Science.gov

Sample records for a431 human epithelial

  1. Pheophorbide a mediated photodynamic therapy against human epidermoid carcinoma cells (A431)

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Li, Wen-Tyng

    2011-02-01

    The objective of this study was to characterize the death mechanism of human epidermoid carcinoma cells (A431) triggered by photodynamic therapy (PDT) with pheophorbide a. First of all, significant inhibition on the survival of A431 cells (< 20 %) was observed when an irradiation dose of 5.1 J/cm2 combined with 125 ng/ml of pheophorbide a was applied. Survival rate of human keratinocyte cells was over 70 % under the same PDT parameters, suggesting that pheophorbide a killed cancer cells selectively. Mitochondria were the main target sites where pheophorbide a accumulated. Formation of reactive oxygen species (ROS) was detected after PDT. Addition of antioxidant N-Acetyl cysteine prevented ROS production and increased cell survival thereafter. The decrease in cellular ATP level was also observed at 6 hrs after PDT. Typical apoptotic cellular morphology and a collapse of mitochondrial membrane potential occurred after PDT. The loss of mitochondrial membrane potential led to the release of cytochrome c from the mitochondria to the cytosol, followed by activation of caspase-9 and caspase-3. The activation of caspase-3 resulted in poly(ADP-ribose) polymerase (PARP) cleavage in A431 cells, followed by DNA fragmentation. In conclusion, the results demonstrated that pheophorbide a possessed photodynamic action against A431 cells, mainly through apoptosis mediated by mitochondrial intrinsic pathway triggered by ROS.

  2. Density-dependent induction of 92-kd type IV collagenase activity in cultures of A431 human epidermoid carcinoma cells.

    PubMed Central

    Xie, B.; Bucana, C. D.; Fidler, I. J.

    1994-01-01

    We examined the in vitro regulation of the production of two type IV collagenases, MMP-2 and MMP-9, by A431 human epidermoid carcinoma cells. The A431 cells were cultured under sparse or confluent conditions. The addition of transforming growth factor-beta (TGF-beta) or phorbolester-TPA to sparse cultures induced low levels of MMP-9 secretion, whereas in confluent cultures only TGF-beta produced this effect. Neither treatment altered the level of constitutive secretion of MMP-2. Treatment of sparse, actively growing cultures but not confluent stationary cultures with both TGF-beta and TPA produced synergistic induction of MMP-9 but did not affect MMP-2. A431 cells were grown as discrete large monolayer colonies. Radiolabeling with [3H]leucine or [3H]thymidine followed by autoradiography revealed that all the A431 cells in the colonies were metabolically active and only those on the periphery were dividing. Only these dividing A431 cells stained positive by anti-MMP-9 antibodies. Our results demonstrate that the synergistic induction of MMP-9 secretion in A431 cells occurs subsequent to stimulation by external signals in only noncontact-inhibited dividing tumor cells. These regulatory mechanisms may account for the in vivo finding that many proteinases are localized at the invasion front of a neoplasm where tumor cells are dividing and accessible to various environmental signals. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8178929

  3. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells

    NASA Astrophysics Data System (ADS)

    Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.

    Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.

  4. Inhibitory effect of berberine on human skin squamous cell carcinoma A431 cells.

    PubMed

    Li, D X; Zhang, J; Zhang, Y; Zhao, P W; Yang, L M

    2015-09-08

    Berberine (BBR) is a natural alkaloid with significant anti-tumor activity against many types of cancer cells. In this study, we investigated the molecular mechanisms employed by BBR to repress the proliferation and growth of skin squamous cell carcinoma A431 cells. Berberine was reported to inhibit the proliferation of A431 cells in a dose- and time-dependent manner and was observed to induce a series of biochemical events, including the loss of mitochondrial membrane potential, release of cytochrome-c to cytosol, induction of proteins of the Bcl-2 family and caspases, and the cleavage of poly(ADP)-ribose polymerase. This suggested its ability to induce apoptosis. The results of a wound healing test revealed that berberine inhibited the migration of A431 cells. Ezrin was transfected into A431 cells by RNA interference. The level of expression of Ezrin in the transfected A431 cells was observed to decrease with berberine treatment, which suggested that berberine might inhibit the invasion of A431 cells through Ezrin. The results of this study demonstrated that berberine could potentially inhibit proliferation, induce apoptosis, and inhibit the invasion of A431 cells.

  5. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells.

    PubMed

    Chilampalli, Chandeshwari; Guillermo, Ruth; Kaushik, Radhey S; Young, Alan; Chandrasekher, Gudiseva; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-11-01

    Honokiol is a plant lignan isolated from bark and seed cones of Magnolia officinalis. Recent studies from our laboratory indicated that honokiol pretreatment decreased ultraviolet B-induced skin cancer development in SKH-1 mice. The aim of the present investigation was to study the effects of honokiol on human epidermoid squamous carcinoma A431 cells and to elucidate possible mechanisms involved in preventing skin cancer. A431 cells were pretreated with different concentrations of honokiol for a specific time period and investigated for effects on apoptosis and cell cycle analysis. Treatment with honokiol significantly decreased cell viability and cell proliferation in a concentration- and time-dependent manner. Honokiol pretreatment at 50 μmol/L concentration induced G0/G1 cell cycle arrest significantly (P < 0.05) and decreased the percentage of cells in the S and G2/M phase. Honokiol down-regulated the expression of cyclin D1, cyclin D2, Cdk2, Cdk4 and Cdk6 proteins and up-regulated the expression of Cdk's inhibitor proteins p21 and p27. Pretreatment of A431 cells with honokiol leads to induction of apoptosis and DNA fragmentation. These findings indicate that honokiol provides its effects in squamous carcinoma cells by inducing cell cycle arrest at G0/G1 phase and apoptosis.

  6. Several types of sodium-conducting channel in human carcinoma A-431 cells.

    PubMed

    Negulyaev YuA; Vedernikova, E A; Mozhayeva, G N

    1994-08-24

    Patch clamp method in outside-out configuration was used to search for cation channels which possibly mediate sodium influx through plasma membrane in A-431 carcinoma cells. We found four types of nonvoltage-gated Na-conducting channel. The first of 9-10 pS conductance (145 mM Na+, 30 degrees C) seems to be Na-selective; three others were characterized with conductance values of 24, 35 and 65 pS and lower selectivity among cations. Na-selective channels (9-10 pS) were not blocked by tetrodotoxin (1 microM). External application of amiloride (0.1-2 mM) resulted in a reversible inhibition of single currents through Na-selective channels.

  7. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    SciTech Connect

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi; George, Jasmine; Ray, Ratan Singh; Hans, Rajendra K.; Prasad, Sahdeo; Shukla, Yogeshwer

    2009-06-26

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition of A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.

  8. Regulation of apoptosis by resveratrol through JAK/STAT and mitochondria mediated pathway in human epidermoid carcinoma A431 cells

    SciTech Connect

    Madan, Esha; Prasad, Sahdeo; Roy, Preeti; George, Jasmine; Shukla, Yogeshwer

    2008-12-26

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin present mainly in grapes, red wine and berries, is known to possess strong chemopreventive and anticancer properties. Here, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol in human epidermoid carcinoma A431 cells. Resveratrol has cytotoxic effects through inhibiting cellular proliferation of A431 cells, which leads to the induction of apoptosis, as evident by an increase in the fraction of cells in the sub-G{sub 1} phase of the cell cycle and Annexin-V binding of externalized phosphatidylserine. Results revealed that inhibition of proliferation is associated with regulation of the JAK/STAT pathway, where resveratrol prevents phosphorylation of JAK, thereby inhibiting STAT1 phosphorylation. Furthermore, resveratrol treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. Consequently, an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favor of apoptosis. These observations indicate that resveratrol treatment inhibits JAK/STAT-mediated gene transcription and induce the mitochondrial cell death pathway.

  9. Fisetin inhibits growth, induces G₂ /M arrest and apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation.

    PubMed

    Pal, Harish C; Sharma, Samriti; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2013-07-01

    Non-melanoma skin cancers (NMSCs), one of the most common neoplasms, cause serious morbidity and mortality. Therefore, identification of non-toxic phytochemicals for prevention/treatment of NMSCs is highly desirable. Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid, present in fruits and vegetables possesses anti-oxidant and antiproliferative properties. The aim of this study was to investigate the chemotherapeutic potential of fisetin in cultured human epidermoid carcinoma A431 cells. Treatment of A431 cells with fisetin (5-80 μm) resulted in a significant decrease in cell viability in a dose- and time-dependent manner. Employing clonogenic assay, we found that fisetin treatment significantly reduced colony formation in A431 cells. Fisetin treatment of A431 cells resulted in G₂ /M arrest and induction of apoptosis. Furthermore, treatment of A431 cells with fisetin resulted in (i) decreased expression of anti-apoptotic proteins (Bcl2; Bcl-xL and Mcl-1); (ii) increased expression of pro-apoptotic proteins (Bax, Bak and Bad); (iii) disruption of mitochondrial potential; (iv) release of cytochrome c and Smac/DIABLO from mitochondria; (v) activation of caspases; and (vi) cleavage of Poly(ADP-ribose) polymerase (PARP) protein. Pretreatment of A431 cells with the pan-caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced cleavage of caspases and PARP. Taken together, these data provide evidence that fisetin possesses chemotherapeutic potential against human epidermoid carcinoma A431 cells. Overall, these results suggest that fisetin could be developed as a novel therapeutic agent for the management of NMSCs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Fisetin inhibits growth, induces G2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: Role of mitochondrial membrane potential disruption and consequent caspases activation

    PubMed Central

    Pal, Harish C.; Sharma, Samriti; Elmets, Craig A.; Athar, Mohammad; Afaq, Farrukh

    2013-01-01

    Non-melanoma skin cancers (NMSCs) one of the most common neoplasms causes serious morbidity and mortality. Therefore, identification of non-toxic phytochemicals for prevention/treatment of NMSCs is highly desirable. Fisetin (3,3′,4′,7-tetrahydroxyflavone), a dietary flavonoid, present in fruits and vegetables possesses anti-oxidant and anti-proliferative properties. The aim of this study was to investigate the chemotherapeutic potential of fisetin in cultured human epidermoid carcinoma A431 cells. Treatment of A431 cells with fistein (5-80 μM) resulted in a significant decrease in cell viability in a dose- and time-dependent manner. Employing clonogenic assay, we found that fisetin treatment significantly reduced colony formation in A431 cells. Fisetin treatment of A431 cells resulted in G2/M arrest and induction of apoptosis. Furthermore, treatment of A431 cells with fisetin resulted in (i) decreased expression of anti-apoptotic proteins (Bcl2, Bcl-xL and Mcl-1), (ii) increased expression of pro-apoptotic proteins (Bax, Bak and Bad), (iii) disruption of mitochondrial potential, (iv) release of cytchrome c and Smac/DIABLO from mitochondria, (v) activation of caspases, and (vi) cleavage of PARP protein. Pretreatment of A431 cells with the pan-caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced cleavage of caspases and PARP. Taken together, these data provide evidence that fisetin possesses chemotherapeutic potential against human epidermoid carcinoma A431 cells. Overall, these results suggest that fisetin could be developed as a novel therapeutic agent for the management of NMSCs. PMID:23800058

  11. Chelidonium majus L. extract induces apoptosis through caspase activity via MAPK-independent NF-κB signaling in human epidermoid carcinoma A431 cells.

    PubMed

    Park, Seung-Won; Kim, Seong Ryul; Kim, Youngchul; Lee, Jang-Hoon; Woo, Hong-Jung; Yoon, Yeo-Kwang; Kim, Young Il

    2015-01-01

    Chelidonium majus L. (C. majus L.) is known to possess certain biological properties such as anti-inflammatory, antimicrobial, antiviral and antitumor activities. We investigated the effects of C. majus L. extract on human epidermoid carcinoma A431 cells through multiple mechanisms, including induction of cell cycle arrest, activation of the caspase-dependent pathway, blocking of nuclear factor-κB (NF-κB) activation and involvement in the mitogen-activated protein kinase (MAPK) pathway. C. majus L. inhibited the proliferation of A431 cells in a dose- and time-dependent manner, increased the percentage of apoptotic cells, significantly decreased the mRNA levels of cyclin D1, Bcl-2, Mcl-1 and survivin and increased p21 and Bax expression. Exposure of A431 cells to C. majus L. extract enhanced the activities of caspase-3 and caspase-9, while co-treatment with C. majus L., the pan-caspase inhibitor Z-VAD-FMK and the caspase-3 inhibitor Z-DEVE-FMK increased the proliferation of A431 cells. C. majus L. extract not only inhibited NF-κB activation, but it also activated p38 MAPK and MEK/ERK signaling. Taken together, these results demonstrate that C. majus L. extract inhibits the proliferation of human epidermoid carcinoma A431 cells by inducing apoptosis through caspase activation and NF-κB inhibition via MAPK-independent pathway.

  12. Hydroxyl radical (·OH) played a pivotal role in oridonin-induced apoptosis and autophagy in human epidermoid carcinoma A431 cells.

    PubMed

    Yu, Yang; Fan, Si Miao; Song, Jun Ke; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2012-01-01

    Oridonin, a diterpenoid compound extracted and purified from Rabdosia rubescen, has been reported to induce tumor cell apoptosis through tyrosine kinase pathway. To further examine the mechanism of oridonin, we selected human epidermoid carcinoma A431 cell as a test object. Besides apoptosis, oridonin also induced A431 cell autophagy, and this autophagy antagonized apoptosis and played a protective role for A431 cells. Reactive oxygen species (ROS) played a pivotal role in induction of cytotoxicity. Therefore, a ROS scavenger, N-acetylcysteine (NAC) combined with oridonin was appiled. Results of morphologic observation, flow cytometric analysis and Western blot analysis showed that NAC could significantly reverse both ROS generation and down-regulation of mitochondrial membrane potential in oridonin treated cells. NAC inhibited oridonin induced apoptosis through both the intrinsic and extrinsic apoptotic pathways. NAC effectively inhibited both oridonin-induced apoptosis and autophagy by reducing intracellular oxidative stress. To further examine the mechanism of ROS, exogenous enzyme antioxidants (superoxide dismutase (SOD), catalase (CAT)) and non-enzyme antioxidants (glutathione (GSH)) were applied to detect the effect of oridonin on ROS generation. Only GSH exerted a similar role with NAC, suggesting that hydroxyl radical (·OH) played the major role in oridonin-induced cell death. Oridonin could decrease the GSH level in A431 cells in a dose-dependent manner. In addition, after treatment with ·OH donor, Fenton reagent, the changes in A431cells were similar to the results of oridonin treatment. All the results proved that ·OH played the pivotal role in oridonin induced apoptosis and autophagy in A431 cells.

  13. Involvement of retinoblastoma (Rb) and E2F transcription factors during photodynamic therapy of human epidermoid carcinoma cells A431.

    PubMed

    Ahmad, N; Gupta, S; Mukhtar, H

    1999-03-11

    Photodynamic therapy (PDT), a promising new therapeutic modality for the management of a variety of solid malignancies and many non-malignant diseases, is a bimodal therapy using a porphyrin based photosensitizing chemical and visible light. The proper understanding of the mechanism of PDT-mediated cancer cell-kill may result in improving the efficacy of this treatment modality. Earlier we have shown (Proc. Natl. Acad. Sci. USA; 95: 6977-6982, 1998) that silicon phthalocyanine (Pc4)-PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21 which, by inhibiting cyclins (E and D1) and cyclin dependent kinases (cdk2 and cdk6), results in a G0/G1-phase arrest followed by apoptosis in human epidermoid carcinoma cells A431. We have also demonstrated the generation of nitric oxide during PDT-mediated apoptosis (Cancer Res.; 58: 1785-1788, 1998). Retinoblastoma (pRb) and E2F family transcription factors are important proteins, which regulate the G1-->S transition in the cell cycle. Here, we provide evidence for the involvement of pRb-E2F/DP machinery as an important contributor of PDT-mediated cell cycle arrest and apoptosis. Western blot analysis demonstrated a decrease in the hyper-phosphorylated form of pRb at 3, 6 and 12 h post-PDT with a relative increase in hypo-phosphorylated pRb. Western blot analysis also revealed that PDT-caused decrease in phosphorylation of pRb occurs at serine-780. The ELISA data demonstrated a time dependent accumulation of hypo-phosphorylated pRb by PDT. This response was accompanied with down-regulation in the protein expression of all five E2F (1-5) family transcription factors, and their heterodimeric partners DP1 and DP2. These results suggest that Pc4-PDT of A431 cells results in a down regulation of hyper-phosphorylated pRb protein with a relative increase in hypo-phosphorylated pRb that, in turn, compromises with the availability of free E2F. We suggest that these events result in a stoppage of the cell cycle

  14. Recombinant human tumor necrosis factor alpha does not potentiate cell killing after photodynamic therapy with a silicon phthalocyanine in A431 human epidermoid carcinoma cells.

    PubMed

    Azizuddin, K; Kalka, K; Chiu, S M; Ahmad, N; Mukhtar, H; Separovic, D

    2001-02-01

    Photodynamic therapy (PDT) is a novel cancer treatment utilizing a photosensitizer, visible light and oxygen. PDT with the silicon phthalocyanine Pc 4, a new photosensitizer, is highly effective in cancer cell destruction and tumor ablation. The mechanisms underlying cancer cell killing by PDT are not fully understood. Tumor necrosis factor alpha (TNF) is a multifunctional cytokine that has been implicated in photocytotoxicity. We asked whether recombinant human TNF (rhTNF) affects Pc 4-PDT cytotoxicity in A431 human epidermoid carcinoma cells. Co-treatment of A431 cells with various doses of Pc 4-PDT and a sub-lethal rhTNF dose led to a sub-additive reduction in cell survival. In addition, in the presence of Pc 4-PDT or rhTNF, caspase-3 activity and apoptosis were induced. The combined treatment, however, did not potentiate either caspase-3 activity or apoptosis. Similar to previous findings we observed that Pc 4-PDT initiated a time-dependent extracellular TNF accumulation. The data suggest that: a) PDT and rhTNF induce cancer cell killing through different mechanisms; and b) Pc 4-PDT-induced TNF production is a stress response that may not directly affect photocytotoxicity.

  15. Fumonisin B1 does not prevent apoptosis in A431 human epidermoid carcinoma cells after photosensitization with a silicon phthalocyanine.

    PubMed

    Nagy, B; Chiu, S M; Separovic, D

    2000-09-01

    Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 (Pc 4-PDT), an apoptosis inducer, is associated with accumulation of ceramide in various cell lines. The role of ceramide in Pc 4-PDT-induced apoptosis was investigated in A431 cells. Caspase-3 (casp-3) was activated and TUNEL positive cells began to appear 30 and 60 min post-Pc 4-PDT, respectively. A rapid increase (10 min) in cellular ceramide levels was observed after Pc 4-PDT. Induced ceramide accumulation was maintained over 60 min, Acid sphingomyelinase, a ceramide-generating enzyme, was inhibited after photosensitization with Pc 4, suggesting that the enzyme was not required for stimulated ceramide accumulation. Co-treatment of A431 cells with fumonisin B1, a ceramide synthase inhibitor, and Pc 4-PDT led to a decrease in ceramide levels without any effect on induced casp-3 activity or apoptosis. In the presence of zVAD, a pan-caspase inhibitor, apoptosis was abolished, while ceramide levels remained elevated after Pc 4-PDT. Exposure of A431 cells to exogenous C6-ceramide for 22 h, led to induction of apoptosis, and the process was abrogated by zVAD. In conclusion, C6-ceramide-, like Pc 4-PDT-induced apoptosis, is zVAD-sensitive. Furthermore, Pc 4 photosensitization can lead to apoptosis without FB-sensitive elevation in ceramide levels upstream of caspases.

  16. Recombinant human IgG antibodies recognizing distinct extracellular domains of EGF receptor exhibit different degrees of growth inhibitory effects on human A431 cancer cells.

    PubMed

    Chang, Chialun; Takayanagi, Atsushi; Yoshida, Tetsuhiko; Shimizu, Nobuyoshi

    2013-05-01

    Recently, we isolated 4 distinct kinds of single chain antibody against human EGF receptor (EGFR) after screening the Keio phage display scFv library by using two methods of target-guided proximity labeling. In the current study, these monovalent scFv antibodies were converted to bivalent IgGs of humanized forms (hIgGs) by recombinant technology using the specially designed expression vectors followed by protein production in CHO cells. The resulting recombinant hIgGs were examined for their binding specificity using several different transformed human BJ cell lines that express deletion mutants of EGFR, each lacking one of 4 distinct extracellular domains (L1, L2, C1 and C2). Immuno-fluorescent microscopy and immuno-precipitation assay on these cells indicated that 4 distinct kinds of hIgGs bind to one of 3 different domains (L1, C1 and C2). Then, these hIgGs were further examined for biological effects on human A431 cancer cells, which overexpress EGFR. The results indicated that hIgG38 binding to L1 and hIgG45 binding to C2 substantially suppressed the EGF-induced phosphorylation of EGFR, resulting in the growth inhibition of A431 cancer cells. On the contrary, hIgG40 binding to C1 and hIgG42 binding to another site (epitope) of C2 exhibited no such inhibitory effects. Thus, the newly produced four recombinant hIgG antibodies recognize 4 different sites (epitopes) in 3 different extracellular domains of EGFR and exhibit different biological effects on cancer cells. These characteristics are somewhat different from the currently utilized therapeutic anti-EGFR antibodies. Hence, these hIgG antibodies will be invaluable as a research tool for the detailed molecular analysis of the EGFR-mediated signal transduction mechanism and more importantly a possible application as new therapeutic agents to treat certain types of cancers.

  17. Extracellular polymeric substance from Aphanizomenon flos-aquae induces apoptosis via the mitochondrial pathway in A431 human epidermoid carcinoma cells.

    PubMed

    Xue, Xing; Lv, Ying; Liu, Qing; Zhang, Xiaolan; Zhao, Youhong; Zhang, Lili; Xu, Shiyuan

    2015-09-01

    Extracellular polymeric substance (EPS) is a substance secreted during algal growth, which has been found to have numerous health-promoting effects. In the present study, A431 human epidermoid carcinoma cells were selected as target cells and cultivated in vitro as an experimental model to investigate the anti-cancer effect of extracellular polymeric substances from Aphanizomenon flos-aquae (EPS-A) and the possible underlying mechanism. Apoptosis- and cell cycle-associated molecules as well as the mitochondrial membrane potential of the cells were quantified using flow cytometry (FCM). FCM showed that EPS-A induced cell cycle arrest, which led to a loss of mitochondrial function of the A431 cells and an increase in necrotic and late apoptotic cells. In order to evaluate the apoptosis and cell viability, acridine orange/ethidium bromide staining was used, morphological changes were observed using fluorescence microscopy and typical apoptotic characteristics were observed. Following treatment with a high dose of EPS-A, transmission electron microscopy showed nuclear fragmentation, chromosome condensation, cell shrinkage and expansion of the endoplasmic reticulum; apoptotic bodies were also observed. In conclusion, EPS-A caused cell cycle arrest, stimulated cell apoptosis via the mitochondrial pathway and exhibited important anti-cancer activity.

  18. Extracellular polymeric substance from Aphanizomenon flos-aquae induces apoptosis via the mitochondrial pathway in A431 human epidermoid carcinoma cells

    PubMed Central

    XUE, XING; LV, YING; LIU, QING; ZHANG, XIAOLAN; ZHAO, YOUHONG; ZHANG, LILI; XU, SHIYUAN

    2015-01-01

    Extracellular polymeric substance (EPS) is a substance secreted during algal growth, which has been found to have numerous health-promoting effects. In the present study, A431 human epidermoid carcinoma cells were selected as target cells and cultivated in vitro as an experimental model to investigate the anti-cancer effect of extracellular polymeric substances from Aphanizomenon flos-aquae (EPS-A) and the possible underlying mechanism. Apoptosis- and cell cycle-associated molecules as well as the mitochondrial membrane potential of the cells were quantified using flow cytometry (FCM). FCM showed that EPS-A induced cell cycle arrest, which led to a loss of mitochondrial function of the A431 cells and an increase in necrotic and late apoptotic cells. In order to evaluate the apoptosis and cell viability, acridine orange/ethidium bromide staining was used, morphological changes were observed using fluorescence microscopy and typical apoptotic characteristics were observed. Following treatment with a high dose of EPS-A, transmission electron microscopy showed nuclear fragmentation, chromosome condensation, cell shrinkage and expansion of the endoplasmic reticulum; apoptotic bodies were also observed. In conclusion, EPS-A caused cell cycle arrest, stimulated cell apoptosis via the mitochondrial pathway and exhibited important anti-cancer activity. PMID:26622416

  19. Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells.

    PubMed

    Bhatia, N; Agarwal, C; Agarwal, R

    2001-01-01

    Silibinin, quercetin, and epigallocatechin 3-gallate (EGCG) have been shown to be skin cancer-preventive agents, albeit by several different mechanisms. Here, we assessed whether these agents show their cancer-preventive potential by a differential effect on mitogenic signaling molecules and cell cycle regulators. Treatment of human epidermoid carcinoma A431 cells with these agents inhibited the activation of the epidermal growth factor receptor and the downstream adapter protein Shc, but only silibinin showed a marked inhibition of mitogen-activated protein kinase-extracellular signal-regulated kinase-1 and -2 activation. In terms of cell cycle regulators, silibinin treatment showed an induction of Cip1/p21 and Kip1/p27 together with a significant decrease in cyclin-dependent kinase (CDK)-4, CDK2, and cyclin D1. Quercetin treatment, however, resulted in a moderate increase in Cip1/p21 with no change in Kip1/p27 and a decrease in CDK4 and cyclin D1. EGCG treatment also led to an induction of Cip1/p21 but no change in Kip1/27, CDK2, and cyclin D1 and a decrease in CDK4 only at low doses. Treatment of cells with these agents resulted in a strong dose- and time-dependent cell growth inhibition. A high dose of silibinin and low and high doses of quercetin and EGCG also led to cell death by apoptosis, suggesting that a lack of their inhibitory effect on mitogen-activated protein kinase-extracellular signal-regulated kinase-1 and -2 activation possibly "turns on" an apoptotic cell death response associated with their cancer-preventive and anticarcinogenic effects. Together, these results suggest that silibinin, quercetin, and EGCG exert their cancer-preventive effects by differential responses on mitogenic signaling and cell cycle regulators.

  20. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis.

    PubMed

    Bhui, Kulpreet; Tyagi, Shilpa; Srivastava, Amit Kumar; Singh, Madhulika; Roy, Preeti; Singh, Richa; Shukla, Yogeshwer

    2012-03-01

    Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy.

  1. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    SciTech Connect

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi; Wang, Qiong; He, Hao; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-03-08

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.

  2. In contrast to their murine counterparts, normal human keratinocytes and human epidermoid cell lines A431 and HaCaT fail to express IL-10 mRNA and protein

    PubMed Central

    TEUNISSEN, M B M; KOOMEN, C W; JANSEN, J; DE WAAL MALEFYT, R; SCHMITT, E; VAN DEN WIJNGAARD, R M J G J; DAS, P K; BOS, J D

    1997-01-01

    In mice, keratinocyte-derived IL-10 is up-regulated by ultraviolet-B (UVB) radiation and plays a major role in UVB-induced immunosuppression. The present study was designed to examine whether a comparable phenomenon can be detected in man. Freshly isolated or cultured normal human keratinocytes (NHK) and keratinocyte cell lines A431 and HaCaT were stimulated with graded doses of UVB (up to 200 J/m2) or with a variety of other stimuli. RNA was extracted at various time points post-stimulation and analysed by reverse transcriptase-polymerase chain reaction (RT-PCR) using four different IL-10-specific primer pairs and RNA from monocytes or T cells as positive controls. We failed to detect IL-10 mRNA in NHK from 40 different donors (breast, abdomen, leg, scalp, foreskin) and in A431 and HaCaT cells, irrespective of the stimulation used and despite successful stimulation. Supernatants of NHK, A431 and HaCaT cultures were negative for IL-10 protein, as tested by four different ELISAs and a bioassay. Murine keratinocytes, stimulated under comparable conditions and tested by the same techniques, displayed a strong expression of IL-10 mRNA and protein. Remarkably, an IL-10 mRNA signal could be detected in NHK after a second round of PCR amplification. Because NHK suspensions are contaminated with Langerhans cells, melanocytes and possibly fibroblasts, we tested pure populations of each individual cell type to determine the origin of this IL-10 mRNA. Our results clearly indicate that NHK, Langerhans cells and fibroblasts fail to express IL-10 and that melanocytes are the principal source of IL-10 mRNA in normal human epidermis. PMID:9010278

  3. Corticotropin-releasing factor induces phosphorylation of phospholipase C-gamma at tyrosine residues via its receptor 2beta in human epidermoid A-431 cells.

    PubMed

    Kiang, J G; Ding, X Z; Gist, I D; Jones, R R; Tsokos, G C

    1998-12-18

    This laboratory previously reported that corticotropin-releasing factor (CRF) increased intracellular free calcium concentrations, cellular cAMP, inositol 1,4,5-trisphosphate, protein kinase C activity, and protein phosphorylation in human A-431 cells. The increase was blocked by CRF receptor antagonist. In this study, we identified the type of CRF receptors present and investigated whether CRF induced tyrosine phosphorylation of phospholipase C-gamma via CRF receptors. Using novel primers in reverse transcriptase-polymerase chain reaction, we determined the CRF receptor type to be that of 2beta. The levels of the CRF receptor type 2beta were not altered in cells treated with activators of protein kinase C, Ca2+ ionophore, or cells overexpressing heat shock protein 70 kDa. Cells treated with CRF displayed increases in protein tyrosine phosphorylation approximately at 150 kDa as detected by immunoblotting using an antibody against phosphotyrosine. Immunoprecipitation with antibodies directed against phospholipase C-beta3, -gamma1, or -gamma2 isoforms (which have molecular weights around 150 kDa) followed by Western blotting using an anti-phosphotyrosine antibody showed that only phospholipase C-gamma1 and -gamma2 were phosphorylated. The increase in phospholipase C-gamma phosphorylation was concentration-dependent with an EC50 of 4.2+/-0.1 pM. The maximal phosphorylation by CRF at 1 nM occurred by 5 min. The CRF-induced phosphorylation was inhibited by the protein tyrosine kinase inhibitors genistein and herbimycin A, suggesting that CRF activates protein tyrosine kinases. Treatment of cells with CRF receptor antagonist, but not pertussis toxin, prior to treatment with CRF inhibited the CRF-induced phosphorylation, suggesting it is mediated by the CRF receptor type 2beta that is not coupled to pertussis toxin-sensitive G-proteins. Treatment with 1,2-bis(2iminophenoxy)ethane-N,N,N',N'-tetraacetic acid attenuated the phospholipase C-gamma phosphorylation. In summary

  4. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2007-10-01

    Epithelial Stem Cells PRINCIPAL INVESTIGATOR: Peter D. Eirew CONTRACTING ORGANIZATION: British Columbia Cancer Agency...NUMBER Characterization of Human Mammary Epithelial Stem Cells 5b. GRANT NUMBER W81XWH-06-1-0702 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Abstract The mammary epithelium in normal adult female mice contains undifferentiated stem cells with extensive in vivo regenerative and self-renewal

  5. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential.

    PubMed

    Meeran, Syed M; Katiyar, Santosh K

    2007-05-01

    Dietary grape seed proanthocyanidins (GSPs) prevent photocarcinogenesis in mice. Here, we report that in vitro treatment of human epidermoid carcinoma A431 cells with GSPs inhibited cellular proliferation (13-89%) and induced cell death (1-48%) in a dose (5-100 mug/ml)- and time (24, 48 and 72 h)-dependent manner. GSP-induced inhibition of cell proliferation was associated with an increase in G1-phase arrest at 24 h, which was mediated through the inhibition of cyclin-dependent kinases (Cdk) Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and simultaneous increase in protein expression of cyclin-dependent kinase inhibitors (Cdki), Cip1/p21 and Kip1/p27, and enhanced binding of Cdki-Cdk. The treatment of A431 cells with GSPs (20-80 mug/ml) resulted in a dose-dependent increase in apoptotic cell death (26-58%), which was associated with an increased protein expression of proapoptotic Bax, decreased expression of antiapoptotic Bcl-2 and Bcl-xl, loss of mitochondrial membrane potential, and cleavage of caspase-9, caspase-3 and PARP. Pretreatment with the pan-caspase inhibitor (z-VAD-fmk) blocked the GSP-induced apoptosis in A431 cells suggesting that GSP-induced apoptosis is associated primarily with the caspase-3-dependent pathway. Together, our study suggests that GSPs possess chemotherapeutic potential against human epidermoid carcinoma cells in vitro, further in vivo mechanistic studies are required to verify the chemotherapeutic effect of GSPs in skin cancers.

  6. Accelerated degradation of 160 kDa epidermal growth factor (EGF) receptor precursor by the tyrosine kinase inhibitor herbimycin A in the endoplasmic reticulum of A431 human epidermoid carcinoma cells.

    PubMed Central

    Murakami, Y; Mizuno, S; Uehara, Y

    1994-01-01

    The effect of herbimycin A on the biosynthesis of epidermal growth factor (EGF) receptor was examined in human epidermoid carcinoma A431 cells. Cells were pulse-labelled with [35S]methionine, and EGF receptor biosynthesis was quantified by immunoprecipitation using a monoclonal anti-(EGF receptor) antibody. In the presence of herbimycin A, an immature 160 kDa EGF receptor precursor accumulated in 1 h and disappeared completely in 4 h. Pulse-labelled 160 kDa receptor precursor in the absence of herbimycin A, however, was converted normally into a 170 kDa one by chase with herbimycin A. Herbimycin A affected neither the synthesis of the secreted form of EGF receptor devoid of cytoplasmic domain, nor that of the transferrin receptor in A431 cells. The herbimycin A-induced degradation of 160 kDa EGF receptor precursor was not inhibited by an inhibitor of lysosomal enzymes, NH4Cl. Endoglycosidase H digestion of the 160 kDa precursor converted it into the deglycosylated 130 kDa precursor peptide. These results suggested that herbimycin A selectively acted on the EGF receptor precursor during the synthesis of the 160 kDa form, probably on the cytoplasmic domain, to form an aberrant molecule which was subjected to rapid degradation in the endoplasmic reticulum. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8037692

  7. Adherence of skin bacteria to human epithelial cells.

    PubMed Central

    Romero-Steiner, S; Witek, T; Balish, E

    1990-01-01

    Aerobic and anaerobic bacteria isolated from human axillae were tested for their capacity to adhere to buccal epithelial cells, immortalized human epithelial (HEp-2) cells, and undifferentiated and differentiated human epithelial cells. In general, both aerobic and anaerobic diphtheroids adhered better to differentiated human epithelial cells than to HEp-2 and undifferentiated human epithelial cells (P less than 0.05). Mannose, galactose, fucose, N-acetyl-D-glucosamine, and fibronectin were also assayed for their capacity to inhibit the adherence of diphtheroids to human epithelial cells. A great deal of variability was observed in the capacity of the latter compounds to inhibit the attachment of aerobic diphtheroids to undifferentiated and differentiated epithelial cells. Overall, mannose appeared to be best at inhibiting the adherence of the aerobic diphtheroids to undifferentiated human epithelial cells. Galactose, fucose, N-acetyl-D-glucosamine, and fibronectin showed a greater capacity to inhibit attachment of aerobic diphtheroids to differentiated than to undifferentiated human epithelial cells. The inhibition of adherence to differentiated human epithelial cells varied with the microorganism and the compound tested; however, the highest and most consistent inhibition of adherence (76.1 to 88.6%) was observed with a 5% solution of N-acetyl-D-glucosamine. The in vitro adherence and adherence inhibition assays presented here demonstrate that a number of adhesins and receptors are involved in the adherence of skin bacteria to human epithelial cells and receptors on human epithelial cells are apparently altered during differentiation. PMID:2298877

  8. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  9. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2009-10-01

    Appendix……………………………………………………………………………… 11 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A method for... Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability...Abstracts Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turshvili, Sam Aparicio , Joanne Emerman and Connie Eaves, “Identification of Human Mammary

  10. The human airway epithelial basal cell transcriptome.

    PubMed

    Hackett, Neil R; Shaykhiev, Renat; Walters, Matthew S; Wang, Rui; Zwick, Rachel K; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G

    2011-05-04

    The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  11. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  12. Acquired resistance to EGFR tyrosine kinase inhibitor in A431 squamous cell carcinoma xenografts is mediated by c-Kit pathway transduction.

    PubMed

    Zhang, Lixia; Yang, Xiaokun; Zhao, Bei; Cai, Zhen

    2015-04-01

    Epidermal growth factor inhibitors (EGFRIs), the first targeted cancer therapy, are currently an essential treatment for many advance-stage epithelial cancers. These agents have the superior ability to target cancers cells and better safety profile compared to conventional chemotherapies. However, all responding patients eventually developed acquired resistance to EGFRIs and the mechanisms of acquired resistance invariably develops. In the current study, we reported the tumor xenografts of the human A431 squamous cell carcinoma, after 25-week consecutive therapy with EGFR inhibitor (gefitinib) that developed resistance as a result of c-Kit overexpression. Moreover, combined therapeutic inhibition of EGFR and c-Kit may abrogate this acquired mechanism of drug resistance due to an enhanced apoptotic effect in gefitinib-resistant xenograft model. Taken together, the results suggest that at least in the A431 xenograft model displaying acquired resistance to gefitinib can emerge in vivo, at least in part, by mechanisms involving the c-Kit overexpression.

  13. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.

  14. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  15. Human beta-defensin-2 controls cell cycle in malignant epithelial cells: in vitro study.

