Science.gov

Sample records for a431 cancer cells

  1. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells.

    PubMed

    Grace Nirmala, J; Evangeline Celsia, S; Swaminathan, Akila; Narendhirakannan, R T; Chatterjee, Suvro

    2017-10-05

    Vitis vinifera. L is one of the most widely consumed fruits in the world and are rich in antioxidant abundant polyphenols. The present study was carried out to assess the antiproliferative and apoptotic effects of Vitis vinifera peel and seed extracts in an in vitro model using human epidermoid carcinoma A431 cell lines. Vitis vinifera peel and seed extracts were incubated with A431 cells to evaluate the antiproliferative, apoptotic effects and the morphological apoptotic changes induced by the extracts. Mitochondrial membrane potential was also measured after incubating the cells with extracts. At the inhibitory concentration (IC50), grape seed extract (111.11 µg/mL) and grape peel extract (319.14 µg/mL) were incubated for 24 h with A431 cells. Vitis vinifera peel and seed extracts were able to impart cytotoxic effects, induced apoptosis and apoptotic morphological changes in A431 cells significantly (p < 0.01) and this effect is associated with the interference with mitochondrial membrane potential. This reduction in mitochondrial membrane potential probably initiated the apoptotic cascade in the extracts treated cells. Vitis vinifera peel and seed phytochemicals can selectively target cancer cells and the phytochemicals that are occluded can serve as potential anticancer agents providing better efficacy in killing cancer cells.

  2. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells.

    PubMed

    Chilampalli, Chandeshwari; Guillermo, Ruth; Kaushik, Radhey S; Young, Alan; Chandrasekher, Gudiseva; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-11-01

    Honokiol is a plant lignan isolated from bark and seed cones of Magnolia officinalis. Recent studies from our laboratory indicated that honokiol pretreatment decreased ultraviolet B-induced skin cancer development in SKH-1 mice. The aim of the present investigation was to study the effects of honokiol on human epidermoid squamous carcinoma A431 cells and to elucidate possible mechanisms involved in preventing skin cancer. A431 cells were pretreated with different concentrations of honokiol for a specific time period and investigated for effects on apoptosis and cell cycle analysis. Treatment with honokiol significantly decreased cell viability and cell proliferation in a concentration- and time-dependent manner. Honokiol pretreatment at 50 μmol/L concentration induced G0/G1 cell cycle arrest significantly (P < 0.05) and decreased the percentage of cells in the S and G2/M phase. Honokiol down-regulated the expression of cyclin D1, cyclin D2, Cdk2, Cdk4 and Cdk6 proteins and up-regulated the expression of Cdk's inhibitor proteins p21 and p27. Pretreatment of A431 cells with honokiol leads to induction of apoptosis and DNA fragmentation. These findings indicate that honokiol provides its effects in squamous carcinoma cells by inducing cell cycle arrest at G0/G1 phase and apoptosis.

  3. Lysosomal Signaling Enhances Mitochondria-Mediated Photodynamic Therapy in A431 Cancer Cells: Role of Iron

    PubMed Central

    Saggu, Shalini; Hung, Hsin-I; Quiogue, Geraldine; Lemasters, John J.; Nieminen, Anna-Liisa

    2015-01-01

    In photodynamic therapy (PDT), light activates a photosensitizer added to a tissue, resulting in singlet oxygen formation and cell death. The photosensitizer phthalocyanine 4 (Pc 4) localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. The aim of this study was to determine how lysosomes contribute to PDT-induced cell killing by mitochondria-targeted photosensitizers such as Pc 4. We monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes. Bafilomycin was not toxic by itself, but greatly enhanced Pc 4-PDT-induced cell killing. To investigate whether iron loading of lysosomes affects bafilomycin-induced killing, cells were incubated with ammonium ferric citrate (30 μm) for 30 h prior to PDT. Ammonium ferric citrate enhanced Pc 4 plus bafilomycin-induced cell killing without having toxicity by itself. Iron chelators (desferrioxamine and starch-desferrioxamine) and the inhibitor of the mitochondrial calcium (and ferrous iron) uniporter, Ru360, protected against Pc 4 plus bafilomycin toxicity. These results support the conclusion that chelatable iron stored in the lysosomes enhances the efficacy of bafilomycin-mediated PDT and that lysosomal disruption augments PDT with Pc 4. PMID:22220628

  4. Turmeric toxicity in A431 epidermoid cancer cells associates with autophagy degradation of anti-apoptotic and anti-autophagic p53 mutant.

    PubMed

    Thongrakard, Visa; Titone, Rossella; Follo, Carlo; Morani, Federica; Suksamrarn, Apichart; Tencomnao, Tewin; Isidoro, Ciro

    2014-12-01

    The keratinocyte-derived A431 Squamous Cell Carcinoma cells express the p53R273H mutant, which has been reported to inhibit apoptosis and autophagy. Here, we show that the crude extract of turmeric (Curcuma longa), similarly to its bioactive component Curcumin, could induce both apoptosis and autophagy in A431 cells, and these effects were concomitant with degradation of p53. Turmeric and curcumin also stimulated the activity of mTOR, which notoriously promotes cell growth and acts negatively on basal autophagy. Rapamycin-mediated inhibition of mTOR synergized with turmeric and curcumin in causing p53 degradation, increased the production of autophagosomes and exacerbated cell toxicity leading to cell necrosis. Small-interference mediated silencing of the autophagy proteins BECLIN 1 or ATG7 abrogated the induction of autophagy and largely rescued p53 stability in Turmeric-treated or Curcumin-treated cells, indicating that macroautophagy was mainly responsible for mutant p53 degradation. These data uncover a novel mechanism of turmeric and curcumin toxicity in chemoresistant cancer cells bearing mutant p53.

  5. Inhibitory effect of berberine on human skin squamous cell carcinoma A431 cells.

    PubMed

    Li, D X; Zhang, J; Zhang, Y; Zhao, P W; Yang, L M

    2015-09-08

    Berberine (BBR) is a natural alkaloid with significant anti-tumor activity against many types of cancer cells. In this study, we investigated the molecular mechanisms employed by BBR to repress the proliferation and growth of skin squamous cell carcinoma A431 cells. Berberine was reported to inhibit the proliferation of A431 cells in a dose- and time-dependent manner and was observed to induce a series of biochemical events, including the loss of mitochondrial membrane potential, release of cytochrome-c to cytosol, induction of proteins of the Bcl-2 family and caspases, and the cleavage of poly(ADP)-ribose polymerase. This suggested its ability to induce apoptosis. The results of a wound healing test revealed that berberine inhibited the migration of A431 cells. Ezrin was transfected into A431 cells by RNA interference. The level of expression of Ezrin in the transfected A431 cells was observed to decrease with berberine treatment, which suggested that berberine might inhibit the invasion of A431 cells through Ezrin. The results of this study demonstrated that berberine could potentially inhibit proliferation, induce apoptosis, and inhibit the invasion of A431 cells.

  6. Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells.

    PubMed

    Bhatia, N; Agarwal, C; Agarwal, R

    2001-01-01

    Silibinin, quercetin, and epigallocatechin 3-gallate (EGCG) have been shown to be skin cancer-preventive agents, albeit by several different mechanisms. Here, we assessed whether these agents show their cancer-preventive potential by a differential effect on mitogenic signaling molecules and cell cycle regulators. Treatment of human epidermoid carcinoma A431 cells with these agents inhibited the activation of the epidermal growth factor receptor and the downstream adapter protein Shc, but only silibinin showed a marked inhibition of mitogen-activated protein kinase-extracellular signal-regulated kinase-1 and -2 activation. In terms of cell cycle regulators, silibinin treatment showed an induction of Cip1/p21 and Kip1/p27 together with a significant decrease in cyclin-dependent kinase (CDK)-4, CDK2, and cyclin D1. Quercetin treatment, however, resulted in a moderate increase in Cip1/p21 with no change in Kip1/p27 and a decrease in CDK4 and cyclin D1. EGCG treatment also led to an induction of Cip1/p21 but no change in Kip1/27, CDK2, and cyclin D1 and a decrease in CDK4 only at low doses. Treatment of cells with these agents resulted in a strong dose- and time-dependent cell growth inhibition. A high dose of silibinin and low and high doses of quercetin and EGCG also led to cell death by apoptosis, suggesting that a lack of their inhibitory effect on mitogen-activated protein kinase-extracellular signal-regulated kinase-1 and -2 activation possibly "turns on" an apoptotic cell death response associated with their cancer-preventive and anticarcinogenic effects. Together, these results suggest that silibinin, quercetin, and EGCG exert their cancer-preventive effects by differential responses on mitogenic signaling and cell cycle regulators.

  7. Recombinant human IgG antibodies recognizing distinct extracellular domains of EGF receptor exhibit different degrees of growth inhibitory effects on human A431 cancer cells.

    PubMed

    Chang, Chialun; Takayanagi, Atsushi; Yoshida, Tetsuhiko; Shimizu, Nobuyoshi

    2013-05-01

    Recently, we isolated 4 distinct kinds of single chain antibody against human EGF receptor (EGFR) after screening the Keio phage display scFv library by using two methods of target-guided proximity labeling. In the current study, these monovalent scFv antibodies were converted to bivalent IgGs of humanized forms (hIgGs) by recombinant technology using the specially designed expression vectors followed by protein production in CHO cells. The resulting recombinant hIgGs were examined for their binding specificity using several different transformed human BJ cell lines that express deletion mutants of EGFR, each lacking one of 4 distinct extracellular domains (L1, L2, C1 and C2). Immuno-fluorescent microscopy and immuno-precipitation assay on these cells indicated that 4 distinct kinds of hIgGs bind to one of 3 different domains (L1, C1 and C2). Then, these hIgGs were further examined for biological effects on human A431 cancer cells, which overexpress EGFR. The results indicated that hIgG38 binding to L1 and hIgG45 binding to C2 substantially suppressed the EGF-induced phosphorylation of EGFR, resulting in the growth inhibition of A431 cancer cells. On the contrary, hIgG40 binding to C1 and hIgG42 binding to another site (epitope) of C2 exhibited no such inhibitory effects. Thus, the newly produced four recombinant hIgG antibodies recognize 4 different sites (epitopes) in 3 different extracellular domains of EGFR and exhibit different biological effects on cancer cells. These characteristics are somewhat different from the currently utilized therapeutic anti-EGFR antibodies. Hence, these hIgG antibodies will be invaluable as a research tool for the detailed molecular analysis of the EGFR-mediated signal transduction mechanism and more importantly a possible application as new therapeutic agents to treat certain types of cancers.

  8. Induction of apoptosis in A431 skin cancer cells by Cissus quadrangularis Linn stem extract by altering Bax-Bcl-2 ratio, release of cytochrome c from mitochondria and PARP cleavage.

    PubMed

    Bhujade, Arti; Gupta, G; Talmale, S; Das, S K; Patil, M B

    2013-02-01

    Skin is generally damaged through genetic and environmental factors such as smoking, exposure to xenobiotics, heat, hormonal changes, and ultraviolet light. These factors can cause skin diseases. Cissus quadrangularis Linn. (CQ) has been used in folk medicine for the treatment of skin diseases since ancient times. Taking in to consideration the medicinal properties exhibited by this genus, it was decided to investigate the anti-cancer activity of CQ. Extracts obtained from CQ and their phenolic contents were subjected to in vitro evaluation of anticancer activity by using A431 (skin epidermoid carcinoma, human) cell line. The A431 cells were treated with different extracts of CQ in a dose dependent manner. Out of five extracts, the acetone extract demonstrated significant anti-cancer activity in the A431 cell line. Hexane, chloroform, ethyl acetate and methanol extracts also exhibited cytotoxicity but to a comparatively lesser extent than the acetone extract. The GI(50) value of the acetone extract was found to be 8 μg mL(-1), whereas GI(50) value of purified fraction of acetone extract, termed as AFCQ (active acetone fraction of CQ) with respect to A431 cells, was found to be 4.8 μg mL(-1). Furthermore, the mechanism of anticancer activity exhibited by AFCQ was investigated by comparing its effect with the standard anticancer drug Doxorubicin (DOX) by evaluating the status of apoptotic markers after treatment of A431 cells with AFCQ and DOX. Bax-Bcl-2 ratio along with the release of cytochrome c from mitochondria to cytoplasm, which is a hallmark of apoptosis, was also evaluated. Cleavage of PARP revealed that AFCQ induces apoptosis in A431 cells with reference to DOX.

  9. Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells

    PubMed Central

    2011-01-01

    Background Ezrin is highly expressed in skin cancer and promotes tumor metastasis. Ezrin serves as a promising target for anti-metastasis therapy. The aim of this study is to determine if the flavonoid bacailein inhibits the metastasis of skin cancer cells through Ezrin. Methods Cells from a cutaneous squamous carcinoma cell line, A431, were treated with baicalein at 0-60 μM to establish the non-cytotoxic concentration (NCC) range for baicalein. Following treatment with baicalein within this range, total Ezrin protein (both phosphorylated and unphosphorylated forms) and phosphorylated-Ezrin (phos-Ezrin) were detected by western blotting, and Ezrin RNA was detected in A431 cells using reverse transcription-polymerase chain reaction (RT-PCR). Thereafter, the motility and invasiveness of A431 cells following baicalein treatment were determined using wound-healing and Boyden chamber invasion assays. Short-interfering RNA (si-RNA) specifically targeting Ezrin was transfected into A431 cells, and a si-RNA Ezrin-A431 cell line was established by G418 selection. This stable cell line was transiently transfected with Ezrin and mutant Ezrin plasmids, and its motilityand invasiveness was subsequently determined to clarify whether bacailein inhibits these processes through Ezrin. Results We determined the range of NCCs for baicalein to be 2.5-40 μM in A431 cells. Baicalein displayed a dose- and time-dependent inhibition of expressions of total Ezrin and phos-Ezrin within this range NCCs. In addition, it exerted this inhibitory effect through the reduction of Ezrin RNA transcript. Baicalein also inhibited the motility and invasiveness of A431 skin carcinoma cells within the range of NCCs, in a dose- and time-dependent manner. A431 cell motility and invasiveness were inhibited by 73% and 80% respectively when cells were treated with 20 μM baicalein. However, the motility and invasiveness of A431 cells containing the Ezrin mutant were not effectively inhibited by baicalein

  10. Pheophorbide a mediated photodynamic therapy against human epidermoid carcinoma cells (A431)

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Li, Wen-Tyng

    2011-02-01

    The objective of this study was to characterize the death mechanism of human epidermoid carcinoma cells (A431) triggered by photodynamic therapy (PDT) with pheophorbide a. First of all, significant inhibition on the survival of A431 cells (< 20 %) was observed when an irradiation dose of 5.1 J/cm2 combined with 125 ng/ml of pheophorbide a was applied. Survival rate of human keratinocyte cells was over 70 % under the same PDT parameters, suggesting that pheophorbide a killed cancer cells selectively. Mitochondria were the main target sites where pheophorbide a accumulated. Formation of reactive oxygen species (ROS) was detected after PDT. Addition of antioxidant N-Acetyl cysteine prevented ROS production and increased cell survival thereafter. The decrease in cellular ATP level was also observed at 6 hrs after PDT. Typical apoptotic cellular morphology and a collapse of mitochondrial membrane potential occurred after PDT. The loss of mitochondrial membrane potential led to the release of cytochrome c from the mitochondria to the cytosol, followed by activation of caspase-9 and caspase-3. The activation of caspase-3 resulted in poly(ADP-ribose) polymerase (PARP) cleavage in A431 cells, followed by DNA fragmentation. In conclusion, the results demonstrated that pheophorbide a possessed photodynamic action against A431 cells, mainly through apoptosis mediated by mitochondrial intrinsic pathway triggered by ROS.

  11. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    SciTech Connect

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine; Ray, Ratan Singh; Hans, Rajendra K.; Prasad, Sahdeo; Shukla, Yogeshwer

    2009-06-26

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  12. Identification of potential glycan cancer markers with sialic acid attached to sialic acid and up-regulated fucosylated galactose structures in epidermal growth factor receptor secreted from A431 cell line.

    PubMed

    Wu, Shiaw-Lin; Taylor, Allen D; Lu, Qiaozhen; Hanash, Samir M; Im, Hogune; Snyder, Michael; Hancock, William S

    2013-05-01

    We have used powerful HPLC-mass spectrometric approaches to characterize the secreted form of epidermal growth factor receptor (sEGFR). We demonstrated that the amino acid sequence lacked the cytoplasmic domain and was consistent with the primary sequence reported for EGFR purified from a human plasma pool. One of the sEGFR forms, attributed to the alternative RNA splicing, was also confirmed by transcriptional analysis (RNA sequencing). Two unusual types of glycan structures were observed in sEGFR as compared with membrane-bound EGFR from the A431 cell line. The unusual glycan structures were di-sialylated glycans (sialic acid attached to sialic acid) at Asn-151 and N-acetylhexosamine attached to a branched fucosylated galactose with N-acetylglucosamine moieties (HexNAc-(Fuc)Gal-GlcNAc) at Asn-420. These unusual glycans at specific sites were either present at a much lower level or were not observable in membrane-bound EGFR present in the A431 cell lysate. The observation of these di-sialylated glycan structures was consistent with the observed expression of the corresponding α-N-acetylneuraminide α-2,8-sialyltransferase 2 (ST8SiA2) and α-N-acetylneuraminide α-2,8-sialyltransferase 4 (ST8SiA4), by quantitative real time RT-PCR. The connectivity present at the branched fucosylated galactose was also confirmed by methylation of the glycans followed by analysis with sequential fragmentation in mass spectrometry. We hypothesize that the presence of such glycan structures could promote secretion via anionic or steric repulsion mechanisms and thus facilitate the observation of these glycan forms in the secreted fractions. We plan to use this model system to facilitate the search for novel glycan structures present at specific sites in sEGFR as well as other secreted oncoproteins such as Erbb2 as markers of disease progression in blood samples from cancer patients.

  13. GPR87 mediates lysophosphatidic acid-induced colony dispersal in A431 cells.

    PubMed

    Ochiai, Shoichi; Furuta, Daisuke; Sugita, Kazuya; Taniura, Hideo; Fujita, Norihisa

    2013-09-05

    We have previously reported that an orphan G protein-coupled receptor GPR87 was activated by lysophosphatidic acid (LPA) and that it induced an increase in the intracellular Ca(2+) levels in the CHO cells genetically engineered to express GPR87-Gα16 fusion protein. Because the Ca(2+) response was blocked by the LPA receptor antagonist Ki16425, GPR87 was suggested to be a putative LPA receptor. However, further studies are required to confirm whether GPR87 is an LPA receptor. A previous study showed that colonies of A431 cells treated with LPA showed rapid and synchronized dissociation. Because A431 cells have been shown to express GPR87, we used these cells to examine whether GPR87 acted as an LPA receptor. When A431 cells were treated with gpr87-specific siRNA, the expression of GPR87 was decreased and LPA-induced colony dispersal was significantly reduced. Treatment of the cells with lpa1 siRNA had an additive effect in decrease in the colony dispersal. Studies on the LPA-mediated signaling pathway in A431 cells indicated that transactivation of the epidermal growth factor receptor (EGFR) by LPA led to cell scattering. PD153035, an inhibitor of tyrosine-kinase of EGFR, and BB94, an inhibitor of metalloprotease which produces a ligand for EGFR, significantly prevented the LPA-induced scattering of A431 cells pretreated with lpa1 or gpr87-siRNA. These results strongly suggested that GPR87 acts as an LPA receptor and induces colony dispersal via the transactivation of EGFR in A431 cells. © 2013 Elsevier B.V. All rights reserved.

  14. Fisetin inhibits growth, induces G₂ /M arrest and apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation.

    PubMed

    Pal, Harish C; Sharma, Samriti; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2013-07-01

    Non-melanoma skin cancers (NMSCs), one of the most common neoplasms, cause serious morbidity and mortality. Therefore, identification of non-toxic phytochemicals for prevention/treatment of NMSCs is highly desirable. Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid, present in fruits and vegetables possesses anti-oxidant and antiproliferative properties. The aim of this study was to investigate the chemotherapeutic potential of fisetin in cultured human epidermoid carcinoma A431 cells. Treatment of A431 cells with fisetin (5-80 μm) resulted in a significant decrease in cell viability in a dose- and time-dependent manner. Employing clonogenic assay, we found that fisetin treatment significantly reduced colony formation in A431 cells. Fisetin treatment of A431 cells resulted in G₂ /M arrest and induction of apoptosis. Furthermore, treatment of A431 cells with fisetin resulted in (i) decreased expression of anti-apoptotic proteins (Bcl2; Bcl-xL and Mcl-1); (ii) increased expression of pro-apoptotic proteins (Bax, Bak and Bad); (iii) disruption of mitochondrial potential; (iv) release of cytochrome c and Smac/DIABLO from mitochondria; (v) activation of caspases; and (vi) cleavage of Poly(ADP-ribose) polymerase (PARP) protein. Pretreatment of A431 cells with the pan-caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced cleavage of caspases and PARP. Taken together, these data provide evidence that fisetin possesses chemotherapeutic potential against human epidermoid carcinoma A431 cells. Overall, these results suggest that fisetin could be developed as a novel therapeutic agent for the management of NMSCs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Fisetin inhibits growth, induces G2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: Role of mitochondrial membrane potential disruption and consequent caspases activation

    PubMed Central

    Pal, Harish C.; Sharma, Samriti; Elmets, Craig A.; Athar, Mohammad; Afaq, Farrukh

    2013-01-01

    Non-melanoma skin cancers (NMSCs) one of the most common neoplasms causes serious morbidity and mortality. Therefore, identification of non-toxic phytochemicals for prevention/treatment of NMSCs is highly desirable. Fisetin (3,3′,4′,7-tetrahydroxyflavone), a dietary flavonoid, present in fruits and vegetables possesses anti-oxidant and anti-proliferative properties. The aim of this study was to investigate the chemotherapeutic potential of fisetin in cultured human epidermoid carcinoma A431 cells. Treatment of A431 cells with fistein (5-80 μM) resulted in a significant decrease in cell viability in a dose- and time-dependent manner. Employing clonogenic assay, we found that fisetin treatment significantly reduced colony formation in A431 cells. Fisetin treatment of A431 cells resulted in G2/M arrest and induction of apoptosis. Furthermore, treatment of A431 cells with fisetin resulted in (i) decreased expression of anti-apoptotic proteins (Bcl2, Bcl-xL and Mcl-1), (ii) increased expression of pro-apoptotic proteins (Bax, Bak and Bad), (iii) disruption of mitochondrial potential, (iv) release of cytchrome c and Smac/DIABLO from mitochondria, (v) activation of caspases, and (vi) cleavage of PARP protein. Pretreatment of A431 cells with the pan-caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced cleavage of caspases and PARP. Taken together, these data provide evidence that fisetin possesses chemotherapeutic potential against human epidermoid carcinoma A431 cells. Overall, these results suggest that fisetin could be developed as a novel therapeutic agent for the management of NMSCs. PMID:23800058

  16. Epidermal growth factor (EGF) sensitive phosphorylation of calmodulin (CAM) in A431 cell membrane

    SciTech Connect

    Lin, P.H.; Selinfreund, R.; Wharton, W.

    1986-05-01

    A431, a transformed cell line, is known to contain a high concentration of EGF receptors (EGFR). Exogenous CAM, when combined with purified membrane from A431 is strongly phosphorylated in the presence of EGF. The EGF-dependent phosphorylation of CAM did not alter the normal profile of the A431 EGFR autophosphorylation, as demonstrated by SDS-PAGE and autoradiography. In addition to its EGF dependency, the presence of divalent cations is also critical for CAM phosphorylation. The presence of a divalent cation chelator, such as EGTA, caused a complete inhibition of CAM phosphorylation, which can be reversed with cations in the following order of effectiveness: Mg/sup + +/ > Mn/sup + +/ > Ca/sup + +/. Divalent cations also break up CAM into four co-migrating bands as indicated by Coomassie Blue stained gels and the corresponding autoradiograms. Double antibody precipitation followed by phospho-amino acid analysis revealed that the EGF-sensitive CAM phosphorylation occurs exclusively on the serine residue. Using radioimmunoassay, purified A431 membrane was shown to contain a significant amount of endogenous CAM. The implications of the EGF-sensitive CAM phosphorylation are currently under investigation.

  17. [Two types of store-operated channels in A431 cells].

    PubMed

    Gusev, K O; Zubov, A N; Kaznacheeva, E V; Mozhaeva, G N

    2004-01-01

    Activation of phospholipase C-coupled receptors leads to the release of Ca2+ from Ca2+ stores, and subsequent activation of store-operated cation (SOC) channels, promoting sustained Ca2+ influx. The most studied SOC channels are CRAC ("calcium-release activated calcium") channels exhibiting a very high selectivity for Ca2+. However, there are many SOC channels permeable for Ca2+ but having a lower selectivity. And while Ca2+ influx is important for many biological processes, little is known about the types of SOC channels and mechanisms of SOC channel activation. Previously, we described store-operated Imin channels in A431 cells. Here, by whole-cell recordings, we demonstrated that the store depletion activates two types of current in A431 cells--highly selective for divalent cations (presumably, ICRAC), and moderately selective (ISOC supported by Imin channels). These currents can be registered separately and have different developing time and amplitude. Coexisting of two different types of SOC channels in A431 cells seems to facilitate the control of intracellular Ca(2+)-dependent processes.

  18. Density-dependent induction of 92-kd type IV collagenase activity in cultures of A431 human epidermoid carcinoma cells.

    PubMed Central

    Xie, B.; Bucana, C. D.; Fidler, I. J.

    1994-01-01

    We examined the in vitro regulation of the production of two type IV collagenases, MMP-2 and MMP-9, by A431 human epidermoid carcinoma cells. The A431 cells were cultured under sparse or confluent conditions. The addition of transforming growth factor-beta (TGF-beta) or phorbolester-TPA to sparse cultures induced low levels of MMP-9 secretion, whereas in confluent cultures only TGF-beta produced this effect. Neither treatment altered the level of constitutive secretion of MMP-2. Treatment of sparse, actively growing cultures but not confluent stationary cultures with both TGF-beta and TPA produced synergistic induction of MMP-9 but did not affect MMP-2. A431 cells were grown as discrete large monolayer colonies. Radiolabeling with [3H]leucine or [3H]thymidine followed by autoradiography revealed that all the A431 cells in the colonies were metabolically active and only those on the periphery were dividing. Only these dividing A431 cells stained positive by anti-MMP-9 antibodies. Our results demonstrate that the synergistic induction of MMP-9 secretion in A431 cells occurs subsequent to stimulation by external signals in only noncontact-inhibited dividing tumor cells. These regulatory mechanisms may account for the in vivo finding that many proteinases are localized at the invasion front of a neoplasm where tumor cells are dividing and accessible to various environmental signals. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8178929

  19. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor

    PubMed Central

    Huang, Y -T; Hwang, J -J; Lee, P -P; Ke, F -C; Huang, J -H; Huang, C -J; Kandaswami, C; Middleton, E; Lee, M -T

    1999-01-01

    Flavonoids display a wide range of pharmacological properties including anti-inflammatory. Anti-mutagenic, anti-carcinogenic and anti-cancer effects. Here, we evaluated the effects of eight flavonoids on the tumour cell proliferation, cellular protein phosphorylation, and matrix metalloproteinase (MMPs) secretion.Of the flavonoids examined, luteolin (Lu) and quercetin (Qu) were the two most potent agents, and significantly inhibited A431 cell proliferation with IC50 values of 19 and 21 μM, respectively.The epidermal growth factor (EGF) (10 nM) promoted growth of A431 cells (+25±4.6%) and mediated epidermal growth factor receptor (EGFR) tyrosine kinase activity and autophosphorylation of EGFR were inhibited by Lu and Qu. At concentration of 20 μM, both Lu and Qu markedly decreased the levels of phosphorylation of A431 cellular proteins, including EGFR.A431 cells treated with Lu or Qu exhibited protuberant cytoplasmic blebs and progressive shrinkage morphology. Lu and Qu also time-dependently induced the appearance of a ladder pattern of DNA fragmentation, and this effect was abolished by EGF treatment.The addition of EGF only marginally diminished the inhibitory effect of luteolin and quercetin on the growth rate of A431 cells, treatment of cellular proteins with EGF and luteolin or quercetin greatly reduced protein phosphorylation, indicating Lu and Qu may act effectively to inhibit a wide range of protein kinases, including EGFR tyrosine kinase.EGF increased the levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), while Lu and Qu appeared to suppress the secretion of these two MMPs in A431 cells.Examination of the relationship between the chemical structure and inhibitory effects of eight flavonoids reveal that the double bond between C2 and C3 in ring C and the OH groups on C3′ and C4′ in ring B are critical for the biological activities.This study demonstrates that the inhibitory effects of Lu and Qu, and the

  20. Acquired resistance to EGFR tyrosine kinase inhibitor in A431 squamous cell carcinoma xenografts is mediated by c-Kit pathway transduction.

    PubMed

    Zhang, Lixia; Yang, Xiaokun; Zhao, Bei; Cai, Zhen

    2015-04-01

    Epidermal growth factor inhibitors (EGFRIs), the first targeted cancer therapy, are currently an essential treatment for many advance-stage epithelial cancers. These agents have the superior ability to target cancers cells and better safety profile compared to conventional chemotherapies. However, all responding patients eventually developed acquired resistance to EGFRIs and the mechanisms of acquired resistance invariably develops. In the current study, we reported the tumor xenografts of the human A431 squamous cell carcinoma, after 25-week consecutive therapy with EGFR inhibitor (gefitinib) that developed resistance as a result of c-Kit overexpression. Moreover, combined therapeutic inhibition of EGFR and c-Kit may abrogate this acquired mechanism of drug resistance due to an enhanced apoptotic effect in gefitinib-resistant xenograft model. Taken together, the results suggest that at least in the A431 xenograft model displaying acquired resistance to gefitinib can emerge in vivo, at least in part, by mechanisms involving the c-Kit overexpression.

  1. Effects of epidermal growth factor on glycolysis in A431 cells.

    PubMed

    Baulida, J; Onetti, R; Bassols, A

    1992-03-31

    A431 cells were treated with epidermal growth factor (EGF) to study the mechanism by which this factor accelerates the glycolytic flux. After EGF treatment, fructose-2,6-bisphosphate (Fru-2,6-P2) levels rose up to 2-fold. This change correlated with an increase in phosphofructokinase-2 activity, which was not due to a change in the transcription or translation of the enzyme, neither in the amount of enzyme. PK-C does not appear to be involved in the signalling mechanism since EGF was equally potent in PK-C depleted cells than in control cells. The increase in Fru-2,6-P2 levels was lower and more transient in cells treated with EGF in a calcium-free medium than in the presence of the cation, and it was restored by the addition of calcium to the medium. These results suggest a possible role for calcium-mediated pathways in the control of Fru-2,6-P2 levels in A431 cells.

  2. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells

    NASA Astrophysics Data System (ADS)

    Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.

    Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.

  3. Recombinant human tumor necrosis factor alpha does not potentiate cell killing after photodynamic therapy with a silicon phthalocyanine in A431 human epidermoid carcinoma cells.

    PubMed

    Azizuddin, K; Kalka, K; Chiu, S M; Ahmad, N; Mukhtar, H; Separovic, D

    2001-02-01

    Photodynamic therapy (PDT) is a novel cancer treatment utilizing a photosensitizer, visible light and oxygen. PDT with the silicon phthalocyanine Pc 4, a new photosensitizer, is highly effective in cancer cell destruction and tumor ablation. The mechanisms underlying cancer cell killing by PDT are not fully understood. Tumor necrosis factor alpha (TNF) is a multifunctional cytokine that has been implicated in photocytotoxicity. We asked whether recombinant human TNF (rhTNF) affects Pc 4-PDT cytotoxicity in A431 human epidermoid carcinoma cells. Co-treatment of A431 cells with various doses of Pc 4-PDT and a sub-lethal rhTNF dose led to a sub-additive reduction in cell survival. In addition, in the presence of Pc 4-PDT or rhTNF, caspase-3 activity and apoptosis were induced. The combined treatment, however, did not potentiate either caspase-3 activity or apoptosis. Similar to previous findings we observed that Pc 4-PDT initiated a time-dependent extracellular TNF accumulation. The data suggest that: a) PDT and rhTNF induce cancer cell killing through different mechanisms; and b) Pc 4-PDT-induced TNF production is a stress response that may not directly affect photocytotoxicity.

  4. Formation of coated vesicles from coated pits in broken A431 cells

    PubMed Central

    1989-01-01

    Biochemical and morphological techniques were used to demonstrate the early steps in the endocytosis of transferrin in broken A431 cells. After binding 125I-transferrin, the cells were broken by scraping and then warmed. 125I-transferrin became inaccessible to exogenous anti- transferrin antibody providing a measure of the internalization process. Parallel morphological experiments using transferrin coupled to horseradish peroxidase confirmed internalization in broken cells. The process was characterized and compared with endocytosis in intact cells and showed many similar features. The system was used to show that both the appearance of new coated pits and the scission of coated pits to form coated vesicles were dependent on the addition of cytosol and ATP whereas invagination of pits was dependent on neither. PMID:2564003

  5. Inhibition of microRNA-21 upregulates the expression of programmed cell death 4 and phosphatase tensin homologue in the A431 squamous cell carcinoma cell line

    PubMed Central

    LI, XIAOHONG; HUANG, KAI; YU, JIANBIN

    2014-01-01

    microRNA-21 (miRNA/miR-21) is a well-known oncogenic miRNA that is overexpressed in various carcinomas. The tumor suppressor genes, programmed cell death 4 (PDCD4) and phosphatase tensin homologue (PTEN), which target miR-21, are underexpressed in several types of cancer. However, the expression of miR-21 and its target genes, PDCD4 and PTEN, has not yet been reported in skin squamous cell carcinoma (SCC). In the present study, anti-miR-21 was transfected into the A431 cell line, and the expression of miR-21, PDCD4 and PTEN and the level of cell apoptosis were detected by quantitative polymerase chain reaction, immunocytochemistry and western blotting, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. The expression levels of PDCD4 and PTEN in the A431 cell line transfected with anti-miR-21 were significantly increased (P<0.05) and the apoptotic ratio was significantly increased (P<0.05). The data indicate that miR-21 may play an oncogenic role in the cellular processes of SCC and represent a novel target for effective therapies. PMID:24959246

  6. Several types of sodium-conducting channel in human carcinoma A-431 cells.

    PubMed

    Negulyaev YuA; Vedernikova, E A; Mozhayeva, G N

    1994-08-24

    Patch clamp method in outside-out configuration was used to search for cation channels which possibly mediate sodium influx through plasma membrane in A-431 carcinoma cells. We found four types of nonvoltage-gated Na-conducting channel. The first of 9-10 pS conductance (145 mM Na+, 30 degrees C) seems to be Na-selective; three others were characterized with conductance values of 24, 35 and 65 pS and lower selectivity among cations. Na-selective channels (9-10 pS) were not blocked by tetrodotoxin (1 microM). External application of amiloride (0.1-2 mM) resulted in a reversible inhibition of single currents through Na-selective channels.

  7. Involvement of retinoblastoma (Rb) and E2F transcription factors during photodynamic therapy of human epidermoid carcinoma cells A431.

    PubMed

    Ahmad, N; Gupta, S; Mukhtar, H

    1999-03-11

    Photodynamic therapy (PDT), a promising new therapeutic modality for the management of a variety of solid malignancies and many non-malignant diseases, is a bimodal therapy using a porphyrin based photosensitizing chemical and visible light. The proper understanding of the mechanism of PDT-mediated cancer cell-kill may result in improving the efficacy of this treatment modality. Earlier we have shown (Proc. Natl. Acad. Sci. USA; 95: 6977-6982, 1998) that silicon phthalocyanine (Pc4)-PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21 which, by inhibiting cyclins (E and D1) and cyclin dependent kinases (cdk2 and cdk6), results in a G0/G1-phase arrest followed by apoptosis in human epidermoid carcinoma cells A431. We have also demonstrated the generation of nitric oxide during PDT-mediated apoptosis (Cancer Res.; 58: 1785-1788, 1998). Retinoblastoma (pRb) and E2F family transcription factors are important proteins, which regulate the G1-->S transition in the cell cycle. Here, we provide evidence for the involvement of pRb-E2F/DP machinery as an important contributor of PDT-mediated cell cycle arrest and apoptosis. Western blot analysis demonstrated a decrease in the hyper-phosphorylated form of pRb at 3, 6 and 12 h post-PDT with a relative increase in hypo-phosphorylated pRb. Western blot analysis also revealed that PDT-caused decrease in phosphorylation of pRb occurs at serine-780. The ELISA data demonstrated a time dependent accumulation of hypo-phosphorylated pRb by PDT. This response was accompanied with down-regulation in the protein expression of all five E2F (1-5) family transcription factors, and their heterodimeric partners DP1 and DP2. These results suggest that Pc4-PDT of A431 cells results in a down regulation of hyper-phosphorylated pRb protein with a relative increase in hypo-phosphorylated pRb that, in turn, compromises with the availability of free E2F. We suggest that these events result in a stoppage of the cell cycle

  8. S100A7 induction is repressed by YAP via the Hippo pathway in A431 cells

    PubMed Central

    Wang, Junhao; Hu, Enze; Wang, Rui; Liu, Jin; Xiao, Qianqian; Zhang, Weiqing; He, Dacheng; Xiao, Xueyuan

    2016-01-01

    YAP is an oncogenic transcriptional co-activator and is inhibited by the Hippo pathway. Recent studies have revealed that YAP is also a sensor of cell morphology and cell density and can be phosphorylated by cytoskeleton reorganization. Our previous study demonstrated that S100A7 was upregulated in several squamous cell carcinoma (SCC) specimens and was dramatically induced in SCC cells by suspension and dense culture as well as in xenografts. However, little is known about how S100A7 induction occurs in cancer cells. Here, we identify that S100A7 induction is accompanied by YAP phosphorylation in both suspended and dense A431 cells. This correlation reverses after recovery of cell attachment or relief from dense culture. Further examination finds that S100A7 induction is repressed by nuclear YAP, which is further validated by activation or inhibition of the Hippo pathway via loss- and/or gain-of- LATS1 and MST1 function. Strikingly, disruption of the F-actin promotes S100A7 expression via YAP by activation of the Hippo pathway. Furthermore, we demonstrate that repression of S100A7 by YAP required TEAD1 transcriptional factor. Taken together, our findings demonstrate for the first time that S100A7 is repressed by YAP via the Hippo pathway. PMID:27203549

  9. A431 cell variants lacking the blood group A antigen display increased high affinity epidermal growth factor-receptor number, protein-tyrosine kinase activity, and receptor turnover

    PubMed Central

    1988-01-01

    The epidermal growth factor receptor (EGF-R) of human A431 cells bears an antigenic determinant that is closely related to the human blood group A carbohydrate structure. Labeling studies with blood group A reactive anti-EGF-R monoclonal antibodies and various lectins revealed that A431 cultures are heterogeneous with respect to blood group A expression. We have isolated clonal variants of these cells that either express (A431A+ cells) or completely lack (A431A- cells) the blood group A specific N-acetyl-D-galactosamine (GalNAc) residue. We show that this difference is due to the absence of a UDP-GalNAc:Gal transferase activity in A431A- cells. Subsequently, we have compared EGF-R functioning in these cell lines. Scatchard analysis of EGF- binding shows that in A431A- cells 6.3% of the EGF-R belongs to a high affinity subclass (Kd = 0.4 nM) while in A431A+ this subclass represents only 3.2% of the total receptor pool. The elevated level of high affinity receptors in A431A- cells is accompanied by a parallel increase in receptor protein- tyrosine kinase activity. In membrane preparations of A431A- cells, receptor autophosphorylation as well as phosphorylation of a tyrosine-containing peptide substrate is 2-3-fold higher as compared with A431A+ cells. In intact A431A-cells, the difference in receptor activity is measured as a 2-3-fold elevated level of receptor phosphorylation and a 2-3-fold higher abundance of phosphotyrosine in total cellular protein in A431A- cells. In addition, [35S]methionine pulse-chase experiments showed a ligand-independent increase in turnover of EGF-R in A431A- cells: the receptor's half life in these cells is 10 h as compared with 17 h in A431A+ cells. Our results suggest a possible involvement of GalNAc residue(s) in determining EGF-R affinity, protein-tyrosine kinase activity and turnover in A431 cells. Furthermore, our results indicate that high affinity EGF-R are the biologically active species with respect to protein-tyrosine kinase

  10. Extracellular polymeric substance from Aphanizomenon flos-aquae induces apoptosis via the mitochondrial pathway in A431 human epidermoid carcinoma cells.

    PubMed

    Xue, Xing; Lv, Ying; Liu, Qing; Zhang, Xiaolan; Zhao, Youhong; Zhang, Lili; Xu, Shiyuan

    2015-09-01

    Extracellular polymeric substance (EPS) is a substance secreted during algal growth, which has been found to have numerous health-promoting effects. In the present study, A431 human epidermoid carcinoma cells were selected as target cells and cultivated in vitro as an experimental model to investigate the anti-cancer effect of extracellular polymeric substances from Aphanizomenon flos-aquae (EPS-A) and the possible underlying mechanism. Apoptosis- and cell cycle-associated molecules as well as the mitochondrial membrane potential of the cells were quantified using flow cytometry (FCM). FCM showed that EPS-A induced cell cycle arrest, which led to a loss of mitochondrial function of the A431 cells and an increase in necrotic and late apoptotic cells. In order to evaluate the apoptosis and cell viability, acridine orange/ethidium bromide staining was used, morphological changes were observed using fluorescence microscopy and typical apoptotic characteristics were observed. Following treatment with a high dose of EPS-A, transmission electron microscopy showed nuclear fragmentation, chromosome condensation, cell shrinkage and expansion of the endoplasmic reticulum; apoptotic bodies were also observed. In conclusion, EPS-A caused cell cycle arrest, stimulated cell apoptosis via the mitochondrial pathway and exhibited important anti-cancer activity.

