic acid and ammonia. Sequence analysis suggests that MAH is a member of the amidase signature family, which is widespread in nature and contains a novel Ser-cis-Ser-Lys catalytic triad. Here we report the expression in Escherichia coli, purification, and characterization of both wild-type and His(6)-tagged MAH. The recombinant enzyme was stable, exhibited a pH optimum of 7.8, and was able to hydrolyze both enantiomers of mandelamide with little enantiospecificity. The His-tagged variant showed no significant change in kinetic constants. Phenylacetamide was found to be the best substrate, with changes in chain length or replacement of the phenyl group producing greatly decreased values of k(cat)/K(m). As with another member of this family, fatty acid amide hydrolase, MAH has the uncommon ability to hydrolyze esters and amides at similar rates. MAH is even more unusual in that it will only hydrolyze esters and amides with little steric bulk. Ethyl and larger esters and N-ethyl and larger amides are not substrates, suggesting that the MAH active site is very sterically hindered. Mutation of each residue in the putative catalytic triad to alanine resulted in total loss of activity for S204A and K100A, while S180A exhibited a 1500-fold decrease in k(cat) and significant increases in K(m) values. Overall, the MAH data are similar to those of fatty acid amide hydrolase and support the suggestion that there are two distinct subgroups within the amidase signature family.

  13. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    SciTech Connect

    Brzezinski, Krzysztof; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan; Bujacz, Grzegorz

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified.more » Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.« less

  14. Polyglycine hydrolases secreted by Pleosporineae fungi that target the linker region of plant class IV chitinases.

    PubMed

    Naumann, Todd A; Wicklow, Donald T; Price, Neil P J

    2014-06-01

    Cmps (chitinase-modifying proteins) are fungal proteases that truncate plant class IV chitinases by cleaving near their N-termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. In the present paper we describe a new type of cmp, polyglycine hydrolases, as proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine linker of plant class IV chitinases. Polyglycine hydrolases were purified from Cochliobolus carbonum (syn. Bipolaris zeicola; Bz-cmp) and Epicoccum sorghi (syn. Phoma sorghina; Es-cmp) and were shown to cleave three different maize class IV chitinase substrates. The proteolytic cleavage sites were assessed by SDS/PAGE and MALDI-TOF-MS and indicated the cleavage of multiple peptide bonds within the polyglycine linker regions. Site-directed mutagenesis was used to produce mutants of maize ChitB chitinase in which two serine residues in its linker were systematically modified to glycine. Serine to glycine changes in the ChitB linker resulted in higher susceptibility to truncation by Bz-cmp and altered substrate specificity for Bz-cmp and Es-cmp, such that different glycine-glycine peptide bonds were cleaved. Removal of the hevein domain led to loss of Es-cmp activity, indicating that interactions outside of the active site are important for recognition. Our findings demonstrate that plant class IV chitinases with polyglycine linkers are targeted for truncation by selective polyglycine hydrolases that are secreted by plant pathogenic fungi. This novel proteolysis of polyglycine motifs is previously unreported, but the specificity is similar to that of bacterial lysostaphin proteases, which cleave pentaglycine cross-links from peptidoglycan.

  15. Expression and purification of an engineered, yeast-expressed Leishmania donovani nucleoside hydrolase with immunogenic properties.

    PubMed

    Hudspeth, Elissa M; Wang, Qian; Seid, Christopher A; Hammond, Molly; Wei, Junfei; Liu, Zhuyun; Zhan, Bin; Pollet, Jeroen; Heffernan, Michael J; McAtee, C Patrick; Engler, David A; Matsunami, Risë K; Strych, Ulrich; Asojo, Oluwatoyin A; Hotez, Peter J; Bottazzi, Maria Elena

    2016-07-02

    Leishmania donovani is the major cause of visceral leishmaniasis (kala-azar), now recognized as the parasitic disease with the highest level of mortality second only to malaria. No human vaccine is currently available. A 36 kDa L. donovani nucleoside hydrolase (LdNH36) surface protein has been previously identified as a potential vaccine candidate antigen. Here we present data on the expression of LdNH36 in Pichia pastoris and its purification at the 20 L scale to establish suitability for future pilot scale manufacturing. To improve efficiency of process development and ensure reproducibility, 4 N-linked glycosylation sites shown to contribute to heterogeneous high-mannose glycosylation were mutated to glutamine residues. The mutant LdNH36 (LdNH36-dg2) was expressed and purified to homogeneity. Size exclusion chromatography and light scattering demonstrated that LdNH36-dg2 existed as a tetramer in solution, similar to the wild-type recombinant L. major nucleoside hydrolase. The amino acid mutations do not affect the tetrameric interface as confirmed by theoretical modeling, and the mutated amino acids are located outside the major immunogenic domain. Immunogenic properties of the LdNH36-dg2 recombinant protein were evaluated in BALB/c mice using formulations that included a synthetic CpG oligodeoxynucleotide, together with a microparticle delivery platform (poly(lactic-co-glycolic acid)). Mice exhibited high levels of IgG1, IgG2a, and IgG2b antibodies that were reactive to both LdNH36-dg2 and LdNH36 wild-type. While the point mutations did affect the hydrolase activity of the enzyme, the IgG antibodies elicited by LdNH36-dg2 were shown to inhibit the hydrolase activity of the wild-type LdNH36. The results indicate that LdNH36-dg2 as expressed in and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing in support of future first-in-humans phase 1 clinical trials.

  16. Neutron diffraction analysis of Pseudomonas aeruginosa peptidyl-tRNA hydrolase 1.

    PubMed

    McFeeters, Hana; Vandavasi, Venu Gopal; Weiss, Kevin L; Coates, Leighton; McFeeters, Robert L

    2016-03-01

    Perdeuterated peptidyl-tRNA hydrolase 1 from Pseudomonas aeruginosa was crystallized for structural analysis using neutron diffraction. Crystals of perdeuterated protein were grown to 0.15 mm(3) in size using batch crystallization in 22.5% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol with a 20-molar excess of trilysine as an additive. Neutron diffraction data were collected from a crystal at room temperature using the MaNDi single-crystal diffractometer at Oak Ridge National Laboratory.

  17. Biosensing Paraoxon in Simulated Environmental Samples by Immobilized Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Lei, Chenghong; Valenta, Michelle M.; Saripalli, Prasad

    2007-01-01

    There is a critical need for highly sensitive, cost-effective sensors to conduct ecological analyses for environmental and homeland security related applications. We report here on a method which significantly overcomes this difficulty, and demonstrate its application in a biosensor for aquatic environmental applications. A fast-responding and stable biosensor was developed via immobilization of organophosphorus hydrolase (OPH) in functionalized mesoporous silica (FMS) with pore sizes in tens of nanometers. The sensor was tested for detection of paraoxon in simulated environmental samples, under wide ranging physico-chemical conditions.

  18. Radiometric assay of ghrelin hydrolase activity and 3H-ghrelin distribution into mouse tissues.

    PubMed

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen

    2015-12-15

    A high-throughput radiometric assay was developed to characterize enzymatic hydrolysis of ghrelin and to track the peptide's fate in vivo. The assay is based on solvent partitioning of [(3)H]-octanoic acid liberated from [(3)H]-octanoyl ghrelin during enzymatic hydrolysis. This simple and cost-effective method facilitates kinetic analysis of ghrelin hydrolase activity of native and mutated butyrylcholinesterases or carboxylesterases from multiple species. In addition, the assay's high sensitivity facilitates ready evaluation of ghrelin's pharmacokinetics and tissue distribution in mice after i.v. bolus administration of radiolabeled peptide. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Activity-based Proteomics of Enzyme Superfamilies: Serine Hydrolases as a Case Study*

    PubMed Central

    Simon, Gabriel M.; Cravatt, Benjamin F.

    2010-01-01

    Genome sequencing projects have uncovered thousands of uncharacterized enzymes in eukaryotic and prokaryotic organisms. Deciphering the physiological functions of enzymes requires tools to profile and perturb their activities in native biological systems. Activity-based protein profiling has emerged as a powerful chemoproteomic strategy to achieve these objectives through the use of chemical probes that target large swaths of enzymes that share active-site features. Here, we review activity-based protein profiling and its implementation to annotate the enzymatic proteome, with particular attention given to probes that target serine hydrolases, a diverse superfamily of enzymes replete with many uncharacterized members. PMID:20147750

  20. Novel Cell Wall Hydrolase CwlC from Bacillus thuringiensis Is Essential for Mother Cell Lysis.

    PubMed

    Chen, Xiaomin; Gao, Tantan; Peng, Qi; Zhang, Jie; Chai, Yunrong; Song, Fuping

    2018-04-01

    In this study, a sporulation-specific gene (tentatively named cwlC ) involved in mother cell lysis in Bacillus thuringiensis was characterized. The encoded CwlC protein consists of an N-terminal N -acetylmuramoyl-l-alanine amidase (Mur N Ac-LAA) domain and a C-terminal amidase02 domain. The recombinant histidine-tagged CwlC proteins purified from Escherichia coli were able to directly bind to and digest the B. thuringiensis cell wall. The CwlC point mutations at the two conserved glutamic acid residues (Glu-24 and Glu-140) shown to be critical for the catalytic activity in homologous amidases resulted in a complete loss of cell wall lytic activity, suggesting that CwlC is an N -acetylmuramoyl-l-alanine amidase. Results of transcriptional analyses indicated that cwlC is transcribed as a monocistronic unit and that its expression is dependent on sporulation sigma factor K (σ K ). Deletion of cwlC completely blocked mother cell lysis during sporulation without impacting the sporulation frequency, Cry1Ac protein production, and insecticidal activity. Taken together, our data suggest that CwlC is an essential cell wall hydrolase for B. thuringiensis mother cell lysis during sporulation. Engineered B. thuringiensis strains targeting cwlC , which allows the crystal inclusion to remain encapsulated in the mother cell at the end of sporulation, may have the potential to become more effective biological control agents in agricultural applications since the crystal inclusion remains encapsulated in the mother cell at the end of sporulation. IMPORTANCE Mother cell lysis has been well studied in Bacillus subtilis , which involves three distinct yet functionally complementary cell wall hydrolases. In this study, a novel cell wall hydrolase, CwlC, was investigated and found to be essential for mother cell lysis in Bacillus thuringiensis CwlC of B. thuringiensis only shows 9 and 21% sequence identity with known B. subtilis mother cell hydrolases CwlB and CwlC, respectively

  1. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    PubMed

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  2. A chemical genetic screen uncovers a small molecule enhancer of the N-acylethanolamine degrading enzyme, fatty acid amide hydrolase, in Arabidopsis

    SciTech Connect

    Khan, Bibi Rafeiza; Faure, Lionel; Chapman, Kent D.

    2017-01-23

    N-Acylethanolamines (NAEs) are a group of fatty acid amides that play signaling roles in diverse physiological processes in eukaryotes. We used fatty acid amide hydrolase (FAAH) degrades NAE into ethanolamine and free fatty acid to terminate its signaling function. In animals, chemical inhibitors of FAAH for therapeutic treatment of pain and as tools to probe deeper into biochemical properties of FAAH. In a chemical genetic screen for small molecules that dampened the inhibitory effect of N-lauroylethanolamine (NAE 12:0) on Arabidopsis thaliana seedling growth, we identified 6-(2-methoxyphenyl)-1,3-dimethyl-5-phenyl-1H-pyrrolo[3,4-d]pyrimidine-2,4(3 H,6 H)-dione (or MDPD). MDPD alleviated the growth inhibitory effects of NAE 12:0, inmore » part by enhancing the enzymatic activity of Arabidopsis FAAH (AtFAAH). In vitro, biochemical assays showed that MDPD enhanced the apparent Vmax of AtFAAH but did not alter the affinity of AtFAAH for its NAE substrates. Furthermore, structural analogs of MDPD did not affect AtFAAH activity or dampen the inhibitory effect of NAE 12:0 on seedling growth indicating that MDPD is a specific synthetic chemical activator of AtFAAH. Our study demonstrates the feasibility of using an unbiased chemical genetic approach to identify new pharmacological tools for manipulating FAAH- and NAE-mediated physiological processes in plants.« less

  3. Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841

    PubMed Central

    Wilding, Matthew; Lucent, Del; French, Nigel G.; Hartley, Carol J.; Newman, Janet

    2018-01-01

    Biuret deamination is an essential step in cyanuric acid mineralization. In the well-studied atrazine degrading bacterium Pseudomonas sp. strain ADP, the amidase AtzE catalyzes this step. However, Rhizobium leguminosarum bv. viciae 3841 uses an unrelated cysteine hydrolase, BiuH, instead. Herein, structures of BiuH, BiuH with bound inhibitor and variants of BiuH are reported. The substrate is bound in the active site by a hydrogen bonding network that imparts high substrate specificity. The structure of the inactive Cys175Ser BiuH variant with substrate bound in the active site revealed that an active site cysteine (Cys175), aspartic acid (Asp36) and lysine (Lys142) form a catalytic triad, which is consistent with biochemical studies of BiuH variants. Finally, molecular dynamics simulations highlighted the presence of three channels from the active site to the enzyme surface: a persistent tunnel gated by residues Val218 and Gln215 forming a potential substrate channel and two smaller channels formed by Val28 and a mobile loop (including residues Phe41, Tyr47 and Met51) that may serve as channels for co-product (ammonia) or co-substrate (water). PMID:29425231

  4. Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841.