    PubMed

    Zhuravel, E; Shestakova, T; Efanova, O; Yusefovich, Yu; Lytvin, D; Soldatkina, M; Pogrebnoy, P

    2011-09-01

    In the present research we analyze the mechanism of human beta-defensin-2 (hBD-2) influence on cultured malignant epithelial cell growth. The analysis of a concentration-dependent effect of recombinant hBD-2 (rec-hBD-2) on cell growth patterns and cell cycle distribution has been performed in vitro with 2 cell lines (human lung adenocarcinoma A549 cells and human epidermoid carcinoma A431 cells) using MTT test, flow cytometry and direct cell counting. To study intracellular localization of hBD-2 immunocytofluorescent and immunocytochemical analyses were applied, and effect of hBD-2 on signal cascades involved in cell cycle regulation has been studied by Western blotting. According to our data, rec-hBD-2 exerts a concentration-dependent effect on the viability of cultured A549 and A431 cells. It causes proproliferative effect at concentrations below 1 nM, significant suppression of cell proliferation at concentration range from 10 nM to 1 μM (p<0.05), and cell death at higher concentrations. Using flow cytometry we have demonstrated that hBD-2 dependent growth suppression is realized via cell cycle arrest at G1/S phase (p<0.05). Also, we have registered significant activation of pRB and decreased expression of Cyclin D1 in cells treated with the defensin compared to untreated control cells, while the expression of p53 remains unaffected. The study of intracellular localization of hBD-2 in these cells has revealed that exogeneously added defensin molecules enter the cells, are distributed throughout the cytoplasm and could be detected in cell nuclei. The model study using A549 cells treated with 1,25-(OH)(2)D(3) has shown similar cell growth suppression effect of native endogenously produced hBD-2. The results of our study suggest that in malignant epithelial cells hBD-2 may control cell growth via arrest of G1/S transition and activation of pRB.

  16. Glucocorticoid receptor in human respiratory epithelial cells.

    PubMed

    Pujolsa, Laura; Mullol, Joaquim; Picado, Cèsar

    2009-01-01

    Inhaled and intranasal glucocorticoids (GCs) are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as allergic rhinitis, chronic rhinosinusitis with/without nasal polyps, and asthma, and the respiratory epithelium is a primary target of GC anti-inflammatory actions. GC effects are mediated through the GC receptor (GR). In humans, one single GR gene gives rise to two main GR products, namely GRalpha and GRbeta, which are subject to translational and posttranslational modifications. GRalpha is expressed in virtually all human cells and tissues, including respiratory epithelial cells, and - at least in vitro - is downregulated by GC. GRalpha mediates the anti-inflammatory actions of GC by activating transcription of anti-inflammatory genes through binding of GRalpha to glucocorticoid response elements (GRE) located in the promoter region of target genes, repressing transcription of proinflammatory genes through direct interaction between GRalpha and proinflammatory transcription factors, such as AP-1 and NF-kappaB (transrepression), and also by destabilizing the mRNA of proinflammatory mediators. GRbeta acts as a dominant negative inhibitor of GRalpha-mediated transactivation and transrepression in certain in vitro studies with transfected cells. The GRbeta message is expressed at low levels in numerous tissues and its protein is mainly expressed in inflammatory cells, although it has also been detected in airway epithelial cells. Increased GRbeta expression has been reported in bronchial asthma and nasal polyposis, and after incubation of cells with certain proinflammatory stimuli. However, the role of GRbeta in modulating GC sensitivity in vivo has been highly debated and is as yet unclear.

  17. Spontaneous Production of Immunoglobulin M in Human Epithelial Cancer Cells

    PubMed Central

    Hu, Fanlei; Zhang, Li; Zheng, Jie; Zhao, Ling; Huang, Jing; Shao, Wenwei; Liao, Qinyuan; Ma, Teng; Geng, Li; Yin, C. Cameron; Qiu, Xiaoyan

    2012-01-01

    It is well known that B-1 B cells are the main cell type that is responsible for the production of natural immunoglobulin M (IgM) and can respond to infection by increasing IgM secretion. However, we unexpectedly found that some epithelial cells also can express rearranged IgM transcript that has natural IgM characteristics, such as germline-encoded and restricted rearrangement patterns. Here we studied IgM expression in human non-B cells and found that IgM was frequently expressed by many human epithelial cancer cells as well as non-cancer epithelial cells. Moreover, CD79A and CD79B, two molecules that are physically linked to membranous IgM on the surface of B cells to form the B cell antigen receptor complex, were also expressed on the cell surface of epithelial cancer cells and co-located with IgM. Like the natural IgM, the epithelial cancer cell-derived IgM recognized a series of microbial antigens, such as single-stranded DNA, double-stranded DNA, lipopolysaccharide, and the HEp-2 cell antigen. More important, stimulation of the toll-like receptor 9 (TLR9), which mimics bacterial infection, substantially increased the secretion of IgM in human epithelial cancer cells. These findings indicate that human epithelial cancer cells as well as non-cancer epithelial cells can spontaneously produce IgM with natural antibody activity. PMID:23251529

  18. Focal epithelial hyperplasia caused by human papillomavirus 13.

    PubMed

    Saunders, Natasha R; Scolnik, Dennis; Rebbapragada, Anuradha; Koelink, Eric; Craw, Lindsey; Roth, Sherryn; Aronson, Leya; Perusini, Stephen; Silverman, Michael S

    2010-06-01

    Focal epithelial hyperplasia is a benign, papulo-nodular disease of the oral cavity. It is rare, affecting primarily Native American populations during childhood. It is closely associated with human papillomavirus 13 and 32. This report describes the diagnosis of 2 cases of focal epithelial hyperplasia in children from southern Guyana. The diagnosis was made using clinical criteria, polymerase chain reaction, and DNA sequencing.

  19. Purification and properties of the alpha-3/4-L-fucosyltransferase released into the culture medium during the growth of the human A431 epidermoid carcinoma cell line.

    PubMed

    Johnson, P H; Donald, A S; Watkins, W M

    1993-04-01

    A soluble alpha-3/4-fucosyltransferase secreted into the growth medium of the human A431 epidermoid carcinoma cell line has been purified 700,000 fold by a series of steps involving chromatography on Phenyl Sepharose 4B, CM-Sephadex C-50 and GDP-hexanolamine Sepharose 4B. The untreated spent culture medium transferred almost ten times more fucose to the subterminal N-acetylglucosamine residue in the Type 1 (Gal beta 1-3GlcNAc) disaccharide than to the subterminal sugar in the Type 2 (Gal beta 1-4GlcNAc) disaccharide; the relative activity with these two substrates remained virtually unchanged throughout the purification procedure. At no stage was any alpha-3-fucosyltransferase species acting solely on N-acetylglucosamine residues in Type 2 chains separated from the bulk of the alpha-3/4-fucosyltransferase activity. The purified enzyme preparation showed insignificant activity with glycoprotein substrates having N-linked oligosaccharide chains with terminal Type 2 sequences but transferred fucose to a mucin-type glycoprotein with O-linked oligosaccharide chains with terminal Type 1 structures. Lactose was a poor substrate but the activity of the enzyme was influenced by the presence of substituents on the terminal beta-galactosyl residue and 2'-fucosyllactose was almost as good an acceptor as the Type 1 disaccharide. The properties of the purified enzyme with regard to specificity, divalent cation requirements, pH optimum, and M(r), closely resembled those of the Lewis-blood-group gene associated alpha-3/4-fucosyltransferase isolated from human milk.

  20. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  1. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.

    PubMed

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-07-15

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

  2. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

  3. Development of an ErbB-overexpressing A-431 Optical Reporting Tumor Xenograft Model to Assess Targeted Photodynamic Therapy Regimens

    PubMed Central

    Savellano, Mark D.; Owusu-Brackett, Nicci; Son, Ji; Callier, Thierri; Savellano, Dagmar Högemann

    2010-01-01

    To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor. PMID:20880229

  4. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  5. Human Growth Hormone Promotes Corneal Epithelial Cell Migration in Vitro

    PubMed Central

    Ding, Juan; Wirostko, Barbara; Sullivan, David A

    2015-01-01

    Purpose Corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells and interactions between epithelial cells and stromal fibroblasts. Compounds that can be applied topically to the ocular surface and that have the capability of activating corneal epithelial cells to proliferate and/or migrate would be useful to promote corneal wound healing. We hypothesize that human growth hormone (HGH) will activate Signal Transducer and Activators of Transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial cell and fibroblast proliferation and/or migration in vitro. The purpose of this study is to test these hypotheses. Methods We studied cell signaling, proliferation and migration using an immortalized human corneal epithelial cell line and primary human corneal fibroblasts in vitro. We also examined whether insulin-like growth factor-1 (IGF-1), a hormone known to mediate many of HGH’s growth promoting actions, may play a role in this effect. Results We show that HGH activates STAT5 signaling and promotes corneal epithelial cell migration in vitro. The migratory effect requires an intact communication between corneal epithelia and fibroblasts, and is not mediated by IGF-1. Conclusion HGH may represent a topical therapeutic to promote corneal epithelial wound healing. This warrants further investigation. PMID:25782399

  6. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  7. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  8. Development of human epithelial cell systems for radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Craise, L. M.

    1994-10-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  9. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  10. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  11. Culture, Immortalization, and Characterization of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Hatton, Mark P.; Khandelwal, Payal

    2010-01-01

    Purpose. Meibomian gland epithelial cells are essential in maintaining the health and integrity of the ocular surface. However, very little is known about their physiological regulation. In this study, the cellular control mechanisms were explored, first to establish a defined culture system for the maintenance of primary epithelial cells from human meibomian glands and, second, to immortalize these cells, thereby developing a preclinical model that could be used to identify factors that regulate cell activity. Methods. Human meibomian glands were removed from lid segments after surgery, enzymatically digested, and dissociated. Isolated epithelial cells were cultured in media with or without serum and/or 3T3 feeder layers. To attempt immortalization, the cells were exposed to retroviral human telomerase reverse transcriptase (hTERT) and/or SV40 large T antigen cDNA vectors, and antibiotic-resistant cells were selected, expanded, and subcultured. Analyses for possible biomarkers, cell proliferation and differentiation, lipid-related enzyme gene expression, and the cellular response to androgen were performed with biochemical, histologic, and molecular biological techniques. Results. It was possible to isolate viable human meibomian gland epithelial cells and to culture them in serum-free medium. These cells proliferated, survived through at least the fifth passage, and contained neutral lipids. Infection with hTERT immortalized these cells, which accumulated neutral lipids during differentiation, expressed multiple genes for lipogenic enzymes, responded to androgen, and continued to proliferate. Conclusions. The results show that human meibomian gland epithelial cells may be isolated, cultured, and immortalized. PMID:20335607

  12. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    PubMed

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  13. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function

    PubMed Central

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A.; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M.; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin

    2012-01-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness. PMID:23027535

  14. Zinc reduces epithelial barrier compromise induced by human seminal plasma

    PubMed Central

    Mullin, James M.; Diguilio, Katherine M.; Valenzano, Mary C.; Deis, Rachael; Thomas, Sunil; Zurbach, E. Peter; Abdulhaqq, Shaheed; Montaner, Luis J.

    2017-01-01

    Human semen has the potential to modulate the epithelial mucosal tissues it contacts, as seminal plasma (SP) is recognized to contain both pro- and anti-barrier components, yet its effects on epithelial barrier function are largely unknown. We addressed the role of human SP when exposed to the basal-lateral epithelial surface, a situation that would occur clinically with prior mechanical or disease-related injury of the human epithelial mucosal cell layers in contact with semen. The action of SP on claudins-2, -4, -5, and -7 expression, as well as on a target epithelium whose basolateral surface has been made accessible to SP, showed upregulation of claudins-4 and -5 in CACO-2 human epithelial cell layers, despite broad variance in SP-induced modulation of transepithelial electrical resistance and mannitol permeability. Upregulation of claudin-2 by SP also exhibited such variance by SP sample. We characterize individual effects on CACO-2 barrier function of nine factors known to be present abundantly in seminal plasma (zinc, EGF, citrate, spermine, fructose, urea, TGF, histone, inflammatory cytokines) to establish that zinc, spermine and fructose had significant potential to raise CACO-2 transepithelial resistance, whereas inflammatory cytokines and EGF decreased this measure of barrier function. The role of zinc as a dominant factor in determining higher levels of transepithelial resistance and lower levels of paracellular leak were confirmed by zinc chelation and exogenous zinc addition. As expected, SP presentation to the basolateral cell surface also caused a very dramatic yet transient elevation of pErk levels. Results suggest that increased zinc content in SP can compete against the barrier-compromising effect of negative modulators in SP when SP gains access to that epithelium’s basolateral surface. Prophylactic elevation of zinc in an epithelial cell layer prior to contact by SP may help to protect an epithelial barrier from invasion by SP-containing STD

  15. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  16. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  17. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  18. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  19. Cooperative Interactions During Human Mammary Epithelial Cell Immortalization

    DTIC Science & Technology

    2005-07-01

    Immortal Transformation of Cultured Human Mammary Epithelial Cells. Cellular Oncology, 26:248-251, 2004. Rodier , F., Kim, S-H., Nijjar, T., Yaswen, P...Promoter, Mol. Cell Biol.: 25:3923-3933, 2005. Goldstein, J, Rodier , F, Garbe, J, Stampfer, M, Campisi, J, Caspase-independent cytochrome c release is a

  20. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  1. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  2. A431 cell variants lacking the blood group A antigen display increased high affinity epidermal growth factor-receptor number, protein-tyrosine kinase activity, and receptor turnover

    PubMed Central

    1988-01-01

    The epidermal growth factor receptor (EGF-R) of human A431 cells bears an antigenic determinant that is closely related to the human blood group A carbohydrate structure. Labeling studies with blood group A reactive anti-EGF-R monoclonal antibodies and various lectins revealed that A431 cultures are heterogeneous with respect to blood group A expression. We have isolated clonal variants of these cells that either express (A431A+ cells) or completely lack (A431A- cells) the blood group A specific N-acetyl-D-galactosamine (GalNAc) residue. We show that this difference is due to the absence of a UDP-GalNAc:Gal transferase activity in A431A- cells. Subsequently, we have compared EGF-R functioning in these cell lines. Scatchard analysis of EGF- binding shows that in A431A- cells 6.3% of the EGF-R belongs to a high affinity subclass (Kd = 0.4 nM) while in A431A+ this subclass represents only 3.2% of the total receptor pool. The elevated level of high affinity receptors in A431A- cells is accompanied by a parallel increase in receptor protein- tyrosine kinase activity. In membrane preparations of A431A- cells, receptor autophosphorylation as well as phosphorylation of a tyrosine-containing peptide substrate is 2-3-fold higher as compared with A431A+ cells. In intact A431A-cells, the difference in receptor activity is measured as a 2-3-fold elevated level of receptor phosphorylation and a 2-3-fold higher abundance of phosphotyrosine in total cellular protein in A431A- cells. In addition, [35S]methionine pulse-chase experiments showed a ligand-independent increase in turnover of EGF-R in A431A- cells: the receptor's half life in these cells is 10 h as compared with 17 h in A431A+ cells. Our results suggest a possible involvement of GalNAc residue(s) in determining EGF-R affinity, protein-tyrosine kinase activity and turnover in A431 cells. Furthermore, our results indicate that high affinity EGF-R are the biologically active species with respect to protein-tyrosine kinase

  3. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    PubMed

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  4. Serratia marcescens internalization and replication in human bladder epithelial cells

    PubMed Central

    Hertle, Ralf; Schwarz, Heinz

    2004-01-01

    Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566

  5. [Characterization of epithelial primary culture from human conjunctiva].

    PubMed

    Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A

    2014-01-01

    To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  6. Human thymus contains amnion epithelial antigens.

    PubMed Central

    Hsi, B L; Yeh, C J; Faulk, W P

    1983-01-01

    Antibodies produced in rabbits to detergent-solubilized human amnion were found to react with Hassall's corpuscles in human thymus. Following nomenclature for placental antigens, the immunogenic group responsible for these antibodies has been tentatively designated as amnion antigens 1 (AA1). The anti-AA1 antisera did not react with other thymic components, nor did they react with any other extra-embryonic tissues than amniotic epithelium. Some adult ectodermally derived tissues, such as breast ductal and corneal epithelium, reacted with anti-AA1, but others such as skin and vagina did not. These findings link an antigenic relationship between amniotic epithelium and certain ectodermal derivatives. Amnion exists long before these tissues are formed, raising the possibility that amniotic epithelium may play an inductive role in their development. Images Figure 1 Figure 2 PMID:6343232

  7. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2008-10-01

    9 Appendix……………………………………………………………………………… 10 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A...Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turashvili, Samuel Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human...Eirew, Afshin Raouf, John Stingl, Gulisa Turashvili, Allen Delaney, Joanne Emerman, Marco Marra and Samuel Aparicio . “Stem Cells in the Mammary Gland

  8. Engineered human broncho-epithelial tissue-like assemblies

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  9. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  10. Epithelial barrier and antigen uptake in lymphoepithelium of human adenoids.

    PubMed

    Ogasawara, Noriko; Kojima, Takashi; Go, Mitsuru; Takano, Ken-ichi; Kamekura, Ryuta; Ohkuni, Tsuyoshi; Koizumi, Jun-ichi; Masaki, Tomoyuki; Fuchimoto, Jun; Obata, Kazufumi; Kurose, Makoto; Shintani, Tomoko; Sawada, Norimasa; Himi, Tetsuo

    2011-02-01

    Invasion of antigens through the mucosal surface can be prevented by the common mucosal immune system, including Peyer's patches (PPs) and nasopharyngeal-associated lymphoreticular tissue (NALT). The adenoids (nasopharyngeal tonsils) comprise one of the NALTs and constitute the major part of Waldeyer's lymphoid ring in humans. However, the role of the lymphoepithelium, including M cells and dendritic cells (DCs), in the adenoids is unknown compared with the epithelium of PPs. NALTs also have unique functions such as the barrier of epithelial cells and uptake of antigens by M cells and DCs, and may play a crucial role in airway mucosal immune responses. The lymphoepithelium of adenoids has well-developed tight junctions that play an important role in the barrier function, the same as nasal epithelium but not palatine tonsillar epithelium. Tight junction molecules are expressed in both M cells and DCs as well as epithelial cells, and various antigens may be sampled, transported, and released to lymphocytes through the cells while they maintain the integrity of the epithelial barrier. This review summarizes the recent progress in our understanding of how M cells and DCs control the epithelial barrier in the adenoids.

  11. Microarray analysis of human epithelial cell responses to bacterial interaction.

    PubMed

    Mans, Jeffrey J; Lamont, Richard J; Handfield, Martin

    2006-09-01

    Host-pathogen interactions are inherently complex and dynamic. The recent use of human microarrays has been invaluable to monitor the effects of various bacterial and viral pathogens upon host cell gene expression programs. This methodology has allowed the host response transcriptome of several cell lines to be studied on a global scale. To this point, the great majority of reports have focused on the response of immune cells, including macrophages and dendritic cells. These studies revealed that the immune response to microbial pathogens is tailored to different microbial challenges. Conversely, the paradigm for epithelial cells has--until recently--held that the epithelium mostly served as a relatively passive physical barrier to infection. It is now generally accepted that the epithelial barrier contributes more actively to signaling events in the immune response. In light of this shift, this review will compare transcriptional profiling data from studies that involved host-pathogen interactions occurring with epithelial cells. Experiments that defined both a common core response, as well as pathogen-specific host responses will be discussed. This review will also summarize the contributions that transcriptional profiling analysis has made to our understanding of bacterial physio-pathogensis of infection. This will include a discussion of how host transcriptional responses can be used to infer the function of virulence determinants from bacterial pathogens interacting with epithelial mucosa. In particular, we will expand upon the lessons that have been learned from gastro-intestinal and oral pathogens, as well as from members of the commensal flora.

  12. Conserved two-step regulatory mechanism of human epithelial differentiation.

    PubMed

    Rane, Jayant K; Droop, Alastair P; Pellacani, Davide; Polson, Euan S; Simms, Matthew S; Collins, Anne T; Caves, Leo S D; Maitland, Norman J

    2014-02-11

    Human epithelia are organized in a hierarchical structure, where stem cells generate terminally differentiated cells via intermediate progenitors. This two-step differentiation process is conserved in all tissues, but it is not known whether a common gene set contributes to its regulation. Here, we show that retinoic acid (RA) regulates early human prostate epithelial differentiation by activating a tightly coexpressed set of 80 genes (e.g., TMPRSS2). Response kinetics suggested that some of these genes could be direct RA targets, whereas others are probably responding indirectly to RA stimulation. Comparative bioinformatic analyses of published tissue-specific microarrays and a large-scale transcriptomic data set revealed that these 80 genes are not only RA responsive but also significantly coexpressed in many human cell systems. The same gene set preferentially responds to androgens during terminal prostate epithelial differentiation, implying a cell-type-dependent interplay between RA and tissue-specific transcription factor-mediated signaling in regulating the two steps of epithelial differentiation.

  13. Conserved Two-Step Regulatory Mechanism of Human Epithelial Differentiation

    PubMed Central

    Rane, Jayant K.; Droop, Alastair P.; Pellacani, Davide; Polson, Euan S.; Simms, Matthew S.; Collins, Anne T.; Caves, Leo S.D.; Maitland, Norman J.

    2014-01-01

    Summary Human epithelia are organized in a hierarchical structure, where stem cells generate terminally differentiated cells via intermediate progenitors. This two-step differentiation process is conserved in all tissues, but it is not known whether a common gene set contributes to its regulation. Here, we show that retinoic acid (RA) regulates early human prostate epithelial differentiation by activating a tightly coexpressed set of 80 genes (e.g., TMPRSS2). Response kinetics suggested that some of these genes could be direct RA targets, whereas others are probably responding indirectly to RA stimulation. Comparative bioinformatic analyses of published tissue-specific microarrays and a large-scale transcriptomic data set revealed that these 80 genes are not only RA responsive but also significantly coexpressed in many human cell systems. The same gene set preferentially responds to androgens during terminal prostate epithelial differentiation, implying a cell-type-dependent interplay between RA and tissue-specific transcription factor-mediated signaling in regulating the two steps of epithelial differentiation. PMID:24527392

  14. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier

    NASA Astrophysics Data System (ADS)

    George, Isabelle; Naudin, Grégoire; Boland, Sonja; Mornet, Stéphane; Contremoulins, Vincent; Beugnon, Karine; Martinon, Laurent; Lambert, Olivier; Baeza-Squiban, Armelle

    2015-02-01

    Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a tight epithelial barrier when grown on a porous membrane in a two compartment chamber were exposed to fluorescently labelled NPs to quantify the NP translocation. NP translocation and uptake by cells were also studied by confocal and transmission electron microscopy. Translocation was characterized according to NP size (16, 50, or 100 nm), surface charge (negative or positive SiO2), composition (SiO2 or TiO2), presence of proteins or phospholipids and in an inflammatory context. Our results showed that NPs can translocate through the Calu-3 monolayer whatever their composition (SiO2 or TiO2), but this translocation was increased for the smallest and negatively charged NPs. Translocation was not associated with an alteration of the integrity of the epithelial monolayer, suggesting a transcytosis of the internalized NPs. By modifying the NP corona, the ability of NPs to cross the epithelial barrier differed depending on their intrinsic properties, making positively charged NPs more prone to translocate. NP translocation can be amplified by using agents known to open tight junctions and to allow paracellular passage. NP translocation was also modulated when mimicking an inflammatory context frequently found in the lungs, altering the epithelial integrity and inducing transient tight junction opening. This in vitro evaluation of NP translocation could be extended to other inhaled NPs to predict their biodistribution.Inhalation is the most frequent route of unintentional exposure to nanoparticles (NPs). Our aim was to quantify the translocation of different metallic NPs across human bronchial epithelial cells and to determine the factors influencing this translocation. Calu-3 cells forming a

  15. Prolonged induction of p21Cip1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition

    PubMed Central

    1995-01-01

    Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells. PMID:7559780

  16. Hypoxia Increases Epithelial Permeability in Human Nasal Epithelia

    PubMed Central

    Min, Hyun Jin; Kim, Tae Hoon; Yoon, Joo-Heon

    2015-01-01

    Purpose The nasal mucosa is the first site to encounter pathogens, and it forms continuous barriers to various stimuli. This barrier function is very important in the innate defense mechanism. Additionally, inflammation of the nasal sinus is known to be a hypoxic condition. Here, we studied the effect of hypoxia on barrier function in normal human nasal epithelial (NHNE) cells. Materials and Methods The expression levels of various junction complex proteins were assessed in hypoxia-stimulated NHNE cells and human nasal mucosal tissues. We performed real-time polymerase chain reaction analysis, western blotting, and immunofluorescence assays to examine differences in the mRNA and protein expression of ZO-1, a tight junction protein, and E-cadherin in NHNE cells. Moreover, we evaluated the trans-epithelial resistance (TER) of NHNE cells under hypoxic conditions to check for changes in permeability. The expression of ZO-1 and E-cadherin was measured in human nasal mucosa samples by western blotting. Results Hypoxia time-dependently decreased the expression of ZO-1 and E-cadherin at the gene and protein levels. In addition, hypoxia decreased the TER of NHNE cells, which indicates increased permeability. Human nasal mucosa samples, which are supposed to be hypoxic, showed significantly decreased levels of ZO-1 and E-cadherin expression compared with control. Conclusion Our results demonstrate that hypoxia altered the expression of junction complex molecules and increased epithelial permeability in human nasal epithelia. This suggests that hypoxia causes barrier dysfunction. Furthermore, it may be associated with innate immune dysfunction after encountering pathogens. PMID:25837192

  17. Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells

    PubMed Central

    Delgado, Oliver; Kaisani, Aadil A.; Spinola, Monica; Xie, Xian-Jin; Batten, Kimberly G.; Minna, John D.; Wright, Woodring E.; Shay, Jerry W.

    2011-01-01

    While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D) systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer. PMID:21760947

  18. Preexisting epithelial diversity in normal human livers: a tissue-tethered cytometric analysis in portal/periportal epithelial cells.

    PubMed

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J

    2013-04-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BECs). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the canals of Hering and/or metaplasia of preexisting mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high-resolution whole-slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes preexist in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. "Virtually digested" WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g., scatterplots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. The results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bipotential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable preexistent hybrid epithelial diversity in normal human liver. This computationally enabled tissue analysis approach offers much broader potential beyond the results presented here. Copyright © 2012 American Association for the Study of Liver Diseases.

  19. Bombesin-like peptide receptors in human bronchial epithelial cells.

    PubMed

    Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A

    1996-01-01

    Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.

  20. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  1. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  2. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  3. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  4. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    PubMed

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  5. Ultraviolet transmittance of human limbal epithelial cells cultured on human amniotic membranes.

    PubMed

    Mimura, Tatsuya; Yokoo, Seiichi; Kaji, Yuichi; Usui, Tomohiko; Yamagam, Satoru; Ono, Kyoko; Araie, Makoto; Amano, Shiro

    2005-07-01

    To evaluate ultraviolet (UV) A and B transmittance by human limbal epithelial cells cultured on human amniotic membranes. Human limbal epithelial cells were taken from the limbus of donor corneas and were cultured on human amniotic membranes with inactivated 3T3 fibroblasts for 2 to 4 weeks. Then, the cultured cells were examined histologically. Next, cells from different culture periods were irradiated with UV-A (365 nm) or UV-B (302 nm) at energy levels ranging from 50 to 800 microW/cm2, and UV transmittance was measured with a UV light meter. Histological examination revealed a monolayer of corneal epithelial cells on the amniotic membrane after 2 weeks of culture, and a layer of 3-4 cells was formed after 4 weeks. Transmittance of UV-A and UV-B was highest by the amniotic membrane alone, followed in decreasing order by limbal epithelial cells cultured on amniotic membranes for 2 weeks, 3 weeks, and 4 weeks. These results indicate that UV absorbance increases in proportion to the number of limbal epithelial cell layers in cultures on amniotic membranes. Limbal epithelial cells may need to be cultured until 3-4 layers are formed in order to prevent ocular damage by UV light after transplantation.

  6. Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation

    DTIC Science & Technology

    2012-04-01

    algorithm for CpG-island detection. BMC Bioinformatics 7: 446. 17. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol...it does not have a CpG island according to the original criteria (Gardiner-Garden and Frommer 1987). H3K4me3 and H3Ac are present in miR-205...culture of normal human mammary epithelial cells. Cancer Res 69: 7557–7568. Gardiner-GardenM, Frommer M. 1987. CpG islands in vertebrate genomes. J Mol

  7. Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells.

    PubMed

    Brosnahan, Amanda J; Vulchanova, Lucy; Witta, Samantha R; Dai, Yuying; Jones, Bryan J; Brown, David R

    2013-06-15

    The vaginal epithelium provides a barrier to pathogens and recruits immune defenses through the secretion of cytokines and chemokines. Several studies have shown that mucosal sites are innervated by norepinephrine-containing nerve fibers. Here we report that norepinephrine potentiates the proinflammatory response of human vaginal epithelial cells to products produced by Staphylococcus aureus, a pathogen that causes menstrual toxic shock syndrome. The cells exhibit immunoreactivity for catecholamine synthesis enzymes and the norepinephrine transporter. Moreover, the cells secrete norepinephrine and dopamine at low concentrations. These results indicate that norepinephrine may serve as an autocrine modulator of proinflammatory responses in the vaginal epithelium.

  8. Focal epithelial hyperplasia: a multifocal oral human papillomavirus infection.

    PubMed

    Flaitz, C M

    2000-01-01

    Widespread, slightly elevated and confluent nodules are observed throughout the oral mucosa in a young Hispanic girl. Repeated irritation of the soft tissues from a compromised occlusion is an aggravating factor for the spread of these lesions. A diagnosis of focal epithelial hyperplasia, a human papillomavirus infection, is made following histopathologic diagnosis and viral typing. Recognition of this specific type of warts is important in order to avoid the mistaken identification of condyloma acuminata, which may have significant repercussions in the life of a young child.

  9. Neurotransmitter Influence on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Kam, Wendy R.

    2011-01-01

    Purpose. A striking characteristic of the human meibomian gland is its rich sensory, sympathetic, and parasympathetic innervation, yet the functional relevance of these nerve fibers remains unknown. Acting on the hypothesis that neurotransmitters are released in the vicinity of the gland, act on glandular receptors, and influence the production, secretion, and/or delivery of meibomian gland secretions to the ocular surface, the goal in this study was to begin to determine whether neurotransmitters influence the meibomian gland. Methods. Immortalized human meibomian gland epithelial (SLHMG) cells were examined for the presence of vasoactive intestinal peptide (VIP) and muscarinic acetylcholine (mACh) receptor transcripts and proteins. Cells were also exposed to VIP, carbachol, forskolin, and/or 3-isobutyl-1-methylxanthine (IBMX) to determine whether these agents, alone or in combination, modulate the adenylyl cyclase pathway, the accumulation of intracellular free calcium ([Ca2+]i), or cell proliferation. Results. Results demonstrate that SLHMG cells transcribe and translate VIP and mACh receptors; VIP, with either IBMX or forskolin, activates the adenylyl cyclase pathway, and the effect of VIP and forskolin together is synergistic; both VIP and carbachol increase intracellular [Ca2+] in SLHMG cells; and VIP with forskolin stimulates SLHMG cell proliferation. Conclusions. This study shows that parasympathetic neurotransmitters and their agonists influence the function of human meibomian gland epithelial cells. It remains to be determined whether this action alters the production, secretion, and/or delivery of meibum to the ocular surface. PMID:21969302

  10. Human epithelial tissue culture study on restorative materials.

    PubMed

    Forster, András; Ungvári, Krisztina; Györgyey, Ágnes; Kukovecz, Ákos; Turzó, Kinga; Nagy, Katalin

    2014-01-01

    Health condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions. Morphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24h observation) and proliferation (72h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue(®) (AB) assays on control surface (cell-culture plate) and on the restorative materials (n=3×20 specimens/material). SEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72h compared to 24h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia. The results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility. The examined materials are indicated for use

  11. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    SciTech Connect

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline; Donner, Catherine; Perez-Morga, David; De Vos, Rita; Snoeck, Robert; Marchant, Arnaud

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  12. Aspergillus fumigatus biofilm on primary human sinonasal epithelial culture.

    PubMed

    Singhal, Deepti; Baker, Leonie; Wormald, Peter-John; Tan, Lorwai

    2011-01-01

    Bacterial biofilms have been implicated in chronic rhinosinusitis (CRS). However, direct evidence in support of fungal biofilms in sinus disease is lacking in the literature. This study was designed to develop and characterize an in vitro Aspergillus fumigatus biofilm model on primary human sinonasal epithelial cell culture. Sinonasal biopsy specimens harvested during endoscopic sinus surgery of six CRS patients and three pituitary tumor (control) patients were cultured in Dulbecco's modified Eagle media (DMEM; Invitrogen)/Hams F12 airway media to encourage epithelial cell proliferation. Epithelial cells separated by immunomagnetic beads were seeded in tissue culture-treated Y-shaped microslides. At confluence the primary cultures were inoculated with A. fumigatus spores. Fungus was allowed to germinate and form biofilms under two in vitro conditions: (1) static (no flow through of media) and (2) continuous flow coculture (continuous flow movement of media). At regular intervals cocultures were stained with FUN-1, concanavalin A-alexa fluor 488, and examined by confocal scanning laser microscopy. Comstat software was used to assess biomass and thickness. A. fumigatus formed three-dimensional biofilm structures with parallel-packed, cross-linked hyphae and channels/passages. Metabolically active hyphae showed orange-red fluorescing intravacuolar structures. Extracellular matrix (ECM) between/around the hyphae fluoresced intense green. A. fumigatus biofilms development occurred in five stages: (1) conidial attachment to epithelial cells, (2) hyphal proliferation, (3) ECM production, (4) hyphal parallel packing and cross-linking, and (5) channel/pores formation. Mature biofilms showed basal conidial, middle hyphal, and superficial ECM layers. Biofilms formed under flow conditions displayed more robust and faster growth kinetics when compared with that under static conditions, with a thick, stocky, wrinkly/undulating hyphal growth and extensive ECM production. The

  13. Human epithelial cell cultures from superficial limbal explants.

    PubMed

    Ghoubay-Benallaoua, D; Basli, E; Goldschmidt, P; Pecha, F; Chaumeil, C; Laroche, L; Borderie, V

    2011-02-01

    To study the kinetics of growth and the phenotype of cells cultured from human limbal explants in a cholera toxin-free medium with no feeder cell layer. Human organ-cultured corneas were used to prepare limbal explants (full-thickness and superficial limbal explants) and corneal stromal explants. Cell growth kinetics and phenotypes were assessed by cultivating explants in cholera toxin-free Green medium. Epithelial and progenitor cell markers were assessed by immunocytochemistry, flow cytometry, and Reverse Transcription and Polymerase Chain Reaction (RT-PCR). The successful epithelial cell growth rates from full thickness limbal explant and superficial limbal explant tissues were 41 and 86%, respectively (p=0.0001). The mean cell area and the percentage of small cells in superficial and full-thickness explant cultures were, respectively, 317 µm(2) and 429 µm(2), and 8.9% and 1.7% (p<0.001). The percentage of positive cells in superficial and full-thickness limbal explant cultures as assessed by immunocytochemistry were the following: broad spectrum cytokeratins (cytokeratins 4, 5, 6, 8, 10, 13, and 18 [MNF116]), 82%/37% (p=0.01); cytokeratin 3 (CK3), 74%/25% (p=0.009); cytokeratin 19 (CK19), 46%/25% (p=0.19); vimentin, 56%/53% (p=0.48); delta N p63α, 54%/0% (p<0.001); and ABCG2, 5%/0% (p=0.1). Flow cytometry showed a higher percentage of small cells, a higher percentage of MNF116+ cells, and stronger expression of progenitor-associated markers in superficial than in full-thickness explant cultures. For superficial limbal explant cultures, analysis of the expression profiles for various mRNAs at the end of 21 days of culture showed high levels of expression of the mRNAs encoding CK3, vimentin, and CK19. The expression of mRNA of delta N p63α and ABCG2 was weaker. Cultures obtained from full-thickness limbal explants featured no expression of mRNA of CK19, delta N p63α, and ABCG2, whereas mRNAs encoding CK3 and vimentin were detected. Human corneal stromal

  14. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    PubMed

    Yeung, Bonnie H Y; Wong, Chris K C

    2011-01-01

    Stanniocalcin-1 (STC1), a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam) formation, followed by cell migration. In this study, staurosporine (STS) treatment induced human keratinocyte (HaCaT) e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK), the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl) could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  15. Neutrophil chemokines in epithelial inflammatory processes of human tonsils

    PubMed Central

    Sachse, F; Ahlers, F; Stoll, W; Rudack, C

    2005-01-01

    CXC chemokines are thought to play an important role at sites of inflammation. Because ELR+ CXC chemokines are expressed in different types of tonsillitis we investigated the role of the surface/crypt epithelium of human tonsils in producing ELR+ CXC chemokines: interleukin (IL)-8 (CXCL8), ENA-78 (CXCL5), GRO-α (CXCL1) and GCP-2 (CXCL6). Tonsillar tissue was obtained from patients undergoing tonsillectomy and chemokine expression was investigated by means of immunohistochemistry. A549 cells were used as a model to study kinetics of chemokine expression in epithelial cells. Cells were stimulated with tumour necrosis factor (TNF)-α, lipopolysaccharide (LPS) and supernatants derived from aerobic/anaerobic Staphylococcus aureus strains. Chemokine expression was measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). We observed epithelial expression of IL-8, GRO-α and GCP-2 in different types of tonsillitis, whereas ENA-78 was rarely expressed. In A549 cells abundant expression of ENA-78 was detected. IL-8 and GCP-2 are expressed in an acute type of tonsillitis whereas GRO-α was frequently detectable both in chronically and acutely inflamed tonsils. ENA-78 does not seem to play a pivotal role in tonsillitis in vivo. PMID:15807854

  16. Efficient cultivation conditions for human limbal epithelial cells.

    PubMed

    Kim, Mee Kum; Lee, Jae Lim; Oh, Joo Youn; Shin, Mi Sun; Shin, Kyeong Seon; Wee, Won Ryang; Lee, Jin Hak; Park, Ki Sook; Son, Young Sook

    2008-10-01

    To compare the stem niche in different culture conditions of limbal epithelial cells, the suspended human limbal epithelial cells (HLECs) were seeded on the 3T3-pretreated plates and the other suspended cells were plated on amniotic membranes (AMs) which were either cryo-preserved or freeze-dried. All were cultured for 10 to 12 days. Reverse transcription-polymerase chain reaction (RT-PCR) for ATP-binding cassette, subfamily G, member 2 (ABCG2), p63, cytokeratin 12, and connexin 43 were performed in cultivated HLECs and their expression levels were compared. The mRNA expression of all markers examined showed no statistically significant differences between the cells on cryo-preserved and on freeze-dried AM. The expression of p63 and cytokeratin 12 in cultivated cells on AMs were significantly lower than those in 3T3-cocultured cells on RT-PCR and immunofluorescent staining. Cultivated HLECs on AMs showed reduced proliferation and differentiation while maintaining stem-property regardless of the preservative method of AM.