  11. Extracellular polymeric substance from Aphanizomenon flos-aquae induces apoptosis via the mitochondrial pathway in A431 human epidermoid carcinoma cells

    PubMed Central

    XUE, XING; LV, YING; LIU, QING; ZHANG, XIAOLAN; ZHAO, YOUHONG; ZHANG, LILI; XU, SHIYUAN

    2015-01-01

    Extracellular polymeric substance (EPS) is a substance secreted during algal growth, which has been found to have numerous health-promoting effects. In the present study, A431 human epidermoid carcinoma cells were selected as target cells and cultivated in vitro as an experimental model to investigate the anti-cancer effect of extracellular polymeric substances from Aphanizomenon flos-aquae (EPS-A) and the possible underlying mechanism. Apoptosis- and cell cycle-associated molecules as well as the mitochondrial membrane potential of the cells were quantified using flow cytometry (FCM). FCM showed that EPS-A induced cell cycle arrest, which led to a loss of mitochondrial function of the A431 cells and an increase in necrotic and late apoptotic cells. In order to evaluate the apoptosis and cell viability, acridine orange/ethidium bromide staining was used, morphological changes were observed using fluorescence microscopy and typical apoptotic characteristics were observed. Following treatment with a high dose of EPS-A, transmission electron microscopy showed nuclear fragmentation, chromosome condensation, cell shrinkage and expansion of the endoplasmic reticulum; apoptotic bodies were also observed. In conclusion, EPS-A caused cell cycle arrest, stimulated cell apoptosis via the mitochondrial pathway and exhibited important anti-cancer activity. PMID:26622416

  12. Direct visualization of the phosphorylated epidermal growth factor receptor during its internalization in A-431 cells

    PubMed Central

    1987-01-01

    Epidermal growth factor (EGF) rapidly stimulates receptor autophosphorylation in A-431 cells. After 1 min the phosphorylated receptor can be identified at the plasma membrane using an anti- phosphotyrosine antibody. With further incubation at 37 degrees C, approximately 50% of the phosphorylated EGF receptor was internalized (t1/2 = 5 min) and associated with the tubulovesicular system and later with multivesicular bodies, but not the nucleus. During this period, there was no change in the extent or sites of phosphorylation. At all times the phosphotyrosine remained on the cytoplasmic side of the membrane, opposite to the EGF ligand identified by anti-EGF antibody. These data indicate that (a) the tyrosine-phosphorylated EGF receptor is internalized in its activated form providing a mechanism for translocation of the receptor kinase to substrates in the cell interior; (b) the internalized receptor remains intact for at least 60 min, does not associate with the nucleus, and does not generate any tyrosine-phosphorylated fragments; and (c) tyrosine phosphorylation alone is not the signal for receptor internalization. PMID:2447100

  13. Prolonged induction of p21Cip1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition

    PubMed Central

    1995-01-01

    Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells. PMID:7559780

  14. Control of cell motility by interaction of gangliosides, tetraspanins, and epidermal growth factor receptor in A431 versus KB epidermoid tumor cells.

    PubMed

    Park, Seung-Yeol; Yoon, Seon-Joo; Freire-de-Lima, Leonardo; Kim, Jung-Hoe; Hakomori, Sen-itiroh

    2009-08-17

    Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is approximately 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside-TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and

  15. Enhanced antitumor activity in A431 cells via encapsulation of 20(R)-ginsenoside Rg3 in PLGA nanoparticles.

    PubMed

    Zhang, Shaozhi; Liu, Jiwei; Ge, Baojian; Du, Meiling; Fu, Li; Fu, Yushan; Yan, Qiu

    2017-10-01

    The objective of this study is to investigate the encapsulation of 20(R)-ginsenoside Rg3 (20(R)-Rg3) using polylactic-co-glycolic acid (PLGA) and promotion for its antitumor activity. Preparation and evaluation of the antitumor efficacy of 20(R)-Rg3-loaded PLGA nanoparticles were the first reported. The data will be helpful to apply 20(R)-Rg3 efficiently and broadly in new drug form development and clinical cancer treatment. The nanoparticles were prepared using emulsion and solvent evaporation methods. The uniform particle size and good dispersion were further confirmed by scanning electron microscopy. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was applied to detect cell proliferation after 20(R)-Rg3-loaded PLGA nanoparticles treatment. Western blotting and immunofluorescent staining were used for observation of key proteins related with proliferation and apoptosis. Cell cycle and apoptosis were analyzed by flow cytometer technology. The results showed that the size of 20(R)-Rg3-loaded PLGA was 97.5 nm in diameter, and zeta potential was -28 mV detected by Malvern particle size analyzer. The encapsulation efficiency was 97.5%, and drug loading was 70.2% measured by high-performance liquid chromatography. The in vitro study showed that the encapsulated 20(R)-Rg3 was consecutively released and the release ratio reached to the highest value (19.36%) at the time point of 96 h. The encapsulated 20(R)-Rg3 significantly inhibited the proliferation and induced apoptosis in A431 cancer cells compared with the unencapsulated 20(R)-Rg3, control and PLGA alone. 20(R)-Rg3-loaded PLGA nanoparticles was well prepared and characterized. The antitumor activity was increased after PLGA encapsulation. The data will be beneficial to the development of new dosage forms of 20(R)-Rg3 and extensive application.

  16. Fumonisin B1 does not prevent apoptosis in A431 human epidermoid carcinoma cells after photosensitization with a silicon phthalocyanine.

    PubMed

    Nagy, B; Chiu, S M; Separovic, D

    2000-09-01

    Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 (Pc 4-PDT), an apoptosis inducer, is associated with accumulation of ceramide in various cell lines. The role of ceramide in Pc 4-PDT-induced apoptosis was investigated in A431 cells. Caspase-3 (casp-3) was activated and TUNEL positive cells began to appear 30 and 60 min post-Pc 4-PDT, respectively. A rapid increase (10 min) in cellular ceramide levels was observed after Pc 4-PDT. Induced ceramide accumulation was maintained over 60 min, Acid sphingomyelinase, a ceramide-generating enzyme, was inhibited after photosensitization with Pc 4, suggesting that the enzyme was not required for stimulated ceramide accumulation. Co-treatment of A431 cells with fumonisin B1, a ceramide synthase inhibitor, and Pc 4-PDT led to a decrease in ceramide levels without any effect on induced casp-3 activity or apoptosis. In the presence of zVAD, a pan-caspase inhibitor, apoptosis was abolished, while ceramide levels remained elevated after Pc 4-PDT. Exposure of A431 cells to exogenous C6-ceramide for 22 h, led to induction of apoptosis, and the process was abrogated by zVAD. In conclusion, C6-ceramide-, like Pc 4-PDT-induced apoptosis, is zVAD-sensitive. Furthermore, Pc 4 photosensitization can lead to apoptosis without FB-sensitive elevation in ceramide levels upstream of caspases.

  17. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    PubMed

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  18. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling.

    PubMed

    Boersma, Ykelien L; Chao, Ginger; Steiner, Daniel; Wittrup, K Dane; Plückthun, Andreas

    2011-12-02

    The EGF receptor (EGFR) has been implicated in the development and progression of many tumors. Although monoclonal antibodies directed against EGFR have been approved for the treatment of cancer in combination with chemotherapy, there are limitations in their clinical efficacy, necessitating the search for robust targeting molecules that can be equipped with new effector functions or show a new mechanism of action. Designed ankyrin repeat proteins (DARPins) may provide the targeting component for such novel reagents. Previously, four DARPins were selected against EGFR with (sub)nanomolar affinity. As any targeting module should preferably be able to inhibit EGFR-mediated signaling, their effect on A431 cells overexpressing EGFR was examined: three of them were shown to inhibit proliferation by inducing G(1) arrest, as seen for the Food and Drug Administration-approved antibody cetuximab. To understand this inhibitory mechanism, we mapped the epitopes of the DARPins using yeast surface display. The epitopes for the biologically active DARPins overlapped with the EGF-binding site, whereas the fourth DARPin bound to a different domain, explaining the lack of a biological effect. To optimize the biological activity of the DARPins, we combined two DARPins binding to different epitopes with a flexible linker or with a leucine zipper, leading to a homodimer. The latter DARPin was able to reduce surface EGFR by inhibiting receptor recycling, leading to a dramatic decrease in cell viability. These results indicate that multispecific EGFR-specific DARPins are superior to cetuximab and may form the basis of new opportunities in tumor targeting and tumor therapy.

  19. Regulation of apoptosis by resveratrol through JAK/STAT and mitochondria mediated pathway in human epidermoid carcinoma A431 cells

    SciTech Connect

    Madan, Esha; Prasad, Sahdeo; Roy, Preeti; George, Jasmine; Shukla, Yogeshwer

    2008-12-26

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin present mainly in grapes, red wine and berries, is known to possess strong chemopreventive and anticancer properties. Here, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol in human epidermoid carcinoma A431 cells. Resveratrol has cytotoxic effects through inhibiting cellular proliferation of A431 cells, which leads to the induction of apoptosis, as evident by an increase in the fraction of cells in the sub-G{sub 1} phase of the cell cycle and Annexin-V binding of externalized phosphatidylserine. Results revealed that inhibition of proliferation is associated with regulation of the JAK/STAT pathway, where resveratrol prevents phosphorylation of JAK, thereby inhibiting STAT1 phosphorylation. Furthermore, resveratrol treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. Consequently, an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favor of apoptosis. These observations indicate that resveratrol treatment inhibits JAK/STAT-mediated gene transcription and induce the mitochondrial cell death pathway.

  20. Chelidonium majus L. extract induces apoptosis through caspase activity via MAPK-independent NF-κB signaling in human epidermoid carcinoma A431 cells.

    PubMed

    Park, Seung-Won; Kim, Seong Ryul; Kim, Youngchul; Lee, Jang-Hoon; Woo, Hong-Jung; Yoon, Yeo-Kwang; Kim, Young Il

    2015-01-01

    Chelidonium majus L. (C. majus L.) is known to possess certain biological properties such as anti-inflammatory, antimicrobial, antiviral and antitumor activities. We investigated the effects of C. majus L. extract on human epidermoid carcinoma A431 cells through multiple mechanisms, including induction of cell cycle arrest, activation of the caspase-dependent pathway, blocking of nuclear factor-κB (NF-κB) activation and involvement in the mitogen-activated protein kinase (MAPK) pathway. C. majus L. inhibited the proliferation of A431 cells in a dose- and time-dependent manner, increased the percentage of apoptotic cells, significantly decreased the mRNA levels of cyclin D1, Bcl-2, Mcl-1 and survivin and increased p21 and Bax expression. Exposure of A431 cells to C. majus L. extract enhanced the activities of caspase-3 and caspase-9, while co-treatment with C. majus L., the pan-caspase inhibitor Z-VAD-FMK and the caspase-3 inhibitor Z-DEVE-FMK increased the proliferation of A431 cells. C. majus L. extract not only inhibited NF-κB activation, but it also activated p38 MAPK and MEK/ERK signaling. Taken together, these results demonstrate that C. majus L. extract inhibits the proliferation of human epidermoid carcinoma A431 cells by inducing apoptosis through caspase activation and NF-κB inhibition via MAPK-independent pathway.

  1. Hydroxyl radical (·OH) played a pivotal role in oridonin-induced apoptosis and autophagy in human epidermoid carcinoma A431 cells.

    PubMed

    Yu, Yang; Fan, Si Miao; Song, Jun Ke; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2012-01-01

    Oridonin, a diterpenoid compound extracted and purified from Rabdosia rubescen, has been reported to induce tumor cell apoptosis through tyrosine kinase pathway. To further examine the mechanism of oridonin, we selected human epidermoid carcinoma A431 cell as a test object. Besides apoptosis, oridonin also induced A431 cell autophagy, and this autophagy antagonized apoptosis and played a protective role for A431 cells. Reactive oxygen species (ROS) played a pivotal role in induction of cytotoxicity. Therefore, a ROS scavenger, N-acetylcysteine (NAC) combined with oridonin was appiled. Results of morphologic observation, flow cytometric analysis and Western blot analysis showed that NAC could significantly reverse both ROS generation and down-regulation of mitochondrial membrane potential in oridonin treated cells. NAC inhibited oridonin induced apoptosis through both the intrinsic and extrinsic apoptotic pathways. NAC effectively inhibited both oridonin-induced apoptosis and autophagy by reducing intracellular oxidative stress. To further examine the mechanism of ROS, exogenous enzyme antioxidants (superoxide dismutase (SOD), catalase (CAT)) and non-enzyme antioxidants (glutathione (GSH)) were applied to detect the effect of oridonin on ROS generation. Only GSH exerted a similar role with NAC, suggesting that hydroxyl radical (·OH) played the major role in oridonin-induced cell death. Oridonin could decrease the GSH level in A431 cells in a dose-dependent manner. In addition, after treatment with ·OH donor, Fenton reagent, the changes in A431cells were similar to the results of oridonin treatment. All the results proved that ·OH played the pivotal role in oridonin induced apoptosis and autophagy in A431 cells.

  2. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    SciTech Connect

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi; Wang, Qiong; He, Hao; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-03-08

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.

  3. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis.

    PubMed

    Bhui, Kulpreet; Tyagi, Shilpa; Srivastava, Amit Kumar; Singh, Madhulika; Roy, Preeti; Singh, Richa; Shukla, Yogeshwer

    2012-03-01

    Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy.

  4. EGF raises cytosolic Ca sup 2+ in A431 and Swiss 3T3 cells by a dual mechanism

    SciTech Connect

    Pandiella, A.; Malgaroli, A.; Meldolesi, J.; Vicentini, L.M. )

    1987-05-01

    The changes in Ca{sup 2+} homeostasis and phosphoinositide hydrolysis induced by EGF were studied in human epidermoid carcinoma A431 cells both when attached to a substratum and after detachment and suspension. The cytosolic Ca{sup 2+} concentration was measured by the conventional fluorimetric technique, using the specific probe, quin2, as well as by a new microscopic technique in which single cells are investigated after loading with another probe, fura-2. EGF applied in the complete, Ca{sup 2+}-containing medium caused a rapid rise in the cytosolic {sup 45}Ca{sup 2+} concentration, that remained elevated for several minutes. In Ca{sup 2+}-free, EGTA-containing medium, part of this response persisted, as revealed by quin2 results in suspended cells and microscopic results with fura-2. These results, as well as additional microscopic fura-2 results in Swiss 3T3 fibroblasts, demonstrate that the Ca{sup 2+} signal elicited by EGF is due to two components: redistribution from an intracellular store and stimulated influx across the plasmalemma. This latter process was not detected in 3T3 cells treated with either PDGF or bombesin. It is therefore suggested that the {sup 45}Ca{sup 2+} influx effect of EGF is under the control of a separate, as yet unidentified mechanism.

  5. The Transcription Factor AP-1 Is Required for EGF-induced Activation of Rho-like GTPases, Cytoskeletal Rearrangements, Motility, and In Vitro Invasion of A431 Cells

    PubMed Central

    Malliri, Angeliki; Symons, Marc; Hennigan, Robert F.; Hurlstone, Adam F.L.; Lamb, Richard F.; Wheeler, Tricia; Ozanne, Bradford W.

    1998-01-01

    Human squamous cell carcinomas (SCC) frequently express elevated levels of epidermal growth factor receptor (EGFR). EGFR overexpression in SCC-derived cell lines correlates with their ability to invade in an in vitro invasion assay in response to EGF, whereas benign epidermal cells, which express low levels of EGFR, do not invade. EGF-induced invasion of SCC-derived A431 cells is inhibited by sustained expression of the dominant negative mutant of c-Jun, TAM67, suggesting a role for the transcription factor AP-1 (activator protein-1) in regulating invasion. Significantly, we establish that sustained TAM67 expression inhibits growth factor–induced cell motility and the reorganization of the cytoskeleton and cell-shape changes essential for this process: TAM67 expression inhibits EGF-induced membrane ruffling, lamellipodia formation, cortical actin polymerization and cell rounding. Introduction of a dominant negative mutant of Rac and of the Rho inhibitor C3 transferase into A431 cells indicates that EGF-induced membrane ruffling and lamellipodia formation are regulated by Rac, whereas EGF-induced cortical actin polymerization and cell rounding are controlled by Rho. Constitutively activated mutants of Rac or Rho introduced into A431 or A431 cells expressing TAM67 (TA cells) induce equivalent actin cytoskeletal rearrangements, suggesting that the effector pathways downstream of Rac and Rho required for these responses are unimpaired by sustained TAM67 expression. However, EGF-induced translocation of Rac to the cell membrane, which is associated with its activation, is defective in TA cells. Our data establish a novel link between AP-1 activity and EGFR activation of Rac and Rho, which in turn mediate the actin cytoskeletal rearrangements required for cell motility and invasion. PMID:9817764

  6. Heat Induces Intracellular Acidification in Human A-431 Cells: Role of Na+ -H+ Exchange and Metabolism

    DTIC Science & Technology

    1990-01-01

    measured according to methods of for comparison of groups (40). Boron (2) and Ng and Dudley (31). pHi of cells (1 × 106 Chemicals . BCECF/AM, nigericin , and...its role in regulating pH, has been partially charac- for these cells: [Ki = 137 ± 13 mMI. Nigericin (3 uM) terized 137, 38). Finally, the effect of...valinomycin cells/ml) was set by exposing the cells to nigericin (2 were purchased from Molecular Probes (Eugene, OR). mM) for 5 min in K Hanks

  7. MicroRNAs Are Part of the Regulatory Network that Controls EGF Induced Apoptosis, Including Elements of the JAK/STAT Pathway, in A431 Cells

    PubMed Central

    Alanazi, Ibrahim; Hoffmann, Peter; Adelson, David L.

    2015-01-01

    MiRNAs are known to regulate gene expression and in the context of cancer have been shown to regulate metastasis, cell proliferation and cell death. In this report we describe potential miRNA regulatory roles with respect to induction of cell death by pharmacologic dose of Epidermal Growth Factor (EGF). Our previous work suggested that multiple pathways are involved in the induction of apoptosis, including interferon induced genes, cytokines, cytoskeleton and cell adhesion and TP53 regulated genes. Using miRNA time course expression profiling of EGF treated A431 cells and coupling this to our previous gene expression and proteomic data, we have been able to implicate a number of additional miRNAs in the regulation of apoptosis. Specifically we have linked miR-134, miR-145, miR-146b-5p, miR-432 and miR-494 to the regulation of both apoptotic and anti-apoptotic genes expressed as a function of EGF treatment. Whilst additional miRNAs were differentially expressed, these had the largest number of apoptotic and anti-apoptotic targets. We found 5 miRNAs previously implicated in the regulation of apoptosis and our results indicate that an additional 20 miRNAs are likely to be involved based on their correlated expression with targets. Certain targets were linked to multiple miRNAs, including PEG10, BTG1, ID1, IL32 and NCF2. Some miRNAs that target the interferon pathway were found to be down regulated, consistent with a novel layer of regulation of interferon pathway components downstream of JAK/STAT. We have significantly expanded the repertoire of miRNAs that may regulate apoptosis in cancer cells as a result of this work. PMID:25781916

  8. Ebselen reduces the toxicity of mechlorethamine in A-431 cells via inhibition of apoptosis.

    PubMed

    Lulla, Anju; Pino, Maria A; Piętka-Ottlik, Magdalena; Młochowski, Jacek; Sparavalo, Oleksiy; Billack, Blase

    2013-06-01

    A series of test compounds were evaluated for an ability to reduce the toxicity of the nitrogen mustard mechlorethamine (HN2) in vitro. The test compounds included resveratrol, pterostilbene, vitamin C, ebselen, ebselen diselenide, and ebselen-sulfur. Among them, ebselen demonstrated the highest degree of protection against HN2 toxicity. To this end, pretreatment of the cells with ebselen offered protection against the toxicant whereas no protection was observed when cells were first incubated with HN2 and then treated with ebselen. Significant increases in caspase 3 and caspase 9 activities were observed in response to HN2, and ebselen was found to reduce these effects. Taken together, the data presented here indicate that ebselen is an effective countermeasure to nitrogen mustard in vitro, which is worthy of future investigation in vivo. © 2013 Wiley Periodicals, Inc.

  9. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential.

    PubMed

    Meeran, Syed M; Katiyar, Santosh K

    2007-05-01

    Dietary grape seed proanthocyanidins (GSPs) prevent photocarcinogenesis in mice. Here, we report that in vitro treatment of human epidermoid carcinoma A431 cells with GSPs inhibited cellular proliferation (13-89%) and induced cell death (1-48%) in a dose (5-100 mug/ml)- and time (24, 48 and 72 h)-dependent manner. GSP-induced inhibition of cell proliferation was associated with an increase in G1-phase arrest at 24 h, which was mediated through the inhibition of cyclin-dependent kinases (Cdk) Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and simultaneous increase in protein expression of cyclin-dependent kinase inhibitors (Cdki), Cip1/p21 and Kip1/p27, and enhanced binding of Cdki-Cdk. The treatment of A431 cells with GSPs (20-80 mug/ml) resulted in a dose-dependent increase in apoptotic cell death (26-58%), which was associated with an increased protein expression of proapoptotic Bax, decreased expression of antiapoptotic Bcl-2 and Bcl-xl, loss of mitochondrial membrane potential, and cleavage of caspase-9, caspase-3 and PARP. Pretreatment with the pan-caspase inhibitor (z-VAD-fmk) blocked the GSP-induced apoptosis in A431 cells suggesting that GSP-induced apoptosis is associated primarily with the caspase-3-dependent pathway. Together, our study suggests that GSPs possess chemotherapeutic potential against human epidermoid carcinoma cells in vitro, further in vivo mechanistic studies are required to verify the chemotherapeutic effect of GSPs in skin cancers.

  10. Downregulated AP-1 activity is associated with inhibition of Protein-Kinase-C-dependent CD44 and ezrin localisation and upregulation of PKC theta in A431 cells.

    PubMed

    Stapleton, Genevieve; Malliri, Angeliki; Ozanne, Bradford W

    2002-07-01

    Progression to an invasive, metastatic tumour requires the coordinated expression and function of a number of gene products, as well as their regulation in the context of invasion. The transcription factor AP-1 regulates expression of many of those genes necessary for implementation of the invasion programme. Two such gene products, CD44 and ezrin, are both upregulated in fibroblasts transformed by v-fos and are commonly implicated in cell motility and invasion. Here we report that CD44 and ezrin colocalise to membrane ruffles and microvilli of A431 cells after treatment with EGF. However, A431 cells expressing dominant-negative c-Jun (TAM67), and which as a consequence fail to invade in response to EGF, also fail to correctly localise CD44 and ezrin. CD44 and ezrin are both substrates for Protein Kinase C, and we show that their EGF-dependent colocalisation requires Protein Kinase C activity. Associated with TAM67 expression and disrupted CD44 and ezrin colocalisation is the increased expression and activation of the novel PKC theta isoform. Expression of PKC theta in A431 cells results in the inhibition of cell motility and disrupted localisation of CD44 and ezrin. We propose that AP-1 regulates the integrity of Protein Kinase C signalling and identifies PKC theta as a potential suppressor of the invasion programme.

  11. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation

    PubMed Central

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature- dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of

  12. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics.

    PubMed

    Giansanti, Piero; Preisinger, Christian; Huber, Kilian V M; Gridling, Manuela; Superti-Furga, Giulio; Bennett, Keiryn L; Heck, Albert J R

    2014-07-18

    Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry-based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer.

  13. The endocytosis of epidermal growth factor in A431 cells: A pH of microenvironment and the dynamics of receptor complex dissociation

    SciTech Connect

    Sorkin, A.D.; Teslenko, L.V.; Nikolsky, N.N. )

    1988-03-01

    The endocytosis and intracellular fate of epidermal growth factor (EGF) were studied in A431 cells. After 15-20 min of internalization at 37{degree}C, rhodomaine-labeled ({sup 125}-I) EGF (EGR-Rh) accumulated into large juxtanuclear compartment consisting of closely related vesicles. This structure was shown to be localized in the para-Golgi region. Fluorescein-labeled transferrin (Tr-FITC) was observed in the same region when added to the cell simultaneously with EGF-Rh. Using microscopy spectrofluorometer, the authors determined that the Tr-FITC-containing para-Golgi structures have a pH of 6.1{plus minus}0.3 while lysosomes containing dextran-fluorescein have a pH of 5.0{plus minus}0.2. To study the dynamics of EGF-receptor dissociation during endocytosis a mild detergent treatment of living cells was used for extraction of an intracellular receptor-unbound EGF. These results suggest that EGF remains associated with receptors during endocytosis in A431 cells until it is transferred to lysosomes where the pH of the EGF microenvironment is dropped to 5. A prolonged presence of EGF-receptor complexes in the para-Golgi region might be of importance in mitotic signaling.

  14. Divalent lead cations induce cyclooxygenase-2 gene expression by epidermal growth factor receptor/nuclear factor-kappa B signaling in A431carcinoma cells.

    PubMed

    Chou, Yii-Her; Woon, Peng-Yeong; Huang, Wan-Chen; Shiurba, Robert; Tsai, Yao-Ting; Wang, Yu-Shiuan; Hsieh, Tusty-Jiuan; Chang, Wen-Chang; Chuang, Hung-Yi; Chang, Wei-Chiao

    2011-06-10

    Divalent lead cations (Pb²+) are toxic metal pollutants that may contribute to inflammatory diseases in people and animals. Human vascular smooth muscle cells in culture respond to low concentrations of Pb²+ ions by activating mediators of inflammation via the plasma membrane epidermal growth factor receptor (EGFR). These include cyclooxygenase-2 (COX-2) and cytosolic phospholipase A₂ as well as the hormone-like lipid compound prostaglandin E₂. To further clarify the mechanism by which Pb²+ induces such mediators of inflammation, we tested human epidermoid carcinoma cell line A431 that expresses high levels of EGFR. Reverse transcription PCR and western blots confirmed A431 cells treated with a low concentration (1 μM) of Pb²+ in the form of lead (II) nitrate increased expression of COX-2 mRNA and its encoded protein in a time-dependent manner. Promoter deletion analysis revealed the transcription factor known as nuclear factor-kappa B (NF-κB) was a necessary component of the COX-2 gene response. NF-κB inhibitor BAY 11-7082 suppressed Pb²+-induced COX-2 mRNA expression, and EGFR inhibitors AG1478 and PD153035 as well as EGFR small interfering RNA reduced the coincident nuclear translocation of NF-κB. Our findings support the hypothesis that low concentrations of Pb²+ ions incite inflammation by inducing COX-2 gene expression via the EGFR/NF-κB signal transduction pathway. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Lgr5-positive cells are cancer stem cells in skin squamous cell carcinoma.

    PubMed

    Liu, Shunli; Gong, Zhenyu; Chen, Mingrui; Liu, Benli; Bian, Donghui; Wu, Kai

    2014-11-01

    Cancer stem cells (CSCs) in most human tumors are commonly identified and enriched using similar strategies for identifying normal stem cells, including flow cytometry assays for side population, high aldehyde dehydrogenase (ALDH) activity, and CD133 positivity. Thus, development of a method for isolating a specific cancer using cancer-specific characteristic appears to be potentially important. Here, we reported extremely high Lgr5 levels in the specimen from skin squamous cell carcinoma (SCC) in patients. Using SCC cell line A431, we detected high Lgr5 and CD133 levels in ALDH-high or side population from these cancer cells. To figure out whether Lgr5 is a marker of CSCs in SCC, we transfected A431 cells with a Lgr5-creERT-2A-DTR/Cag-Loxp-GFP-STOP-Loxp-RFP plasmid and purified transfected cells (tA431) based on GFP by flow cytometry. 4-Hydroxytamoxifen (4-OHT) was given to label Lgr5-positive cells with RFP, for comparison to GFP-positive Lgr5-negative cells. Lgr5-positive cells grew significantly faster than Lgr5-negative cells, and the fold increase in growth of Lgr5-positive vs Lgr5-negative cells is significantly higher than SP vs non-SP, or ALDH-high vs ALDH-low, or CD133-positive vs CD133-negative cells. Moreover, in Lgr5-negative population, Lgr5-positive re-appeared in culture with time, suggesting that Lgr5-positive cells can be regenerated from Lgr5-negative cells. Furthermore, the growth of tA431 cells significantly decreased upon a single dose of diphtheria toxin (DT)/4-OHT to eliminate Lgr5-positive cell lineage, while multiple doses of DT/4-OHT nearly completely inhibited tA431 cell growth. Taken together, our data provide compelling data to demonstrate that Lgr5-positive cells are CSCs in skin SCC.

  16. Characterization of the interaction of 5'-p-fluorosulfonylbenzoyl adenosine with the epidermal growth factor receptor/protein kinase in A431 cell membranes.

    PubMed

    Buhrow, S A; Cohen, S; Garbers, D L; Staros, J V

    1983-06-25

    Treatment of membrane vesicles from A431 cells, a human epidermoid carcinoma line, with the affinity label 5'-p-fluorosulfonylbenzoyl [8-14C]adenosine (5'-p-FSO2Bz[14C]Ado) results in an inhibition of the epidermal growth factor (EGF)-stimulable protein kinase and in the modification of proteins having the same molecular weight (Mr = 170,000 and 150,000) as the receptor for EGF (Buhrow, S. A., Cohen, S., and Staros, J. V. (1982) J. Biol. Chem. 257, 4019-4022). Modification of the vesicles with 5'-p-FSO2BzAdo inhibits not only the EGF-stimulated phosphorylation of endogenous membrane proteins but also the EGF-stimulated phosphorylation of an exogenous synthetic tyrosine-containing peptide substrate. This indicates that the EGF-stimulable protein kinase is modified by 5'-p-FSO2BzAdo at a site affecting catalytic activity. Membrane vesicles were treated with 5'-p-FSO2Bz-[14C]Ado to affinity label the kinase, then the EGF receptor was purified by affinity chromatography on immobilized EGF. The EGF receptor thus purified contains the 5'-p-SO2Bz[14C]Ado moiety. These data strongly support our hypothesis that the EGF receptor and EGF-stimulable kinase are two parts of the same polypeptide chain.

  17. Corticotropin-releasing factor induces phosphorylation of phospholipase C-gamma at tyrosine residues via its receptor 2beta in human epidermoid A-431 cells.

    PubMed

    Kiang, J G; Ding, X Z; Gist, I D; Jones, R R; Tsokos, G C

    1998-12-18

    This laboratory previously reported that corticotropin-releasing factor (CRF) increased intracellular free calcium concentrations, cellular cAMP, inositol 1,4,5-trisphosphate, protein kinase C activity, and protein phosphorylation in human A-431 cells. The increase was blocked by CRF receptor antagonist. In this study, we identified the type of CRF receptors present and investigated whether CRF induced tyrosine phosphorylation of phospholipase C-gamma via CRF receptors. Using novel primers in reverse transcriptase-polymerase chain reaction, we determined the CRF receptor type to be that of 2beta. The levels of the CRF receptor type 2beta were not altered in cells treated with activators of protein kinase C, Ca2+ ionophore, or cells overexpressing heat shock protein 70 kDa. Cells treated with CRF displayed increases in protein tyrosine phosphorylation approximately at 150 kDa as detected by immunoblotting using an antibody against phosphotyrosine. Immunoprecipitation with antibodies directed against phospholipase C-beta3, -gamma1, or -gamma2 isoforms (which have molecular weights around 150 kDa) followed by Western blotting using an anti-phosphotyrosine antibody showed that only phospholipase C-gamma1 and -gamma2 were phosphorylated. The increase in phospholipase C-gamma phosphorylation was concentration-dependent with an EC50 of 4.2+/-0.1 pM. The maximal phosphorylation by CRF at 1 nM occurred by 5 min. The CRF-induced phosphorylation was inhibited by the protein tyrosine kinase inhibitors genistein and herbimycin A, suggesting that CRF activates protein tyrosine kinases. Treatment of cells with CRF receptor antagonist, but not pertussis toxin, prior to treatment with CRF inhibited the CRF-induced phosphorylation, suggesting it is mediated by the CRF receptor type 2beta that is not coupled to pertussis toxin-sensitive G-proteins. Treatment with 1,2-bis(2iminophenoxy)ethane-N,N,N',N'-tetraacetic acid attenuated the phospholipase C-gamma phosphorylation. In summary

  18. In contrast to their murine counterparts, normal human keratinocytes and human epidermoid cell lines A431 and HaCaT fail to express IL-10 mRNA and protein

    PubMed Central

    TEUNISSEN, M B M; KOOMEN, C W; JANSEN, J; DE WAAL MALEFYT, R; SCHMITT, E; VAN DEN WIJNGAARD, R M J G J; DAS, P K; BOS, J D

    1997-01-01

    In mice, keratinocyte-derived IL-10 is up-regulated by ultraviolet-B (UVB) radiation and plays a major role in UVB-induced immunosuppression. The present study was designed to examine whether a comparable phenomenon can be detected in man. Freshly isolated or cultured normal human keratinocytes (NHK) and keratinocyte cell lines A431 and HaCaT were stimulated with graded doses of UVB (up to 200 J/m2) or with a variety of other stimuli. RNA was extracted at various time points post-stimulation and analysed by reverse transcriptase-polymerase chain reaction (RT-PCR) using four different IL-10-specific primer pairs and RNA from monocytes or T cells as positive controls. We failed to detect IL-10 mRNA in NHK from 40 different donors (breast, abdomen, leg, scalp, foreskin) and in A431 and HaCaT cells, irrespective of the stimulation used and despite successful stimulation. Supernatants of NHK, A431 and HaCaT cultures were negative for IL-10 protein, as tested by four different ELISAs and a bioassay. Murine keratinocytes, stimulated under comparable conditions and tested by the same techniques, displayed a strong expression of IL-10 mRNA and protein. Remarkably, an IL-10 mRNA signal could be detected in NHK after a second round of PCR amplification. Because NHK suspensions are contaminated with Langerhans cells, melanocytes and possibly fibroblasts, we tested pure populations of each individual cell type to determine the origin of this IL-10 mRNA. Our results clearly indicate that NHK, Langerhans cells and fibroblasts fail to express IL-10 and that melanocytes are the principal source of IL-10 mRNA in normal human epidermis. PMID:9010278

  19. Accelerated degradation of 160 kDa epidermal growth factor (EGF) receptor precursor by the tyrosine kinase inhibitor herbimycin A in the endoplasmic reticulum of A431 human epidermoid carcinoma cells.

    PubMed Central

    Murakami, Y; Mizuno, S; Uehara, Y

    1994-01-01

    The effect of herbimycin A on the biosynthesis of epidermal growth factor (EGF) receptor was examined in human epidermoid carcinoma A431 cells. Cells were pulse-labelled with [35S]methionine, and EGF receptor biosynthesis was quantified by immunoprecipitation using a monoclonal anti-(EGF receptor) antibody. In the presence of herbimycin A, an immature 160 kDa EGF receptor precursor accumulated in 1 h and disappeared completely in 4 h. Pulse-labelled 160 kDa receptor precursor in the absence of herbimycin A, however, was converted normally into a 170 kDa one by chase with herbimycin A. Herbimycin A affected neither the synthesis of the secreted form of EGF receptor devoid of cytoplasmic domain, nor that of the transferrin receptor in A431 cells. The herbimycin A-induced degradation of 160 kDa EGF receptor precursor was not inhibited by an inhibitor of lysosomal enzymes, NH4Cl. Endoglycosidase H digestion of the 160 kDa precursor converted it into the deglycosylated 130 kDa precursor peptide. These results suggested that herbimycin A selectively acted on the EGF receptor precursor during the synthesis of the 160 kDa form, probably on the cytoplasmic domain, to form an aberrant molecule which was subjected to rapid degradation in the endoplasmic reticulum. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8037692

  20. Blue light activates phase 2 response proteins and slows growth of a431 epidermoid carcinoma xenografts.

    PubMed

    Patel, Alpesh D; Rotenberg, Shaun; Messer, Regina L W; Wataha, John C; Ogbureke, Kalu U E; McCloud, Veronica V; Lockwood, Petra; Hsu, Stephen; Lewis, Jill B

    2014-11-01

    Recent studies suggest that light in the UVA range (320-400 nm) activates signaling pathways that are anti-inflammatory, antioxidative and play a critical role in protection against cancer. These effects have been attributed to NF-E2-related factor (NRF2)-mediated up-regulation of 'phase 2' genes that neutralize oxidative stress and metabolize electrophiles. We had previously shown that small doses of blue light (400-500 nm) had selective toxicity for cultured oral tumor cells and increased levels of peroxiredoxin phase 2 proteins, which led to our hypothesis that blue light activates NRF2 signaling. A431 epidermoid carcinoma cells were treated in culture and as nude mouse xenografts with doses of blue light. Cell lysates and tumor samples were tested for NRF2 activation, and for markers of proliferation and oxidative stress. Blue light activated the phase 2 response in cultured A431 cells and reduced their viability dose dependently. Light treatment of tumors reduced tumor growth, and levels of proliferating cell nuclear antigen (PCNA), and oxidized proteins. Cellular responses to these light energies are worth further study and may provide therapeutic interventions for inflammation and cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. 1,4-Naphthoquinone activates the HSP90/HSF1 pathway through the S-arylation of HSP90 in A431 cells: Negative regulation of the redox signal transduction pathway by persulfides/polysulfides.

    PubMed

    Abiko, Yumi; Sha, Liang; Shinkai, Yasuhiro; Unoki, Takamitsu; Luong, Nho Cong; Tsuchiya, Yukihiro; Watanabe, Yasuo; Hirose, Reiko; Akaike, Takaaki; Kumagai, Yoshito

    2017-03-01

    The current consensus is that environmental electrophiles activate redox signal transduction pathways through covalent modification of sensor proteins with reactive thiol groups at low concentrations, while they cause cell damage at higher concentrations. We previously exposed human carcinoma A431 cells to the atmospheric electrophile 1,4-naphthoquinone (1,4-NQ) and found that heat shock protein 90 (HSP90), a negative regulator of heat shock factor 1 (HSF1), was a target of 1,4-NQ. In the study presented here, we determined whether 1,4-NQ activates HSF1. We also examined whether such redox signaling could be regulated by nucleophilic sulfur species. Exposure of A431 cells to 1,4-NQ covalently modified cellular HSP90, resulting in repression of the association between HSF1 with HSP90, thereby enhancing HSF1 translocation into the nuclei. Liquid chromatography-tandem mass spectrometry analysis with recombinant HSP90 revealed that the modifications site were Cys412 and Cys564. We found that HSF1 activation mediated by 1,4-NQ upregulated downstream genes, such as HSPA6. HSF1 knockdown accelerated 1,4-NQ-mediated cytotoxicity in the cells. While simultaneous treatment with reactive persulfide and polysulfide, Na2S2 and Na2S4, blocked 1,4-NQ-dependent protein modification and HSF1 activation in A431 cells, the knockdown of Cys persulfide producing enzymes cystathionine β-synthase (CBS) and/or cystathionine γ-lyase (CSE) enhanced these phenomena. 1,4-NQ-thiol adduct and 1,4-NQ-S-1,4-NQ adduct were produced during the enzymatic reaction of recombinant CSE in the presence of 1,4-NQ. The results suggest that activation of the HSP90-HSF1 signal transduction pathway mediated by 1,4-NQ protects cells against 1,4-NQ and that per/polysulfides can diminish the reactivity of 1,4-NQ by forming sulfur adducts.

  2. Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma

    PubMed Central

    Godugu, Chandraiah; Doddapaneni, Ravi; Patel, Apurva R; Singh, Rakesh; Mercer, Roger; Singh, Mandip

    2016-01-01

    Purpose Oral administration of anticancer agents presents a series of advantages for patients. However, most of the anti-cancer drugs have poor water solubility leading to low bioavailability. Methods Controlled released spray dried matrix system of Gefitinib with hydroxypropyl β-cyclodextrin, chitosan, hydroxy propyl methyl cellulose, vitamin E TPGS, succinic acid were used for the design of formulations to improve the oral absorption of Gefitinib. Spray drying with a customized spray gun which allows simultaneous/pulsatile flow of two different liquid systems through single nozzle was used to prepare Gefitinib spray dried formulations (Gef-SD). Formulation was characterized by in vitro drug release and Caco-2 permeability studies. Pharmacokinetic studies were performed in Sprague Dawley rats. Efficacy of Gef-SD was carried out in A431 xenografts models in nude mice. Results In Gef-SD group 9.14-fold increase in the AUC was observed compared to free Gef. Improved pharmacokinetic profile of Gef-SD translated into increase (1.75 fold compared to Gef free drug) in anticancer effects. Animal survival was significantly increased in Gef formulation treated groups, with superior reduction in the tumor size (1.48-fold) and volumes (1.75-fold) and also increase in the anticancer effects (TUNEL positive apoptotic cells) was observed in Gef-SD treated groups. Further, western blot, immunohistochemical and proteomics analysis demonstrated the increased pharmacodynamic effects of Gef-SD formulations in A431 xenograft tumor models. Conclusion Our studies suggested that Gefitinib can be successfully incorporated into control release microparticles based oral formulation with enhanced pharmacokinetic and pharmacodynamic activity. This study demonstrates the novel application of Gef in A431 tumor models. PMID:26286185

  3. Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells.

    PubMed

    Hara-Chikuma, Mariko; Watanabe, Sachiko; Satooka, Hiroki

    2016-03-18

    Aquaporin 3 (AQP3), a water/glycerol channel protein, is capable of transporting hydrogen peroxide (H2O2). Here, we show that AQP3-mediated intracellular H2O2 is involved in epidermal growth factor (EGF)-induced cell signaling and its dependent cell function in the EGF receptor (EGFR)-positive cancer cell lines A431 and H1666. AQP3 knockdown suppressed the transport into the cells of extracellular H2O2 produced in response to EGF in A431 and H1666 cells. EGF-induced Erk and Akt activation, which occurred through SHP2 and/or PTEN modulation, was impaired by AQP3 knockdown. Cell growth and migration induced by EGF stimulation were attenuated in AQP3 knockdown cells compared with those in control cells. Coincidentally, tumor growth of A431 cell xenografts in immunodeficient mice was decreased by AQP3 knockdown. Accordingly, a xenograft with AQP3 knockdown A431 cells significantly enhanced the survival of recipient mice compared with the transplantation with control cells. In addition, AQP3 associated with EGFR and NADPH oxidase 2, which we propose is linked to AQP3 producing a localized increase in intracellular H2O2 to function as a second messenger during EGFR cell signaling. Therefore, our findings suggest that AQP3 is required for EGF-EGFR cell signaling in cancer cells and is a therapeutic target for cancer progression.