    PubMed

    Esquirol, Lygie; Peat, Thomas S; Wilding, Matthew; Lucent, Del; French, Nigel G; Hartley, Carol J; Newman, Janet; Scott, Colin

    2018-01-01

    Biuret deamination is an essential step in cyanuric acid mineralization. In the well-studied atrazine degrading bacterium Pseudomonas sp. strain ADP, the amidase AtzE catalyzes this step. However, Rhizobium leguminosarum bv. viciae 3841 uses an unrelated cysteine hydrolase, BiuH, instead. Herein, structures of BiuH, BiuH with bound inhibitor and variants of BiuH are reported. The substrate is bound in the active site by a hydrogen bonding network that imparts high substrate specificity. The structure of the inactive Cys175Ser BiuH variant with substrate bound in the active site revealed that an active site cysteine (Cys175), aspartic acid (Asp36) and lysine (Lys142) form a catalytic triad, which is consistent with biochemical studies of BiuH variants. Finally, molecular dynamics simulations highlighted the presence of three channels from the active site to the enzyme surface: a persistent tunnel gated by residues Val218 and Gln215 forming a potential substrate channel and two smaller channels formed by Val28 and a mobile loop (including residues Phe41, Tyr47 and Met51) that may serve as channels for co-product (ammonia) or co-substrate (water).

  5. Inhibition of soluble epoxide hydrolase after cardiac arrest/cardiopulmonary resuscitation induces a neuroprotective phenotype in activated microglia and improves neuronal survival

    PubMed Central

    Wang, Jianming; Fujiyoshi, Tetsuhiro; Kosaka, Yasuharu; Raybuck, Jonathan D; Lattal, K Matthew; Ikeda, Mizuko; Herson, Paco S; Koerner, Ines P

    2013-01-01

    Cardiac arrest (CA) causes hippocampal neuronal death that frequently leads to severe loss of memory function in survivors. No specific treatment is available to reduce neuronal death and improve functional outcome. The brain's inflammatory response to ischemia can exacerbate injury and provides a potential treatment target. We hypothesized that microglia are activated by CA and contribute to neuronal loss. We used a mouse model to determine whether pharmacologic inhibition of the proinflammatory microglial enzyme soluble epoxide hydrolase (sEH) after CA alters microglial activation and neuronal death. The sEH inhibitor 4-phenylchalcone oxide (4-PCO) was administered after successful cardiopulmonary resuscitation (CPR). The 4-PCO treatment significantly reduced neuronal death and improved memory function after CA/CPR. We found early activation of microglia and increased expression of inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the hippocampus after CA/CPR, which was unchanged after 4-PCO treatment, while expression of antiinflammatory IL-10 increased significantly. We conclude that sEH inhibition after CA/CPR can alter the transcription profile in activated microglia to selectively induce antiinflammatory and neuroprotective IL-10 and reduce subsequent neuronal death. Switching microglial gene expression toward a neuroprotective phenotype is a promising new therapeutic approach for ischemic brain injury. PMID:23820647

  6. Cocaine Hydrolase Gene Transfer Demonstrates Cardiac Safety and Efficacy against Cocaine-Induced QT Prolongation in Mice.

    PubMed

    Murthy, Vishakantha; Reyes, Santiago; Geng, Liyi; Gao, Yang; Brimijoin, Stephen

    2016-03-01

    Cocaine addiction is associated with devastating medical consequences, including cardiotoxicity and risk-conferring prolongation of the QT interval. Viral gene transfer of cocaine hydrolase engineered from butyrylcholinesterase offers therapeutic promise for treatment-seeking drug users. Although previous preclinical studies have demonstrated benefits of this strategy without signs of toxicity, the specific cardiac safety and efficacy of engineered butyrylcholinesterase viral delivery remains unknown. Here, telemetric recording of electrocardiograms from awake, unrestrained mice receiving a course of moderately large cocaine doses (30 mg/kg, twice daily for 3 weeks) revealed protection against a 2-fold prolongation of the QT interval conferred by pretreatment with cocaine hydrolase vector. By itself, this prophylactic treatment did not affect QT interval duration or cardiac structure, demonstrating that viral delivery of cocaine hydrolase has no intrinsic cardiac toxicity and, on the contrary, actively protects against cocaine-induced QT prolongation. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Cocaine Hydrolase Gene Transfer Demonstrates Cardiac Safety and Efficacy against Cocaine-Induced QT Prolongation in Mice

    PubMed Central

    Reyes, Santiago; Geng, Liyi; Gao, Yang; Brimijoin, Stephen

    2016-01-01

    Cocaine addiction is associated with devastating medical consequences, including cardiotoxicity and risk-conferring prolongation of the QT interval. Viral gene transfer of cocaine hydrolase engineered from butyrylcholinesterase offers therapeutic promise for treatment-seeking drug users. Although previous preclinical studies have demonstrated benefits of this strategy without signs of toxicity, the specific cardiac safety and efficacy of engineered butyrylcholinesterase viral delivery remains unknown. Here, telemetric recording of electrocardiograms from awake, unrestrained mice receiving a course of moderately large cocaine doses (30 mg/kg, twice daily for 3 weeks) revealed protection against a 2-fold prolongation of the QT interval conferred by pretreatment with cocaine hydrolase vector. By itself, this prophylactic treatment did not affect QT interval duration or cardiac structure, demonstrating that viral delivery of cocaine hydrolase has no intrinsic cardiac toxicity and, on the contrary, actively protects against cocaine-induced QT prolongation. PMID:26669428

  8. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    SciTech Connect

    Chou, Jyh-Ching; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusivelymore » high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.« less

  9. Partial Purification and Characterization of an Inducible Indole-3-Acetyl-L-Aspartic Acid Hydrolase from Enterobacter agglomerans.

    PubMed

    Chou, J. C.; Kuleck, G. A.; Cohen, J. D.; Mulbry, W. W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH4)2SO4, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusively high substrate specificity for IAA-L-Asp. Substrate concentration curves and Lineweaver-Burk plots of the kinetic data showed a Michaelis constant value for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg2+ the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO4; the activity was increased by 40% with 1 mM MnSO4. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  10. Fatty acid amide hydrolase (FAAH) inactivation confers enhanced sensitivity to nicotine-induced dopamine release in the mouse nucleus accumbens.

    PubMed

    Pavon, Francisco J; Serrano, Antonia; Sidhpura, Nimish; Polis, Ilham; Stouffer, David; de Fonseca, Fernando Rodriguez; Cravatt, Benjamin F; Martin-Fardon, Rémi; Parsons, Loren H

    2018-03-01

    Nicotine exerts its rewarding effects by promoting an increase in dopamine (DA) release in the nucleus accumbens (NAc), and this process is influenced by the endocannabinoid system. Fatty acid amide hydrolase (FAAH) is the main enzyme responsible for the degradation of the endocannabinoid anandamide and other non-cannabinoid N-acylethanolamines. Previous research has reported that both genetic deletion and pharmacological inhibition of FAAH enhance nicotine-induced conditioned place preference at low doses. We conducted a microdialysis study to characterize nicotine-induced changes in DA and serotonin (5-HT) levels in the NAc of FAAH knockout (KO) mice using a conditioned place preference-like paradigm with three nicotine doses (0.1, 1 and 10 mg/kg, s.c.). Additionally, the effects of the selective FAAH inhibitor PF-3845 (10 mg/kg, i.p.) were also examined. Our data indicated that compared with wild-type mice, genetic deletion of FAAH selectively enhanced the effect of low-dose nicotine on DA release (p < 0.001) and resulted in a strong post-nicotine elevation in DA levels (p < 0.01). However, there were no differences between the genotypes at higher doses. Furthermore, FAAH KO mice displayed a moderate enhancement of the effect of low-dose nicotine on NAc 5-HT release (p < 0.05), with no differences between the genotypes at higher doses. Compared with vehicle-pretreated mice, mice pretreated with PF-3845 displayed an enhancement of the effect of low-dose nicotine on NAc DA release (p < 0.001), which resulted in a sustained increase in DA levels (p < 0.05). Similar to FAAH KO mice, PF-3845-pretreated mice displayed a moderate enhancement of the effect of low-dose nicotine on NAc 5-HT release (p < 0.01). These observations in mice suggest that enhanced nicotine-induced NAc DA release might contribute to increased sensitivity to the conditioned rewarding effects of low-dose nicotine following FAAH inhibition, which has been previously reported. Future

  11. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    SciTech Connect

    Balotra, Sahil; Newman, Janet; French, Nigel G.

    2014-02-19

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P2{sub 1}, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°.

  12. A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis.

    PubMed

    Malek, Natalia; Mrugala, Monika; Makuch, Wioletta; Kolosowska, Natalia; Przewlocka, Barbara; Binkowski, Marcin; Czaja, Martyna; Morera, Enrico; Di Marzo, Vincenzo; Starowicz, Katarzyna

    2015-05-01

    The pharmacological inhibition of anandamide (AEA) hydrolysis by fatty acid amide hydrolase (FAAH) attenuates pain in animal models of osteoarthritis (OA) but has failed in clinical trials. This may have occurred because AEA also activates transient receptor potential vanilloid type 1 (TRPV1), which contributes to pain development. Therefore, we investigated the effectiveness of the dual FAAH-TRPV1 blocker OMDM-198 in an MIA-model of osteoarthritic pain. We first investigated the MIA-induced model of OA by (1) characterizing the pain phenotype and degenerative changes within the joint using X-ray microtomography and (2) evaluating nerve injury and inflammation marker (ATF-3 and IL-6) expression in the lumbar dorsal root ganglia of osteoarthritic rats and differences in gene and protein expression of the cannabinoid CB1 receptors FAAH and TRPV1. Furthermore, we compared OMDM-198 with compounds acting exclusively on FAAH or TRPV1. Osteoarthritis was accompanied by the fragmentation of bone microstructure and destroyed cartilage. An increase of the mRNA levels of ATF3 and IL-6 and an upregulation of AEA receptors and FAAH in the dorsal root ganglia were observed. OMDM-198 showed antihyperalgesic effects in the OA model, which were comparable with those of a selective TRPV1 antagonist, SB-366,791, and a selective FAAH inhibitor, URB-597. The effect of OMDM-198 was attenuated by the CB1 receptor antagonist, AM-251, and by the nonpungent TRPV1 agonist, olvanil, suggesting its action as an "indirect" CB1 agonist and TRPV1 antagonist. These results suggest an innovative strategy for the treatment of OA, which may yield more satisfactory results than those obtained so far with selective FAAH inhibitors in human OA.