  17. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    PubMed Central

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  18. Culture models of human mammary epithelial cell transformation

    SciTech Connect

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  19. In vitro methods to culture primary human breast epithelial cells.

    PubMed

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  20. Quantification of regenerative potential in primary human mammary epithelial cells.

    PubMed

    Linnemann, Jelena R; Miura, Haruko; Meixner, Lisa K; Irmler, Martin; Kloos, Uwe J; Hirschi, Benjamin; Bartsch, Harald S; Sass, Steffen; Beckers, Johannes; Theis, Fabian J; Gabka, Christian; Sotlar, Karl; Scheel, Christina H

    2015-09-15

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis.

  1. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  2. Cytotoxicity of folpet fungicide on human bronchial epithelial cells.

    PubMed

    Canal-Raffin, Mireille; l'Azou, Béatrice; Jorly, Joana; Hurtier, Annabelle; Cambar, Jean; Brochard, Patrick

    2008-07-30

    Folpet, a widely used dicarboximide fungicide, has been detected in the ambient air of several vine-growing regions of France. It is present in particle form in the environment; however, no study exploring its potential health impact on airways and the respiratory system has been published. Here, the biological effect of these particles was investigated in vitro on human bronchial epithelial cells (16HBE14o-). To be close to the real-life conditions of exposure, Folpan 80WG, a commercial form of folpet, was tested. Folpan 80WG particles showed dose- and time-dependent cytotoxic effects on 16HBE14o- cells. This effect was compared to that produced by technical-grade folpet and both were found to induce a toxicity with similar IC(50) values after 24h of exposure. After 4h and at least until 48h of exposure, the IC(50) values of Folpan 80WG particles were between 2.4 and 2.8 microg/cm(2). Investigation of the cytotoxicity found that Folpan 80WG particles at 1.85 microg/cm(2) induced an increase in ROS production from the first hour of exposure. Evidence that oxidative processes occur in folpet-exposed cells was confirmed by the presence of membrane lipid peroxidation. Furthermore, early apoptosis and late apoptosis/necrosis were both present after the first hour of exposure. These findings indicate that exposure to Folpan 80WG particles result in a rapid cytotoxic effect on human bronchial epithelial cells in vitro that could be in part explained by oxidative stress, characterised by membrane lipid peroxidation and ROS production.

  3. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    SciTech Connect

    Roberts, Joan E. Wielgus, Albert R. Boyes, William K. Andley, Usha Chignell, Colin F.

    2008-04-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 {mu}M. Exposure to either UVA or visible light in the presence of > 5 {mu}M fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 {mu}M lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein {alpha}-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C{sub 60}(OH){sub 22-26} is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo.

  4. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  5. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  6. Investigating the Responses of Human Epithelial Cells to Predatory Bacteria

    PubMed Central

    Monnappa, Ajay K.; Bari, Wasimul; Choi, Seong Yeol; Mitchell, Robert J.

    2016-01-01

    One beguiling alternative to antibiotics for treating multi-drug resistant infections are Bdellovibrio-and-like-organisms (BALOs), predatory bacteria known to attack human pathogens. Consequently, in this study, the responses from four cell lines (three human and one mouse) were characterized during an exposure to different predatory bacteria, Bdellovibrio bacteriovorus HD100, Bacteriovorus BY1 and Bacteriovorax stolpii EB1. TNF-α levels were induced in Raw 264.7 mouse macrophage cultures with each predator, but paled in comparison to those obtained with E. coli. This was true even though the latter strain was added at an 11.1-fold lower concentration (p < 0.01). Likewise, E. coli led to a significant (54%) loss in the Raw 264.7 murine macrophage viability while the predatory strains had no impact. Tests with various epithelial cells, including NuLi-1 airway, Caco2, HT29 and T84 colorectal cells, gave similar results, with E. coli inducing IL-8 production. The viabilities of the NuLi-1 and Caco-2 cells were slightly reduced (8%) when exposed to the predators, while T84 viability remained steady. In no cases did the predatory bacteria induce actin rearrangement. These results clearly demonstrate the gentle natures of predatory bacteria and their impacts on human cells. PMID:27629536

  7. HSP60 activity on human bronchial epithelial cells.

    PubMed

    Sangiorgi, Claudia; Vallese, Davide; Gnemmi, Isabella; Bucchieri, Fabio; Balbi, Bruno; Brun, Paola; Leone, Angelo; Giordano, Andrea; Conway de Macario, Everly; Macario, Alberto Jl; Cappello, Francesco; Di Stefano, Antonino

    2017-10-01

    HSP60 has been implicated in chronic inflammatory disease pathogenesis, including chronic obstructive pulmonary disease (COPD), but the mechanisms by which this chaperonin would act are poorly understood. A number of studies suggest a role for extracellular HSP60, since it can be secreted from cells and bind Toll-like receptors; however, the effects of this stimulation have never been extensively studied. We investigated the effects (pro- or anti-inflammatory) of HSP60 in human bronchial epithelial cells (16-HBE) alone and in comparison with oxidative, inflammatory, or bacterial challenges. 16-HBE cells were cultured for 1-4 h in the absence or presence of HSP60, H2O2, lipopolysaccharide (LPS), or cytomix. The cell response was evaluated by measuring the expression of IL-8 and IL-10, respectively, pro- and anti-inflammatory cytokines involved in COPD pathogenesis, as well as of pertinent TLR-4 pathway mediators. Stimulation with HSP60 up-regulated IL-8 at mRNA and protein levels and down-regulated IL-10 mRNA and protein. Likewise, CREB1 mRNA was up-regulated. H2O2 and LPS up-regulated IL-8. Experiments with an inhibitor for p38 showed that this mitogen-activated protein kinase could be involved in the HSP60-mediated pro-inflammatory effects. HSP60 showed pro-inflammatory properties in bronchial epithelial cells mediated by activation of TLR-4-related molecules. The results should prompt further studies on more complex ex-vivo or in-vivo models with the aim to elucidate further the role of those molecules in the pathogenesis of COPD.

  8. Interleukin-1 stimulates zinc uptake by human thymic epithelial cells

    SciTech Connect

    Coto, J.A.; Hadden, J.W. )

    1991-03-15

    Thymic epithelial cells (TEC) are known to secrete peptides which influence the differentiation and maturation of T-lymphocytes. These peptides include the thymic hormones thymulin, thymosin-{alpha}1, and thymopoietin. The biological activity of thymulin is dependent on the presence of zinc in an equimolar ratio. The authors have shown that both interleukin-1{alpha}(IL-1{alpha}) and interleukin-1{beta}(IL-1{beta}), which stimulate proliferation of TEC, stimulate the uptake of Zn-65 in-vitro independent of this proliferation. Mitomycin-C was used to inhibit the proliferation of TEC. Two other stimulators of proliferation of TEC, bovine pituitary extract (BPE) and epidermal growth factor (EGF), did not stimulate zinc uptake by the TEC independent of proliferation. They have also shown, utilizing in-situ hybridization, that IL-1 and zinc induce metallothionein(MT) mRNA expression in human thymic epithelial cells. The exact role of metallothionein is not clear, but it is thought to be involved in regulation of trace metal metabolism, especially in maintenance of zinc homeostasis. Their current hypothesis is that IL-1 stimulates uptake of zinc into the TEC, followed by its complexing with metallothionein. Zinc is then thought to be transferred from metallothionein to thymulin. Immunostaining, utilizing an antithymulin antibody and a fluoresceinated goat anti-rabbit second antibody, confirms the presence of thymulin in TEC and its dependence on zinc. Upon stimulation, thymulin is then secreted. Known stimulants for thymulin include progesterone, dexamethasone, estradiol, testosterone, and prolactin. None of these secretagogues increase zinc uptake, suggesting the priming of the zinc-thymulin complex is unrelated to the regulation of its secretion.

  9. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    PubMed Central

    McCarthy, J; Gong, X; Nahirney, D; Duszyk, M; Radomski, MW

    2011-01-01

    Background Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function. Methods Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches. Results Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl− channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl− and HCO3 − secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl− channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl− channels by the nanoparticles. Conclusion This is the first study to identify the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact

  10. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  11. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  12. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  13. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells

    PubMed Central

    Raghavan, Cibin T.; Nagaraj, Ram H.

    2016-01-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis. PMID:27263094

  14. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    PubMed

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

  15. Polarized fibronectin secretion induced by adenosine regulates bacterial–epithelial interaction in human intestinal epithelial cells

    PubMed Central

    2004-01-01

    Fibronectin (FN) is a multifunctional protein that plays important roles in many biological processes including cell adhesion and migration, wound healing and inflammation. Cellular FNs are produced by a wide variety of cell types including epithelial cells, which secrete them and often organize them into extensive extracellular matrices at their basal surface. However, regulation of FN synthesis and the polarity of FN secretion by intestinal epithelial cells have not been investigated. In the present study we investigated the role of adenosine, whose levels are up-regulated during inflammation, in modulating FN synthesis, the polarity of FN secretion and the downstream effects of the secreted FN. Polarized monolayers of T84 cells were used as an intestinal epithelial model. Adenosine added to either the apical or basolateral aspect of the cells led to a time- and dose-dependent accumulation of FN in the culture supernatants, polarized to the apical compartment and reached maximal levels 24 h after apical or basolateral addition of adenosine. Confocal microscopy confirmed that FN localized to the apical domain of model intestinal epithelial cells stimulated with apical or basolateral adenosine. The induction of FN was significantly down-regulated in response to the adenosine receptor antagonist alloxazine and was inhibited by cycloheximide. Moreover, adenosine increased FN promoter activity (3.5-fold compared with unstimulated controls) indicating that FN induction is, in part, transcriptionally regulated. Interestingly, we demonstrated that adenosine, as well as apical FN, significantly enhanced the adherence and invasion of Salmonella typhimurium into cultured epithelial cells. In summary, we have shown for the first time that FN, a classic extracellular matrix protein, is secreted into the apical compartment of epithelial cells in response to adenosine. FN may be a critical host factor that modulates adherence and invasion of bacteria, thus playing a key role

  16. Cytotoxicity of triamcinolone acetonide on human retinal pigment epithelial cells.

    PubMed

    Chang, Yi-Sheng; Wu, Chao-Liang; Tseng, Sung-Huei; Kuo, Pao-Ying; Tseng, Shih-Ya

    2007-06-01

    To investigate the toxic effects of triamcinolone acetonide (TA) suspensions on human retinal pigment epithelial (RPE) cells. Cultured human RPE cells were exposed for up to 2 hours to one of seven solutions: control (balanced salt solution, BSS; Alcon Laboratories, Ft. Worth TX), commercial TA suspension (cTA), cTA from which the vehicle (which contains the preservative benzyl alcohol) had been removed (vehicle-removed TA, -vTA), vehicle of the cTA (V), or a 1:10 dilution (in BSS; Alcon) of cTA, -vTA or V. Solution effects were evaluated by phase-contrast microscopy of cells stained in situ with trypan blue and in vitro by trypan blue exclusion assay. RPE cell function was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The mechanism of TA toxicity was studied by acridine orange-ethidium bromide staining and epifluorescence microscopy, and ultrastructural changes were examined by transmission electron microscopy (TEM). The effects of vehicle-removed solutions (-vTA and 1:10 -vTA) were similar to those of the control solution. Exposure for 1 hour or longer to a vehicle-containing solution (cTA and V) resulted in similar and significant degrees of cell damage that were dose and time dependent. The major mechanism of cell death was necrosis, and the early ultrastructural change was swelling of organelles in the cytoplasm. Preserved commercial TA suspensions damaged human RPE cells, but vehicle-free solutions did not. The authors suggest removing the vehicle as completely as possible from TA solutions before they are administered intravitreally. Furthermore, they recommend that a commercial formulation of preservative-free TA suspension be made available for intraocular use.

  17. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells.

    PubMed

    Grace Nirmala, J; Evangeline Celsia, S; Swaminathan, Akila; Narendhirakannan, R T; Chatterjee, Suvro

    2017-10-05

    Vitis vinifera. L is one of the most widely consumed fruits in the world and are rich in antioxidant abundant polyphenols. The present study was carried out to assess the antiproliferative and apoptotic effects of Vitis vinifera peel and seed extracts in an in vitro model using human epidermoid carcinoma A431 cell lines. Vitis vinifera peel and seed extracts were incubated with A431 cells to evaluate the antiproliferative, apoptotic effects and the morphological apoptotic changes induced by the extracts. Mitochondrial membrane potential was also measured after incubating the cells with extracts. At the inhibitory concentration (IC50), grape seed extract (111.11 µg/mL) and grape peel extract (319.14 µg/mL) were incubated for 24 h with A431 cells. Vitis vinifera peel and seed extracts were able to impart cytotoxic effects, induced apoptosis and apoptotic morphological changes in A431 cells significantly (p < 0.01) and this effect is associated with the interference with mitochondrial membrane potential. This reduction in mitochondrial membrane potential probably initiated the apoptotic cascade in the extracts treated cells. Vitis vinifera peel and seed phytochemicals can selectively target cancer cells and the phytochemicals that are occluded can serve as potential anticancer agents providing better efficacy in killing cancer cells.

  18. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    PubMed

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  19. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    SciTech Connect

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R. )

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV.

  20. Carbocisteine inhibits rhinovirus infection in human tracheal epithelial cells.

    PubMed

    Yasuda, H; Yamaya, M; Sasaki, T; Inoue, D; Nakayama, K; Yamada, M; Asada, M; Yoshida, M; Suzuki, T; Nishimura, H; Sasaki, H

    2006-07-01

    The aim of the study was to examine the effects of a mucolytic drug, carbocisteine, on rhinovirus (RV) infection in the airways. Human tracheal epithelial cells were infected with a major-group RV, RV14. RV14 infection increased virus titres and the cytokine content of supernatants. Carbocisteine reduced supernatant virus titres, the amount of RV14 RNA in cells, cell susceptibility to RV infection and supernatant cytokine concentrations, including interleukin (IL)-6 and IL-8, after RV14 infection. Carbocisteine reduced the expression of mRNA encoding intercellular adhesion molecule (ICAM)-1, the receptor for the major group of RVs. It also reduced the supernatant concentration of a soluble form of ICAM-1, the number and fluorescence intensity of acidic endosomes in the cells before RV infection, and nuclear factor-kappaB activation by RV14. Carbocisteine also reduced the supernatant virus titres of the minor group RV, RV2, although carbocisteine did not reduce the expression of mRNA encoding a low density lipoprotein receptor, the receptor for RV2. These results suggest that carbocisteine inhibits rhinovirus 2 infection by blocking rhinovirus RNA entry into the endosomes, and inhibits rhinovirus 14 infection by the same mechanism as well as by reducing intercellular adhesion molecule-1 levels. Carbocisteine may modulate airway inflammation by reducing the production of cytokines in rhinovirus infection.

  1. Bioavailability of antioxidants applied to stratified human corneal epithelial cells.

    PubMed

    Stoddard, Alexander R; Koetje, Leah R; Mitchell, Anna K; Schotanus, Mark P; Ubels, John L

    2013-09-01

    Oxidative damage to the corneal epithelium may be involved in dry eye disease. The bioavailability and efficacy of antioxidants in human corneal limbal epithelial (HCLE) cells were measured to determine whether antioxidants might be beneficial constituents of lubricant eye drops. The activity of antioxidants was evaluated using a cellular antioxidant activity assay in which, cells were loaded with the reactive oxygen species (ROS)-sensitive fluorescent indicator, 2',7'-dichlorofluorescin diacetate (DCFH-DA), and an antioxidant compound. ROS were then generated intracellularly using 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP) or extracellularly using xanthine oxidase, and the ability of an antioxidant to inhibit ROS-generated fluorescence was measured. When ROS were generated by ABAP, EC50 values for quercetin, epigallocatechin gallate (EGCG), n-propyl gallate, and gallic acid were 2.98, 3.41, 6.30, and 50.7 μM, respectively. When ROS were generated extracellularly by xanthine oxidase, EC50 values for quercetin, EGCG, n-propyl gallate, and gallic acid were 41.3, 56.5, 70.5, and 337.5 μM. These values were reduced significantly when an antioxidant was present both in the medium with the xanthine oxidase and within the cells. The antioxidants were effective at quenching ROS in HCLE cells, indicating that they are bioavailable and might be effective in protecting the corneal epithelium from oxidative damage if included in a lubricant eye drop.

  2. Nanoceria have no genotoxic effect on human lens epithelial cells

    NASA Astrophysics Data System (ADS)

    Pierscionek, Barbara K.; Li, Yuebin; Yasseen, Akeel A.; Colhoun, Liza M.; Schachar, Ronald A.; Chen, Wei

    2010-01-01

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO2) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 µg ml-1 of CeO2 nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  3. Pigment epithelial-derived factor in human fetal membranes.

    PubMed

    Stalberg, Cecilia; Noda, Nathalia; Polettini, Jossimara; Jacobson, Bo; Menon, Ramkumar

    2017-06-20

    Our main objective was to document, pigment epithelial-derived factor (PEDF), a secreted serine protease inhibitor with anti-angiogenic, anti-inflammatory, and anti-oxidant properties, expression in human fetal membranes from preterm prelabor rupture of the membranes (pPROM) and in in vitro cultures stimulated with cigarette smoke extract (CSE) or lipopolysaccharides (LPS), two major risk factors for pPROM (behavioral and bacterial, respectively). We documented PEDF mRNA expression in clinical samples of fetal membranes from patients with pPROM using quantitative RT-PCR. Also, mRNA and protein levels were documented in fetal membranes (from normal term cesarean sections [not in labor]) in an organ explant system stimulated with CSE or lipopolysaccharide (LPS). Immunohistochemistry (IHC) was used to localize PEDF in fetal membranes. We report no changes in PEDF mRNA expression in pPROM compared to term births (p = .59) or after treatment with CSE or LPS. However, by adding sulforaphane the PEDF mRNA expression increased significantly p < .000032. PEDF was localized to both amnion and chorion layers, but no difference was seen in staining intensities after CSE or LPS treatment compared to control. PEDF, a product of fetal membrane cells, is unaltered in pPROM or after exposure to risk factors of pPROM. The antioxidant stimulating substance sulforaphane contribute to an increase in PEDF mRNA in fetal membranes.

  4. The Effect of Silica Nanoparticles on Human Corneal Epithelial Cells

    PubMed Central

    Park, Joo-Hee; Jeong, Hyejoong; Hong, Jinkee; Chang, Minwook; Kim, Martha; Chuck, Roy S.; Lee, Jimmy K.; Park, Choul-Yong

    2016-01-01

    Ocular drug delivery is an interesting field in current research. Silica nanoparticles (SiNPs) are promising drug carriers for ophthalmic drug delivery. However, little is known about the toxicity of SiNPs on ocular surface cells such as human corneal epithelial cells (HCECs). In this study, we evaluated the cytotoxicity induced by 50, 100 and 150 nm sizes of SiNPs on cultured HCECs for up to 48 hours. SiNPs were up-taken by HCECs inside cytoplasmic vacuoles. Cellular reactive oxygen species generation was mildly elevated, dose dependently, with SiNPs, but no significant decrease of cellular viability was observed up to concentrations of 100 μg/ml for three different sized SiNPs. Western blot assays revealed that both cellular autophagy and mammalian target of rapamycin (mTOR) pathways were activated with the addition of SiNPs. Our findings suggested that 50, 100 and 150 nm sized SiNPs did not induce significant cytotoxicity in cultured HCECs. PMID:27876873

  5. Regulation of potassium transport in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Warwar, Ronald; Brown, Thomas L; Adragna, Norma C

    2006-01-01

    The major K influx pathways and their response to thiol modification by N-ethylmaleimide (NEM) and protein kinase and phosphatase inhibitors were characterized in human lens epithelial B3 (HLE-B3) cells with Rb as K congener. Ouabain (0.1 mM) and bumetanide (5 microM) discriminated between the Na/K pump ( approximately 35% of total Rb influx) and Na-K-2Cl cotransport (NKCC) ( approximately 50%). Cl-replacement with nitrate or sulfamate revealed <10% residual [ouabain+bumetanide]-insensitive K-Cl cotransport (KCC). At 0.3-0.5 mM, NEM stimulated the Na/K pump by 2-fold independent of external Na, KCC between 2 and 4-fold, and abolished approximately 90% of NKCC. Calyculin-A, a serine/threonine protein phosphatase-1 inhibitor, did not affect NKCC but inhibited KCC, whereas 10 microM staurosporine, a serine/threonine kinase inhibitor, abolished NKCC, and stimulated KCC only when followed by NEM treatment. The tyrosine-kinase inhibitor genistein, at concentrations >100 microM, activated the Na/K pump and abolished NKCC but did not affect KCC. The data suggest at least partial inverse regulation of KCC and NKCC in HLE-B3 cells by signaling cascades involving serine, threonine and tyrosine phosphorylation/dephosphorylation equilibria.

  6. Effect of Cadmium on Human Middle Ear Epithelial Cells.

    PubMed

    Song, Jae Jun; Kim, Ju Yeon; Jang, An Soo; Kim, Shin Hye; Rah, Yoon Chan; Park, Mina; Park, Moo Kyun

    2015-12-01

    Cadmium (Cd(2+)) exposure can occur through passive smoking, ambient air pollution, and food. Even low exposure can affect hearing and cause lung disease. Here we investigated whether cadmium causes cytotoxicity, induces inflammation, or increases mucin gene expression in immortalized human middle ear epithelial cells (HMEECs). Cell viability was investigated using the MTT assay following Cd(2+) treatment. Increases in apoptosis and necrosis were determined, and the production of reactive oxygen species (ROS) was measured. We analyzed the expression of an inflammatory cytokine (COX-2) gene and a mucin gene (MUC5AC) using RT-PCR. Exposure to >20 µM Cd(2+) caused a significant decrease in cell viability. Hoechst 33258 staining showed apoptotic morphology of heterogeneous intensity, condensation, and fragmentation after Cd(2+) exposure. Cd(2+) was shown to increase cell death by apoptosis and necrosis by annexin V-FITC/PI double staining. Cd(2+) exposure increased ROS production and COX-2 and MUC5AC expressions. Our findings suggest that environmental cadmium exposure is related to the development of otitis media.

  7. Thymic epithelial cell development and its dysfunction in human diseases.

    PubMed

    Sun, Lina; Li, Hongran; Luo, Haiying; Zhao, Yong

    2014-01-01

    Thymic epithelial cells (TECs) are the key components in thymic microenvironment for T cells development. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor and undergo a stepwise development controlled by multiple levels of signals to be functionally mature for supporting thymocyte development. Tumor necrosis factor receptor (TNFR) family members including the receptor activator for NF κ B (RANK), CD40, and lymphotoxin β receptor (LT β R) cooperatively control the thymic medullary microenvironment and self-tolerance establishment. In addition, fibroblast growth factors (FGFs), Wnt, and Notch signals are essential for establishment of functional thymic microenvironment. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful modulators of TEC development, differentiation, and self-tolerance. Dysfunction in thymic microenvironment including defects of TEC and thymocyte development would cause physiological disorders such as tumor, infectious diseases, and autoimmune diseases. In the present review, we will summarize our current understanding on TEC development and the underlying molecular signals pathways and the involvement of thymus dysfunction in human diseases.

  8. Potential role for laminin 5 in hypoxia-mediated apoptosis of human corneal epithelial cells.

    PubMed

    Esco, M A; Wang, Z; McDermott, M L; Kurpakus-Wheater, M

    2001-11-01

    Laminin 5 functions to promote cell-matrix adhesion and therefore is hypothesized to abrogate apoptosis initiated through the loss of epithelial cell contact with extracellular matrix. Laminin 5 levels are decreased in epithelial cells cultured in a hypoxic environment. Exposure of epithelial cells to hypoxia may induce apoptotic pathways transmitted through changes in mitochondrial membrane potential. Using an apoptosis assay based on mitochondrial membrane integrity, the effect of hypoxia (2% oxygen) on human corneal epithelial cell viability was determined. Both a virally transformed corneal epithelial cell line and third passage corneal epithelial cells were resistant to hypoxia-mediated apoptosis for up to 5 days in culture. However, at 7 days in culture, a statistically significant increase in apoptosis was noted in hypoxic corneal epithelial cells compared to normoxic (20% oxygen) controls. Increased apoptosis in hypoxic epithelium at 7 days in culture correlated with decreased deposition of laminin 5 into the extracellular matrix, as determined by western blot analysis and immunofluorescence microscopy. Additionally, the extracellular processing of the alpha3 and gamma2 chains of laminin 5 was negatively impacted by corneal epithelial cell exposure to hypoxia for 7 days. Treatment of human corneal epithelial cells cultured in 20% oxygen with function-inhibiting antibodies to laminin 5 for 2 or 3 days resulted in a statistically significant decrease in proliferation, and concomitant increase in apoptosis, compared with untreated normoxic controls. Based on these results, it appears that mechanisms of hypoxia-mediated apoptosis in human corneal epithelial cells may be initiated by the loss of processed laminin 5 in the extracellular matrix or by the loss of laminin 5-epithelial cell communication and transmitted through mitochondria.

  9. Regulation of human corneal epithelial mucins by rebamipide.

    PubMed

    Itoh, Shinsaku; Itoh, Kuni; Shinohara, Hisashi

    2014-02-01

    Membrane-associated mucins (MAMs) play important roles in barrier function and tear stability, and their expression on the ocular surface is altered in dry eye disease. Rebamipide is a mucin secretagogue that promotes the production of mucin-like glycoproteins in human corneal epithelial (HCE) cells. However, the expression of MAMs on the corneal epithelia (MUC1, MUC4, MUC16), which is induced by rebamipide, is poorly understood. In this study, we investigated the effect of rebamipide on the regulation of MAM expression in HCE cells. MUC16, Ki67 and PCNA expression levels in HCE cells isolated at confluence and at 24 hours after confluence were examined by Western blotting to assess cell proliferation. HCE cells isolated at 24 hours after confluence were cultured in medium supplemented with 1-10 µM rebamipide or 0.3-30 nM of epidermal growth factor (EGF). Real-time PCR (RT-PCR) and Western blot analysis of MAMs were performed to evaluate the effect of rebamipide. Western blot analysis of cells treated with an EGF receptor inhibitor (AG1478) or MEK1/2 inhibitor (U0126) was performed to reveal the relationship between EGF receptor activation and rebamipide-induced MAM expression. HCE cells isolated at 24 hours after confluence had lower cell proliferation activity and increased MUC16 expression compared with cells isolated at confluence. RT-PCR and Western blot analysis revealed that rebamipide increased MAM gene expression for 2 hours and protein expression for 24 hours in HCE cells. EGF inhibitor treatment led to reduced levels of all three MAMs that are normally induced by rebamipide, whereas EGF induced the expression of all three MAMs. We suggested that rebamipide increased MUC1, MUC4 and MUC16 expression levels through signals involved in EGF receptor activation in the human corneal epithelia. These data suggest that rebamipide may improve subjective symptoms of dry eye disease by upregulating MAM expression.

  10. Ozone exposure increases respiratory epithelial permeability in humans

    SciTech Connect

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-05-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance.

  11. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport.

    PubMed

    Ren, Hui; Birch, Nigel P; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10-8 cm/s vs (738 ± 190) ×10-8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  12. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    PubMed Central

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  13. Binding of transcobalamin II by human mammary epithelial cells.

    PubMed

    Adkins, Y; Lönnerdal, B

    2001-01-01

    The presence of nutrient binders in milk may have an important role during milk production and may influence the nutrient's bioavailability to the infant. Human milk and plasma contain at least two types of vitamin B12 binders: transcobalamin II (TCII) and haptocorrin (Hc). Vitamin B12 in milk is exclusively bound to Hc (Hc-B12). In plasma, the major vitamin B12 binding protein that is responsible for delivering absorbed vitamin B12 to most tissues and cells is TCII (TCII-B12). Currently, little is known about the route of secretion of vitamin B12 into human milk. It is possible that a receptor-mediated pathway is involved, since maternal vitamin B12 supplementation increases the amount of the vitamin secreted into human milk if the mother's vitamin B12 consumption is low, but remains unchanged if her intake is adequate. In this study, we investigated the process by which the mammary gland acquires vitamin B12 from maternal circulation, whether as a free vitamin or as a Hc-B12 or TCII-B12 complex. TCII was purified from plasma incubated with [57Co]vit B12 (B12*), while Hc was purified from whey incubated with B12*. Both proteins were separated by fast protein liquid chromatography using gel filtration and anion-exchange columns. Purity of the separated proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Binding studies were carried out on a monolayer of normal human mammary epithelial cells (HMEC) at 4 degrees C using free B12* and TCII-B12* and Hc-B12* complexes. Minimal binding of free B12* and Hc-B12* to HMEC was observed; however, HMEC exhibited a high affinity for the TCII-B12* complex. This study suggests that a specific cell surface receptor for the TCII-B12 complex exists in the mammary gland. It is possible that once vitamin B12 is in the mammary gland it is transferred to Hc (which may be synthesized by the mammary gland) and then secreted into milk as a Hc-B12 complex.

  14. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  15. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  16. In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse.

    PubMed

    Terakawa, Mitsuhiro; Tsunoi, Yasuyuki; Mitsuhashi, Tatsuki

    2012-01-01

    Pulsed laser interaction with small metallic and dielectric particles has been receiving attention as a method of drug delivery to many cells. However, most of the particles are attended by many risks, which are mainly dependent upon particle size. Unlike other widely used particles, biodegradable particles have advantages of being broken down and eliminated by innate metabolic processes. In this paper, the perforation of cell membrane by a focused spot with transparent biodegradable microspheres excited by a single 800 nm, 80 fs laser pulse is demonstrated. A polylactic acid (PLA) sphere, a biodegradable polymer, was used. Fluorescein isothiocyanate (FITC)-dextran and short interfering RNA were delivered into many human epithelial carcinoma cells (A431 cells) by applying a single 80 fs laser pulse in the presence of antibody-conjugated PLA microspheres. The focused intensity was also simulated by the three-dimensional finite-difference time-domain method. Perforation by biodegradable spheres compared with other particles has the potential to be a much safer phototherapy and drug delivery method for patients. The present method can open a new avenue, which is considered an efficient adherent for the selective perforation of cells which express the specific antigen on the cell membrane.

  17. Effect of soft foods on primary human gingival epithelial cell growth and the wound healing process.

    PubMed

    Rouabhia, Mahmoud; Rouabhia, Dounia; Park, Hyun Jin; Giasson, Luc; Zhang, Ze

    2017-10-01

    Investigate the effect of soft diet foods on gingival epithelial cell growth, migration, and mediator secretion. Human gingival epithelial cells were stimulated for various time periods with the following soft diet foods: orange juice, drinkable yogurt, and a nutritional drink. Cell growth was determined by an MTT assay and cell migration was investigated by a scratch assay and F-actin filament staining. Keratin production was analyzed by Western blot and wound healing mediators IL-6 and human β-defensin 2 were quantified by ELISA. We demonstrate, for the first time, that certain soft diet foods increased the production of keratin 5, 14, and 19 by gingival epithelial cells. These proteins were known to be produced by proliferating cells. The soft foods tested also stimulated gingival epithelial cells to produce IL-6 and human β-defensin 2. Soft foods are capable of promoting gingival epithelial cell migration by increasing F-actin production, which is part of the wound healing process. Results varied depending on the foods tested. Gingival epithelial cells interacted with the soft diet foods under study. This interaction was shown to upregulate keratin expression, as well as IL-6 and human β-defensin 2 secretions. Furthermore, following cell wound, the soft foods upregulated post-scratch cell migration and F-actin production. Overall data suggest that the choice of foods in soft diets following oral surgery may influence the wound healing process of gingival epithelial cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Impact of Epithelial Stromal Interactions on Human Breast Tumor Heterogeneity

    DTIC Science & Technology

    2016-12-01

    AWARD NUMBER: W81XWH-13-1-0357 TITLE: The Impact of Epithelial-Stromal Interactions on Human Breast Tumor Heterogeneity PRINCIPAL INVESTIGATOR...2013 – 14 Sept 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0357 The Impact of Epithelial-Stromal Interactions on Human Breast...crista.thompson@mail.mcgill.ca 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Royal

  19. Effect of Growth Factors on the Proliferation and Gene Expression of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Kam, Wendy R.; Ding, Juan; Hatton, Mark P.; Sullivan, David A.

    2013-01-01

    Purpose. We hypothesize that growth factors, including epidermal growth factor (EGF) and bovine pituitary extract (BPE), induce proliferation, but not differentiation (e.g., lipid accumulation), of human meibomian gland epithelial cells. We also hypothesize that these actions involve a significant upregulation of genes linked to cell cycle processes, and a significant downregulation of genes associated with differentiation. Our objective was to test these hypotheses. Methods. Immortalized human meibomian gland and conjunctival epithelial cells were cultured for varying time periods in the presence or absence of EGF, BPE, EGF + BPE, or serum, followed by cell counting, neutral lipid staining, or RNA isolation for molecular biological procedures. Results. Our studies show that growth factors stimulate a significant, time-dependent proliferation of human meibomian gland epithelial cells. These effects are associated with a significant upregulation of genes linked to cell cycle, DNA replication, ribosomes, and translation, and a significant decrease in those related to cell differentiation, tissue development, lipid metabolic processes, and peroxisome proliferator-activated receptor signaling. Serum-induced differentiation, but not growth factor-related proliferation, elicits a pronounced lipid accumulation in human meibomian gland epithelial cells. This lipogenic response is unique, and is not duplicated by human conjunctival epithelial cells. Conclusions. Our results demonstrate that EGF and BPE stimulate human meibomian gland epithelial cells to proliferate. Further, our findings show that action is associated with an upregulation of cell cycle and translation ontologies, and a downregulation of genetic pathways linked to differentiation and lipid biosynthesis. PMID:23493293

  20. Epithelial cell responses to infection with human papillomavirus.

    PubMed

    Stanley, Margaret A

    2012-04-01

    Human papillomavirus (HPV) infection of the genital tract is common in young sexually active individuals, the majority of whom clear the infection without overt clinical disease. Most of those who do develop benign lesions eventually mount an effective cell-mediated immune (CMI) response, and the lesions regress. Regression of anogenital warts is accompanied histologically by a CD4(+) T cell-dominated Th1 response; animal models support this and provide evidence that the response is modulated by antigen-specific CD4(+) T cell-dependent mechanisms. Failure to develop an effective CMI response to clear or control infection results in persistent infection and, in the case of the oncogenic HPVs, an increased probability of progression to high-grade intraepithelial neoplasia and invasive carcinoma. Effective evasion of innate immune recognition seems to be the hallmark of HPV infections. The viral infectious cycle is exclusively intraepithelial: there is no viremia and no virus-induced cytolysis or cell death, and viral replication and release are not associated with inflammation. HPV globally downregulates the innate immune signaling pathways in the infected keratinocyte. Proinflammatory cytokines, particularly the type I interferons, are not released, and the signals for Langerhans cell (LC) activation and migration, together with recruitment of stromal dendritic cells and macrophages, are either not present or inadequate. This immune ignorance results in chronic infections that persist over weeks and months. Progression to high-grade intraepithelial neoplasia with concomitant upregulation of the E6 and E7 oncoproteins is associated with further deregulation of immunologically relevant molecules, particularly chemotactic chemokines and their receptors, on keratinocytes and endothelial cells of the underlying microvasculature, limiting or preventing the ingress of cytotoxic effectors into the lesions. Recent evidence suggests that HPV infection of basal keratinocytes

  1. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  2. Connexin expression in nonneoplastic human prostate epithelial cells.

    PubMed

    Saladino, Francesca; Carruba, Giuseppe; Quader, Salmaan T A; Amoroso, Maria; Di Cristina, Antoniette; Webber, Mukta M; Castagnetta, Luigi A M

    2002-06-01

    Expression of gap-junction proteins connexins (Cx), specifically Cx43, Cx32, and Cx26, in both nontumorigenic (RWPE-1) and tumorigenic (RWPE-2) human prostate epithelial cells as well as in two cell clones (WPEI-7 and WPEI-10) originating from the RWPE-1 cell line was investigated. The aim was to determine whether individual connexins are differentially expressed in cultured cells. Western blot analysis revealed striking differences in the expression of individual connexins in the cell lines studied. In particular, Cx43 is largely expressed in RWPE-1 and WPEI-10 cells, whereas Cx32 is expressed predominantly in RWPE-2 and WPEI-7 cells. In addition, both forskolin and estrone increase Cx43 expression levels in WPEI-10 cells, with no apparent effect on WPEI-7 cells. Conversely, forskolin and especially estrone induce a marked increase of Cx32 in WPEI-7 cells, whereas Cx32 expression is limitedly affected by both agents in WPEI-10 cells. Overall, expression levels of Cx43 and Cx32 appear to be inversely related, with RWPE-1 and WPEI-10 cells having a significantly higher Cx43 to Cx32 ratio than that observed in RWPE-2 and WPEI-7 cells. We recently reported that junctional communication could be rescued in RWPE-1 cells by either forskolin or estrone and that restoration of GJIC is associated with an increase of Cx43 or a decrease of Cx32, or both, eventually leading to a marked rise of the Cx43 to Cx32 ratio. Studies are currently ongoing in our laboratories to assess the potential effect of agents increasing the Cx43 to Cx32 ratio on GJIC activity in these systems.

  3. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  4. Rhodococcus equi human clinical isolates enter and survive within human alveolar epithelial cells.