  4. Development of an ErbB-overexpressing A-431 Optical Reporting Tumor Xenograft Model to Assess Targeted Photodynamic Therapy Regimens

    PubMed Central

    Savellano, Mark D.; Owusu-Brackett, Nicci; Son, Ji; Callier, Thierri; Savellano, Dagmar Högemann

    2010-01-01

    To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor. PMID:20880229

  5. PP2B-mediated Dephosphorylation of c-Jun C Terminus Regulates Phorbol Ester-induced c-Jun/Sp1 Interaction in A431 Cells

    PubMed Central

    Chen, Ben-Kuen; Huang, Chi-Chen; Chang, Wei-Chiao; Chen, Yun-Ju; Kikkawa, Ushio; Nakahama, Ken-ichi; Morita, Ikuo

    2007-01-01

    The c-Jun/Sp1 interaction is essential for growth factor- and phorbol 12-myristate 13-acetate (PMA)-induced genes expression, including human 12(S)-lipoxygenase, keratin 16, cytosolic phospholipase A2, p21WAF1/CIP1, and neuronal nicotinic acetylcholine receptor β4. Here, we examined the mechanism underlying the PMA-induced regulation on the interaction between c-Jun and Sp1. We found that treatment of cells with PMA induced a dephosphorylation at the C terminus of c-Jun at Ser-243 and a concomitant inhibition of PP2B by using PP2B small interfering RNA, resulting in reduction of PMA-induced gene expression as well as the c-Jun/Sp1 interaction. The c-Jun mutant TAM-67-3A, which contains three substitute alanines at Thr-231, Ser-243, and Ser-249 compared with TAM-67, binds more efficaciously with Sp1 and is about twice as efficacious as TAM-67 in inhibiting the PMA-induced activation of the 12(S)-lipoxygenase promoter. Importantly, PP2B not only dephosphorylates the c-Jun at Ser-243 but also interacts with c-Jun in PMA-treated cells. PMA stimulates the association of the PP2B/c-Jun/Sp1 complex with the promoter. These findings indicate the dephosphorylation of c-Jun C terminus is required for the c-Jun/Sp1 interaction and reveal that PP2B plays an important role in regulating c-Jun/Sp1 interaction in PMA-induced gene expression. PMID:17215518

  6. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  7. Purification and properties of the alpha-3/4-L-fucosyltransferase released into the culture medium during the growth of the human A431 epidermoid carcinoma cell line.

    PubMed

    Johnson, P H; Donald, A S; Watkins, W M

    1993-04-01

    A soluble alpha-3/4-fucosyltransferase secreted into the growth medium of the human A431 epidermoid carcinoma cell line has been purified 700,000 fold by a series of steps involving chromatography on Phenyl Sepharose 4B, CM-Sephadex C-50 and GDP-hexanolamine Sepharose 4B. The untreated spent culture medium transferred almost ten times more fucose to the subterminal N-acetylglucosamine residue in the Type 1 (Gal beta 1-3GlcNAc) disaccharide than to the subterminal sugar in the Type 2 (Gal beta 1-4GlcNAc) disaccharide; the relative activity with these two substrates remained virtually unchanged throughout the purification procedure. At no stage was any alpha-3-fucosyltransferase species acting solely on N-acetylglucosamine residues in Type 2 chains separated from the bulk of the alpha-3/4-fucosyltransferase activity. The purified enzyme preparation showed insignificant activity with glycoprotein substrates having N-linked oligosaccharide chains with terminal Type 2 sequences but transferred fucose to a mucin-type glycoprotein with O-linked oligosaccharide chains with terminal Type 1 structures. Lactose was a poor substrate but the activity of the enzyme was influenced by the presence of substituents on the terminal beta-galactosyl residue and 2'-fucosyllactose was almost as good an acceptor as the Type 1 disaccharide. The properties of the purified enzyme with regard to specificity, divalent cation requirements, pH optimum, and M(r), closely resembled those of the Lewis-blood-group gene associated alpha-3/4-fucosyltransferase isolated from human milk.

  8. Pheophorbide a-mediated photodynamic therapy induces autophagy and apoptosis via the activation of MAPKs in human skin cancer cells.

    PubMed

    Yoon, Hyo-Eun; Oh, Seone-Hee; Kim, Soo-A; Yoon, Jung-Hoon; Ahn, Sang-Gun

    2014-01-01

    Pheophorbide a (Pa), a chlorophyll derivative, is a photosensitizer that can induce significant antitumor effects in several types of tumor cells. The present study investigated the mechanism of Pa-mediated photodynamic therapy (Pa-PDT) in the human skin cancer cell lines A431 and G361. PDT significantly inhibited the cell growth in a Pa-concentration-dependent manner. We observed increased expression of Beclin-1, LC3B and ATG5, which are markers of autophagy, after PDT treatment in A431 cells but not in G361 cells. In G361 cells, Pa-PDT strongly induced PARP cleavage and subsequent apoptosis, which was confirmed using Annexin V/Propidium iodide double staining. Pa-PDT predominantly exhibited its antitumor effects via activation of ERK1/2 and p38 in A431 and G361 cells, respectively. An in vivo study using the CAM xenograft model demonstrated that Pa-PDT strongly induced autophagy and apoptosis in A431-transplanted tumors and/or apoptosis in G361-transplanted tumors. These results may provide a basis for understanding the underlying mechanisms of Pa-PDT and for developing Pa-PDT as a therapy for skin cancer.

  9. [Pancreatic cancer stem cell].

    PubMed

    Hamada, Shin; Masamune, Atsushi; Shimosegawa, Tooru

    2015-05-01

    Prognosis of pancreatic cancer remains dismal due to the resistance against conventional therapies. Metastasis and massive invasion toward surrounding organs hamper radical resection. Small part of entire cancer cells reveal resistance against chemotherapy or radiotherapy, increased tumorigenicity and migratory phenotype. These cells are called as cancer stem cells, as a counter part of normal stem cells. In pancreatic cancer, several cancer stem cell markers have been identified, which enabled detailed characterization of pancreatic cancer stem cells. Recent researches clarified that conventional chemotherapy itself could increase cancer cells with stem cell-phenotype, suggesting the necessity of cancer stem cell-targeting therapy. Based on these observations, pancreatic cancer stem cell-targeting therapies have been tested, which effectively eliminated cancer stem cell fraction and attenuated cancer progression in experimental models. Clinical efficacy of these therapies need to be evaluated, and cancer stem cell-targeting therapy will contribute to improve the prognosis of pancreatic cancer.

  10. Anti-metastatic effect of rhodomyrtone from Rhodomyrtus tomentosa on human skin cancer cells.

    PubMed

    Tayeh, Malatee; Nilwarangoon, Sirinun; Mahabusarakum, Wilawan; Watanapokasin, Ramida

    2017-03-01

    This study focused on the inhibitory effect of rhodomyrtone, a bioactive compound isolated from the leaves of Rhodomyrtus tomentosa (Aiton) Hassk., on cancer metastasis in epidermoid carcinoma A431 cells and on the verification of the underlying related molecular mechanisms of this event. We demonstrated that rhodomyrtone at the subcytotoxic concentration (0.5 and 1.5 µg/ml) exhibited pronounced inhibition of cancer metastasis by reducing cell migration, cell adhesive ability and cell invasion of A431 cells in a dose-dependent manner. Data demonstrated that rhodomyrtone could inhibit the focal adhesion kinase (FAK) and phosphorylation of protein kinase B (AKT), c-Raf, extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK involved in the downregulation the enzyme activities and protein expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. Moreover, we found that rhodomyrtone increased the expression of TIMP-1 and TIMP-2, which are inhibitors of MMP-9 and MMP-2, respectively. Rhodomyrtone also inhibited the expression of NF-κB and phosphorylation of NF-κB in a dose-dependent manner. These results suggested that rhodomyrtone inhibited A431 cell metastasis by reducing MMP-2/9 activities and expression through inhibiting ERK1/2, p38 and FAK/Akt signaling pathways via NF-κB activities. This finding suggested that rhodomyrtone may be a novel antimetastasis agent for treatment of skin cancer cells.

  11. The influence of photodynamic therapy with 5-aminolevulinic acid on senescent skin cancer cells.

    PubMed

    Grigalavicius, Mantas; Juraleviciute, Marina; Kwitniewski, Mateusz; Juzeniene, A

    2017-03-01

    Senescent cells, which are resistant to apoptosis, accumulate with age and after ultraviolet (UV) radiation, chemotherapy and radiation therapy. Preventing or eliminating senescent cells may be crucial for protection against skin cancer development and improving tumour treatment. The aim of the present study was to investigate the potential of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) to induce senescence in skin cancer cells and to eliminate senescent cells induced by chemotherapy (bleomycin) or UVA (315-400nm) exposure. WM115 and A431 cells were incubated with 1mM ALA for 2 and 4h, respectively, before exposure to blue light (10mW/cm(2), 0-80s, 0-0.8J/cm(2)). WM115 cells were treated once with 106J/cm(2) (58.4mW/cm(2), 30.25min) UVA 6days before ALA-PDT or with 0.24IU/ml bleomycin for 7days to induce senescence before ALA-PDT. Cell viability was monitored by the MTT colorimetric assay. Senescent cells were detected using senescence-associated-beta-galactosidase (SA-β-Gal) staining and morphological changes (enlarged, flat cells). ALA-PDT caused a light dose dependent increase in senescence. ALA-PDT induced senescence very effectively only in WM115 cells but not in A431 cells, while similar cytotoxic effects were observed in both cell lines. After ALA-PDT with 0.4J/cm(2) around 70% of survived WM115 cells were senescent, while only around 5% of A431 cells were senescent after ALA-PDT with 0.8J/cm(2). ALA-PDT can induce premature senescence and kill senescent cells induced by ALA-PDT itself, UVA and chemotherapy (bleomycin). Light doses must be properly chosen to photoinactivate ALA-PDT-induced senescent cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cell phones and cancer

    MedlinePlus

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  13. Liver cancer stem cells.

    PubMed

    Sell, Stewart; Leffert, Hyam L

    2008-06-10

    In an effort to review the evidence that liver cancer stem cells exist, two fundamental questions must be addressed. First, do hepatocellular carcinomas (HCC) arise from liver stem cells? Second, do HCCs contain cells that possess properties of cancer stem cells? For many years the finding of preneoplastic nodules in the liver during experimental induction of HCCs by chemicals was interpreted to support the hypothesis that HCC arose by dedifferentiation of mature liver cells. More recently, recognition of the role of small oval cells in the carcinogenic process led to a new hypothesis that HCC arises by maturation arrest of liver stem cells. Analysis of the cells in HCC supports the presence of cells with stem-cell properties (ie, immortality, transplantability, and resistance to therapy). However, definitive markers for these putative cancer stem cells have not yet been found and a liver cancer stem cell has not been isolated.

  14. Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells

    SciTech Connect

    Raji, V.; Kumar, Jatish; Rejiya, C.S.; Vibin, M.; Shenoi, Vinesh N.; Abraham, Annie

    2011-08-15

    Gold nanoparticles are recently having much attention because of their increased applications in biomedical fields. In this paper, we demonstrated the photothermal efficacy of citrate capped gold nanoparticles (AuNPs) for the destruction of A431 cancer cells. Citrate capped AuNPs were synthesized successfully and characterized by UV-visible-NIR spectrophotometry and High Resolution Transmission Electron Microscopy (HR-TEM). Further, AuNPs were conjugated with epidermal growth factor receptor antibody (anti-EGFR) and applied for the selective photothermal therapy (PTT) of human epithelial cancer cells, A431. PTT experiments were conducted in four groups, Group I-control cells, Group II-cells treated with laser light alone, Group III-cells treated with unconjugated AuNP and further laser irradiation and Group IV-anti-EGFR conjugated AuNP treated cells irradiated by laser light. After laser irradiation, cell morphology changes that were examined using phase contrast microscopy along with the relevant biochemical parameters like lactate dehydrogenase activity, reactive oxygen species generation and caspase-3 activity were studied for all the groups to determine whether cell death occurs due to necrosis or apoptosis. From these results we concluded that, these immunotargeted nanoparticles could selectively induce cell death via ROS mediated apoptosis when cells were exposed to a low power laser light.

  15. Signaling from lysosomes to mitochondria sensitizes cancer cells to photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Hung, Hsin-I.; Quiogue, Geraldine; Lemasters, John J.; Nieminen, Anna-Liisa

    2011-02-01

    Previously, we showed that photosensitizers that localize to lysosomes are more effective in killing cancer cells than ones directed to mitochondria after photodynamic treatment (PDT). The photosensitizer, phthalocyanine 4 (Pc 4), localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. However, analogues of Pc 4 (e.g., Pc 181) that primarily target lysosomes still produce mitochondria-mediated cell death, although the time course is slower compared to Pc 4-PDT. In A431 epidermoid carcinoma cells, these new analogues preferentially localized in lysosomes were highly efficient in inducing apoptotic cell death. To assess further how lysosomes contribute to PDT, we monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the acidic vacuolar proton pump that collapses the pH gradient of the lysosomal/endosomal compartment. Bafilomycin by itself was not toxic but greatly enhanced Pc 4-PDT-induced mitochondrial depolarization and cell killing. Both depolarization and cell killing were substantially prevented by iron chelators. The fact that Pc 4-PDT plus bafilomycin treatment did not induce lysosomal membrane damage prior to mitochondrial depolarization suggests that bafilomycin instead induced release of redox active iron from lysosomes into the cytosol that further translocated into mitochondria, where iron-mediated free radical formation occurred. In conclusion, agents that disturb lysosomal function could potentially be used as adjuvants with mitochondrion-targeted photosensitizers to enhance phototoxicity.

  16. Basal cell cancer (image)

    MedlinePlus

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  17. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  18. Pancreatic cancer stem cells.

    PubMed

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchically organized structure of a cancer. In this review, we try to articulate the complicated signaling pathways regulating the retention of the characteristics of pancreatic CSCs, and in the wake of which, we seek to offer insights into the CSCs-relevant targeted therapeutics which are, in the meantime, confronted with bigger challenges than ever.

  19. Betulin as an antitumor agent tested in vitro on A431, HeLa and MCF7, and as an angiogenic inhibitor in vivo in the CAM assay.

    PubMed

    Dehelean, Cristina Adriana; Feflea, Stefana; Molnár, Judit; Zupko, Istvan; Soica, Codruta

    2012-08-01

    Betulin, an important compound found in birch tree bark, can be converted to betulinic acid, an important pharmacological substance. Betulin has recently been reported as a cytotoxic agent for several tumor cell lines and as an apoptotic inductor. Angiogenesis is a key process involved in tumor metastasis and in developing tumor resistance to cytotoxic therapy. There are little data on betulin as an anti angiogenic agent. This preliminary study aimed to evaluate the cytotoxic effect of betulin on three cancer cell lines: HeLa (cervix adenocarcinoma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid carcinoma), and the apoptotic mechanism, as well as the implication in the capillary formation of the chicken embryo chorioallantoic membrane. The analysis consisted in the interpretation of the MTT assay and fluorescence double staining with Hoechst dye 33258 and propidium iodide, while the angiogenic effect was evaluated using morphological and immunohistochemical techniques. The antitumor activity is revealed by the double fluorescence staining, indicating that at higher concentrations, the cell membrane permeability is enhanced, while at lower concentrations there is evidence for nuclear fragmentation. In what concerns its effect on the process of blood vessel formation, betulin induced the reduction of newly formed capillaries, especially in the mesenchyme, possible through targeting the normal function of endothelial cells. In vitro results proved the superior specificity of betulin on cervical cancer cells, followed by skin cancer cells.

  20. Colorectal cancer stem cells.

    PubMed

    Salama, Paul; Platell, Cameron

    2009-10-01

    Somatic stem cells reside at the base of the crypts throughout the colonic mucosa. These cells are essential for the normal regeneration of the colonic epithelium. The stem cells reside within a special 'niche' comprised of intestinal sub-epithelial myofibroblasts that tightly control their function. It has been postulated that mutations within these adult colonic stem cells may induce neoplastic changes. Such cells can then dissociate from the epithelium and travel into the mesenchyme and thus form invasive cancers. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumour. It is this group of cells that exhibits characteristics of colonic stem cells. Although anti-neoplastic agents can induce remissions by inhibiting cell division, the stem cells appear to be remarkably resistant to both standard chemotherapy and radiotherapy. These stem cells may therefore persist after treatment and form the nucleus for cancer recurrence. Hence, future treatment modalities should focus specifically on controlling the cancer stem cells. In this review, we discuss the biology of normal and malignant colonic stem cells.

  1. Squamous cell cancer (image)

    MedlinePlus

    ... relatively slow-growing. It is more likely than basal cell cancer to spread (metastasize) to other locations, including internal organs. Treatment usually involves surgical removal of the tumor along ...

  2. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma.

    PubMed

    Nayak, Debasis; Pradhan, Sonali; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-11-01

    Biological synthesis of silver nanoparticles is a cost effective natural process where the phytochemicals specifically phenols, flavonoids and terpenoids present in the plant extracts act as capping and reducing agent. Due to their nano size regime the silver nanoparticles may directly bind to the DNA of the pathogenic bacterial strains leading to higher antimicrobial activity. In the current study silver nanoparticles were synthesised using plant extracts from different origin Cucurbita maxima (petals), Moringa oleifera (leaves) and Acorus calamus (rhizome). The synthesised nanoparticles were characterized by UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), field emission scanning electron microscopy (Fe-SEM) and Fourier transform infrared spectroscopy (FTIR). Highly crystalline, roughly spherical and cuboidal silver nanoparticles of 30-70 nm in size were synthesised. The nanoparticles provided strong antimicrobial activity against pathogenic strains. The effect of the synthesised nanoparticles against A431 skin cancer cell line was tested for their toxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. The IC50 values of 82.39±3.1, 83.57±3.9 and 78.58±2.7 μg/ml were calculated for silver nanoparticles synthesised by C. maxima, M. oleifera and A. calamus respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  4. Inflammation and cancer stem cells.

    PubMed

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    PubMed Central

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Summary Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. PMID:25025713

  6. Low white blood cell count and cancer

    MedlinePlus

    Neutropenia and cancer; Absolute neutrophil count and cancer; ANC and cancer ... A person with cancer can get a low white blood cell count from the cancer or from treatment for the cancer. Cancer may ...

  7. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins

    PubMed Central

    Guix, Marta; Faber, Anthony C.; Wang, Shizhen Emily; Olivares, Maria Graciela; Song, Youngchul; Qu, Sherman; Rinehart, Cammie; Seidel, Brenda; Yee, Douglas; Arteaga, Carlos L.; Engelman, Jeffrey A.

    2008-01-01

    Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation. PMID:18568074

  8. Induction of Glycosphingolipid GM3 Expression by Valproic Acid Suppresses Cancer Cell Growth.

    PubMed

    Kawashima, Nagako; Nishimiya, Yoshiyuki; Takahata, Shouta; Nakayama, Ken-Ichi

    2016-10-07

    Glycosphingolipid GM3, a known suppressor of epidermal growth factor receptor (EGFR) phosphorylation, inhibits cell proliferation. Valproic acid, conversely, is known as an up-regulator of GM3 synthase gene (ST3GAL5). To test the possibility that valproic acid could inhibit EGFR phosphorylation by increasing the level of GM3 in cells, we treated A431 epidermoid carcinoma cells with valproic acid and found that valproic acid treatment caused an about 6-fold increase in the GM3 level but only a marginal increase in the GM2 level in these cells and that the observed increase in GM3 level was valproic acid dose-dependent. Consistent with this observation, valproic acid treatment induced GM3 synthase gene expression by about 8-fold. Furthermore, phosphorylation of EGFR was reduced, and cell proliferation was inhibited following valproic acid treatment. Consistent with these results, transient expression of GM3 synthase gene in A431 cells also increased cellular level of GM3, reduced phosphorylation of EGFR, and inhibited cell proliferation. Treatment with l-phenyl-2-decanoylamino-3-morpholino-l-propanol, an inhibitor of glucosylceramide synthesis, decreased the cellular level of GM3 and reduced the inhibitory effects of valproic acid on EGFR phosphorylation and cell proliferation. These results suggested that induction of GM3 synthesis was enough to inhibit proliferation of cancer cells by suppressing EGFR activity. Valproic acid treatment similarly increased the GM3 level and reduced phosphorylation of EGFR in U87MG glioma cells and inhibited their proliferation. These results suggested that up-regulators of GM3 synthase gene, such as valproic acid, are potential suppressors of cancer cell proliferation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  10. Detergent solubilization of the EGF receptor from A431 cells

    NASA Technical Reports Server (NTRS)

    Dayanidhi, R.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Functional reconstitution of purified preparations of human epidermal growth factor receptor (EGFR) requires dissociation of the protein from its plasma membrane lipid environment. Solubilization of membrane proteins in this manner requires the use of detergents, which are known to disrupt plasma membrane lipid/protein interactions. We have investigated the ability of three nonionic detergents to solubilize the human EGFR selectively, and have also analyzed the effect of these various treatments on the intrinsic tyrosyl kinase activity of the receptor. The nonionic detergent known as n-octyl glucoside (n-octyl beta-D-glucopyranoside) was found to give the best combination of selectivity, yield, and maintenance of enzymatic activity of the human EGFR.

  11. Detergent solubilization of the EGF receptor from A431 cells

    NASA Technical Reports Server (NTRS)

    Dayanidhi, R.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Functional reconstitution of purified preparations of human epidermal growth factor receptor (EGFR) requires dissociation of the protein from its plasma membrane lipid environment. Solubilization of membrane proteins in this manner requires the use of detergents, which are known to disrupt plasma membrane lipid/protein interactions. We have investigated the ability of three nonionic detergents to solubilize the human EGFR selectively, and have also analyzed the effect of these various treatments on the intrinsic tyrosyl kinase activity of the receptor. The nonionic detergent known as n-octyl glucoside (n-octyl beta-D-glucopyranoside) was found to give the best combination of selectivity, yield, and maintenance of enzymatic activity of the human EGFR.

  12. Small Cell Lung Cancer

    PubMed Central

    Kalemkerian, Gregory P.; Akerley, Wallace; Bogner, Paul; Borghaei, Hossein; Chow, Laura QM; Downey, Robert J.; Gandhi, Leena; Ganti, Apar Kishor P.; Govindan, Ramaswamy; Grecula, John C.; Hayman, James; Heist, Rebecca Suk; Horn, Leora; Jahan, Thierry; Koczywas, Marianna; Loo, Billy W.; Merritt, Robert E.; Moran, Cesar A.; Niell, Harvey B.; O’Malley, Janis; Patel, Jyoti D.; Ready, Neal; Rudin, Charles M.; Williams, Charles C.; Gregory, Kristina; Hughes, Miranda

    2013-01-01

    Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted. PMID:23307984

  13. Small cell lung cancer.

    PubMed

    Kalemkerian, Gregory P; Akerley, Wallace; Bogner, Paul; Borghaei, Hossein; Chow, Laura Qm; Downey, Robert J; Gandhi, Leena; Ganti, Apar Kishor P; Govindan, Ramaswamy; Grecula, John C; Hayman, James; Heist, Rebecca Suk; Horn, Leora; Jahan, Thierry; Koczywas, Marianna; Loo, Billy W; Merritt, Robert E; Moran, Cesar A; Niell, Harvey B; O'Malley, Janis; Patel, Jyoti D; Ready, Neal; Rudin, Charles M; Williams, Charles C; Gregory, Kristina; Hughes, Miranda

    2013-01-01

    Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted.

  14. Thymidine phosphorylase influences [(18)F]fluorothymidine uptake in cancer cells and patients with non-small cell lung cancer.

    PubMed

    Lee, Seung Jin; Yeo, Jeong Seok; Lee, Haeng Jung; Lee, Eun Jung; Kim, Seog Young; Jang, Se Jin; Lee, Jong Jin; Ryu, Jin-Sook; Moon, Dae Hyuk

    2014-07-01

    Thymidine phosphorylase (TP), a key enzyme in the pyrimidine nucleoside salvage pathway, catalyses the reversible phosphorylation of thymidine, thereby generating thymine and 2-deoxy-D-ribose-1-phosphate. By regulating the levels of endogenous thymidine, TP may influence [(18)F]fluorothymidine ([(18)F]FLT) uptake. We investigated the effect of TP activity on [(18)F]FLT uptake by tumours. Uptake of [(3)H]FLT and [(3)H]thymidine ([(3)H]Thd) and the activities of TP, thymidine kinase 1 (TK1), and equilibrative nucleoside transporter 1 (ENT1) were determined in exponentially growing A431, A549, HT29, HOP92, ACHN, and SKOV3 cells in the presence or absence of tipiracil hydrochloride, a TP inhibitor. Eighty-five non-small cell lung cancer tissues from a patient cohort that was previously studied with [(18)F]FLT positron emission tomography (PET) were retrieved and subjected to immunohistochemical analysis of TP expression. Factors that affected the maximum standardised uptake value (SUVmax) of [(18)F]FLT-PET were identified by multiple linear regression analysis. A431 cells had the highest TP activity; A549 and HT29 cells had moderate TP activity; and ACHN, SKOV3, and HOP92 cells had little detectable TP activity. Cell lines with high TP activity took up more [(3)H]FLT than [(3)H]Thd, whereas cells with little TP activity took up more [(3)H]Thd than [(3)H]FLT. In cells with high TP activity, TP inhibition decreased [(3)H]FLT uptake and increased [(3)H]Thd uptake. However, TP inhibition had no effect on ACHN, SKOV3, and HOP92 cells. TP inhibition did not change TK1 or ENT1 activity, but did increase the intracellular level of thymidine. The SUVmax of [(18)F]FLT was affected by three independent factors: Ki-67 expression (P < 0.001), immunohistochemical TP score (P < 0.001), and tumour size (P = 0.015). TP activity influences [(18)F]FLT uptake, and may explain preferential uptake of [(18)F]FLT over [(3)H]Thd. These results provide important insights into the

  15. Reprogramming of retinoblastoma cancer cells into cancer stem cells.

    PubMed

    Yue, Fengming; Hirashima, Kanji; Tomotsune, Daihachiro; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2017-01-22

    Retinoblastoma is the most common intraocular malignancy in pediatric patients. It develops rapidly in the retina and can be fatal if not treated promptly. It has been proposed that a small population of cancer cells, termed cancer stem cells (CSCs), initiate tumorigenesis from immature tissue stem cells or progenitor cells. Reprogramming technology, which can convert mature cells into pluripotent stem cells (iPS), provides the possibility of transducing malignant cancer cells back to CSCs, a type of early stage of cancer. We herein took advantage of reprogramming technology to induce CSCs from retinoblastoma cancer cells. In the present study, the 4 Yamanaka transcription factors, Oct4, Sox2, Klf4 and c-myc, were transduced into retinoblastoma cells (Rbc51). iPS-like colonies were observed 15 days after transduction and showed significantly enhanced CSC properties. The gene and protein expression levels of pluripotent stem cell markers (Tra-1-60, Oct4, Nanog) and cancer stem cell markers (CD133, CD44) were up-regulated in transduced Rbc51 cells compared to control cells. Moreover, iPS-like CSCs could be sorted using the Magnetic-activated cell sorting (MACS) method. A sphere formation assay demonstrated spheroid formation in transduced Rbc51 cells cultured in serum free media, and these spheroids could be differentiated into Pax6-, Nestin-positive neural progenitors and rhodopsin- and recoverin-positive mature retinal cells. The cell viability after 5-Fu exposure was higher in transduced Rbc51 cells. In conclusion, CSCs were generated from retinoblastoma cancer cells using reprogramming technology. Our novel method can generate CSCs, the study of which can lead to better understanding of cancer-specific initiation, cancer epigenetics, and the overlapping mechanisms of cancer development and pluripotent stem cell behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Stochastic elimination of cancer cells.

    PubMed Central

    Michor, Franziska; Nowak, Martin A; Frank, Steven A; Iwasa, Yoh

    2003-01-01

    Tissues of multicellular organisms consist of stem cells and differentiated cells. Stem cells divide to produce new stem cells or differentiated cells. Differentiated cells divide to produce new differentiated cells. We show that such a tissue design can reduce the rate of fixation of mutations that increase the net proliferation rate of cells. It has, however, no consequence for the rate of fixation of neutral mutations. We calculate the optimum relative abundance of stem cells that minimizes the rate of generating cancer cells. There is a critical fraction of stem cell divisions that is required for a stochastic elimination ('wash out') of cancer cells. PMID:14561289

  17. Cancer stem cells and personalized cancer nanomedicine.

    PubMed

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  18. Breast Cancer Stem Cells

    PubMed Central

    Velasco-Velázquez, Marco A.; Homsi, Nora; De La Fuente, Marisol; Pestell, Richard G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24−/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics have identified NF-κB, c-Jun, p21CIP1, and Forkhead-like-protein Dach1 in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs. PMID:22249027

  19. Targeting prostate cancer stem cells.

    PubMed

    Crea, Francesco; Mathews, Lesley A; Farrar, William L; Hurt, Elaine M

    2009-12-01

    Cancer stem cells are the sub-population of cells present within tumors responsible for tumorigenesis. These cells have unique biological properties including self-renewal and the ability to differentiate. Furthermore, it is thought that these cells are more resistant to conventional chemotherapy and, as a result, are responsible for patient relapse. We will discuss the identification of prostate cancer stem cells, their unique properties and how these cells may be targeted for more efficacious therapies.

  20. Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state.

    PubMed

    Garnier, Delphine; Magnus, Nathalie; Meehan, Brian; Kislinger, Thomas; Rak, Janusz

    2013-10-15

    Transitions of the cancer cell phenotype between epithelial and mesenchymal states (EMT) are likely to alter the patterns of intercellular communication. In this regard we have previously documented that EMT-like changes trigger quantitative rearrangements in exosomal vesicle emission in A431 cancer cells driven by oncogenic epidermal growth factor receptor (EGFR). Here we report that extracellular vesicles (EVs) produced by these cancer cells in their epithelial and mesenchymal states exhibit profound qualitative differences in their proteome. Thus, induction of the EMT-like state through blockade of E-cadherin and EGFR stimulation provoked a mesenchymal shift in cellular morphology and enrichment in the CD44-high/CD24-low immunophenotype, often linked to cellular stemness. This change also resulted in reprogramming of the EV-related proteome (distinct from that of corresponding cells), which contained 30 unique protein signals, and revealed enrichment in pathways related to cellular growth, cell-to-cell signaling, and cell movement. Some of the most prominent EV-related proteins were validated, including integrin α2 and tetraspanin CD9. We propose that changes in cellular differentiation status translate into unique qualitative rearrangements in the cargo of EVs, a process that may have implications for intercellular communication and could serve as source of new biomarkers to detect EMT-like processes in cancer.

  1. Nonthermal Plasma-Mediated Cancer Cell Death; Targeted Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Choi, Byul-Bora; Choi, Yeon-Sik; Lee, Hae-Jun; Lee, Jae-Koo; Kim, Uk-Kyu; Kim, Gyoo-Cheon

    Non-thermal air plasma can kill cancer cells. However, there is no selectivity between normal and cancer cells. Therefore, cancer specific antibody conjugated gold nanoparticle (GNP) was pretreated before plasma irradiation. Stimulation of antibody conjugated GNP by plasma treatment resulted in a significant decrease in viability of cancer cells. This technology shows the feasibility of using plasma therapy for killing cancer cells selectively.

  2. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    PubMed Central

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  3. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  4. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  5. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  6. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  7. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 5-Fluorocytosine combined with Fcy-hEGF fusion protein targets EGFR-expressing cancer cells

    SciTech Connect

    Lan, Keng-Hsueh; Shih, Yi-Sheng; Chang, Cheng Allen; Yen, Sang-Hue; Lan, Keng-Li

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer EGFR-expressing epithelial cancers account for significant portion of cancer deaths. Black-Right-Pointing-Pointer EGF-EGFR signaling pathway is validated as an important anticancer drug target. Black-Right-Pointing-Pointer EGF and Fcy fusion protein (Fcy-hEGF) can bind to EGFR and convert 5-FC to 5-FU. Black-Right-Pointing-Pointer Fcy-hEGF combined with 5-FC preferentially inhibits EGFR-expressing cells viability. -- Abstract: Human epithelial cancers account for approximately 50% of all cancer deaths. This type of cancer is characterized by excessive activation and expression of the epidermal growth factor receptor (EGFR). The EGFR pathway is critical for cancer cell proliferation, survival, metastasis and angiogenesis. The EGF-EGFR signaling pathway has been validated as an important anticancer drug target. Increasing numbers of targeted therapies against this pathway have been either approved or are currently under development. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and human EGF (hEGF) fused with yeast cytosine deaminase (Fcy) to target EGFR-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned and purified the Fcy-hEGF fusion protein from Pichia pastoris yeast. This fusion protein specifically binds to EGFR with a similar affinity as hEGF, approximately 10 nM. Fcy-hEGF binds tightly to A431 and MDA-MB-468 cells, which overexpress EGFR, but it binds with a lower affinity to MDA-MB-231 and MCF-7, which express lower levels of EGFR. Similarly, the viability of EGFR-expressing cells was suppressed by Fcy-hEGF in the presence of increasing concentrations of 5-FC, and the IC{sub 50} values for A431 and MDA-MB-468 were approximately 10-fold lower than those of MDA-MB-231 and MCF-7. This novel prodrug system, Fcy-hEGF/5-FC, might represent a promising addition to the available class of inhibitors that specifically target EGFR

  9. Epidermal growth factor receptor targeting alters gene expression and restores the adhesion function of cancerous cells as measured by single cell force spectroscopy.

    PubMed

    Azadi, Shohreh; Tafazzoli-Shadpour, Mohammad; Omidvar, Ramin; Moradi, Lida; Habibi-Anbouhi, Mahdi

    2016-12-01

    Loss of cell-cell adhesion function is a common characteristic of many human epithelial carcinomas that is frequently due to loss of E-cadherin expression. In cancer progression, loss of E-cadherin is associated with invasion and metastasis potential, hence restoration of its function may contribute to the metastasis inhibition. This study examined effect of Epidermal Growth Factor Receptor (EGFR/Her1) blockade on the E-cadherin expression, cellular adherence, and cell elasticity in two human epithelial cancer cell lines, MCF7 and A431. EGFR blocking agents as antibodies or small molecules target EGFR directly. Furthermore, due to intracellular signaling pathways they influence cell behavior and activities. The idea here is to investigate the effect of reduced activity of this signaling pathway using anti-EGFR Antibody (Cetuximab) and tyrosine kinase inhibitor (Lapatinib) on cell-cell adhesion and cell mechanical properties. Real-Time PCR analysis demonstrated that treatment of cells with considered drugs increased the expression of E-cadherin gene among samples. The atomic force microscopy-based single cell force spectroscopy technique was used to measure adhesive force of cancerous cells. Results indicated that inhibition of EGFR activity elevated cell-cell adhesion force, accompanied by stiffening of the cell bodies. In summary, Cetuximab and Lapatinib have been found to mediate cell-cell adhesion by restoration of E-cadherin expression and function. Our data suggest possible therapeutic potential for inhibition of metastasis via the blockade of EGFR signaling.

  10. Cancer stem cells in human gastrointestinal cancer.

    PubMed

    Taniguchi, Hiroaki; Moriya, Chiharu; Igarashi, Hisayoshi; Saitoh, Anri; Yamamoto, Hiroyuki; Adachi, Yasushi; Imai, Kohzoh

    2016-11-01

    Cancer stem cells (CSCs) are thought to be responsible for tumor initiation, drug and radiation resistance, invasive growth, metastasis, and tumor relapse, which are the main causes of cancer-related deaths. Gastrointestinal cancers are the most common malignancies and still the most frequent cause of cancer-related mortality worldwide. Because gastrointestinal CSCs are also thought to be resistant to conventional therapies, an effective and novel cancer treatment is imperative. The first reported CSCs in a gastrointestinal tumor were found in colorectal cancer in 2007. Subsequently, CSCs were reported in other gastrointestinal cancers, such as esophagus, stomach, liver, and pancreas. Specific phenotypes could be used to distinguish CSCs from non-CSCs. For example, gastrointestinal CSCs express unique surface markers, exist in a side-population fraction, show high aldehyde dehydrogenase-1 activity, form tumorspheres when cultured in non-adherent conditions, and demonstrate high tumorigenic potential in immunocompromised mice. The signal transduction pathways in gastrointestinal CSCs are similar to those involved in normal embryonic development. Moreover, CSCs are modified by the aberrant expression of several microRNAs. Thus, it is very difficult to target gastrointestinal CSCs. This review focuses on the current research on gastrointestinal CSCs and future strategies to abolish the gastrointestinal CSC phenotype. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Epigenetics in cancer stem cells.

    PubMed

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  12. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  13. Contemporary Renal Cell Cancer Epidemiology

    PubMed Central

    Chow, Wong-Ho; Devesa, Susan S.

    2010-01-01

    We analyzed renal cell cancer incidence patterns in the United States and reviewed recent epidemiologic evidence with regard to environmental and host genetic determinants of renal cell cancer risk. Renal cell cancer incidence rates continued to rise among all racial/ethnic groups in the United States, across all age groups, and for all tumor sizes, with the most rapid increases for localized stage disease and small tumors. Recent cohort studies confirmed the association of smoking, excess body weight, and hypertension with an elevated risk of renal cell cancer, and suggested that these factors can be modified to reduce the risk. There is increasing evidence for an inverse association between renal cell cancer risk and physical activity and moderate intake of alcohol. Occupational exposure to TCE has been positively associated with renal cell cancer risk in several recent studies, but its link with somatic mutations of the VHL gene has not been confirmed. Studies of genetic polymorphisms in relation to renal cell cancer risk have produced mixed results, but genome-wide association studies with larger sample size and a more comprehensive approach are underway. Few epidemiologic studies have evaluated risk factors by subtypes of renal cell cancer defined by somatic mutations and other tumor markers. PMID:18836333

  14. Imaging of epidermal growth factor receptor on single breast cancer cells using surface-enhanced Raman spectroscopy.

    PubMed

    Xiao, Lifu; Harihar, Sitaram; Welch, Danny R; Zhou, Anhong

    2014-09-16

    Epidermal growth factor receptor (EGFR) is widely used as a biomarker for pathological grading and therapeutic targeting of human cancers. This study investigates expression, spatial distribution as well as the endocytosis of EGFR in single breast cancer cells using surface-enhanced Raman spectroscopy (SERS). By incubating anti-EGFR antibody conjugated SERS nanoprobes with an EGFR-over-expressing cancer cell line, A431, EGFR localization was measured over time and found to be located primarily at the cell surface. To further validate the constructed SERS probes, we applied this SERS probes to detect the EGFR expression on breast cancer cells (MDA-MB-435, MDA-MB-231) and their counterpart cell lines in which EGFR expression was down-regulated by breast cancer metastasis suppressor 1 (BRMS1). The results showed that SERS method not only confirms immunoblot data measuring EGFR levels, but also adds new insights regarding EGFR localization and internalization in living cells which is impossible in immunoblot method. Thus, SERS provides a powerful new tool to measure biomarkers in living cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Immunotargeting of cancer stem cells

    PubMed Central

    Gąbka-Buszek, Agnieszka; Jankowski, Jakub; Mackiewicz, Andrzej

    2015-01-01

    Cancer stem cells (CSCs) represent a distinctive population of tumour cells that control tumour initiation, progression, and maintenance. Their influence is great enough to risk the statement that successful therapeutic strategy must target CSCs in order to eradicate the disease. Because cancer stem cells are highly resistant to chemo- and radiotherapy, new tools to fight against cancer have to be developed. Expression of antigens such as ALDH, CD44, EpCAM, or CD133, which distinguish CSCs from normal cells, together with CSC immunogenicity and relatively low toxicity of immunotherapies, makes immune targeting of CSCs a promising approach for cancer treatment. This review will present immunotherapeutic approaches using dendritic cells, T cells, pluripotent stem cells, and monoclonal antibodies to target and eliminate CSCs. PMID:25691822

  16. Cancer stem cells in surgery

    PubMed Central

    D’ANDREA, V.; GUARINO, S.; DI MATTEO, F.M.; SACCÀ, M. MAUGERI; DE MARIA, R.

    2014-01-01

    The Cancer Stem Cells (CSC) hypothesis is based on three fundamental ideas: 1) the similarities in the mechanisms that regulate self-renewal of normal stem cells and cancer cells; 2) the possibility that tumour cells might arise from normal stem cells; 3) the notion that tumours might contain ‘cancer stem cells’ - rare cells with indefinite proliferative potential that drive the formation and growth of tumours. The roles for cancer stem cells have been demonstrated for some cancers, such as cancers of the hematopoietic system, breast, brain, prostate, pancreas and liver. The attractive idea about cancer stem cell hypothesis is that it could partially explain the concept of minimal residual disease. After surgical macroscopically zero residual (R0) resections, even the persistence of one single cell nestling in one of the so called “CSCs niches” could give rise to distant relapse. Furthermore the metastatic cells can remain in a “dormant status” and give rise to disease after long period of apparent disease free. These cells in many cases have acquired resistance traits to chemo and radiotherapy making adjuvant treatment vain. Clarifying the role of the cancer stem cells and their implications in the oncogenesis will play an important role in the management of cancer patient by identifying new prospective for drugs and specific markers to prevent and monitoring relapse and metastasis. The identification of the niche where the CSCs reside in a dormant status might represent a valid instrument to follow-up patients also after having obtained a R0 surgical resection. What we believe is that if new diagnostic instruments were developed specifically to identify the localization and status of activity of the CSCs during tumor dormancy, this would lead to impressive improvement in the early detection and management of relapse and metastasis. PMID:25644725

  17. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling.

    PubMed

    Lin, Tsung-Han; Hsu, Wen-Hsien; Tsai, Pei-Hsun; Huang, Ying-Tang; Lin, Cheng-Wei; Chen, Ku-Chung; Tsai, Inn-Ho; Kandaswami, Chithan C; Huang, Chang-Jen; Chang, Geen-Dong; Lee, Ming-Ting; Cheng, Chia-Hsiung

    2017-03-09

    We previously reported that the dietary flavonoids, luteolin and quercetin, might inhibit the invasiveness of cervical cancer by reversing epithelial-mesenchymal transition (EMT) signaling. However, the regulatory mechanism exerted by luteolin and quercetin is still unclear. This study analyzed the invasiveness activation by ubiquitin E2S ligase (UBE2S) through EMT signaling and inhibition by luteolin and quercetin. We found that UBE2S expression was significantly higher in highly invasive A431 subgroup III (A431-III) than A431-parental (A431-P) cells. UBE2S small interfering (si)RNA knockdown and overexpression experiments showed that UBE2S increased the migratory and invasive abilities of cancer cells through EMT signaling. Luteolin and quercetin significantly inhibited UBE2S expression. UBE2S showed a negative correlation with von Hippel-Lindau (VHL) and a positive correlation with hypoxia-induced factor (Hif)-1α. Our findings suggest that high UBE2S in malignant cancers contributes to cell motility through EMT signaling and is reversed by luteolin and quercetin. UBE2S might contribute to Hif-1α signaling in cervical cancer. These results show the metastatic inhibition of cervical cancer by luteolin and quercetin through reducing UBE2S expression, and provide a functional role for UBE2S in the motility of cervical cancer. UBE2S could be a potential therapeutic target in cervical cancer.