  13. Characterization of Bile Salt Hydrolase from Lactobacillus gasseri FR4 and Demonstration of Its Substrate Specificity and Inhibitory Mechanism Using Molecular Docking Analysis

    PubMed Central

    Rani, Rizwana Parveen; Anandharaj, Marimuthu; Ravindran, Abraham David

    2017-01-01

    Probiotic bacteria are beneficial to the health of poultry animals, thus are used as alternative candidates for antibiotics used as growth promoters (AGPs). However, they also reduce the body weight gain due to innate bile salt hydrolase (BSH) activity. Hence, the addition of a suitable BSH inhibitor along with the probiotic feed can decrease the BSH activity. In this study, a BSH gene (981 bp) encoding 326-amino acids was identified from the genome of Lactobacillus gasseri FR4 (LgBSH). The LgBSH-encoding gene was cloned and purified using an Escherichia coli BL21 (DE3) expression system, and its molecular weight (37 kDa) was confirmed by SDS–PAGE and a Western blot analysis. LgBSH exhibited greater hydrolysis toward glyco-conjugated bile salts compared to tauro-conjugated bile salts. LgBSH displayed optimal activity at 52°C at a pH of 5.5, and activity was further increased by several reducing agents (DTT), surfactants (Triton X-100 and Tween 80), and organic solvents (isopropanol, butanol, and acetone). Riboflavin and penicillin V, respectively, inhibited LgBSH activity by 98.31 and 97.84%. A homology model of LgBSH was predicted using EfBSH (4WL3) as a template. Molecular docking analysis revealed that the glycocholic acid had lowest binding energy of -8.46 kcal/mol; on the other hand, inhibitors, i.e., riboflavin and penicillin V, had relatively higher binding energies of -6.25 and -7.38 kcal/mol, respectively. Our results suggest that L. gasseri FR4 along with riboflavin might be a potential alternative to AGPs for poultry animals. PMID:28620369

  14. The synthesis and in vivo evaluation of [18F]PF-9811: a novel PET ligand for imaging brain fatty acid amide hydrolase (FAAH).

    PubMed

    Skaddan, Marc B; Zhang, Lei; Johnson, Douglas S; Zhu, Aijun; Zasadny, Kenneth R; Coelho, Richard V; Kuszpit, Kyle; Currier, Gwen; Fan, Kuo-Hsien; Beck, Elizabeth M; Chen, Laigao; Drozda, Susan E; Balan, Gayatri; Niphakis, Micah; Cravatt, Benjamin F; Ahn, Kay; Bocan, Thomas; Villalobos, Anabella

    2012-10-01

    Fatty acid amide hydrolase (FAAH) is responsible for the enzymatic degradation of the fatty acid amide family of signaling lipids, including the endogenous cannabinoid (endocannabinoid) anandamide. The involvement of the endocannabinoid system in pain and other nervous system disorders has made FAAH an attractive target for drug development. Companion molecular imaging probes are needed, however, to assess FAAH inhibition in the nervous system in vivo. We report here the synthesis and in vivo evaluation of [(18)F]PF-9811, a novel PET ligand for non-invasive imaging of FAAH in the brain. The potency and selectivity of unlabeled PF-9811 were determined by activity-based protein profiling (ABPP) both in vitro and in vivo. [(18)F]PF-9811 was synthesized in a 3-step, one-pot reaction sequence, followed by HPLC purification. Biological evaluation was performed by biodistribution and dynamic PET imaging studies in male rats. The specificity of [(18)F]PF-9811 uptake was evaluated by pre-administration of PF-04457845, a potent and selective FAAH inhibitor, 1h prior to radiotracer injection. Biodistribution studies show good uptake (SUV~0.8 at 90 min) of [(18)F]PF-9811 in rat brain, with significant reduction of the radiotracer in all brain regions (37%-73% at 90 min) in blocking experiments. Dynamic PET imaging experiments in rat confirmed the heterogeneous uptake of [(18)F]PF-9811 in brain regions with high FAAH enzymatic activity, as well as statistically significant reductions in signal following pre-administration of the blocking compound PF-04457845. [(18)F]PF-9811 is a promising PET imaging agent for FAAH. Biodistribution and PET imaging experiments show that the tracer has good uptake in brain, regional heterogeneity, and specific binding as determined by blocking experiments with the highly potent and selective FAAH inhibitor, PF-04457845. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. High-performance liquid chromatography-tandem mass spectrometry assay of fatty acid amide hydrolase (FAAH) in blood: FAAH inhibition as clinical biomarker.

    PubMed

    Yapa, Udeni; Prusakiewicz, Jeffery J; Wrightstone, Ann D; Christine, Lori J; Palandra, Joe; Groeber, Elizabeth; Wittwer, Arthur J

    2012-02-15

    Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for the degradation of the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). FAAH inhibitors may be useful in treating many disorders involving inflammation and pain. Although brain FAAH may be the relevant target for inhibition, rat studies show a correlation between blood and brain FAAH inhibition, allowing blood FAAH activity to be used as a target biomarker. Building on experience with a rat leukocyte FAAH activity assay using [³H]AEA, we have developed a human leukocyte assay using stably labeled [²H₄]AEA as substrate. The deuterium-labeled ethanolamine reaction product ([²H₄]EA) was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization (ESI) mode. The response for [²H₄]EA was linear from 10 nM to 10 μM, and the analysis time was less than 6 min/sample. Results using the [²H₄]AEA and HPLC-MS/MS method agreed well with those obtained using the [³H]AEA radiometric assay. In addition to using a nonradioactive substrate, the HPLC-MS/MS method had increased sensitivity with lower background. Importantly, the assay preserved partial FAAH inhibition resulting from ex vivo treatment with a time-dependent irreversible inhibitor, suggesting its utility with clinical samples. The assay has been used to profile the successful inhibition of FAAH in recent clinical trials. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    PubMed

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3(+) and BrdU(+) subgranular cells as well as GFAP(+), Iba1(+) and cleaved caspase-3(+) cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3(+), GFAP(+) and 3-weeks-old BrdU(+) cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context.

  17. Adenosine metabolism in the guinea pig heart: the role of cytosolic S-adenosyl-L-homocysteine hydrolase, 5'-nucleotidase and adenosine kinase.

    PubMed

    Lloyd, H G; Schrader, J

    1993-11-01

    This study was conducted to elucidate the role of S-adenosyl-L-homocysteine (SAH) hydrolase, 5'-nucleotidase and adenosine kinase in the production and removal of adenosine in the isolated guinea pig heart during normoxic (95% O2) and hypoxic (30% O2) perfusion. Using an adenosine kinase inhibitor (5'-amino-5'-deoxy-adenosine; 50 microM) and an adenosine deaminase inhibitor (EHNA; 5 microM) the total steady-state production rate of adenosine in the heart was estimated to be greater than 1.2 nmol.min-1 per g wet wt., during normoxia. Most (95%) of the SAH-derived adenosine is salvaged by adenosine kinase action. The rate of adenosine phosphorylation increased 3-fold when isolated hearts were perfused with hypoxic medium, suggesting that adenosine kinase is not substrate-saturated under normoxic conditions. The steady-state production of adenosine was also estimated during hypoxia (5.9 nmol-min-1 per g wet wt.) and compared with previously determined transmethylation rate during hypoxia (1.12 nmol.min-1 x g wet wt.). In an attempt to assess the in-vivo activity of cytosolic 5'-nucleotidase, the 5'-AMP pool was labelled by perfusing the isolated hearts with tricyclic nucleoside (TCN) which became phosphorylated (TCN-P). The release rate of both adenosine and TCN in the post-labelling phase was increased by hypoxic perfusion, suggesting that the increased rate of 5'-AMP hydrolysis may be due to increased availability of substrate, as well as activation of 5'-nucleotidase. Our findings suggest that during normoxic perfusion a significant amount of adenosine is derived from an apparently oxygen-independent mechanism (cellular transmethylation) whereas during hypoxic perfusion hydrolysis of adenine nucleotides to adenosine prevails.

  18. Structural analysis of xylanase inhibitor protein I (XIP-I), a proteinaceous xylanase inhibitor from wheat (Triticum aestivum, var. Soisson).

    PubMed Central

    Payan, Françoise; Flatman, Ruth; Porciero, Sophie; Williamson, Gary; Juge, Nathalie; Roussel, Alain

    2003-01-01

    A novel class of proteinaceous inhibitors exhibiting specificity towards microbial xylanases has recently been discovered in cereals. The three-dimensional structure of xylanase inhibitor protein I (XIP-I) from wheat (Triticum aestivum, var. Soisson) was determined by X-ray crystallography at 1.8 A (1 A=0.1 nm) resolution. The inhibitor possesses a (beta/alpha)(8) barrel fold and has structural features typical of glycoside hydrolase family 18, namely two consensus regions, approximately corresponding to the third and fourth barrel strands, and two non-proline cis -peptide bonds, Ser(36)-Phe and Trp(256)-Asp (in XIP-I numbering). However, detailed structural analysis of XIP-I revealed several differences in the region homologous with the active site of chitinases. The catalytic glutamic acid residue of family 18 chitinases [Glu(127) in hevamine, a chitinase/lysozyme from the rubber tree (Hevea brasiliensis)] is conserved in the structure of the inhibitor (Glu(128)), but its side chain is fully engaged in salt bridges with two neighbouring arginine residues. Gly(81), located in subsite -1 of hevamine, where the reaction intermediate is formed, is replaced by Tyr(80) in XIP-I. The tyrosine side chain fills the subsite area and makes a strong hydrogen bond with the side chain of Glu(190) located at the opposite side of the cleft, preventing access of the substrate to the catalytic glutamic acid. The structural differences in the inhibitor cleft structure probably account for the lack of activity of XIP-I towards chitin. PMID:12617724

  19. Immobilization of organophosphate hydrolase on an amyloid fibril nanoscaffold: towards bioremediation and chemical detoxification.

    PubMed

    Raynes, Jared K; Pearce, F Grant; Meade, Susie J; Gerrard, Juliet A

    2011-01-01

    Organophosphate hydrolase has potential as a bioremediation and chemical detoxification enzyme, but the problems of reusability and stability need to be addressed to use this enzyme on an industrial scale. Immobilizing the enzyme to a nanoscaffold may help to solve these problems. Amyloid fibrils generated from insulin and crystallin provided a novel nanoscaffold for the immobilization of organophosphate hydrolase, using glutaraldehyde as the crosslinking reagent. Electrophoretic, centrifugation, and temperature stability experiments, together with transmission electron microscopy were undertaken to verify that crosslinking had successfully occurred. The resulting fibrils remained active towards the substrate paraoxon and when immobilized to the insulin amyloid fibrils, the enzyme exhibited a significant (∼ 300%) increase in the relative temperature stability at 40, 45, and 50°C (as measured by comparing the initial enzyme activity to the activity remaining after heating), compared to free enzyme. This confirms that amyloid fibrils could provide a new type of nanoscaffold for enzyme immobilization. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  20. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase.

    PubMed

    Purg, Miha; Pabis, Anna; Baier, Florian; Tokuriki, Nobuhiko; Jackson, Colin; Kamerlin, Shina Caroline Lynn

    2016-11-13

    Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal-metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.

  1. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    SciTech Connect

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar tomore » tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.« less

  2. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    PubMed

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    PubMed

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase

    PubMed Central

    Purg, Miha; Pabis, Anna; Baier, Florian; Tokuriki, Nobuhiko; Jackson, Colin

    2016-01-01

    Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal–metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698033

  5. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    SciTech Connect

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  6. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    SciTech Connect

    Allgaier, M.; Reddy, A.; Park, J. I.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence datamore » from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.« less

  7. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community.

    PubMed

    Allgaier, Martin; Reddy, Amitha; Park, Joshua I; Ivanova, Natalia; D'haeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C; Simmons, Blake A; VanderGheynst, Jean S; Hugenholtz, Philip

    2010-01-21

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, approximately 10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 degrees C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  8. Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene.