    PubMed

    Ramos-Vivas, J; Pilares-Ortega, L; Remuzgo-Martínez, S; Padilla, D; Gutiérrez-Díaz, J L; Navas-Méndez, J

    2011-05-01

    Rhodococcus equi is an emerging opportunistic human pathogen associated with immunosuppressed people, especially those infected with the human immunodeficiency virus (HIV). This pathogen resides primarily within lung macrophages of infected patients, which may explain in part its ability to escape normal pulmonary defense mechanisms. Despite numerous studies as a pulmonary pathogen in foals, where a plasmid seems to play an important role in virulence, information on the pathogenesis of this pathogen in humans is still scarce. In this study, fluorescence microscopy and vancomycin protection assays were used to investigate the ability of R. equi human isolates to adhere to and to invade the human alveolar epithelial cell line A549. Our findings indicate that some R. equi clinical strains are capable of adhering, entering and surviving within the alveolar cell line, which may contribute to the pathogen persistence in lung tissues. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  5. Strategies to enhance epithelial-mesenchymal interactions for human hair follicle bioengineering.

    PubMed

    Ohyama, Manabu; Veraitch, Ophelia

    2013-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Accordingly, the enhancement of this crosstalk represents a promising approach to achieve successful bioengineering of human hair follicles. The present article summarizes the techniques, both currently available and potentially feasible, to promote epithelial-mesenchymal interactions (EMIs) necessary for human hair follicle regeneration. The strategies include the preparation of epithelial components with high receptivity to trichogenic dermal signals and/or mesenchymal cell populations with potent hair inductive capacity. In this regard, bulge epithelial stem cells, keratinocytes predisposed to hair follicle fate or keratinocyte precursor cells with plasticity may provide favorable epithelial cell populations. Dermal papilla cells sustaining intrinsic hair inductive capacity, putative dermal papilla precursor cells in the dermal sheath/neonatal dermis or trichogenic dermal cells derived from undifferentiated stem/progenitor cells are promising candidates as hair inductive dermal cells. The most established protocol for in vivo hair follicle reconstitution is co-grafting of epithelial and mesenchymal components into immunodeficient mice. In theory, combination of individually optimized cellular components of respective lineages should elicit most intensive EMIs to form hair follicles. Still, EMIs can be further ameliorated by the modulation of non-cell autonomous conditions, including cell compartmentalization to replicate the positional relationship in vivo and humanization of host environment by preparing human stromal bed. These approaches may not always synergistically intensify EMIs, however, step-by-step investigation probing optimal combinations should maximally enhance EMIs to achieve successful human hair follicle bioengineering.

  6. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells.

    PubMed

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W Michael; Das, Mita

    2014-04-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases.

  7. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells

    PubMed Central

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W. Michael

    2014-01-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases. PMID:24500281

  8. Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells

    PubMed Central

    Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.

    2001-01-01

    Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by

  9. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    PubMed

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  10. The human thymus microenvironment: heterogeneity detected by monoclonal anti-epithelial cell antibodies.

    PubMed Central

    de Maagd, R A; MacKenzie, W A; Schuurman, H J; Ritter, M A; Price, K M; Broekhuizen, R; Kater, L

    1985-01-01

    Monoclonal antibodies were raised against human thymus stromal cells and their specificity for the epithelial component of thymus stroma assessed by double immunofluorescence using anti-keratin antibodies to identify epithelium. Our monoclonal antibodies identify six distinct patterns of epithelial cell antigen expression within the thymus: pan epithelial (antibody IP1); cortex (MR3 and MR6); cortical/medullary junction (IP2); subcapsule and subpopulation of medulla (MR10/MR14); Hassall's corpuscles and adjacent subpopulation of medulla (IP3); Hassall's corpuscles only (MR13/IP4). This heterogeneity of antigen expression suggests that many different epithelial microenvironments exist within the human thymus. Images Figure 1 Figure 1 Cont Figure 2 PMID:3884494

  11. [Focal epithelial hyperplasia of the oral mucosa. A unique manifestation of human papillomavirus].

    PubMed

    van der Voort, E A M; Arani, S Fallah; Hegt, V Noordhoek; van Praag, M C G

    2009-03-01

    A 34-year old Creole woman appeared at the dermatology department with white-pink spots on the oral mucosa, which had been there for some time. Histology showed lesions characteristic of focal epithelial hyperplasia. The patient was treated with a CO2 laser. Focal epithelial hyperplasia is a rare benign lesion and is caused by human papillomavirus subtypes 13 or 32; it only appears on the oral mucosa.

  12. HUIEC, Human intestinal epithelial cell line with differentiated properties: process of isolation and characterisation.

    PubMed

    Gradisnik, Lidija; Trapecar, Martin; Rupnik, Marjan Slak; Velnar, Tomaz

    2015-12-01

    The intestinal epithelium is composed of diverse cell types, most abundant being the enterocytes. Among other functions, they maintain the intestinal barrier and play a critical role in the absorption of nutrients, drugs and toxins. This study describes the development and characterization of human intestinal epithelial cells (HUIEC), a spontaneously arising cell line established by selective trypsinization and cloning of the intestinal epithelium, resulting in a uniform population of highly epithelial cells with a strong growth potential.

  13. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells.

    PubMed

    Zheng, Li-Wei; Linthicum, Logan; DenBesten, Pamela K; Zhang, Yan

    2013-03-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCl) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which was also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  14. Nerve growth factor induces the expression of chaperone protein calreticulin in human epithelial ovarian cells.

    PubMed

    Vera, C; Tapia, V; Kohan, K; Gabler, F; Ferreira, A; Selman, A; Vega, M; Romero, C

    2012-07-01

    Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells.

    PubMed

    Zou, Weifeng; Zou, Yimin; Zhao, Zhuxiang; Li, Bing; Ran, Pixin

    2013-02-15

    Epithelial-mesenchymal transition (EMT) has been proposed to be a mechanism in airway remodeling, which is a characteristic of chronic obstructive pulmonary disease (COPD). Studies have shown that cigarette smoke and nicotine are factors that induce Wnt/β-catenin activation, which is a pathway that has also been implicated in EMT. The main aim of this study was to test whether human bronchial epithelial cells are able to undergo EMT in vitro following nicotine stimulation via the Wnt3a/β-catenin signaling pathway. We show that nicotine activates the Wnt3a signal pathway, which leads to the translocation of β-catenin into the nucleus and activation of β-catenin/Tcf-dependent transcription in the human bronchial epithelial cell (HBEC) line. This accumulation was accompanied by an increase in smooth muscle actin, vimentin, matrix metalloproteinases-9, and type I collagen expression as well as downregulation of E-cadherin, which are typical characteristics of EMT. We also noted that the release of TGF-β(1) from these cells was stimulated by nicotine. Knockdown of Wnt3a with small interfering RNA (siRNA) prevented these effects, implying that β-catenin activation in these responses is Wnt3a dependent. Furthermore, specific knockdown of TGF-β(1) with TGF-β(1) siRNA partially prevented nicotine-induced EMT, suggesting that TGF-β(1) has a role in nicotine-mediated EMT in HBECs. These results suggest that HBECs are able to undergo EMT in vitro upon nicotine stimulation via the Wnt3a/β-catenin signaling pathway.

  16. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    PubMed

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells. © 2016 Wiley Periodicals, Inc.

  17. Structural Cues from the Tissue Microenvironment Are Essential Determinants of the Human Mammary Epithelial Cell Phenotype

    PubMed Central

    Schmeichel, Karen L.; Weaver, Valerie M.

    2010-01-01

    Historically, the study of normal human breast function and breast disorders has been significantly impaired by limitations inherent to available model systems. Recent improvements in human breast epithelial cell lines and three-dimensional (3-D)3 culture systems have contributed to the development of in vitro model systems that recapitulate differentiated epithelial cell phenotypes with remarkable fidelity. Molecular characterization of these human breast cell models has demonstrated that normal breast epithelial cell behavior is determined in part by the precise interplay that exists between a cell and its surrounding microenvironment. Recent functional studies of integrins in a human model system provide evidence to support the idea that the structural stability afforded by integrin-mediated cell-extracellular matrix interactions is an important determinant of normal cellular behavior, and that alterations in tissue structure can give rise to tumorigenic progression. PMID:10819528

  18. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18.

    PubMed

    Bello, D; Webber, M M; Kleinman, H K; Wartinger, D D; Rhim, J S

    1997-06-01

    Prostate cancer and benign tumors of the prostate are the two most common neoplastic diseases in men in the United States, however, research on their causes and treatment has been slow because of the difficulty in obtaining fresh samples of human tissue and a lack of well characterized cell lines which exhibit growth and differentiation characteristics of normal prostatic epithelium. Non-neoplastic adult human prostatic epithelial cells from a white male donor were immortalized with human papillomavirus 18 which resulted in the establishment of the RWPE-1 cell line. Cells from the RWPE-1 cell line were further transformed by v-Ki-ras to establish the RWPE-2 cell line. The objectives of this study were to: (1) establish the prostatic epithelial origin and androgen responsiveness of RWPE-1 and RWPE-2 cell lines; (2) examine their response to growth factors; and (3) establish the malignant characteristics of the RWPE-2 cell line. Immunoperoxidase staining showed that both RWPE-1 and RWPE-2 cells express cytokeratins 8 and 18, which are characteristic of luminal prostatic epithelial cells, but they also coexpress basal cell cytokeratins. These cell lines show growth stimulation and prostate specific antigen (PSA) and androgen receptor (AR) expression in response to the synthetic androgen mibolerone, which establishes their prostatic epithelial origin. Both cell lines also show a dose-dependent growth stimulation by EGF and bFGF and growth inhibition when exposed to TGF-beta, however, the transformed RWPE-2 cells are less responsive. RWPE-1 cells neither grow in agar nor form tumors when injected into nude mice with or without Matrigel. However, RWPE-2 cells form colonies in agar and tumors in nude mice. In the in vitro invasion assay, RWPE-1 cells are not invasive whereas RWPE-2 cells are invasive. Nuclear expression of p53 and Rb proteins was heterogeneous but detectable by immunostaining in both cell lines. The RWPE-1 cells, which show many normal cell

  19. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells

    PubMed Central

    Wang, Dongmei; Zhao, Zhenwen; Caperell-Grant, Andrea; Yang, Gong; Mok, Samuel C.; Liu, Jinsong; Bigsby, Robert M.; Xu, Yan

    2009-01-01

    Epithelial ovarian cancer (EOC) arises from the epithelial layer covering the surface of ovaries and intra-peritoneal metastasis is commonly observed at diagnosis. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule, is potentially involved in EOC tumorigenesis. We have found that S1P is elevated in human EOC ascites. We show that physiologically relevant concentrations of S1P stimulate migration and invasion of EOC cells, but inhibit migration of human ovarian surface epithelial (HOSE) cells. In addition, S1P inhibits lysophosphatidic acid (LPA)-induced cell migration in HOSE, but not in EOC cells. We have provided the first line of evidence that the expression levels of S1P receptor subtypes are not the only determinants for how cells respond to S1P. Even though S1P1 is expressed and functional in HOSE cells, the inhibitory effect mediated by S1P2 is dominant in those cells. The cellular pre-existing stress fibers are also important determinants for the migratory response to S1P. Differential S1P-induced morphology changes are noted in EOC and HOSE cells. Pre-existing stress fibers in HOSE cells are further enhanced by S1P treatment, resulting in the negative migratory response to S1P. By contrast, EOC cells lost stress fibers and S1P treatment induces filopodium-like structures at cell edges, which correlates with increased cell motility. In addition, inhibition of the protein kinase C pathway is likely to be involved in the inhibitory effect of S1P on LPA-induced cell migration in HOSE cells. These findings are important for the development of new therapeutics targeting S1P and LPA in EOC. PMID:18645009

  20. Characterization of biomaterial-free cell sheets cultured from human oral mucosal epithelial cells.

    PubMed

    Hyun, Dong Won; Kim, Yun Hee; Koh, Ah Young; Lee, Hyun Ju; Wee, Won Ryang; Jeon, Saewha; Kim, Mee Kum

    2017-03-01

    The purpose of this study was to report the characteristics of biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support, in vitro and after transplantation to limbal-deficient models. Human oral mucosal epithelial cells and limbal epithelial cells were cultured for 2 weeks, and the colony-forming efficiency (CFE) rates were compared. Markers of stem cells (p63), cell proliferation (Ki-67) and epithelial differentiation (cytokeratin; K1, K3, K4, K13) were observed in colonies and in biomaterial-free sheets. Biomaterial-free sheets which had been detached with 1% dispase or biomaterial-free sheets generated by fibrin support were transplanted to 12 limbal-deficient rabbit models. In vitro cell viability, in vivo stability and cytokeratin characteristics of biomaterial-free sheets were compared with those of sheets formed by fibrin-coated culture 1 week after transplantation. Mean CFE rate was significantly higher in human oral mucosal epithelial cells (44.8%) than in human limbal epithelial cells(17.7%). K3 and K4 were well expressed in both colonies and sheets. Biomaterial-free sheets had two to six layers of stratified cells and showed an average of 79.8% viable cells in the sheets after detachment. Cytokeratin expressions of biomaterial-free sheets were comparable to those of sheets cultured by fibrin support, in limbal-deficient models. Both p63 and Ki-67 were well expressed in colonies, isolated sheets and sheets transplanted to limbal-deficient models. Our results suggest that biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support can be an alternative option for cell therapy in use for the treatment of limbal-deficient diseases. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    PubMed

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  2. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  3. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  4. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  5. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  6. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  7. Human eccrine sweat gland epithelial cultures express ductal characteristics.

    PubMed Central

    Brayden, D J; Cuthbert, A W; Lee, C M

    1988-01-01

    1. Isolated human eccrine sweat glands were cultured in vitro. Cells were harvested and plated onto permeable supports to form confluent cell sheets, area 0.2 cm2. These were used to study the electrogenic transepithelial transport of ions by measurement of short-circuit current (SCC). Epithelial sheets had a basal SCC of 5.89 +/- 0.62 microA cm-2 (n = 33) and a transepithelial resistance of 74.1 +/- 5.6 omega cm2 (n = 33). The transepithelial potential difference varied between -0.2 and -1.8 mV with a mean value of -0.71 +/- 0.09 mV (n = 33). 2. The basal current was abolished by addition of 10 microM-amiloride to the apical bathing solution. The concentration of amiloride which inhibited basal SCC by 50% (EC50) was 0.4 microM. Cultures prepared from the secretory coil of sweat glands, rather than from whole glands, were similarly sensitive to amiloride (EC50 = 0.8 microM). 3. Lysylbradykinin (LBK), carbachol, isoprenaline, prostaglandin E2 (PGE2) and A23187 all increased SCC in cultures from whole glands. LBK responses were obtained with basolateral and not with apical application. Furthermore LBK actions were not substantially altered by cyclo-oxygenase inhibition but showed marked desensitization upon repeated application. Sheet cultures prepared from sweat gland coils also showed SCC responses to both carbachol and LBK. Forskolin, an activator of adenylate cyclase, did not alter SCC in either type of preparation. 4. Replacement of chloride and of chloride and bicarbonate in the bathing solution did not cause attenuation of the responses to LBK or carbachol in whole-gland sheet cultures. Furthermore responses were unaffected by piretanide or acetazolamide. These results were taken to indicate that anion secretion was not the basis for the SCC responses. 5. Responses to LBK and carbachol were significantly reduced by amiloride (10 microM), this effect being reversible. No responses to LBK or carbachol were seen when N-methyl-D-glucamine (NMDG) was used to

  8. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    SciTech Connect

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  9. Phenotypic characterization of collagen gel embedded primary human breast epithelial cells in athymic nude mice.

    PubMed

    Yang, J; Guzman, R C; Popnikolov, N; Bandyopadhyay, G K; Christov, K; Collins, G; Nandi, S

    1994-06-30

    We have developed a method to characterize the phenotypes and tumorigenicity of dissociated human breast epithelial cells. The dissociated cells were first embedded in collagen gels and subsequently transplanted subcutaneously in vivo in athymic nude mice. The transplantation of dissociated epithelial cells from reduction mammoplasties, presumed to be normal, always resulted in normal histomorphology. Epithelial cells were arranged as short tubular structures consisting of lumina surrounded by epithelial cells with an occasional more complex branching structure. These outgrowths were surrounded by intact basement membrane and were embedded in collagen gel that, at termination, contained collagenous stroma with fibroblasts and blood vessels. In contrast, transplantation of dissociated breast epithelial cells from breast cancer specimens resulted in outgrowths with an invasive pattern infiltrating the collagen gel as well as frank invasion into vascular space, nerves and muscles. These observations were made long before the subsequent palpable stage which resulted if left in the mouse for a long enough time. The dissociated human breast epithelial cells thus retained their intrinsic property to undergo morphogenesis to reflect their original phenotype when placed in a suitable environment, the collagen gel.

  10. Effects of fluoroquinolone eye solutions without preservatives on human corneal epithelial cells in vitro.

    PubMed

    Oum, Boo Sup; Kim, Na Mi; Lee, Jong Soo; Park, Young Min

    2014-01-01

    To evaluate the biologic effects of fluoroquinolone eye solutions without preservatives on cultured human corneal epithelial cells in vitro. We studied the effect of diverse generations of topical fluoroquinolones such as ofloxacin 0.3%, levofloxacin 0.5%, tosufloxacin 0.3%, moxifloxacin 0.5% and gatifloxacin 0.3% on cultured human corneal epithelial cells. MTT-based calorimetric assay, lactate dehydrogenase leakage (LDH) assay and scratch wound test were performed. Corneal epithelial cell morphologies were examined by performing inverted light microscopy and transmission electron microscopy. In all topical fluoroquinolones, the metabolic activity of the corneal epithelial cells decreased in a time-dependent fashion and the LDH titer increased with longer exposure times. Especially, the LDH titers significantly increased after exposure to moxifloxacin 0.5% and gatifloxacin 0.3% compared with controls. The migration rates of the corneal epithelial cells were faster in ofloxacin 0.3% or levofloxacin 0.5% than other fluoroquinolones. Severe cellular morphological damage was observed after exposure to moxifloxacin 0.5% and gatifloxacin 0.3%. As moxifloxacin 0.5% and gatifloxacin 0.3% induced the toxic effect to the corneal epithelial cells, compared with other fluoroquinolones, the 4th fluoroquinolone eye solutions should be carefully used in case of the corneal epithelium is damaged by long duration of treatment or overdosage. © 2014 S. Karger AG, Basel.

  11. Epithelial expression and chromosomal location of human TLE genes: Implications for notch signaling and neoplasia

    SciTech Connect

    Liu, Yanling; Dehni, Ghassan; Stifani, S.

    1996-01-01

    The TLE genes are the human homologues of Drosophila groucho, a member of the Notch signaling pathway. This pathway controls a number of different cell-fate choices in invertebrates and vertebrates. We are interested in investigating the functions of the TLE gene family during epithelial determination and carcinogenesis. We show that expression of individual TLE genes correlates with immature epithelial cells that are progressing toward their terminally differentiated state, suggesting a role during epithelial differentiation. In both normal tissues and conditions resulting from incorrect or incomplete maturation events, such as metaplastic and neoplastic transformations, TLE expression is elevated and coincides with Notch expression, implicating these molecules in the maintenance of the undifferentiated state in epithelial cells. We also show that TLE1 and TLE2 are organized in a tandem array at chromosomal location 19p13.3, while TLE3 maps to 15q22. 26 refs., 4 figs.

  12. Oral focal epithelial hyperplasia: report of 3 cases with human papillomavirus DNA sequencing analysis.

    PubMed

    Gültekin, S E; Tokman Yildirim, Benay; Sarisoy, S

    2011-01-01

    Focal epithelial hyperplasia (FEH), or Heck's disease, is a benign proliferative viral infection of the oral mucosa that is related to Human Papil-lomavirus (HPV), mainly subtypes 13 and 32. Although this condition is known to exist in numerous populations and ethnic groups, the reported cases among Caucasians are relatively rare. It presents as asymptomatic papules or nodules on the oral mucosa, gingiva, tongue, and lips. Histopathologically, it is characterized by parakeratosis, epithelial hyperplasia, focal acanthosis, fusion, and horizontal outgrowth of epithelial ridges and the cells named mitozoids. The purpose of this case report was to present 3 cases of focal epithelial hyperplasia in a pediatric age group. Histopathological and clinical features of cases are discussed and DNA sequencing analysis is reported in which HPV 13, HPV 32, and HPV 11 genomes are detected.

  13. An improved method for isolation of epithelial and stromal cells from the human endometrium

    PubMed Central

    MASUDA, Ayako; KATOH, Noriko; NAKABAYASHI, Kazuhiko; KATO, Kiyoko; SONODA, Kenzo; KITADE, Mari; TAKEDA, Satoru; HATA, Kenichiro; TOMIKAWA, Junko

    2016-01-01

    We aimed to improve the efficiency of isolating endometrial epithelial and stromal cells (EMECs and EMSCs) from the human endometrium. We revealed by immunohistochemical staining that the large tissue fragments remaining after collagenase treatment, which are usually discarded after the first filtration in the conventional protocol, consisted of glandular epithelial and stromal cells. Therefore, we established protease treatment and cell suspension conditions to dissociate single cells from the tissue fragments and isolated epithelial (EPCAM-positive) and stromal (CD13-positive) cells by fluorescence-activated cell sorting. Four independent experiments showed that, on average, 1.2 × 106 of EMECs and 2.8 × 106 EMSCs were isolated from one hysterectomy specimen. We confirmed that the isolated cells presented transcriptomic features highly similar to those of epithelial and stromal cells obtained by the conventional method. Our improved protocol facilitates future studies to better understand the molecular mechanisms underlying the dynamic changes of the endometrium during the menstrual cycle. PMID:26853786

  14. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion.

    PubMed

    Kulawiec, Mariola; Safina, Alfiya; Desouki, Mohamed Mokhtar; Still, Ivan; Matsui, Sei-Ichi; Bakin, Andrei; Singh, Keshav K

    2008-11-01

    Human mitochondrial DNA (mtDNA) encodes 13 proteins involved in oxidative phosphorylation (OXPHOS). In order to investigate the role of mitochondrial OXPHOS genes in breast tumorigenesis, we have developed a breast epithelial cell line devoid of mtDNA (rho(0) cells). Our analysis revealed that depletion of mtDNA in breast epithelial cells results in in vitro tumorigenic phenotype as well as breast tumorigenesis in a xenograft model. We identified two major gene networks which were differentially regulated between parental and rho(0) epithelial cells. The focal proteins in these networks include (i) FN1 (fibronectin) and (ii) p53. Bioinformatic analyses of FN1 network identified laminin, integrin and 3 of 6 members of peroxiredoxin whose expression were altered in rho(0) epithelial cells. In the p53 network, we identified SMC4 and WRN whose changes in expression suggest that this network may affect chromosomal stability. Consistent with above finding our study revealed an increase in DNA double strand breaks and unique chromosomal rearrangements in rho(0) breast epithelial cells. Additionally, we identified tight junction proteins claudin-1 and claudin-7 in p53 network. To determine the functional relevance of altered gene expression, we focused on detailed analyses of claudin-1 and -7 proteins in breast tumorigenesis. Our study determined that (i) claudin-1 and 7 were indeed downregulated in rho(0) breast epithelial cells, (ii) downregulation of claudin-1 or -7 led to neoplastic transformation of breast epithelial cells, and (iii) claudin-1 and -7 were also downregulated in primary breast tumors. Together, our study suggest that mtDNA encoded OXPHOS genes play a key role in transformation of breast epithelial cells and that multiple pathway involved in mitochondria-to-nucleus retrograde regulation contribute to transformation of breast epithelial cells.

  15. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  16. Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro.

    PubMed

    Botelho, Monica Catarina; Costa, Carla; Silva, Susana; Costa, Solange; Dhawan, Alok; Oliveira, Paula A; Teixeira, João P

    2014-02-01

    Manufacturing or using nanomaterials may result in exposure of workers to nanoparticles. Potential routes of exposure include skin, lung and gastrointestinal tract. The lack of health-based standards for nanomaterials combined with their increasing use in many different workplaces and products emphasize the need for a reliable temporary risk assessment tool. Therefore, the aim of this work was to explore the effects of different doses of titanium dioxide nanoparticles on human gastric epithelial cells in vitro. We analyzed proliferation by MTT assay, apoptosis by Tunel, migration by injury assay, oxidative stress by determining GSH/GSSG ratio and DNA damage by Comet assay on nanoparticle-treated AGS human gastric epithelial cell line in comparison to controls. We show and discuss the tumor-like phenotypes of nanoparticles-exposed AGS cells in vitro, as increased proliferation and decreased apoptosis. Our results demonstrate for the first time that nanoparticles induce tumor-like phenotypes in human gastric epithelial cells.

  17. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  18. Advanced imaging and tissue engineering of the human limbal epithelial stem cell niche.

    PubMed

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E; Vernon, Amanda J; Funderburgh, James L; Daniels, Julie T

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein.

  19. Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche

    PubMed Central

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J.; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E.; Vernon, Amanda J.; Funderburgh, James L.; Daniels, Julie T.

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein. PMID:25388395

  20. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  1. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells.

    PubMed

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René; Petersen, Ole W; Johansson, Elisabet; Beckman, Siv; Larsson, Christer; Påhlman, Sven; Jögi, Annika

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with global histone deacetylation

  2. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.

    PubMed

    Andarawewa, Kumari L; Erickson, Anna C; Chou, William S; Costes, Sylvain V; Gascard, Philippe; Mott, Joni D; Bissell, Mina J; Barcellos-Hoff, Mary Helen

    2007-09-15

    Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 S1, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGFbeta (0.4 ng/mL) or double treated. All double-treated (IR + TGFbeta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, although IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogen-activated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  3. Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation.

    PubMed

    Kao, Hui-Fang; Chang-Chien, Pei-Wen; Chang, Wen-Tsan; Yeh, Trai-Ming; Wang, Jiu-Yao

    2013-03-01

    Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis.

    PubMed

    Valentijn, A J; Saretzki, G; Tempest, N; Critchley, H O D; Hapangama, D K

    2015-12-01

    How does regulation of telomerase activity (TA) in human endometrial epithelial cells (EEC) by ovarian hormones impact on telomere lengths (TL) and cell proliferation? Healthy endometrial epithelial cell proliferation is characterized by high TA and endometrial TL changes according to the ovarian hormone cycle, with shortest TL observed in the progesterone dominant mid-secretory phase, when TA is lowest, implicating progesterone in the negative regulation of TA and TL. Critical shortening of telomeres may result in permanent cell cycle arrest while the enzyme telomerase maintains telomere length (TL) and replicative capacity of cells. Telomerase expression and activity change in the human endometrium with the ovarian hormone cycle, however the effect of this on endometrial TL and cell growth is not known. A prospective observational study, which included endometrial and blood samples collected from 196 women. We studied endometrial samples from five different groups of women. Endometrial and matched blood TL and circulating steroid hormones were studied in samples collected from 85 women (Group 1). Fresh epithelial and stromal cell isolation and culture in vitro for TL and TA was done on endometrial biopsies collected from a further 74 healthy women not on hormonal therapy (Group 2) and from 5 women on medroxyprogesterone acetate (MPA) for contraception (Group 3). The epithelial TL and telomerase protein expression was examined in active, peritoneal, ectopic endometriotic and matched uterine (eutopic) endometrial samples collected from 10 women with endometriosis (Group 4); the in vivo effect of mifepristone on telomerase protein expression by immunohistochemistry (IHC) was examined in endometrium from 22 healthy women in mid-secretory phase before (n = 8), and after administering 200 mg mifepristone (n = 14) (Group 5). TA was measured by telomere repeat amplification protocol (TRAP) assay; TL by qPCR, and Q-FISH; cell proliferation was assessed by immunoblotting

  5. Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis.

    PubMed

    Malyukova, Irina; Murray, Karen F; Zhu, Chengru; Boedeker, Edgar; Kane, Anne; Patterson, Kathleen; Peterson, Jeffrey R; Donowitz, Mark; Kovbasnjuk, Olga

    2009-01-01

    Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases.

  6. Differential growth factor induction and modulation of human gastric epithelial regeneration

    SciTech Connect

    Tetreault, Marie-Pier; Chailler, Pierre; Rivard, Nathalie; Menard, Daniel . E-mail: Daniel.Menard@USherbrooke.ca

    2005-05-15

    While several autocrine/paracrine growth factors (GFs) can all stimulate epithelial regeneration in experimentally wounded primary gastric cultures, clinical relevance for their non-redundant cooperative actions in human gastric ulcer healing is suggested by the sequential pattern of GF gene induction in vivo. Using new HGE cell lines able to form a coherent monolayer with tight junctions as well as using primary human gastric epithelial cultures, we show that EGF, TGF{alpha}, HGF and IGFs accelerate epithelial restitution upon wounding, independently of the TGF{beta} pathway (as opposed to intestinal cells). However, they differently modulate cell behavior: TGF{alpha} exerts strong effects (even more than EGF) on cytoplasmic spreading and non-oriented protruding activity of bordering cells whereas HGF preferentially coordinates single lamella formation, cell elongation and migration into the wound. IGF-I and IGF-II rather induce the alignment of bordering cells and maintain a compact monolayer front. The number of mitotic cells maximally increases with EGF, followed by TGF{alpha} and IGF-I,-II. The current study demonstrates that GFs differentially regulate the regeneration of human gastric epithelial cells through specific modulation of cell shape adaptation, migration and proliferation, further stressing that a coordination of GF activities would be necessary for the normal progression of post-wounding epithelial repair.

  7. A differentiated porcine bronchial epithelial cell culture model for studying human adenovirus tropism and virulence.

    PubMed

    Lam, E; Ramke, M; Groos, S; Warnecke, G; Heim, A

    2011-12-01

    The species specificity of human adenoviruses (HAdV) almost precludes studying virulence and tropism in animal models, e.g. rodent models, or derived tissue and cell culture models. However, replication of HAdV type 5 (HAdV-C5) has been shown after intravenous injection in swine. In order to study adenovirus replication in airway tissue propagation of bronchial epithelial cells from porcine lungs was established. These primary cells proved to be fully permissive for HAdV-C5 infection in submerged culture, demonstrating efficient HAdV genome replication, infectious viral particle release (1.07×10(8) TCID(50)/ml±6.63×10(7)) and development of cytopathic effect (CPE). Differentiation of porcine bronchial epithelial cells was achieved at the air-liquid interface on collagen I coated 0.4μm polyester membranes. Morphology, expression of tubulin and occludin, the development of tight-junctions and cilia were similar to human bronchial epithelial cells. Infection with HAdV-C5 from the basolateral side resulted in release of infectious virus progeny (2.05×10(7) TCID(50)/ml±2.39×10(7)) to the apical surface as described recently in human bronchial epithelial cells, although complete CPE was not observed. Differentiated porcine bronchial epithelial cells hold promise as a novel method for studying the virulence and pathophysiology of pneumonia associated HAdV types.

  8. ICAM-1-independent adhesion of neutrophils to phorbol ester-stimulated human airway epithelial cells.

    PubMed

    Celi, A; Cianchetti, S; Petruzzelli, S; Carnevali, S; Baliva, F; Giuntini, C

    1999-09-01

    Intercellular adhesion molecule-1 (ICAM-1) is the only inducible adhesion receptor for neutrophils identified in bronchial epithelial cells. We stimulated human airway epithelial cells with various agonists to evaluate whether ICAM-1-independent adhesion mechanisms could be elicited. Phorbol 12-myristate 13-acetate (PMA) stimulation of cells of the alveolar cell line A549 caused a rapid, significant increase in neutrophil adhesion from 11 +/- 3 to 49 +/- 7% (SE). A significant increase from 17 +/- 4 to 39 +/- 6% was also observed for neutrophil adhesion to PMA-stimulated human bronchial epithelial cells in primary culture. Although ICAM-1 expression was upregulated by PMA at late time points, it was not affected at 10 min when neutrophil adhesion was already clearly enhanced. Antibodies to ICAM-1 had no effect on neutrophil adhesion. In contrast, antibodies to the leukocyte integrin beta-chain CD18 totally inhibited the adhesion of neutrophils to PMA-stimulated epithelial cells. These results demonstrate that PMA stimulation of human airway epithelial cells causes an increase in neutrophil adhesion that is not dependent on ICAM-1 upregulation.

  9. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  10. Nuclear factor I and epithelial cell-specific transcription of human papillomavirus type 16.

    PubMed Central

    Apt, D; Chong, T; Liu, Y; Bernard, H U

    1993-01-01

    The transcription of human papillomavirus type 16 (HPV-16) is mediated by the viral enhancer. Epithelial cell-specific activation is achieved by the cooperative interaction of apparently ubiquitous transcriptional factors. One of them, nuclear factor I (NFI), binds seven sites within the HPV-16 enhancer. Point mutations on enhancer fragments, which retain epithelial cell specificity, verify the functional contribution of NFI. In band shift experiments, the epithelial cell-derived NFI proteins CTF-1, CTF-2, and CTF-3 form a characteristic pattern of heterodimeric complexes which are observed in all epithelial cells tested. Divergence from this pattern in fibroblasts, liver cells, and lymphoid cells correlates with the lack of HPV-16 enhancer activation. The HPV-16 enhancer can be activated by CTF-1 in SL-2 cells, which lack NFI-like proteins. However, exogenous CTF-1 fails to overcome the inactivity of the viral enhancer in fibroblasts. Western immunoblot and supershift analysis shows that exogenously introduced CTF-1 proteins form different heterodimer complexes with the given subset of endogenous NFI proteins in epithelial or fibroblast cells. Polymerase chain reaction analysis and cDNA library screens identified the endogenous fibroblast type NFI as NFI-X, an NFI family member originally cloned from hamster liver cells. The strict correlation between the activation or lack of activation of the HPV-16 enhancer and cell-specific subsets of NFI proteins argues for the pivotal role of NFI binding sites in the epithelial cell-specific function of the viral enhancer. Images PMID:8392590

  11. Expression of epithelial markers by human umbilical cord stem cells. A topographical analysis.

    PubMed

    Garzón, I; Alfonso-Rodríguez, C A; Martínez-Gómez, C; Carriel, V; Martin-Piedra, M A; Fernández-Valadés, R; Sánchez-Quevedo, M C; Alaminos, M

    2014-12-01

    Human umbilical cord stem cells have inherent differentiation capabilities and potential usefulness in regenerative medicine. However, the epithelial differentiation capability and the heterogeneity of these cells have not been fully explored to the date. We analyzed the expression of several undifferentiation and epithelial markers in cells located in situ in different zones of the umbilical cord -in situ analysis- and in primary ex vivo cell cultures of Wharton's jelly stem cells by microarray and immunofluorescence. Our results demonstrated that umbilical cord cells were heterogeneous and had intrinsic capability to express in situ stem cell markers, CD90 and CD105 and the epithelial markers cytokeratins 3, 4, 7, 8, 12, 13, 19, desmoplakin and zonula occludens 1 as determined by microarray and immunofluorescence, and most of these markers remained expressed after transferring the cells from the in situ to the ex vivo cell culture conditions. However, important differences were detected among some cell types in the umbilical cord, with subvascular zone cells showing less expression of stem cell markers and cells in Wharton's jelly and the amnioblastic zones showing the highest expression of stem cells and epithelial markers. These results suggest that umbilical cord mesenchymal cells have intrinsic potential to express relevant epithelial markers, and support the idea that they could be used as alternative cell sources for epithelial tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling

    SciTech Connect

    Seomun, Young; Joo, Choun-Ki

    2008-07-18

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.

  13. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis

    PubMed Central

    Gifford, Gail B; Demitrack, Elise S; Keeley, Theresa M; Tam, Andrew; La Cunza, Nilsa; Dedhia, Priya H; Spence, Jason R; Simeone, Diane M; Saotome, Ichiko; Louvi, Angeliki; Siebel, Christian W; Samuelson, Linda C

    2016-01-01

    Objective We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate stem and epithelial cell homoeostasis in mouse and human gastric antral tissue. Design Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and cellular differentiation were measured by histological and molecular approaches. Organoids were established from mouse and human antral glands; growth and differentiation were measured after treatment with Notch inhibitors. Results Notch1 and Notch2 are the predominant Notch receptors expressed in mouse and human antral tissue and organoid cultures. Combined inhibition of Notch1 and Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with remodelling of cells to express secretory products normally associated with other regions of the GI tract, including intestine. Analysis of mouse and human organoids showed that Notch signalling through Notch1 and Notch2 is intrinsic to the epithelium and required for organoid growth. Conclusions Notch signalling is required to maintain gastric antral stem cells. Notch1 and Notch2 are the primary Notch receptors regulating epithelial cell homoeostasis in mouse and human stomach. PMID:26933171

  14. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    SciTech Connect

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  15. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  16. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  17. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  18. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    PubMed

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (<5%). Results indicate that the 3D human airway epithelial model used in this study is able to differentiate between substances with low and high absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  19. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    PubMed

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  20. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia.

    PubMed

    Egawa, Nagayasu; Egawa, Kiyofumi; Griffin, Heather; Doorbar, John

    2015-07-16

    Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted.

  1. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia

    PubMed Central

    Egawa, Nagayasu; Egawa, Kiyofumi; Griffin, Heather; Doorbar, John

    2015-01-01

    Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted. PMID:26193301

  2. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  4. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo.

    PubMed

    Larios-Rodriguez, E; Rangel-Ayon, C; Castillo, S J; Zavala, G; Herrera-Urbina, R

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  5. Influence of sex on gene expression in human corneal epithelial cells

    PubMed Central

    Suzuki, Tomo; Richards, Stephen M.; Liu, Shaohui; Jensen, Roderick V.