  18. Nanotechniques Inactivate Cancer Stem Cells

    NASA Astrophysics Data System (ADS)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  19. BRACHYURY confers cancer stem cell characteristics on colorectal cancer cells.

    PubMed

    Sarkar, Debalina; Shields, Brian; Davies, Melanie L; Müller, Jürgen; Wakeman, Jane A

    2012-01-15

    Cancer stem cells (CSCs) are initiating cells in colorectal cancer (CRC). Colorectal tumours undergo epithelial to mesenchymal transition (EMT)-like processes at the invasive front, enabling invasion and metastasis, and recent studies have linked this process to the acquisition of stem cell-like properties. It is of fundamental importance to understand the molecular events leading to the establishment of cancer initiating cells and how these mechanisms relate to cellular transitions during tumourigenesis. We use an in vitro system to recapitulate changes in CRC cells at the invasive front (mesenchymal-like cells) and central mass (epithelial-like cells) of tumours. We show that the mesoderm inducer BRACHYURY is expressed in a subpopulation of CRC cells that resemble invasive front mesenchymal-like cells, where it acts to impose characteristics of CSCs in a fully reversible manner, suggesting reversible formation and modulation of such cells. BRACHYURY, itself regulated by the oncogene β-catenin, influences NANOG and other 'stemness' markers including a panel of markers defining CRC-CSC whose presence has been linked to poor patient prognosis. Similar regulation of NANOG through BRACHYURY was observed in other cells lines, suggesting this might be a pathway common to cancer cells undergoing mesenchymal transition. We suggest that BRACHYURY may regulate NANOG in mesenchymal-like CRC cells to impose a 'plastic-state', allowing competence of cells to respond to signals prompting invasion or metastasis.

  20. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators.

    PubMed

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2'-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16(INK4a) and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. NK Cells and Cancer Immunoediting.

    PubMed

    Guillerey, Camille; Smyth, Mark J

    2016-01-01

    Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.

  2. [Cell cycle regulation in cancer stem cells].

    PubMed

    Takeishi, Shoichiro

    2015-05-01

    In addition to the properties of self-renewal and multipotency, cancer stem cells share the characteristics of their distinct cell cycle status with somatic stem cells. Cancer stem cells (CSCs) are maintained in a quiescent state with this characteristic conferring resistance to anticancer therapies that target dividing cells. Elucidation of the mechanisms of CSC quiescence might therefore be expected to provide further insight into CSC behaviors and lead to the elimination of cancer. This review summarizes several key regulators of the cell cycle in CSCs as well as attempts to define future challenges in this field, especially from the point of view of the application of our current understandings to the clinical medicine.

  3. Cytotoxic Effects of PEGylated Anti-EGFR Immunoliposomes Combined with Doxorubicin and Rhenium-188 Against Cancer Cells.

    PubMed

    Hsu, Wei-Chuan; Cheng, Chu-Nian; Lee, Te-Wei; Hwang, Jeng-Jong

    2015-09-01

    We aimed to construct epidermal growth factor receptor (EGFR)-targeting cetuximab-immunoliposomes (IL-C225) for targeted delivery of doxorubicin and rhenium-188 (Re-188) to EGFR(+) cancer cells. Synthesized IL-C225 was analyzed by dynamic light scattering, transmission electron microscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Cell binding and internalization were examined using doxorubicin-loaded IL-C225 (DXR-IL-C225) with confocal microscopy. IL-C225 combined with doxorubicin and Re-188 ((188)Re-DXR-IL-C225) was synthesized, and the cytotoxic effects of (188)Re-DXR-IL-C225 were analyzed in EGFR(+) cancer cells using cell viability assays. IL-C225 bound to EGFR on A431 cancer cells and was rapidly internalized. Furthermore, IL-C225 localized within the tumor cells efficiently. (188)Re-DXR-IL-C225 exhibited outstanding cytotoxic effects against EGFR(+) cancer cells in vitro and showed superior cytotoxic effects compared to DXR-IL-C225 or (188)Re-IL-C225 alone. The new formulation of (188)Re-DXR-IL-C225 may be a potential theranostic vehicle for delivery of drugs in the treatment of EGFR-overexpressing human cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Eldecalcitol (ED-71), an analog of 1α,25-dihydroxyvitamin D3 as a potential anti-cancer agent for oral squamous cell carcinomas.

    PubMed

    Shintani, T; Rosli, S N Z; Takatsu, F; Choon, Y F; Hayashido, Y; Toratani, S; Usui, E; Okamoto, T

    2016-11-01

    We have previously reported that 1,25(OH)2D3 inhibits NF-κB activity and thus inhibits growth of OSCC cells in serum-free culture and down-regulates HBp17/FGFBP-1 expression, which is important for cancer cell growth and angiogenesis. Here, we have investigated the effects of ED-71, an analog of vitamin D3 (VD) on OSCC cell lines in serum-free culture. It is known that ED-71 has a stronger inhibitory effect on bone resorption compared to VD and other VD analogs. To the best of our knowledge, there was no report examining the potential of ED-71 as an anti-cancer agent for OSCC. We found that ED-71 is able to inhibit the growth of cancer cell lines at a concentration of hundred times lower than calcitriol. As Cyp24A1 was reportedly induced in cancer cells, we measured the expression of CYP24A1 in OSCC cell lines (NA and UE), A431 epidermoid carcinoma and normal fibroblast cell (gfi) in serum-free culture. As a result, CYP24A1 mRNA and the protein expression in the OSCC cells treated with ED-71 increased in a dose-dependent manner. However, in vivo experiment, in which the A431 cells were implanted in mice, tumor formation was reduced by the ED-71 treatment with no significant difference between Cyp24A1 expression in the tumors of ED-71-treated and control group, as analyzed by western blotting and immunohistochemistry. These results suggest that ED-71 is a potential anti-cancer agent for OSCC.

  5. Drugs Approved for Kidney (Renal Cell) Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs ... that are not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) ...

  6. Cancer stem cells in osteosarcoma.

    PubMed

    Brown, Hannah K; Tellez-Gabriel, Marta; Heymann, Dominique

    2017-02-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and in some cases metastasis. Recent published work demonstrates evidence of cancer stem cell phenotypes in osteosarcoma with links to drug resistance and tumorigenesis. In this review we will discuss the commonly used isolation techniques for cancer stem cells in osteosarcoma as well as the identified biochemical and molecular markers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    PubMed

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  8. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    SciTech Connect

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  9. Topical phospho-sulindac (OXT-328) is effective in the treatment of non-melanoma skin cancer.

    PubMed

    Cheng, Ka Wing; Mattheolabakis, George; Wong, Chi C; Ouyang, Nengtai; Huang, Liqun; Constantinides, Panayiotis P; Rigas, Basil

    2012-10-01

    Phospho-sulindac (P-S, OXT-328), a novel sulindac derivative, has shown superior anticancer efficacy and safety compared to sulindac. In this study, we investigated the efficacy of topical P-S hydrogel in the treatment of non-melanoma skin cancer in preclinical models. P-S is a potent inhibitor of A431 epidermoid carcinoma in vitro and achieves this effect by inhibiting cell proliferation and inducing apoptosis. The anticancer efficacy of topical and oral P-S was further evaluated in mice bearing A431 intradermal xenografts. Compared to the controls, topical P-S hydrogel inhibited the A431 xenografts by 70.5% (p<0.01), while oral P-S inhibited it by 43.4% (p<0.05), being significantly less effective than topical P-S (p=0.017). Topical P-S hydrogel generated significant levels (>500 nmol/g tumor tissue) of intact P-S in the tumors, accounting for 92.5% of the total metabolites in the A431 xenografts. This local delivery of high levels of intact P-S to the A431 xenografts is an important contributor to the potent activity of topical P-S and no local or systemic side effects were noted in the treatment group. Thus, topical P-S is a promising treatment modality against non-melanoma skin cancer and merits further evaluation.

  10. Salivary Gland Cancer Stem Cells

    PubMed Central

    Adams, April; Warner, Kristy; Nör, Jacques E.

    2013-01-01

    Emerging evidence suggests the existence of a tumorigenic population of cancer cells that demonstrate stem cell-like properties such as self-renewal and multipotency. These cells, termed cancer stem cells (CSC), are able to both initiate and maintain tumor formation and progression. Studies have shown that CSC are resistant to traditional chemotherapy treatments preventing complete eradication of the tumor cell population. Following treatment, CSC are able to re-initiate tumor growth leading to patient relapse. Salivary gland cancers are relatively rare but constitute a highly significant public health issue due to the lack of effective treatments. In particular, patients with mucoepidermoid carcinoma or adenoid cystic carcinoma, the two most common salivary malignancies, have low long-term survival rates due to the lack of response to current therapies. Considering the role of CSC in resistance to therapy in other tumor types, it is possible that this unique sub-population of cells is involved in resistance of salivary gland tumors to treatment. Characterization of CSC can lead to better understanding of the pathobiology of salivary gland malignancies as well as to the development of more effective therapies. Here, we make a brief overview of the state-of-the-science in salivary gland cancer, and discuss possible implications of the cancer stem cell hypothesis to the treatment of salivary gland malignancies. PMID:23810400

  11. Vitamin C protects against UV irradiation-induced apoptosis through reactivating silenced tumor suppressor genes p21 and p16 in a Tet-dependent DNA demethylation manner in human skin cancer cells.

    PubMed

    Lin, Jin-ran; Qin, Hai-hong; Wu, Wen-yu; He, Shu-juan; Xu, Jin-hua

    2014-08-01

    DNA methylation plays important roles in various kinds of carcinogenesis. Vitamin C could induce Tet-dependent DNA demethylation in embryonic stem cells. Therefore, the antagonizing activity of vitamin C on ultraviolet (UV)-induced apoptosis was investigated in this study. Apoptosis of human epidermoid carcinoma A431 cells and p16-knockout (KO) or p21-KO fibroblasts was assessed by a fluorescence-activated cell sorter. Real-time PCR and western blot were used to determine the relative expression levels of p12, p21, and Tet1/2/3 genes. The global DNA methylation levels were determined using MethylFlash Methylated DNA Quantification Kit in A431 cells with or without vitamin C treatment. To examine the DNA demethylation activity of vitamin C, DNA immunoprecipitation (DIP)-qPCR was performed to determine the relative levels of 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC) in p16 and p21 promoter regions containing cytosine-phosphorothiolated guanine (CpG) islands. The increasing apoptosis of A431 cells under prolonged UV irradiation was remarkably decreased by the combination of vitamin C treatment, suggesting that vitamin C protects against UV-induced apoptosis. Concurrently, vitamin C induced a significant reduction of global DNA methylation in a time- and dose-dependent manner in A431 cells. Vitamin C also reactivated the expression of p16 and p21 at mRNA and protein levels. Mechanistically, about 27% 5hmC-positive cells were observed in vitamin C-treated A431 cells, and the 5hmC enrichment at p16 and p21 promoter regions was also largely increased by vitamin C. Moreover, the expression of p16 and p21 was decreased in Tet1/2 double-knockdown cells, in which the inhibitory effect of vitamin C on UV-induced apoptosis was dismissed. Furthermore, the inhibition of UV-induced apoptosis on vitamin C treatment nearly disappeared in p16- or p21-knockout primary cultured fibroblasts. These results demonstrate that vitamin C effectively antagonizes UV

  12. Oscillations of ultra-weak photon emission from cancer and non-cancer cells stressed by culture medium change and TNF-α.

    PubMed

    Madl, Pierre; Verwanger, Thomas; Geppert, Mark; Scholkmann, Felix

    2017-09-12

    Cells spontaneously emit photons in the UV to visible/near-infrared range (ultra-weak photon emission, UPE). Perturbations of the cells' state cause changes in UPE (evoked UPE). The aim of the present study was to analyze the evoked UPE dynamics of cells caused by two types of cell perturbations (stressors): (i) a cell culture medium change, and (ii) application of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α). Four types of human cell lines were used (squamous cell carcinoma cells, A431; adenocarcinomic alveolar basal epithelial cells, A549; p53-deficient keratinocytes, HaCaT, and cervical cancer cells, HeLa). In addition to the medium change, TNF-α was applied at different concentrations (5, 10, 20, and 40 ng/mL) and UPE measurements were performed after incubation times of 0, 30, 60, 90 min, 2, 5, 12, 24, 48 h. It was observed that (i) the change of cell culture medium (without added TNF-α) induces a cell type-specific transient increase in UPE with the largest UPE increase observed in A549 cells, (ii) the addition of TNF-α induces a cell type-specific and dose-dependent change in UPE, and (iii) stressed cell cultures in general exhibit oscillatory UPE changes.

  13. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells.

    PubMed

    Torquato, Heron F V; Goettert, Márcia I; Justo, Giselle Z; Paredes-Gamero, Edgar J

    2017-04-01

    Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.

  14. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  15. Schwann cells induce cancer cell dispersion and invasion.

    PubMed

    Deborde, Sylvie; Omelchenko, Tatiana; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J

    2016-04-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

  16. Squamous cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. The earliest form of ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  17. Basal cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. This type of skin ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  18. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells.

    PubMed

    Zwergel, Clemens; Czepukojc, Brigitte; Evain-Bana, Emilie; Xu, Zhanjie; Stazi, Giulia; Mori, Mattia; Patsilinakos, Alexandros; Mai, Antonello; Botta, Bruno; Ragno, Rino; Bagrel, Denise; Kirsch, Gilbert; Meiser, Peter; Jacob, Claus; Montenarh, Mathias; Valente, Sergio

    2017-07-07

    Cell division cycle phosphatases CDC25 A, B and C are involved in modulating cell cycle processes and are found overexpressed in a large panel of cancer typology. Here, we describe the development of two novel quinone-polycycle series of CDC25A and C inhibitors on the one hand 1a-k, coumarin-based, and on the other 2a-g, quinolinone-based, which inhibit either enzymes up to a sub-micro molar level and at single-digit micro molar concentrations, respectively. When tested in six different cancer cell lines, compound 2c displayed the highest efficacy to arrest cell viability, showing in almost all cell lines sub-micro molar IC50 values, a profile even better than the reference compound NCS95397. To investigate the putative binding mode of the inhibitors and to develop quantitative structure-activity relationships, molecular docking and 3-D QSAR studies were also carried out. Four selected inhibitors, 1a, 1d, 2a and 2c have been also tested in A431 cancer cells; among them, compound 2c was the most potent one leading to cell proliferation arrest and decreased CDC25C protein levels together with its splicing variant. Compound 2c displayed increased phosphorylation levels of histone H3, induction of PARP and caspase 3 cleavage, highlighting its contribution to cell death through pro-apoptotic effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody.

    PubMed

    Hayashi, Nobuyoshi; Chiba, Hirofumi; Kuronuma, Koji; Go, Shinji; Hasegawa, Yoshihiro; Takahashi, Motoko; Gasa, Shinsei; Watanabe, Atsushi; Hasegawa, Tadashi; Kuroki, Yoshio; Inokuchi, Jinichi; Takahashi, Hiroki

    2013-01-01

    Gangliosides are glycosphingolipids found on the cell surface. They act as recognition molecules or signal modulators and regulate cell proliferation and differentiation. N-glycolylneuraminic acid (NeuGc)-containing gangliosides have been detected in some neoplasms in humans, although they are usually absent in normal human tissues. Our aim was to evaluate the presence of NeuGc-containing gangliosides including GM3 (NeuGc) and assess their relationship with the prognosis of non-small-cell lung cancer (NSCLC). NeuGc-containing ganglioside expression in NSCLC tissues was analyzed immunohistochemically using the mouse monoclonal antibody GMR8, which is specific for gangliosides with NeuGc alpha 2,3Gal-terminal structures. On the basis of NeuGc-containing ganglioside expression, we performed survival analysis. We also investigated the differences in the effects of GM3 (N-acetylneuraminic acid [NeuAc]) and GM3 (NeuGc) on inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase in A431 cells. As a result, the presence of NeuGc-containing gangliosides was evident in 86 of 93 (93.5%) NSCLC samples. The NSCLC patients with high NeuGc-containing ganglioside expression had a low overall survival rate and a significantly low progression-free survival rate. In the in vitro study, the inhibitory effect of GM3 on EGFR tyrosine kinase in A431 cells after exposure to GM3 (NeuGc) was lower than that after exposure to GM3 (NeuAc). In conclusion, NeuGc-containing gangliosides including GM3 (NeuGc) are widely expressed in NSCLC, and NeuGc-containing ganglioside expression is associated with patient survival. The difference in the effects of GM3 (NeuGc) and GM3 (NeuAc) on the inhibition of EGFR tyrosine kinase might contribute to improvement in the prognosis of NSCLC patients. © 2012 Japanese Cancer Association.

  20. Leptin and Cancer: From Cancer Stem Cells to Metastasis (Preprint)

    DTIC Science & Technology

    2011-01-01

    1 Endocrine-Related Cancer Commentary Leptin and Cancer: From Cancer Stem Cells to Metastasis Jiyoung Park 1 and Philipp E. Scherer...REPORT DATE JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Leptin And Cancer: From Cancer Stem Cells To...interest. Recently several groups have addressed the functional roles of leptin , an adipocyte-derived adipokine, for mammary tumor progression. In this

  1. Alternative fuels for cancer cells.

    PubMed

    Keenan, Melissa M; Chi, Jen-Tsan

    2015-01-01

    Tumor metabolism is significantly altered to support the various metabolic needs of tumor cells. The most prominent change is the increased tumor glycolysis that leads to increased glucose uptake and utilization. However, it has become obvious that many non-glucose nutrients, such as amino acids, lactate, acetate, and macromolecules, can serve as alternative fuels for cancer cells. This knowledge reveals an unexpected flexibility and evolutionarily conserved model in which cancer cells uptake nutrients from their external environment to fulfill their necessary energetic needs. Tumor cells may have evolved the ability to utilize different carbon sources because of the limited supply of nutrients in their microenvironment, which can be driven by oncogenic mutations or tumor microenvironmental stresses. In certain cases, these factors permanently alter the tumor cells' metabolism, causing certain nutrients to become indispensable and thus creating opportunities for therapeutic intervention to eradicate tumors by their metabolic vulnerabilities.

  2. How Can We Treat Cancer Disease Not Cancer Cells?

    PubMed Central

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells. PMID:28052653

  3. Cell-Cell Adhesion and Breast Cancer.

    DTIC Science & Technology

    1998-01-01

    Staging of breast cancer. In: K.I. Bland and E.M. Copeland (eds.), The breast: Comprehensive management of benign and malignant diseases , pp. 313-330... desmosomes . The physical strength of adhesion between two cells is likely to be dependent upon a number of factors, including the number of adhesion

  4. On the stem cell origin of cancer.

    PubMed

    Sell, Stewart

    2010-06-01

    In each major theory of the origin of cancer-field theory, chemical carcinogenesis, infection, mutation, or epigenetic change-the tissue stem cell is involved in the generation of cancer. Although the cancer type is identified by the more highly differentiated cells in the cancer cell lineage or hierarchy (transit-amplifying cells), the property of malignancy and the molecular lesion of the cancer exist in the cancer stem cell. In the case of teratocarcinomas, normal germinal stem cells have the potential to become cancers if placed in an environment that allows expression of the cancer phenotype (field theory). In cancers due to chemically induced mutations, viral infections, somatic and inherited mutations, or epigenetic changes, the molecular lesion or infection usually first occurs in the tissue stem cells. Cancer stem cells then give rise to transit-amplifying cells and terminally differentiated cells, similar to what happens in normal tissue renewal. However, the major difference between cancer growth and normal tissue renewal is that whereas normal transit amplifying cells usually differentiate and die, at various levels of differentiation, the cancer transit-amplifying cells fail to differentiate normally and instead accumulate (ie, they undergo maturation arrest), resulting in cancer growth.

  5. Cancer stem cells and metastasis.

    PubMed

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  6. [Cancer initiating cell theory: popularity and controversies].

    PubMed

    Chen, Hua; Huang, Qiang; Dong, Jun; Lan, Qing

    2006-06-01

    The cancer stem cell model proposes that most tumors are derived from a single cell that is transformed into a cancer-initiating cell (cancer stem cell). Cancer stem cells have the capacity to proliferate, differentiate, and form tumors in vivo. However, the origin of cancer stem cells remains controversial. Normal stem cells are regarded as an ideal candidate for the origin of cancer stem cells when take similar characters and signaling pathways between them into consideration. In addition,cell fusion is an important physiologic process during development and tissue repair,and is closely related to several fundamental features of tumors,and thus could be involved in the development of cancer stem cells.

  7. Activity guided isolation and modification of juglone from Juglans regia as potent cytotoxic agent against lung cancer cell lines.

    PubMed

    Zhang, Xue-Bang; Zou, Chang-Lin; Duan, Yu-Xia; Wu, Fang; Li, Gang

    2015-11-03

    Juglans regia has been found to exhibit significant anticancer activity against various human cancer cell lines. This study was undertaken to isolate the active chemical constituent (Juglone) and to investigate its cytotoxic activity along with its various analogs against different human cancer cell lines. Isolation of juglone, a napthoquinone, from the chloroform extract of the root part of Juglans regia was executed by flash chromatography using silica gel as stationary phase. The isolated Juglone was used as starting material for the further synthesis of a novel series of triazolyl analogs using click chemistry approach to investigate their cytotoxic potential against different human cancer cell lines using 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay. The different extracts of Juglans regia and the isolated compound (juglone) exhibited satisfactory cytotoxic activity against a panel of eight different human cancer cell lines namely, prostate colon (Colo-205 and HCT-116), breast (T47D), prostate (PC-3 and DU-145), skin (A-431) and lung (NCI-H322 and A549). Interestingly, all the synthesised analogs displayed enhanced and selective cytotoxic activity against lung cancer cell lines only. Of the synthesized derivatives, 15a and 16a displayed the best activity with IC50 of 4.72 and 4.67 μM against A549 cells. Both these derivatives exhibited superior potency to BEZ-235 against both the lung cancer cell lines. So far as the structural aspects are concerned, electron withdrawing substituents at the ortho position of R moiety of the triazolyl analogs seem to be essential for attaining better activity. The present study demonstrates the selective and enhanced cytotoxic activity of the triazolyl analogs of juglone against NCI-H322 and A549 human lung cancer cell lines. Some derivatives exhibited superior potency to BEZ-235, a commercially available anticancer agent.

  8. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells.

    PubMed

    Lameijer, Lucien N; Ernst, Daniël; Hopkins, Samantha L; Meijer, Michael S; Askes, Sven H C; Le Dévédec, Sylvia E; Bonnet, Sylvestre

    2017-09-11

    We describe two water-soluble ruthenium complexes, [1]Cl2 and [2]Cl2 , that photodissociate to release a cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with a low dose (21 J cm(-2) ) of red light in an oxygen-independent manner. Using a specific NAMPT activity assay, up to an 18-fold increase in inhibition potency was measured upon red-light activation of [2]Cl2 , while [1]Cl2 was thermally unstable. For the first time, the dark and red-light-induced cytotoxicity of these photocaged compounds could be tested under hypoxia (1 % O2 ). In skin (A431) and lung (A549) cancer cells, a 3- to 4-fold increase in cytotoxicity was found upon red-light irradiation for [2]Cl2 , whether the cells were cultured and irradiated with 1 % or 21 % O2 . These results demonstrate the potential of photoactivated chemotherapy for hypoxic cancer cells, in which classical photodynamic therapy, which relies on oxygen activation, is poorly efficient. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Alternative Fuels for Cancer Cells

    PubMed Central

    Keenan, Melissa; Chi, Jen-Tsan

    2015-01-01

    Tumor metabolism is significantly altered to support the various metabolic needs of tumor cells. The most prominent change is the increased tumor glycolysis that leads to increased glucose uptake and utilization. However, it has become obvious that many non-glucose nutrients, such as amino acids, lactate, acetate and macromolecules, can serve as alternative fuels for cancer cells. This knowledge reveals an unexpected flexibility and evolutionarily-conserved model in which cancer cells uptake nutrients from their external environment to fulfill their necessary energetic needs. It is possible that tumor cells have evolved the ability to utilize different carbon sources due to the limited supply of nutrient that can be driven by oncogenic mutations and tumor microenvironmental stresses. In certain cases, these factors permanently alter the tumor cells’ metabolism, causing certain nutrients to become indispensable and thus creating opportunities for therapeutic intervention to eradicate tumors by their metabolic vulnerabilities. PMID:25815843

  10. Invasive cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  11. Expression of heparanase in basal cell carcinoma and squamous cell carcinoma*

    PubMed Central

    Pinhal, Maria Aparecida Silva; Almeida, Maria Carolina Leal; Costa, Alessandra Scorse; Theodoro, Thérèse Rachell; Serrano, Rodrigo Lorenzetti; Machado Filho, Carlos D'Apparecida Santos

    2016-01-01

    Background Heparanase is an enzyme that cleaves heparan sulfate chains. Oligosaccharides generated by heparanase induce tumor progression. Basal cell carcinoma and squamous cell carcinoma comprise types of nonmelanoma skin cancer. Objectives Evaluate the glycosaminoglycans profile and expression of heparanase in two human cell lines established in culture, immortalized skin keratinocyte (HaCaT) and squamous cell carcinoma (A431) and also investigate the expression of heparanase in basal cell carcinoma, squamous cell carcinoma and eyelid skin of individuals not affected by the disease (control). Methods Glycosaminoglycans were quantified by electrophoresis and indirect ELISA method. The heparanase expression was analyzed by quantitative RT-PCR (qRTPCR). Results The A431 strain showed significant increase in the sulfated glycosaminoglycans, increased heparanase expression and decreased hyaluronic acid, comparing to the HaCaT lineage. The mRNA expression of heparanase was significantly higher in Basal cell carcinoma and squamous cell carcinoma compared with control skin samples. It was also observed increased heparanase expression in squamous cell carcinoma compared to the Basal cell carcinoma. Conclusion The glycosaminoglycans profile, as well as heparanase expression are different between HaCaT and A431 cell lines. The increased expression of heparanase in Basal cell carcinoma and squamous cell carcinoma suggests that this enzyme could be a marker for the diagnosis of such types of non-melanoma cancers, and may be useful as a target molecule for future alternative treatment. PMID:27828631

  12. Expression of heparanase in basal cell carcinoma and squamous cell carcinoma.

    PubMed

    Pinhal, Maria Aparecida Silva; Almeida, Maria Carolina Leal; Costa, Alessandra Scorse; Theodoro, Thérèse Rachell; Serrano, Rodrigo Lorenzetti; Machado, Carlos D'Apparecida Santos

    2016-01-01

    Heparanase is an enzyme that cleaves heparan sulfate chains. Oligosaccharides generated by heparanase induce tumor progression. Basal cell carcinoma and squamous cell carcinoma comprise types of nonmelanoma skin cancer. Evaluate the glycosaminoglycans profile and expression of heparanase in two human cell lines established in culture, immortalized skin keratinocyte (HaCaT) and squamous cell carcinoma (A431) and also investigate the expression of heparanase in basal cell carcinoma, squamous cell carcinoma and eyelid skin of individuals not affected by the disease (control). Glycosaminoglycans were quantified by electrophoresis and indirect ELISA method. The heparanase expression was analyzed by quantitative RT-PCR (qRTPCR). The A431 strain showed significant increase in the sulfated glycosaminoglycans, increased heparanase expression and decreased hyaluronic acid, comparing to the HaCaT lineage. The mRNA expression of heparanase was significantly higher in Basal cell carcinoma and squamous cell carcinoma compared with control skin samples. It was also observed increased heparanase expression in squamous cell carcinoma compared to the Basal cell carcinoma. The glycosaminoglycans profile, as well as heparanase expression are different between HaCaT and A431 cell lines. The increased expression of heparanase in Basal cell carcinoma and squamous cell carcinoma suggests that this enzyme could be a marker for the diagnosis of such types of non-melanoma cancers, and may be useful as a target molecule for future alternative treatment.

  13. Notch signaling in cancer stem cells.

    PubMed

    Wang, Jialiang; Sullenger, Bruce A; Rich, Jeremy N

    2012-01-01

    Subpopulations of cancer cells with stem cell-like characteristics, termed cancer stem cells, have been identified in a wide range of human cancers. Cancer stem cells are defined by their ability to self-renew as well as recapitulate the original heterogeneity of cancer cells in culture and in serial xenotransplants. Not only are cancer stem cells highly tumorigenic, but these cells are implicated in tumor resistance to conventional chemotherapy and radiotherapy, thus highlighting their significance as therapeutic targets. Considerable similarities have been found between cancer stem cells and normal stem cells on their dependence on certain signaling pathways. More specifically, the core stem cell signaling pathways, such as the Wnt, Notch and Hedgehog pathways, also critically regulate the self-renewal and survival of cancer stem cells. While the oncogenic functions of Notch pathway have been well documented, its role in cancer stem cells is just emerging. In this chapter, we will discuss recent advances in cancer stem cell research and highlight the therapeutic potential of targeting Notch in cancer stem cells.

  14. On the Stem Cell Origin of Cancer

    PubMed Central

    Sell, Stewart

    2010-01-01

    In each major theory of the origin of cancer—field theory, chemical carcinogenesis, infection, mutation, or epigenetic change—the tissue stem cell is involved in the generation of cancer. Although the cancer type is identified by the more highly differentiated cells in the cancer cell lineage or hierarchy (transit-amplifying cells), the property of malignancy and the molecular lesion of the cancer exist in the cancer stem cell. In the case of teratocarcinomas, normal germinal stem cells have the potential to become cancers if placed in an environment that allows expression of the cancer phenotype (field theory). In cancers due to chemically induced mutations, viral infections, somatic and inherited mutations, or epigenetic changes, the molecular lesion or infection usually first occurs in the tissue stem cells. Cancer stem cells then give rise to transit-amplifying cells and terminally differentiated cells, similar to what happens in normal tissue renewal. However, the major difference between cancer growth and normal tissue renewal is that whereas normal transit amplifying cells usually differentiate and die, at various levels of differentiation, the cancer transit-amplifying cells fail to differentiate normally and instead accumulate (ie, they undergo maturation arrest), resulting in cancer growth. PMID:20431026

  15. ALA-PpIX variability quantitatively imaged in A431 epidermoid tumors using in vivo ultrasound fluorescence tomography and ex vivo assay

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Flynn, Brendan P.; Gunn, Jason R.; Samkoe, Kimberley S.; Anand, Sanjay; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Treatment monitoring of Aminolevunilic-acid (ALA) - Photodynamic Therapy (PDT) of basal-cell carcinoma (BCC) calls for superficial and subsurface imaging techniques. While superficial imagers exist for this purpose, their ability to assess PpIX levels in thick lesions is poor; additionally few treatment centers have the capability to measure ALA-induced PpIX production. An area of active research is to improve treatments to deeper and nodular BCCs, because treatment is least effective in these. The goal of this work was to understand the logistics and technical capabilities to quantify PpIX at depths over 1mm, using a novel hybrid ultrasound-guided, fiber-based fluorescence molecular spectroscopictomography system. This system utilizes a 633nm excitation laser and detection using filtered spectrometers. Source and detection fibers are collinear so that their imaging plane matches that of ultrasound transducer. Validation with phantoms and tumor-simulating fluorescent inclusions in mice showed sensitivity to fluorophore concentrations as low as 0.025μg/ml at 4mm depth from surface, as presented in previous years. Image-guided quantification of ALA-induced PpIX production was completed in subcutaneous xenograft epidermoid cancer tumor model A431 in nude mice. A total of 32 animals were imaged in-vivo, using several time points, including pre-ALA, 4-hours post-ALA, and 24-hours post-ALA administration. On average, PpIX production in tumors increased by over 10-fold, 4-hours post-ALA. Statistical analysis of PpIX fluorescence showed significant difference among all groups; p<0.05. Results were validated by exvivo imaging of resected tumors. Details of imaging, analysis and results will be presented to illustrate variability and the potential for imaging these values at depth.

  16. Proteasome expression and activity in cancer and cancer stem cells.

    PubMed

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  17. [Dendritic cells in cancer immunotherapy].

    PubMed

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  18. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  19. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties

  20. Hallmarks of cancer: of all cancer cells, all the time?

    PubMed

    Floor, Sébastien L; Dumont, Jacques E; Maenhaut, Carine; Raspe, Eric

    2012-09-01

    In two landmark articles, Hanahan and Weinberg synthesized into one conceptual framework 'the hallmarks of cancer', a massive amount of information describing the characteristics of a cancer cell. Although this is neither the intention nor the belief of the authors, hallmarks are often interpreted as applying to a canonic cancer cell, or equally to all cells within a cancer. In this article, we clarify the separate concepts of causes, oncogenic events, signal transduction programs, and hallmarks to show that there is no unimodal relation between these concepts but a complex network of interrelations that vary in different cells, between cells, and at different times in any given cell. We consider cancer as an evolving, dynamic, and heterogeneous system, explaining, at least in part, the difficulty of treating cancer and supporting the use of simultaneous, multitarget therapies.

  1. Reprogramming cancer cells: overview & current progress.

    PubMed

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  2. A POX on Renal Cancer Cells | Center for Cancer Research

    Cancer.gov

    Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.

  3. Cancer stem cells: a potential target for cancer therapy.

    PubMed

    Qiu, Hong; Fang, Xiaoguang; Luo, Qi; Ouyang, Gaoliang

    2015-09-01

    Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.

  4. Cell Phones and Cancer Risk

    MedlinePlus

    ... Caregivers Questions to Ask about Advanced Cancer Research Managing Cancer Care Finding Health Care Services Costs & Medical ... Feelings Planning for Advanced Cancer Advanced Cancer & Caregivers Managing Cancer Care Finding Health Care Services Managing Costs ...

  5. Metabolic Regulation of Ovarian Cancer Cell Death

    DTIC Science & Technology

    2012-07-01

    Following treatment with chemotherapeutic agents, responsive ovarian cancer cells undergo apoptotic cell death . Several groups have shown that the...apoptotic protease, caspase 2 (C2), is an essential activator of cell death in ovarian cancer cells treated with cisplatin and we have found, by knock

  6. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research.

  7. Programmed Cell Death in Breast Cancer.

    DTIC Science & Technology

    1996-10-01

    TITLE: Programmed Cell Death in Breast Cancer PRINCIPAL INVESTIGATOR: Clark W. Distelhorst, M.D. CONTRACTING ORGANIZATION: Case Western Reserve...Programmed Cell Death in Breast Cancer DAMD17-94-J-4451 6. AUTHOR(S) Clark W. Distelhorst, M.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...cell death , apoptosis, in breast cancer cells has been developed. This model is based on induction of apoptosis by the selective endoplasmic reticulum

  8. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells.

    PubMed

    Gerashchenko, O L; Zhuravel, E V; Skachkova, O V; Khranovska, N N; Filonenko, V V; Pogrebnoy, P V; Soldatkina, M A

    2013-06-01

    The aim of the study was in vitro analysis of biological activity of recombinant human beta-defensin-4 (rec-hBD-4). hBD-4 cDNA was cloned into pGEX-2T vector, and recombinant plasmid was transformed into E. coli BL21(DE3) cells. To purify soluble fusion GST-hBD-4 protein, affinity chromatography was applied. Rec-hBD-4 was cleaved from the fusion protein with thrombin, and purified by reverse phase chromatography on Sep-Pack C18. Effects of rec-hBD-4 on proliferation, viability, cell cycle distribution, substrate-independent growth, and mobility of cultured human cancer cells of A431, A549, and TPC-1 lines were analyzed by direct cell counting technique, MTT assay, flow cytofluorometry, colony forming assay in semi-soft medium, and wound healing assay. Rec-hBD-4 was expressed in bacterial cells as GST-hBD-4 fusion protein, and purified by routine 3-step procedure (affine chromatography on glutathione-agarose, cleavage of fusion protein by thrombin, and reverse phase chromatography). Analysis of in vitro activity of rec-hBD-4 toward three human cancer cell lines has demonstrated that the defensin is capable to affect cell behaviour in concentration-dependent manner. In 1-100 nM concentrations rec-hBD-4 significantly stimulates cancer cell proliferation and viability, and promotes cell cycle progression through G2/M checkpoint, greatly enhances colony-forming activity and mobility of the cells. Treatment of the cells with 500 nM of rec-hBD-4 resulted in opposite effects: significant suppression of cell proliferation and viability, blockage of cell cycle in G1/S checkpoint, significant inhibition of cell migration and colony forming activity. Recombinant human beta-defensin-4 is biologically active peptide capable to cause oppositely directed effects toward biologic features of cancer cells in vitro dependent on its concentration.

  9. Green tea polyphenol, (−)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting β-catenin signaling

    SciTech Connect

    Singh, Tripti; Katiyar, Santosh K.

    2013-12-01

    The green tea polyphenol, (−)-epigallocatechin-3-gallate (EGCG), has been shown to have anti-carcinogenic effects in several skin tumor models, and efforts are continued to investigate the molecular targets responsible for its cytotoxic effects to cancer cells. Our recent observation that β-catenin is upregulated in skin tumors suggested the possibility that the anti-skin carcinogenic effects of EGCG are mediated, at least in part, through its effects on β-catenin signaling. We have found that treatment of the A431 and SCC13 human skin cancer cell lines with EGCG resulted in reduced cell viability and increased cell death and that these cytotoxic effects were associated with inactivation of β-catenin signaling. Evidence of EGCG-induced inactivation of β-catenin included: (i) reduced accumulation of nuclear β-catenin; (ii) enhanced levels of casein kinase1α, reduced phosphorylation of glycogen synthase kinase-3β, and increased phosphorylation of β-catenin on critical serine{sup 45,33/37} residues; and (iii) reduced levels of matrix metalloproteinase (MMP)-2 and MMP-9, which are down-stream targets of β-catenin. Treatment of cells with prostaglandin E2 (PGE{sub 2}) enhanced the accumulation of β-catenin and enhanced β-catenin signaling. Treatment with either EGCG or an EP2 antagonist (AH6809) reduced the PGE{sub 2}-enhanced levels of cAMP, an upstream regulator of β-catenin. Inactivation of β-catenin by EGCG resulted in suppression of cell survival signaling proteins. siRNA knockdown of β-catenin in A431 and SCC13 cells reduced cell viability. Collectively, these data suggest that induction of cytotoxicity in skin cancer cells by EGCG is mediated by targeting of β-catenin signaling and that the β-catenin signaling is upregulated by inflammatory mediators. - Highlights: • EGCG inhibits cancer cell viability through inactivation of β-catenin signaling. • Inactivation of β-catenin involves the downregulation of inflammatory mediators. • EGCG

  10. Nanomaterials in Targeting Cancer Stem Cells for Cancer Therapy

    PubMed Central

    Qin, Weiwei; Huang, Guan; Chen, Zuanguang; Zhang, Yuanqing

    2017-01-01

    Cancer stem cells (CSCs) have been identified in almost all cancers and give rise to metastases and can also act as a reservoir of cancer cells that may cause a relapse after surgery, radiation, or chemotherapy. Thus they are obvious targets in therapeutic approaches and also a great challenge in cancer treatment. The threat presented by CSCs lies in their unlimited proliferative ability and multidrug resistance. These findings have necessitated an effective novel strategy to target CSCs for cancer treatment. Nanomaterials are on the route to providing novel methods in cancer therapies. Although, there have been a large number of excellent work in the field of targeted cancer therapy, it remains an open question how nanomaterials can meet future demands for targeting and eradicating of CSCs. In this review, we summarized recent and highlighted future prospects for targeting CSCs for cancer therapies by using a variety of nanomaterials. PMID:28149278

  11. How cell death shapes cancer

    PubMed Central

    Labi, V; Erlacher, M

    2015-01-01

    Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis. PMID:25741600

  12. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Cancer.gov

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  13. T-cell immunometabolism against cancer.

    PubMed

    Jiang, Shuai; Yan, Wei

    2016-11-28

    T cells play critical roles in host defenses against cancer. External signals prompt activation of naïve T cells, triggering modulation of their immune functions. Emerging evidence reveals that distinct metabolic changes impact the immune functions of naïve and effector T cells, including CD4(+) and CD8(+) T cells. Since T cells appear to be key players in tumor progression, it is important to elucidate whether and how T-cell metabolic reprogramming might alter their impact on cancer progression. Here we briefly review the available knowledge regarding T cells in relation to cancer, focusing on the metabolic reprogramming of T cells and how this influences tumor progression. Emerging insights in this field are improving our understanding of the functional role of T-cell metabolic reprogramming in cancer. Further research could provide a critical foundation for new treatments targeting cancer metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Pancreatic cancer stem cells: fact or fiction?

    PubMed

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  15. Programmed Cell Death in Breast Cancer

    DTIC Science & Technology

    1998-10-01

    Programmed cell death , or apoptosis, is a genetically regulated process through which a cell is active in bringing about its own death for the sake...delays and inhibits the cell death response, so that the breast cancer cell lines are much less susceptible to thapsigargin-induced apoptosis than...lymphoid cell lines, an observation that parallels the differential susceptibility of breast cancer and lymphomas to chemotherapy-induced cell death in

  16. Leptin and cancer: from cancer stem cells to metastasis.

    PubMed

    Park, Jiyoung; Scherer, Philipp E

    2011-08-01

    There is growing evidence that obesity is a risk factor of cancer incidence and mortality. Hence, the identification of the mechanistic links between obesity and cancer progression is emerging as a topic of widespread interest. Recently, several groups have addressed the functional roles of leptin, an adipocyte-derived adipokine, for mammary tumor progression. In this issue of Endocrine-Related Cancer, Zheng et al. study the role of leptin on tumor growth in a xenograft model of MMTV-Wnt1-derived cancer cells. They study growth of these cancer cells in the context of obese animals, such as ob/ob mice (lacking leptin) and db/db mice (lacking functional leptin receptors (LEPR)) and find that leptin triggers LEPR-positive cancer stem cell differentiation, thereby promoting tumor cell survival. These findings highlight the therapeutic potential for leptin and leptin signaling in the context of mammary tumor growth.