    PubMed

    Öztürk, Başak; Ghequire, Maarten; Nguyen, Thi Phi Oanh; De Mot, René; Wattiez, Ruddy; Springael, Dirk

    2016-12-01

    Carbofuran-mineralizing strain Novosphingobium sp. KN65.2 produces the CfdJ enzyme that converts the N-methylcarbamate insecticide to carbofuran phenol. Purified CfdJ shows a remarkably low K M towards carbofuran. Together with the carbaryl hydrolase CehA of Rhizobium sp. strain AC100, CfdJ represents a new protein family with several uncharacterized bacterial members outside the proteobacteria. Although both enzymes differ by only four amino acids, CehA does not recognize carbofuran as a substrate whereas CfdJ also hydrolyzes carbaryl. None of the CfdJ amino acids that differ from CehA were shown to be silent regarding carbofuran hydrolytic activity but one particular amino acid substitution, i.e., L152 to F152, proved crucial. CfdJ is more efficient in degrading methylcarbamate pesticides with an aromatic side chain whereas CehA is more efficient in degrading the oxime carbamate nematicide oxamyl. The presence of common flanking sequences suggest that the cfdJ gene is located on a remnant of the mobile genetic element Tnceh carrying cehA. Our results suggest that these enzymes can be acquired through horizontal gene transfer and can evolve to degrade new carbamate substrates by limited amino acid substitutions. We demonstrate that a carbaryl hydrolase can gain the additional capacity to degrade carbofuran by a single nucleotide transversion. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    SciTech Connect

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence ofmore » replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.« less

  10. Periplasmic Export of Bile Salt Hydrolase in Escherichia coli by the Twin-Arginine Signal Peptides.

    PubMed

    Dong, Zixing; Zhang, Juan; Du, Guocheng; Chen, Jian; Li, Huazhong; Lee, Byonghoon

    2015-09-01

    Bile salt hydrolase (BSH, EC 3.5.1.24) is considered as an ideal way with lower cost and less side effects to release the risk of coronary heart disease caused by hypercholesterolemia. As bile salt hydrolase from Lactobacillus plantarum BBE7 could not be efficiently exported by PelB signal peptide of the general secretory (Sec) pathway, three twin-arginine signal peptides from twin-arginine translocation (Tat) pathway were synthesized, fused with bsh gene, inserted into expression vectors pET-20b(+) and pET-22b(+), and transformed into four different Escherichia coli hosts, respectively. Among the 24 recombinant bacteria obtained, E. coli BL21 (DE3) pLysS (pET-20b(+)-dmsA-bsh) showed the highest BSH activity in periplasmic fraction, which was further increased to 1.21 ± 0.03 U/mL by orthogonal experimental design. And, signal peptide dimethyl sulfoxide reductase subunit DmsA (DMSA) had the best activity of exported BSH. More importantly, the presence of BSH in the periplasm had proven to be caused by the export rather than cell leakage. For the first time, we report the periplasmic expression of BSH by signal peptides from the Tat pathway. This will lay a solid foundation for the purification and biochemical characterization of BSH from the supernatant, and strategies adopted here could be used for the periplasmic expression of other proteins in E. coli.

  11. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    SciTech Connect

    Higgins, M.; Whitworth, G; El Warry, N

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in themore » other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.« less

  12. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence

    PubMed Central

    Rico-Lastres, Palma; Díez-Martínez, Roberto; Iglesias-Bexiga, Manuel; Bustamante, Noemí; Aldridge, Christine; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Gray, Joe; Vollmer, Waldemar; García, Pedro; Menéndez, Margarita

    2015-01-01

    Streptococcus pneumoniae is a major cause of life-threatening diseases worldwide. Here we provide an in-depth functional characterization of LytB, the peptidoglycan hydrolase responsible for physical separation of daughter cells. Identified herein as an N-acetylglucosaminidase, LytB is involved also in colonization and invasion of the nasopharynx, biofilm formation and evasion of host immunity as previously demonstrated. We have shown that LytB cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic bond of peptidoglycan building units. The hydrolysis occurs at sites with fully acetylated GlcNAc moieties, with preference for uncross-linked muropeptides. The necessity of GlcN acetylation and the presence of a single acidic moiety (Glu585) essential for catalysis strongly suggest a substrate-assisted mechanism with anchimeric assistance of the acetamido group of GlcNAc moieties. Additionally, modelling of the catalytic region bound to a hexasaccharide tripentapeptide provided insights into substrate-binding subsites and peptidoglycan recognition. Besides, cell-wall digestion products and solubilisation rates might indicate a tight control of LytB activity to prevent unrestrained breakdown of the cell wall. Choline-independent localization at the poles of the cell, mediated by the choline-binding domain, peptidoglycan modification, and choline-mediated (lipo)teichoic-acid attachment contribute to the high selectivity of LytB. Moreover, so far unknown chitin hydrolase and glycosyltransferase activities were detected using GlcNAc oligomers as substrate. PMID:26537571

  13. Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.

    PubMed

    Robinson, Serina L; Badalamenti, Jonathan P; Dodge, Anthony G; Tassoulas, Lambros J; Wackett, Lawrence P

    2018-03-12

    Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min -1 mg -1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  15. Quantum chemical study of leaving group activation in T. vivax nucleoside hydrolase

    NASA Astrophysics Data System (ADS)

    Loverix, Stefan; Versees, Wim; Steyaert, Jan; Geerlings, Paul

    General acid catalysis is a powerful and widely used strategy in enzymatic nucleophilic displacement reactions. However, in the nucleoside hydrolase of the parasite Trypanosoma vivax, crystallographic and mutagenesis studies failed to identify a general acid. The only groups in the vicinity of the leaving group that contribute to catalysis are (i) the indole side chain of Trp260, and (ii) the 5'-group of the substrate's ribose moiety. The x-ray structure of the slow Asp10Ala mutant of nucleoside hydrolase with the substrate inosine bound in the active site displays a face-to-face aromatic stacking interaction between Trp260 and the purine base of the substrate, as well as a peculiar C4'-endo ribose pucker that allows the 5'-OH group to accept an intramolecular hydrogen bond from the C8 of the purine. The first interaction (aromatic stacking) has been shown to raise the pKa of the leaving purine. Here, we present a DFT study showing that the 5'-OH group of ribose fulfills a similar role, rather than stabilizing the oxocarbenium-like transition state.

  16. Catalytic Mechanism of a Novel Glycoside Hydrolase Family 16 “Elongating” β-Transglycosylase*

    PubMed Central

    Qin, Zhen; Yang, Shaoqing; Zhao, Liming; You, Xin; Yan, Qiaojuan; Jiang, Zhengqiang

    2017-01-01

    Carbohydrates are complex macromolecules in biological metabolism. Enzymatic synthesis of carbohydrates is recognized as a powerful tool to overcome the problems associated with large scale synthesis of carbohydrates. Novel enzymes with significant transglycosylation ability are still in great demand in glycobiology studies. Here we report a novel glycoside hydrolase family 16 “elongating” β-transglycosylase from Paecilomyces thermophila (PtBgt16A), which efficiently catalyzes the synthesis of higher polymeric oligosaccharides using β-1,3/1,4-oligosaccharides as donor/acceptor substrates. Further structural information reveals that PtBgt16A has a binding pocket around the −1 subsite. The catalytic mechanism of PtBgt16A is partly similar to an exo-glycoside hydrolase, which cleaves the substrate from the non-reducing end one by one. However, PtBgt16A releases the reducing end product and uses the remainder glucosyl as a transglycosylation donor. This catalytic mechanism has similarity with the catalytic mode of amylosucrase, which catalyzes the transglycosylation products gradually extend by one glucose unit. PtBgt16A thus has the potential to be a tool enzyme for the enzymatic synthesis of new β-oligosaccharides and glycoconjugates. PMID:27956553

  17. Signature Motifs Identify an Acinetobacter Cif Virulence Factor with Epoxide Hydrolase Activity*

    PubMed Central

    Bahl, Christopher D.; Hvorecny, Kelli L.; Bridges, Andrew A.; Ballok, Alicia E.; Bomberger, Jennifer M.; Cady, Kyle C.; O'Toole, George A.; Madden, Dean R.

    2014-01-01

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii (“aCif”). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog (“aCifR”) and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  18. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    PubMed

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P < 0.05), while the growth rates on the different media identified CMM 2105, CMM 1091, and PEL as the fastest-growing isolates. The lipase activity of four isolates grown on olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  19. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E., E-mail: see3@cornell.edu

    2011-08-01

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined.more » KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.« less

  20. Molecular basis of prodrug activation by human valacyclovirase, an alpha-amino acid ester hydrolase.

    PubMed

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L

    2008-04-04

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of alpha-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific alpha-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  1. Exploring the origins of selectivity in soluble epoxide hydrolase from Bacillus megaterium.

    PubMed

    Serrano-Hervás, Eila; Garcia-Borràs, Marc; Osuna, Sílvia

    2017-10-25

    Epoxide hydrolase (EH) enzymes catalyze the hydration of racemic epoxides to yield their corresponding vicinal diols. These enzymes present different enantio- and regioselectivity depending upon either the substrate structure or the substitution pattern of the epoxide ring. In this study, we computationally investigate the Bacillus megaterium epoxide hydrolase (BmEH)-mediated hydrolysis of racemic styrene oxide (rac-SO) and its para-nitro styrene oxide (rac-p-NSO) derivative using density functional theory (DFT) and an active site cluster model consisting of 195 and 197 atoms, respectively. Full reaction mechanisms for epoxide ring opening were evaluated considering the attack at both oxirane carbons and considering two possible orientations of the substrate at the BmEH active site. Our results indicate that for both SO and p-NSO substrates the BmEH enantio- and regioselectivity is opposite to the inherent (R)-BmEH selectivity, the attack at the benzylic position (C1) of the (S)-enantiomer being the most favoured chemical outcome.

  2. Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases.

    PubMed

    Higgins, Melanie A; Whitworth, Garrett E; El Warry, Nahida; Randriantsoa, Mialy; Samain, Eric; Burke, Robert D; Vocadlo, David J; Boraston, Alisdair B

    2009-09-18

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-beta-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-beta-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  3. Discovery of potential pancreatic cholesterol esterase inhibitors using pharmacophore modelling, virtual screening, and optimization studies.

    PubMed

    John, Shalini; Thangapandian, Sundarapandian; Sakkiah, Sugunadevi; Lee, Keun Woo

    2011-08-01

    Pancreatic cholesterol esterase (CEase) is a serine hydrolase involved in the hydrolysis of variety of lipids and transport of free cholesterol. In this study, pharmacophore hypotheses based on known inhibitors were generated using common feature pharmacophore generation protocol available in Discovery Studio program. The best pharmacophore model containing two hydrogen bond acceptor and three hydrophobic features was selected and validated. It was further used in screening three diverse chemical databases. Hit compounds were subjected to drug-likeness and molecular docking studies. Four hits, namely SEW00846, NCI0040784, GK03167, and CD10645, were selected based on the GOLD fitness score and interaction with active site amino acids. All hit compounds were further optimized to improve their binding in the active site. The optimized compounds were found to have improved binding at the active site. Strongly binding optimized hits at the active site can act as virtual leads in potent CEase inhibitor designing.

  4. In vivo inhibition of acylpeptide hydrolase by carbapenem antibiotics causes the decrease of plasma concentration of valproic acid in dogs.

    PubMed

    Suzuki, Eiko; Nakai, Daisuke; Ikenaga, Hidenori; Fusegawa, Keiichi; Goda, Ryoya; Kobayashi, Nobuhiro; Kuga, Hiroshi; Izumi, Takashi

    2016-01-01

    1. Our previous in vitro studies suggest that inhibition of the acylpeptide hydrolase (APEH) activity as valproic acid glucuronide (VPA-G) hydrolase by carbapenems in human liver cytosol is a key process for clinical drug-drug interaction (DDI) of valproic acid (VPA) with carbapenems. Here, we investigated whether in vivo DDI of VPA with meropenem (MEPM) was caused via inhibition of APEH in dogs. 2. More rapid decrease of plasma VPA levels and increased urinary excretion of VPA-G were observed after co-administration with MEPM compared with those after without co-administration, whereas the plasma level and bile excretion of VPA-G showed no change. 3. Dog VPA-G hydrolase activity, inhibited by carbapenems, was mainly located in cytosol from both the liver and kidney. APEH-immunodepleted cytosols lacked VPA-G hydrolase activity. Hepatic and renal APEH activity was negligible even at 24 h after dosing of MEPM to a dog. 4. In conclusion, DDI of VPA with carbapenems in dogs is caused by long-lasting inhibition of APEH-mediated VPA-G hydrolysis by carbapenems, which could explain the delayed recovery of plasma VPA levels to the therapeutic window even after discontinuation of carbapenems in humans.

  5. Assembly of the active center of organophosphorus hydrolase in metal-organic frameworks via rational combination of functional ligands.