    2009-01-01

    Purpose Sex-associated differences have been identified in the anatomy, physiology and pathophysiology of the human cornea. We hypothesize that many of these differences are due to fundamental variations in gene expression. Our objective in this study was to determine whether such differences exist in human corneal epithelial cells both in vivo and in vitro. Methods Human corneal epithelial cells were isolated from the corneoscleral rims of male and female donors. Cells were processed either directly for RNA extraction, or first cultured in phenol red-free keratinocyte serum-free media. The RNA samples were examined for differentially expressed mRNAs by using of CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with GeneSifter.Net software. Results Our results demonstrate that sex significantly influences the expression of over 600 genes in human corneal epithelial cells in vivo. These genes are involved in a broad spectrum of biologic processes, molecular functions and cellular components, such as metabolic processes, DNA replication, cell migration, RNA binding, oxidoreductase activity and nucleoli. We also identified significant, sex-related effects on gene expression in human corneal epithelial cells in vitro. However, with few exceptions (e.g., X- and Y-linked genes), these sex-related differences in gene expression in vitro were typically different than those in vivo. Conclusions Our findings support our hypothesis that sex-related differences exist in the gene expression of human corneal epithelial cells. Variations in gene expression may contribute to sex-related differences in the prevalence of certain corneal diseases. PMID:20011627

  6. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  7. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  8. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  9. Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells

    PubMed Central

    Wang, Jin; Frohlich, Kyla M.; Buckner, Lyndsey; Quayle, Alison J.; Luo, Miao; Feng, Xiaogeng; Beatty, Wandy; Hua, Ziyu; Rao, Xiancai; Lewis, Maria E.; Sorrells, Kelly; Santiago, Kerri; Zhong, Guangming

    2011-01-01

    Chlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival. Here we used primary human endocervical epithelial cells and HeLa cells infected with C. trachomatis to examine the secretion of bacterial proteins during productive growth and persistent growth induced by ampicillin. Specifically, we observed a decrease in secretable chlamydial protease-like activity factor (CPAF) in the cytosol of host epithelial cells exposed to ampicillin with no evident reduction of CPAF product by C. trachomatis. In contrast, the expression of CopN and Tarp was downregulated, suggesting that C. trachomatis responds to ampicillin exposure by selectively altering the expression of secretable proteins. In addition, we observed a greater accumulation of outer-membrane vesicles from C. trachomatis in persistently infected cells. Taken together, these results suggest that the regulation of both gene expression and the secretion of chlamydial virulence proteins is involved in the adaptation of the bacteria to a persistent infection state in human genital epithelial cells. PMID:21737500

  10. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  11. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  12. DIFFERENTIAL ACTIVATION OF AP-1 IN HUMAN BLADDER EPITHELIAL CELLS BY INORGANIC AND METHYLATED ARSENICALS

    EPA Science Inventory

    Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals

    Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo

    ABSTRACT

    Epidemiological studies have linked chronic ingestion of drinking water contai...

  13. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  14. DIFFERENTIAL ACTIVATION OF AP-1 IN HUMAN BLADDER EPITHELIAL CELLS BY INORGANIC AND METHYLATED ARSENICALS

    EPA Science Inventory

    Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals

    Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo

    ABSTRACT

    Epidemiological studies have linked chronic ingestion of drinking water contai...

  15. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  16. All-Trans Retinoic Acid Increases Aquaporin 3 Expression in Human Vaginal Epithelial Cells.

    PubMed

    Lee, Hyun-Suk; Kim, Sun-Ouck; Ahn, Kyuyoun; Park, Kwangsung

    2016-12-01

    Water channel aquaporin 3 (AQP3) is an aquaglyceroporin that transports small neutral solutes and water. All-trans retinoic acid (ATRA), a member of the retinoid drug class, acts as a regulator in several biological processes. To investigate the effect of ATRA on the expression of AQP3 in human vaginal epithelial cells. Human vaginal mucosal epithelial cells (CRL2616) were treated with ATRA 0, 0.01, 0.1, and 1 μmol/L for 24 hours to examine the dose-dependent effects of ATRA and with ATRA 1 μmol/L for 0, 3, 6, 12, and 24 hours. The expression of AQP3 and retinoic acid receptor (RAR) was determined by western blot analysis and reverse transcription polymerase chain reaction. AQP3 was detected in the cell membrane of human vaginal epithelial cells. ATRA increased the protein expression and mRNA levels of AQP3 in a dose-dependent manner (P < .05). ATRA also increased the protein expression of RARα (P < .05). Treatment of CRL2616 cells with an RAR antagonist (Ro 41-5253) significantly decreased AQP3 protein expression (P < .05). ATRA mediated by RARα increased AQP3 gene and protein expression in human vaginal mucosal epithelial cells. These results imply that AQP3 regulated by ATRA could play an important role in the mechanism of vaginal lubrication. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  18. THE EFFECT OF SIZE FRACTIONED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO

    EPA Science Inventory

    THE EFFECT OF SIZE FRACTIONATED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO. LA Dailey1, C Sioutas2, JM Soukup1, S Becker1, RB Devlin1. 1National Health & Environmental Effects Research Laboratory, USEPA, RTP, NC,USA; 2USC, Civil & Environmental Engineering, LA, ...

  19. LPS may enhance expression and release of HMGB1 in human nasal epithelial cells in vitro.

    PubMed

    Chen, D; Bellussi, L M; Passali, D; Chen, L

    2013-12-01

    Chronic rhinosinusitis with nasal polyps is a common disease with still unclear pathophysiologic mechanisms. The airway epithelial barrier has been shown to be involved in different chronic disorders, including rhinitis, nasal polyposis and asthma. High mobility group box 1 (HMGB1), a primarily nuclear protein, is involved in the induction of airway inflammation in patients with chronic rhinosinusitis, allergy, asthma and COPD. Pathogen-derived lipopolysaccharide is widely used as a trigger for inflammation. However, the molecular dialogue between LPS and HMGB1 in the delayed inflammatory processes remains to be explored, and the regulation of HMGB1 release through LPS from epithelial cells has not been extensively studied in patients with chronic rhinosinusitis and nasal polyps. The objective of the present study was to investigate the relocation of HMGB1 in LPS-induced human nasal epithelial cells in vitro. We obtained epithelial cells of nasal polyps from 10 patients requiring surgery for sinusitis at the ENT Department of the Chinese PLA General Hospital. The primary cultured human nasal epithelial (HNE) cells were stimulated with LPS. The expression and translocation of HMGB1 in intracellular and culture supernatants were determined using Western blot and immunofluorescence assay. HMGB1 protein was released in a time-dependent fashion in culture supernatants: in fact, expression of HMGB1 protein in HNE cells showed no significant changes at 0-24 h after exposure to 100 μg/ml LPS, but increased significantly at 48 and 72 hr. Immunofluorescence analysis revealed the transfer of HMGB1 from nuclei to cytoplasm in response to LPS exposure after 24 hr. These data reveal a hitherto unrecognized association between HMGB1 and LPS in human nasal epithelial cells. LPS can affect HMGB1 translocation and release, suggesting the involvement of HMGB1, through inflammatory mediators, in chronic rhinosinusitis with nasal polyps.

  20. Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter.

    PubMed

    Mushtaq, Naseem; Ezzati, Majid; Hall, Lucinda; Dickson, Iain; Kirwan, Michael; Png, Ken M Y; Mudway, Ian S; Grigg, Jonathan

    2011-05-01

    Epidemiologic studies report an association between pneumonia and urban particulate matter (PM) less than 10 microns (μm) in aerodynamic diameter (PM(10)). Streptococcus pneumoniae is a common cause of bacterial pneumonia worldwide. To date, the mechanism whereby urban PM enhances vulnerability to S pneumoniae infection is unclear. Adhesion of S pneumoniae to host cells is a prerequisite for infection. Host-expressed proteins, including the receptor for platelet-activating factor (PAFR), are co-opted by S pneumoniae to adhere to lower airway epithelial cells. To define whether inhalable urban PM enhances the adhesion of S pneumoniae to airway epithelial cells. A549 cells were cultured with PM(10) from Leicester (United Kingdom [UK]) and PM(10) and PM less than 2.5 μm in aerodynamic diameter (PM(2.5)) from Accra (Ghana), then infected with S pneumoniae strain D39. Pneumococcal adhesion to human primary bronchial epithelial cells was also assessed. Bacterial adhesion was determined by quantitative culture and confocal microscopy. The role of oxidative stress was assessed by N-acetyl cysteine, and the role of PAFR was assessed by mRNA transcript level, receptor expression, and receptor blocking. PM(10) (UK) increased S pneumoniae adhesion to both A549 airway epithelial cells and human primary bronchial epithelial cells. PM(10) (Ghana) and PM(2.5) (Ghana) also increased adhesion. Culture of A549 cells by PM(10) (UK) increased PAFR mRNA transcript level and PAFR expression. PM(10) (UK)-stimulated adhesion to A549 cells was attenuated by a PAFR blocker and N-acetyl cysteine. Urban PM increases adhesion of S pneumoniae to human airway epithelial cells. PM-stimulated adhesion is mediated by oxidative stress and PAFR. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn{sup 2+}

    SciTech Connect

    Tal, T.L.; Graves, L.M.; Silbajoris, R.; Bromberg, P.A.; Wu, W.; Samet, J.M. . E-mail: samet.james@epa.gov

    2006-07-01

    Epidemiological studies have implicated zinc (Zn{sup 2+}) in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism of Zn{sup 2+}-induced EGFR activation in HAEC, we treated HAEC with 500 {mu}M ZnSO{sub 4} for 5-20 min and measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to Zn{sup 2+} results in increased phosphorylation at both trans- and autophosphorylation sites in the EGFR. Zn{sup 2+}-mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn{sup 2+} treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to Zn{sup 2+}. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn{sup 2+} or V{sup 4+} was significantly diminished. Moreover, exposure of HAEC to Zn{sup 2+} also resulted in a significant impairment of dephosphorylation of endogenous EGFR. These data show that Zn{sup 2+}-induced activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are marked cell-type-specific differences in the mechanism of EGFR activation induced by Zn{sup 2+} exposure.

  2. Restoration of telomeres in human papillomavirus-immortalized human anogenital epithelial cells

    SciTech Connect

    Klingelhutz, A.J.; Barber, S.A.; Smith, P.P.

    1994-02-01

    Loss of telomeres has been hypothesized to be important in cellular senescence and may play a role in carcinogenesis. In this study, we have measured telomere length in association with the immortalization and transformation of human cervical and foreskin epithelial cells by the human papillomavirus type 16 or 18 E6 and E7 open reading frames. By using a telomeric TTAGGG repeat probe, it was shown that the telomeres of precrisis normal and E6-, E7-, and E6/E7-expressing cells gradually shortened with passaging (30 to 100 bp per population doubling). Cells that expressed both E6 and E7 went through a crisis period and gave rise to immortalized lines. In contrast to precrisis cells, E6/E7-immortalized cells generally showed an increase in telomere length as they were passaged in culture, with some later passage lines having telomeres that were similar to or longer than the earliest-passage precrisis cells examined. No consistent association could be made between telomere length and tumorigenicity of cells in nude mice. However, of the three cell lines that grew in vivo, two had long telomeres, thus arguing against the hypothesis that cancer cells favor shortened telomeres. Our results indicate that arrest of telomere shortening may be important in human papillomavirus-associated immortalization and that restoration of telomere length may be advantageous to cells with regard to their ability to proliferate. 55 refs., 7 figs., 1 tab.

  3. Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection.

    PubMed Central

    Lemoine, N. R.; Mayall, E. S.; Jones, T.; Sheer, D.; McDermid, S.; Kendall-Taylor, P.; Wynford-Thomas, D.

    1989-01-01

    Human primary thyroid follicular epithelial cells were transfected with a plasmid containing an origin-defective SV40 genome (SVori-) to produce several immortal cell lines. Two of the 10 cell lines analysed expressed specific features of thyroid epithelial function (iodide-trapping and thyroglobulin production). These two lines were characterised in detail and found to be growth factor-independent, capable of anchorage-independent growth at low frequency but non-tumorigenic in nude mice. These differentiated, These differentiated, partially transformed cell lines were shown to be suitable for gene transfer at high frequency using simple coprecipitation techniques. Images Figure 2 Figure 3 Figure 4 PMID:2557880

  4. Adiponectin differentially affects gene expression in human mammary epithelial and breast cancer cells.

    PubMed

    Treeck, O; Lattrich, C; Juhasz-Boess, I; Buchholz, S; Pfeiler, G; Ortmann, O

    2008-10-21

    Serum levels of adiponectin are inversely associated with breast cancer risk. In this study, its effect on growth and gene expression of MCF-7 breast cancer cells and MCF-10A human mammary epithelial cells was compared. The antiproliferative effect of adiponectin on MCF-10A cells was more pronounced and was accompanied by elevated transcript levels of caspase 1, ERbeta2, ERbeta5, TR2 and USP2. Our data suggest that upregulation of genes with known growth inhibitory or apoptotic functions in mammary epithelial cells might contribute to the protective action of this adipocytokine.

  5. Evidence for the multistep nature of in vitro human epithelial cell carcinogenesis

    SciTech Connect

    Rhim, J.S.; Yoo, J.H.; Park, J.H.; Thraves, P.; Salehi, Z.; Dritschilo, A. )

    1990-09-01

    In keeping with the multistep development of human cancer in vivo, a stepwise approach to neoplastic transformation in vitro presents a reasonable strategy. We have recently developed an in vitro multistep model suitable for the study of human epithelial cell carcinogenesis. Upon infection with the adenovirus 12-simian virus 40 hybrid virus, primary human epidermal keratinocytes acquired an indefinite life span in culture but did not undergo malignant conversion. Subsequent addition of Kirsten murine sarcoma virus and human ras oncogene or chemical carcinogens (N-methyl-N{prime}-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide) to these cells induced morphological alterations and the acquisition of neoplastic properties. Subsequently it was found that this line could be transformed neoplastically by a variety of retrovirus-containing H-ras, bas, fes, fms, erbB, and src oncogenes. In addition, we found that the immortalized human epidermal keratinocyte (RHEK-1) line can be transformed neoplastically by exposure to ionizing radiation. Thus, this in vitro system may be useful in studying the interaction of a variety of carcinogenic agents and human epithelial cells. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of viruses, oncogenes, chemical carcinogens, or X-ray irradiation and support a multistep process for neoplastic conversion.

  6. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells.

    PubMed

    Bersaas, Audun; Arnoldussen, Yke Jildouw; Sjøberg, Mari; Haugen, Aage; Mollerup, Steen

    2016-09-01

    Lung cancer is largely an environmentally caused disease with poor prognosis. An in vitro transformation model of human bronchial epithelial cells (HBEC) was used to study long-term effects of tobacco smoke carcinogens on epithelial-mesenchymal transition (EMT) and the forkhead box transcription factors FOXA1 and FOXA2. CDK4 and hTERT immortalized HBEC2 and HBEC12 cell lines were exposed weekly to either cigarette smoke condensate (CSC), benzo[a]pyrene, or methylnitrosourea. Transformed cell lines were established from soft-agar colonies after 12weeks of exposure. HBEC12 was transformed by all exposures while HBEC2 was only transformed by CSC. Untransformed HBEC2 showed little invasive capacity, whereas transformed cell lines completely closed the gap in a matrigel scratch wound assay. CDH1 was down-regulated in all of the transformed cell lines. In contrast, CDH2 was up-regulated in both HBEC2 and one of the HBEC12 transformed cell lines. Furthermore, transformed cells showed activation of EMT markers including SNAI1, ZEB1, VIM, and MMP2. All transformed cell lines had significant down-regulation of FOXA1 and FOXA2, indicating a possible role in cell transformation and EMT. ChIP analysis showed increased binding of Histone-H3 and macroH2A in FOXA1 and FOXA2 in the transformed HBEC2 cell lines, indicating a compact chromatin. In conclusion, long-term carcinogen exposure lead to down-regulation of FOXA1 and FOXA2 concomitantly with the occurrence of EMT and in vitro transformation in HBEC cells. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells.

    PubMed

    Kim, Seok-Jo; Chung, Tae-Wook; Choi, Hee-Jung; Kwak, Choong-Hwan; Song, Kwon-Ho; Suh, Seok-Jong; Kwon, Kyung-Min; Chang, Young-Chae; Park, Young-Guk; Chang, Hyeun Wook; Kim, Kyoung-Sook; Kim, Cheorl-Ho; Lee, Young-Choon

    2013-01-01

    TGF-β (transforming growth factor-β)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-β-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-β1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-β1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-β1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-β. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-β1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFβRs (TGF-β receptors) in TGF-β1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-β1 regulates EMT by potential interaction with TGFβRs.

  8. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  9. Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas

    PubMed Central

    Jin, Joy Q.; Woodard, Gavitt A.; Tolani, Bhairavi; Luh, Thomas M.; Giroux-Leprieur, Etienne; Mo, Minli; Chen, Zhao; Che, Juanjuan; Zhang, Zhenfa; Zhou, Yong; Wang, Lei; Hao, Xishan; Jablons, David; Wang, Changli; He, Biao

    2016-01-01

    Adenocarcinoma is the most common type of lung cancer. Epithelial-mesenchymal transition (EMT) is required for tumor invasion/metastasis and the components that control this process are potential therapeutic targets. This study we examined the role of Gli in lung adenocarcinoma and whether its activation regulates metastasis through EMT in lung adenocarcinoma. We found that tumors with high Gli expression had significantly lower E-Cadherin expression in two independent cohorts of patients with lung adenocarcinoma that we studied. In vitro up-regulation of SHh resulted in increased cell migration while small molecule inhibitors of Smo or Gli significantly reduced cell mobility both in a wound healing assay and in a 3D cell invasion assay. Inhibition of Gli in vivo decreased tumor growth and induced an increase in E-Cadherin expression. Our results indicate that Gli may be critical for lung adenocarcinoma metastasis and that a novel Gli inhibitor shows promise as a therapeutic agent by preventing cell migration and invasion in vitro and significantly reducing tumor growth and increasing E-Cadherin expression in vivo. PMID:27533453

  10. Transcription Factors OVOL1 and OVOL2 Induce the Mesenchymal to Epithelial Transition in Human Cancer

    PubMed Central

    Roca, Hernan; Hernandez, James; Weidner, Savannah; McEachin, Richard C.; Fuller, David; Sud, Sudha; Schumann, Taibriana; Wilkinson, John E.; Zaslavsky, Alexander; Li, Hangwen; Maher, Christopher A.; Daignault-Newton, Stephanie; Healy, Patrick N.; Pienta, Kenneth J.

    2013-01-01

    Cell plasticity regulated by the balance between the mesenchymal to epithelial transition (MET) and the opposite program, EMT, is critical in the metastatic cascade. Several transcription factors (TFs) are known to regulate EMT, though the mechanisms of MET remain unclear. We demonstrate a novel function of two TFs, OVOL1 and OVOL2, as critical inducers of MET in human cancers. Our findings indicate that the OVOL-TFs control MET through a regulatory feedback loop with EMT-inducing TF ZEB1, and the regulation of mRNA splicing by inducing Epithelial Splicing Regulatory Protein 1 (ESRP1). Using mouse prostate tumor models we show that expression of OVOL-TFs in mesenchymal prostate cancer cells attenuates their metastatic potential. The role of OVOL-TFs as inducers of MET is further supported by expression analyses in 917 cancer cell lines, suggesting their role as crucial regulators of epithelial-mesenchymal cell plasticity in cancer. PMID:24124593

  11. A Case Report of Focal Epithelial Hyperplasia (Heck's disease) with PCR Detection of Human Papillomavirus.

    PubMed

    Ozden, Bora; Gunduz, Kaan; Gunhan, Omer; Ozden, Feyza Otan

    2011-12-01

    Focal epithelial hyperplasia or Heck's disease, is a rare viral infection of the oral mucosa caused by human papillomavirus. The frequency of this disease varies widely from one geographic region to another. In Caucasians there have been only few cases reported. This paper reports a case of focal epithelial hyperplasia and demonstrates the association with HPV subtype 32 through polymerase chain reaction (PCR) and sequencing of PCR products. A 7-year-old Caucasian girl was admitted to our clinic for investigation of multiple oral mucosal lesions in the mouth. Lesion was excised under local anesthesia without any complication. The lesion was diagnosed as focal epithelial hyperplasia according to both clinical and histopathological features. Dental staff should be aware of these kind of lesions and histopathological examination together with a careful clinical observation should be carried out for a definitive diagnosis.

  12. The Influence of 13-cis Retinoic Acid on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Kam, Wendy R.; Dieckow, Julia; Sullivan, David A.

    2013-01-01

    Purpose. Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. Methods. To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. Results. We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. Conclusions. Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA–related induction of MGD. PMID:23722388

  13. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

    PubMed

    Kuehn, Anna; Kletting, Stephanie; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Griffiths, Gareth; Fischer, Ulrike; Meese, Eckart; Huwer, Hanno; Wirth, Dagmar; May, Tobias; Schneider-Daum, Nicole; Lehr, Claus-Michael

    2016-01-01

    This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials.

  14. Cigarette smoke extract reduces VEGF in primary human airway epithelial cells.

    PubMed

    Thaikoottathil, J V; Martin, R J; Zdunek, J; Weinberger, A; Rino, J G; Chu, H W

    2009-04-01

    Reduced vascular endothelial growth factor (VEGF) has been reported in bronchoalveolar lavage fluid and lungs of severe emphysema patients. Airway epithelial cells (AEC) are exposed to various environmental insults like cigarette smoke and bacterial infections, but their direct effect on VEGF production in well-differentiated primary human AEC remains unclear. The current authors determined the effect of cigarette smoke extract (CSE) alone and in combination with Mycoplasma pneumoniae (Mp) on VEGF production in well-differentiated primary normal human bronchial epithelial (NHBE) and small airway epithelial cells (SAEC) in air-liquid interface cultures. Secretion and expression of VEGF were determined by ELISA and real-time RT-PCR, respectively. Cell growth, apoptosis, extracellular signal-regulated kinase (ERK)1/2 and protein kinase (PK)C signalling pathways were evaluated to further dissect VEGF regulation under CSE treatment. CSE significantly reduced VEGF secretion in NHBE and SAEC. In SAEC, Mp alone significantly increased the VEGF, while the presence of CSE attenuated Mp-induced VEGF production. While ERK inhibitor reduced VEGF secretion only in NHBE, a PKC inhibitor significantly decreased VEGF secretion in both NHBE and SAEC. In conclusion, direct cigarette smoke extract exposure significantly reduced vascular endothelial growth factor production in well-differentiated primary human airway epithelial cells, in part through modifying extracellular signal-regulated kinase 1/2 and protein kinase C signalling pathways.

  15. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells.

    PubMed

    Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao

    2015-07-20

    Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.

  16. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function

    PubMed Central

    Bode, Lars; Salvestrini, Camilla; Park, Pyong Woo; Li, Jin-Ping; Esko, Jeffrey D.; Yamaguchi, Yu; Murch, Simon; Freeze, Hudson H.

    2007-01-01

    Patients with protein-losing enteropathy (PLE) fail to maintain intestinal epithelial barrier function and develop an excessive and potentially fatal efflux of plasma proteins. PLE occurs in ostensibly unrelated diseases, but emerging commonalities in clinical observations recently led us to identify key players in PLE pathogenesis. These include elevated IFN-γ, TNF-α, venous hypertension, and the specific loss of heparan sulfate proteoglycans from the basolateral surface of intestinal epithelial cells during PLE episodes. Here we show that heparan sulfate and syndecan-1, the predominant intestinal epithelial heparan sulfate proteoglycan, are essential in maintaining intestinal epithelial barrier function. Heparan sulfate– or syndecan-1–deficient mice and mice with intestinal-specific loss of heparan sulfate had increased basal protein leakage and were far more susceptible to protein loss induced by combinations of IFN-γ, TNF-α, and increased venous pressure. Similarly, knockdown of syndecan-1 in human epithelial cells resulted in increased basal and cytokine-induced protein leakage. Clinical application of heparin has been known to alleviate PLE in some patients but its unknown mechanism and severe side effects due to its anticoagulant activity limit its usefulness. We demonstrate here that non-anticoagulant 2,3-de-O-sulfated heparin could prevent intestinal protein leakage in syndecan-deficient mice, suggesting that this may be a safe and effective therapy for PLE patients. PMID:18064305

  17. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells.

    PubMed

    Olsen, Colin E; Liguori, Andrew E; Zong, Yue; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2008-08-01

    As part of the innate immune defense, the polarized conducting lung epithelium acts as a barrier to keep particulates carried in respiration from underlying tissue. Arsenic is a metalloid toxicant that can affect the lung via inhalation or ingestion. We have recently shown that chronic exposure of mice or humans to arsenic (10-50 ppb) in drinking water alters bronchiolar lavage or sputum proteins consistent with reduced epithelial cell migration and wound repair in the airway. In this report, we used an in vitro model to examine effects of acute exposure of arsenic (15-290 ppb) on conducting airway lung epithelium. We found that arsenic at concentrations as low as 30 ppb inhibits reformation of the epithelial monolayer following scrape wounds of monolayer cultures. In an effort to understand functional contributions to epithelial wound repair altered by arsenic, we showed that acute arsenic exposure increases activity and expression of matrix metalloproteinase (MMP)-9, an important protease in lung function. Furthermore, inhibition of MMP-9 in arsenic-treated cells improved wound repair. We propose that arsenic in the airway can alter the airway epithelial barrier by restricting proper wound repair in part through the upregulation of MMP-9 by lung epithelial cells.

  18. Cadmium Regulates the Expression of the CFTR Chloride Channel in Human Airway Epithelial Cells

    PubMed Central

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N.; Davis, Ian C.; Knoell, Daren L.; Parinandi, Narasimham L.; Cormet-Boyaka, Estelle

    2010-01-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function. PMID:20363832

  19. Platelet-derived microparticles and soluble factors differentially regulate human endometrial epithelial cell movement.

    PubMed

    Suginami, Koh; Sato, Yukiyasu; Horie, Akihito; Matsumoto, Hisanori; Tani, Hirohiko; Mizumoto, Yasunari; Ono, Masanori; Matsuoka, Ayumi; Kyo, Satoru; Araki, Yoshihiko; Konishi, Ikuo; Fujiwara, Hiroshi

    2017-04-01

    We previously proposed that platelets promote re-epithelialization during menstruation. As cell movement is one of the important cell behaviors in the process of tissue remodeling, we examined the effects of platelets on endometrial epithelial cell invasion. The platelets were isolated from healthy women. Using a human endometrial epithelial cell-derived immortalized cell line, EM-E6/E7/hTERT cells, we examined the effects of platelets and platelet-derived condition media with or without microparticles on the morphological and invasive properties of EM-E6/E7/hTERT cells. Platelets and microparticle-containing conditioned media inhibited Matrigel invasion by EM-E6/E7/hTERT cells along with an increase in cortical ring formation, whereas microparticle-depleted conditioned media promoted their invasion without any significant changes of cortical ring formation. These results support our previous proposal and newly suggest the dual roles of platelets: platelet-derived soluble factors that promote cell movement in the distant area, and microparticles that induce re-epithelialization by endometrial epithelial cells in the proximal area. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    PubMed

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  1. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells

    PubMed Central

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N.

    2013-01-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  2. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    PubMed

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma.

  3. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  4. Effect of cord blood serum on ex vivo human limbal epithelial cell culture.

    PubMed

    Chakraborty, Anindita; Dutta, Jayanta; Das, Sumantra; Datta, Himadri

    2012-12-01

    Limbal cell transplantation is an efficacious procedure for rehabilitation of visual acuity in patients with severe ocular surface disorders. Cultivation of limbal epithelial stem cell with fetal bovine serum for transplantation has been a promising treatment for reconstructing the ocular surface in severe limbal stem cell deficiency caused by Steven Johnson syndrome, chemical or thermal injury. This technique of "cell therapy" has been accepted worldwide but the cost of cultivating the cells for transplantation is high. The objective of this study was to investigate the effect of cord blood serum in place of fetal bovine serum on the growth of human limbal epithelial cell culture. Our group has experimented with human cord blood serum which was obtained free of cost from willing donors. The use of human cord blood serum in place of fetal bovine serum for ex vivo culture of limbal stem cell has helped us in reducing the cost of culture. Fresh human limbal tissues from donor cadavers were cultured on intact and denuded amniotic membrane. Cells were proliferated in vitro with cell culture media containing human cord blood serum. Reverse transcription-polymerase chain reaction and immunofluorescence cytochemistry of cultured human limbal epithelial stem cell was done for characterization of the cells.

  5. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins.

    PubMed

    Ramirez, Ruben D; Sheridan, Shelley; Girard, Luc; Sato, Mitsuo; Kim, Young; Pollack, Jon; Peyton, Michael; Zou, Ying; Kurie, Jonathan M; Dimaio, J Michael; Milchgrub, Sara; Smith, Alice L; Souza, Rhonda F; Gilbey, Laura; Zhang, Xi; Gandia, Kenia; Vaughan, Melville B; Wright, Woodring E; Gazdar, Adi F; Shay, Jerry W; Minna, John D

    2004-12-15

    By expressing two genes (hTERT and Cdk4), we have developed a method to reproducibly generate continuously replicating human bronchial epithelial cell (HBEC) lines that provide a novel resource to study the molecular pathogenesis of lung cancer and the differentiation of bronchial epithelial cells. Twelve human bronchial epithelial biopsy specimens obtained from persons with and without lung cancer were placed into short-term culture and serially transfected with retroviral constructs containing cyclin-dependent kinase (Cdk) 4 and human telomerase reverse transcriptase (hTERT), resulting in continuously growing cultures. The order of introduction of Cdk4 and hTERT did not appear to be important; however, transfection of either gene alone did not result in immortalization. Although they could be cloned, the immortalized bronchial cells did not form colonies in soft agar or tumors in nude mice. The immortalized HBECs have epithelial morphology; express epithelial markers cytokeratins 7, 14, 17, and 19, the stem cell marker p63, and high levels of p16(INK4a); and have an intact p53 checkpoint pathway. Cytogenetic analysis and array comparative genomic hybridization profiling show immortalized HBECs to have duplication of parts of chromosomes 5 and 20. Microarray gene expression profiling demonstrates that the Cdk4/hTERT-immortalized bronchial cell lines clustered together and with nonimmortalized bronchial cells, distinct from lung cancer cell lines. We also immortalized several parental cultures with viral oncoproteins human papilloma virus type 16 E6/E7 with and without hTERT, and these cells exhibited loss of the p53 checkpoint and significantly different gene expression profiles compared with Cdk4/hTERT-immortalized HBECs. These HBEC lines are a valuable new tool for studying of the pathogenesis of lung cancer.

  6. Transcription factor TCF4 maintains the properties of human corneal epithelial stem cells.

    PubMed

    Lu, Rong; Qu, Yangluowa; Ge, Jian; Zhang, Lili; Su, Zhitao; Pflugfelder, Stephen C; Li, De-Quan

    2012-04-01

    TCF4, a key transcription factor of Wnt signaling system, has been recently found to be essential for maintaining stem cells. However, its signaling pathway is not well elucidated. This study was to explore the functional roles and signaling pathway of TCF4 in maintaining adult stem cell properties using human corneal epithelial stem cells as a model. With immunofluorescent staining and real-time polymerase chain reaction, we observed that TCF4 was exclusively expressed in the basal layer of human limbal epithelium where corneal epithelial stem cells reside. TCF4 was found to be well colocalized with ABCG2 and p63, two recognized epithelial stem/progenitor cell markers. Using in vitro culture models of primary human corneal epithelial cells, we revealed that TCF4 mRNA and protein were upregulated by cells in exponential growth stage, and RNA interference by small interfering RNA-TCF4 (10-50 nM) transfection blocked TCF4 signaling and suppressed cell proliferation as measured by WST-1 assay. TCF4 silence was found to be accompanied by downregulated proliferation-associated factors p63 and survivin, as well as upregulated cyclin-dependent kinase inhibitor 1C (p57). By creating a wound healing model in vitro, we identified upregulation and activation of β-catenin/TCF4 with their protein translocation from cytoplasm to nuclei, as evaluated by reverse transcription-quantitative real-time polymerase chain reaction, immunostaining, and Western blotting. Upregulated p63/survivin and downregulated p57 were further identified to be TCF4 downstream molecules that promote cell migration and proliferation in wound healing process. These findings demonstrate that transcription factor TCF4 plays an important role in determining or maintaining the phenotype and functional properties of human corneal epithelial stem cells. Copyright © 2012 AlphaMed Press.

  7. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  8. Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancers

    PubMed Central

    Yang, Xinan; Lee, Younghee; Fan, Hong; Sun, Xiao; Lussier, Yves A

    2010-01-01

    The complex regulatory network between microRNAs and gene expression remains unclear domain of active research. We proposed to address in part this complex regulation with a novel approach for the genome-wide identification of biomodules derived from paired microRNA and mRNA profiles, which could reveal correlations associated with a complex network of de-regulation in human cancer. Two published expression datasets for 68 samples with 11 distinct types of epithelial cancers and 21 samples of normal tissues were used, containing microRNA expression (Lu et al. Nature Letters 2005) and gene expression (Ramaswarmy et al. PNAS 2001) profiles, respectively. As results, the microRNA expression used jointly with mRNA expression can provide better classifiers of epithelial cancers against normal epithelial tissue than either dataset alone (p=1×10-10, F-Test). We identified a combination of six microRNA-mRNA biomodules that optimally classified epithelial cancers from normal epithelial tissue (total accuracy = 93.3%; 95% confidence intervals: 86% - 97%), using penalized logistic regression (PLR) algorithm and three-fold cross-validation. Three of these biomodules are individually sufficient to cluster epithelial cancers from normal tissue using mutual information distance. The biomodules contain 10 distinct microRNAs and 98 distinct genes, including well known tumor markers such as miR-15a, miR-30e, IRAK1, TGFBR2, DUSP16, CDC25B and PDCD2. In addition, there is a significant enrichment (Fisher’s exact test p=3×10-10) between putative microRNA-target gene pairs reported in five microRNA target databases and the inversely correlated micro-RNA-mRNA pairs in the biomodules. Further, microRNAs and genes in the biomodules were found in abstracts mentioning epithelial cancers (Fisher Exact Test, unadjusted p<0.05). Taken together, these results strongly suggest that the discovered microRNA-mRNA biomodules correspond to regulatory mechanisms common to human epithelial cancer

  9. Hypoxic Conditions Induce a Cancer-Like Phenotype in Human Breast Epithelial Cells

    PubMed Central

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René; Petersen, Ole W.; Johansson, Elisabet; Beckman, Siv; Larsson, Christer; Påhlman, Sven; Jögi, Annika

    2012-01-01

    Introduction Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. Methods Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. Results In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with

  10. Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.

    PubMed

    Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru

    2013-09-01

    We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.

  11. TGF-beta during human colorectal carcinogenesis: the shift from epithelial to mesenchymal signaling.

    PubMed

    Matsuzaki, K; Seki, T; Okazaki, K

    2006-12-01

    Transforming growth factor-beta (TGF-beta) activates not only TGF-beta type I receptor (Tbeta RI) but also c-Jun N-terminal kinase (JNK), converting the mediator Smad3 to two distinct phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker phosphorylated Smad3 (pSmad3L). While Tbeta RI/pSmad3C pathway inhibits growth of normal epithelial cells, the activated mesenchymal cells invade via JNK/pSmad3L pathway. During sporadic human colorectal carcinogenesis, TGF-beta signaling confers a selective advantage upon tumor cells by shifting from epithelial Tbeta RI/pSmad3C pathway to mesenchymal JNK/pSmad3L pathway. Loss of epithelial homeostasis and acquisition of a migratory, mesenchymal phenotype are essential for tumor invasion. In a future, specific inhibition of the JNK/pSmad3L pathway will become a therapy for human colorectal cancer that restores the lost tumor-suppressive function observed in normal colorectal epithelial cells at the expense of effects promoting the aggressive behavior.

  12. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells

    PubMed Central

    Feygin, Alex; Ivanov, Andrei I.

    2015-01-01

    Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton. PMID:25809162

  13. Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40.

    PubMed Central

    Gruenert, D C; Basbaum, C B; Welsh, M J; Li, M; Finkbeiner, W E; Nadel, J A

    1988-01-01

    To facilitate understanding of the mechanisms underlying pulmonary diseases, including lung cancer and cystic fibrosis, we have transformed and characterized cultures of human tracheal epithelial cells. Cells were transfected by calcium phosphate precipitation with a plasmid containing a replication-defective simian virus 40 (SV40) genome. Colonies of cells with enhanced growth potential were isolated and analyzed for transformation- and epithelial-specific characteristics. Precrisis cells were observed to express the SV40 large tumor antigen, produce cytokeratins, have microvilli, and form tight junctions. After crisis, cells continued to express the SV40 large tumor antigen as well as epithelial-specific cytokeratins and to display the apical membrane microvilli. Apical membrane Cl channels were opened in postcrisis cells exposed to 50 microM forskolin. These channels showed electrical properties similar to those observed in primary cultures. The postcrisis cells have been in culture for greater than 250 generations and are potentially "immortal." In addition to providing a useful in vitro model for the study of ion transport by human airway epithelial cells, the cells can be used to examine stages of neoplastic progression. Images PMID:2457904

  14. Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells.

    PubMed Central

    Doig, P; Todd, T; Sastry, P A; Lee, K K; Hodges, R S; Paranchych, W; Irvin, R T

    1988-01-01

    The ability of pili from Pseudomonas aeruginosa K (PAK) to act as an adhesin to human respiratory epithelial cells was examined using an in vitro adhesion assay. Equilibrium analysis of PAK binding to human buccal epithelial cells (BECs) and tracheal epithelial cells (TECs) by means of a Langmuir adsorption isotherm revealed that the maximum numbers of binding sites per epithelial cell (N) were 255 for BECs and 236 for TECs, with apparent association constants (Ka) of 2.8 x 10(-9) and 5.8 x 10(-9) ml/CFU, respectively. Trypsinization of the BECs before the binding assay increased N to 605 and decreased the Ka to 1.7 x 10(-9) ml/CFU. Addition of homologous pili to the binding assay with BECs or TECs or the addition of anti-pilus Fab fragments inhibited PAK adherence. Binding of purified pili to BECs was shown to reach saturation. Purified pili and PAK competed for the same receptor on the BEC surface. Further, by using peptide fragments of PAK pilin (derived from the native pili or produced synthetically) in the binding assay for PAK to BECs, we have presumptively identified the pilus binding domain in the C-terminal region of the pilin and shown that the C-terminal disulfide bridge is important in maintaining the functionality of the binding domain. PMID:2897336

  15. Hormone Production by Epithelial Cells of Human Thymus in vitro.

    PubMed

    Yarilin, A. A.; Sharova, N. I.; Bulanova, E. C.; Kotchergina, N. I.; Mitin, A. N.; Kharchenko, T. Yu.; Arshinov, V. Yu.