  17. Significance of Cancer Stem Cells in Anti-Cancer Therapies

    PubMed Central

    Botelho, Mónica; Alves, Helena

    2017-01-01

    Stem cells are the focus of cutting edge research interest because of their competence both to self-renew and proliferate, and to differentiate into a variety of tissues, offering enticing prospects of growing replacement organs in vitro, among other possible therapeutic implications. It is conceivable that cancer stem cells share a number of biological hallmarks that are different from their normal-tissue counterparts and that these might be taken advantage of for therapeutic benefits. In this review we discuss the significance of cancer stem cells in diagnosis and prognosis of cancer as well as in the development of new strategies for anti-cancer drug design. PMID:28191547

  18. Cancer stem cells and differentiation therapy.

    PubMed

    Sell, Stewart

    2006-01-01

    Cancers arise from stem cells in adult tissues and the cells that make up a cancer reflect the same stem cell --> progeny --> differentiation progression observed in normal tissues. All adult tissues are made up of lineages of cells consisting of tissue stem cells and their progeny (transit-amplifying cells and terminally differentiated cells); the number of new cells produced in normal tissue lineages roughly equals the number of old cells that die. Cancers result from maturation arrest of this process, resulting in continued proliferation of cells and a failure to differentiate and die. The biological behavior, morphological appearance, and clinical course of a cancer depend on the stage of maturation at which the genetic lesion is activated. This review makes a comparison of cancer cells to embryonic stem cells and to adult tis sue stem cells while addressing two basic questions: (1) Where do cancers come from?, and (2) How do cancers grow? The answers to these questions are critical to the development of approaches to the detection, prevention, and treatment of cancer.

  19. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism

    PubMed Central

    2014-01-01

    The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells. PMID:25250177

  20. Quantitative Profiling of Protein Tyrosine Kinases in Human Cancer Cell Lines by Multiplexed Parallel Reaction Monitoring Assays*

    PubMed Central

    Kim, Hye-Jung; Lin, De; Lee, Hyoung-Joo; Li, Ming; Liebler, Daniel C.

    2016-01-01

    Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11–18) or acquired resistance (11–18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11–18 cell model was associated not only with previously reported up-regulation of MET, but also with up-regulation of FLK2 and down-regulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with parallel reaction monitoring data. Multiplexed parallel reaction monitoring assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706. PMID:26631510

  1. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, M.J.; Weaver, V.M.

    1998-12-08

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.

  2. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    1998-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  3. Regulation of Cell Migration in Breast Cancer

    DTIC Science & Technology

    2011-04-01

    OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c . THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) Table...D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization. Cancer Science 96, 379-386 (2005). 2. Reddig PJ, Juliano ...RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 24, 425-39 (2005). 3. Dougherty GW, Jose C , Gimona M, Cutler

  4. Deregulation of Cell Signaling in Cancer

    PubMed Central

    Giancotti, Filippo G.

    2014-01-01

    Summary Oncogenic mutations disrupt the regulatory circuits that govern cell function, enabling tumor cells to undergo de-regulated mitogenesis, to resist to proapoptotic insults, and to invade through tissue boundaries. Cancer cell biology has played a crucial role in elucidating the signaling mechanisms by which oncogenic mutations sustain these malignant behaviors and thereby in identifying rational targets for cancer drugs. The efficacy of such targeted therapies illustrate the power of a reductionist approach to the study of cancer. PMID:24561200

  5. Cancer stem cells: the development of new cancer therapeutics.

    PubMed

    Scatena, Roberto; Bottoni, Patrizia; Pontoglio, Alessandro; Giardina, Bruno

    2011-07-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells with indefinite proliferative potential that drive the growth of tumors. CSCs seem to provide a suitable explanation for several intriguing aspects of cancer pathophysiology. An explosion of therapeutic options for cancer treatment that selectively target CSCs has been recorded in the recent years. These include the targeting of cell-surface proteins, various activated signalling pathways, different molecules of the stem cell niche and various drug resistance mechanisms. Importantly, approaching cancer research by investigating the pathogenesis of these intriguing cancer cells is increasing the knowledge of the pathophysiology of the disease, emphasizing certain molecular mechanisms that have been partially neglected. The characterization of the molecular phenotype of these cancer stem-like cells, associated with an accurate definition of their typical derangement in cell differentiation, can represent a fundamental advance in terms of diagnosis and therapy of cancer. Preliminary results seem to be promising but further studies are required to define the therapeutic index of this new anticancer treatment. Moreover, understanding the pathogenetic mechanisms of CSCs can expand the therapeutic applications of normal adult stem cells by reducing the risk of uncontrolled tumorigenic stem cell differentiation.

  6. Colon cancer stem cells: implications in carcinogenesis

    PubMed Central

    Sanders, Matthew A.; Majumdar, Adhip P. N.

    2014-01-01

    The cancer stem cell model was described for hematologic malignancies in 1997 and since then evidence has emerged to support it for many solid tumors as well, including colon cancer. This model proposes that certain cells within the tumor mass are pluripotent and capable of self-renewal and have an enhanced ability to initiate distant metastasis. The cancer stem cell model has important implications for cancer treatment, since most current therapies target actively proliferating cells and may not be effective against the cancer stem cells that are responsible for recurrence. In recent years great progress has been made in identifying markers of both normal and malignant colon stem cells. Proteins proposed as colon cancer stem cell markers include CD133, CD44, CD166, ALDH1A1, Lgr5, and several others. In this review we consider the evidence for these proteins as colon cancer stem cell markers and as prognostic indicators of colon cancer survival. Additionally, we discuss potential functions of these proteins and the implications this may have for development of therapies that target colon cancer stem cells. PMID:21196254

  7. Targeting Aldehyde Dehydrogenase Cancer Stem Cells in Ovarian Cancer

    PubMed Central

    Landen, Charles N.; Goodman, Blake; Katre, Ashwini A.; Steg, Adam D.; Nick, Alpa M.; Stone, Rebecca L.; Miller, Lance D.; Mejia, Pablo Vivas; Jennings, Nicolas B.; Gershenson, David M.; Bast, Robert C.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.

    2010-01-01

    Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines, we found that ALDH1A1 expression and activity was significantly higher in taxane and platinum-resistant cell lines. In patient samples, 72.9% of ovarian cancers had ALDH1A1 expression, in whom the percent of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 v 13.81 months, p<0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor initiating studies, where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly, tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations, but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer, ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy, significantly reducing tumor growth in mice compared to chemotherapy alone (a 74–90% reduction, p<0.015). These data demonstrate that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients, and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced, but not absolute, tumorigenicity, but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer. PMID:20889728

  8. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  9. Cancer Stem Cells in Lung Tumorigenesis

    PubMed Central

    Kratz, Johannes R.; Yagui-Beltrán, Adam; Jablons, David M.

    2011-01-01

    Although stem cells were discovered more than 50 years ago, we have only recently begun to understand their potential importance in cancer biology. Recent advances in our ability to describe, isolate, and study lung stem cell populations has led to a growing recognition of the central importance cells with stem cell-like properties may have in lung tumorigenesis. This article reviews the major studies supporting the existence and importance of cancer stem cells in lung tumorigenesis. Continued research in the field of lung cancer stem cell biology is vital, as ongoing efforts promise to yield new prognostic and therapeutic targets. PMID:20493987

  10. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...SUBTITLE Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM...hypothesis, we proposed to transform neural stem cells (NSCs) and neural progenitor cells (NPCs) in vivo by expressing an activated form of Notch1 (N1ICD

  11. Cancer stem cells niche: a target for novel cancer therapeutics.

    PubMed

    Yi, Shan-Yong; Hao, Yi-Bin; Nan, Ke-Jun; Fan, Tian-Li

    2013-05-01

    Nowadays, cancer has been a frequent disease, and the first or second most common cause of death worldwide. Despite a better understanding of the biology of cancer cells, the therapy of most cancers has not significantly changed for the past four decades. It is because conventional chemotherapies and/or radiation therapies are usually designed to eradicate highly proliferative cells. Mounting evidence has implicated that cancer is a disease of stem cells. Cancer stem cells (CSC) are often relatively quiescent, and therefore may not be affected by therapies targeting rapidly dividing cells. Like normal stem cells (NSC) residing in a "stem cell niche" that maintains them in a stem-like state, CSC also require a special microenvironment to control their self-renewal and undifferentiated state. The "CSC niche" is likely to be the most crucial target in the treatment of cancer. In this article, we summarize the current knowledge regarding CSC and their niche microenvironments. Understanding of CSC's origin, molecular profile, and interaction with their microenvironments, this could be a paradigm shift in the treatment of cancer, away from targeting the blast cells and towards the targeting of the CSC, thus improving therapeutic outcome. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Targeting peptidyl-prolyl isomerase pin1 to inhibit tumor cell aggressiveness.

    PubMed

    Beretta, Giovanni L; De Cesare, Michelandrea; Albano, Luisa; Magnifico, Alessandra; Carenini, Nives; Corna, Elisabetta; Perego, Paola; Gatti, Laura

    2016-01-01

    Because the peptidyl-prolyl isomerase PIN1 interacts with multiple protein kinases and phosphoproteins into a network orchestrating the cellular response to various stimuli, there is an increasing interest in exploiting its potential as therapeutic target. In the present study, the effect of targeting PIN1 was investigated in 2 human cancer cell lines characterized by increased aggressive potential, high expression of erbB receptor family members, and defective p53. PIN1 silencing was carried out in skin squamous cell carcinoma A431 cells displaying elevated EGFR/HER1 levels and in ovarian adenocarcinoma SKOV-3 cells displaying high levels of erbB2 (HER2). Nonoverlapping siRNA duplexes targeting different regions of PIN1 mRNA were transfected in tumor cells, which were analyzed using Western blotting for the expression of selected proteins. In vivo tumorigenicity studies were carried out in athymic nude mice. A431 and SKOV-3 cell systems were found to be a source of cells with increased aggressive potential, i.e., cancer stem cell-like cells, as defined by the capability to grow as spheres. A marked decrease of PIN1 levels and of sphere-forming capability was observed in PIN1-silenced cells. The expression of phospho-p38 decreased following PIN1 silencing in A431 and SKOV-3 cells, as well as phospho-EGFR levels in A431 - silenced cells. PIN1 inhibition prolonged latency and reduced tumor take and growth of SKOV-3 cells in nude mice. Our results support that PIN1 may be a valuable target to hit in cancer cells characterized by increased aggressive potential, overexpression of erbB receptor family members, and defective p53.

  13. Colon cancer: cancer stem cells markers, drug resistance and treatment.

    PubMed

    Kozovska, Zuzana; Gabrisova, Veronika; Kucerova, Lucia

    2014-10-01

    Malignant tumours consist of heterogeneous populations of tumour cells. Cancer stem cells (CSC) represent a population of cells within a tumour with highly tumorigenic and chemoresistant properties. These cells may be identified by the expression of CSC markers. There are several key stem cells markers specified for colon cancer: CD133, CD44, ALDH1, ALCAM. These days, a major obstacle to effective cancer management is development of a multidrug resistance (MDR). The principal mechanism responsible for development of MDR phenotype is the over-expression of ABC transporters. Tumours and relapsing tumours after therapy are drived by subpopulations of tumour cells with aggressive phenotype resistant to chemotherapeutics. These cells are called CSC or tumour-initiating cells (TIC). Here we outline recent information about MDR of colon cancer and CSC markers. We have focused on novel therapeutic strategies which have been developed to prevent or overcome MDR. One such strategy is a combination of chemotherapy and modulators of MDR pumps or chemotherapy and monoclonal antibodies against vascular endothelial growth factor VEGF. Colon cancer is characterized by the presence of colon CSC expressing specific stem cell markers. The divergent presence of these markers can help to adjust personalized therapy. The review provides a detailed overview of resistance of colon cancer cells and discusses how the presence of CSC markers can influence therapy and prognosis of patients.

  14. Confocal Raman imaging for cancer cell classification

    NASA Astrophysics Data System (ADS)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  15. Multimodal optical microscopy in combination with gold nanorods for cancer cell imaging.

    PubMed

    Cao, Cai-jun; Li, De-rong; Chen, Chao-xiong; Yang, Xiao-yun; Hu, Juan; Yang, Yong; Zhang, Chun-yang

    2012-12-01

    The multimodal optical imaging technique, which utilizes nonlinear and linear optical processes, plays an important role in biological and biomedical research. As second-order nonlinear phenomenon, the two-photon luminescence (TPL) results from the nonlinear excitation of fluorescent molecules, while the second harmonic generation (SHG) depends on the second order nonlinear polarization, orientation, and noncentrosymmetric properties of molecules. In contrast, the linear resonance light scattering (RLS) occurs when the molecules are excited by a light beam with a wavelength close to their absorption bands. Since SHG, TPL, and RLS involve different kinds of optical processes, they might be used in parallel to provide complementary information about the structure and function of cells and tissues. Herein, we develop for the first time a multimodal optical microscopy with the capability of simultaneous SHG, TPL, and RLS imaging. We analyze theoretically and demonstrate experimentally the near-infrared irradiation-induced SHG, TPL, and RLS from the gold nanorods with nanometer spatial resolution. With the gold nanorods as the contrast agents, we further demonstrate the simultaneous SHG, TPL, and RLS imaging of A431 human epithelial skin cancer cells. This multimodal optical microscopy might provide a reliable and complementary approach for biological and biomedical research.

  16. Multimodal optical microscopy in combination with gold nanorods for cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Cao, Cai-jun; Li, De-rong; Chen, Chao-xiong; Yang, Xiao-yun; Hu, Juan; Yang, Yong; Zhang, Chun-yang

    2012-12-01

    The multimodal optical imaging technique, which utilizes nonlinear and linear optical processes, plays an important role in biological and biomedical research. As second-order nonlinear phenomenon, the two-photon luminescence (TPL) results from the nonlinear excitation of fluorescent molecules, while the second harmonic generation (SHG) depends on the second order nonlinear polarization, orientation, and noncentrosymmetric properties of molecules. In contrast, the linear resonance light scattering (RLS) occurs when the molecules are excited by a light beam with a wavelength close to their absorption bands. Since SHG, TPL, and RLS involve different kinds of optical processes, they might be used in parallel to provide complementary information about the structure and function of cells and tissues. Herein, we develop for the first time a multimodal optical microscopy with the capability of simultaneous SHG, TPL, and RLS imaging. We analyze theoretically and demonstrate experimentally the near-infrared irradiation-induced SHG, TPL, and RLS from the gold nanorods with nanometer spatial resolution. With the gold nanorods as the contrast agents, we further demonstrate the simultaneous SHG, TPL, and RLS imaging of A431 human epithelial skin cancer cells. This multimodal optical microscopy might provide a reliable and complementary approach for biological and biomedical research.

  17. Potential roles of Centipede Scolopendra extracts as a strategy against EGFR-dependent cancers.

    PubMed

    Ma, Weina; Zhang, Dongdong; Zheng, Lei; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Centipede Scolopendra, a commonly used traditional Chinese medicine, has been shown to have anti-cancer effects. In this study, the inhibitory effect of alcohol extracts of Centipede Scolopendra (AECS) was more prominent when treating cells highly expressing epidermal growth factor receptor (EGFR) (A431 and HEK293/EGFR cells versus HEK293 cells). The elution profiles of AECS on cell membrane chromatography (CMC) column showed that AECS could bind to EGFR, and competition studies indicated that AECS and gefitinib may have direct competition at a single common binding site on EGFR. SiRNA knockdown of EGFR in A431 cells attenuated AECS effects, suggesting that EGFR was a target mediated by AECS. In a cell culture system, AECS dramatically induced apoptosis of A431 and HEK293/EGFR cells, which was associated with the effects on Bcl-2 family. Furthermore, AECS could alter EGFR kinase activity and reduce phosphorylation of EGFR and downstream signaling players AKT and Erk1/2. The mechanism of AECS to inhibit high-EGFR expression cell proliferation is due to its ability to induce apoptosis and modulate the EGFR pathway. This study might provide a novel therapy for cancer with high-EGFR expression.

  18. Radiofrequency treatment alters cancer cell phenotype

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  19. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.

  20. Radiofrequency treatment alters cancer cell phenotype

    PubMed Central

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-01-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment. PMID:26165830

  1. Cancer stem cell targeted therapy: progress amid controversies.

    PubMed

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-12-29

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.

  2. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  3. Future Prospects in Breast Cancer Research – Cancer Stem Cells

    PubMed Central

    Franke, Henk R.; Klaase, Joost M.; Brinkhuis, Mariël; van den Berg, Albert; Vermes, István

    2012-01-01

    Breast cancer is one of the leading causes of cancer deaths among women. Although significant advances in the prevention, diagnosis and management are made, still every year half a million women die of breast cancer. Personalised treatment has the potential to increase treatment efficacy, and hence decrease mortality rates. Moreover, understanding cancer biology and translating this knowledge to the clinic, will improve the breast cancer therapy regime tremendously. Recently, it has been proposed that cancer stem cells (CSC) play an important role in tumour biology. CSC have the ability for self-renewal and are pivotal in setting the heterogeneous character of a tumour. Additionally, CSC possess several characteristics that make them resistant and more aggressive to the conventional chemo- and radiotherapy. Nowadays, breast cancer therapy is focused on killing the differentiated tumour cells, leaving the CSC unharmed, potentially causing recurrence of the disease and metastasis. Specific targeting of the CSC will improve the disease-free survival of breast cancer patients. In this article, two methods are described, aiming at specifically attacking the differentiated tumour cells (‘Apoptosis chip’) and the cancer stem cell. For this, microfluidics is used. PMID:27683420

  4. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  5. Cancer stem cells of the digestive system.

    PubMed

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Reprogramming bladder cancer cells for studying cancer initiation and progression.

    PubMed

    Iskender, Banu; Izgi, Kenan; Canatan, Halit

    2016-10-01

    The induced pluripotent stem cell (iPSC) technology is the forced expression of specific transcription factors in somatic cells resulting in transformation into self-renewing, pluripotent cells which possess the ability to differentiate into any type of cells in the human body. While malignant cells could also be reprogrammed into iPSC-like cells with lower efficiency due to the genetic and epigenetic barriers in cancer cells, only a limited number of cancer cell types could be successfully reprogrammed until today. In the present study, we aimed at reprogramming two bladder cancer cell lines HTB-9 and T24 using a non-integrating Sendai virus (SeV) system. We have generated six sub-clones using distinct combinations of four factors-OCT4, SOX2, KLF4 and c-MYC-in two bladder cancer cell lines. Only a single sub-clone, T24 transduced with 4Fs, gave rise to iPSC-like cells. Bladder cancer cell-derived T24 4F cells represent unique features of pluripotent cells such as epithelial-like morphology, colony-forming ability, expression of pluripotency-associated markers and bearing the ability to differentiate in vitro. This is the first study focusing on the reprogramming susceptibility of two different bladder cancer cell lines to nuclear reprogramming. Further molecular characterisation of T24 4F cells could provide a better insight for biomarker research in bladder carcinogenesis and could offer a valuable tool for the development of novel therapeutic approaches in bladder carcinoma.

  7. Interfacial geometry dictates cancer cell tumorigenicity

    NASA Astrophysics Data System (ADS)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  8. Cancer Stem Cells: Repair Gone Awry?

    PubMed Central

    Rangwala, Fatima; Omenetti, Alessia; Diehl, Anna Mae

    2011-01-01

    Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh), that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors. PMID:21188169

  9. Cells of Origin of Epithelial Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    lethal malignancy of the female reproductive system , largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system , largely due to the fact that most EOCs are diagnosed only...ovarian cancer by defined multiple genetic changes in a mouse model system . Cancer Cell 1, 53-62. Quartuccio, S.M., Lantvit, D.D., Bosland, M.C., and

  10. Targeting Signaling Pathways in Cancer Stem Cells for Cancer Treatment

    PubMed Central

    Zhong, Li

    2017-01-01

    The Wnt, Hedgehog, and Notch pathways are inherent signaling pathways in normal embryogenesis, development, and hemostasis. However, dysfunctions of these pathways are evident in multiple tumor types and malignancies. Specifically, aberrant activation of these pathways is implicated in modulation of cancer stem cells (CSCs), a small subset of cancer cells capable of self-renewal and differentiation into heterogeneous tumor cells. The CSCs are accountable for tumor initiation, growth, and recurrence. In this review, we focus on roles of Wnt, Hedgehog, and Notch pathways in CSCs' stemness and functions and summarize therapeutic studies targeting these pathways to eliminate CSCs and improve overall cancer treatment outcomes. PMID:28356914

  11. Cancer stem cell metabolism: a potential target for cancer therapy.

    PubMed

    Deshmukh, Abhijeet; Deshpande, Kedar; Arfuso, Frank; Newsholme, Philip; Dharmarajan, Arun

    2016-11-08

    Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells.This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy.

  12. Epigenetic Targeting of Ovarian Cancer Stem Cells

    PubMed Central

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela

    2014-01-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer (OC). As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cell (OCSC). In this study, we tested the hypothesis that DNA hypomethylating agents may be able to reset OCSC towards a differentiated phenotype, by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH+ OC cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low dose SGI-110 reduced the stem-like properties of ALDH+ cells, including their tumor initiating capacity, resensitized these OCSCs to platinum, and induced re-expression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by re-programming residual cancer stem-like cells. Further, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  13. Phosphatidylserine: A cancer cell targeting biomarker.

    PubMed

    Sharma, Bhupender; Kanwar, Shamsher S

    2017-09-01

    Cancer is a leading cause of mortality and morbidity globally. Many prominent cancer-associated molecules have been identified over the recent years which include EGFR, CD44, TGFbRII, HER2, miR-497, NMP22, BTA, Fibrin/FDP etc. These biomarkers are often used for screening, detection, diagnosis, prognosis, prediction and monitoring of cancer development. Phosphatidylserine (PS) is an essential component in all human cells which is present on the inner leaflet of the cell membrane. The oxidative stress causes exposure of PS on the surface of the vascular endothelium in the cancer cells (lung, breast, pancreatic, bladder, skin, brain metastasis, rectal adenocarcinoma etc.) but not on the normal cells. The external PS is regulated by calcium-dependent flippase activity. Cancer cell lines with high surface PS have low flippase activity and high intracellular calcium content. Human Annexin-V, PS targeting antibodies (PGN635 and bavituximab and mch1N11), lysosomal protein, phospholipid Saposin C dioleoylphosphatidylserine (SapC-DOPS), peptide-peptoid hybrid PPS1, PS-binding 14-mer peptide (PSBP-6) and hexapeptide (E3) have been reported to target PS present on cancer cell surface. High expression of CD47 inhibits tumor cell phagocytosis by macrophages. The PS cancer biomarker has also been used to target the drugs to cancer cells specifically without affecting other healthy cells. Currently, the fusion protein (FP) consisting of L-methionase linked to human Annexin-V has been reported to target the cancer cells. The FP catalyzes the conversion of non-toxic prodrug selenomethionine into toxic methyl selenol which thus also prevents the methionine (essential amino acid) supplementation to the cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  15. An immunosurveillance mechanism controls cancer cell ploidy.

    PubMed

    Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido

    2012-09-28

    Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.

  16. Autophagy and cell death to target cancer cells: exploiting synthetic lethality as cancer therapies.

    PubMed

    Reyjal, Julie; Cormier, Kevin; Turcotte, Sandra

    2014-01-01

    Since 1940 chemotherapy has been one of the major therapies used to kill cancer cells. However, conventional standard cytotoxic agents have a low therapeutic index and often show toxicity in healthy cells. Over the past decade, progress in molecular biology and genomics has identified signaling pathways and mutations driving different types of cancer. Genetic and epigenetic alterations that characterize tumor cells have been used in the development of targeted therapy, a very active area of cancer research. Moreover, identification of synthetic lethal interactions between two altered genes in cancer cells shows much promise to target specifically tumor cells. For a long time, apoptosis was considered the principal mechanism by which cells die from chemotherapeutic agents. Autophagy, necroptosis (a programmed cell death mechanism of necrosis), and lysosomal-mediated cell death significantly improve our understanding of how malignancy can be targeted by anticancer treatments. Autophagy is a highly regulated process by which misfolded proteins and organelles reach lysosomes for their degradation. Alterations in this cellular process have been observed in several pathological conditions, including cancer. The role of autophagy in cancer raised a paradox wherein it can act as a tumor suppressor at early stage of tumor development but can also be used by cancer cells as cytoprotection to promote survival in established tumors. It is interesting that autophagy can be targeted by anticancer agents to provoke cancer cell death. This review focuses on the role of autophagy in cancer cells and its potential to therapeutically kill cancer cells.

  17. Response of Breast Cancer Cells and Cancer Stem Cells to Metformin and Hyperthermia Alone or Combined

    PubMed Central

    Lee, Hyemi; Park, Heon Joo; Park, Chang-Shin; Oh, Eun-Taex; Choi, Bo-Hwa; Williams, Brent; Lee, Chung K.; Song, Chang W.

    2014-01-01

    Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5–10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44high/CD24low cells of MCF-7 cells and, CD44high/CD24high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs) of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia. PMID:24505341

  18. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    PubMed

    Lee, Hyemi; Park, Heon Joo; Park, Chang-Shin; Oh, Eun-Taex; Choi, Bo-Hwa; Williams, Brent; Lee, Chung K; Song, Chang W

    2014-01-01

    Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high)/CD24(low) cells of MCF-7 cells and, CD44(high)/CD24(high) cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs) of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  19. Cancer-Associated Fibroblasts Promote Proliferation of Endometrial Cancer Cells

    PubMed Central

    Subramaniam, Kavita S.; Tham, Seng Tian; Mohamed, Zahurin; Woo, Yin Ling; Mat Adenan, Noor Azmi; Chung, Ivy

    2013-01-01

    Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs) using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin) and hormonal (estrogen and progesterone) receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175%) when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51%) (P<0.0001). These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001), suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR), also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP)-1, interleukin (IL)-6, IL-8, RANTES and vascular

  20. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  1. Are All Highly Malignant Cancer Cells Identical?

    DTIC Science & Technology

    1979-01-01

    F/G /5 N 1111 2Z111117 1 125iiI 1 1. 1111_L6. -11 O=M 1 MrCROCOP RErSOLUTICN TEST CHART N, APoP SN A’ ,- ARE ALL HIGHLY MALIGNANT CANCER CELLS...Greenstein and others, we raised the question, " Is it possible that cancer cells when they reach their ultimate state of autonomy and malignancy become... cancer cells: A. T241 (DMBA induced sarcoma); B. Kreb’s ( carcinoma of the inguinal region); C. Meth. A (fibrosarcoma); D. P4132 (reticulum cell

  2. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  3. Targeting Breast Cancer Stem Cells In Triple Negative Breast Cancer

    DTIC Science & Technology

    2014-10-01

    breast cancer (TNBC) and drug resistance. We hypothesize that obesity effects on TNBC occur via leptin -signaling stimulation of breast cancer stem...human TNBC cell lines treated with leptin , and novel leptin receptor inhibitor bound to nanoparticles (IONPs-LPrA) alone, and combined with cisplatin...a chemotherapeutic) and Sunitinib (an inhibitor of VEGFR-2 kinase). Our data show that leptin increased cell proliferation and expression of BCSC

  4. Wnt and the cancer niche: paracrine interactions with gastrointestinal cancer cells undergoing asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Ambe, Chenwi M; Ray, Satyajit; Kim, Bo-Kyu; Koizumi, Tomotake; Wiegand, Gordon W; Hari, Danielle; Mullinax, John E; Jaiswal, Kshama R; Garfield, Susan H; Stojadinovic, Alexander; Rudloff, Udo; Thorgeirsson, Snorri S; Avital, Itzhak

    2013-01-01

    Stem-like cancer cells contribute to cancer initiation and maintenance. Stem cells can self-renew by asymmetric cell division (ACD). ACD with non-random chromosomal cosegregation (ACD-NRCC) is one possible self-renewal mechanism. There is a paucity of evidence supporting ACD-NRCC in human cancer. Our aim was to investigate ACD-NRCC and its potential interactions with the cancer niche (microenvironment) in gastrointestinal cancers. We used DNA double and single labeling approaches with FACS to isolate live cells undergoing ACD-NRCC. Gastrointestinal cancers contain rare subpopulations of cells capable of ACD-NRCC. ACD-NRCC was detected preferentially in subpopulations of cells previously suggested to be stem-like/tumor-initiating cancer cells. ACD-NRCC was independent of cell-to-cell contact, and was regulated by the cancer niche in a heat-sensitive paracrine fashion. Wnt pathway genes and proteins are differentially expressed in cells undergoing ACD-NRCC vs. symmetric cell division. Blocking the Wnt pathway with IWP2 (WNT antagonist) or siRNA-TCF4 resulted in suppression of ACD-NRCC. However, using a Wnt-agonist did not increase the relative proportion of cells undergoing ACD-NRCC. Gastrointestinal cancers contain subpopulations of cells capable of ACD-NRCC. Here we show for the first time that ACD-NRCC can be regulated by the Wnt pathway, and by the cancer niche in a paracrine fashion. However, whether ACD-NRCC is exclusively associated with stem-like cancer cells remains to be determined. Further study of these findings might generate novel insights into stem cell and cancer biology. Targeting the mechanism of ACD-NRCC might engender novel approaches for cancer therapy.

  5. Repression of cancer cell senescence by PKCι.

    PubMed

    Paget, J A; Restall, I J; Daneshmand, M; Mersereau, J A; Simard, M A; Parolin, D A E; Lavictoire, S J; Amin, M S; Islam, S; Lorimer, I A J

    2012-08-02

    Senescence is an irreversible growth arrest phenotype adopted by cells that has a key role in protecting organisms from cancer. There is now considerable interest in therapeutic strategies that reactivate this process to control the growth of cancer cells. Protein kinase-Cι (PKCι) is a member of the atypical PKC family and an important downstream mediator in the phosphoinositide-3-kinase (PI-3-kinase) pathway. PKCι expression was found to be upregulated in a subset of breast cancers and breast cancer cell lines. Activation of the PI-3-kinase pathway by introduction of mutant, oncogenic PIK3CA into breast mammary epithelial cells increased both the expression and activation of PKCι. In breast cancer cells lines overexpressing PKCι, depletion of PKCι increased the number of senescent cells, as assessed by senescence-associated β-galactosidase, morphology and bromodeoxyuridine incorporation. This phenomenon was not restricted to breast cancer cells, as it was also seen in glioblastoma cells in which PKCι is activated by loss of PTEN. Senescence occurred in the absence of a detectable DNA-damage response, was dependent on p21 and was enhanced by the aurora kinase inhibitor VX-680, suggesting that senescence is triggered by defects in mitosis. Depletion of PKCι had no effect on senescence in normal mammary epithelial cell lines. We conclude that PKCι is overexpressed in a subset of cancers where it functions to suppress premature senescence. This function appears to be restricted to cancer cells and inhibition of PKCι may therefore be an effective way to selectively activate premature senescence in cancer cells.

  6. Relevance of mortalin to cancer cell stemness and cancer therapy

    PubMed Central

    Yun, Chae-Ok; Bhargava, Priyanshu; Na, Youjin; Lee, Jung-Sun; Ryu, Jihoon; Kaul, Sunil C.; Wadhwa, Renu

    2017-01-01

    Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy. PMID:28165047

  7. Relevance of mortalin to cancer cell stemness and cancer therapy.

    PubMed

    Yun, Chae-Ok; Bhargava, Priyanshu; Na, Youjin; Lee, Jung-Sun; Ryu, Jihoon; Kaul, Sunil C; Wadhwa, Renu

    2017-02-06

    Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy.

  8. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  9. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  10. Redox Regulation in Cancer Stem Cells

    PubMed Central

    Ding, Shijie; Li, Chunbao; Cheng, Ninghui; Cui, Xiaojiang; Xu, Xinglian; Zhou, Guanghong

    2015-01-01

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment. PMID:26273424

  11. Therapeutic strategies targeting cancer stem cells

    PubMed Central

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-01-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  12. Power surge: supporting cells "fuel" cancer cell mitochondria.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Sotgia, Federica; Lisanti, Michael P

    2012-01-04

    An emerging paradigm in tumor metabolism is that catabolism in host cells "fuels" the anabolic growth of cancer cells via energy transfer. A study in Nature Medicine (Nieman et al., 2011) supports this; they show that triglyceride catabolism in adipocytes drives ovarian cancer metastasis by providing fatty acids as mitochondrial fuels.

  13. Targeting cancer stem cells: a new therapy to cure cancer patients.

    PubMed

    Hu, Yapeng; Fu, Liwu

    2012-01-01

    Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. They have been identified in blood, breast, brain, colon, melanoma, pancreatic, prostate, ovarian, lung cancers and so on. It is often considered to be associated with chemo-resistance and radio-resistance that lead to the failure of traditional therapies. Most therapies are directed at the fast growing tumor mass but not the slow dividing cancer stem cells. Eradicating cancer stem cells, the root of cancer origin and recurrence, has been thought as a promising approach to improve cancer survival or even to cure cancer patients. Understanding the characteristics of cancer stem cells will help to develop novel therapies to eliminate the initiating cancer stem cell, and the relevant patents on the cancer stem cell and cancer therapy by cancer stem cells will be discussed.

  14. Recombinant immunotoxins in targeted cancer cell therapy.

    PubMed

    Reiter, Y

    2001-01-01

    Targeted cancer therapy in general and immunotherapy in particular combines rational drug design with the progress in understanding cancer biology. This approach takes advantage of our recent knowledge of the mechanisms by which normal cells are transformed into cancer cells, thus using the special properties of cancer cells to device novel therapeutic strategies. Recombinant immunotoxins are excellent examples of such processes, combining the knowledge of antigen expression by cancer cells with the enormous developments in recombinant DNA technology and antibody engineering. Recombinant immunotoxins are composed of a very potent protein toxin fused to a targeting moiety such as a recombinant antibody fragment or growth factor. These molecules bind to surface antigens specific for cancer cells and kill the target cells by catalytic inhibition of protein synthesis. Recombinant immunotoxins are developed for solid tumors and hematological malignancies and have been characterized intensively for their biological activity in vitro on cultured tumor cell lines as well as in vivo in animal models of human tumor xenografts. The excellent in vitro and in vivo activities of recombinant immunotoxins have lead to their preclinical development and to the initiation of clinical trail protocols. Recent trail results have demonstrated potent clinical efficacy in patients with malignant diseases that are refractory to traditional modalities of cancer treatment: surgery, radiation therapy, and chemotherapy. The results demonstrate that such strategies can be developed into a separate modality of cancer treatment with the basic rationale of specifically targeting cancer cells on the basis of their unique surface markers. Efforts are now being made to improve the current molecules and to develop new agents with better clinical efficacy. This can be achieved by development of novel targeting moieties with improved specificity that will reduce toxicity to normal tissues. In this review

  15. Cell Polarity As A Regulator of Cancer Cell Behavior Plasticity

    PubMed Central

    Muthuswamy, Senthil K; Xue, Bin

    2013-01-01

    Cell polarization is an evolutionarily conserved process that facilitates asymmetric distribution of organelles and proteins, is an evolutionarily conserved property that is modified dynamically during physiological processes such as cell division, migration, and morphogenesis. The plasticity with which cells change their behavior and phenotype in response to cell intrinsic and extrinsic cues is an essential feature of normal physiology. In disease states such as cancer, cells lose their ability to behave normally in response to physiological cues. A molecular understanding of mechanisms that alter the behavior of cancer cells is limited. Cell polarity proteins are an recognized class of molecules that can receive and interpret both intrinsic and extrinsic signals to modulate cell behavior. In this review, we discuss how cell polarity proteins regulate a diverse array of biological processes and how they can contribute to alterations in the behavior of cancer cells. PMID:22881459

  16. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  17. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  18. Homing of cancer cells to the bone.

    PubMed

    Mishra, Anjali; Shiozawa, Yusuke; Pienta, Kenneth J; Taichman, Russell S

    2011-12-01

    A variety of tumor cells preferentially home to the bone. The homing of cancer cells to the bone represents a multi-step process that involves malignant progression of the tumor, invasion of the tumor through the extracellular matrix and the blood vessels and settling of the tumor cells in the bone. Gaining a greater understanding as to the mechanisms used by cancer cells in these processes will facilitate the design of drugs which could specifically target the homing process. In this review we will discuss the properties of tumor cells and the bone microenvironment which promote homing of a cancer cell to the bone. We will highlight the different steps and the molecular pathways involved when a cancer cell metastasize to the bone. Since bone is the major home for hematopoietic stem cells (HSCs), we will also highlight the similarities between the homing of cancer and HSC to the bone. Finally we will conclude with therapeutic and early detection strategies which can prevent homing of a cancer cell to the bone.

  19. Hallmarks of cancer stem cell metabolism.

    PubMed

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-06-14

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome.

  20. Hallmarks of cancer stem cell metabolism

    PubMed Central

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-01-01

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome. PMID:27219018

  1. An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines.

    PubMed

    Hopkins, S L; Siewert, B; Askes, S H C; Veldhuizen, P; Zwier, R; Heger, Michal; Bonnet, Sylvestre

    2016-05-11

    Traditionally, ultraviolet light (100-400 nm) is considered an exogenous carcinogen while visible light (400-780 nm) is deemed harmless. In this work, a LED irradiation system for in vitro photocytotoxicity testing is described. The LED irradiation system was developed for testing photopharmaceutical drugs, but was used here to determine the basal level response of human cancer cell lines to visible light of different wavelengths, without any photo(chemo)therapeutic. The effects of blue (455 nm, 10.5 mW cm(-2)), green (520 nm, 20.9 mW cm(-2)), and red light (630 nm, 34.4 mW cm(-2)) irradiation was measured for A375 (human malignant melanoma), A431 (human epidermoid carcinoma), A549 (human lung carcinoma), MCF7 (human mammary gland adenocarcinoma), MDA-MB-231 (human mammary gland adenocarcinoma), and U-87 MG (human glioblastoma-grade IV) cell lines. In response to a blue light dose of 19 J cm(-2), three cell lines exhibited a minimal (20%, MDA-MB-231) to moderate (30%, A549 and 60%, A375) reduction in cell viability, compared to dark controls. The other cell lines were not affected. Effective blue light doses that produce a therapeutic response in 50% of the cell population (ED50) compared to dark conditions were found to be 10.9 and 30.5 J cm(-2) for A375 and A549 cells, respectively. No adverse effects were observed in any of the six cell lines irradiated with a 19 J cm(-2) dose of 520 nm (green) or 630 nm (red) light. The results demonstrate that blue light irradiation can have an effect on the viability of certain human cancer cell types and controls should be used in photopharmaceutical testing, which uses high-energy (blue or violet) visible light activation.

  2. Detection and imaging of aggressive cancer cells using an epidermal growth factor receptor (EGFR)-targeted filamentous plant virus-based nanoparticle.

    PubMed

    Chariou, Paul L; Lee, Karin L; Wen, Amy M; Gulati, Neetu M; Stewart, Phoebe L; Steinmetz, Nicole F

    2015-02-18

    Molecular imaging approaches and targeted drug delivery hold promise for earlier detection of diseases and treatment with higher efficacy while reducing side effects, therefore increasing survival rates and quality of life. Virus-based nanoparticles are a promising platform because their scaffold can be manipulated both genetically and chemically to simultaneously display targeting ligands while carrying payloads for diagnosis or therapeutic intervention. Here, we displayed a 12-amino-acid peptide ligand, GE11 (YHWYGYTPQNVI), on nanoscale filaments formed by the plant virus potato virus X (PVX). Bioconjugation was used to produce fluorescently labeled PVX-GE11 filaments targeted toward the epidermal growth factor receptor (EGFR). Cell detection and imaging was demonstrated using human skin epidermoid carcinoma, colorectal adenocarcinoma, and triple negative breast cancer cell lines (A-431, HT-29, MDA-MB-231), all of which upregulate EGFR to various degrees. Nonspecific uptake in ductal breast carcinoma (BT-474) cells was not observed. Furthermore, co-culture experiments with EGFR(+) cancer cells and macrophages indicate successful targeting and partitioning toward the cancer cells. This study lays a foundation for the development of EGFR-targeted filaments delivering contrast agents for imaging and diagnosis, and/or toxic payloads for targeted drug delivery.

  3. Detection and Imaging of Aggressive Cancer Cells Using an Epidermal Growth Factor Receptor (EGFR)-Targeted Filamentous Plant Virus-Based Nanoparticle

    PubMed Central

    Wen, Amy M.; Gulati, Neetu M.; Stewart, Phoebe L.; Steinmetz, Nicole F.

    2016-01-01

    Molecular imaging approaches and targeted drug delivery hold promise for earlier detection of diseases and treatment with higher efficacy while reducing side effects, therefore increasing survival rates and quality of life. Virus-based nanoparticles are a promising platform because their scaffold can be manipulated both genetically and chemically to simultaneously display targeting ligands while carrying payloads for diagnosis or therapeutic intervention. Here, we displayed a 12-amino-acid peptide ligand, GE11 (YHWYGYTPQNVI), on nanoscale filaments formed by the plant virus potato virus X (PVX). Bioconjugation was used to produce fluorescently labeled PVX-GE11 filaments targeted toward the epidermal growth factor receptor (EGFR). Cell detection and imaging was demonstrated using human skin epidermoid carcinoma, colorectal adenocarcinoma, and triple negative breast cancer cell lines (A-431, HT-29, MDA-MB-231), all of which upregulate EGFR to various degrees. Nonspecific uptake in ductal breast carcinoma (BT-474) cells was not observed. Furthermore, co-culture experiments with EGFR+ cancer cells and macrophages indicate successful targeting and partitioning toward the cancer cells. This study lays a foundation for the development of EGFR-targeted filaments delivering contrast agents for imaging and diagnosis, and/or toxic payloads for targeted drug delivery. PMID:25611133

  4. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  5. Cell Senescence: Aging and Cancer

    ScienceCinema

    Campisi, Judith

    2016-07-12

    Scientists have identified a molecular cause behind the ravages of old age and in doing so have also shown how a natural process for fighting cancer in younger persons can actually promote cancer in older individuals.

  6. Cell Senescence: Aging and Cancer

    SciTech Connect

    Campisi, Judith

    2008-01-01

    Scientists have identified a molecular cause behind the ravages of old age and in doing so have also shown how a natural process for fighting cancer in younger persons can actually promote cancer in older individuals.

  7. Cancer stem cells in head and neck cancer

    PubMed Central

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called “cells that start the tumor,” represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  8. [Markers of prostate cancer stem cells: research advances].

    PubMed

    Wang, Shun-Qi; Huang, Sheng-Song

    2013-12-01

    Prostate cancer is one of the most seriously malignant diseases threatening men's health, and the mechanisms of its initiation and progression are not yet completely understood. Recent years have witnessed distinct advances in researches on prostate cancer stem cells in many aspects using different sources of materials, such as human prostate cancer tissues, human prostate cancer cell lines, and mouse models of prostate cancer. Prostate cancer stem cell study offers a new insight into the mechanisms of the initiation and progression of prostate cancer and contributes positively to its treatment. This article presents an overview on the prostate cancer stem cell markers utilized in the isolation and identification of prostate cancer stem cells.