    PubMed

    Xia, Mengfan; Zhuo, Caixia; Ma, Xuejuan; Zhang, Xiaohong; Sun, Huaming; Zhai, Quanguo; Zhang, Yaodong

    2017-10-12

    Different from popular mimics of bimetallic nuclear centers bridged by a hydroxide, a total coordination sphere of the active center of organophosphorus hydrolase was assembled in metal-organic frameworks by rational design and combination of ligands, which resulted in efficient destruction of nerve agent stimulants without a base as a co-catalyst.

  6. 3-D QSAR ANALYSIS OF INHIBITION OF MURINE SOLUBLE EPOXIDE HYDROLASE (MSEH) BY BENZOYLUREAS, ARYLUREAS, AND THEIR ANALOGUES. (R825433)

    EPA Science Inventory

    Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylu...

  7. Structural analysis of a glycosides hydrolase family 42 cold-adapted ß-galactosidase from Rahnella sp. R3

    USDA-ARS?s Scientific Manuscript database

    The ß-galactosidase isolated from a psychrotrophic bacterium, Rahnella sp. R3 (R-ß-Gal), exhibits high activity at low temperature. R-ß-Gal is a member of the glycoside hydrolases family 42 (GH42), and forms a 225 kDa trimeric structure in solution. The X-ray crystal structure of R-ß-Gal was determi...

  8. Purification and characterization of a glycoside hydrolase family 43 Beta-xylosidase from Geobacillus thermoleovorans IT-08

    USDA-ARS?s Scientific Manuscript database

    The gene encoding a glycoside hydrolase family 43 enzyme termed deAX was isolated and subcloned from a culture seeded with a compost starter mixed bacterium population, expressed with a C-terminal His6-tag, and purified to apparent homogeneity. deAX was monomeric in solution, and had a broad pH maxi...

  9. Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism.

    PubMed

    Rozeboom, Henriëtte J; Yu, Shukun; Madrid, Susan; Kalk, Kor H; Zhang, Ran; Dijkstra, Bauke W

    2013-09-13

    α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B' subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp(553) and Asp(665) are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite -1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase.

  10. Crystal Structure of α-1,4-Glucan Lyase, a Unique Glycoside Hydrolase Family Member with a Novel Catalytic Mechanism

    PubMed Central

    Rozeboom, Henriëtte J.; Yu, Shukun; Madrid, Susan; Kalk, Kor H.; Zhang, Ran; Dijkstra, Bauke W.

    2013-01-01

    α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-d-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B′ subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp553 and Asp665 are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite −1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase. PMID:23902768

  11. AMPEROMETRIC THICK-FILM STRIP ELECTRODES FOR MONITORING ORGANOPHOSPHATE NERVE AGENTS BASED ON IMMOBILIZED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    EPA Science Inventory

    An amperometric biosensor based on the immobilization of organophosphorus hydrolase
    (OPH) onto screen-printed carbon electrodes is shown useful for the rapid, sensitive, and low-cost
    detection of organophosphate (OP) nerve agents. The sensor relies upon the sensitive and ra...

  12. Genetic basis for the resistance of Staphylococcus aureus to peptidoglycan hydrolase by comparative transcriptome and whole genome sequence analysis

    USDA-ARS?s Scientific Manuscript database

    Background: Lysostaphin is a glycyl-glycine bacteriocin peptidoglycan hydrolase secreted by Staphylococcus simulans for degrading the peptidoglycan moieties in Staphylococcus aureus cell walls which result in cell lysis. There are known mechanisms of resistance to lysostaphin, e.g. serine in place...

  13. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris

    SciTech Connect

    Tsai, Ying-Der; Chin, Ko-Hsin; Shr, Hui-Lin

    2006-10-01

    A CN-hydrolase superfamily protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. CN-hydrolase superfamily proteins are involved in a wide variety of non-peptide carbon–nitrogen hydrolysis reactions, producing some important natural products such as auxin, biotin, precursors of antibiotics etc. These reactions all involve attack on a cyano or carbonyl carbon by a conserved novel catalytic triad Glu-Lys-Cys through a thiol acylenzyme intermediate. However, classification into the CN-hydrolase superfamily based on sequence similarity alone is not straightforward and further structural data are necessary to improve this categorization. Here, the cloning, expression, crystallization and preliminarymore » X-ray analysis of XC1258, a CN-hydrolase superfamily protein from the plant pathogen Xanthomonas campestris (Xcc), are reported. The SeMet-substituted XC1258 crystals diffracted to a resolution of 1.73 Å. They are orthorhombic and belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 143.8, b = 154.63, c = 51.3 Å, respectively.« less

  14. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.

    PubMed

    Barth, Markus; Honak, Annett; Oeser, Thorsten; Wei, Ren; Belisário-Ferrari, Matheus R; Then, Johannes; Schmidt, Juliane; Zimmermann, Wolfgang

    2016-08-01

    TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60°C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC-cutinase produced a 2.4-fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of an Inhibitor Screening Assay for Mono-ADP-Ribosyl Hydrolyzing Macrodomains Using AlphaScreen Technology.

    PubMed

    Haikarainen, Teemu; Maksimainen, Mirko M; Obaji, Ezeogo; Lehtiö, Lari

    2018-03-01

    Protein mono-ADP-ribosylation is a posttranslational modification involved in the regulation of several cellular signaling pathways. Cellular ADP-ribosylation is regulated by ADP-ribose hydrolases via a hydrolysis of the protein-linked ADP-ribose. Most of the ADP-ribose hydrolases share a macrodomain fold. Macrodomains have been linked to several diseases, such as cancer, but their cellular roles are mostly unknown. Currently, there are no inhibitors available targeting the mono-ADP-ribose hydrolyzing macrodomains. We have developed a robust AlphaScreen assay for the screening of inhibitors against macrodomains having mono-ADP-ribose hydrolysis activity. We utilized this assay for validatory screening against human MacroD1 and identified five compounds inhibiting the macrodomain. Dose-response measurements and an orthogonal assay further validated four of these compounds as MacroD1 inhibitors. The developed assay is homogenous, easy to execute, and suitable for the screening of large compound libraries. The assay principle can also be adapted for other ADP-ribose hydrolyzing macrodomains, which can utilize a biotin-mono-ADP-ribosylated protein as a substrate.

  16. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase.

    PubMed

    Legler, Patricia M; Boisvert, Susanne M; Compton, Jaimee R; Millard, Charles B

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  17. Isolation and characterization of an extracellular glycosylated protein complex from Clostridium thermosaccharolyticum with pectin methylesterase and polygalacturonate hydrolase activity.

    PubMed Central

    Van Rijssel, M; Gerwig, G J; Hansen, T A

    1993-01-01

    An extracellular protein complex was isolated from the supernatant of a pectin-limited continuous culture of Clostridium thermosaccharolyticum Haren. The complex possessed both pectin methylesterase (EC 3.1.1.11) and exo-poly-alpha-galacturonate hydrolase (EC 3.2.1.82) activity and produced digalacturonate from the nonreducing end of the pectin chain. The protein consisted of 230- and 25-kDa subunits. The large subunit contained 10% (wt/wt) sugars (N-acetylgalactosamine and galactose). Under physiological conditions both activities acted in a coordinated manner: the ratio between methanol and digalacturonate released during degradation was constant and equal to the degree of esterification of the pectin used. Prolonged incubation of the enzyme with pectin led to a nondialyzable fraction that was enriched in neutral sugars, such as arabinose, rhamnose, and galactose; the high rhamnose/galacturonic acid ratio was indicative of hairy region-like structures. The smallest substrate utilized by the hydrolase was a tetragalacturonate. Vmax with oligogalacturonates increased with increasing chain length. The Km and Vmax for the polygalacturonate hydrolase with citrus pectate as a substrate were 0.8 g liter-1 and 180 mumol min-1 mg of protein-1, respectively. The Km and Vmax for the esterase with citrus pectin as a substrate were 1.2 g liter-1 and 440 mumol min-1 mg of protein-1, respectively. The temperature optima for the hydrolase and esterase were 70 and 60 degrees C, respectively. Both enzyme activities were stable for more than 1 h at 70 degrees C. The exo-polygalacturonate hydrolase of Clostridium thermosulfurogenes was partially purified while the methylesterase was also copurified. Images PMID:8481009

  18. A screening method for β-glucan hydrolase employing Trypan Blue-coupled β-glucan agar plate and β-glucan zymography.

    PubMed

    Park, Chang-Su; Yang, Hee-Jong; Kim, Dong-Ho; Kang, Dae-Ook; Kim, Min-Soo; Choi, Nack-Shick

    2012-06-01

    A new screening method for β-(1,3-1,6) glucan hydrolase was developed using a pure β-glucan from Aureobaisidum pullulans by zymography and an LB-agar plate. Paenibacillus sp. was screened as a producer a β-glucan hydrolase on the Trypan Blue-coupled β-glucan LB-agar plate and the activity of the enzyme was analyzed by SDS-β-glucan zymography. The β-glucan was not hydrolyzed by Bacillus spp. strains, which exhibit cellulolytic activity on CMC zymography. The gene, obtaining by shotgun cloning and encoding the β-glucan hydrolase of Paenibacillus sp. was sequenced.

  19. Enantioselective hydrolysis of racemic epichlorohydrin using an epoxide hydrolase from Novosphingobium aromaticivorans.

    PubMed

    Woo, Jung-Hee; Hwang, Young-Ok; Kang, Ji-Hyun; Lee, Hyun Sook; Kim, Sang-Jin; Kang, Sung Gyun

    2010-09-01

    Previously we reported that an epoxide hydrolase (EHase) from Novosphingobium aromaticivorans could preferentially hydrolyze (R)-styrene oxide. In this study, we demonstrate that the purified NEH could be also effective in chiral resolution of racemic epichlorohydrin (ECH). Particularly, the purified NEH showed excellent hydrolyzing activity toward ECH to complete the reaction at a short period of incubation time. Enantiopure (S)-ECH could be obtained with a high enantiopurity of more than 99.99% enantiomeric excess (ee) and yield of 20.7% (theoretical, 50%). The chiral resolution of the purified NEH toward ECH was not susceptible to substrate inhibition by 500 mM racemic ECH. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Evolution of cariogenic character in Streptococcus mutans: horizontal transmission of glycosyl hydrolase family 70 genes.

    PubMed

    Hoshino, Tomonori; Fujiwara, Taku; Kawabata, Shigetada

    2012-01-01

    Acquisition of the ability to produce polysaccharides from sucrose, i.e. the gtf gene encoding glucosyltransferase (GTF), is the key evolutionary event enabling dental biofilm formation by streptococci. To clarify the ancestry of streptococcal GTFs, time of its occurrence, and order of specific events, we investigated the distribution of GTFs among bacteria by phylogenetic analysis of the glycosyl hydrolase family 70 enzymes. We found that streptococcal GTFs were derived from other lactic acid bacteria such as Lactobacillus and Leuconostoc, and propose the following evolutionary model: horizontal gene transfer via transposons occurred when streptococci encountered lactic acid bacteria contained in fermented food. Intra-genomic gene duplication occurred by a secondary selection pressure such as consumption of refined sugar. Our findings concerning this evolution in Streptococcus mutans provide an important background for studies of the relationship between the historical spread of dental caries and anthropological factors.

  1. [Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family].

    PubMed

    Zhang, Xiaomei; Li, Dandan; Wang, Lushan; Zhao, Yue; Chen, Guanjun

    2013-04-01

    Molecular engineering of cellulases can improve enzymatic activity and efficiency. Recently, the Carbohydrate-Active enZYmes Database (CAZy), including glycoside hydrolase (GH) families, has been established with the development of Omics and structural measurement technologies. Molecular engineering based on GH families can obviously decrease the probing space of target sequences and structures, and increase the odds of experimental success. Besides, the study of cellulase active-site architecture paves the way toward the explanation of catalytic mechanism. This review focuses on the main GH families and the latest progresses in molecular engineering of catalytic domain. Based on the combination of analysis of a large amount of data in the same GH family and their conservative active-site architecture information, rational design will be an important direction for molecular engineering and promote the rapid development of the conversion of biomass.

  2. The use of neutron scattering to determine the functional structure of glycoside hydrolase.

    PubMed

    Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko

    2016-10-01

    Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hydrolysis of Polysorbate 20 and 80 by a Range of Carboxylester Hydrolases.