    1996-12-01

    The conditions of hormone production by human thymic stromal cell line were studied. Human thymic stromal cells did not produce any hormones in 5-day monoculture. Co-cultivation of these cells with human thymocytes induced alpha1-thymosin and thymulin production increased to 4-5 days of co-cultivation. An increase in number of human thymic stromal cells and thymocyte elimination were observed in co-culture. The maximal stimulation of proliferation and hormone secretion by human thymic stromal cell was reached in their co-culturing with thymocytes at relative concentrations of 10(4) and 10(7) cells per ml. Thymocyte viability was important for inducing the stimulatory effect. The effect of viable cells could not be replaced by their supernatant. Stimulatory activity of CD4(-)CD8(-) and CD4(+)CD8(+) thymocytes was comparable, alpha1-thymosin and some of its synthetic fragments did not influence alpha1-thymosin synthesis or slightly inhibited it (in high concentrations). Synthetic peptide corresponding to C-terminal half of alpha1-thymosin molecule strongly enhanced production of this hormone.

  16. Construction of tissue engineered skin with human amniotic mesenchymal stem cells and human amniotic epithelial cells.

    PubMed

    Yu, S-C; Xu, Y-Y; Li, Y; Xu, B; Sun, Q; Li, F; Zhang, X-G

    2015-12-01

    To establish a new model for construction of tissue engineered skin with human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial cells (hAECs). hAMSCs and hAECs were isolated from amniotic membrane. The morphology and phenotype of hAMSCs and hAECs were confirmed by microscope and flow cytometry, respectively. Then, we performed RT-PCR and immunofluorescence staining to assess the expression of stem cells and keratinocyte markers. Moreover, cell co-culture was performed to observe the growth and phenotype characteristics of hAMSCs and hAECs in vitro. In addition, tissue engineered skin with hAMSCs and hAECs was constructed and assessed with histological methods. hAMSCs and hAECs were successfully isolated, exhibiting fibroblast-like morphous and cobblestone-shape epithelial morphous, respectively. The surface biomarker analysis showed that hAMSCs and hAECs were both positive for CD73, CD90 and CD105, and negative for CD34 and HLA-DR. The RT-PCR showed that hAMSCs expressed stem cell marker Nanog and c-MYC, and keratinocyte marker K19, β1 integrin and K8, whereas hAECs expressed stem cell marker KLF4 and c-MYC, and keratinocyte marker K19, β1 integrin, K5 and K8. The expression of keratinocyte proliferation antigen K14 was also found on hAECs. Furthermore, we found co-culture has no impact on the phenotype of hAMSCs and hAECs, but increased the proliferation activity of hAECs and decreased the proliferation activity of hAMSCs. Finally, the histological analysis showed that the tissue engineered skin exhibited similar structure as normal skin. Tissue engineered skin with hAMSCs and hAECs was successfully constructed and shown a similar feature as a skin equivalent. The tissue engineered skin might have good application prospects in regenerative medicine.

  17. A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells.

    PubMed Central

    Cunningham, A C; Zhang, J G; Moy, J V; Ali, S; Kirby, J A

    1997-01-01

    Human lung alveolar epithelial cells constitutively express class II major histocompatibility complex (MHC). Human lung microvascular endothelial and small airway epithelial cells can be induced to express class II MHC by stimulation with the pro-inflammatory cytokine interferon-gamma. The levels of class II MHC on lung epithelial and endothelial cells were comparable to those seen on an Epstein-Barr virus (EBV)-transformed B-cell line. However, the costimulatory molecules B7-1 and B7-2 were not expressed. The ability of the class II MHC expressing human lung parenchymal cells to present alloantigen to CD4+ T lymphocytes was investigated. Freshly isolated human alveolar epithelial cells (type II pneumocytes) and monolayers of interferon-gamma-stimulated small airway epithelial and lung microvascular endothelial cells were co-cultured with allogeneic CD4+ T lymphocytes and proliferation determined by [3H]thymidine incorporation. A clear difference was observed between effects of the epithelial and endothelial cells on CD4+ T-lymphocyte activation. Alveolar and small airway epithelial cells failed to stimulate the proliferation of allogeneic CD4+ T lymphocytes whereas lung microvascular endothelial cells did stimulate proliferation. This difference could not be explained by the levels of class II MHC or the lack of B7-1 and B7-2 solely. Microvascular endothelial cells, and not alveolar or small airway epithelial cells, possess B7-independent costimulatory pathways. PMID:9301537

  18. Biodegradable Gelatin Microcarriers Facilitate Re-Epithelialization of Human Cutaneous Wounds - An In Vitro Study in Human Skin

    PubMed Central

    Lönnqvist, Susanna; Rakar, Jonathan; Briheim, Kristina; Kratz, Gunnar

    2015-01-01

    The possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers. Thickness of the neoepidermis was measured digitally, using immunohistochemical staining of keratins as epithelial demarcation. Air-lifting of wounds enhanced stratification in control wounds as well as wounds with CultiSpher-S. Immunohistochemical staining revealed expression of keratin 5, keratin 10, and laminin 5 in the neoepidermal component. We conclude that the CultiSpher-S microcarriers can function as tissue guiding scaffold for re-epithelialization of cutaneous wounds. PMID:26061630

  19. Biodegradable Gelatin Microcarriers Facilitate Re-Epithelialization of Human Cutaneous Wounds - An In Vitro Study in Human Skin.

    PubMed

    Lönnqvist, Susanna; Rakar, Jonathan; Briheim, Kristina; Kratz, Gunnar

    2015-01-01

    The possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers. Thickness of the neoepidermis was measured digitally, using immunohistochemical staining of keratins as epithelial demarcation. Air-lifting of wounds enhanced stratification in control wounds as well as wounds with CultiSpher-S. Immunohistochemical staining revealed expression of keratin 5, keratin 10, and laminin 5 in the neoepidermal component. We conclude that the CultiSpher-S microcarriers can function as tissue guiding scaffold for re-epithelialization of cutaneous wounds.

  20. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells

    PubMed Central

    Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P.; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium. PMID:26146837

  1. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    PubMed

    Maggiorani, Damien; Dissard, Romain; Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  2. Human Bronchial Epithelial Cell-Derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation.

    PubMed

    Salter, Brittany M A; Smith, Steven G; Mukherjee, Manali; Plante, Sophie; Krisna, Sakktee; Nusca, Graeme; Oliveria, John Paul; Irshad, Anam; Gauvreau, Gail M; Chakir, Jamila; Nair, Parameswaran; Sehmi, Roma

    2017-08-30

    Activated bronchial epithelial cells release alarmins, including thymic stromal lymphopoietin (TSLP) that drive type 2 inflammatory responses. We hypothesize that bronchial epithelial-derived factors enhance in situ eosinophil differentiation and maturation from myeloid precursors, a process that is driven by an IL-5 rich micro-environment within asthma airways. To assess the eosinophilopoietic potential of epithelial-derived factors, eosinophil/basophil colony forming units (Eo/B-CFU) were enumerated in 14-day methylcellulose cultures of blood-derived mononuclear cells (NAMNCs) incubated with bronchial epithelial cell supernatants (BECSN) from healthy non-atopic controls (NC; n = 8), mild atopic asthmatics (MA; n = 9) and severe asthmatics (SA; n = 5). Receptor blocking antibodies were used to evaluate the contribution of alarmins. Modulation of mRNA expression of transcription factors crucial for eosinophil differentiation was evaluated. BECSN stimulated the clonogenic expansion of eosinophil progenitors, in vitro. In the presence of IL-5, Eo/B-CFU growth was significantly greater in co-cultures of BESCN from SA, compared to MA and NC. This effect was attenuated by a TSLP receptor blocking antibody but not by an ST2 antibody. Recombinant human TSLP (optimal at 100 pg/ml) stimulated significant Eo/B-CFU growth, which was significantly enhanced in presence of IL-5 (1 ng/ml). Overnight culture of CD34+ cells with IL-5 and TSLP synergistically increased GATA-2 and CEBP-alpha mRNA expression. The eosinophilopoietic potential of factors derived from bronchial epithelial cells is increased in severe asthma. Our data suggest that TSLP is a key alarmin produced by bronchial epithelial cells, which promotes in situ eosinophilopoiesis in a type 2 rich microenvironment.

  3. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum

    PubMed Central

    Troeger, Hanno; Epple, Hans‐Joerg; Schneider, Thomas; Wahnschaffe, Ulrich; Ullrich, Reiner; Burchard, Gerd‐Dieter; Jelinek, Tomas; Zeitz, Martin; Fromm, Michael; Schulzke, Joerg‐Dieter

    2007-01-01

    Background Giardia lamblia causes infection of the small intestine, which leads to malabsorption and chronic diarrhoea. Aim To characterise the inherent pathomechanisms of G lamblia infection. Methods Duodenal biopsy specimens from 13 patients with chronic giardiasis and from controls were obtained endoscopically. Short‐circuit current (ISC) and mannitol fluxes were measured in miniaturised Ussing chambers. Epithelial and subepithelial resistances were determined by impedance spectroscopy. Mucosal morphometry was performed and tight junction proteins were characterised by immunoblotting. Apoptotic ratio was determined by terminal deoxynucleotidyl transferase‐mediated deoxyuridine triphosphate nick‐end labelling staining. Results In giardiasis, mucosal surface area per unit serosa area was decreased to 75% (3%) of control, as a result of which epithelial resistance should increase. Instead, epithelial resistance of giardiasis biopsy specimens was decreased (19 (2) vs 25 (2) Ω cm2; p<0.05) whereas mannitol flux was not significantly altered (140 (27) vs 105 (16) nmol/h/cm2). As structural correlate, reduced claudin 1 expression and increased epithelial apoptosis were detected. Furthermore, basal ISC increased from 191 (20) in control to 261 (12) µA/h/cm2 in giardiasis. The bumetanide‐sensitive portion of ISC in giardiasis was also increased (51 (5) vs 20 (9) µA/h/cm2 in control; p<0.05). Finally, phlorizin‐sensitive Na+–glucose symport was reduced in patients with giardiasis (121 (9) vs 83 (14) µA/h/cm2). Conclusions G lamblia infection causes epithelial barrier dysfunction owing to down regulation of the tight junction protein claudin 1 and increased epithelial apoptoses. Na+‐dependent d‐glucose absorption is impaired and active electrogenic anion secretion is activated. Thus, the mechanisms of diarrhoea in human chronic giardiasis comprise leak flux, malabsorptive and secretory components. PMID:16935925

  4. Short-term primary culture of epithelial cells derived from human breast tumours.

    PubMed Central

    Speirs, V.; Green, A. R.; Walton, D. S.; Kerin, M. J.; Fox, J. N.; Carleton, P. J.; Desai, S. B.; Atkin, S. L.

    1998-01-01

    As experimental models for breast cancer, most studies rely on established human breast cancer cell lines. However, many of these lines were established over 20 years ago, many from pleural effusions rather than the primary tumour, so the validity of using them as representative models is questionable. This paper describes our experiences, over a 3-year period, in establishing short-term epithelial-cell-enriched preparations from primary breast tumours based on differential centrifugation followed by culture in selective media. Epithelial cells were successfully cultured from 55% of samples, but culture success did not appear to be correlated with tumour histology, stage, grade or node status. Epithelial cell-enriched cultures were immunopositive for broad-spectrum cytokeratin and epithelial membrane antigen (EMA). Positivity for keratin 19 confirmed that the cultures contained tumour-derived cells, which additionally showed significantly higher activity of the reductive pathway of the steroid-converting enzyme 17beta-hydroxysteroid dehydrogenase type I. That the cultures contained tumour and not normal epithelial cells was further substantiated by the complete absence of the calmodulin-like gene NB-1 in tumour-derived cultures; this is only associated with normal breast epithelia. Eighty-five per cent of cultures established from oestrogen receptor (ER)-positive tumours expressed ER in vitro; this was functional in 66% of cultures, although ER-positive phenotype was gradually lost over time. In conclusion, epithelial cells can be isolated and maintained as short-term cultures from primary breast tumours irrespective of histopathological or clinical details, providing a model system with a greater biological and clinical relevance than breast cancer cell lines. Images Figure 1 Figure 2 Figure 5 Figure 7 PMID:9836473

  5. Epithelial glycoprotein-2 expression is subject to regulatory processes in epithelial-mesenchymal transitions during metastases: an investigation of human cancers transplanted into severe combined immunodeficient mice.

    PubMed

    Jojović, M; Adam, E; Zangemeister-Wittke, U; Schumacher, U

    1998-10-01

    The human cell-surface antigen epithelial glycoprotein-2 recognized by the monoclonal antibody MOC-31 is an epithelial tumour-associated glycoprotein expressed in non-squamous carcinomas. MOC-31 immunoreactivity was investigated in human breast, colon, ovarian and lung cancer cell lines, grown either in vitro or in severe combined immunodeficient (SCID) mice as solid tumours and/or metastases. Three of four small-cell lung cancer cell lines (NCI-H69, OH3 and SW2) and three of four ovarian cancer cell lines (SoTu 1, 3 and 4) expressed epithelial glycoprotein-2. In contrast, all three breast (MCF-7, BT20, T47D) and all three colon (HT29, CACO2, SW480) cancer cell lines strongly reacted with monoclonal antibody MOC-31. A notable difference in MOC-31 immunoreactivity was observed in spontaneously formed lung metastases of HT29 colon cancer cells. Whereas larger metastases (> 30 cells) reacted with a similar staining pattern to the primary tumour, smaller metastases did not. These findings indicate that differentiation processes during the epithelial-mesenchymal transition occur in metastases, which lead to a transient loss of epithelial glycoprotein-2 expression during the migratory and early post-migratory period. This loss of antigen expression indicates that the process of metastases formation is a regulatory event, and this transient loss of antigen expression might represent a potential obstacle to antibody-based therapy in the setting of minimal residual disease.

  6. Inhibitory effects of carbocisteine on type A seasonal influenza virus infection in human airway epithelial cells.

    PubMed

    Yamaya, Mutsuo; Nishimura, Hidekazu; Shinya, Kyoko; Hatachi, Yukimasa; Sasaki, Takahiko; Yasuda, Hiroyasu; Yoshida, Motoki; Asada, Masanori; Fujino, Naoya; Suzuki, Takaya; Deng, Xue; Kubo, Hiroshi; Nagatomi, Ryoichi

    2010-08-01

    Type A human seasonal influenza (FluA) virus infection causes exacerbations of bronchial asthma and chronic obstructive pulmonary disease (COPD). l-carbocisteine, a mucolytic agent, reduces the frequency of common colds and exacerbations in COPD. However, the inhibitory effects of l-carbocisteine on FluA virus infection are uncertain. We studied the effects of l-carbocisteine on FluA virus infection in airway epithelial cells. Human tracheal epithelial cells were pretreated with l-carbocisteine and infected with FluA virus (H(3)N(2)). Viral titers in supernatant fluids, RNA of FluA virus in the cells, and concentrations of proinflammatory cytokines in supernatant fluids, including IL-6, increased with time after infection. l-carbocisteine reduced viral titers in supernatant fluids, RNA of FluA virus in the cells, the susceptibility to FluA virus infection, and concentrations of cytokines induced by virus infection. The epithelial cells expressed sialic acid with an alpha2,6-linkage (SAalpha2,6Gal), a receptor for human influenza virus on the cells, and l-carbocisteine reduced the expression of SAalpha2,6Gal. l-carbocisteine reduced the number of acidic endosomes from which FluA viral RNA enters into the cytoplasm and reduced the fluorescence intensity from acidic endosomes. Furthermore, l-carbocisteine reduced NF-kappaB proteins including p50 and p65 in the nuclear extracts of the cells. These findings suggest that l-carbocisteine may inhibit FluA virus infection, partly through the reduced expression of the receptor for human influenza virus in the human airway epithelial cells via the inhibition of NF-kappaB and through increasing pH in endosomes. l-carbocisteine may reduce airway inflammation in influenza virus infection.

  7. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis.

    PubMed

    Gifford, Gail B; Demitrack, Elise S; Keeley, Theresa M; Tam, Andrew; La Cunza, Nilsa; Dedhia, Priya H; Spence, Jason R; Simeone, Diane M; Saotome, Ichiko; Louvi, Angeliki; Siebel, Christian W; Samuelson, Linda C

    2017-06-01

    We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate stem and epithelial cell homoeostasis in mouse and human gastric antral tissue. Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and cellular differentiation were measured by histological and molecular approaches. Organoids were established from mouse and human antral glands; growth and differentiation were measured after treatment with Notch inhibitors. Notch1 and Notch2 are the predominant Notch receptors expressed in mouse and human antral tissue and organoid cultures. Combined inhibition of Notch1 and Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with remodelling of cells to express secretory products normally associated with other regions of the GI tract, including intestine. Analysis of mouse and human organoids showed that Notch signalling through Notch1 and Notch2 is intrinsic to the epithelium and required for organoid growth. Notch signalling is required to maintain gastric antral stem cells. Notch1 and Notch2 are the primary Notch receptors regulating epithelial cell homoeostasis in mouse and human stomach. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation.

  10. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    PubMed Central

    Gierok, Philipp; Harms, Manuela; Methling, Karen; Hochgräfe, Falko; Lalk, Michael

    2016-01-01

    The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR) and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS) and (HPLC-MS). To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model. PMID:27834866

  11. Matrigel-induced tubular morphogenesis of human eccrine sweat gland epithelial cells.

    PubMed

    Lei, Xia; Liu, Bo; Wu, Jinjin; Lu, Yuangang; Yang, Yadong

    2011-09-01

    Human eccrine sweat glands are tubule-structured glands of the skin that are vital in thermoregulation, secretion, and excretion of water and electrolytes. A study of tubular morphogenesis in vitro would facilitate the development of a tissue engineering model for eccrine sweat glands and other tubule-structured glands. Matrigel, a basement membrane matrix, has been shown to promote differentiation and morphogenesis of many different cell types, including tubular cells. This study investigated the growth, differentiation, and tubular morphogenesis of human eccrine sweat gland epithelial cells cultured in Matrigel. Human eccrine gland epithelial cells were isolated and cultured in vitro. The cell growth in Matrigel was evidenced by the formation of cell clusters, which were observed under an inverted microscope. The internal structure of the cell clusters was further investigated by hematoxylin-eosin (HE) staining and confocal laser scanning microscopy (CLSM) of propidium iodide-stained nuclei. The results demonstrated that although on a plastic surface or in a collagen gel the cells could not form tubular structures, they formed tubular structures when cultured in Matrigel. Consequently, we conclude that Matrigel can promote tubular morphogenesis of human eccrine sweat gland epithelial cells.

  12. Characterization of an In Vitro Human Breast Epithelial Organoid System

    DTIC Science & Technology

    2001-08-01

    Cells were lysed origin-defective SV40 genome expressing a wild type large T-antigen (pRNS-I with extract were p a as 1.5 dribe (3 5). ae nclyei obtained...1988) Genomic neoplastic transformation by an oncogenic (NV40) stitlulns organi7ation of the human oestrogen receptor gene. EAIBO .1., 7, 3385--" ~3388...limonene in citrus fruit oils) and glucosi- nolates (glucobrassicin, glucotropaeolin in cruciferous vegetables). Other compounds such as sulforaphane

  13. Epithelial galectin-3 during human nephrogenesis and childhood cystic diseases.

    PubMed

    Winyard, P J; Bao, Q; Hughes, R C; Woolf, A S

    1997-11-01

    Galectin-3 is a beta-galactoside-binding protein with putative roles in development, oncogenesis, and inflammation. Its expression in human nephrogenesis has not been previously reported. This study examines galectin-3 expression in early human embryos by Western blot and immunohistochemistry. This 33-kD protein was detected in the apical domain of distal tubules of the mesonephros and also in the mesonephric duct. In the metanephros, the adult kidney precursor, galectin-3 was detected in the apical domains of ureteric bud branches, and there was intense expression in fetal medullary and papillary collecting ducts in both the cytoplasm and plasma membranes. Low levels of galectin-3 were detected in the cytoplasm of a subset of cells in adult collecting ducts; these were alpha-intercalated cells because they expressed basal band 3 protein. In human multicystic dysplastic kidneys, all diseased epithelia had an embryonic apical expression pattern of galectin-3 and, in addition, all cystic epithelia in autosomal recessive polycystic kidneys expressed this molecule. It is concluded that galectin-3 is expressed by cells of the mesonephric duct/ureteric bud lineage, and it is speculated that the different subcellular locations may be implicated in both the regulation of normal growth and differentiation of this lineage, as well as in the pathogenesis of cystic epithelia.

  14. Human VAT-1: a calcium-regulated activation marker of human epithelial cells.

    PubMed

    Koch, Judith; Foekens, John; Timmermans, Mieke; Fink, Wolfram; Wirzbach, Alexander; Kramer, Michael D; Schaefer, Birgit M

    2003-09-01

    Human VAT-1 (hVAT-1) is a homologue of the synaptic vesicle membrane protein of Torpedo californica. Its coding gene is located near the BRCA1 locus and thus hVAT-1 may be linked to an inherited predisposition to breast and ovary cancer. However, the hVAT-1 protein expression pattern in normal epithelial tissues such as skin, mammary gland and ovary, as well as in tumours of the mammary gland and ovary, has not been studied. To address this issue, an immunohistological analysis of biopsies of normal epidermis and lesional epidermis of bullous pemphigoid and pemphigus vulgaris patients was undertaken. hVAT-1-expression was observed in basal keratinocytes of lesional epidermis of bullous pemphigoid patients but not in normal epidermis or in lesional epidermis of pemphigus vulgaris patients. Moreover, hVAT-1 expression in HaCaT cells was found to be calcium-dependent. Normal and malignant mammary and ovary epithelium were found to be hVAT-1-negative. Our results indicate that hVAT-1 exerts a specific function in keratinocyte physiology, in particular in calcium-regulated processes, with no evident deregulation in malignancies of the breast and ovary.

  15. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    PubMed

    Gallo, Richard L

    2017-04-08

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome.

  16. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    SciTech Connect

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-10-15

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ER{alpha} signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ER{alpha} was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ER{alpha}-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ER{alpha}-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  17. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.

    PubMed

    Rochon, Marie-Hélène; Fradette, Julie; Fortin, Véronique; Tomasetig, Florence; Roberge, Charles J; Baker, Kathleen; Berthod, François; Auger, François A; Germain, Lucie

    2010-05-01

    The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.

  18. [Subcellular distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells].

    PubMed

    Zhao, Guangqiang; Huang, Yunchao; Li, Guangjian; Li, Sen; Zhou, Yongchun; Lei, Yujie; Chen, Xiaobo; Yang, Kaiyun; Chen, Ying; Yang, Kun

    2013-03-01

    Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B). The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM). DNA damage was detected by single-cell gel electrophoresis (comet assay). TEM revealed that SiO₂ nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05). The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

  19. Transplantation of human amniotic epithelial cells repairs brachial plexus injury: pathological and biomechanical analyses

    PubMed Central

    Yang, Qi; Luo, Min; Li, Peng; Jin, Hai

    2014-01-01

    A brachial plexus injury model was established in rabbits by stretching the C6 nerve root. Immediately after the stretching, a suspension of human amniotic epithelial cells was injected into the injured brachial plexus. The results of tensile mechanical testing of the brachial plexus showed that the tensile elastic limit strain, elastic limit stress, maximum stress, and maximum strain of the injured brachial plexuses were significantly increased at 24 weeks after the injection. The treatment clearly improved the pathological morphology of the injured brachial plexus nerve, as seen by hematoxylin eosin staining, and the functions of the rabbit forepaw were restored. These data indicate that the injection of human amniotic epithelial cells contributed to the repair of brachial plexus injury, and that this technique may transform into current clinical treatment strategies. PMID:25657737

  20. Epithelial-connective tissue boundary in the oral part of the human soft palate

    PubMed Central

    PAULSEN, FRIEDRICH; THALE, ANDREAS

    1998-01-01

    The papillary layer of the oral part of the human soft palate was studied in 31 subjects of different age by means of histological, immunohistochemical and scanning electron microscopical methods. For scanning electron microscopy a new maceration method was introduced. Results determine epithelial thickness, height and density of connective tissue papillae and their 3-dimensional architecture inside the lining epithelium as well as the collagenous arrangement of the openings of the glandular ducts. The individual connective tissue papillae of the soft palate are compared with the connective tissue boundary on the other side of the oral cavity. The connective tissue plateaux carrying a variable number of connective tissue papillae were found to be the basic structural units of the papillary body. The function of the epithelial-connective tissue interface and the extracellular matrix arrangement in the lamina propria are discussed in order to promote the comparability of normal with pathologically altered human soft palates. PMID:9877301

  1. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  2. Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes.

    PubMed

    Uchida, Ryo; Aoki, Reiji; Aoki-Yoshida, Ayako; Tajima, Atsushi; Takayama, Yoshiharu

    2017-02-01

    The purpose of this study was to elucidate the effects of bovine lactoferrin on keratinocyte differentiation and barrier function. Addition of bovine lactoferrin to differentiating HaCaT human keratinocytes led to increased transepithelial electrical resistance (TER), a marker of epithelial barrier function. This elevation was followed by upregulation of two differentiation markers, involucrin and filaggrin. The expression level of sterol regulatory element-binding protein-1 was also enhanced by bovine lactoferrin. The lactoferrin-induced upregulation of involucrin and filaggrin expression were confirmed in normal human epidermal keratinocytes (NHEK). Treatment with SB203580, a p38 mitogen-activated protein kinase (MAPK) α inhibitor, impaired the upregulation of involucrin and filaggrin expression in response to lactoferrin. The elevation of p38 MAPK phosphorylation was further enhanced by lactoferrin in the initial stage of differentiation of HaCaT keratinocytes. The findings suggest that bovine lactoferrin promotes epithelial differentiation by a p38-MAPK-dependent mechanism.

  3. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells.

    PubMed

    Kolesnikova, Larissa; Heck, Sonja; Matrosovich, Tatyana; Klenk, Hans-Dieter; Becker, Stephan; Matrosovich, Mikhail

    2013-05-01

    The epithelium of conducting airways represents the main target for influenza virus in mammals. However, the peculiarities of virus interactions with differentiated airway epithelial cells remain largely unknown. Here, influenza virus budding was studied in differentiated cultures of human tracheobronchial epithelial cells using transmission electron microscopy. Budding of spherical and filamentous virions was observed on the apical surfaces of cells with no association with cilia and secretory granules. Quantitative analysis of the distribution of viral buds on the cell surface indicated that the tips of the microvilli represented a prominent site of influenza virus budding in the human airway epithelium. As the microvilli of differentiated cells are involved in many fundamental cell functions, these data will prompt further studies on the biological significance of microvilli-associated budding for virus replication, transmission and pathogenicity.

  4. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

    PubMed

    Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N

    2016-04-11

    MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.

  5. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells

    PubMed Central

    Lee, John K.; Phillips, John W.; Smith, Bryan A.; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F.; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G.; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Shokat, Kevan M.; Gustafson, W. Clay; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    SUMMARY MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  6. Neisseria gonorrhoeae infects the human endocervix by activating non-muscle myosin II-mediated epithelial exfoliation

    PubMed Central

    Yu, Qian; Lin, Brian; Qiu, Jessica; Stein, Daniel C.

    2017-01-01

    Colonization and disruption of the epithelium is a major infection mechanism of mucosal pathogens. The epithelium counteracts infection by exfoliating damaged cells while maintaining the mucosal barrier function. The sexually transmitted bacterium Neisseria gonorrhoeae (GC) infects the female reproductive tract primarily from the endocervix, causing gonorrhea. However, the mechanism by which GC overcome the mucosal barrier remains elusive. Using a new human tissue model, we demonstrate that GC can penetrate into the human endocervix by inducing the exfoliation of columnar epithelial cells. We found that GC colonization causes endocervical epithelial cells to shed. The shedding results from the disassembly of the apical junctions that seal the epithelial barrier. Apical junction disruption and epithelial exfoliation increase GC penetration into the endocervical epithelium without reducing bacterial adherence to and invasion into epithelial cells. Both epithelial exfoliation and junction disruption require the activation and accumulation of non-muscle myosin II (NMII) at the apical surface and GC adherent sites. GC inoculation activates NMII by elevating the levels of the cytoplasmic Ca2+ and NMII regulatory light chain phosphorylation. Piliation of GC promotes, but the expression of a GC opacity-associated protein variant, OpaH that binds to the host surface proteins CEACAMs, inhibits GC-induced NMII activation and reorganization and Ca2+ flux. The inhibitory effects of OpaH lead to reductions in junction disruption, epithelial exfoliation, and GC penetration. Therefore, GC phase variation can modulate infection in the human endocervix by manipulating the activity of NMII and epithelial exfoliation. PMID:28406994

  7. Light and electron microscopic study of epithelial cells from the human oviduct and uterus subcultured on extracellular matrix gel.

    PubMed

    Eslaminejad, Mohamadreza Baghaban; Valojerdi, Mojtaba Rezazadeh; Ashtiani, Saeed Kazemi; Eftekhari-Yazdi, Poopak

    2007-06-01

    To investigate the structure of epithelial cells from the human oviduct and uterus on extracellular matrix (ECM) gel in the first passage. Human oviducts and endometrial tissues were obtained from patients undergoing total hysterectomy; the epithelial cells, having been isolated by enzyme digestion, were cultured on polystyrene plastic surfaces. The epithelial nature of the cells was confirmed by immunocytochemistry, and their morphology was examined by microscopy. Cells of an epithelial nature were then trypsinized and cultured on an ECM gel-coated filter insert for 5 days. The cells, in parallel with the tissues, were subsequently prepared for transmission electron microscopy. Plastic-cultured cells had no sign of differentiation and appeared as elongated spindle cells in sections. These cells looked columnar and highly polarized after being cultured on ECM gel surfaces. They were similar to epithelial cells from the corresponding tissue fragment. Cultured on ECM gel, the ciliated epithelial cells of human oviducts appeared ultrastructurally similar to glandular cells from the human uterus. Cilia did not form under culture conditions. It seems that human uterine and oviduct epithelial cells can acquire polarized morphology and differentiated states on ECM gel after having lost it on plastic surfaces and that ECM gel by itself is not enough to induce cilia formation in culture.

  8. Clonal analysis of morphological phenotype in cultured mammary epithelial cells from human milk.

    PubMed

    Stoker, M; Perryman, M; Eeles, R

    1982-05-22

    Three main types of colony forming epithelial cell, termed elongated, cuboidal and open, are found in cultures of human milk. Subculture of identified colonies, and cloning from single cells shows that each cell type can maintain its morphological phenotype, but in addition the cuboidal and open cell types can give rise to the elongated type. The results, which suggest a differentiation pathway starting with open cell types, are discussed in relation to differentiation studies on mammary cancer cells.

  9. Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype.

    PubMed

    Benbrahim-Tallaa, Lamia; Tokar, Erik J; Diwan, Bhalchandra A; Dill, Anna L; Coppin, Jean-François; Waalkes, Michael P

    2009-12-01

    Breast cancer has recently been linked to cadmium exposure. Although not uniformly supported, it is hypothesized that cadmium acts as a metalloestrogenic carcinogen via the estrogen receptor (ER). Thus, we studied the effects of chronic exposure to cadmium on the normal human breast epithelial cell line MCF-10A, which is ER-negative but can convert to ER-positive during malignant transformation. Cells were continuously exposed to low-level cadmium (2.5 muM) and checked in vitro and by xenograft study for signs of malignant transformation. Transformant cells were molecularly characterized by protein and transcript analysis of key genes in breast cancer. Over 40 weeks of cadmium exposure, cells showed increasing secretion of matrix metalloproteinase-9, loss of contact inhibition, increased colony formation, and increasing invasion, all typical for cancer cells. Inoculation of cadmium-treated cells into mice produced invasive, metastatic anaplastic carcinoma with myoepithelial components. These cadmium-transformed breast epithelial (CTBE) cells displayed characteristics of basal-like breast carcinoma, including ER-alpha negativity and HER2 (human epidermal growth factor receptor 2) negativity, reduced expression of BRCA1 (breast cancer susceptibility gene 1), and increased CK5 (cytokeratin 5) and p63 expression. CK5 and p63, both breast stem cell markers, were prominently overexpressed in CTBE cell mounds, indicative of persistent proliferation. CTBE cells showed global DNA hypomethylation and c-myc and k-ras overexpression, typical in aggressive breast cancers. CTBE cell xenograft tumors were also ER-alpha negative. Cadmium malignantly transforms normal human breast epithelial cells-through a mechanism not requiring ER-alpha-into a basal-like cancer phenotype. Direct cadmium induction of a malignant phenotype in human breast epithelial cells strongly fortifies a potential role in breast cancer.

  10. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  11. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  12. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells.

    PubMed

    Yao, Chunlei; Xie, Changyan; Lin, Peng; Yan, Feng; Huang, Pingbo; Hsing, I-Ming

    2013-12-03

    An organic electrochemical transistor array is integrated with human airway epithelial cells. This integration provides a novel method to couple transepithelial ion transport with electrical current. Activation and inhibition of transepithelial ion transport are readily detected with excellent time resolution. The organic electrochemical transistor array serves as a promising platform for physiological studies and drug testing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Focal epithelial hyperplasia (Heck's disease): report of two cases with PCR detection of human papillomavirus DNA.

    PubMed

    Jayasooriya, P R; Abeyratne, S; Ranasinghe, A W; Tilakaratne, W M

    2004-07-01

    Focal epithelial hyperplasia (FEH) (Heck's disease) is essentially a benign oral infection produced by the human papillomavirus (HPV). Although this condition is known to exist in numerous populations and ethnic groups, it is relatively rare in South-East Asia. The following report is based on two cases of adult FEH with histopathological features in favour of the disease. In addition, polymerase chain reaction was performed to detect the presence of HPV DNA in the lesions in order to confirm the histopathological diagnosis.

  14. Neuropeptides released from trigeminal neurons promote the stratification of human corneal epithelial cells.

    PubMed

    Ko, Ji-Ae; Mizuno, Yukari; Ohki, Chihiro; Chikama, Tai-ichiro; Sonoda, Koh-Hei; Kiuchi, Yoshiaki

    2014-01-07

    To examine the effects of neural cells on the stratification of and junctional protein expression by corneal epithelial cells with a coculture system. PC12 cells induced to undergo neuronal differentiation or rat trigeminal nerve cells were cultured together with simian virus 40-transformed human corneal epithelial (HCE) cells on opposite sides of a collagen vitrigel membrane. Stratification of HCE cells was examined by immunofluorescence analysis with antibodies to zonula occludens-1. Expression of junctional proteins in HCE cells was assessed by RT-PCR and immunoblot analyses. The presence of neural cells (PC12 cells or trigeminal neurons) markedly promoted the stratification of HCE cells as well as increased the amounts of N-cadherin mRNA and protein in these cells. These effects of the neural cells were mimicked by conditioned medium prepared from differentiating PC12 cells or by the neuropeptides substance P and calcitonin gene-related peptide (CGRP). Furthermore, the stimulatory effects of trigeminal neurons on the stratification of and N-cadherin expression by HCE cells were inhibited by antagonists of substance P or of CGRP. These results suggest that trigeminal neurons play an important role in the differentiation of corneal epithelial cells. Neuropeptides released from these neurons may thus regulate adhesion between corneal epithelial cells and thereby contribute to the establishment and maintenance of corneal structure and function.

  15. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    PubMed Central

    Hashemi, Elham; Sadeghi, Yousef; Aliaghaei, Abbas; Seddighi, Afsoun; Piryaei, Abbas; Broujeni, Mehdi Eskandarian; Shaerzadeh, Fatemeh; Amini, Abdollah; Pouriran, Ramin

    2017-01-01

    As the key producer of cerebrospinal fluid (CSF), the choroid plexus (CP) provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2), as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP) in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic) led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions. PMID:28250752

  16. Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration.

    PubMed

    Park, Jeong Hun; Park, Ju Young; Nam, Inn-Chul; Hwang, Se-Hwan; Kim, Choung-Soo; Jung, Jin Woo; Jang, Jinah; Lee, Hyungseok; Choi, Yeongjin; Park, Sun Hwa; Kim, Sung Won; Cho, Dong-Woo

    2015-10-01

    Rapid functional epithelial regeneration on the luminal surface is essential when using artificial tracheal grafts to repair tracheal defects. In this study, we imposed human turbinate mesenchymal stromal cell (hTMSC) sheets for tracheal epithelial regeneration, and then assessed their potential as a new clinical cell source. In vitro, hTMSCs sheets showed high capacity to differentiate into tracheal epithelium. We fabricated a poly(ε-caprolactone) (PCL) tracheal graft by indirect three-dimensional (3D) printing technique and created a composite construct by transplanting the hTMSC sheets to its luminal surface of the tracheal graft, then applied this tissue-engineered tracheal graft to non-circumferential tracheal reconstruction in a rabbit model. 4 weeks after implantation, the luminal surface of tissue-engineered tracheal graft was covered by a mature and highly-ciliated epithelium, whereas tracheal grafts without hTMSC sheets were covered by only a thin, immature epithelium. Therefore, hTMSC sheets on the luminal surface of a tissue-engineered tracheal graft can accelerate the tracheal epithelial regeneration, and the tissue-engineered tracheal graft with hTMSC sheets provides a useful clinical alternative for tracheal epithelial regeneration.

  17. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells

    PubMed Central

    Martin, Linda D.; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A.

    2010-01-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  18. Coculture of mesenchymal stem cells and respiratory epithelial cells to engineer a human composite respiratory mucosa.

    PubMed

    Le Visage, Catherine; Dunham, Brian; Flint, Paul; Leong, Kam W

    2004-01-01

    In this study, we describe a novel in vitro reconstitution system for tracheal epithelium that could be useful for investigating the cellular and molecular interaction of epithelial and mesenchymal cells. In this system, a Transwell insert was used as a basement membrane on which adult bone marrow mesenchymal stem cells (MSCs) were cultured on the lower side whereas normal human bronchial epithelial (NHBE) cells were cultured on the opposite upper side. Under air-liquid interface conditions, the epithelial cells maintained their capacity to progressively differentiate and form a functional epithelium, leading to the differentiation of mucin-producing cells between days 14 and 21. Analysis of apical secretions showed that mucin production increased over time, with peak secretion on day 21 for NHBE cells alone, whereas mucin secretion by NHBE cells cocultured with MSCs remained constant between days 18 and day 25. This in vitro model of respiratory epithelium, which exhibited morphologic, histologic, and functional features of a tracheal mucosa, could help to understand interactions between mesenchymal and epithelial cells and mechanisms involved in mucus production, inflammation, and airway repair. It might also play an important role in the design of an composite prosthesis for tracheal replacement.