  9. Arf proteins in cancer cell migration

    PubMed Central

    Casalou, Cristina; Faustino, Alexandra; Barral, Duarte C.

    2016-01-01

    ABSTRACT Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling. PMID:27589148

  10. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia T.

    2015-10-01

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  11. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present

  12. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    SciTech Connect

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  13. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells.

    PubMed

    Zhang, S; Mercado-Uribe, I; Xing, Z; Sun, B; Kuang, J; Liu, J

    2014-01-02

    Polyploid giant cancer cells (PGCCs) have been observed by pathologists for over a century. PGCCs contribute to solid tumor heterogeneity, but their functions are largely undefined. Little attention has been given to these cells, largely because PGCCs have been generally thought to originate from repeated failure of mitosis/cytokinesis and have no capacity for long-term survival or proliferation. Here we report our successful purification and culture of PGCCs from human ovarian cancer cell lines and primary ovarian cancer. These cells are highly resistant to oxygen deprivation and could form through endoreduplication or cell fusion, generating regular-sized cancer cells quickly through budding or bursting similar to simple organisms like fungi. They express normal and cancer stem cell markers, they divide asymmetrically and they cycle slowly. They can differentiate into adipose, cartilage and bone. A single PGCC formed cancer spheroids in vitro and generated tumors in immunodeficient mice. These PGCC-derived tumors gained a mesenchymal phenotype with increased expression of cancer stem cell markers CD44 and CD133 and become more resistant to treatment with cisplatin. Taken together, our results reveal that PGCCs represent a resistant form of human cancer using an ancient, evolutionarily conserved mechanism in response to hypoxia stress; they can contribute to the generation of cancer stem-like cells, and also play a fundamental role in regulating tumor heterogeneity, tumor growth and chemoresistance in human cancer.

  14. Targetless T cells in cancer immunotherapy.

    PubMed

    Thor Straten, Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell transfer (ACT) using expanded tumor infiltrating lymphocytes (TIL) or genetically modified cytotoxic T cells. However, despite clear clinical responses, only a fraction of patients respond to treatment and there is an urgent call for characterization of predictive biomarkers. CD8 positive T cells can infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells. It is therefore mandatory to explore if these important molecules for T cell cytotoxicity are expressed by cancer target cells. We have indications that different types of immunotherapy can modify the tumor microenvironment and up-regulate reduced HLA class I expression in cancer cells but only if the associated molecular mechanisms is reversible (soft). However, in case of structural (hard) aberrations causing HLA class I loss, tumor cells will not be able to recover HLA class I expression and as a consequence will escape T-cell lysis and continue to growth. Characterization of the molecular mechanism underlying the lack or downregulation of HLA class I expression, seems to be a crucial step predicting clinical responses to T cell mediated immunotherapy, and possibly aid the

  15. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

    PubMed

    Luna, Jesus I; Grossenbacher, Steven K; Murphy, William J; Canter, Robert J

    2017-03-01

    Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.

  16. Mechanisms of Cancer Cell Dormancy – Another Hallmark of Cancer?

    PubMed Central

    Yeh, Albert C.; Ramaswamy, Sridhar

    2015-01-01

    Disease relapse in cancer patients many years after clinical remission, often referred to as cancer dormancy, is well documented but remains an incompletely understood phenomenon on the biological level. Recent reviews have summarized potential models that can explain this phenomenon, including angiogenic, immunologic, and cellular dormancy. We focus on mechanisms of cellular dormancy as newer biological insights have enabled better understanding of this process. We provide a historical context, synthesize current advances in the field, and propose a mechanistic framework that treats cancer cell dormancy as a dynamic cell state conferring a fitness advantage to an evolving malignancy under stress. Cellular dormancy appears to be an active process that can be toggled through a variety of signaling mechanisms that ultimately down-regulate the Ras/MAPK and PI(3)K/AKT pathways, an ability that is preserved even in cancers that constitutively depend on these pathways for their growth and survival. Just as unbridled proliferation is a key hallmark of cancer, the ability of cancer cells to become quiescent may be critical to evolving malignancies, with implications for understanding cancer initiation, progression, and treatment resistance. PMID:26354021

  17. Cell Polarity Proteins in Breast Cancer Progression.

    PubMed

    Rejon, Carlis; Al-Masri, Maia; McCaffrey, Luke

    2016-10-01

    Breast cancer, one of the leading causes of cancer related death in women worldwide, is a heterogeneous disease with diverse subtypes that have different properties and prognoses. The developing mammary gland is a highly proliferative and invasive tissue, and some of the developmental programs may be aberrantly activated to promote breast cancer progression. In the breast, luminal epithelial cells exhibit apical-basal polarity, and the failure to maintain this organizational structure, due to disruption of polarity complexes, is implicated in promoting hyperplasia and tumors. Therefore, understanding the mechanisms underlying loss of polarity will contribute to our knowledge of the early stages leading to the pathogenesis of the disease. In this review, we will discuss recent findings that support the idea that loss of apical-basal cell polarity is a crucial step in the acquisition of the malignant phenotype. Oncogene induced loss of tissue organization shares a conserved cellular mechanism with developmental process, we will further describe the role of the individual polarity complexes, the Par, Crumbs, and Scribble, to couple cell division orientation and cell growth. We will examine symmetric or asymmetric cell divisions in mammary stem cell and their contribution to the development of breast cancer subtypes and cancer stem cells. Finally, we will highlight some of the recent advances in our understanding of the molecular mechanisms by which changes in epithelial polarity programs promote invasion and metastasis through single cell and collective cell modes. J. Cell. Biochem. 117: 2215-2223, 2016. © 2016 Wiley Periodicals, Inc.

  18. Gene sensitizes cancer cells to chemotherapy drugs

    Cancer.gov

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  19. Measuring the metastatic potential of cancer cells

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Gratzner, Howard; Atassi, M. Z.

    1993-01-01

    Cancer cells must secrete proteolytic enzymes to invade adjacent tissues and migrate to a new metastatic site. Urokinase (uPA) is a key enzyme related to metastasis in cancers of the lung, colon, gastric, uterine, breast, brain, and malignant melanoma. A NASA technology utilization project has combined fluorescence microscopy, image analysis, and flow cytometry, using fluorescent dyes, and urokinase-specific antibodies to measure uPA and abnormal DNA levels (related to cancer cell proliferation) inside the cancer cells. The project is focused on developing quantitative measurements to determine if a patient's tumor cells are actively metastasizing. If a significant number of tumor cells contain large amounts of uPA (esp. membrane-bound) then the post-surgical chemotherapy or radiotherapy can be targeted for metastatic cells that have already left the primary tumor. These analytical methods have been applied to a retrospective study of biopsy tissues from 150 node negative, stage 1 breast cancer patients. Cytopathology and image analysis has shown that uPA is present in high levels in many breast cancer cells, but not found in normal breast. Significant amounts of uPA also have been measured in glioma cell lines cultured from brain tumors. Commercial applications include new diagnostic tests for metastatic cells, in different cancers, which are being developed with a company that provides a medical testing service using flow cytometry for DNA analysis and hormone receptors on tumor cells from patient biopsies. This research also may provide the basis for developing a new 'magic bullet' treatment against metastasis using chemotherapeutic drugs or radioisotopes attached to urokinase-specific monoclonal antibodies that will only bind to metastatic cells.

  20. Human cancer classification: a systems biology- based model integrating morphology, cancer stem cells, proteomics, and genomics.

    PubMed

    Idikio, Halliday A

    2011-02-22

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification.

  1. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyl transferase.

    PubMed

    Magi, Shigeyuki; Shitara, Tetsuo; Takemoto, Yasushi; Sawada, Masato; Kitagawa, Mitsuhiro; Tashiro, Etsu; Takahashi, Yoshikazu; Imoto, Masaya

    2013-03-01

    In the course of screening for an inhibitor of farnesyl transferase (FTase), we identified two compounds, N-benzyl-aclacinomycin A (ACM) and N-allyl-ACM, which are new derivatives of ACM. N-benzyl-ACM and N-allyl-ACM inhibited FTase activity with IC50 values of 0.86 and 2.93 μM, respectively. Not only ACM but also C-10 epimers of each ACM derivative failed to inhibit FTase. The inhibition of FTase by N-benzyl-ACM and N-allyl-ACM seems to be specific, because these two compounds did not inhibit geranylgeranyltransferase or geranylgeranyl pyrophosphate (GGPP) synthase up to 100 μM. In cultured A431 cells, N-benzyl-ACM and N-allyl-ACM also blocked both the membrane localization of H-Ras and activation of the H-Ras-dependent PI3K/Akt pathway. In addition, they inhibited epidermal growth factor (EGF)-induced migration of A431 cells. Thus, N-benzyl-ACM and N-allyl-ACM inhibited EGF-induced migration of A431 cells by inhibiting the farnesylation of H-Ras and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.

  2. Colon cancer stem cells: controversies and perspectives.

    PubMed

    Puglisi, Maria Ausiliatrice; Tesori, Valentina; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-05-28

    Tumors have long been viewed as a population in which all cells have the equal propensity to form new tumors, the so called conventional stochastic model. The cutting-edge theory on tumor origin and progression, tends to consider cancer as a stem cell disease. Stem cells are actively involved in the onset and maintenance of colon cancer. This review is intended to examine the state of the art on colon cancer stem cells (CSCs), with regard to the recent achievements of basic research and to the corresponding translational consequences. Specific prominence is given to the hypothesized origin of CSCs and to the methods for their identification. The growing understanding of CSC biology is driving the optimization of novel anti-cancer targeted drugs.

  3. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    PubMed Central

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537

  4. Stapled peptide induces cancer cell death.

    PubMed

    Whelan, Jo

    2004-11-01

    Hydrocarbon stapling could enable peptides from the key domains of natural proteins to be used therapeutically. Using the technique on a peptide involved in apoptosis, researchers have succeeded in destroying cancer cells in a mouse model of leukaemia.

  5. Cancer stem cells: a metastasizing menace!

    PubMed

    Bandhavkar, Saurabh

    2016-04-01

    Cancer is one of the leading causes of death worldwide, and is estimated to be a reason of death of more than 18 billion people in the coming 5 years. Progress has been made in diagnosis and treatment of cancer; however, a sound understanding of the underlying cell biology still remains an unsolved mystery. Current treatments include a combination of radiation, surgery, and/or chemotherapy. However, these treatments are not a complete cure, aimed simply at shrinking the tumor and in majority of cases, there is a relapse of tumor. Several evidences suggest the presence of cancer stem cells (CSCs) or tumor-initiating stem-like cells, a small population of cells present in the tumor, capable of self-renewal and generation of differentiated progeny. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. As a result, increasing attention has been given to CSC research to resolve the therapeutic problems related to cancer. Progress in this field of research has led to the development of novel strategies to treat several malignancies and has become a hot topic of discussion. In this review, we will briefly focus on the main characteristics, therapeutic implications, and perspectives of CSCs in cancer therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Stereotactic Body Radiation Therapy in Treating Patients With Metastatic Breast Cancer, Non-small Cell Lung Cancer, or Prostate Cancer

    ClinicalTrials.gov

    2017-05-18

    Male Breast Carcinoma; Prostate Adenocarcinoma; Recurrent Breast Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Prostate Carcinoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Prostate Cancer

  7. Cancer stem cells: progress and challenges in lung cancer

    PubMed Central

    Templeton, Amanda K.; Miyamoto, Shinya; Babu, Anish; Munshi, Anupama

    2014-01-01

    The identification of a subpopulation of tumor cells with stem cell-like characteristics first in hematological malignancies and later in solid tumors has emerged into a novel field of cancer research. It has been proposed that this aberrant population of cells now called “cancer stem cells” (CSCs) drives tumor initiation, progression, metastasis, recurrence, and drug resistance. CSCs have been shown to have the capacity of self-renewal and multipotency. Adopting strategies from the field of stem cell research has aided in identification, localization, and targeting of CSCs in many tumors. Despite the huge progress in other solid tumors such as brain, breast, and colon cancers no substantial advancements have been made in lung cancer. This is most likely due to the current rudimentary understanding of lung stem cell hierarchy and heterogeneous nature of lung disease. In this review, we will discuss the most recent findings related to identification of normal lung stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs. Additionally, we will examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating lung CSCs. PMID:27358855

  8. Multiple myeloma cancer stem cells

    PubMed Central

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  9. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids.

  10. Liver cell cancer--intervention studies.

    PubMed

    Linsell, C A

    1981-01-01

    The field studies leading to possible intervention procedures are reviewed. Currently the most promising form of intervention is the prevention of aflatoxin contamination of foodstuffs. It is essential that these are monitored and their efficacy in lowering the incidence of liver cancer measured. The association of liver cancer with hepatitis B infection may be a confounding factor and the impact of this on the study population must also be considered. The imminent production of vaccines for hepatitis B infection may provide an alternative or additional mode of intervention. The possibilities for intervention in liver cell cancer appear one of the brighter prospects for primary prevention of a cancer.

  11. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    PubMed

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  12. Regulation of breast cancer stem cell features.

    PubMed

    Czerwinska, Patrycja; Kaminska, Bozena

    2015-01-01

    Cancer stem cells (CSCs) are rare, tumour-initiating cells that exhibit stem cell properties: capacity of self-renewal, pluripotency, highly tumorigenic potential, and resistance to therapy. Cancer stem cells have been characterised and isolated from many cancers, including breast cancer. Developmental pathways, such as the Wnt/β-catenin, Notch/γ-secretase/Jagged, Shh (sonic hedgehog), and BMP signalling pathways, which direct proliferation and differentiation of normal stem cells, have emerged as major signalling pathways that contribute to the self-renewal of stem and/or progenitor cells in a variety of organs and cancers. Deregulation of these signalling pathways is frequently linked to an epithelial-mesenchymal transition (EMT), and breast CSCs often possess properties of cells that have undergone the EMT process. Signalling networks mediated by microRNAs and EMT-inducing transcription factors tie the EMT process to regulatory networks that maintain "stemness". Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, which allows an assessment on how embryonic and normal tissue stem cells are deregulated during cancerogenesis to give rise to CSCs. Epigenetic-based mechanisms are reversible, and the possibility of "resetting" the abnormal cancer epigenome by applying pharmacological compounds targeting epigenetic enzymes is a promising new therapeutic strategy. Chemoresistance of CSCs is frequently driven by various mechanisms, including aberrant expression/activity of ABC transporters, aldehyde dehydrogenase and anti-oncogenic proteins (i.e. BCL2, B-cell lymphoma-2), enhanced DNA damage response, activation of pro-survival signalling pathways, and epigenetic deregulations. Despite controversy surrounding the CSC hypothesis, there is substantial evidence for their role in cancer, and a number of drugs intended to specifically target CSCs have entered clinical trials.

  13. Cancer cell resistance mechanisms: a mini review.

    PubMed

    Al-Dimassi, S; Abou-Antoun, T; El-Sibai, M

    2014-06-01

    Cancer is a leading cause of death worldwide accounting to 13 % of all deaths. One of the main causes behind the failure of treatment is the development of various therapy resistance mechanisms by the cancer cells leading to the recurrence of the disease. This review sheds a light on some of the mechanisms developed by cancer cells to resist therapy as well as some of the structures involved such as the ABC members' involvement in chemotherapy resistance and MET and survivin overexpression leading to radiotherapy resistance. Understanding those mechanisms will enable scientists to overcome resistance and possibly improve treatment and disease prognosis.

  14. Combination Chemotherapy, Radiation Therapy, and Gefitinib in Treating Patients With Stage III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-06-04

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Bronchoalveolar Cell Lung Cancer; Large Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  15. Cancer stem cells: a stride towards cancer cure?

    PubMed

    Sengupta, Amitava; Cancelas, Jose A

    2010-10-01

    Despite major refinements in cancer therapy drugs, our progress at increasing the cure rates of most cancers has been hampered by high relapse rates. A possible biological explanation of the high frequency of relapse and resistance to currently available drugs has been provided by the cancer stem cell (CSC) proposition. Basically, the CSC theory hypothesizes the presence of a hierarchically organized, relatively rare population of cells that is responsible for tumor initiation, self-renewal and maintenance, mutation accumulation and therapy resistance. Since first postulated by John Dick, multiple reports have provided support for this hypothesis by isolating (more or less) rare cell populations, where the ability to initiate tumors in vivo has been demonstrated. Most progress and stronger data supporting this theory are found predominantly in myelogenous leukemias, whose study has benefited from over half-a-century progress in our understanding of the normal hierarchical organization of hematopoiesis. This review, however, also analyzes the advancement in the quantitative and functional analysis of solid tumor stem cells and in the analysis of the tumor microenvironment as specialized, nurturing niches for CSCs. Overall, this review intends to briefly summarize most of the evidences that support the CSC theory and the apparent contradictions, if not skepticism from the scientific community, about its validity for all forms of cancer, or alternatively on just a few cancers initiated by a limited number of somatic or germinal mutations. (c) 2010 Wiley-Liss, Inc.

  16. Cancer stem cells: the lessons from pre-cancerous stem cells

    PubMed Central

    Gao, Jian-Xin

    2008-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not contradictory to the CSC hypothesis but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respect to their phenotype, differentiation and tumourigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumour stromal components such as tumour vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumour-initiating cells (TIC) → pCSC → CSC → cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) → pre-cancerous lesions (pCSC) → malignant lesions (CSC → cancer). The embryonic stem (ES) cell and germ line stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC → pCSC → CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC cannot be made at this time. However, this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer. PMID:18053092

  17. Killing Prostate Cancer Cells and Endothelial Cells with a VEGF-Triggered Cell Death Receptor

    DTIC Science & Technology

    2005-06-01

    AD_________________ Award Number: DAMD17-02- 1 -0029 TITLE: Killing Prostate Cancer Cells and...CONTRACT NUMBER Killing Prostate Cancer Cells and Endothelial Cells with a VEGF-Triggered Cell Death Receptor 5b. GRANT NUMBER DAMD17-02- 1 -0029...as a means to kill prostate cancer cells and vascular endothelial cells in vitro. The scope of this project involved: ( 1 ) creating adenoviral

  18. Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line

    PubMed Central

    WANG, LI; GUO, HUIJIE; LIN, CAIYU; YANG, LIUQI; WANG, XIUJIE

    2014-01-01

    Cancer stem cells (CSCs) are proposed to be responsible for tumor recurrence, metastasis and the high mortality rate of cancer patients. Isolation and identification of CSCs is crucial for basic and preclinical studies. However, as there are currently no universal markers for the isolation and identification of CSCs in any type of cancer, the method for isolating CSCs from primary cancer tissues or cell lines is costly and ineffective. In order to establish a reliable model of cervical cancer stem cells for basic and preclinical studies, the present study was designed to enrich cervical cancer CSCs using a nonadhesive culture system and to characterize their partial stemness phenotypes. Human cervical cancer cells (HeLa) were cultured using a nonadhesive culture system to generate tumor spheres. Their stemness characteristics were investigated through colony formation, tumor sphere formation, self-renewal, toluidine blue staining, chemoresistance, invasion assays, reverse transcription-polymerase chain reaction, immunofluorescence staining of putative stem cell markers, including octamer-binding transcription factor 4, SRY-box 2 and aldehyde dehydrogenase 1 family, member A1, and adipogenic differentiation induction. Typical tumor spheres were formed within 5–7 days under this nonadhesive culture system. Compared with the adherent parental HeLa cells, the colony formation capacity, self-renewal potential, light cell population, cell invasion, chemoresistance and expression of putative stem cell markers of the tumor sphere cells increased significantly, and a subpopulation of tumor sphere cells were induced into adipogenic differentiation. Using the nonadhesive culture system, a reliable model of cervical cancer stem cells was established, which is inexpensive, effective and simple compared with the ultra-low attachment serum free culture method. The stemness characteristics of the tumor sphere HeLa cells mirrored the CSC phenotypes. This CSC model may be useful

  19. Overcoming Multidrug Resistance in Cancer Stem Cells

    PubMed Central

    2015-01-01

    The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed. PMID:26649310

  20. Cancer stem cells: controversies in multiple myeloma.

    PubMed

    Brennan, Sarah K; Matsui, William

    2009-11-01

    Increasing data suggest that the initiation, relapse, and progression of human cancers are driven by specific cell populations within an individual tumor. However, inconsistencies have emerged in precisely defining phenotypic markers that can reliably identify these "cancer stem cells" in nearly every human malignancy studied to date. Multiple myeloma, one of the first tumors postulated to be driven by a rare population of cancer stem cells, is no exception. Similar to other diseases, controversy surrounds the exact phenotype and biology of multiple myeloma cells with the capacity for clonogenic growth. Here, we review the studies that have led to these controversies and discuss potential reasons for these disparate findings. Moreover, we speculate how these inconsistencies may be resolved through studies by integrating advancements in both myeloma and stem cell biology.

  1. Aging and cancer cell biology, 2007.

    PubMed

    Campisi, Judith

    2007-06-01

    This Hot Topics review, the second in a new Aging Cell series, discusses articles published in the last year that have stimulated new ideas about the tangled relationship of aging to cancer cell biology. The year's highlights include reports on the ability of Mdm2 mutations to diminish risks of cancer in aging mice, on proliferative competition between oncogenic cells and bone marrow stem cells, and on the role of metalloproteinases in overcoming age-associated barriers to tumor invasion. Of particular interest were three articles showing that diminished activity of the tumor-suppressor gene p16/INK4a, while increasing the risk of cancer mortality, can lead to improved function in several varieties of age-sensitive stem cells.

  2. Biomechanical investigation of colorectal cancer cells

    NASA Astrophysics Data System (ADS)

    Palmieri, Valentina; Lucchetti, Donatella; Maiorana, Alessandro; Papi, Massimiliano; Maulucci, Giuseppe; Ciasca, Gabriele; Svelto, Maria; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    The nanomechanical properties of SW480 colon cancer cells were investigated using Atomic Force Microscopy. SW480 cells are composed of two sub-populations with different shape and invasiveness. These two cells populations showed similar adhesion properties while appeared significantly different in term of cells stiffness. Since cell stiffness is related to invasiveness and growth, we suggest elasticity as a useful parameter to distinguish invasive cells inside the colorectal tumor bulk and the high-resolution mechanical mapping as a promising diagnostic tool for the identification of malignant cells.

  3. Infection, stem cells and cancer signals.

    PubMed

    Sell, S

    2011-02-01

    The association of cancer with preceding parasitic infections has been observed for over 200 years. Some such cancers arise from infection of tissue stem cells by viruses with insertion of viral oncogenes into the host DNA (mouse polyoma virus, mouse mammary tumor virus). In other cases the virus does not insert its DNA into the host cells, but rather commandeers the metabolism of the infected cells, so that the cells continue to proliferate and do not differentiate (human papilloma virus and cervical cancer). Cytoplasmic Epstein Barr virus infection is associated with a specific gene translocation (Ig/c-myc) that activates proliferation of affected cells (Burkitt lymphoma). In chronic osteomyelitis an inflammatory reaction to the infection appears to act through production of inflammatory cytokines and oxygen radical formation to induce epithelial cancers. Infection with Helicobacter pylori leads to epigenetic changes in methylation and infection by a parasite. Clonorchis sinensis also acts as a promoter of cancer of the bile ducts of the liver (cholaniocarcinoma). The common thread among these diverse pathways is that the infections act to alter tissue stem cell signaling with continued proliferation of tumor transit amplifying cells.

  4. Infection, Stem Cells and Cancer Signals

    PubMed Central

    Sell, S.

    2013-01-01

    The association of cancer with preceding parasitic infections has been observed for over 200 years. Some such cancers arise from infection of tissue stem cells by viruses with insertion of viral oncogenes into the host DNA (mouse polyoma virus, mouse mammary tumor virus). In other cases the virus does not insert its DNA into the host cells, but rather commandeers the metabolism of the infected cells, so that the cells continue to proliferate and do not differentiate (human papilloma virus and cervical cancer). Cytoplasmic Epstein Barr virus infection is associated with a specific gene translocation (Ig/c-myc) that activates proliferation of affected cells (Burkitt lymphoma). In chronic osteomyelitis an inflammatory reaction to the infection appears to act through production of inflammatory cytokines and oxygen radical formation to induce epithelial cancers. Infection with Helicobacter pylori leads to epigenetic changes in methylation and infection by a parasite. Clonorchis sinensis also acts as a promoter of cancer of the bile ducts of the liver (cholaniocarcinoma). The common thread among these diverse pathways is that the infections act to alter tissue stem cell signaling with continued proliferation of tumor transit amplifying cells. PMID:21044009

  5. Cancer stem cells: A contentious hypothesis now moving forward.

    PubMed

    O'Connor, Michael L; Xiang, Dongxi; Shigdar, Sarah; Macdonald, Joanna; Li, Yong; Wang, Tao; Pu, Chunwen; Wang, Zhidong; Qiao, Liang; Duan, Wei

    2014-03-28

    Cancer stem cells are a progressive concept to account for the cell biological nature of cancer. Despite the controversies regarding the cancer stem cell model, it has the potential to provide a foundation for new innovative treatment targeting the roots of cancer. The last two years have witnessed exceptional progress in cancer stem cell research, in particular on solid tumours, which holds promise for improved treatment outcomes. Here, we review recent advances in cancer stem cell research, discuss challenges in the field and explore future strategies and opportunities in cancer stem cell studies to overcome resistance to chemotherapy.

  6. New cancer or carcinoid progression to small cell lung cancer?

    PubMed

    Ie, Susanti; Boyd, Michael

    2015-04-01

    Carcinoids and small cell lung cancer share neuroendocrine cellular origins. Surgery is the definitive treatment in typical carcinoid with few recurrences. For patients considered to be poor surgical candidates, ablative and cryotherapies have been utilized with good results. The long-term consequences of these alternatives approaches are unclear. We report a case of typical carcinoid treated with various alternative approaches over a period of 6 years with either transformation to small cell lung cancer or the development of a new primary in the same location.

  7. Immunosurveillance of senescent cancer cells by natural killer cells

    PubMed Central

    Iannello, Alexandre; Raulet, David H

    2014-01-01

    We recently dissected how senescent tumors can trigger complementing signaling pathways that mobilize natural killer (NK) cells to eliminate malignant cells. In addition to cell-intrinsic effects on proliferation, senescence induces the production of chemokine (C-C motif) ligand 2 (CCL2), which recruits NK cells to mediate direct tumoricidal effects. Hence, senescence activates a cancer cell-extrinsic oncosuppression program. PMID:24800169

  8. Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth.

    PubMed

    Balsa-Martinez, Eduardo; Puigserver, Pere

    2015-11-19

    In this issue and the October 15th issue of Molecular Cell, studies by Montal et al. (2015) and Vincent et al. (2015) report that certain types of cancer cells utilize the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxykinase 2 (PCK2) to reprogram anabolic metabolism and support cell growth.

  9. Radiosensitivity of Cancer Initiating Cells and Normal Stem Cells

    PubMed Central

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-01-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (e.g. a lack of response, partial response or non-permanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of re-populating the tumor after sub-curative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that employ cell surface markers to identify cancer initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed. PMID:19249646

  10. PERSPECTIVES ON CANCER STEM CELLS IN OSTEOSARCOMA

    PubMed Central

    Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka

    2012-01-01

    Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734

  11. Therapeutic implications of Cancer Initiating Cells.

    PubMed

    Scopelliti, Alessandro; Cammareri, Patrizia; Catalano, Veronica; Saladino, Vitanna; Todaro, Matilde; Stassi, Giorgio

    2009-08-01

    Until few years ago, all neoplastic cells within a tumour were suggested to have tumorigenic capacity, but recent evidences hint to the possibility that such feature is confined to a subset of Cancer Initiating Cells (CICs), also called Cancer Stem Cells (CSCs). These cells are the reservoir of the heterogeneous populations of differentiated cancer cells constituting the tumour bulk. Mechanisms shared with somatic stem cells, such as quiescence, self-renewal ability, asymmetric division and multidrug resistance, allow to these cells to drive tumour growth and to evade conventional therapy. Here, we give a brief overview on the origin of CICs, the mechanisms involved in chemoresistance and therapeutic implications. Current cancer treatments, based on the assumption that tumour cell population responds homogeneously, have been developed to eradicate proliferating cells. The new model of tumorigenesis entails significant therapeutic implications, in fact if a small fraction of CICs survives conventional therapy it may lead to recurrence after month or years of apparent remission. Selective targeting of CICs could eliminate the tumour from the root, overcoming the emergence of clones capable of evading traditional therapy and increasing overall disease free survival.

  12. Cell polarity signaling in the plasticity of cancer cell invasiveness

    PubMed Central

    Gandalovičová, Aneta; Vomastek, Tomáš; Rosel, Daniel; Brábek, Jan

    2016-01-01

    Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness. PMID:26872368

  13. Cell polarity signaling in the plasticity of cancer cell invasiveness.

    PubMed

    Gandalovičová, Aneta; Vomastek, Tomáš; Rosel, Daniel; Brábek, Jan

    2016-05-03

    Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.

  14. Cancer stem cells and cell size: A causal link?

    PubMed

    Li, Qiuhui; Rycaj, Kiera; Chen, Xin; Tang, Dean G

    2015-12-01

    The majority of normal animal cells are 10-20 μm in diameter. Many signaling mechanisms, notably PI3K/Akt/mTOR, Myc, and Hippo pathways, tightly control and coordinate cell growth, cell size, cell division, and cell number during homeostasis. These regulatory mechanisms are frequently deregulated during tumorigenesis resulting in wide variations in cell sizes and increased proliferation in cancer cells. Here, we first review the evidence that primitive stem cells in adult tissues are quiescent and generally smaller than their differentiated progeny, suggesting a correlation between small cell sizes with the stemness. Conversely, increased cell size positively correlates with differentiation phenotypes. We then discuss cancer stem cells (CSCs) and present some evidence that correlates cell sizes with CSC activity. Overall, a causal link between CSCs and cell size is relatively weak and remains to be rigorously assessed. In the future, optimizing methods for isolating cells based on size should help elucidate the connection between cancer cell size and CSC characteristics.

  15. Isolation of cancer stem cells from human prostate cancer samples.

    PubMed

    Vidal, Samuel J; Quinn, S Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-03-14

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice.

  16. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells.

    PubMed

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2016-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn't exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker.

  17. Morphological Differences between Circulating Tumor Cells from Prostate Cancer Patients and Cultured Prostate Cancer Cells

    PubMed Central

    Park, Sunyoung; Ang, Richard R.; Duffy, Simon P.; Bazov, Jenny; Chi, Kim N.; Black, Peter C.; Ma, Hongshen

    2014-01-01

    Circulating tumor cell (CTC) enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile. PMID:24416373

  18. Biomechanics and biophysics of cancer cells

    PubMed Central

    Suresh, Subra

    2010-01-01

    The past decade has seen substantial growth in research into how changes in the biomechanical and biophysical properties of cells and subcellular structures influence, and are influenced by, the onset and progression of human diseases. This paper presents an overview of the rapidly expanding, nascent field of research that deals with the biomechanics and biophysics of cancer cells. The review begins with some key observations on the biology of cancer cells and on the role of actin microfilaments, intermediate filaments and microtubule biopolymer cytoskeletal components in influencing cell mechanics, locomotion, differentiation and neoplastic transformation. In order to set the scene for mechanistic discussions of the connections among alterations to subcellular structures, attendant changes in cell deformability, cytoadherence, migration, invasion and tumor metastasis, a survey is presented of the various quantitative mechanical and physical assays to extract the elastic and viscoelastic deformability of cancer cells. Results available in the literature on cell mechanics for different types of cancer are then reviewed. Representative case studies are presented next to illustrate how chemically induced cytoskeletal changes, biomechanical responses and signals from the intracellular regions act in concert with the chemomechanical environment of the extracellular matrix and the molecular tumorigenic signaling pathways to effect malignant transformations. Results are presented to illustrate how changes to cytoskeletal architecture induced by cancer drugs and chemotherapy regimens can significantly influence cell mechanics and disease state. It is reasoned through experimental evidence that greater understanding of the mechanics of cancer cell deformability and its interactions with the extracellular physical, chemical and biological environments offers enormous potential for significant new developments in disease diagnostics, prophylactics, therapeutics and drug

  19. Gene and cell therapy for pancreatic cancer.

    PubMed

    Singh, Hans Martin; Ungerechts, Guy; Tsimberidou, Apostolia M

    2015-04-01

    The clinical outcomes of patients with pancreatic cancer are poor, and the limited success of classical chemotherapy underscores the need for new, targeted approaches for this disease. The delivery of genetic material to cells allows for a variety of therapeutic concepts. Engineered agents based on synthetic biology are under clinical investigation in various cancers, including pancreatic cancer. This review focuses on Phase I - III clinical trials of gene and cell therapy for pancreatic cancer and on future implications of recent translational research. Trials available in the US National Library of Medicine (www.clinicaltrials.gov) until February 2014 were reviewed and relevant published results of preclinical and clinical studies were retrieved from www.pubmed.gov . In pancreatic cancer, gene and cell therapies are feasible and may have synergistic antitumor activity with standard treatment and/or immunotherapy. Challenges are related to application safety, manufacturing costs, and a new spectrum of adverse events. Further studies are needed to evaluate available agents in carefully designed protocols and combination regimens. Enabling personalized cancer therapy, insights from molecular diagnostic technologies will guide the development and selection of new gene-based drugs. The evolving preclinical and clinical data on gene-based therapies can lay the foundation for future avenues improving patient care in pancreatic cancer.

  20. Cancer cells with irons in the fire.

    PubMed

    Bystrom, Laura M; Rivella, Stefano

    2015-02-01

    Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.

  1. Cancer Cells with Irons in the Fire

    PubMed Central

    Bystrom, Laura M.; Rivella, Stefano

    2014-01-01

    Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer. PMID:24835768

  2. Phenotype heterogeneity in cancer cell populations

    NASA Astrophysics Data System (ADS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  3. Phenotype heterogeneity in cancer cell populations

    SciTech Connect

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  4. Cancer stem cell plasticity and tumor hierarchy.

    PubMed

    Cabrera, Marina Carla; Hollingsworth, Robert E; Hurt, Elaine M

    2015-01-26

    The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell (CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cells harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.

  5. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  6. Harnessing the apoptotic programs in cancer stem-like cells.

    PubMed

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  7. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  8. Stem Cell Transplants in Cancer Treatment

    Cancer.gov

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  9. Dendritic cells and immunity against cancer

    PubMed Central

    Palucka, Karolina; Ueno, Hideki; Fay, Joseph; Banchereau, Jacques

    2010-01-01

    SUMMARY T cells can reject established tumors when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets which respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease, and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease. PMID:21158979

  10. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells.

    PubMed

    Yuan, Zhi-Xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care.

  11. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    PubMed Central

    Yuan, Zhi-xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-lin; Zhao, Wei

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care. PMID:27891093

  12. Immune cell interplay in colorectal cancer prognosis.

    PubMed

    Norton, Samuel E; Ward-Hartstonge, Kirsten A; Taylor, Edward S; Kemp, Roslyn A

    2015-10-15

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, particularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship between cancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  13. Targeting cancer stem cells with oncolytic virus

    PubMed Central

    Tong, Yin

    2014-01-01

    Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells which are shown to be relatively resistant to conventional anticancer therapies and have been correlated to disease recurrence. Oncolytic viruses utilize methods of cell killing that differ from traditional therapies and thus are able to elude the typical mechanisms that CSCs use to resist current chemotherapies and radiotherapies. Moreover, genetically engineered oncolytic viruses may further augment the oncolytic effects. Here we review the recent data regarding the ability of several oncolytic viruses to eradicate CSCs. PMID:27358866

  14. Polyphosphate Affects Breast Cancer Cell Survival

    DTIC Science & Technology

    2006-04-01

    W81XWH-04-1-0379 TITLE: Polyphosphate Affects Breast Cancer Cell Survival PRINCIPAL INVESTIGATOR: Christine Haakenson CONTRACTING...From - To) 15 Mar 05 – 14 Mar 06 5a. CONTRACT NUMBER Polyphosphate Affects Breast Cancer Cell Survival 5b. GRANT NUMBER W81XWH-04-1-0379 5c...also affect Pol κ. Figure 13: Cellular survival after UV irradiation for Pol IV knockout in wild type and PPK- cells 0.01 0.10 1.00 0 30 60 90

  15. Cervical cancer stem cells: opportunities and challenges.

    PubMed

    Chhabra, Ravindresh

    2015-11-01

    Cervical cancer remains a leading cause of cancer-related deaths in women in spite of screening and vaccination programs. The current treatment strategies including chemotherapy and surgery could only prolong the patient's survival rather than provide a permanent cure. In case of advanced cervical cancer, radical surgery remains the only option which not only affects the child-bearing ability of the patient, but also comes with a continual risk of recurrence of the disease. Hence, there is a need to develop innovative therapeutics. The cancer stem cell hypothesis states that a tumor has a hierarchical cellular structure in which only a small subpopulation, referred to as cancer stem cells (CSCs), is capable of tumorigenesis. The CSCs possess the stem-like properties of self-renewal and can differentiate into non-stem tumor cells. A large number of studies suggest that CSCs are resistant to the conventional therapies used for cancer treatment. These therapies rather enrich the proportion of CSCs in the tumor by eliminating non-stem tumor cells, thereby causing enhanced drug resistance resulting in relapse of the disease. This makes CSCs as the most likely targets for therapeutic intervention. Also, the increase in the proportion of CSCs in patient samples is associated with poor survival rate, thus highlighting their potential role as prognostic biomarker. The CSCs have been identified and characterized in cervical cancer cell lines, but there are hardly any reports of CSCs in cervical cancer patient samples. This review highlights the current status of research on cervical CSCs, their clinical significance and the challenges in the field.

  16. Lipid metabolic reprogramming in cancer cells

    PubMed Central

    Beloribi-Djefaflia, S; Vasseur, S; Guillaumond, F

    2016-01-01

    Many human diseases, including metabolic, immune and central nervous system disorders, as well as cancer, are the consequence of an alteration in lipid metabolic enzymes and their pathways. This illustrates the fundamental role played by lipids in maintaining membrane homeostasis and normal function in healthy cells. We reviewed the major lipid dysfunctions occurring during tumor development, as determined using systems biology approaches. In it, we provide detailed insight into the essential roles exerted by specific lipids in mediating intracellular oncogenic signaling, endoplasmic reticulum stress and bidirectional crosstalk between cells of the tumor microenvironment and cancer cells. Finally, we summarize the advances in ongoing research aimed at exploiting the dependency of cancer cells on lipids to abolish tumor progression. PMID:26807644

  17. Adoptive T cell immunotherapy for cancer.

    PubMed

    Perica, Karlo; Varela, Juan Carlos; Oelke, Mathias; Schneck, Jonathan

    2015-01-01

    Harnessing the immune system to recognize and destroy tumor cells has been the central goal of anti-cancer immunotherapy. In recent years, there has been an increased interest in optimizing this technology in order to make it a clinically feasible treatment. One of the main treatment modalities within cancer immunotherapy has been adoptive T cell therapy (ACT). Using this approach, tumor-specific cytotoxic T cells are infused into cancer patients with the goal of recognizing, targeting, and destroying tumor cells. In the current review, we revisit some of the major successes of ACT, the major hurdles that have been overcome to optimize ACT, the remaining challenges, and future approaches to make ACT widely available.

  18. EMT in breast cancer stem cell generation.

    PubMed

    Ansieau, Stéphane

    2013-09-10

    The concept of cancer stem cells (CSCs) has been proposed to explain the ability of single disseminated cancer cells to reconstitute tumours with heterogeneity similar to that of the primary tumour they arise from. Although this concept is now commonly accepted, the origin of these CSCs remains a source of debate. First proposed to arise through stem/progenitor cell transformation, CSCs might also or alternatively arise from differentiated cancer cells through epithelial to mesenchymal transition (EMT), an embryonic transdifferentiation process. Using breast carcinomas as a study model, I propose revisiting the role of EMT in generating CSCs and the debate on potential underlying mechanisms and biological significance. Copyright © 2012. Published by Elsevier Ireland Ltd.

  19. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE July 2015 2. REPORT TYPE Annual 3. DATES COVERED 1 Jul 2014 - 30 Jun 2015 4. TITLE AND SUBTITLE Cell ...of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM ELEMENT NUMBER 6

  20. Cell lineage and cell death: Caenorhabditis elegans and cancer research.

    PubMed

    Potts, Malia B; Cameron, Scott

    2011-01-01

    Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.

  1. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    PubMed

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  2. Nano-discs Destroy Cancer Cells

    SciTech Connect

    2010-01-01

    A new technique, designed with the potential to treat brain cancers, is under study at Argonne National Laboratory and the University of Chicago Medical Center. The micron-sized magnetic materials, with vortex-like arrangements of spins, were successfully interfaced with Glioblastoma multiforme (GBM) cancer cells. The microdisks are gold-coated and biofunctionalized with a cancer-targeting antibody. The antibody recognizes unique receptors on the cancer cells and attaches to them (and them alone), leaving surrounding healthy cells unaffected during treatment. Under application of an alternative magnetic field, the magnetic vortices shift, leading to oscillatory motion of the disks and causing the magneto-mechanic stimulus to be transmitted directly to the cancer cell. Probably because of the damage to the cancer cell membrane, this results in cellular signal transduction and amplification, causing initiation of apoptosis (programmed cell death or "cell suicide"). Manifestation of apoptosis is of clinical significance because the malignant cells are known to be almost "immortal" (due to suppressed apoptosis), and, consequently, highly resistant to conventional (chemo- and radio-) therapies. Due to unique properties of the vortex microdisks, an extremely high spin-vortex-induced cytotoxicity effect can be caused by application of unprecedentedly weak magnetic fields. An alternative magnetic field as slow as about 10s Hertz (for comparison, 60 Hertz in a electrical outlet) and as small as less than 90 Oersteds (which is actually less than the field produced by a magnetized razor blade) applied only for 10 minutes was sufficient to cause ~90% cancer cell destruction in vitro. The study has only been conducted in cells in a laboratory; animal trials are being planned. Watch a news clip of the story from ABC-7 News: http://abclocal.go.com/wls/story?section=news/health&id=7245605 More details on this study can be found in the original research paper: Biofunctionalized

  3. Cancer-Associated Myeloid Regulatory Cells

    PubMed Central

    De Vlaeminck, Yannick; González-Rascón, Anna; Goyvaerts, Cleo; Breckpot, Karine

    2016-01-01

    Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level. PMID:27065074

  4. Probiotics, dendritic cells and bladder cancer.

    PubMed

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette-Guérin).