    PubMed

    McShan, Andrew C; Kei, Pervina; Ji, Junyan A; Kim, Daniel C; Wang, Y John

    2016-01-01

    Degradation of the surfactant polysorbate (PS) by enzyme impurities has been previously suggested as a mechanism for the formation of visible and subvisible particles that affect product quality. Although chemical degradation pathways of PS, such as oxidation and acid/base hydrolysis, have been previously characterized, enzymatic degradation of PS remains poorly understood. In this report, enzyme-mediated hydrolysis of the major components of PS was monitored using an evaporative light scattering detection-high-performance liquid chromatography method. PS20 and PS80 tested contained 99% of laurate and 98% oleate esters, respectively, were heterogeneous with respect to head group, and contained a distribution of ester types. Carboxylester hydrolases tested included those from Pseudomonas cepacia, Thermomyces lanuginosus, Candida antarctica, rabbit liver, and pig pancreas. PS hydrolysis was monitored by observing the change in the peak area of major PS components over time and quantified using a parameter called t50, which was defined as the time required for each peak to reach 50% of its initial value. Time course experiments suggested that PS hydrolysis was dependent on the order of esters (mono-, di-, or triester), the identity of the hydrophilic head group (sorbitan or isosorbide), and the identity of the fatty acid ester tail (C12 vs C18:1). In addition, the pattern of PS hydrolysis was unique to the type of enzyme used. Importantly, we observed that no PS component was completely resistant to the carboxylester hydrolases tested here. Our results illustrate a potential fingerprint approach that could be useful in verifying enzyme-mediated PS degradation in drug substance and provide an improved understanding of the complexity of PS degradation in the presence of enzymes. Degradation of the non-ionic surfactant polysorbate (PS) has been reported to lead to the formation of visible and subvisible particles that affect product quality. Chemical degradation pathways

  4. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom.

    PubMed

    Mindrebo, Jeffrey T; Nartey, Charisse M; Seto, Yoshiya; Burkart, Michael D; Noel, Joseph P

    2016-12-01

    The alpha/beta hydrolase (ABH) superfamily is a widespread and functionally malleable protein fold recognized for its diverse biochemical activities across all three domains of life. ABH enzymes possess unexpected catalytic activity in the green plant lineage through selective alterations in active site architecture and chemistry. Furthermore, the ABH fold serves as the core structure for phytohormone and ligand receptors in the gibberellin, strigolactone, and karrikin signaling pathways in plants. Despite recent discoveries, the ABH family is sparsely characterized in plants, a sessile kingdom known to evolve complex and specialized chemical adaptations as survival responses to widely varying biotic and abiotic ecologies. This review calls attention to the ABH superfamily in the plant kingdom to highlight the functional adaptability of the ABH fold. Copyright © 2016. Published by Elsevier Ltd.

  5. An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases.

    PubMed

    Saini, Priya; Sareen, Dipti

    2017-03-01

    Epoxide hydrolases (EHs; 3.3.2.x) catalyze the enantioselective ring opening of racemic epoxides to the corresponding enantiopure vicinal diols and remaining equivalent unreacted epoxides. These epoxides and diols are used for the synthesis of chiral drug intermediates. With an upsurge in the methods for identification of novel microbial EHs, a lot of EHs have been discovered and utilized for kinetic resolution of racemic epoxides. However, there is still a constraint on the account of limited EHs being successfully applied on the preparative scale for industrial biotransformations. This limitation has to be overcome before application of identified functional EHs on large scale. Many strategies such as optimizing reaction media, immobilizing EHs and laboratory-scale directed evolution of EHs have been adopted for enhancing the industrial potential of EHs. In this review, these approaches have been highlighted which can serve as a pathway for the enrichment of already identified EHs for their application on an industrial scale in future studies.

  6. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor

    SciTech Connect

    Deo, R P.; Wang, Joseph; Block, I

    2005-02-08

    An amperometric biosensor for organophosphorus (OP) pesticides based on a carbon-nanotube (CNT) modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically-generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 {micro}M paraoxon and 0.8 {micro}M methyl parathion with sensitivities of 25more » and 6 nA/{micro}M, respectively.« less

  7. Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH.

    PubMed

    Dainese, Enrico; De Fabritiis, Gianni; Sabatucci, Annalaura; Oddi, Sergio; Angelucci, Clotilde Beatrice; Di Pancrazio, Chiara; Giorgino, Toni; Stanley, Nathaniel; Del Carlo, Michele; Cravatt, Benjamin F; Maccarrone, Mauro

    2014-02-01

    Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH. We report that the FAAH dimer is stabilized by the lipid bilayer and shows a higher membrane-binding affinity and enzymatic activity within membranes containing both cholesterol and the natural FAAH substrate AEA (anandamide). Additionally, co-localization of cholesterol, AEA and FAAH in mouse neuroblastoma cells suggests a mechanism through which cholesterol increases the substrate accessibility of FAAH.

  8. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae.

    PubMed

    Gozu, Yoshifumi; Ishizaki, Yuichi; Hosoyama, Yuhei; Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-08-01

    Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.

  9. Improvement of corn stover bioconversion efficiency by using plant glycoside hydrolase.

    PubMed

    Han, Yejun; Chen, Hongzhang

    2011-04-01

    Plant cell wall is the most abundant substrate for bioethanol production, and plants also represent a key resource for glycoside hydrolase (GH). To exploit efficient way for bioethanol production with lower cellulase loading, the potential of plant GH for lignocellulose bioconversion was evaluated. The GH activity for cell wall proteins (CWPs) was detected from fresh corn stover (FCS), and the synergism of which with Trichoderma reesei cellulase was also observed. The properties for the GH of FCS make it a promising enzyme additive for lignocellulose biodegradation. To make use of the plant GH, novel technology for hydrolysis and ethanol fermentation was developed with corn stover as substrate. Taking steam-exploded corn stover as substrate for hydrolysis and ethanol fermentation, compared with T. reesei cellulase loaded alone, the final glucose and ethanol accumulation increased by 60% and 63% respectively with GH of FCS as an addition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Purification and Characterization of Carbaryl Hydrolase from Blastobacter sp. Strain M501

    PubMed Central

    Hayatsu, Masahito; Nagata, Tadahiro

    1993-01-01

    A bacterium capable of hydrolyzing carbaryl (1-naphthyl-N-methylcarbamate) was isolated from a soil enrichment. This bacterium was characterized taxonomically as a Blastobacter sp. and designated strain M501. A carbaryl hydrolase present in this strain was purified to homogeneity by protamine sulfate treatment, ammonium sulfate precipitation, and hydrophobic, anion-exchange, gel filtration, and hydroxylapatite chromatographies. The native enzyme had a molecular mass of 166,000 Da and was composed of two subunits with molecular masses of 84,000 Da. The optimum pH and temperature of the enzyme activity were 9.0 and 45°C, respectively. The enzyme was not stable at temperatures above 40°C. The purified enzyme hydrolyzed seven N-methylcarbamate insecticides and also exhibited activity against 1-naphthyl acetate and 4-nitrophenyl acetate. Images PMID:16348989

  11. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  12. Region-specific expression of multiple lactase-phlorizin hydrolase genes in intestine of rabbit.

    PubMed

    Villa, M; Brunschwiler, D; Gächter, T; Boll, W; Semenza, G; Mantei, N

    1993-12-20

    We have identified a total of 4 sequences coding for lactase-phlorizin hydrolase (LPH) in the rabbit. Individual rabbits each yielded three different LPH cDNA sequences, or three chromosomal segments containing exon 1 of the LPH gene, representing either three genes or allelic variants of two genes. The three sequences were found in differing proportions in intestinal mRNA depending on the position along the small intestine from which the RNA was isolated. If all these mRNAs are translated, posttranslational mechanisms previously implicated in the regulation of LPH in the rabbit will be acting on different enzyme species in different parts of the intestine. However, we find no evidence for more than one LPH gene in the rat, and have previously shown that humans have only one LPH gene.

  13. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2011-07-19

    The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight intomore » the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.« less

  14. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

    PubMed Central

    Díez-Municio, Marina; Herrero, Miguel; Olano, Agustín; Moreno, F Javier

    2014-01-01

    Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-α-glucosyl-lactose are also described and commented. PMID:24690139

  15. Development of a versatile organophosphorous-hydrolase-based assay for organophosphate pesticides

    NASA Astrophysics Data System (ADS)

    Rogers, Kim R.; Wang, Yi; Mulchandani, Ashok; Mulchandani, P.; Chen, Wilfred

    1999-02-01

    We report a rapid and versatile organophosphorus hydrolase (OPH)-based method for measurement of organophosphate pesticides. This assay is based on a substrate-dependant change in pH near the active site of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC) which is covalently immobilized to the enzyme. This method employs FITC-labeled enzyme adsorbed to polymethylmethacrylate beads. Analytes were measured using a microbead fluorescence analyzer. The dynamic concentration range for the assay extends from 25 (mu) M to 400 (mu) M for paraoxon with a detection limit of 8 (mu) M. This assay compared favorably to an HPLC method for monitoring the concentration of coumaphos in bioremediation filtrate samples.

  16. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure

    DOE PAGES

    Brunecky, Roman; Alahuhta, Markus; Sammond, Deanne W.; ...

    2017-11-30

    Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex withmore » cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.« less

  17. Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen.

    PubMed

    Cipriano, Mariateresa; Björklund, Emmelie; Wilson, Alan A; Congiu, Cenzo; Onnis, Valentina; Fowler, Christopher J

    2013-11-15

    Inhibitors of the metabolism of the endogenous cannabinoid ligand anandamide by fatty acid amide hydrolase (FAAH) reduce the gastric damage produced by non-steroidal anti-inflammatory agents and synergise with them in experimental pain models. This motivates the design of compounds with joint FAAH/cyclooxygenase (COX) inhibitory activity. Here we present data on the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen (Flu-AM1 and Nap-AM1, respectively) with respect to their properties towards these two enzymes. Flu-AM1 and Nap-AM1 inhibited FAAH-catalysed hydrolysis of [(3)H]anandamide by rat brain homogenates with IC50 values of 0.44 and 0.74 µM. The corresponding values for flurbiprofen and naproxen were 29 and >100 µM, respectively. The inhibition by Flu-AM1 was reversible, mixed-type, with K(i)slope and K(i)intercept values of 0.21 and 1.4 µM, respectively. Flurbiprofen and Flu-AM1 both inhibited COX in the same manner with the order of potencies COX-2 vs. 2-arachidonoylglycerol>COX-1 vs. arachidonic acid>COX-2 vs. arachidonic acid with flurbiprofen being approximately 2-3 fold more potent than Flu-AM1 in the assays. Nap-AM1 was a less potent inhibitor of COX. Flu-AM1 at low micromolar concentrations inhibited the FAAH-driven uptake of [(3)H]anandamide into RBL2H3 basophilic leukaemia cells in vitro, but did not penetrate the brain in vivo sufficiently to block the binding of [(18)F]DOPP to brain FAAH. It is concluded that Flu-AM1 is a dual-action inhibitor of FAAH and COX that may be useful in exploring the optimal balance of effects on these two enzyme systems in producing peripheral alleviation of pain and inflammation in experimental models. © 2013 Elsevier B.V. All rights reserved.

  18. Deletion of the murein hydrolase CbpD reduces transformation efficiency in Streptococcus thermophilus.

    PubMed

    Biørnstad, Truls Johan; Ohnstad, Hilde Solheim; Håvarstein, Leiv Sigve

    2012-04-01

    Recently it has been shown that Streptococcus thermophilus is competent for natural genetic transformation. This property is widespread among streptococci and may include all members of the genus. Upon entering the competent state, streptococci start transcribing a number of competence-specific genes whose products are required for binding, uptake and processing of transforming DNA. In addition to the core competence genes, competent streptococci express a number of accessory genes that are dispensable for transformation in the laboratory, but presumably play an important role under natural conditions. In Streptococcus pneumoniae, one of these accessory genes encodes a competence-specific murein hydrolase termed CbpD. Experimental evidence indicates that pneumococcal CbpD is part of a predatory mechanism that lyses noncompetent sister cells or members of closely related species in order to release homologous DNA that can be taken up by the competent attacker cells. Competent S. thermophilus LMG18311 cells produce a CbpD-like protein, Stu0039, which might have the same or a similar function. In the present study we have characterized this protein and shown that it is a murein hydrolase with a novel type of cell surface-binding domain. Furthermore, we show that Stu0039 is rapidly inactivated by H(2)O(2) produced during aerobic growth of S. thermophilus. We propose that this inactivation mechanism has evolved for self-protection purposes to prevent extensive autolysis in a competent population. Interestingly, in contrast to pneumococcal CbpD, which does not affect the transformation properties of the producer strain, deletion of Stu0039 reduces the transformability of S. thermophilus.