  19. TIMP-1 via TWIST1 Induces EMT Phenotypes in Human Breast Epithelial Cells

    PubMed Central

    D’Angelo, Rosemarie Chirco; Liu, Xu-Wen; Najy, Abdo J.; Jung, Young Suk; Won, Joshua; Chai, Karl X.; Fridman, Rafael; Kim, Hyeong-Reh Choi

    2014-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1 overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1 mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the MMP-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function. PMID:24895412

  20. Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress

    PubMed Central

    Cortes, Diego F; Sha, Wei; Hower, Valerie; Blekherman, Greg; Laubenbacher, Reinhard; Akman, Steven; Torti, Suzy V; Shulaev, Vladimir

    2011-01-01

    Oxidative stress plays a key role in breast carcinogenesis. To investigate whether normal and malignant breast epithelial cells differ in their responses to oxidative stress, we examined the global gene expression profiles of three cell types, representing cancer progression from a normal to a malignant stage, under oxidative stress. Normal human mammary epithelial cells (HMEC), an immortalized cell line (HMLER-1), and a tumorigenic cell line (HMLER-5), were exposed to increased levels of reactive oxygen species (ROS) by treatment with glucose oxidase. Functional analysis of the metabolic pathways enriched with differentially expressed genes demonstrates that normal and malignant breast epithelial cells diverge substantially in their response to oxidative stress. While normal cells exhibit the up-regulation of antioxidant mechanisms, cancer cells are unresponsive to the ROS insult. However, the gene expression response of normal HMEC cells under oxidative stress is comparable to that of the malignant cells under normal conditions, indicating that altered redox status is persistent in breast cancer cells, which makes them resistant to increased generation of ROS. This study discusses some of the possible adaptation mechanisms of breast cancer cells under persistent oxidative stress that differentiate them from the response to acute oxidative stress in normal mammary epithelial cells. PMID:21397008

  1. Effects of conditioned media from human amniotic epithelial cells on corneal alkali injuries in rabbits

    PubMed Central

    Kim, Tae-Hyun; Park, Young-Woo; Ahn, Jae-Sang; Ahn, Jeong-Taek; Kim, Se-Eun; Jeong, Man-Bok; Seo, Min-Su; Kang, Kyung-Sun

    2013-01-01

    This study was performed to evaluate the effects of conditioned media (CM) from human amniotic epithelial cells (HAECs) on the corneal wound healing process. Eighteen rabbits (36 eyes) were used and randomly assigned to three groups according treatment: CM from HAECs (group 1), vehicle alone (group 2), and saline (group 3). Corneal alkali injuries were induced with 1 N sodium hydroxide. Each reagent used for treatment evaluation was injected into the dorsal bulbar subconjunctiva and the area of the corneal epithelial defect was measured every other day. Two animals from each group were euthanized at a time on days 3, 7, and 15, and the cornea was removed for histological examination. The sum of the epithelial defect areas measured on day 0 to day 6 as well as day 0 to day 14 in group 1 was significantly smaller than those of other groups. Histological examination revealed that the group 1 corneas had less inflammatory cell infiltration and showed more intact epithelial features compared to the other groups. These results suggest that CM from HAECs promote corneal wound healing in rabbits. PMID:23388445

  2. Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density.

    PubMed

    DeFilippis, Rosa Anna; Fordyce, Colleen; Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D

    2014-09-15

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal nontumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared with epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g., activin A and CD36) to prevent breast cancer.

  3. Clinicopathology of EpCAM and EGFR in Human Epithelial Ovarian Carcinoma

    PubMed Central

    Zheng, Jingying; Zhao, Lijing; Wang, Yi; Zhao, Shuhua; Cui, Manhua

    2017-01-01

    Abstract The objective of this study was to explore the expression of EpCAM and EGFR in human epithelial ovarian cancer (EOC) and their correlation with clinicopathological parameters. The protein expression levels of epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR) were evaluated by immunohistochemistry in formalin-fixed paraffin-embedded specimens from 30 patients with epithelial ovarian carcinoma and 15 normal ovary tissues. Clinicopathological characteristics were gathered by retrospective review of the patients’ files. The correlation between EpCAM and EGFR expression, as well as their association with clinical pathological parameters were investigated. The SPSS 17.0 package was used to perform statistical analyses. The positive expression rates of EpCAM and EGFR were significantly elevated in epithelial ovarian cancer tissues than in normal ovary tissues. The positive expressions of EpCAM and EGFR in EOC were associated with International Federation of Gynecology and Obstetrics (FIGO) stage and tumor differentiation, lymph node metastasis. Spearman correlation analysis demonstrated a significant positive association between EpCAM and EGFR expression in EOC. The co-expression of EpCAM and EGFR may play an important role in the carcinogenesis of EOC and might provide a promising molecular therapeutic target. PMID:28401199

  4. Stress Signaling from Human Mammary Epithelial Cells Contributes to Phenotypes of Mammographic Density

    PubMed Central

    Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V.; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D.

    2014-01-01

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal non-tumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared to epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g. activin A, CD36) to prevent breast cancer. PMID:25172842

  5. Alpha2 adrenoceptors regulate proliferation of human intestinal epithelial cells

    PubMed Central

    Schaak, S; Cussac, D; Cayla, C; Devedjian, J; Guyot, R; Paris, H; Denis, C

    2000-01-01

    BACKGROUND AND AIMS—Previous studies on rodents have suggested that catecholamines stimulate proliferation of the intestinal epithelium through activation of α2 adrenoceptors located on crypt cells. The occurrence of this effect awaits demonstration in humans and the molecular mechanisms involved have not yet been elucidated. Here, we examined the effect of α2 agonists on a clone of Caco2 cells expressing the human α2A adrenoceptor.
METHODS—Cells were transfected with a bicistronic plasmid containing the α2C10 and neomycin phosphotransferase genes. G418 resistant clones were assayed for receptor expression using radioligand binding. Receptor functionality was assessed by testing its ability to couple Gi proteins and to inhibit cAMP production. Mitogen activated protein kinase (MAPK) phosphorylation was followed by western blot, and cell proliferation was estimated by measuring protein and DNA content.
RESULTS—Permanent transfection of Caco2 cells allowed us to obtain a clone (Caco2-3B) expressing α2A adrenoceptors at a density similar to that found in normal human intestinal epithelium. Caco2-3B retained morphological features and brush border enzyme expression characteristic of enterocytic differentiation. The receptor was coupled to Gi2/Gi3 proteins and its stimulation caused marked diminution of forskolin induced cAMP production. Treatment of Caco2-3B with UK14304 (α2 agonist) induced a rapid increase in the phosphorylation state of MAPK, extracellular regulated protein kinase 1 (Erk1), and 2 (Erk2). This event was totally abolished in pertussis toxin treated cells and in the presence of kinase inhibitors (genistein or PD98059). It was unaffected by protein kinase C downregulation but correlated with a transient increase in Shc tyrosine phosphorylation. Finally, sustained exposure of Caco2-3B to UK14304 resulted in modest but significant acceleration of cell proliferation. None of these effects was observed in the parental cell line Caco2.

  6. Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro.

    PubMed

    Roig, Andres I; Eskiocak, Ugur; Hight, Suzie K; Kim, Sang Bum; Delgado, Oliver; Souza, Rhonda F; Spechler, Stuart J; Wright, Woodring E; Shay, Jerry W

    2010-03-01

    Long-term propagation of human colonic epithelial cells (HCEC) of adult origin has been a challenge; currently used HCEC lines are of malignant origin and/or contain multiple cytogenetic changes. We sought to immortalize human colon biopsy-derived cells expressing stem cell markers and retaining multilineage epithelial differentiation capability. We isolated and cultured cells from biopsy samples of 2 patients undergoing routine screening colonoscopy. Cells were immortalized by expression of the nononcogenic proteins cyclin-dependent kinase 4 (Cdk4) and the catalytic component of human telomerase (hTERT) and maintained for more than 1 year in culture. The actively proliferating HCECs expressed the mesenchymal markers vimentin and alpha-smooth muscle actin. Upon growth arrest, cells assumed a cuboidal shape, decreased their mesenchymal features, and expressed markers of colonic epithelial cells such as cytokeratin 18, zonula occludens-1, mucins-1 and -2, antigen A33, and dipeptidyl peptidase 4. Immortalized cells expressed stem cell markers that included LGR5, BMI1, CD29, and CD44. When placed in Matrigel in the absence of a mesenchymal feeder layer, individual cells divided and formed self-organizing, cyst-like structures; a subset of cells exhibited mucin-2 or polarized villin staining. We established immortalized HCECs that are capable of self-renewal and multilineage differentiation. These cells should serve as valuable reagents for studying colon stem cell biology, differentiation, and pathogenesis. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells

    PubMed Central

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S.; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections. PMID:27506372

  8. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    SciTech Connect

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  9. Induction of proinflammatory cytokines in human lung epithelial cells during Rhodococcus equi infection.

    PubMed

    Remuzgo-Martínez, Sara; Pilares-Ortega, Lilian; Alvarez-Rodríguez, Lorena; Aranzamendi-Zaldunbide, Maitane; Padilla, Daniel; Icardo, Jose Manuel; Ramos-Vivas, Jose

    2013-08-01

    Rhodococcus equi is an opportunistic human pathogen associated with immunosuppressed people. While the interaction of R. equi with macrophages has been comprehensively studied, little is known about its interactions with non-phagocytic cells. Here, we characterized the entry process of this bacterium into human lung epithelial cells. The invasion is inhibited by nocodazole and wortmannin, suggesting that the phosphatidylinositol 3-kinase pathway and microtubule cytoskeleton are important for invasion. Pre-incubation of R. equi with a rabbit anti-R. equi polyclonal antiserum resulted in a dramatic reduction in invasion. Also, the invasion process as studied by immunofluorescence and scanning electron microscopy indicates that R. equi make initial contact with the microvilli of the A549 cells, and at the structural level, the entry process was observed to occur via a zipper-like mechanism. Infected lung epithelial cells upregulate the expression of cytokines IL-8 and IL-6 upon infection. The production of these pro-inflammatory cytokines was significantly enhanced in culture supernatants from cells infected with non-mucoid plasmid-less strains when compared with cells infected with mucoid strains. These results demonstrate that human airway epithelial cells produce pro-inflammatory mediators against R. equi isolates.

  10. Propagation of normal human epithelial cell populations using an in vivo culture system. Description and applications.

    PubMed Central

    Klein-Szanto, A. J.; Terzaghi, M.; Mirkin, L. D.; Martin, D.; Shiba, M.

    1982-01-01

    A new model using xenotransplanted human epithelia was developed for the study of toxic and carcinogenic effects of chemicals. Epithelial cells from the respiratory tract of 4 male and 3 female premature and fullterm fetuses were enzymatically removed and inoculated into deepithelialized rat tracheas. These were sealed at both ends and transplanted subcutaneously into nude mice. After 3-4 weeks, a normal mucociliary epithelium covered the tracheal lumen. At this stage the epithelial cells could be isolated again and transplanted into new denuded rat tracheas. This passaging could be repeated up to six times, each permitting an amplification factor of approximately 3. Tracheal transplants containing cells of human origin (in vivo Passages 2-4) were treated with 7,12-dimethylbenz(a)anthracene. Hyperplasias, squamous metaplasias, and dysplasias were seen 1-8 weeks after initiation of treatment, indicating that the responses of human and rodent epithelial cells to polycyclic aromatic hydrocarbons are similar. Initial experiments with skin and esophageal epithelia suggest that other covering epithelia could also be used in this fashion for evaluation of toxicants and carcinogens that are likely to come into contact with these tissues. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:6821529

  11. Effect of Lunar Dust Simulant on Human Epithelial Cell Lines

    NASA Technical Reports Server (NTRS)

    Myers, Nicholas J.; Wallace, William T.; Jeevarajan, Antony S.

    2009-01-01

    The purpose of this project is to assess the potential toxicity of lunar dust to cause the release of pro-inflammatory cytokines by human lung cells. Some of this dust is on the scale of 1-2 micrometers and could enter the lungs when astronauts track dust into the habitat and inhale it. This could be a serious problem as NASA plans on going back to the moon for an extended period of time. Literature shows that quartz, which has a known cytoxicity, can cause acute cases of silicosis within 6 months, and in most cases cause silicosis after 3 years. The activation of lunar dust through impacts creates surface based radicals which, upon contact with water create hydroxl radicals and peroxyl radicals which are very reactive and potentially might even be as cytotoxic as quartz. These radicals could then react with lung cells to produce pro-inflammatory mediators such as interleukin-6 and interleukin-8, and TNF-alpha.

  12. Comparative proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells

    PubMed Central

    Mikhailova, Alexandra; Jylhä, Antti; Rieck, Jochen; Nättinen, Janika; Ilmarinen, Tanja; Veréb, Zoltán; Aapola, Ulla; Beuerman, Roger; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli

    2015-01-01

    Limbal epithelial stem cells (LESCs) are tissue-specific stem cells responsible for renewing the corneal epithelium. Acute trauma or chronic disease affecting LESCs may disrupt corneal epithelial renewal, causing vision threatening and painful ocular surface disorders, collectively referred to as LESC deficiency (LESCD). These disorders cannot be treated with traditional corneal transplantation and therefore alternative cell sources for successful cell-based therapy are needed. LESCs derived from human pluripotent stem cells (hPSCs) are a prospective source for ocular surface reconstruction, yet critical evaluation of these cells is crucial before considering clinical applications. In order to quantitatively evaluate hPSC-derived LESCs, we compared protein expression in native human corneal cells to that in hPSC-derived LESCs using isobaric tag for relative and absolute quantitation (iTRAQ) technology. We identified 860 unique proteins present in all samples, including proteins involved in cell cycling, proliferation, differentiation and apoptosis, various LESC niche components, and limbal and corneal epithelial markers. Protein expression profiles were nearly identical in LESCs derived from two different hPSC lines, indicating that the differentiation protocol is reproducible, yielding homogeneous cell populations. Their protein expression profile suggests that hPSC-derived LESCs are similar to the human ocular surface epithelial cells, and possess LESC-like characteristics. PMID:26423138

  13. Vesicular uptake of macromolecules by human placental amniotic epithelial cells.

    PubMed

    Sharshiner, Rita; Brace, Robert A; Cheung, Cecilia Y

    2017-09-01

    Studies in animal models have shown that unidirectional vesicular transport of amniotic fluid across the amnion plays a primary role in regulating amniotic fluid volume. Our objective was to explore vesicle type, vesicular uptake and intracellular distribution of vesicles in human amnion cells using high- and super-resolution fluorescence microscopy. Placental amnion was obtained at cesarean section and amnion cells were prepared and cultured. At 20%-50% confluence, the cells were incubated with fluorophore conjugated macromolecules for 1-30 min at 22 °C or 37 °C. Fluorophore labeled macromolecules were selected as markers of receptor-mediated caveolar and clathrin-coated vesicular uptake as well as non-specific endocytosis. After fluorophore treatment, the cells were fixed, imaged and vesicles counted using Imaris(®) software. Vesicular uptake displayed first order saturation kinetics with half saturation times averaging 1.3 min at 37 °C compared to 4.9 min at 22 °C, with non-specific endocytotic uptake being more rapid at both temperatures. There was extensive cell-to-cell variability in uptake rate. Under super-resolution microscopy, the pattern of intracellular spatial distribution was distinct for each macromolecule. Co-localization of fluorescently labeled macromolecules was very low at vesicular dimensions. In human placental amnion cells, 1) vesicular uptake of macromolecules is rapid, consistent with the concept that vesicular transcytosis across the amnion plays a role in the regulation of amniotic fluid volume; 2) uptake is temperature dependent and variable among individual cells; 3) the unique intracellular distributions suggest distinct functions for each vesicle type; 4) non-receptor mediated vesicular uptake may be a primary vesicular uptake mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra.

    PubMed

    Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube.

  15. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra

    PubMed Central

    Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    2016-01-01

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization (“opening zipper”) opens the solid urethral plate into a groove, and fusion (“closing zipper”) closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal “cords”. Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. PMID:27397682

  16. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells.

    PubMed

    Larsen, Anett K; Nymo, Ingebjørg H; Briquemont, Benjamin; Sørensen, Karen K; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72-96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.

  17. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    PubMed Central

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  18. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  19. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  20. Baicalein mediates inhibition of migration and invasiveness of skin carcinoma through Ezrin in A431 cells

    PubMed Central

    2011-01-01

    Background Ezrin is highly expressed in skin cancer and promotes tumor metastasis. Ezrin serves as a promising target for anti-metastasis therapy. The aim of this study is to determine if the flavonoid bacailein inhibits the metastasis of skin cancer cells through Ezrin. Methods Cells from a cutaneous squamous carcinoma cell line, A431, were treated with baicalein at 0-60 μM to establish the non-cytotoxic concentration (NCC) range for baicalein. Following treatment with baicalein within this range, total Ezrin protein (both phosphorylated and unphosphorylated forms) and phosphorylated-Ezrin (phos-Ezrin) were detected by western blotting, and Ezrin RNA was detected in A431 cells using reverse transcription-polymerase chain reaction (RT-PCR). Thereafter, the motility and invasiveness of A431 cells following baicalein treatment were determined using wound-healing and Boyden chamber invasion assays. Short-interfering RNA (si-RNA) specifically targeting Ezrin was transfected into A431 cells, and a si-RNA Ezrin-A431 cell line was established by G418 selection. This stable cell line was transiently transfected with Ezrin and mutant Ezrin plasmids, and its motilityand invasiveness was subsequently determined to clarify whether bacailein inhibits these processes through Ezrin. Results We determined the range of NCCs for baicalein to be 2.5-40 μM in A431 cells. Baicalein displayed a dose- and time-dependent inhibition of expressions of total Ezrin and phos-Ezrin within this range NCCs. In addition, it exerted this inhibitory effect through the reduction of Ezrin RNA transcript. Baicalein also inhibited the motility and invasiveness of A431 skin carcinoma cells within the range of NCCs, in a dose- and time-dependent manner. A431 cell motility and invasiveness were inhibited by 73% and 80% respectively when cells were treated with 20 μM baicalein. However, the motility and invasiveness of A431 cells containing the Ezrin mutant were not effectively inhibited by baicalein

  1. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation

    SciTech Connect

    Skowron-zwarg, Marie; Boland, Sonja; Caruso, Nathalie; Coraux, Christelle; Marano, Francelyne; Tournier, Frederic . E-mail: f-tournier@paris7.jussieu.fr

    2007-07-15

    Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.

  2. Effect of Hangeshashinto on calprotectin expression in human oral epithelial cells.

    PubMed

    Hiroshima, Yuka; Bando, Mika; Inagaki, Yuji; Kido, Reiko; Kataoka, Masatoshi; Nagata, Toshihiko; Kido, Jun-Ichi

    2016-05-01

    Oral epithelial cells produce antimicrobial peptides (AMPs) to prevent microbial infection. Calprotectin (S100A8/S100A9) is one of these AMPs in oral epithelial cells, the expression of which is up-regulated by interleukin-1α (IL-1α). Hangeshashinto (HST) is a traditional Japanese herbal medicine that has anti-inflammatory effects. The purpose of this study was to investigate the effect of HST on the expression of calprotectin through the regulation of IL-1α in oral epithelial cells. Human oral epithelial cells (TR146) were cultured with HST in the presence or absence of anti-IL-1α antibody or IL-1 receptor antagonist, or with six major components of HST (3,4-dihydroxybenzaldehyde, baicalin, ginsenoside Rb1, glycyrrhizin, oleanolic acid and berberine). The expression of S100A8, S100A9, other AMPs and cytokine mRNAs was examined by RT-PCR and quantitative real-time PCR. Calprotectin expression and IL-1α secretion were investigated by ELISA. HST (6 μg/ml) increased the expression of S100A8/S100A9 mRNAs and calprotectin protein, and also up-regulated β-defensin 2 (DEFB4) and S100A7 expression. The expression of IL-1α mRNA and its protein was slightly but significantly increased by HST. A neutralizing antibody against IL-1α and IL-1 receptor antagonist inhibited HST-up-regulated S100A8/S100A9 mRNA expression. Although 3,4-dihydroxybenzaldehyde, baicalin and ginsenoside Rb1 as HST components increased S100A8/S100A9 expression, oleanolic acid and berberine decreased their expression. These results suggest that HST increases the expression of calprotectin, DEFB4 and S100A7 in oral epithelial cells. In response to HST, up-regulation of calprotectin expression may be partially induced via IL-1α.

  3. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  4. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    PubMed

    Sherwood, Cara L; Liguori, Andrew E; Olsen, Colin E; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  5. Comparison of methods for the isolation of human breast epithelial and myoepithelial cells

    PubMed Central

    Zubeldia-Plazaola, Arantzazu; Ametller, Elisabet; Mancino, Mario; Prats de Puig, Miquel; López-Plana, Anna; Guzman, Flavia; Vinyals, Laia; Pastor-Arroyo, Eva M.; Almendro, Vanessa; Fuster, Gemma; Gascón, Pedro

    2015-01-01

    Two lineages, epithelial, and myoepithelial cells are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells) and CD10/K14 (myoepithelial cells) antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast cancer. PMID

  6. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells.

    PubMed

    Elberg, Gerard; Elberg, Dorit; Lewis, Teresa V; Guruswamy, Suresh; Chen, Lijuan; Logan, Charlotte J; Chan, Michael D; Turman, Martin A

    2007-11-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-prostanoid (EP) receptor mediating the PGE2 effect has not been characterized. Our goal is to define the PGE2 receptor subtype involved in ADPKD. We used a three-dimensional cell-culture system of human epithelial cells from normal and ADPKD kidneys in primary cultures to demonstrate that PGE2 induces cyst formation. Biochemical evidence gathered by using real-time RT-PCR mRNA analysis and immunodetection indicate the presence of EP2 receptor in cystic epithelial cells in ADPKD kidney. Pharmacological evidence obtained by using PGE2-selective analogs further demonstrates that EP2 mediates cAMP formation and cystogenesis. Functional evidence for a role of EP2 receptor in mediating cAMP signaling was also provided by inhibiting EP2 receptor expression with transfection of small interfering RNA in cystic epithelial cells. Our results indicate that PGE2 produced in cyst fluid binds to adjacent EP2 receptors located on the apical side of cysts and stimulates EP2 receptor expression. PGE2 binding to EP2 receptor leads to cAMP signaling and cystogenesis by a mechanism that involves protection of cystic epithelial cells from apoptosis. The role of EP2 receptor in mediating the PGE2 effect on stimulating cyst formation may have direct pharmacological implications for the treatment of polycystic kidney disease.

  7. Effect of topical microbicides on infectious human immunodeficiency virus type 1 binding to epithelial cells.

    PubMed

    Roth, Susan; Monsour, Michael; Dowland, Amanda; Guenthner, Patricia C; Hancock, Kelly; Ou, Chin-Yi; Dezzutti, Charlene S

    2007-06-01

    Topical microbicides (cellulose acetate 1,2 benzene dicarboxylate [CAP], PRO 2000, SPL7013, and UC781) are being investigated to reduce the sexual transmission of human immunodeficiency virus type 1 (HIV-1). These products were shown to prevent the transfer of infectious HIV-1 from urogenital and colorectal epithelial cell lines to peripheral blood mononuclear cells. However, it was unclear if the topical microbicides rendered the virus noninfectious and/or reduced the binding to the epithelial cells. To test this, epithelial cells were cultured with HIV-1 in the presence or absence of topical microbicides or their placebos. The cells were washed, RNA lysates were made, and real-time PCR was performed for HIV-1. PRO 2000 and SPL7013 significantly (P < 0.0001) reduced the amount of bound HIV-1 to the colorectal epithelial cell line across clades A, B, C, and CRF01-AE. While none of the products reduced the binding of HIV-1 clades A and C to the urogenital cell line, CAP, PRO 2000, and SPL7013 significantly (P epithelial cells and possible shedding into mucosal secretions. Therefore, functional virological assays in addition to measuring viral RNA should be included when clinically evaluating topical microbicide use by infected persons.

  8. Effect of Topical Microbicides on Infectious Human Immunodeficiency Virus Type 1 Binding to Epithelial Cells▿

    PubMed Central

    Roth, Susan; Monsour, Michael; Dowland, Amanda; Guenthner, Patricia C.; Hancock, Kelly; Ou, Chin-Yi; Dezzutti, Charlene S.

    2007-01-01

    Topical microbicides (cellulose acetate 1,2 benzene dicarboxylate [CAP], PRO 2000, SPL7013, and UC781) are being investigated to reduce the sexual transmission of human immunodeficiency virus type 1 (HIV-1). These products were shown to prevent the transfer of infectious HIV-1 from urogenital and colorectal epithelial cell lines to peripheral blood mononuclear cells. However, it was unclear if the topical microbicides rendered the virus noninfectious and/or reduced the binding to the epithelial cells. To test this, epithelial cells were cultured with HIV-1 in the presence or absence of topical microbicides or their placebos. The cells were washed, RNA lysates were made, and real-time PCR was performed for HIV-1. PRO 2000 and SPL7013 significantly (P < 0.0001) reduced the amount of bound HIV-1 to the colorectal epithelial cell line across clades A, B, C, and CRF01-AE. While none of the products reduced the binding of HIV-1 clades A and C to the urogenital cell line, CAP, PRO 2000, and SPL7013 significantly (P ≤ 0.002) reduced the binding of clades B and CRF01-AE. In general, PRO 2000 and SPL7013 placebos significantly (P < 0.0001) reduced the amount of bound HIV-1 but were less than the active products. UC781, its placebo, and hydroxyethyl cellulose (placebo for CAP) minimally affected the amount of bound HIV-1. These results suggest that rendering HIV-1 noninfectious may not correlate to the amount of HIV-1 bound to epithelial cells and possible shedding into mucosal secretions. Therefore, functional virological assays in addition to measuring viral RNA should be included when clinically evaluating topical microbicide use by infected persons. PMID:17404008

  9. Value of human amniotic epithelial cells in tissue engineering for cornea.

    PubMed

    Fatimah, Simat Siti; Ng, Sook Luan; Chua, Kien Hui; Hayati, Abdul Rahman; Tan, Ay Eeng; Tan, Geok Chin

    2010-11-01

    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.

  10. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    PubMed

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  11. A Synthetic Chloride Channel Restores Chloride Conductance in Human Cystic Fibrosis Epithelial Cells

    PubMed Central

    Wang, Fei; Yao, Xiaoqiang; Yang, Dan

    2012-01-01

    Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl−) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl− transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl− channels to mediate Cl− transport across lipid bilayer membranes is capable of restoring Cl− permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl− channel dysfunction. PMID:22514656

  12. A synthetic chloride channel restores chloride conductance in human cystic fibrosis epithelial cells.

    PubMed

    Shen, Bing; Li, Xiang; Wang, Fei; Yao, Xiaoqiang; Yang, Dan

    2012-01-01

    Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.

  13. Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp.

    PubMed

    Lee, Hye-Kyung; Park, Ji-Won; Seo, You-Mi; Kim, Ha Hoon; Lee, Gene; Bae, Hyun-Sook; Park, Joo-Cheol

    2016-06-01

    For the dentin regeneration, dental epithelial cells are indispensible and must possess odontoblastic induction capability. Epithelial cell-like stem cells were recently identified in human deciduous dental pulp (DPESCs). However, their cellular characteristics remain poorly defined. The purpose of this study was to characterize DPESCs compared to HAT-7 ameloblastic cells. Expression levels of ameloblast-specific markers [odontogenic ameloblast-associated protein (Odam), matrix metalloproteinase (Mmp)-20, amelogenin, and ameloblastin] were detected in DPESCs. Co-culturing odontoblastic MDPC-23 cells with DPESCs increased expression of odontoblast differentiation markers (Dmp1 and Dspp) from days 4 to 10, while the expression of bone sialoprotein rapidly decreased. MDPC-23 cells cultured in DPESC-conditioned medium (CM) showed increased Dspp promoter activity compared with control MDPC-23 cultures. Mineralization was first observed in the CM groups from day 4 and proceeded rapidly until day 14, whereas mineralized nodules were found from day 7 in control media-cultured cells. In conclusion, DPESCs in human deciduous pulp possess ameloblast-like characteristics and differentiation properties, and substances derived from DPESCs promote odontoblastic differentiation. Thus, our results indicate that DPESCs can be a realistic epithelial source for use in odontoblastic induction and dentin formation of dental mesenchymal cells.

  14. Human bronchial epithelial cells express PAR-2 with different sensitivity to thermolysin.

    PubMed

    Ubl, Joachim J; Grishina, Zoryana V; Sukhomlin, Tatiana K; Welte, Tobias; Sedehizade, Fariba; Reiser, Georg

    2002-06-01

    Protease-activated receptor-2 (PAR-2) plays a role in inflammatory reactions in airway physiology. Proteases cleaving the extracellular NH(2) terminus of receptors activate or inactivate PAR, thus possessing a therapeutic potential. Using RT-PCR and immunocytochemistry, we show PAR-2 in human airway epithelial cell lines human bronchial epithelial (HBE) and A549. Functional expression of PAR-2 was confirmed by Ca(2+) imaging studies using the receptor agonist protease trypsin. The effect was abolished by soybean trypsin inhibitor and mimicked by the specific PAR-2 peptide agonist SLIGKV. Amplitude and duration of PAR-2-elicited Ca(2+) response in HBE and A549 cells depend on concentration and time of agonist superfusion. The response is partially pertussis toxin (PTX) insensitive, abolished by the phospholipase C inhibitor U-73122, and diminished by the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Cathepsin G altered neither the resting Ca(2+) level nor PAR-2-elicited Ca(2+) response. Thermolysin, a prototypic bacterial metalloprotease, induced a dose-dependent Ca(2+) response in HBE, but not A549, cells. In both cell lines, thermolysin abolished the response to a subsequent trypsin challenge but not to SLIGKV. Thus different epithelial cell types express different PAR-2 with identical responses to physiological stimuli (trypsin, SLIGKV) but different sensitivity to modifying proteases, such as thermolysin.

  15. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells.

    PubMed

    Bimczok, D; Kao, J Y; Zhang, M; Cochrun, S; Mannon, P; Peter, S; Wilcox, C M; Mönkemüller, K E; Harris, P R; Grams, J M; Stahl, R D; Smith, P D; Smythies, L E

    2015-05-01

    Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.

  16. Osteopontin improves adhesion and migration of human primary renal cortical epithelial cells during wound healing

    PubMed Central

    Wu, Jinfeng; Wang, Zuolin

    2016-01-01

    The aim of the present study was to investigate the effect of osteopontin (OPN) on adhesion and migration in human primary renal cortical epithelial cells during wound healing and Transwell assays. MTT assay was used to examine the cell viability and western blot analysis was used to examine the expression of cytoskeletal proteins and cell adhesion molecules. The results showed that overexpression of OPN had positive effects on the viability, proliferation, adhesion and migration of the human primary renal cortical epithelial cells. In addition, the integrity of the cell membrane and cytoskeleton of the epithelial cells was negatively affected by knockdown of OPN expression. The Transwell migration and a wound healing assays performed using OPN-knockdown cells suggested that OPN had a significant impact on cell migration (P=0.0421) and wound healing (P=0.0333). Therefore, OPN may be a potential target for the therapeutic modulation of skin repair to improve the healing rate and quality of wound healing. PMID:28101213

  17. Effects of hexamethylene diisocyanate exposure on human airway epithelial cells: in vitro cellular and molecular studies.

    PubMed Central

    Wisnewski, Adam V; Liu, Qing; Miller, Jing-Jing; Magoski, Nadine; Redlich, Carrie A

    2002-01-01

    In this study we developed an in vitro exposure model to investigate the effects of hexamethylene diisocyanate (HDI) on human airway epithelial cells at the cellular and molecular level. We used immunofluorescence analysis (IFA) to visualize the binding and uptake of HDI by airway epithelial cell lines (A549 and NCI-NCI-H292) and microarray technology to identify HDI sensitive genes. By IFA, we observed that subcytotoxic concentrations of HDI form microscopic micelles that appear to be taken up by cells over a 3-hr period postexposure. Microarray analysis (4.6K genes) of parallel cultures identified four genes (thioredoxin reductase, dihydrodiol dehydrogenase, TG interacting factor, and stanniocalcin) whose mRNA levels were up-regulated after HDI exposure. Northern analysis was used to confirm that HDI increased message levels of these four genes and to further explore the dose dependence and kinetics of the response. The finding that HDI exposure increases thioredoxin reductase expression supports previous studies suggesting that HDI alters thiol-redox homeostasis, an important sensor of cellular stress. Another of the HDI-increased genes, a dihydrodiol dehydrogenase, encodes a protein previously shown to be specifically susceptible to HDI conjugation, and known to detoxify other hydrocarbons. Together, the data describe a novel approach for investigating the effects of HDI binding and uptake by human airway epithelial cells and begin to identify genes that may be involved in the acute response to exposure. PMID:12204825

  18. Human myosin-Vc is a novel class V myosin expressed in epithelial cells.

    PubMed

    Rodriguez, Olga C; Cheney, Richard E

    2002-03-01

    Class V myosins are one of the most ancient and widely distributed groups of the myosin superfamily and are hypothesized to function as motors for actin-dependent organelle transport. We report the discovery and initial characterization of a novel member of this family, human myosin-Vc (Myo5c). The Myo5c protein sequence shares approximately 50% overall identity with the two other class V myosins in vertebrates, myosin-Va (Myo5a) and myosin-Vb (Myo5b). Systematic analysis of the mRNA and protein distribution of these myosins indicates that Myo5a is most abundant in brain, whereas Myo5b and Myo5c are expressed chiefly in non-neuronal tissues. Myo5c is particularly abundant in epithelial and glandular tissues including pancreas, prostate, mammary, stomach, colon and lung. Immunolocalization in colon and exocrine pancreas indicates that Myo5c is expressed chiefly in epithelial cells. A dominant negative approach using a GFP-Myo5c tail construct in HeLa cells reveals that the Myo5c tail selectively colocalizes with and perturbs a membrane compartment containing the transferrin receptor and rab8. Transferrin also accumulates in this compartment, suggesting that Myo5c is involved in transferrin trafficking. As a class V myosin of epithelial cells, Myo5c is likely to power actin-based membrane trafficking in many physiologically crucial tissues of the human body.

  19. Toluene diisocyanate colocalizes with tubulin on cilia of differentiated human airway epithelial cells.

    PubMed

    Lange, R W; Lantz, R C; Stolz, D B; Watkins, S C; Sundareshan, P; Lemus, R; Karol, M H

    1999-07-01

    Toluene diisocyanate (TDI), a highly reactive industrial chemical with widespread use in the manufacture of polyurethane and plastics, is the leading cause of occupational asthma associated with chemical exposure. We report the effects of TDI vapor (20, 100, 500, 1000 ppb) in vitro on differentiated human bronchial epithelial cells. Increased mucus was observed by electron microscopy at all TDI concentrations. Cytotoxicity, as evidenced by cell pyknosis and DNA fragmentation, was detected following a 30-min exposure to TDI concentrations of 100 ppb or higher. At 1000 ppb, transepithelial resistance was lost. Using confocal microscopy and double staining, TDI was found colocalized with ciliary tubulin in cultures that had been exposed to 20 and 100 ppb. These findings are the first to identify TDI binding to human pulmonary epithelial cells and indicate extensive binding to the cilia of differentiated epithelial cells. The in vivo implications of these findings include decreased ciliary movement and longer retention of TDI and hence increased exposure. Altered cytoskeletal-derived signal transduction may be a consequence of tubulin involvement. The effects of such changes on respiratory sensitization remain to be explored.

  20. Insensitivity of volume-sensitive chloride currents to chromones in human airway epithelial cells

    PubMed Central

    Zegarra-Moran, Olga; Lantero, Sabina; Sacco, Oliviero; Rossi, Giovanni A; Galietta, Luis J V

    1998-01-01

    Chromones (sodium cromoglycate and sodium nedocromil) block cell swelling-activated Cl− channels in NIH-3T3 fibroblasts and endothelial cells. This has led to hypothesize that cell volume regulation might be involved in asthma pathogenesis.Using whole-cell patch-clamp experiments, we studied the effect of chromones on volume-sensitive Cl− currents in transformed human tracheal epithelial cells (9HTEo-) and in primary cultures of human bronchial epithelial cells (BE).Cl− currents activated by hypotonic shock were poorly blocked by extracellular nedocromil or cromoglycate. The block was voltage-dependent since it was observed only at positive membrane potentials. At the concentration of 5 mM, the current inhibition by both chromones at +80 mV was about 40% for 9HTEo- and only 20% for BE.Intracellular application of chromones elicited a voltage-independent inhibition in 9HTEo- cells. Under this condition, volume-sensitive Cl− currents were reduced at all membrane potentials (60 and 45% inhibition by 2 mM nedocromil and cromoglycate respectively). In contrast intracellular chromones were ineffective in BE cells.The relative refractoriness to chromones, in contrast with the high sensitivity shown by other Cl− channels, suggests that the epithelial volume-sensitive Cl− channel is not involved in asthma. PMID:9863671

  1. Nanoemulsion-based mucosal adjuvant induces apoptosis in human epithelial cells

    PubMed Central

    Orzechowska, Beata U.; Kukowska-Latallo, Jolanta F.; Coulter, Alexa D.; Szabo, Zsuzsanna; Gamian, Andrzej; Myc, Andrzej

    2015-01-01

    Nanoemulsions (NEs) are adjuvants that enhance antigen penetration of the nasal mucosa, increase cellular uptake of antigens by both epithelial and dendritic cells, and promote the migration of antigen-loaded dendritic cells to regional lymph nodes within 24-hours of vaccine administration. The objective of this study was to elucidate cell death caused by W805EC NE and identify caspases and genes associated with death pathways. Consistent with this aim, we show that exposure of human epithelial cells (EC), both RPMI 2650 and FaDu, to NE results in the activation of caspases (1, 3/7, 6, 8, and 9) and the expression of genes involved in apoptotic as well as authophagy and necrosis pathways. Interestingly, the NE activates caspase 8 which promotes “immunogenic apoptosis”. The rescue assay was employed to investigate the fate of RPMI 2650 cells treated with W805EC NE. After four hour treatment with as little as 0.03% of NE no cells were rescued at 72 hours. Remarkably, immediately after four-hour treatment, the cells morphologically resembled untreated cells and most of the cells were alive. Altogether, these results suggest that NE induces death of human ECs through multiple pathways. Epithelial cell death caused by W805EC may have further implications on antigen uptake, processing, and presentation by DC's. PMID:25817825

  2. Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis.