  5. Myeloid suppressor cells in cancer and autoimmunity.

    PubMed

    Sica, Antonio; Massarotti, Marco

    2017-07-17

    A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or

  6. Gastric cancer stem cells: A novel therapeutic target

    PubMed Central

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  7. Metastatic cancer stem cells: from the concept to therapeutics.

    PubMed

    Liao, Wen-Ting; Ye, Ya-Ping; Deng, Yong-Jian; Bian, Xiu-Wu; Ding, Yan-Qing

    2014-01-01

    Metastatic cancer stem cells (MCSCs) refer to a subpopulation of cancer cells with both stem cell properties and invasion capabilities that contribute to cancer metastasis. MCSCs have capability of self-renewal, potentials of multiple differentiation and development and/or reconstruction of cancer tissues. As compared with stationary cancer stem cells, MCSCs are capable of invasion to normal tissues such as vasculatures, resistance to chemo- and/or radio-therapies, escape from immune surveillance, survival in circulation and formation of metastasis. MCSCs are derived from invasive cancer stem cells (iCSCs) due to the plasticity of cancer stem cells, which is one of the characteristics of cancer cell heterogeneity. Both stages of iCSCs and MSCSs are the potential therapeutic targets for cancer metastasis in the future strategies of personalized cancer therapy.

  8. Microfluidic cell fragmentation for mechanical phenotyping of cancer cells

    PubMed Central

    Kamyabi, Nabiollah; Vanapalli, Siva A.

    2016-01-01

    Circulating tumor cells (CTCs) shed from the primary tumor undergo significant fragmentation in the microvasculature, and very few escape to instigate metastases. Inspired by this in vivo behavior of CTCs, we report a microfluidic method to phenotype cancer cells based on their ability to arrest and fragment at a micropillar-based bifurcation. We find that in addition to cancer cell size, mechanical properties determine fragmentability. We observe that highly metastatic prostate cancer cells are more resistant to fragmentation than weakly metastatic cells, providing the first indication that metastatic CTCs can escape rupture and potentially initiate secondary tumors. Our method may thus be useful in identifying phenotypes that succumb to or escape mechanical trauma in microcirculation. PMID:27042246

  9. Immune responses to human cancer stem-like cells/cancer-initiating cells.

    PubMed

    Hirohashi, Yoshihiko; Torigoe, Toshihiko; Tsukahara, Tomohide; Kanaseki, Takayuki; Kochin, Vitaly; Sato, Noriyuki

    2016-01-01

    Cancer stem-like cells (CSC)/cancer-initiating cells (CIC) are defined as minor subpopulations of cancer cells that are endowed with properties of higher tumor-initiating ability, self-renewal ability and differentiation ability. Accumulating results of recent studies have revealed that CSC/CIC are resistant to standard cancer therapies, including chemotherapy, radiotherapy and molecular targeting therapy, and eradiation of CSC/CIC is, thus, critical to cure cancer. Cancer immunotherapy is expected to become the "fourth" cancer therapy. Cytotoxic T lymphocytes (CTL) play an essential role in immune responses to cancers, and CTL can recognize CSC/CIC in an antigen-specific manner. CSC/CIC express several tumor-associated antigens (TAA), and cancer testis (CT) antigens are reasonable sources for CSC/CIC-targeting immunotherapy. In this review article, we discuss CSC/CIC recognition by CTL, regulation of immune systems by CSC/CIC, TAA expression in CSC/CIC, and the advantages of CSC/CIC-targeting immunotherapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  10. Cancer cells in the circulating blood

    PubMed Central

    Sato, Haruo

    1962-01-01

    The author discusses the relation between the presence of cancer cells in the circulating blood and the development of metastasis, as demonstrated by studies on animals with experimentally induced tumours, by post-mortem studies on fatal human cases of cancer, and by studies on patients operated upon for stomach cancer. Although the correlation between the presence of tumour cells in the blood and the occurrence of metastatic lesions was found to be less close in the human cases of cancer than in the experimental animals, the author considers that it was sufficiently marked to justify the assumption that the appearance of tumour cells in the circulating blood is an important link in the chain of processes leading to cancer metastasis. In conclusion, the author puts forward the suggestion, based on the results of animal experiments, that chemotherapy might have an inhibitory effect on the liberated tumour cells in the blood, particularly if these cells are present only in small numbers, and thus be instrumental in halting the course of metastasis. PMID:14497407

  11. Amphiregulin exosomes increase cancer cell invasion.

    PubMed

    Higginbotham, James N; Demory Beckler, Michelle; Gephart, Jonathan D; Franklin, Jeffrey L; Bogatcheva, Galina; Kremers, Gert-Jan; Piston, David W; Ayers, Gregory D; McConnell, Russell E; Tyska, Matthew J; Coffey, Robert J

    2011-05-10

    Autocrine, paracrine, and juxtacrine are recognized modes of action for mammalian EGFR ligands including EGF, TGF-α (TGFα), amphiregulin (AREG), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epiregulin, and epigen. We identify a new mode of EGFR ligand signaling via exosomes. Human breast and colorectal cancer cells release exosomes containing full-length, signaling-competent EGFR ligands. Exosomes isolated from MDCK cells expressing individual full-length EGFR ligands displayed differential activities; AREG exosomes increased invasiveness of recipient breast cancer cells 4-fold over TGFα or HB-EGF exosomes and 5-fold over equivalent amounts of recombinant AREG. Exosomal AREG displayed significantly greater membrane stability than TGFα or HB-EGF. An average of 24 AREG molecules are packaged within an individual exosome, and AREG exosomes are rapidly internalized by recipient cells. Whether the composition and behavior of exosomes differ between nontransformed and transformed cells is unknown. Exosomes from DLD-1 colon cancer cells with a mutant KRAS allele exhibited both higher AREG levels and greater invasive potential than exosomes from isogenically matched, nontransformed cells in which mutant KRAS was eliminated by homologous recombination. We speculate that EGFR ligand signaling via exosomes might contribute to diverse cancer phenomena such as field effect and priming of the metastatic niche. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Electrochemical Genetic Profiling of Single Cancer Cells.

    PubMed

    Acero Sánchez, Josep Ll; Joda, Hamdi; Henry, Olivier Y F; Solnestam, Beata W; Kvastad, Linda; Akan, Pelin S; Lundeberg, Joakim; Laddach, Nadja; Ramakrishnan, Dheeraj; Riley, Ian; Schwind, Carmen; Latta, Daniel; O'Sullivan, Ciara K

    2017-03-21

    Recent understandings in the development and spread of cancer have led to the realization of novel single cell analysis platforms focused on circulating tumor cells (CTCs). A simple, rapid, and inexpensive analytical platform capable of providing genetic information on these rare cells is highly desirable to support clinicians and researchers alike to either support the selection or adjustment of therapy or provide fundamental insights into cell function and cancer progression mechanisms. We report on the genetic profiling of single cancer cells, exploiting a combination of multiplex ligation-dependent probe amplification (MLPA) and electrochemical detection. Cells were isolated using laser capture and lysed, and the mRNA was extracted and transcribed into DNA. Seven markers were amplified by MLPA, which allows for the simultaneous amplification of multiple targets with a single primer pair, using MLPA probes containing unique barcode sequences. Capture probes complementary to each of these barcode sequences were immobilized on a printed circuit board (PCB) manufactured electrode array and exposed to single-stranded MLPA products and subsequently to a single stranded DNA reporter probe bearing a HRP molecule, followed by substrate addition and fast electrochemical pulse amperometric detection. We present a simple, rapid, flexible, and inexpensive approach for the simultaneous quantification of multiple breast cancer related mRNA markers, with single tumor cell sensitivity.

  13. Cell Membrane Softening in Cancer Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  14. Fusion of human bone hemopoietic stem cell with esophageal carcinoma cells didn't generate esophageal cancer stem cell.

    PubMed

    Fan, H; Lu, S

    2014-01-01

    Prior studies showed that cell fusion between bone marrow-derived cell (BMDC) and somatic cell might be the origin of cancer stem cell. Our previous study suggested that cell fusion of human bone marrow-derived mesenchymal stem cell (MSC) with esophageal cancer cell did not generate cancer stem cells. But up to now, the origin of cancer stem cell is still ambiguous. In this study, we carried out the cell fusion experiment between hemopoietic stem cells (HSCs) and human esophageal cancer cells, and found that cell fusion slowed the growth speed of esophageal cancer cells and decreased the clone formation ability and tumorigenicity in NOD/SCID mice. In addition, cell fusion did not increase the ratio of side population (SP) cells and the resistance to chemotherapeutic drugs. Collectively, our data indicated that cell fusion between HSCs and esophageal cancer cells has a therapeutic effect rather than generate cells with characteristics of esophageal cancer stem cells.

  15. Thyroid Hormones as Renal Cell Cancer Regulators

    PubMed Central

    Matak, Damian; Bartnik, Ewa; Szczylik, Cezary; Czarnecka, Anna M.

    2016-01-01

    It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma. PMID:27034829

  16. Mechanisms of Chemoresistance in Breast Cancer Cells

    DTIC Science & Technology

    2008-02-01

    directly by anticancer agents such as vincristine , daunorubicin, doxorubicin, and colchicine (45); Figure 4. Influence of GCS blockade via PPMP and siRNA...SKOV3/AdrR human ovarian cancer cells (49), in KBV200 cells (50), and in the decreased efflux of [14C]paclitaxel and [3H] vincristine in a neuroblastoma...Expression of glucosylceramide synthase mRNA in vincristine - resistant KBV200 cell line in association with multidrug resistance. Di Yi Jun Yi Da Xue Xue

  17. Hormonal Control of Breast Cancer Cell Growth.

    DTIC Science & Technology

    1998-09-01

    retinoblastoma (pRb) proteins (73) and by cyclin-dependent kinase inhibitors, such as roscovitine , that inhibits the kinase activity of cdc2/cyclin B...urothelial cancer cells MCF-7 and T24, respectively (82,83). The effect of hCG was compared with that of roscovitine , which is known to prevent the cell...dCTP (random primer labeling kit, GIBCO, BRL). Effect of Roscovitine and Resveratrol on the Proliferative Activity of Human Breast Epithelial Cells: MCF

  18. Polyphosphate Affects on Breast Cancer Cell Survival

    DTIC Science & Technology

    2005-04-01

    AD Award Number: W81XWH-04-1-0379 TITLE: Polyphosphate Affects on Breast Cancer Cell Survival PRINCIPAL INVESTIGATOR: Christine L. Haakenson... cells , specifically with regard to how polyphosphates may affect the cell cycle and gene expression. page 6 Annual Summary (2004-2005) W81XWH-04-1-0379...AND DATES COVERED (Leave blank) April 2005 Annual Summary (15 Mar 2004 - 14 Mar 2005) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Polyphosphate Affects on

  19. Novel Compounds Line up to Combat Drug Resistance in Cancer Cells | Center for Cancer Research

    Cancer.gov

    As the war on cancer has intensified and new molecular attacks on cancer cells have been developed, cancer cells have devised innovative ways of defending themselves. Many drugs have been designed or discovered and used to kill cancer cells; in response, these cells are staging new mechanisms to resist the effects of a variety of drugs, a phenomenon called multidrug resistance (MDR). One way cancer cells accomplish this is by catching the intruding drug and throwing it out of the cell before it can act. The arsenal that the cancer cell uses to accomplish this task is a collection of specialized proteins on its membrane called ATP-binding cassette (ABC) transporters.

  20. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    PubMed

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  1. Dormancy activation mechanism of oral cavity cancer stem cells.

    PubMed

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  2. Population dynamics of cancer cells with cell state conversions

    PubMed Central

    Zhou, Da; Wu, Dingming; Li, Zhe; Qian, Minping; Zhang, Michael Q.

    2015-01-01

    Cancer stem cell (CSC) theory suggests a cell-lineage structure in tumor cells in which CSCs are capable of giving rise to the other non-stem cancer cells (NSCCs) but not vice versa. However, an alternative scenario of bidirectional interconversions between CSCs and NSCCs was proposed very recently. Here we present a general population model of cancer cells by integrating conventional cell divisions with direct conversions between different cell states, namely, not only can CSCs differentiate into NSCCs by asymmetric cell division, NSCCs can also dedifferentiate into CSCs by cell state conversion. Our theoretical model is validated when applying the model to recent experimental data. It is also found that the transient increase in CSCs proportion initiated from the purified NSCCs subpopulation cannot be well predicted by the conventional CSC model where the conversion from NSCCs to CSCs is forbidden, implying that the cell state conversion is required especially for the transient dynamics. The theoretical analysis also gives the condition such that our general model can be equivalently reduced into a simple Markov chain with only cell state transitions keeping the same cell proportion dynamics. PMID:26085954

  3. The cancer stem cell theory: is it correct?

    PubMed

    Yoo, Min-Hyuk; Hatfield, Dolph L

    2008-11-30

    The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

  4. Breast Cancer Cells May Change When They Spread to Brain

    MedlinePlus

    ... Cancer Cells May Change When They Spread to Brain: Study Finding might lead to better treatment, researchers ... HealthDay News) -- When breast cancer spreads to the brain, important molecular changes may occur in the cancer, ...

  5. How Are Squamous and Basal Cell Skin Cancers Diagnosed?

    MedlinePlus

    ... and Staging Tests for Basal and Squamous Cell Skin Cancers Most skin cancers are brought to a ... non-cancerous) without the need for a biopsy. Skin biopsy If the doctor thinks that a suspicious ...

  6. Cancer stem cells in nervous system tumors.

    PubMed

    Singh, Sheila K; Clarke, Ian D; Hide, Takuichiro; Dirks, Peter B

    2004-09-20

    Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and more recently in solid tumors such as breast cancer suggests that the tumor cell population is heterogeneous with respect to proliferation and differentiation. Recently, several groups have described the existence of a cancer stem cell population in human brain tumors of different phenotypes from both children and adults. The finding of brain tumor stem cells (BTSCs) has been made by applying the principles for cell culture and analysis of normal neural stem cells (NSCs) to brain tumor cell populations and by identification of cell surface markers that allow for isolation of distinct tumor cell populations that can then be studied in vitro and in vivo. A population of brain tumor cells can be enriched for BTSCs by cell sorting of dissociated suspensions of tumor cells for the NSC marker CD133. These CD133+ cells, which also expressed the NSC marker nestin, but not differentiated neural lineage markers, represent a minority fraction of the entire brain tumor cell population, and exclusively generate clonal tumor spheres in suspension culture and exhibit increased self-renewal capacity. BTSCs can be induced to differentiate in vitro into tumor cells that phenotypically resembled the tumor from the patient. Here, we discuss the evidence for and implications of the discovery of a cancer stem cell in human brain tumors. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC. Specific genetic and molecular analyses of the BTSC will further our understanding of the mechanisms of brain tumor growth, reinforcing parallels between normal neurogenesis and brain tumorigenesis.

  7. Targeting cell cycle regulation in cancer therapy.

    PubMed

    Diaz-Moralli, Santiago; Tarrado-Castellarnau, Míriam; Miranda, Anibal; Cascante, Marta

    2013-05-01

    Cell proliferation is an essential mechanism for growth, development and regeneration of eukaryotic organisms; however, it is also the cause of one of the most devastating diseases of our era: cancer. Given the relevance of the processes in which cell proliferation is involved, its regulation is of paramount importance for multicellular organisms. Cell division is orchestrated by a complex network of interactions between proteins, metabolism and microenvironment including several signaling pathways and mechanisms of control aiming to enable cell proliferation only in response to specific stimuli and under adequate conditions. Three main players have been identified in the coordinated variation of the many molecules that play a role in cell cycle: i) The cell cycle protein machinery including cyclin-dependent kinases (CDK)-cyclin complexes and related kinases, ii) The metabolic enzymes and related metabolites and iii) The reactive-oxygen species (ROS) and cellular redox status. The role of these key players and the interaction between oscillatory and non-oscillatory species have proved essential for driving the cell cycle. Moreover, cancer development has been associated to defects in all of them. Here, we provide an overview on the role of CDK-cyclin complexes, metabolic adaptations and oxidative stress in regulating progression through each cell cycle phase and transitions between them. Thus, new approaches for the design of innovative cancer therapies targeting crosstalk between cell cycle simultaneous events are proposed. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    PubMed

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer.

  9. AKT and oxidative stress team up to kill cancer cells.

    PubMed

    Dolado, Ignacio; Nebreda, Angel R

    2008-12-09

    AKT, a protein kinase frequently hyperactivated in cancer, plays an important role in cell survival and contributes to tumor cell resistance to cytotoxic therapies. A new study in this issue of Cancer Cell shows that AKT also induces the accumulation of oxygen radicals, which can be exploited to selectively kill cancer cells containing high levels of AKT activity.

  10. Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer.

    PubMed

    Yun, Eun-Jin; Zhou, Jiancheng; Lin, Chun-Jung; Hernandez, Elizabeth; Fazli, Ladan; Gleave, Martin; Hsieh, Jer-Tsong

    2016-02-01

    Clinical evidence suggests increased cancer stem cells (CSCs) in a tumor mass may contribute to the failure of conventional therapies because CSCs seem to be more resistant than differentiated tumor cells. Thus, unveiling the mechanism regulating CSCs and candidate target molecules will provide new strategy to cure the patients. The stem-like cell properties were determined by a prostasphere assay and dye exclusion assay. To find critical stem cell marker and reveal regulation mechanism, basic biochemical and molecular biologic methods, such as quantitative real-time PCR, Western blot, reporter gene assay, and chromatin immunoprecipitation assay, were used. In addition, to determine the effect of combination therapy targeting both CSCs and its progeny, in vitro MTT assay and in vivo xenograft model was used. We demonstrate immortalized normal human prostate epithelial cells, appeared nontumorigenic in vivo, become tumorigenic, and acquire stem cell phenotype after knocking down a tumor suppressor gene. Also, those stem-like cells increase chemoresistance to conventional anticancer reagent. Mechanistically, we unveil that Wnt signaling is a key pathway regulating well-known stem cell marker CD44 by directly interacting to the promoter. Thus, by targeting CSCs using Wnt inhibitors synergistically enhances the efficacy of conventional drugs. Furthermore, the in vivo mouse model bearing xenografts showed a robust inhibition of tumor growth after combination therapy. Overall, this study provides strong evidence of CSC in castration-resistant prostate cancer. This new combination therapy strategy targeting CSC could significantly enhance therapeutic efficacy of current chemotherapy regimen only targeting non-CSC cells. ©2015 American Association for Cancer Research.

  11. A Novel Collagen Dot Assay for Monitoring Cancer Cell Migration.

    PubMed

    Alford, Vincent M; Roth, Eric; Zhang, Qian; Cao, Jian

    2016-01-01

    Cell migration is a critical determinant of cancer invasion and metastasis. Drugs targeting cancer cell migration have been hindered due to the lack of effective assays for monitoring cancer cell migration. Here we describe a novel method to microscopically monitor cell migration in a quantitative fashion. This assay can be used to study genes involved in cancer cell migration, as well as screening anticancer drugs that target this cellular process.

  12. Targeted therapy against cancer stem cells.

    PubMed

    Yang, Tao; Rycaj, Kiera

    2015-07-01

    Research into cancer stem cells (CSCs), which have the ability to self-renew and give rise to more mature (differentiated) cancer cells, and which may be the cells responsible for the overall organization of a tumor, has progressed rapidly and concomitantly with recent advances in studies of normal tissue stem cells. CSCs have been reported in a wide spectrum of human tumors. Like normal tissue stem cells, CSCs similarly exhibit significant phenotypic and functional heterogeneity. The ability of CSCs to self-renew results in the immortality of malignant cells at the population level, whereas the ability of CSCs to differentiate, either fully or partially, generates the cellular hierarchy and heterogeneity commonly observed in solid tumors. CSCs also appear to have maximized their pro-survival mechanisms leading to their relative resistance to anti-cancer therapies and subsequent relapse. Studies in animal models of human cancers have also provided insight into the heterogeneity and characteristics of CSCs, helping to establish a platform for the development of novel targeted therapies against specific CSCs. In the present study, we briefly review the most recent progress in dissecting CSC heterogeneity and targeting CSCs in various human tumor systems. We also highlight a few examples of CSC-targeted drug development and clinical trials, with the ultimate aim of developing more effective therapeutic regimens that are capable of preventing tumor recurrence and metastasis.

  13. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    PubMed Central

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance. PMID:26658759

  14. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    PubMed

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT.

  15. Cancer stem cells: mirage or reality?

    PubMed

    Gupta, Piyush B; Chaffer, Christine L; Weinberg, Robert A

    2009-09-01

    The similarities and differences between normal tissue stem cells and cancer stem cells (CSCs) have been the source of much contention, with some recent studies calling into question the very existence of CSCs. An examination of the literature indicates, however, that the CSC model rests on firm experimental foundations and that differences in the observed frequencies of CSCs within tumors reflect the various cancer types and hosts used to assay these cells. Studies of stem cells and the differentiation program termed the epithelial-mesenchymal transition (EMT) point to the possible existence of plasticity between stem cells and their more differentiated derivatives. If present, such plasticity would have major implications for the CSC model and for future therapeutic approaches.

  16. Rho GTPases and cancer cell transendothelial migration.

    PubMed

    Reymond, Nicolas; Riou, Philippe; Ridley, Anne J

    2012-01-01

    Small Rho GTPases are major regulators of actin cytoskeleton dynamics and influence cell shape and migration. The expression of several Rho GTPases is often up-regulated in tumors and this frequently correlates with a poor prognosis for patients. Migration of cancer cells through endothelial cells that line the blood vessels, called transendothelial migration or extravasation, is a critical step during the metastasis process. The use of siRNA technology to target specifically each Rho family member coupled with imaging techniques allows the roles of individual Rho GTPases to be investigated. In this chapter we describe methods to assess how Rho GTPases affect the different steps of cancer cell transendothelial cell migration in vitro.

  17. Stemness is Derived from Thyroid Cancer Cells

    PubMed Central

    Ma, Risheng; Bonnefond, Simon; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2014-01-01

    Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. Methods: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. Results: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAFV600E mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of

  18. Stem cell based cancer gene therapy.

    PubMed

    Cihova, Marina; Altanerova, Veronika; Altaner, Cestmir

    2011-10-03

    The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Suicide gene therapy using genetically engineered mesenchymal stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. This review provides an explanation of the stem cell-targeted prodrug cancer gene therapy principle, with focus on the choice of prodrug, properties of bone marrow and adipose tissue-derived mesenchymal stem and neural stem cells as well as the mechanisms of their tumor homing ability. Therapeutic achievements of the cytosine deaminase/5-fluorocytosine prodrug system and Herpes simplex virus thymidine kinase/ganciclovir are discussed. In addition, delivery of immunostimulatory cytokines, apoptosis inducing genes, nanoparticles and antiangiogenic proteins by stem cells to tumors and metastases is discussed as a promising approach for antitumor therapy. Combinations of traditional, targeted and stem cell-directed gene therapy could significantly advance the treatment of cancer.

  19. Phase transitions in unstable cancer cell populations

    NASA Astrophysics Data System (ADS)

    Solé, R. V.

    2003-09-01

    The dynamics of cancer evolution is studied by means of a simple quasispecies model involving cells displaying high levels of genetic instability. Both continuous, mean-field and discrete, bit-string models are analysed. The string model is simulated on a single-peak landscape. It is shown that a phase transition exists at high levels of genetic instability, thus separating two phases of slow and rapid growth. The results suggest that, under a conserved level of genetic instability the cancer cell population will be close to the threshold level. Implications for therapy are outlined.

  20. Breast Cancer Stem Cells in Antiestrogen Resistance

    DTIC Science & Technology

    2013-08-01

    SOW). We have successfully used the Lentivirus-based ER-α36 shRNA system to express ER-α36 shRNA in MCF7/HER-2/18 cells and established a stable...variant, ER-α36, in resistance of breast cancer stem/progenitor cells to antiestrogens. In the past two years, we have accomplished most of the works...such as tamoxifen provided a successful treatment for ER-positive breast cancer for the past two decades. However, most breast tumors are eventually

  1. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  2. Extragonadal Germ Cell Cancer (EGC)

    MedlinePlus

    ... germ cells are first seen outside of the embryo in the yolk sac. At about 4 to ... weeks of development, these cells migrate into the embryo where they populate the developing testes or ovaries. ...

  3. What Is Kidney Cancer (Renal Cell Carcinoma)?

    MedlinePlus

    ... Treatment? Kidney Cancer About Kidney Cancer What Is Kidney Cancer? Kidney cancer is a cancer that starts ... and spread, see What Is Cancer? About the kidneys To understand more about kidney cancer, it helps ...

  4. Thyroid cancer cell lines: an overview

    PubMed Central

    Saiselet, Manuel; Floor, Sébastien; Tarabichi, Maxime; Dom, Geneviève; Hébrant, Aline; van Staveren, Wilma C. G.; Maenhaut, Carine

    2012-01-01

    Human thyroid cancer cell lines are the most used models for thyroid cancer studies. They must be used with detailed knowledge of their characteristics. These in vitro cell lines originate from differentiated and dedifferentiated in vivo human thyroid tumors. However, it has been shown that mRNA expression profiles of these cell lines were closer to dedifferentiated in vivo thyroid tumors (anaplastic thyroid carcinoma, ATC) than to differentiated ones. Here an overview of the knowledge of these models was made. The mutational status of six human thyroid cancer cell lines (WRO, FTC133, BCPAP, TPC1, K1, and 8505C) was in line with previously reported findings for 10 genes frequently mutated in thyroid cancer. However, the presence of a BRAF mutation (T1799A: V600E) in WRO questions the use of this cell line as a model for follicular thyroid carcinoma (FTC). Next, to investigate the biological meaning of the modulated mRNAs in these cells, a pathway analysis on previously obtained mRNA profiles was performed on five cell lines. In five cell lines, the MHC class II pathway was down-regulated and in four of them, ribosome biosynthesis and translation pathways were up-regulated. mRNA expression profiles of the cell lines were also compared to those of the different types of thyroid cancers. Three datasets originating from different microarray platforms and derived from distinct laboratories were used. This meta-analysis showed a significant higher correlation between the profiles of the thyroid cancer cell lines and ATC, than to differentiated thyroid tumors (i.e., PTC or FTC) specifically for DNA replication. This already observed higher correlation was obtained here with an increased number of in vivo tumors and using different platforms. In summary, this would suggest that some papillary thyroid carcinoma or follicular thyroid carcinoma (PTC or FTC) cell lines (i.e., TPC-1) might have partially lost their original DNA synthesis/replication regulation mechanisms during

  5. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    PubMed

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K.

    PubMed

    Kim, Jong-Eun; Lee, Dong-Eun; Lee, Ki Won; Son, Joe Eun; Seo, Sang Kwon; Li, Jixia; Jung, Sung Keun; Heo, Yong-Seok; Mottamal, Madhusoodanan; Bode, Ann M; Dong, Zigang; Lee, Hyong Joo

    2011-04-01

    3'-Methoxy-3,4',5,7-tetrahydroxyflavone (isorhamnetin) is a plant flavonoid that occurs in fruits and medicinal herbs. Isorhamnetin exerts anticancer effects, but the underlying molecular mechanism for the chemopreventive potential of isorhamnetin remains unknown. Here, we report anti-skin cancer effects of isorhamnetin, which inhibited epidermal growth factor (EGF)-induced neoplastic cell transformation. It also suppressed anchorage-dependent and -independent growth of A431 human epithelial carcinoma cells. Isorhamnetin attenuated EGF-induced COX-2 expression in JB6 and A431 cells. In an in vivo mouse xenograft using A431 cells, isorhamnetin reduced tumor growth and COX-2 expression. The EGF-induced phosphorylation of extracellular signal-regulated kinases, p90 and p70 ribosomal S6 kinases, and Akt was suppressed by isorhamnetin. In vitro and ex vivo kinase assay data showed that isorhamnetin inhibited the kinase activity of MAP (mitogen-activated protein)/ERK (extracellular signal regulated kinase) kinase (MEK) 1 and PI3-K (phosphoinositide 3-kinase) and the inhibition was due to direct binding with isorhamnetin. Notably, isorhamnetin bound directly to MEK1 in an ATP-noncompetitive manner and to PI3-K in an ATP-competitive manner. This report is the first mechanistic study identifying a clear molecular target for the anticancer activity of isorhamnetin. Overall, these results indicate that isorhamnetin has potent anticancer activity and it primarily targets MEK and PI3-K, which might contribute to the chemopreventive potential of certain foods.

  7. Cancer Cell Colonisation in the Bone Microenvironment

    PubMed Central

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  8. Understanding cancer stem cell heterogeneity and plasticity

    PubMed Central

    Tang, Dean G

    2012-01-01

    Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo. It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells. Somatic stem cells in adult organs are also heterogeneous, containing many subpopulations of self-renewing cells with distinct regenerative capacity. The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches. Like normal stem cells, recent data suggest that cancer stem cells (CSCs) similarly display significant phenotypic and functional heterogeneity, and that the CSC progeny can manifest diverse plasticity. Here, I discuss CSC heterogeneity and plasticity in the context of tumor development and progression, and by comparing with normal stem cell development. Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted. By understanding the interrelationship between CSCs and their differentiated progeny, we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases. PMID:22357481

  9. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  10. Targeting cancer stem cell lines as a new treatment of human cancer.

    PubMed

    Giuffrida, D; Rogers, I M

    2010-11-01

    Many studies have demonstrated that most cancers are clonal and are maintained by a cancer stem cell. Cancer stem cells have been identified in blood, breast, brain, lungs, gastrointestinal, prostate and ovarian cancer. Under normal homeostasis tissue specific stem cell division would be under strict control. When proliferation becomes independent of normal cellular controls, cancer develops. Studies indicate that cancer stem cells maintain their ability to differentiate, which explains the variety of cell types observed in tumors. Most therapies are directed at the fast growing tumor mass but not the slow dividing cancer stem cells and therefore the cancer is not eradicated. Understanding the process of transformation from a highly regulated stem cell to a cancer stem cell requires an understanding of genetic and epigenetic processes as well as having an understanding of the stem cell niche and the interaction of the stem cells with supportive cells in the niche. Current research is helping us to understand stem cells and stem cell regulation and in turn this will help to develop novel therapies to eliminate cancer and the initiating cancer stem cell. The relevant patents on the stem cell regulation and cancer therapy by stem cells are discussed.

  11. Antitumor Immunity and Cancer Stem Cells

    PubMed Central

    Schatton, Tobias; Frank, Markus H.

    2010-01-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5+ MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy. PMID:19796244

  12. [Circulating tumor cells and advanced prostate cancer].

    PubMed

    Murez, Thibaut; Droupy, Stéphane; Rebillard, Xavier; Alix-Panabieres, Catherine

    2012-07-01

    Despite development and widespread of PSA, current tools evaluating prostate cancer still give inconsistent or insufficiently relevant results. As encouraging data raised from circulating tumor cells detection in colon or breast cancer, they were evaluated as a surrogate prostate cancer biomarker. Tumor cells need to leave their surrounding primary environment and to survive in mesenchymal environment before they spill and metastasize. Basic research revealed several mutations required through a complex transition phenomenon, including dormancy steps. Circulating cells detection techniques are based on molecular and immunologic methods. Most of them need an enrichment step to improve sensibility and/or specificity. As of today, Veridex' CellSearch is the only FDA approved technique in the evaluation of castration resistant prostate cancer response to new drugs. Clinical research using other techniques highlighted the need for clinical endpoints, as there's no relevant tool and as techniques' target differ. Further studies are required to improve circulating tumors cells' staging and prognosis value. Cellular characterization may be the way to identify metastasis development potential more than the spillage burden. Those techniques still need improvements before they are included in daily practice decisional trees.

  13. Antitumor immunity and cancer stem cells.

    PubMed

    Schatton, Tobias; Frank, Markus H

    2009-09-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5(+) MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy.

  14. Treatment options for small cell lung cancer.

    PubMed

    Wolf, Todd; Gillenwater, Heidi H

    2004-07-01

    Lung cancer remains the leading cause of cancer-related death in the United States. Small cell lung cancer (SCLC) comprises 15% to 25% of all lung cancers. The leading cause of lung cancer remains smoking, and rates of smoking continue to rise in women, whereas rates in other subgroups have slowed. In this article we review recent advances in the treatment of limited-stage as well as extensive-stage small cell lung cancer. In limited-stage disease, the best survival results are observed when patients are treated with twice-daily thoracic radiotherapy given concurrently with chemotherapy. Patients who have been successful in smoking cessation during therapy for limited-stage disease may have a survival benefit over those who are unable to quit smoking during treatment. In extensive-stage disease, the most significant trial is one comparing irinotecan plus cisplatin and etoposide plus cisplatin, showing a survival advantage for the irinotecan arm. This trial may change the standard of care for patients with extensive-stage disease. A similar ongoing trial in the United States is attempting to confirm these results.

  15. Differential spheroid formation by oral cancer cells.

    PubMed

    Lee, Carlin; Lee, Casey; Atakilit, Amha; Siu, Amanda; Ramos, Daniel M

    2014-12-01

    Squamous cell carcinomas (SCC) make up 96% of all oral cancers. Most laboratory SCC studies grow cells as a monolayer, which does not accurately represent the disease in vivo. We used a more relevant multicellular spheroid (MCS) model to study this disease. The SCC9β6KDFyn cell line, which expresses full-length β6 and a kinase dead Fyn formed the largest MCS. Cell adhesive properties are dynamic and N-cadherin was increased in the largest MCS. c-Raf mediates the survival of tumor cells and was consistently expressed both in monolayers and in the MCS by SCC9β6D1 cells which lack the β6 cytoplasmic tail and, do not activate Fyn. SCC9β6KDFyn cells also express high levels of c-Raf when grown as spheroids in which Fyn suppression stimulates MCS formation. Tumor microenvironment and growth patterns modulate cell behavior and suppression of Fyn kinase may promote MCS growth.

  16. Proteomic analysis of cancer stem cells in human prostate cancer cells

    SciTech Connect

    Lee, Eun-Kyung; Cho, Hyungdon; Kim, Chan-Wha

    2011-08-26

    Highlights: {yields} DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. {yields} We confirmed CD44+ DU145 cells are more proliferative and tumorigenic than CD44- DU145 cells. {yields} We analyzed and identified proteins that were differentially expressed between CD44+ and CD44- DU145 cells. {yields} Cofilin and Annexin A5 associated with cancer were found to be positively correlated with CD44 expression. -- Abstract: Results from recent studies support the hypothesis that cancer stem cells (CSCs) are responsible for tumor initiation and formation. Here, we applied a proteome profiling approach to investigate the mechanisms of CSCs and to identify potential biomarkers in the prostate cancer cell line DU145. Using MACS, the DU145 prostate cancer cell line was isolated into CD44+ or CD44- cells. In sphere culture, CD44+ cells possessed stem cell characteristics and highly expressed genes known to be important in stem cell maintenance. In addition, they showed strong tumorigenic potential in the clonogenic assay and soft agar colony formation assay. We then analyzed and identified proteins that were differentially expressed between CD44+ and CD44- using two-dimensional gel electrophoresis and LC-MS/MS. Cofilin and Annexin A5, which are associated with proliferation or metastasis in cancer, were found to be positively correlated with CD44 expression. These results provide information that will be important to the development of new cancer diagnostic tools and understanding the mechanisms of CSCs although a more detailed study is necessary to investigate the roles of Cofilin and Annexin A5 in CSCs.

  17. Drug treatment of cancer cell lines: a way to select for cancer stem cells?

    PubMed

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A Ivana; Mondello, Chiara

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  18. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    PubMed Central

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs. PMID:24212655

  19. Stromal influences on breast cancer cell growth.

    PubMed Central

    van Roozendaal, C. E.; van Ooijen, B.; Klijn, J. G.; Claassen, C.; Eggermont, A. M.; Henzen-Logmans, S. C.; Foekens, J. A.

    1992-01-01

    Paracrine influences from fibroblasts derived from different sources of breast tissue on epithelial breast cancer cell growth in vitro were investigated. Medium conditioned (CM) by fibroblasts derived from tumours, adjacent normal breast tissue, and normal breast tissue obtained from reduction mammoplasty or from skin tissue significantly stimulated the growth of the steroid-receptor positive cell lines MCF-7 and ZR 75.1. The proliferation index (PI) on MCF-7 cells with CM from fibroblasts derived from breast tumour tissue was significantly higher than that obtained with fibroblasts derived from adjacent normal breast tissue (2p less than 0.05, n = 8). The PI obtained with CM from normal fibroblast cultures from reduction mammoplasty tissue, like normal tissue adjacent to the tumour, fell in the lower range of values. Skin fibroblast, like tumour tissue derived fibroblast, CM caused a high range PI. MDA-MB-231 and Evsa-T, two steroid-receptor negative cell lines, showed only a minor growth stimulatory responses with some of the fibroblast CM's. Evsa-T was occasionally inhibited by CM's. In conclusion, stromal factors play a role in the growth regulation of human breast cancer cells. The effects on cancer cell growth are, however, varying depending on the source of the stroma and the characteristics of the epithelial tumour cells. PMID:1733444

  20. Cell Cycle Dependence of TRAIL Sensitivity in Prostate Cancer Cells

    DTIC Science & Technology

    2006-11-01

    or presence of proteasome inhibitors and measured HIF-1α levels by immunoblotting. We also incubated cells in cobalt chloride (to mimic hypoxia) in...Indistinguishable results were obtained in cells exposed to cobalt chloride . Figure 5: Effects of proteasome inhibitors on HIF- 1α promoter activity (LNCaP...havegenerated luciferase-transduced variants of our human prostate cancer cell lines in order touse them to generate orthotopic tumors in nude mice that can

  1. Lung cancer stem cells: An epigenetic perspective.

    PubMed

    Shukla, Samriddhi; Khan, Sajid; Sinha, Sonam; Meeran, Syed Musthapa

    2017-02-05

    Lung cancer remains the major cause of human mortality among all the cancer types despite the colossal amount of efforts to prevent the cancer onset and to provide the appropriate cure. Recent reports have identified that important contributors of lung cancer-related mortality are the drug resistance and aggressive tumor relapse, the characteristics contributed by the presence of lung cancer stem cells (CSCs). The identification of lung CSCs is inherently complex due to the quiescent nature of lung epithelium, which makes the distinction between the normal lung epithelium and lung CSCs difficult. Recently, multiple researches have helped in the identification of lung CSCs based on the presence or absence of certain specific types of stem cell markers. Maintenance of lung CSCs is chiefly mediated through the epigenetic modifications of their genome. In this review, we will discuss about the origin of lung CSCs and the role of epigenetic modifications in their maintenance. We will also discuss in brief the major lung CSC markers and the therapeutic approaches to selectively target this population of cells.

  2. Immune cell functions in pancreatic cancer.

    PubMed

    Plate, J M; Harris, J E

    2000-01-01

    Pancreatic cancer kills nearly 29,000 people in the United States annually-as many people as are diagnosed with the disease. Chemotherapeutic treatment is ineffective in halting progression of the disease. Yet, specific immunity to pancreatic tumor cells in subjects with pancreatic cancer has been demonstrated repeatedly during the last 24 years. Attempts to expand and enhance tumor-specific immunity with biotherapy, however, have not met with success. The question remains, "Why can't specific immunity regulate pancreatic cancer growth?" The idea that tumor cells have evolved protective mechanisms against immunity was raised years ago and has recently been revisited by a number of research laboratories. In pancreatic cancer, soluble factors produced by and for the protection of the tumor environment have been detected and are often distributed to the victim's circulatory system where they may effect a more generalized immunosuppression. Yet the nature of these soluble factors remains controversial, since some also serve as tumor antigens that are recognized by the same T cells that may become inactivated by them. Unless the problem of tumor-derived immunosuppressive products is addressed directly through basic and translational research studies, successful biotherapeutic treatment for pancreatic cancer may not be forthcoming.

  3. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O.; Ettl, T.; Gosau, M.; Driemel, O.; Brockhoff, G.; Reck, A.; Zeitler, K.; Hautmann, M.; Reichert, T.E.; Schmalz, G.; Morsczeck, C.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  4. Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition

    PubMed Central

    Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038

  5. Therapeutic strategies impacting cancer cell glutamine metabolism

    PubMed Central

    Lukey, Michael J; Wilson, Kristin F; Cerione, Richard A

    2014-01-01

    The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically. PMID:24047273

  6. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  7. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division.

    PubMed

    Xin, Hong-Wu; Hari, Danielle M; Mullinax, John E; Ambe, Chenwi M; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J; Wiegand, Gordon W; Garfield, Susan H; Thorgeirsson, Snorri S; Avital, Itzhak

    2012-04-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment.

  8. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    PubMed Central

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  9. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  10. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  11. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  12. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration.

    PubMed

    Vazquez-Mellado, Maria J; Monjaras-Embriz, Victor; Rocha-Zavaleta, Leticia

    2017-01-01

    Cell migration of normal cells is tightly regulated. However, tumor cells are exposed to a modified microenvironment that promotes cell migration. Invasive migration of tumor cells is stimulated by receptor tyrosine kinases (RTKs) and is regulated by growth factors. Erythropoietin (Epo) is a glycoprotein hormone that regulates erythropoiesis and is also known to be a potent chemotactic agent that induces cell migration by binding to its receptor (EpoR). Expression of EpoR has been documented in tumor cells, and the potential of Epo to induce cell migration has been explored. Stem cell factor (SCF) is a cytokine that synergizes the effects of Epo during erythropoiesis. SCF is the ligand of c-Kit, a member of the RTKs family. Molecular activity of RTKs is a primary stimulus of cell motility. Thus, expression of the SCF/c-Kit axis is associated with cell migration. In this chapter, we summarize data describing the potential effect of Epo/EpoR and SCF/c-Kit as promoters of cancer cell migration. We also integrate recent findings on molecular mechanisms of Epo/EpoR- and SCF/c-Kit-mediated migration described in various cancer models. © 2017 Elsevier Inc. All rights reserved.