  19. Aminoalcohol-Induced Activation of Organophosphorus Hydrolase (OPH) towards Diisopropylfluorophosphate (DFP)

    PubMed Central

    Li, Dandan; Zhang, Yunze; Song, Haitao; Lu, Liangqiu; Liu, Deli; Yuan, Yongze

    2017-01-01

    Aminoalcohols have been addressed as activating buffers for alkaline phosphatase. However, there is no record on the buffer activation regarding organophosphorus hydrolase (OPH). Here we reported the activating effects of aminoalcohols on OPH-catalyzed hydrolysis of diisopropylfluorophosphate (DFP), an analog molecule of G-type warfare agents. The kinetic parametors kcat, Vmax and kcat/Km in the OPH reaction were remarkably increased in the buffers (pH 8.0, 25°C) containing aminoalcohols with C2 between nitrogen (N) and oxygen (O) in their structures, including triethanolamine (TEA), diethanolamine, monoethanolamine, 1-amino-2-propanol, 2-amino-2-methyl-1-propanol, and triisopropanolamine. In contrast, much lower or no rate-enhancing effects were observed in the adding of amines, alcohols, amine/alcohol mixtures, or 3-amino-1-propanol (C3 between N and O). The 300 mM TEA further increased DFP-degrading activities of OPH mutants F132Y and L140Y, the previously reported OPH mutants with desirable activities towards DFP. However, the treatment of ethylenediaminetetraacetate (EDTA) markedly abolished the TEA-induced activation of OPH. The product fluoride effectively inhibited OPH-catalyzed hydrolysis of DFP by a linear mixed inhibition (inhibition constant Ki ~ 3.21 mM), which was partially released by TEA adding at initial or later reaction stage. The obtained results indicate the activation of OPH by aminoalcohol buffers could be attributed to the reduction of fluoride inhibition, which would be beneficial to the hydrolase-based detoxification of organophosphofluoridate. PMID:28085964

  20. Dysregulation of Soluble Epoxide Hydrolase and Lipidomic Profiles in Anorexia Nervosa

    PubMed Central

    Shih, Pei-an Betty; Yang, Jun; Morisseau, Christophe; German, J. Bruce; Van Zeeland, Ashley; Armando, Aaron M.; Quehenberger, Oswald; Bergen, Andrew W.; Magistretti, Pierre; Berrettini, Wade; Halmi, Katherine Ann; Schork, Nicholas; Hammock, Bruce D.; Kaye, Walter

    2015-01-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. AN tend to have an aversion to foods rich in fat. Because Epoxide Hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN, and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid, and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared to controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment. PMID:25824304

  1. Enantioselectivity of epoxide hydrolase catalysed oxirane ring opening: a 3D QSAR Study

    NASA Astrophysics Data System (ADS)

    Paier, Joachim; Stockner, Thomas; Steinreiber, Andreas; Faber, Kurt; Fabian, Walter M. F.

    2003-01-01

    A 3D QSAR analysis (quantitative structure activity relationships) of a set of 2,2-disubstituted epoxides, substrates for epoxide hydrolases originating from four different organisms, was conducted by CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis), with respect to the enantioselective ring opening to the corresponding vicinal diol. Structural variations of the substrates include alkyl chains of different lengths, unsaturated moieties (( E)- and ( Z)-alkenyl, alkinyl, aryl) and electronegative groups (ether oxygens, halogen atoms) at different locations within the 2-substituent group. Generally, all four organisms, namely Rhodococcus ruber NCIMB 11216, Rhodococcus ruber DSM 43338, Rhodococcus ruber DSM 44540 and Rhodococcus ruber DSM 44539, preferentially react with the ( S)-enantiomer of the epoxide. Enantioselectivities (enantiomeric ratio, ln E values) show a rather large variation, ranging from almost no (ln E<1) to nearly complete selectivity (ln E>5.3). In addition, the response of the epoxide hydrolases stemming from the four organisms towards structural modifications of the substrate is different. Models for the enantioselectivity (enantiomeric ratio, ln E values) obtained by CoMFA and CoMSIA are of different but reasonable predictive power, e.g., q2 CV=0.701 and r2=0.937 for the CoMFA model of Rhodococcus ruber DSM 43338. Enantiomeric ratios for the test molecules can be well predicted. Plots of steric and electrostatic CoMFA (CoMSIA) fields allow conclusions to be drawn for the choice of the most suitable organism for a specific type of substrate.

  2. Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification.

    PubMed

    Valadares, Fernanda; Gonçalves, Thiago A; Gonçalves, Dayelle S P O; Segato, Fernando; Romanel, Elisson; Milagres, Adriane M F; Squina, Fabio M; Ferraz, André

    2016-01-01

    Glycoside hydrolases (GHs) and accessory proteins are key components for efficient and cost-effective enzymatic hydrolysis of polysaccharides in modern, biochemically based biorefineries. Currently, commercialized GHs and accessory proteins are produced by ascomycetes. However, the role of wood decay basidiomycetes proteins in biomass saccharification has not been extensively pursued. Wood decay fungi degrade polysaccharides in highly lignified tissues in natural environments, and are a promising enzyme source for improving enzymatic cocktails that are designed for in vitro lignocellulose conversion. GHs and accessory proteins were produced by representative brown- and white-rot fungi, Laetiporus sulphureus and Pleurotus ostreatus, respectively. Concentrated protein extracts were then used to amend commercial enzymatic cocktails for saccharification of alkaline-sulfite pretreated sugarcane bagasse. The main enzymatic activities found in the wood decay fungal protein extracts were attributed to endoglucanases, xylanases and β-glucosidases. Cellobiohydrolase (CBH) activities in the L. sulphureus and P. ostreatus extracts were low and nonexistent, respectively. The initial glucan conversion rates were boosted when the wood decay fungal proteins were used to replace half of the enzymes from the commercial cocktails. L. sulphureus proteins increased the glucan conversion levels, with values above those observed for the full load of commercial enzymes. Wood decay fungal proteins also enhanced the xylan conversion efficiency due to their high xylanase activities. Proteomic studies revealed 104 and 45 different proteins in the P. ostreatus and L. sulphureus extracts, respectively. The enhancement of the saccharification of alkaline-pretreated substrates by the modified enzymatic cocktails was attributed to the following protein families: GH5- and GH45-endoglucanases, GH3-β-glucosidases, and GH10-xylanases. The extracellular proteins produced by wood decay fungi provide

  3. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa.

    PubMed

    Shih, P B; Yang, J; Morisseau, C; German, J B; Zeeland, A A Scott-Van; Armando, A M; Quehenberger, O; Bergen, A W; Magistretti, P; Berrettini, W; Halmi, K A; Schork, N; Hammock, B D; Kaye, W

    2016-04-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment.

  4. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    SciTech Connect

    Ito, Tasuku; Saikawa, Kyo; Kim, Seonah

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system ofmore » hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.« less

  5. Legionella pneumophila NudA Is a Nudix Hydrolase and Virulence Factor

    PubMed Central

    Edelstein, Paul H.; Hu, Baofeng; Shinzato, Takashi; Edelstein, Martha A. C.; Xu, Wenlian; Bessman, Maurice J.

    2005-01-01

    We studied the identity and function of the 528-bp gene immediately upstream of Legionella pneumophila F2310 ptsP (enzyme INtr). This gene, nudA, encoded for a Nudix hydrolase based on the inferred protein sequence. NudA had hydrolytic activity typical of other Nudix hydrolases, such as Escherichia coli YgdP, in that ApnA’s, in particular diadenosine pentaphosphate (Ap5A), were the preferred substrates. NudA hydrolyzed Ap5A to ATP plus ADP. Both ptsP and nudA were cotranscribed. Bacterial two-hybrid analysis showed no PtsP-NudA interactions. Gene nudA was present in 19 of 20 different L. pneumophila strains tested and in 5 of 10 different Legionella spp. other than L. pneumophila. An in-frame nudA mutation was made in L. pneumophila F2310 to determine the phenotype. The nudA mutant was an auxotroph that grew slowly in liquid and on solid media and had a smaller colony size than its parent. In addition, the mutant was more salt resistant than its parent and grew very poorly at 25°C; all of these characteristics, as well as auxotrophy and slow-growth rate, were reversed by transcomplementation with nudA. The nudA mutant was outcompeted by about fourfold by the parent in competition studies in macrophages; transcomplementation almost completely restored this defect. Competition studies in guinea pigs with L. pneumophila pneumonia showed that the nudA mutant was outcompeted by its parent in both lung and spleen. NudA is of major importance for resisting stress in L. pneumophila and is a virulence factor. PMID:16177332

  6. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.

    PubMed

    Janeček, Štefan; Svensson, Birte; MacGregor, E Ann

    2014-04-01

    α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.

  7. Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution.

    PubMed

    Schmelcher, Mathias; Waldherr, Florian; Loessner, Martin J

    2012-01-01

    The ability of the bacteriophage-encoded peptidoglycan hydrolases (endolysins) to destroy Gram-positive bacteria from without makes these enzymes promising antimicrobials. Recombinant endolysins from Listeria monocytogenes phages have been shown to rapidly lyse and kill the pathogen in all environments. To determine optimum conditions regarding application of recombinant Listeria phage endolysins in food or production equipments, properties of different Listeria endolysins were studied. Optimum NaCl concentration for the amidase HPL511 was 200 nM and 300 mM for the peptidases HPL118, HPL500, and HPLP35. Unlike most other peptidoglycan hydrolases, all four enzymes exhibited highest activity at elevated pH values at around pH 8-9. Lytic activity was abolished by EDTA and could be restored by supplementation with various divalent metal cations, indicating their role in catalytic function. While substitution of the native Zn(2+) by Ca(2+) or Mn(2+) was most effective in case of HPL118, HPL500, and HPLP35, supplementation with Co(2+) and Mn(2+) resulted in an approximately 5-fold increase in HPL511 activity. Interestingly, the glutamate peptidases feature a conserved SxHxxGxAxD zinc-binding motif, which is not present in the amidases, although they also require centrally located divalent metals for activity. The endolysins HPL118, HPL511, and HPLP35 revealed a surprisingly high thermostability, with up to 35% activity remaining after 30 min incubation at 90°C. The available data suggest that denaturation at elevated temperatures is reversible and may be followed by rapid refolding into a functional state.

  8. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling

    SciTech Connect

    Walker, Johnnie A.; Pattathil, Sivakumar; Bergeman, Lai F.

    2017-02-02

    Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss ofmore » specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.« less

  9. Neutrino mixing: A4 variations

    NASA Astrophysics Data System (ADS)

    Ma, Ernest

    2016-01-01

    In the context of the non-Abelian discrete symmetry A4, the neutrino mass matrix has been studied extensively. A brief update is presented to focus on the conceptual shift from tribimaximal mixing (θ13 = 0, θ23 = π / 4, tan2 ⁡θ12 = 1 / 2) to cobimaximal mixing (θ13 ≠ 0, θ23 = π / 4, δCP = ± π / 2) which agrees well with present data. Three specific realistic examples are proposed, two with three and the third with just two parameters.

  10. Long-term reduction of cocaine self-administration in rats treated with adenoviral vector-delivered cocaine hydrolase: evidence for enzymatic activity.