  13. Ovarian Cancer, Stem Cells, and Bioreactors

    DTIC Science & Technology

    2009-10-01

    produced by the tumor cells and released in the blood stream. CEA serum level is a clinical screening test for colon cancer, but some types of ovarian...Development of a hybrid liver support system: a review. Int J Artif Organs 19, 645-654 (1996). 12. Kusumbe, A.P., Mali, A.M. & Bapat, S.A. CD133-Expressing

  14. Dendritic cells and immunotherapy for cancer.

    PubMed

    Chang, David H; Dhodapkar, Madhav V

    2003-06-01

    Dendritic cells, nature's adjuvant, are antigen-presenting cells specialized to initiate and regulate immunity. Their potent antigen-presenting function has encouraged targeting of dendritic cells (DCs) for harnessing the immune system against cancer. DCs are efficient at activating not only CD4+ helper T-cells and CD8+ killer T-cells but also B-cells and innate effectors such as natural killer and natural killer T-cells. Early studies of adoptive transfer of tumor antigen-loaded DCs have shown promise. However, DC vaccination is at an early stage, and several parameters still need to be established. The complexity of the DC system brings about the necessity for its rational manipulation for achieving protective and therapeutic immunity in patients.

  15. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  16. Hematopoietic stem cells for cancer immunotherapy.

    PubMed

    Gschweng, Eric; De Oliveira, Satiro; Kohn, Donald B

    2014-01-01

    Hematopoietic stem cells (HSCs) provide an attractive target for immunotherapy of cancer and leukemia by the introduction of genes encoding T-cell receptors (TCRs) or chimeric antigen receptors (CARs) directed against tumor-associated antigens. HSCs engraft for long-term blood cell production and could provide a continuous source of targeted anti-cancer effector cells to sustain remissions. T cells produced de novo from HSCs may continuously replenish anti-tumor T cells that have become anergic or exhausted from ex vivo expansion or exposure to the intratumoral microenvironment. In addition, transgenic T cells produced in vivo undergo allelic exclusion, preventing co-expression of an endogenous TCR that could mis-pair with the introduced TCR chains and blunt activity or even cause off-target reactivity. CAR-engineered HSCs may produce myeloid and natural killer cells in addition to T cells expressing the CAR, providing broader anti-tumor activity that arises quickly after transplant and does not solely require de novo thymopoiesis. Use of TCR- or CAR-engineered HSCs would likely require cytoreductive conditioning to achieve long-term engraftment, and this approach may be used in clinical settings where autologous HSC transplant is being performed to add a graft-versus-tumor effect. Results of experimental and preclinical studies performed to date are reviewed.

  17. Principles of cancer cell culture.

    PubMed

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory.

  18. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer

    PubMed Central

    Deng, Junli; Wang, Li; Chen, Hongmin; Hao, Jingli; Ni, Jie; Chang, Lei; Duan, Wei; Graham, Peter; Li, Yong

    2016-01-01

    Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment. PMID:27304054

  19. Clostridium perfringens Iota-Toxin b Induces Rapid Cell Necrosis▿

    PubMed Central

    Nagahama, Masahiro; Umezaki, Mariko; Oda, Masataka; Kobayashi, Keiko; Tone, Shigenobu; Suda, Taiji; Ishidoh, Kazumi; Sakurai, Jun

    2011-01-01

    Clostridium perfringens iota-toxin is a binary toxin composed of an enzyme component (Ia) and a binding component (Ib). Each component alone lacks toxic activity, but together they produce cytotoxic effects. We examined the cytotoxicity of iota-toxin Ib in eight cell lines. A431 and A549 cells were susceptible to Ib, but MDCK, Vero, CHO, Caco-2, HT-29, and DLD-1 cells were not. Ib bound and formed oligomers in the membranes of A431 and MDCK cells. However, Ib entered MDCK cells but not A431 cells, suggesting that uptake is essential for cellular survival. Ib also induced cell swelling and the rapid depletion of cellular ATP in A431 and A549 cells but not the insensitive cell lines. In A431 cells, Ib binds and oligomerizes mainly in nonlipid rafts in the membranes. Disruption of lipid rafts by methyl-β-cyclodextrin did not impair ATP depletion or cell death caused by Ib. Ib induced permeabilization by propidium iodide without DNA fragmentation in A431 cells. Ultrastructural studies revealed that A431 cells undergo necrosis after treatment with Ib. Ib caused a disruption of mitochondrial permeability and the release of cytochrome c. Staining with active-form-specific antibodies showed that the proapoptotic Bcl-2-family proteins Bax and Bak were activated and colocalized with mitochondria in Ib-treated A431 cells. We demonstrate that Ib by itself produces cytotoxic activity through necrosis. PMID:21911469

  20. Radiation Therapy and MK-3475 for Patients With Recurrent/Metastatic Head and Neck Cancer, Renal Cell Cancer, Melanoma, and Lung Cancer

    ClinicalTrials.gov

    2016-10-18

    Head and Neck Squamous Cell Carcinoma; Metastatic Renal Cell Cancer; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IV Lung Cancer; Stage IV Skin Melanoma

  1. Metformin suppresses sonic hedgehog expression in pancreatic cancer cells.

    PubMed

    Nakamura, Masafumi; Ogo, Ayako; Yamura, Masahiro; Yamaguchi, Yoshiyuki; Nakashima, Hiroshi

    2014-04-01

    Metformin use has previously been associated with decreased cancer risk. The Hedgehog signaling pathway is a well-characterized early and late mediator of pancreatic cancer oncogenesis. The aim of the present study was to clarify the effect of metformin on factors involved in Hedgehog signaling. BxPC3 human pancreatic cancer cells were treated with metformin, and Sonic hedgehog (Shh) mRNA and protein levels were examined by real time reverse transcription-polymerase chain reaction, immunohistochemistry and immunoblotting, respectively. The effect of metformin on Shh levels was also examined in three other cancer cell lines. Shh protein and mRNA expression was suppressed by metformin in BxPC3 cells. This phenomenon was further confirmed in three other cancer cell lines. Shh mRNA expression was inhibited by metformin in a concentration-dependent manner in two cancer cell lines. Metformin reduces the expression of Shh in several cancer cell lines including pancreatic cancer cell.

  2. Cancer stem cells in lung cancer: Evidence and controversies.

    PubMed

    Alamgeer, Muhammad; Peacock, Craig D; Matsui, William; Ganju, Vinod; Watkins, D Neil

    2013-07-01

    The cancer stem cell (CSC) model is based on a myriad of experimental and clinical observations suggesting that the malignant phenotype is sustained by a subset of cells characterized by the capacity for self-renewal, differentiation and innate resistance to chemotherapy and radiation. CSC may be responsible for disease recurrence after definitive therapy and may therefore be functionally synonymous with minimal residual disease. Similar to other solid tumours, several putative surface markers for lung CSC have been identified, including CD133 and CD44. In addition, expression and/or activity of the cytoplasmic enzyme aldehyde dehydrogenase ALDH and capacity of cells to exclude membrane permeable dyes (known as the 'side population') correlate with stem-like function in vitro and in vivo. Embryonic stem cell pathways such as Hedgehog, Notch and WNT may also be active in lung cancers stem cells and therefore may be therapeutically targetable for maintenance therapy in patients achieving a complete response to surgery, radiotherapy or chemotherapy. This paper will review the evidence regarding the existence and function of lung CSC in the context of the experimental and clinical evidence and discuss some ongoing controversies regarding this model.

  3. Anti-EGFR antibody conjugated organic-inorganic hybrid lipid nanovesicles selectively target tumor cells.

    PubMed

    Leung, Siu Ling; Zha, Zhengbao; Cohn, Celine; Dai, Zhifei; Wu, Xiaoyi

    2014-09-01

    Chemical conjugation of anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs) to organic-inorganic hybrid liposomal immunocerasomes via maleimide-thiol coupling chemistry is explored as a mechanism for selectively targeting cancer cells. The cellular uptake and internalization of immunocerasomes are investigated in A431 cells that express an abnormally high level of EGFR, DU145 cells that overexpress EGFR, and HL-60 cells that are used as a negative control. The internalization study reveals a strong correlation between the receptor-mediated endocytosis of immunocerasomes and the membrane expression of EGFR. Further, free anti-EGFR mAbs and immunocerasomes conjugated with anti-EGFR mAbs at nanomolar doses display similar anti-proliferative effects on A431 cells. Additionally, serum proteins greatly reduce the cellular uptake of cerasomes that is mediated by non-specific receptors, but have no adverse effects on the specific EGFR-mediated delivery of immunocerasomes to A431 cells.

  4. Potential gene therapy strategies for cancer stem cells.

    PubMed

    Sell, Stewart

    2006-10-01

    To be maximally effective, therapy of cancer must be directed against both the resting stem cells and the proliferating cells of the cancer. The cell populations of both normal and cancer tissues consist of resting stem cells, proliferating transit-amplifying cells, terminally differentiating cells and dying (apoptotic) cells. The difference between normal tissue renewal and growth of cancers is that some of the transit-amplifying cells in the cancer population do not mature into terminally differentiating cells, but instead continue to proliferate and do not die (maturation arrest). Because of this the number of cancer cells increase, whereas the cell population of normal tissues remains a relatively constant. Conventional radiation treatment and chemotherapy kill the actively proliferating transit- amplifying cells of the cancer. Differentiation therapy, using specific targeted inhibitors of activation, effectively induces differentiation of the proliferating transit-amplifying cancer cells. However, even if the proliferating cancer cells are completely inhibited or eliminated, the cancer stem cells may restore the transit-amplifying population, so that clinical remission is usually temporary. The hypothesis presented in this paper is that successful cancer therapy must be directed against both the resting stem cells and the proliferating cells of the cancer. This may be possible if specific stem cell signals are inhibited using gene therapy, while at the same time attacking proliferating cells by conventional radiation treatment or chemotherapy. With advances in approaches using specific inhibitory RNA, such combination therapy may now be possible, but critical problems in delivering the inhibitory effect specifically to the cancer stem cells have yet to be worked out.

  5. Pancreatic Cancer Stem Cells and Therapeutic Approaches.

    PubMed

    Ercan, Gulinnaz; Karlitepe, Ayfer; Ozpolat, Bulent

    2017-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest human cancers, with 1-5% 5-year survival rates (~6-month median survival duration) despite therapy; thus, PDAC represents an unmet therapeutic challenge. PDAC is the major histological subtype, comprising 90% of all pancreatic cancers. It is a highly complex and aggressive malignancy, presenting with early local invasion and metastasis, and is resistant to most therapies, all of which are believed to contribute to its extremely poor prognosis. PDAC is characterized by molecular alterations, including mutations of K-RAS (~90% of cases), TP53, transforming growth factor-β, Hedgehog, WNT and NOTCH signaling pathways. Given that cancer stem cells have a crucial role not only in tumor initiation and progression, but also in drug resistance and relapse or recurrence of various cancer types, they may be excellent targets for effective novel therapeutic approaches. Here, we reviewed recent therapeutic strategies targeting pancreatic cancer stem cells using chemotherapeutics and targeted drugs, non-coding RNAs (i.e., siRNA and miRNAs), immunotherapy, and natural compounds. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Identification of Prostate Cancer-Related Genes Using Inhibition of NMD in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2005-01-01

    TITLE AND SUBTITLE 5. FUNDING NUMBERS Identification of Prostate Cancer -Related Genes Using W81XWH-04- 1 -0045 Inhibition of NMD in Prostate Cancer Cell...analytical filter to the prostate cancer cell lines 22RV- 1 and DU-145. Ten genes for each cell line have been selected for sequencing analysis.(Table...list of candidate genes for sequencing analysis from the LNCaP, PC3, 22RV- 1 and DU- 145 prostate cancer cell lines has been produced REPORTABLE

  7. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    PubMed Central

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Yang, Gwang-Mo; Kim, Kyeongseok; Saha, Subbroto Kumar; Cho, Ssang-Goo

    2016-01-01

    The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer. PMID:27657126

  8. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells.

    PubMed

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-12-12

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1-2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH⁺/CD133⁺ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH⁺/CD133⁺ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH⁺/CD133⁺ subpopulation of cells.

  9. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    PubMed Central

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. PMID:27973444

  10. Non-small-cell lung cancer.

    PubMed

    Gridelli, Cesare; Rossi, Antonio; Carbone, David P; Guarize, Juliana; Karachaliou, Niki; Mok, Tony; Petrella, Francesco; Spaggiari, Lorenzo; Rosell, Rafael

    2015-05-21

    Lung cancer is one of the most frequently diagnosed cancers and is the leading cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC), a heterogeneous class of tumours, represents approximately 85% of all new lung cancer diagnoses. Tobacco smoking remains the main risk factor for developing this disease, but radon exposure and air pollution also have a role. Most patients are diagnosed with advanced-stage disease owing to inadequate screening programmes and late onset of clinical symptoms; consequently, patients have a very poor prognosis. Several diagnostic approaches can be used for NSCLC, including X-ray, CT and PET imaging, and histological examination of tumour biopsies. Accurate staging of the cancer is required to determine the optimal management strategy, which includes surgery, radiochemotherapy, immunotherapy and targeted approaches with anti-angiogenic monoclonal antibodies or tyrosine kinase inhibitors if tumours harbour oncogene mutations. Several of these driver mutations have been identified (for example, in epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)), and therapy continues to advance to tackle acquired resistance problems. Also, palliative care has a central role in patient management and greatly improves quality of life. For an illustrated summary of this Primer, visit: http://go.nature.com/rWYFgg.

  11. Circulating tumor cells in colorectal cancer patients.

    PubMed

    Torino, Francesco; Bonmassar, Enzo; Bonmassar, Laura; De Vecchis, Liana; Barnabei, Agnese; Zuppi, Cecilia; Capoluongo, Ettore; Aquino, Angelo

    2013-11-01

    The availability of sensitive methods has allowed the detailed study of circulating tumor cells only recently. Evolving evidence support the prognostic and predictive role of these cells in patients affected by several solid tumors, including colorectal cancer. Ongoing studies are aimed at confirming that the molecular characterization of circulating tumor cells in peripheral blood and in bone marrow of patients is a powerful tool to improve the patient risk-stratification, to monitor activity of the drugs, to develop more appropriate targeted therapies and tailored treatments. In parallel, results from these correlative studies promise to gain a better biological understanding of the metastatic process. The clinical utility of the detection of circulating tumor cells in patients affected by colorectal cancer is still hampered by a number of specific hurdles. Improvement in sensitivity and specificity of the available methods of detection, standardization of these methods and functional characterization of circulating tumor cells in well designed and statistically well powered studies are the key steps to reach these ambitious objectives in colorectal cancer patients as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cancer gene therapy using mesenchymal stem cells.

    PubMed

    Uchibori, Ryosuke; Tsukahara, Tomonori; Ohmine, Ken; Ozawa, Keiya

    2014-04-01

    Cellular and gene therapies represent promising treatment strategies at the frontier of medicine. Hematopoietic stem cells, lymphocytes, and mesenchymal stem cells (MSCs) can all serve as sources of cells for use in such therapies. Strategies for gene therapy are often based on those of cell therapy, and it is anticipated that some examples will be put to practical use in the near future. Given their ability to support hematopoiesis, MSCs may be useful for the enhancement of stem cell engraftment, and the acceleration of hematopoietic reconstitution. Furthermore, MSCs may advance the treatment of severe graft-versus-host disease, based on their immunosuppressive ability. This application is also based on the homing behavior of MSCs to sites of injury and inflammation. Interestingly, MSCs possess tumor-homing ability, opening up the possibility of applications in the targeted delivery of anti-cancer genes to tumors. Many reports have indicated that MSCs can be utilized to target tumors and to deliver anti-cancer molecules locally, as tumors are recognized as non-healing wounds with inflammatory tissue. Here, we review both the potential of MSCs as cellular vehicles for targeted cancer therapy and the molecular mechanisms underlying MSC accumulation at tumor sites.

  13. Engineering Dendritic Cells to Enhance Cancer Immunotherapy

    PubMed Central

    Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong

    2011-01-01

    Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005

  14. Mesenchymal Stem Cells engineered for Cancer Therapy

    PubMed Central

    Shah, Khalid

    2012-01-01

    Recent pre-clinical and clinical studies have shown that stem cell-based therapies hold tremendous promise for the treatment of human disease. Mesenchymal stem cells (MSC) are emerging as promising anti-cancer agents which have an enormous potential to be utilized to treat a number of different cancer types. MSC have inherent tumor-trophic migratory properties, which allows them to serve as vehicles for delivering effective, targeted therapy to isolated tumors and metastatic disease. MSC have been readily engineered to express anti-proliferative, pro-apoptotic, anti-angiogenic agents that specifically target different cancer types. Many of these strategies have been validated in a wide range of studies evaluating treatment feasibility or efficacy, as well as establishing methods for real-time monitoring of stem cell migration in vivo for optimal therapy surveillance and accelerated development. This review aims to provide an in depth status of current MSC-based cancer therapies, as well as the prospects for their clinical translation. PMID:21740940

  15. Single-cell sequencing in cancer research.

    PubMed

    Mato Prado, Mireia; Frampton, Adam E; Stebbing, Justin; Krell, Jonathan

    2016-01-01

    Genome-wide single-cell sequencing investigations have the potential to classify individual cells within a tumor mass. In recent years, various single-cell DNA and RNA quantification techniques have facilitated significant advances in our ability to classify subpopulations of cells within a heterogeneous population. These approaches provide the possibility of unraveling the complex variability in genetic, epigenetic and transcriptional interactions that occur within identical cells in a tumor. This should enhance our knowledge of the underlying biological phenotypes and could have a huge impact in designing more precise anticancer treatments in order to improve outcomes and avoid tumor resistance. In addition, single-cell sequencing analysis has the potential to allow the development of better diagnostic and prognostic biomarkers, and thus aid the delivery of more personalized targeted cancer therapy. Nevertheless, further research is still required to overcome technical, biological and computational problems before clinical application.

  16. Differential MDR in Breast Cancer Stem Cells

    DTIC Science & Technology

    2006-05-01

    1977, Reya et al. 2001, Dick 2003, Al-Hajj et al. 2004, Donnenberg and Donnenberg, 2005, Dick and Lapidot, 2005, Wicha et al., 2006, Polyak and Hahn...Med. 341(7):491- 497, 1999. Polyak K, Hahn WC. Roots and stems: Stem cells in cancer. Nat Med 12, 296 – 300, 2006. Rendl M, Lewis L, Fuchs E...glycoprotein overexpression. Cancer Res. 1989;49:4542- 4549. 10. Doyle LA, Yang W, Abruzzo LV , et al. A multidrug resistance trans- porter from human

  17. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation

    PubMed Central

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-01-01

    ABSTRACT The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  18. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    ClinicalTrials.gov

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  19. Lymphocyte Infusion in Treating Patients With Relapsed Cancer After Bone Marrow or Peripheral Stem Cell Transplantation

    ClinicalTrials.gov

    2011-11-28

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  20. Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis

    PubMed Central

    Lu, Xinpei; He, Guangyuan; Ostrikov, Kostya

    2014-01-01

    The issue of single-cell control has recently attracted enormous interest. However, in spite of the presently achievable intracellular-level physiological probing through bio-photonics, nano-probe-based, and some other techniques, the issue of inducing selective, single-cell-precision apoptosis, without affecting neighbouring cells remains essentially open. Here we resolve this issue and report on the effective single-cell-precision cancer cell treatment using the reactive chemistry of the localized corona-type plasma discharge around a needle-like electrode with the spot size ∼1 µm. When the electrode is positioned with the micrometer precision against a selected cell, a focused and highly-localized micro-plasma discharge induces apoptosis in the selected individual HepG2 and HeLa cancer cells only, without affecting any surrounding cells, even in small cell clusters. This is confirmed by the real-time monitoring of the morphological and structural changes at the cellular and cell nucleus levels after the plasma exposure. PMID:24971517

  1. Role of Oxidative Stress in Stem, Cancer, and Cancer Stem Cells

    PubMed Central

    Dayem, Ahmed Abdal; Choi, Hye-Yeon; Kim, Jung-Hyun; Cho, Ssang-Goo

    2010-01-01

    The term ‘‘oxidative stress” refers to a cell’s state characterized by excessive production of reactive oxygen species (ROS) and oxidative stress is one of the most important regulatory mechanisms for stem, cancer, and cancer stem cells. The concept of cancer stem cells arose from observations of similarities between the self-renewal mechanism of stem cells and that of cancer stem cells, but compared to normal stem cells, they are believed to have no control over the cell number. ROS have been implicated in diverse processes in various cancers, and generally the increase of ROS in cancer cells is known to play an important role in the initiation and progression of cancer. Additionally, ROS have been considered as the most significant mutagens in stem cells; when elevated, blocking self-renewal and at the same time, serving as a signal stimulating stem cell differentiation. Several signaling pathways enhanced by oxidative stress are suggested to have important roles in tumorigenesis of cancer or cancer stem cells and the self-renewal ability of stem or cancer stem cells. It is now well established that mitochondria play a prominent role in apoptosis and increasing evidence supports that apoptosis and autophagy are physiological phenomena closely linked with oxidative stress. This review elucidates the effect and the mechanism of the oxidative stress on the regulation of stem, cancer, and cancer stem cells and focuses on the cell signaling cascades stimulated by oxidative stress and their mechanism in cancer stem cell formation, as very little is known about the redox status in cancer stem cells. Moreover, we explain the link between ROS and both of apoptosis and autophagy and the impact on cancer development and treatment. Better understanding of this intricate link may shed light on mechanisms that lead to better modes of cancer treatment. PMID:24281098

  2. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    PubMed

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.

  3. Squamous cell lung cancer: from tumor genomics to cancer therapeutics.

    PubMed

    Gandara, David R; Hammerman, Peter S; Sos, Martin L; Lara, Primo N; Hirsch, Fred R

    2015-05-15

    Squamous cell lung cancer (SCC) represents an area of unmet need in lung cancer research. For the past several years, therapeutic progress in SCC has lagged behind the now more common non-small cell lung cancer histologic subtype of adenocarcinoma. However, recent efforts to define the complex biology underlying SCC have begun to bear fruit in a multitude of ways, including characterization of previously unknown genomic and signaling pathways, delineation of new, potentially actionable molecular targets, and subsequent development of a large number of agents directed against unique SCC-associated molecular abnormalities. For the first time, SCC-specific prognostic gene signatures and predictive biomarkers of new therapeutic agents are emerging. In addition, recent and ongoing clinical trials, including the Lung-MAP master protocol, have been designed to facilitate approval of targeted therapy-biomarker combinations. In this comprehensive review, we describe the current status of SCC therapeutics, recent advances in the understanding of SCC biology and prognostic gene signatures, and the development of innovative new clinical trials, all of which offer new hope for patients with advanced SCC.

  4. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  5. Stem-like cancer cells are inducible by increasing genomic instability in cancer cells.

    PubMed

    Liang, Yi; Zhong, Zhendong; Huang, Yijun; Deng, Wen; Cao, Junxia; Tsao, George; Liu, Quentin; Pei, Duanqing; Kang, Tiebang; Zeng, Yi-Xin

    2010-02-12

    The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.

  6. Activated protein C upregulates ovarian cancer cell migration and promotes unclottability of the cancer cell microenvironment

    PubMed Central

    ALTHAWADI, HAMDA; ALFARSI, HALEMA; BESBES, SAMAHER; MIRSHAHI, SHAHSOLTAN; DUCROS, ELODIE; RAFII, ARASH; POCARD, MARC; THERWATH, AMU; SORIA, JEANNETTE; MIRSHAHI, MASSOUD

    2015-01-01

    The objective of this study was to evaluate the role of activated protein C (aPC), known to be a physiological anticoagulant, in ovarian cancer cell activation as well as in loss of clotting of cancer ascitic fluid. The effect of aPC on an ovarian cancer cell line (OVCAR-3) was tested in regards to i) cell migration and adhesion with the use of adhesion and wound healing assays as well as a droplet test; ii) protein phosphorylation, evaluated by cyto-ELISA; iii) cell cycle modification assessed by flow cytometric DNA quantification; and iv) anticoagulant activity evaluated by the prolongation of partial thromboplastin time (aPTT) of normal plasma in the presence or absence of aPC-treated ovarian cancer cells. In addition, the soluble endothelial protein C receptor (sEPCR) was quantified by ELISA in ascitic fluid of patients with ovarian cancer. Our results showed that in the OVCAR-3 aPC-induced cells i) an increase in cell migration was noted, which was inhibited when anti-endothelial protein C receptor (EPCR) was added to the culture medium and which may act via MEK-ERK and Rho-GTPase pathways; ii) an increase in threonine, and to a lesser extent tyrosine phosphorylation; iii) cell cycle activation (G1 to S/G2); and iv) a 2-3-fold prolongation of aPTT of normal plasma. In the peritoneal fluid, the sEPCR concentration was 71±23 ng/ml. In conclusion, free aPC binds to membrane EPCR in ovarian cancer cells and induces cell migration via MEK-ERK and Rho-GTPase pathways. This binding could also explain the loss of clotting of peritoneal fluids. PMID:26082331

  7. Light induced drug delivery into cancer cells.

    PubMed

    Shamay, Yosi; Adar, Lily; Ashkenasy, Gonen; David, Ayelet

    2011-02-01

    Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.

  8. The Function of Neuroendocrine Cells in Prostate Cancer

    DTIC Science & Technology

    2012-04-01

    Award Number: W81XWH-11-1-0227 TITLE: The Function of Neuroendocrine Cells in Prostate Cancer ...REPORT TYPE Annual Report 3. DATES COVERED 1 April 2011 – 31 March 2012 4. TITLE AND SUBTITLE The Function of Neuroendocrine Cells in Prostate Cancer ...initiation and progression of human prostate cancer Scope: 1) Use a pten null mouse prostate cancer model to determine if ablation of NE cells by

  9. Albendazole sensitizes cancer cells to ionizing radiation

    PubMed Central

    2011-01-01

    Background Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Methods Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. Results ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Conclusions Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted. PMID:22094106

  10. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-12-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive.

  11. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed Central

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  12. Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond.

    PubMed

    Lien, Zhi-Yi; Hsu, Tzu-Chia; Liu, Kuang-Kai; Liao, Wei-Siang; Hwang, Kuo-Chu; Chao, Jui-I

    2012-09-01

    Nanodiamond, a promising carbon nanomaterial, develops for biomedical applications such as cancer cell labeling and detection. Here, we establish the nanodiamond-bearing cancer cell lines using the fluorescent and magnetic nanodiamond (FMND). Treatment with FMND particles did not significantly induce cytotoxicity and growth inhibition in HFL-1 normal lung fibroblasts and A549 lung cancer cells. The fluorescence intensities and particle complexities were increased in a time- and concentration-dependent manner by treatment with FMND particles in lung cancer cells; however, the existence of FMND particles inside the cells did not alter cellular size distribution. The FMND-bearing lung cancer cells could be separated by the fluorescent and magnetic properties of FMNDs using the flow cytometer and magnetic device, respectively. The FMND-bearing cancer cells were identified by the existence of FMNDs using flow cytometer and confocal microscope analysis. More importantly, the cell morphology, viability, growth ability and total protein expression profiles in the FMND-bearing cells were similar to those of the parental cells. The separated FMND-bearing cells with various generations were cryopreservation for further applications. After re-thawing the FMND-bearing cancer cell lines, the cells still retained the cell survival and growth ability. Additionally, a variety of human cancer types including colon (RKO), breast (MCF-7), cervical (HeLa), and bladder (BFTC905) cancer cells could be used the same strategy to prepare the FMND-bearing cancer cells. These results show that the FMND-bearing cancer cell lines, which reserve the parental cell functions, can be applied for specific cancer cell labeling and tracking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Transitional cell cancer of the urinary tract and renal cell cancer in relation to acetaminophen use (United States).

    PubMed

    Rosenberg, L; Rao, R S; Palmer, J R; Strom, B L; Zauber, A; Warshauer, M E; Stolley, P D; Shapiro, S

    1998-01-01

    Experimental and epidemiologic evidence have suggested that phenacetin use increases the risk of transitional cell cancers of the urinary tract. The drug is no longer marketed but a commonly used metabolite, acetaminophen, has been linked recently to an increased risk of renal cancer. We assessed the relation of acetaminophen use to the risk of transitional cell cancer of the urinary tract and of renal cell cancer with data from a hospital-based study of cancers and medication use conducted from 1976-96 in the eastern United States. We compared 498 cases of transitional cell cancer and 383 cases of renal cell cancer with 8,149 noncancer controls and 6,499 cancer controls and controlled confounding factors with logistic regression. For transitional cell cancer, the relative risk (RR) estimate for regular acetaminophen use that had begun at least a year before admission was 1.1 (95 percent confidence interval [CI] = 0.6-1.9) based on noncancer controls, and 0.9 (CI = 0.5-1.6) based on cancer controls. RR estimates for use that lasted at least five years, and for nonregular use, were also close to 1.0. For renal cell cancer, the corresponding estimates were again close to 1.0. Our results suggest that acetaminophen, as used in present study population, does not influence the risk of transitional cell cancer of the urinary tract or of renal cell cancer.

  14. Stem cells in normal mammary gland and breast cancer.

    PubMed

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  15. Hypoxia and metabolic adaptation of cancer cells

    PubMed Central

    Eales, K L; Hollinshead, K E R; Tennant, D A

    2016-01-01

    Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype. PMID:26807645

  16. Highlighting cancer cells with macromolecular probes

    NASA Astrophysics Data System (ADS)

    Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Brown, Adrienne S.; Wilson, James N.; Raymo, Françisco M.

    2017-02-01

    Conventional fluorophore-ligand constructs for the detection of cancer cells generally produce relatively weak signals with modest contrast. The inherently low brightness accessible per biding event with the pairing of a single organic fluorophore to a single ligand as well as the contribution of unbound probes to background fluorescence are mainly responsible for these limitations. Our laboratories identified a viable structural design to improve both brightness and contrast. It is based on the integration of activatable fluorophores and targeting ligands within the same macromolecular construct. The chromophoric components are engineered to emit bright fluorescence exclusively in acidic environments. The targeting agents are designed to bind complementary receptors overexpressed on the surface of cancer cells and allow internalization of the macromolecules into acidic organelles. As a result of these properties, our macromolecular probes switch their intense emission on exclusively in the intracellular space of target cells with minimal background fluorescence from the extracellular matrix. In fact, these operating principles translate into a 170-fold enhancement in brightness, relative to equivalent but isolated chromophoric components, and a 3-fold increase in contrast, relative to model but non-activatable fluorophores. Thus, our macromolecular probes might ultimately evolve into valuable analytical tools to highlight cancer cells with optimal signal-to-noise ratios in a diversity of biomedical applications.

  17. Novel Approach of Using Near-Infrared Responsive PEGylated Gold Nanorod Coated Poly(l-lactide) Microneedles to Enhance the Antitumor Efficiency of Docetaxel-Loaded MPEG-PDLLA Micelles for Treating an A431 Tumor.

    PubMed

    Hao, Ying; Dong, MingLing; Zhang, TaoYe; Peng, JinRong; Jia, YanPeng; Cao, YiPing; Qian, ZhiYong

    2017-05-10

    The combination of chemotherapy and photothermal therapy (PTT) plays a significant role in synergistic tumor therapy. However, a high dosage of chemotherapy drugs or photothermal agents may cause series side effects. To overcome these challenges, we designed a near-infrared (NIR) responsive PEGylated gold nanorod (GNR-PEG) coated poly(l-lactide) microneedle (PLLA MN) system (GNR-PEG@MN) to enhance antitumor efficiency of docetaxel-loaded MPEG-PDLLA (MPEG-PDLLA-DTX) micelles for treating an A431 tumor. The as-made GNR-PEG@MNs contained only 31.83 ± 1.22 μg of GNR-PEG per patch and exhibited excellent heating efficacy both in vitro and in vivo. Meanwhile, GNR-PEG@MN with the height of 480 μm had good skin insertion ability and was harmless to the skin. On the other hand, GNR-PEG@MN had good heating transfer ability in vivo, and the tumor sites could reach 50 °C within 5 min. In comparison with chemotherapy and PTT alone, the combination of low dosage MPEG-PDLLA-DTX micelles (5 mg/kg) and GNR-PEG@MNs completely eradicated the A431 tumor without recurrence in vivo, demonstrating a remarkable synergetic effect. Hence, GNR-PEG@MN could be a promising carrier to enhance the antitumor effect of MPEG-PDLLA-DTX micelles for treating superficial tumors and is expected to have a great potential in clinical translation for human epidermoid cancer therapy.

  18. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells.

    PubMed

    Jiang, Xian-Peng; Elliott, Robert L

    2017-05-01

    The association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells. Addition of iron inhibited the cytolysis of the breast cancer cell lines. The iron chelator deferoxamine (DFOM) increased NK-92MI cytolysis to MCF-7 or MDA-MB-231 cells. Iron reversed cytotoxicity to breast cancer cells induced by NO, released from S-nitroso-N-acetyl-penicillamine (NO donor). Real time quantitative polymerase chain reaction showed that iron up-regulated the expression of FTH1 and iron chelator DFOM reduced FTH1 expression of MCF-7 and MDA-MB-231 cells. In conclusion, increased iron in cancer cells and their microenvironment protects cancer cells from natural killer cell cytolysis by antagonizing NO- and TNFα-associated cytotoxicity and by up-regulation of ferritin expression in breast cancer cells. Conversely, a decrease in iron concentration caused by DFOM improves natural killer cytolysis of tumor cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics

    PubMed Central

    Tanase, Cristiana Pistol; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Enciu, Ana-Maria; Calenic, Bogdan; Cruceru, Maria Linda; Albulescu, Radu

    2014-01-01

    Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs. PMID:25152582

  20. Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics.

    PubMed

    Tanase, Cristiana Pistol; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Enciu, Ana-Maria; Calenic, Bogdan; Cruceru, Maria Linda; Albulescu, Radu

    2014-08-21

    Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs.

  1. Primary cultures of human colon cancer as a model to study cancer stem cells.

    PubMed

    Koshkin, Sergey; Danilova, Anna; Raskin, Grigory; Petrov, Nikolai; Bajenova, Olga; O'Brien, Stephen J; Tomilin, Alexey; Tolkunova, Elena

    2016-09-01

    The principal cause of death in cancer involves tumor progression and metastasis. Since only a small proportion of the primary tumor cells, cancer stem cells (CSCs), which are the most aggressive, have the capacity to metastasize and display properties of stem cells, it is imperative to characterize the gene expression of diagnostic markers and to evaluate the drug sensitivity in the CSCs themselves. Here, we have examined the key genes that are involved in the progression of colorectal cancer and are expressed in cancer stem cells. Primary cultures of colorectal cancer cells from a patient's tumors were studied using the flow cytometry and cytological methods. We have evaluated the clinical and stem cell marker expression in these cells, their resistance to 5-fluorouracil and irinotecan, and the ability of cells to form tumors in mice. The data shows the role of stem cell marker Oct4 in the resistance of primary colorectal cancer tumor cells to 5-fluorouracil.

  2. Natural killer cells, ageing and cancer.

    PubMed

    Naumova, Elissaveta; Pawelec, Graham; Mihaylova, Anastasiya

    2016-04-01

    Natural killer (NK) cells are key components of innate immunity and substantially contribute to anti-tumor immune responses. The role of NK cells in immune surveillance is linked to many aspects of NK cell biology, but the age of the animal being studied or the human under treatment is rarely taken into account. The solicited reviews constituting a collection of papers presented here as a "Symposium-in-Writing" on the topic of NK cells, ageing and cancer were inspired by the increasing knowledge of NK cell biology and genetics, and emerging data on their impact in the clinic (disease associations and therapies), together with the realization that older individuals also differ from younger ones regarding innate as well as adaptive immunity.

  3. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised.

  4. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    PubMed Central

    Hurst, Emma A.; Argyle, David J.

    2016-01-01

    Cyclooxygenase-2 (COX-2) is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2), a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy. PMID:27882058

  5. Renieramycin M Attenuates Cancer Stem Cell-like Phenotypes in H460 Lung Cancer Cells.

    PubMed

    Sirimangkalakitti, Natchanun; Chamni, Supakarn; Suwanborirux, Khanit; Chanvorachote, Pithi

    2017-02-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells that possess self-renewal and differentiation capacities. CSCs contribute to drug-resistance, cancer recurrence and metastasis, thus development of CSC-targeted therapeutic strategies has recently received significant attention in cancer research. In this study, the potential efficacy of renieramycin M (RM) isolated from the sponge Xestospongia species, was examined against lung CSCs. Colony and spheroid formation assays, as well as western blotting analysis of lung CSC protein markers were employed to determine the CSC-like phenotypes of H460 lung cancer cells after treatment with RM at non-toxic concentrations. RM treatment reduced significantly colony and spheroid formation of H460 cells. Moreover, the CSC markers CD133, CD44 and ALDH1A1 of CSC-enriched H460 cells were reduced significantly following RM treatment. RM could be a potent anti-metastatic agent by suppressing lung CSC-like phenotypes in H460 cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Cell Transfer Therapy for Cancer: Past, Present, and Future

    PubMed Central

    Qian, Xiaoling; Wang, Xian; Jin, Hongchuan

    2014-01-01

    Cell transfer therapy for cancer has made a rapid progress recently and the immunotherapy has been recognized as the fourth anticancer modality after operation, chemotherapy, and radiotherapy. Lymphocytes used for cell transfer therapy include dendritic cells, natural killer (NK) cells, and T lymphocytes such as tumor-infiltrating lymphocytes (TILs) and cytotoxic T lymphocytes (CTLs). In vitro activated or engineered immune cells can traffic to cancer tissues to elicit persistent antitumor immune response which is very important especially after immunosuppressive treatments such as chemotherapy. In this review, we overviewed recent advances in the exploration of dendritic cells, NK cells, and T cells for the treatment of human cancer cells. PMID:24741604

  7. Ewing's sarcoma cancer stem cell targeted therapy.

    PubMed

    Todorova, Roumiana

    2014-01-01

    Ewing`s sarcoma (ES) family of tumors (ESFTs) are round cell tumors of bone and soft tissues, afflicting children and young adults. This review summarizes the present findings about ES cancer stem cell (CSC) targeted therapy: prognostic factors, chromosomal translocations, initiation, epigenetic mechanisms, candidate cell of ES origin (Mesenchymal stem cells (MSCs) and Neural crest stem cells (NCSCs)). The ES CSC model, histopathogenesis, histogenesis, pathogenesis, ES mediated Hematopoietic stem progenitor cells (HSPCs) senescence are also discussed. ESFTs therapy is reviewed concerning CSCs, radiotherapy, risk of subsequent neoplasms, stem cell (SC) support, promising therapeutic targets for ES CSCs (CSC markers, immune targeting, RNAi phenotyping screens, proposed new drugs), candidate EWS-FLI1 target genes and further directions (including human embryonic stem cells (hESCs)). Bone marrow-derived human MSCs are permissive for EWS-FLI1 expression with transition to ESFT-like cellular phenotype. ESFTs are genetically related to NCSC, permissive for EWS-FLI1 expression and susceptible to oncogene-induced immortalization. Primitive neuroectodermal features and MSC origin of ESFTs provide a basis of immune targeting. The microRNAs profile of ES CSCs is shared by ESCs and CSCs from divergent tumor types. Successful reprogramming of differentiated human somatic cells into a pluripotent state allows creation of patient- and disease-specific SCs. The functional role of endogenous EWS at stem cell level on both senescence and tumorigenesis is a link between cancer and aging. The regulatory mechanisms of oncogenic activity of EWS fusions could provide new prognostic biomarkers, therapeutic opportunities and tumor-specific anticancer agents against ESFTs.

  8. Targeting cancer stem cells using immunologic approaches

    PubMed Central

    Pan, Qin; Li, Qiao; Liu, Shuang; Ning, Ning; Zhang, Xiaolian; Xu, Yingxin; Chang, Alfred E.; Wicha, Max S.

    2015-01-01

    Cancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self-renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies which specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using NK cells and γδT cells. To target CSC specifically, in vitro CSC-primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC-based dendritic cell vaccine has demonstrated significant induction of anti-CSC immunity both in vivo in immunocommpetent hosts and in vitro as evident by CSC reactivity of CSC vaccine-primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133 and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell e.g. myeloid derived suppressor cells, and cytokines e.g. IL-6 and IL-8, as well as the immune checkpoint (PD1/PDL1, et.al) may provide additional novel strategies to enhance the immunological targeting of CSCs. PMID:25873269

  9. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  10. Heat induces gene amplification in cancer cells

    SciTech Connect

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  11. Musashi signaling in stem cells and cancer.

    PubMed

    Fox, Raymond G; Park, Frederick D; Koechlein, Claire S; Kritzik, Marcie; Reya, Tannishtha

    2015-01-01

    How a single cell gives rise to an entire organism is one of biology's greatest mysteries. Within this process, stem cells play a key role by serving as seed cells capable of both self-renewal to sustain themselves as well as differentiation to generate the full diversity of mature cells and functional tissues. Understanding how this balance between self-renewal and differentiation is achieved is crucial to defining not only the underpinnings of normal development but also how its subversion can lead to cancer. Musashi, a family of RNA binding proteins discovered originally in Drosophila and named after the iconic samurai, Miyamoto Musashi, has emerged as a key signal that confers and protects the stem cell state across organisms. Here we explore the role of this signal in stem cells and how its reactivation can be a critical element in oncogenesis. Relative to long-established developmental signals such as Wnt, Hedgehog, and Notch, our understanding of Musashi remains in its infancy; yet all evidence suggests that Musashi will emerge as an equally powerful paradigm for regulating development and cancer and may be destined to have a great impact on biology and medicine.

  12. Cancer stem cell contribution to glioblastoma invasiveness

    PubMed Central

    2013-01-01

    Glioblastoma (GBM) is the most aggressive and lethal brain tumor in adults. Its invasive nature currently represents the most challenging hurdle to surgical resection. The mechanism adopted by GBM cells to carry out their invasive strategy is an intricate program that recalls what takes place in embryonic cells during development and in carcinoma cells during metastasis formation, the so-called epithelial-to-mesenchymal transition. GBM cells undergo a series of molecular and conformational changes shifting the tumor toward mesenchymal traits, including extracellular matrix remodeling, cytoskeletal re-patterning, and stem-like trait acquisition. A deeper understanding of the mechanisms driving the whole infiltrative process represents the first step toward successful treatment of this pathology. Here, we review recent findings demonstrating the invasive nature of GBM cancer stem cells, together with novel candidate molecules associated with both cancer stem cell biology and GBM invasion, like doublecortin and microRNAs. These findings may affect the design of effective therapies currently not considered for GBM invasive progression. PMID:23510696

  13. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    PubMed

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation.

  14. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    PubMed

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.

  15. [Effect of Conditioned Medium from Endothelial Cells on Cancer Stem Cell Phenotype of Hepatoma Cells].