    PubMed

    Zlebnik, Natalie E; Brimijoin, Stephen; Gao, Yang; Saykao, Amy T; Parks, Robin J; Carroll, Marilyn E

    2014-05-01

    A new pharmacokinetic approach treating cocaine addiction involves rapidly metabolizing cocaine before it reaches brain reward centers using mutated human butyrylcholinesterase (BChE) or cocaine hydrolase (CocH). Recent work has shown that helper-dependent adenoviral (hdAD) vector-mediated plasma CocH reduced the locomotor-activating effects of cocaine and prevented reinstatement of cocaine-seeking behavior up to 6 months in rats. The present study investigated whether hdAD-CocH could decrease ongoing intravenous cocaine (0.4 mg/kg) self-administration. The hdAD-CocH vector was injected into self-administering rats, and after accumulation of plasma CocH, there was a dramatic reduction in cocaine infusions earned under a fixed ratio 1 schedule of reinforcement that lasted for the length of the study (>2 months). Pretreatment with the selective BChE and CocH inhibitor iso-OMPA (1.5 mg/kg) restored cocaine intake; therefore, the decline in self-administration was likely due to rapid CocH-mediated cocaine metabolism. Direct measurements of cocaine levels in plasma and brain samples taken after the conclusion of behavioral studies provided strong support for this conclusion. Further, rats injected with hdAD-CocH did not experience a deficit in operant responding for drug reinforcement and self-administered methamphetamine (0.05 mg/kg) at control levels. Overall, these outcomes suggest that viral gene transfer can yield plasma CocH levels that effectively diminish long-term cocaine intake and may have potential treatment implications for cocaine-dependent individuals seeking to become and remain abstinent.

  11. Interference with acute nausea and anticipatory nausea in rats by fatty acid amide hydrolase (FAAH) inhibition through a PPARα and CB1 receptor mechanism, respectively: a double dissociation.

    PubMed

    Rock, Erin M; Limebeer, Cheryl L; Ward, Jordan M; Cohen, Arianne; Grove, Katherine; Niphakis, Micah J; Cravatt, Benjamin F; Parker, Linda A

    2015-10-01

    Fatty acid amide hydrolase (FAAH) inhibition elevates anandamide (AEA), which acts on cannabinoid (CB1 and CB2) receptors, as well as N-palmitoylethanolamide (PEA) and N-oleoylethanolamine (OEA), which act on peroxisome proliferator-activated receptor alpha (PPARα). Here, we determine the mechanism of action of FAAH inhibition on acute and anticipatory nausea (AN). We compared the effectiveness and mechanism of action of two FAAH inhibitors, URB597 and PF-3845, to reduce acute nausea and AN in rodent models of conditioned gaping. For assessment of acute nausea, rats were pretreated with vehicle (VEH), URB597 (0.3 and 10 mg/kg, experiment 1a) or PF-3845 (10 mg/kg, experiment 1b) 120 min prior to a saccharin-lithium chloride (LiCl) pairing. To assess the CB1 receptor or PPARα mediation of the effect of PF-3845 on acute nausea, rats were also pretreated with rimonabant or MK886, respectively. For assessment of AN, following four pairings of a novel context with LiCl, rats received a pretreatment of VEH, URB597 (0.3 mg/kg, experiment 2a), or PF-3845 (10, 20 mg/kg, experiment 2b) 120 min prior to placement in the AN context. To assess the CB1 receptor or PPARα mediation of the effect, rats were also pretreated with rimonabant or MK886, respectively. PF-3845 (10 mg/kg, but not URB597 0.3 or 10 mg/kg) suppressed acute nausea via PPARα, but not CB1 receptors. URB597 (0.3 and 10 mg/kg) or PF-3845 (10 and 20 mg/kg) reduced AN via CB1 receptors, but not PPARα. FAAH inhibition reduces acute nausea and AN through PPARα and CB1 receptor mediated effects, respectively.

  12. Interaction of hepatic microsomal epoxide hydrolase derived from a recombinant baculovirus expression system with an azarene oxide and an aziridine substrate analogue.

    PubMed

    Lacourciere, G M; Vakharia, V N; Tan, C P; Morris, D I; Edwards, G H; Moos, M; Armstrong, R N

    1993-03-16

    A recombinant baculovirus (vEHX) encoding rat hepatic microsomal epoxide hydrolase has been constructed. Infection of Spodoptera frugiperda (Sf9) cells with the recombinant virus results in the expression of the enzyme at a level estimated to be between 5% and 10% of the cellular protein. The enzyme, which can be purified in 15% yield by a simple three-step procedure involving detergent extraction, DEAE-cellulose chromatography, and removal of the detergent on hydroxylapatite, has physical and kinetic properties very close to those of the enzyme obtained from rat liver microsomes. The interaction of the enzyme with two nitrogen-containing analogues of the substrate phenanthrene 9,10-oxide (1) was investigated in order to delineate the contributions of the oxirane group and the hydrophobic surface of the substrate to substrate recognition. The enzyme exhibits altered kinetic properties toward 1,10-phenanthroline 5,6-oxide (2) in which the biphenyl group of 1 is replaced with a bipyridyl group, suggesting that hydrophobic interaction between the complementary surfaces of the substrate and active site has an influence on catalysis. The conjugate acid of the aziridine analogue of 1, phenanthrene 9,10-imine (3), in which the oxirane oxygen is replaced with NH, has a pKa of 6.1, which allows the characterization of both the neutral and protonated aziridine (3H+) as substrate analogues for the enzyme. The pH dependence of the solvolysis reveals that 3H+ rearranges to a 65/35 mixture of 9-aminophenanthrene and 9-amino-10-hydroxy-9,10-dihydrophenanthrene 10(3)-fold faster than does 3. The neutral aziridine is a competitive inhibitor (Ki = 26 microM) of the enzyme at pH 8.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cyanuric Acid Hydrolase from Azorhizobium caulinodans ORS 571: Crystal Structure and Insights into a New Class of Ser-Lys Dyad Proteins

    PubMed Central

    Cho, Seunghee; Shi, Ke; Seffernick, Jennifer L.; Dodge, Anthony G.; Wackett, Lawrence P.; Aihara, Hideki

    2014-01-01

    Cyanuric acid hydrolase (CAH) catalyzes the hydrolytic ring-opening of cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine), an intermediate in s-triazine bacterial degradation and a by-product from disinfection with trichloroisocyanuric acid. In the present study, an X-ray crystal structure of the CAH-barbituric acid inhibitor complex from Azorhizobium caulinodans ORS 571 has been determined at 2.7 Å resolution. The CAH protein fold consists of three structurally homologous domains forming a β-barrel-like structure with external α-helices that result in a three-fold symmetry, a dominant feature of the structure and active site that mirrors the three-fold symmetrical shape of the substrate cyanuric acid. The active site structure of CAH is similar to that of the recently determined AtzD with three pairs of active site Ser-Lys dyads. In order to determine the role of each Ser-Lys dyad in catalysis, a mutational study using a highly sensitive, enzyme-coupled assay was conducted. The 109-fold loss of activity by the S226A mutant was at least ten times lower than that of the S79A and S333A mutants. In addition, bioinformatics analysis revealed the Ser226/Lys156 dyad as the only absolutely conserved dyad in the CAH/barbiturase family. These data suggest that Lys156 activates the Ser226 nucleophile which can then attack the substrate carbonyl. Our combination of structural, mutational, and bioinformatics analyses differentiates this study and provides experimental data for mechanistic insights into this unique protein family. PMID:24915109

  14. Cyanuric acid hydrolase from Azorhizobium caulinodans ORS 571: crystal structure and insights into a new class of Ser-Lys dyad proteins.

    PubMed

    Cho, Seunghee; Shi, Ke; Seffernick, Jennifer L; Dodge, Anthony G; Wackett, Lawrence P; Aihara, Hideki

    2014-01-01

    Cyanuric acid hydrolase (CAH) catalyzes the hydrolytic ring-opening of cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine), an intermediate in s-triazine bacterial degradation and a by-product from disinfection with trichloroisocyanuric acid. In the present study, an X-ray crystal structure of the CAH-barbituric acid inhibitor complex from Azorhizobium caulinodans ORS 571 has been determined at 2.7 Å resolution. The CAH protein fold consists of three structurally homologous domains forming a β-barrel-like structure with external α-helices that result in a three-fold symmetry, a dominant feature of the structure and active site that mirrors the three-fold symmetrical shape of the substrate cyanuric acid. The active site structure of CAH is similar to that of the recently determined AtzD with three pairs of active site Ser-Lys dyads. In order to determine the role of each Ser-Lys dyad in catalysis, a mutational study using a highly sensitive, enzyme-coupled assay was conducted. The 10⁹-fold loss of activity by the S226A mutant was at least ten times lower than that of the S79A and S333A mutants. In addition, bioinformatics analysis revealed the Ser226/Lys156 dyad as the only absolutely conserved dyad in the CAH/barbiturase family. These data suggest that Lys156 activates the Ser226 nucleophile which can then attack the substrate carbonyl. Our combination of structural, mutational, and bioinformatics analyses differentiates this study and provides experimental data for mechanistic insights into this unique protein family.

  15. Chronic inhibition of fatty acid amide hydrolase by URB597 produces differential effects on cardiac performance in normotensive and hypertensive rats.

    PubMed

    Pędzińska-Betiuk, Anna; Weresa, Jolanta; Toczek, Marek; Baranowska-Kuczko, Marta; Kasacka, Irena; Harasim-Symbor, Ewa; Malinowska, Barbara

    2017-07-01

    Fatty acid amide hydrolase (FAAH) inhibitors are postulated to possess anti-hypertensive potential, because their acute injection decreases BP in spontaneously hypertensive rats (SHR), partly through normalization of cardiac contractile function. Here, we examined whether the potential hypotensive effect of chronic FAAH inhibition by URB597 in hypertensive rats correlated with changes in cardiac performance. Experiments were performed using perfused hearts and left atria isolated from 8- to 10-week-old SHR, age-matched deoxycorticosterone acetate (DOCA)-salt rats and normotensive controls chronically treated with URB597 (1 mg·kg -1 ) or vehicle. URB597 decreased BP only in the DOCA-salt rats, along with a reduction of ventricular hypertrophy and diastolic stiffness, determined in hypertension. We also observed normalization of the negative inotropic atrial response to the cannabinoid receptor agonist CP55940. In the SHR model, URB597 normalized (atria) and enhanced (hearts) the positive ino- and chronotropic effects of the β-adrenoceptor agonist isoprenaline respectively. Ventricular CB 1 and CB 2 receptor expression was decreased only in the DOCA-salt model, whereas FAAH expression was reduced in both models. URB597 caused translocation of CB 1 receptor immunoreactivity to the intercalated discs in the hearts of SHR. URB597 increased cardiac diastolic stiffness and modified the ino- and lusitropic effects of isoprenaline in normotensive rats. Hypotensive effect of chronic FAAH inhibition depend on the model of hypertension and partly correlate with improved cardiac performance. In normotensive rats, chronic FAAH inhibition produced several side-effects. Thus, the therapeutic potential of these agents should be interpreted cautiously. © 2017 The British Pharmacological Society.

  16. Selective Inhibition of Alpha/Beta-Hydrolase Domain 6 Attenuates Neurodegeneration, Alleviates Blood Brain Barrier Breakdown, and Improves Functional Recovery in a Mouse Model of Traumatic Brain Injury

    PubMed Central

    Tchantchou, Flaubert

    2013-01-01

    Abstract 2-arachidonylglycerol (2-AG) is the most abundant endocannabinoid in the central nervous system and is elevated after brain injury. Because of its rapid hydrolysis, however, the compensatory and neuroprotective effect of 2-AG is short-lived. Although inhibition of monoacylglycerol lipase, a principal enzyme for 2-AG degradation, causes a robust increase of brain levels of 2-AG, it also leads to cannabinoid receptor desensitization and behavioral tolerance. Alpha/beta hydrolase domain 6 (ABHD6) is a novel 2-AG hydrolytic enzyme that accounts for a small portion of 2-AG hydrolysis, but its inhibition is believed to elevate the levels of 2-AG within the therapeutic window without causing side effect. Using a mouse model of traumatic brain injury (TBI), we found that post-insult chronic treatment with a selective ABHD6 inhibitor WWL70 improved motor coordination and working memory performance. WWL70 treatment reduced lesion volume in the cortex and neurodegeneration in the dendate gyrus. It also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 in the ipsilateral cortex at 3 and 7 days post-TBI, suggesting microglia/macrophages shifted from M1 to M2 phenotypes after treatment. The blood-brain barrier dysfunction at 3 and 7 days post-TBI was dramatically reduced. Furthermore, the beneficial effects of WWL70 involved up-regul