    PubMed

    Slattery, Craig; McMorrow, Tara; Ryan, Michael P

    2006-07-24

    Epithelial-mesenchymal transition (EMT), a process whereby renal tubular epithelial cells lose phenotype and gain fibroblast-like characteristics, has been demonstrated to contribute significantly to the development of renal fibrosis. The immunosuppressant cyclosporine A (CsA) has been shown to induce renal fibrosis, a major complication of CsA therapy. The mechanisms that drive CsA-induced fibrosis remain undefined, however, CsA has been demonstrated to induce EMT in human renal proximal tubular epithelial cells (RPTEC). E2A transcription factors were identified as being upregulated by CsA treatment. To further examine the role of E2A proteins in EMT, E12 and E47 were overexpressed, alone and in combination, in human RPTEC. Both E12 and E47 elicited EMT effects on tubular epithelial cells with E47 more potent in inducing the fibroblast-like phenotype. These results indicate the important role of the E2A gene products in the progression of CsA-induced EMT and provide novel insights into CsA-induced renal fibrosis.

  3. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.

    PubMed

    Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B

    2017-08-31

    Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.

  4. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  5. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1.

    PubMed

    Fernández-Martínez, Ana B; Bajo, Ana M; Isabel Arenas, M; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2010-12-18

    The carcinogenic potential of vasoactive intestinal peptide (VIP) was analyzed in non-tumor human prostate epithelial cells (RWPE-1) and in vivo xenografts. VIP induced morphological changes and a migratory phenotype consistent with stimulation of expression/activity of metalloproteinases MMP-2 and MMP-9, decreased E-cadherin-mediated cell-cell adhesion, and increased cell motility. VIP increased cyclin D1 expression and cell proliferation that was blocked after VPAC(1)-receptor siRNA transfection. Similar effects were seen in RWPE-1 tumors developed by subcutaneous injection of VIP-treated cells in athymic nude mice. VIP acts as a cytokine in RWPE-1 cell transformation conceivably through epithelial-mesenchymal transition (EMT), reinforcing VIP role in prostate tumorigenesis.

  6. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro.

    PubMed

    Liu, Bo; Yu, Zhuoteng; Chen, Ceng; Kling, David E; Newburg, David S

    2012-08-01

    Many human milk glycans inhibit pathogen binding to host receptors and their consumption by infants is associated with reduced risk of disease. Salmonella infection is more frequent among infants than among the general population, but the incidence is lower in breast-fed babies, suggesting that human milk could contain components that inhibit Salmonella. This study aimed to test whether human milk per se inhibits Salmonella invasion of human intestinal epithelial cells in vitro and, if so, to identify the milk components responsible for inhibition. Salmonella enterica serovar Typhimurium SL1344 (SL1344) invasion of FHs 74 Int and Caco-2 cells were the models of human intestinal epithelium infection. Internalization of fluorescein-5-isothiocyanate-labeled SL1344 into intestinal cells was measured by flow cytometry to quantify infection. Human milk and its fractions inhibited infection; the inhibitory activity localized to the high molecular weight glycans. Mucin 1 and mucin 4 were isolated to homogeneity. At 150 μg/L, a typical concentration in milk, human milk mucin 1 and mucin 4 inhibited SL1344 invasion of both target cell types. These mucins inhibited SL1344 invasion of epithelial cells in a dose-dependent manner. Thus, mucins may prove useful as a basis for developing novel oral prophylactic and therapeutic agents that inhibit infant diseases caused by Salmonella and related pathogens.

  8. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  9. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  10. Differential effects of vitamin D on normal human prostate epithelial and stromal cells in primary culture.

    PubMed

    Krill, D; Stoner, J; Konety, B R; Becich, M J; Getzenberg, R H

    1999-07-01

    Because epidemiologic evidence has demonstrated that vitamin D may play a role in the etiology of prostate cancer, we tested the inhibitory effect of the biologically active form of vitamin D (1,25-D) on the cell proliferation of human prostate epithelial and stromal cells in a chemically defined situation in the presence and absence of dihydrotestosterone (DHT). We also tested the effect of 1,25-D in castrated rats in the presence and absence of flutamide, an androgen receptor blocker. Prostate stromal and epithelial cells were isolated from freshly collected human prostatectomy specimens, and cell proliferation was measured with the MTT assay. Immunohistochemistry was performed to detect the presence of 1,25-D receptors, androgen receptors, smooth muscle actin, and E-cadherin. For in vivo analysis of 1,25-D, male Sprague-Dawley rats were castrated, then treated with either 1,25-D, 1,25-D with flutamide, or vehicle control. Incubation of primary cultures of prostate epithelial cells with 1,25-D at a concentration of 10(-8) M reduced cell proliferation by 40% of controls. The inhibition of growth by 1,25-D was maintained in the presence of DHT. Conversely, the effect of a similar dose of 1,25-D on stromal cell exposure was increased proliferation. In vivo, 1,25-D increased the prostatic weight of castrated rats that had serum testosterone levels below the detectable limit. The addition of flutamide did not alter this effect. These results confirm that vitamin D may be an effective antiproliferative agent of epithelial cells in prostate cancer therapy and support in vivo studies performed in the normal rat prostate.

  11. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses

    PubMed Central

    Ozbun, Michelle A.; Patterson, Nicole A.

    2014-01-01

    Papillomaviruses have a strict tropism for epithelial cells and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro wherein virion morphogenesis occurs under cooperative viral and cellular cues requires the cultivation of epithelium. Presented in the first section of this unit is a protocol for growing differentiating epithelial tissues, whose structure and function mimics many important morphological and biochemical aspects of normal skin. The technique, pioneered by Asslineau and Pruniéras (Asselineau and Prunieras 1984) and modified by Kopan et al. (Kopan et al. 1987), involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname “raft” cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, as well as keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single step virus growth

  12. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    PubMed

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection.

  13. Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells.

    PubMed

    Maciejewski, Barbara A; Jamieson, Kyla C; Arnason, Jason W; Kooi, Cora; Wiehler, Shahina; Traves, Suzanne L; Leigh, Richard; Proud, David

    2017-05-01

    Exacerbations of chronic obstructive pulmonary disease are triggered by viral or bacterial pathogens, with human rhinovirus (HRV) and nontypeable Hemophilus influenzae (NTHI) among the most commonly detected pathogens. Patients who suffer from concomitant viral and bacterial infection have more severe exacerbations. The airway epithelial cell is the initial site of viral and bacterial interactions, and CCL20 is an epithelial chemokine that attracts immature dendritic cells to the airways and can act as an antimicrobial. As such, it contributes to innate and adaptive immune responses to infection. We used primary cultures of human bronchial epithelial cells and the BEAS-2B cell line to examine the effects of bacterial-viral coexposure, as well as each stimulus alone, on epithelial expression of CXCL8 and, in particular, CCL20. HRV-bacterial coexposure induced synergistic production of CXCL8 and CCL20 compared with the sum of each stimulus alone. Synergistic induction of CCL20 did not require viral replication and occurred with two different HRV serotypes that use different viral receptors. Synergy was also seen with either NTHI or Pseudomonas aeruginosa Synergistic induction of CCL20 was transcriptionally regulated. Although NF-κB was required for transcription, it did not regulate synergy, but NF-IL-6 did appear to contribute. Among MAPK inhibitors studied, neither SB203580 nor PD98059 had any effect on synergy, whereas U0126 prevented synergistic induction of CCL20 by HRV and bacteria, apparently via "off-target" effects. Thus bacterial-viral coexposure synergistically increases innate immune responses compared with individual infections. We speculate that this increased inflammatory response leads to worse clinical outcomes. Copyright © 2017 the American Physiological Society.

  14. [Effect of decontaminating solutions on titanium surface: an in vitro study of human epithelial cell culture].

    PubMed

    Ungvári, Krisztina; Pelsoczi, K István; Kormos, Bernadett; Oszkó, Albert; Radnai, Márta; Nagy, Katalin; Fazekas, András; Turzó, Kinga

    2011-03-01

    The effects of three different decontaminating solutions in clinical use for peri-implantitis therapy on the chemical structure and surface roughness of commercially pure (CP) Ti were investigated. A further aim was to survey the response of the biological environment to these changes, by examining the attachment and proliferation of human epithelial cells after treatment of the Ti surfaces with these solutions. CP (grade 4) machined titanium discs (CAMLOG Biotechnologies AG, Switzerland) were treated with 3% H2O2 (5 min), saturated citric acid (pH = 1; 1 min) or chlorhexidine gel (CHX, 5 min). The surface properties were followed through the use of X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The epithelial cell attachment and proliferation was examined by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bicinchoninic acid (BCA) protein-content assays. XPS showed an intact TiO2 layer on each sample and CHX was adsorbed by the surface, as C-O and/or C=O bond formation was revealed. AFM results gave no significant changes in the roughness after treating the surfaces with the cleaning solutions. While MTT and BCA assays did not show significant differences in epithelial cell attachments, the cell proliferation was significantly increased after H2O2 treatment as compared to CHX (not shown by BCA assays). The applied decontaminating agents do not damage the Ti surface. H2O2 can be used effectively in decontaminating the implants affected by peri-implantitis, as the human epithelial cell growth was improved, in contrast with CHX.

  15. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  16. Lipooligosaccharide-independent alteration of cellular homeostasis in Neisseria meningitidis-infected epithelial cells.

    PubMed

    Bonnah, Robert A; Hoelter, Jenny; Steeghs, Liana; Enns, Caroline A; So, Magdalene; Muckenthaler, Martina U

    2005-06-01

    Neisseria meningitidis (MC) is an important cause of meningitis and septic shock. Primary loose attachment of MC to host epithelial cells is mediated by type IV pili. Lipooligosaccharide (LOS), opacity (Opa) proteins and glycolipid adhesins facilitate subsequent tight attachment. MC infection causes numerous changes in host epithelial cell homeostasis. These include cortical plaque formation, increased expression of proinflammatory cytokines and alterations in host iron homeostasis. Using both biochemical and genetic approaches, we examined the role of LOS in mediating these events. We first examined specific cellular iron homeostasis changes that occur following addition of purified MC LOS to epithelial cells. Using an MC mutant that completely lacks LOS (MC lps tbp), we examined pili-mediated attachment and cortical plaque formation in human endocervical epithelial cells (A431). We also tested whether the lack of LOS alters cellular homeostasis, including changes in the levels of host stress response factors and proinflammatory cytokines. MC lps tbp elicited the formation of cortical plaques in A431 cells. However, the plaques were less pronounced than those formed by the MC parent. Surprisingly, the proinflammatory cytokine TNF(alpha) was upregulated during infection in MC lps tbp-infected cells. Furthermore, alterations in iron homeostasis, including lower transferrin receptor 1 (TfR-1) levels, altered TfR-1 trafficking, an 'iron-starvation' gene expression profile and low iron regulatory protein (IRP) binding activity are independent of LOS. Our results demonstrate that LOS is partially involved in both the attachment to host cells and formation of cortical plaques. However, TNFalpha induction and changes in iron homeostasis observed in MC-infected epithelial cells are independent of LOS.

  17. Alteration of transcriptional profile in human bronchial epithelial cells induced by cigarette smoke condensate.

    PubMed

    Hu, Ying-Chun; Yang, Zhi-Hua; Zhong, Ke-Jun; Niu, Li-Jing; Pan, Xiu-Jie; Wu, De-Chang; Sun, Xian-Jun; Zhou, Ping-Kun; Zhu, Mao-Xiang; Huo, Yan-Ying

    2009-10-08

    Despite the significance of cigarette smoke for carcinogenesis, the molecular mechanisms that lead to increased susceptibility of human cancers are not well-understood. In our present study, the oncogenic transforming effects of cigarette smoke condensate (CSC) were examined using papillomavirus-immortalized human bronchial epithelial cells (BEP2D). Growth kinetics, saturation density, resistance to serum-induced terminal differentiation, anchorage-independent growth and tumorigenicity in nude mice were used to investigate the various stages of transformation in BEP2D cells. Illumina microarray platforms were used to explore the CSC-induced alteration of global mRNA expression profiles of the earlier period and the advanced stage of CSC-treated BEP2D cells. We showed here that a series of sequential steps arose among CSC-treated immortalized human bronchial epithelial cells, including altered growth kinetics, resistance to serum-induced terminal differentiation, and anchorage-independence growth. In the earlier period of CSC treatment, 265 genes were down-regulated and 63 genes were up-regulated, respectively, and in the advanced stage of CSC treatment, 313 genes were down-regulated and 145 genes were up-regulated, respectively. Notably, among those genes, the expression of some of imprinted genes such as IGF2, NDN, H19 and MEG3 were all silenced or down-regulated in CSC-treated cells. These genes reactivated after 5 microM 5-aza-2-deoxycytidine (5-aza-dC) treatment. These results demonstrated that long-term treatment of human bronchial epithelial cells with CSC may adversely affect their genetic and epigenetic integrity and lead to further transformation.

  18. Carbocisteine inhibits oxidant-induced apoptosis in cultured human airway epithelial cells.

    PubMed

    Yoshida, Motoki; Nakayama, Katsutoshi; Yasuda, Hiroyasu; Kubo, Hiroshi; Kuwano, Kazuyoshi; Arai, Hiroyuki; Yamaya, Mutsuo

    2009-09-01

    Increased oxidant levels have been associated with exacerbations of COPD, and L-carbocisteine, a mucolytic agent, reduces the frequency of exacerbations. The mechanisms underlying the inhibitory effects of L-carbocisteine on oxidant-induced COPD exacerbations were examined in an in vitro study of human airway epithelial cells. In order to examine the antioxidant effects of L-carbocisteine, human tracheal epithelial cells were treated with L-carbocisteine and exposed to hydrogen peroxide (H(2)O(2)). Cell apoptosis was assessed using a cell death detection ELISA, and the pathways leading to cell apoptosis were examined by measurement of caspase-3 and caspase-9 by western blot analysis with fluorescent detection. The proportion of apoptotic cells in human tracheal epithelium was increased in a concentration- and time-dependent manner, following exposure to H(2)O(2). Treatment with L-carbocisteine reduced the proportion of apoptotic cells. In contrast, H(2)O(2) did not increase the concentration of LDH in supernatants of epithelial cells. Exposure to H(2)O(2) activated caspase-3 and caspase-9, and L-carbocisteine inhibited the H(2)O(2)-induced activation of these caspases. L-carbocisteine activated Akt phosphorylation, which modulates caspase activation, and the inhibitors of Akt, LY294002 and wortmannin, significantly reversed the inhibitory effects of L-carbocisteine on H(2)O(2)-induced cell apoptosis. These findings suggest that in human airway epithelium, L-carbocisteine may inhibit cell damage induced by H(2)O(2) through the activation of Akt phosphorylation. L-carbocisteine may have antioxidant effects, as well as mucolytic activity, in inflamed airways.

  19. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2017-02-14

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  20. Oxidative stress in Nipah virus-infected human small airway epithelial cells

    PubMed Central

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella

    2015-01-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development. PMID:26297489

  1. Regenerative potential of human airway stem cells in lung epithelial engineering.

    PubMed

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  2. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion

    PubMed Central

    Cuman, Carly; Van Sinderen, Michelle; Gantier, Michael P.; Rainczuk, Kate; Sorby, Kelli; Rombauts, Luk; Osianlis, Tiki; Dimitriadis, Evdokia

    2015-01-01

    Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure. PMID:26629549

  3. Tryptase does not alter transepithelial conductance or paracellular permeability in human airway epithelial cells.

    PubMed

    Chang, Eugene H; Lee, John H; Zabner, Joseph

    2010-01-01

    Cell tight junction proteins create a barrier between airway epithelial cells to limit paracellular transport from the apical to basolateral surface. This barrier can impede the entry of respiratory pathogens and toxins from the airway lumen into the systemic circulation. Mast cell-mediated inflammation in the human airway can cause a disruption of this barrier. Tryptase is one of the major mediators released by mast cells and has been studied extensively in diseases such as asthma, reflux, and sinusitis. We hypothesize that tryptase may play a role in airway paracellular permeability by disrupting the cell tight junction proteins. We tested this hypothesis by applying tryptase on the apical and basolateral surface to primary human airway epithelia grown in an air-liquid interface and measured changes in the transepithelial conductance and paracellular permeability of the membrane during short (every minute) and longer (over hours) time courses. We then immunostained the cell membranes for occludins and claudins to observe for changes in the structure of the tight junctions after tryptase application. Our data show that tryptase does not alter paracellular permeability in human airway cells over minutes or hours, and that tryptase does not alter the structure of the cell junction. Tryptase alone does not alter paracellular permeability in human airway cells. Tryptase may be altering the epithelial membrane independent of the cell tight junction pathway or other mast cell mediators may play a role in permeability.

  4. Differential effects of human papillomavirus type 6, 16, and 18 DNAs on immortalization and transformation of human cervical epithelial cells

    SciTech Connect

    Pecoraro, G.; Morgan, D.; Defendi, V. )

    1989-01-01

    The human papillomaviruses (HPVs) are associated with specific benign and malignant lesions of the skin and mucosal epithelia. Cloned viral DNAs from HPV types 6b, 16, and 18 associated with different pathological manifestations of genital neoplasia in vivo were introduced into primary human cervical epithelial cells by electroporation. Cells transfected with HPV16 or HPV18 DNA acquired indefinite lifespans, distinct morphological alterations, and anchorage-independent growth (HPV18), and contain integrated transcriptionally active viral genomes. HPV6b or plasmid electroporated cells senesced at low passage. The alterations in growth and differentiation of the cells appear to reflect the progressive oncogenic processes that result in cervical carcinoma in vivo.

  5. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    PubMed Central

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  6. Sulfation of chlorotyrosine and nitrotyrosine by human lung endothelial and epithelial cells: Role of the human SULT1A3

    SciTech Connect

    Yasuda, Shin; Yasuda, Tomoko; Liu, Ming-Yih; Shetty, Sreerama; Idell, Steven; Boggaram, Vijayakumar; Suiko, Masahito; Sakakibara, Yoichi; Fu Jian; Liu, Ming-Cheh

    2011-03-01

    During inflammation, potent reactive oxidants formed may cause chlorination and nitration of both free and protein-bound tyrosine. In addition to serving as biomarkers of inflammation-mediated oxidative stress, elevated levels of chlorotyrosine and nitrotyrosine have been linked to the pathogenesis of lung and vascular disorders. The current study was designed to investigate whether the lung cells are equipped with mechanisms for counteracting these tyrosine derivatives. By metabolic labeling, chlorotyrosine O-[{sup 35}S]sulfate and nitrotyrosine O-[{sup 35}S]sulfate were found to be generated and released into the labeling media of human lung endothelial and epithelial cells labeled with [{sup 35}S]sulfate in the presence of added chlorotyrosine and nitrotyrosine. Enzymatic assays using the eleven known human cytosolic sulfotransferases (SULTs) revealed SULT1A3 as the enzyme responsible for catalyzing the sulfation of chlorotyrosine and nitrotyrosine. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated the expression of SULT1A3 in the lung endothelial and epithelial cells used in this study. Kinetic constants of the sulfation of chlorotyrosine and nitrotyrosine by SULT1A3 were determined. Collectively, these results suggest that sulfation by SULT1A3 in lung endothelial and epithelial cells may play a role in the inactivation and/or disposal of excess chlorotyrosine and nitrotyrosine generated during inflammation.

  7. Soluble extracellular Klotho decreases sensitivity to cigarette smoke induced cell death in human lung epithelial cells.

    PubMed

    Blake, David J; Reese, Caitlyn M; Garcia, Mario; Dahlmann, Elizabeth A; Dean, Alexander

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the US and is associated with an abnormal inflammatory response to cigarette smoke (CS). Exposure to CS induces oxidative stress and can result in cellular senescence in the lung. Cellular senescence can then lead to decreased proliferation of epithelial cells, the destruction of alveolar structure and pulmonary emphysema. The anti-aging gene, klotho, encodes a membrane bound protein that has been shown to be a key regulator of oxidative stress and cellular senescence. In this study the role of Klotho (KL) with regard to oxidative stress and cellular senescence was investigated in human pulmonary epithelial cells exposed to cigarette smoke. Individual clones that stably overexpress Klotho were generated through retroviral transfection and geneticin selection. Klotho overexpression was confirmed through RT-qPCR, Western blotting and ELISA. Compared to control cells, constitutive Klotho overexpression resulted in decreased sensitivity to cigarette smoke induced cell death in vitro via a reduction of reactive oxygen species and a decrease in the expression of p21. Our results suggest that increasing Klotho level in pulmonary epithelial cells may be a promising strategy to reduce cellular senescence and mitigate the risk for the development of COPD.

  8. Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells

    PubMed Central

    2009-01-01

    Secondhand smoke (SHS) exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure. PMID:19943936

  9. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    SciTech Connect

    Yaswen, P.; Smoll, A.; Stampfer, M.R. ); Peehl, D.M. ); Trask, D.K.; Sager, R. )

    1990-10-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo({alpha})pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type {beta} increased its relative abundance. The protein encoded by NB-1 may have Ca{sup 2{sup plus}} binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined.

  10. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells

    SciTech Connect

    Gutierrez-Barrera, Angelica M.; Menter, David G.; Abbruzzese, James L.; Reddy, Shrikanth A.G. . E-mail: sa08366@wotan.mdacc.tmc.edu

    2007-07-06

    Three-dimensional (3D) cultures of epithelial cells offer singular advantages for studies of morphogenesis or the role of cancer genes in oncogenesis. In this study, as part of establishing a 3D culture system of pancreatic duct epithelial cells, we compared human pancreatic duct epithelial cells (HPDE-E6E7) with pancreatic cancer cell lines. Our results show, that in contrast to cancer cells, HPDE-E6E7 organized into spheroids with what appeared to be apical and basal membranes and a luminal space. Immunostaining experiments indicated that protein kinase Akt was phosphorylated (Ser473) and CTMP, a negative Akt regulator, was expressed in both HPDE-E6E7 and cancer cells. However, a nuclear pool of CTMP was detectable in HPDE-E6E7 cells that showed a dynamic concentrated expression pattern, a feature that further distinguished HPDE-E637 cells from cancer cells. Collectively, these data suggest that 3D cultures of HPDE-E6E7 cells are useful for investigating signaling and morphological abnormalities in pancreatic cancer cells.

  11. Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract.

    PubMed Central

    Cantin, A M; Fells, G A; Hubbard, R C; Crystal, R G

    1990-01-01

    We hypothesized that the alveolar structures may contain extracellular macromolecules with antioxidant properties to defend against oxidants. To evaluate this 51Cr-labeled human lung fibroblasts (HFL-1) and cat lung epithelial cells (AKD) were exposed to a H2O2-generating system and alveolar epithelial lining fluid (ELF) from healthy nonsmokers was tested for its ability to protect the lung cells from H2O2-mediated injury. The ELF provided marked antioxidant protection, with most from a H2O-soluble fraction in the 100-300-kD range. Plasma proteins with anti-H2O2 properties were in insufficient concentrations to provide the antioxidant protection observed. However, catalase, a normal intracellular antioxidant, was present in sufficient concentration to account for most of the observed anti-H2O2 properties of ELF. Depletion of ELF with an anticatalase antibody abolished the anti-H2O2 macromolecular defenses of ELF. Since catalase is not normally released by cells, a likely explanation for its presence in high concentrations in normal ELF is that it is released by lung inflammatory and parenchymal cells onto the epithelial surface of the lower respiratory tract during their normal turnover and collects there due to the slow turnover of ELF. It is likely that catalase in the ELF of normal individuals plays a role in protecting lung parenchymal cells against oxidants present in the extracellular milieu. Images PMID:2394842

  12. Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells.

    PubMed

    Savitski, Amy N; Mesaros, Clementina; Blair, Ian A; Cohen, Noam A; Kreindler, James L

    2009-11-27

    Secondhand smoke (SHS) exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure.

  13. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    PubMed

    Puig, Ferranda; Fuster, Gemma; Adda, Mélanie; Blanch, Lluís; Farre, Ramon; Navajas, Daniel; Artigas, Antonio

    2013-01-01

    Acute lung injury (ALI) is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC) on mechanical tension and barrier integrity in human alveolar epithelial cells (A549) exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml) or vehicle (control). Subsequently, thrombin (50 nM) or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  14. Neisserial Heparin Binding Antigen (NHBA) Contributes to the Adhesion of Neisseria meningitidis to Human Epithelial Cells

    PubMed Central

    Vacca, Irene; Del Tordello, Elena; Gasperini, Gianmarco; Pezzicoli, Alfredo; Di Fede, Martina; Rossi Paccani, Silvia; Marchi, Sara; Mubaiwa, Tsisti D.; Hartley-Tassell, Lauren E.; Jennings, Michael P.; Seib, Kate L.; Masignani, Vega; Pizza, Mariagrazia; Serruto, Davide; Aricò, Beatrice; Delany, Isabel

    2016-01-01

    Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization. PMID:27780200

  15. A beta-linked mannan inhibits adherence of Pseudomonas aeruginosa to human lung epithelial cells.

    PubMed

    Azghani, A O; Williams, I; Holiday, D B; Johnson, A R

    1995-02-01

    Adherence through carbohydrate-binding adhesins is an early step in colonization of the lung by gram-negative organisms, and because published data indicate that binding involves mannose groups, we tested the ability of a beta-linked acetyl-mannan (acemannan) to inhibit adherence of Pseudomonas aeruginosa to cultures of human lung epithelial cells. Adherence of radiolabelled P.aeruginosa to A549 cells (a type II-like pneumocyte line) increased linearly with the duration of the incubation. Acemannan inhibited adherence of bacteria, and the extent of inhibition was related to the concentration of the mannan. Inhibition required continued contact between acemannan and the target epithelial cells; cells washed free of acemannan no longer discouraged bacterial binding. Comparison of binding between seven different strains of P.aeruginosa indicated that fewer mucoid than non-mucoid bacteria adhered, but binding of either phenotype was inhibited by acemannan. Mannose, methyl alpha-D-mannopyranoside, methyl beta-D-mannopyranoside and dextran did not affect adherence of any of the non-mucoid strains. Mannose inhibited adherence by one mucoid strain, but not the other, indicating differences between strains of the same phenotype. Since prior treatment of epithelial cells with concanavalin A did not affect acemannan-induced inhibition of bacterial adherence, we concluded that the inhibitory effect of acemannan probably does not involve mannose-containing receptors.

  16. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  17. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B.

    PubMed

    Ekstrand-Hammarström, Barbro; Akfur, Christine M; Andersson, Per Ola; Lejon, Christian; Osterlund, Lars; Bucht, Anders

    2012-09-01

    We have compared the cellular uptake and responses of five preparations of nanocrystalline titanium dioxide (TiO(2)) between normal human bronchial epithelial (NHBE) cells and epithelial cell lines (A549 and BEAS-2B). The P25 nanoparticles, containing both anatase and rutile modifications, induced reactive oxygen species (ROS) and secretion of the neutrophil chemoattractant IL-8 in all three cell types used. Pure anatase and rutile particles provoked differential IL-8 response in A549 and no response in BEAS-2B cells despite similar formation of ROS. The pure TiO(2) modifications also provoked release of the inflammatory mediators: IL-6, G-CSF and VEGF, in NHBE cells but not in the two cell lines. We conclude that the responsiveness of lung epithelial cells is strongly dependent on both the physicochemical properties of TiO(2) nanoparticles and the type of responder cells. The differential pro-inflammatory responsiveness of primary lung epithelial cells compared with immortalized cell lines should be considered in the assessment of adverse reactions to inhaled nanoparticles.

  18. Mesenchymal-epithelial transitions: spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures.

    PubMed

    Franke, Werner W; Rickelt, Steffen

    2011-12-01

    Using biochemical as well as light- and electron-microscopic immunolocalization methods, in cultures of unicellular human blood tumor cells, we have studied the phenomenon of spontaneous and cumulative syntheses of certain epithelial proteins and glycoproteins and their assemblies to two major kinds of novel cell-cell junctions, adhering junctions (AJs) and junctions based on the epithelial cell adhesion molecule (EpCAM). More than two decades, we have selected and characterized clonal sublines of multipotential hematopoietic K562 cells, which are enriched in newly formed AJs based on cis-clusters of desmoglein Dsg2, in some sublines accompanied by desmocollin Dsc2. Both desmosomal cadherins can be anchored in a submembranous plaque containing plakoglobin and plakophilins Pkp2 and Pkp3, with or without other armadillo proteins and desmoplakin. Also, these cells are often connected by an additional, extended junction system, in which the transmembrane epithelial glycoprotein EpCAM is associated with a cytoplasmic plaque rich in several actin-binding proteins such as afadin, α-actinin, ezrin and vinculin. Both kinds of junctions contribute to connections of K562 cells into epithelioid monolayers or even three-dimensional, tissue-like structures, thus markedly changing the cell biological nature and behavior of the resulting tumor subforms (mesenchymal-epithelial transitions). We discuss molecular mechanisms involved in the formation and function of these junctions, also with respect to tumor spread and metastasis, as well as diagnostic and therapeutic consequences.

  19. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  20. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    PubMed Central

    Khazaei, Mohammad Rasoul; Rashidi, Zahra; Chobsaz, Farzaneh; Khazaei, Mozafar

    2016-01-01

    Objective(s): Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods: In this in vitro study, endometrial biopsies from endometriosis patients (n=9) were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml). Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0), 10, 25, 50 and 100 micromole/liter (µM) concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO) concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO)–Ethidium Bromide (EB) double staining and Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P<0.05) and apoptotic index increased in 25, 50 and 100 µM noscapine concentrations in 48 hr significantly (P<0.05). Concentrations of NO didn’t show a significant decrease. Conclusion: Noscapine increased endometriotic epithelial and stromal cell death and can be suggested as a treatment for endometriosis. PMID:27803780

  1. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells

    PubMed Central

    Castillo, Lilian Fedra; Tascón, Rocío; Huvelle, María Amparo Lago; Novack, Gisela; Llorens, María Candelaria; dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Joffé, Elisa Bal de Kier; Labriola, Leticia; Peters, María Giselle

    2016-01-01

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits. Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1. Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis. PMID:27507057

  2. Isolates of the Enterobacter cloacae complex induce apoptosis of human intestinal epithelial cells.

    PubMed

    Krzymińska, Sylwia; Koczura, Ryszard; Mokracka, Joanna; Puton, Tomasz; Kaznowski, Adam

    2010-09-01

    Strains of the Enterobacter cloacae complex are becoming increasingly important human pathogen. The aim of the study was to identify, by sequencing the hsp60 gene, the species of clinical isolates phenotypically identified as E. cloacae and to examine them for virulence-associated properties: the ability of adhesion, invasion to HEp-2 cells and the induced apoptosis of infected epithelial cells. The majority of the strains were identified as Enterobacter hormaechei with E. hormaechei subsp. steigerwaltii being the most frequent subspecies. Other strains belonged to E. hormaechei subsp. oharae, E. cloacae cluster III, and E. cloacae cluster IV. The strains were examined for virulence-associated properties: the ability to adhesion and invasion to HEp-2 cells and the apoptosis induction of infected epithelial cells. All strains revealed adherence ability and most of them (71%) were invasive to epithelial cells. Analyses of cellular morphology and DNA fragmentation in the HEp-2 cells exhibited typical features of cells undergoing apoptosis. We observed morphological changes, including condensation of nuclear chromatin, formation of apoptotic bodies and blebbing of cell membrane. The lowest apoptotic index did not exceed 6%, whereas the highest reached 49% at 24h and 98% at 48 h after infection. Forty strains (73%) induced fragmentation of nuclear DNA and characteristic intranucleosomal pattern with the size of about 180-200 bp in DNA extracted from infected cells at 48 h after infection. The results indicated that the bacteria of the E. cloacae complex may adhere to and penetrate into epithelial cells and induce apoptosis, which could be an important mechanism contributing to the development diseases.

  3. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells.

    PubMed

    Castillo, Lilian Fedra; Tascón, Rocío; Lago Huvelle, María Amparo; Novack, Gisela; Llorens, María Candelaria; Dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Bal de Kier Joffé, Elisa; Labriola, Leticia; Peters, María Giselle

    2016-09-13

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.

  4. Sprouty2 Suppresses Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells through Blockade of Smad2 and ERK1/2 Pathways

    PubMed Central

    Chen, Chuan; Chen, Xiaoyun; Qin, Yingyan; Qu, Bo; Luo, Lixia; Lin, Haotian; Wu, Mingxing; Chen, Weirong; Liu, Yizhi

    2016-01-01

    Transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a key role in the pathogenesis of anterior subcapsular cataract (ASC) and capsule opacification. In mouse lens, Sprouty2 (Spry2) has a negative regulatory role on TGFβ signaling. However, the regulation of Spry2 during ASC development and how Spry2 modulates TGFβ signaling pathway in human LECs have not been characterized. Here, we demonstrate that Spry2 expression level is decreased in anterior capsule LECs of ASC patients. Spry2 negatively regulates TGFβ2-induced EMT and migration of LECs through inhibition of Smad2 and ERK1/2 phosphorylation. Also, blockade of Smad2 or ERK1/2 activation suppresses EMT caused by Spry2 downregulation. Collectively, our results for the first time show in human LECs that Spry2 has an inhibitory role in TGFβ signaling pathway. Our findings in human lens tissue and epithelial cells suggest that Spry2 may become a novel therapeutic target for the prevention and treatment of ASC and capsule opacification. PMID:27415760

  5. The leukocyte chemotactic receptor FPR1 is functionally expressed on human lens epithelial cells.

    PubMed

    Schneider, Erich H; Weaver, Joseph D; Gaur, Sonia S; Tripathi, Brajendra K; Jesaitis, Algirdas J; Zelenka, Peggy S; Gao, Ji-Liang; Murphy, Philip M

    2012-11-23

    Lens degeneration in Fpr1(-/-) mice prompted us to search for functional FPR1 expression directly on lens epithelial cells. FPR1 is functionally expressed on human lens epithelial cells but has atypical properties compared with hematopoietic cell FPR1. Lens epithelial cell FPR1 may be involved in development and maintenance of the lens. This is the first link between non-hematopoietic expression of FPR1 and an ophthalmologic phenotype. Formyl peptide receptor 1 (FPR1) is a G protein-coupled chemoattractant receptor expressed mainly on leukocytes. Surprisingly, aging Fpr1(-/-) mice develop spontaneous lens degeneration without inflammation or infection (J.-L. Gao et al., manuscript in preparation). Therefore, we hypothesized that FPR1 is functionally expressed directly on lens epithelial cells, the only cell type in the lens. Consistent with this, the human fetal lens epithelial cell line FHL 124 expressed FPR1 mRNA and was strongly FPR1 protein-positive by Western blot and FACS. Competition binding using FPR1 ligands N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys (Nle = Norleucine), formylmethionylleucylphenylalanine, and peptide W revealed the same profile for FHL 124 cells, neutrophils, and FPR1-transfected HEK 293 cells. Saturation binding with fluorescein-labeled N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys revealed ~2500 specific binding sites on FHL-124 cells (K(D) ~ 0.5 nm) versus ~40,000 sites on neutrophils (K(D) = 3.2 nm). Moreover, formylmethionylleucylphenylalanine induced pertussis toxin-sensitive Ca(2+) flux in FHL 124 cells, consistent with classic G(i)-mediated FPR1 signaling. FHL 124 cell FPR1 was atypical in that it resisted agonist-induced internalization. Expression of FPR1 was additionally supported by detection of the intact full-length open reading frame in sequenced cDNA from FHL 124 cells. Thus, FHL-124 cells express functional FPR1, which is consistent with a direct functional role for FPR1 in the lens, as suggested by the phenotype of Fpr1 knock-out mice.

  6. Optimised laser microdissection of the human ocular surface epithelial regions for microarray studies

    PubMed Central

    2013-01-01

    Background The most important challenge of performing insitu transcriptional profiling of the human ocular surface epithelial regions is obtaining samples in sufficient amounts, without contamination from adjacent tissue, as the region of interest is microscopic and closely apposed to other tissues regions. We have effectively collected ocular surface (OS) epithelial tissue samples from the Limbal Epithelial Crypt (LEC), limbus, cornea and conjunctiva of post-mortem cadaver eyes with laser microdissection (LMD) technique for gene expression studies with spotted oligonucleotide microarrays and Gene 1.0 ST arrays. Methods Human donor eyes (4 pairs for spotted oligonucleotide microarrays, 3 pairs for Gene 1.0 ST arrays) consented for research were included in this study with due ethical approval of the Nottingham Research Ethics Committee. Eye retrieval was performed within 36 hours of post-mortem period. The dissected corneoscleral buttons were immersed in OCT media and frozen in liquid nitrogen and stored at −80°C till further use. Microscopic tissue sections of interest were taken on PALM slides and stained with Toluidine Blue for laser microdissection with PALM microbeam systems. Optimisation of the laser microdissection technique was crucial for efficient and cost effective sample collection. Results The starting concentration of RNA as stipulated by the protocol of microarray platforms was taken as the cut-off concentration of RNA samples in our studies. The area of LMD tissue processed for spotted oligonucleotide microarray study ranged from 86,253 μm2 in LEC to 392,887 μm2 in LEC stroma. The RNA concentration of the LMD samples ranged from 22 to 92 pg/μl. The recommended starting concentration of the RNA samples used for Gene 1.0 ST arrays was 6 ng/5 μl. To achieve the desired RNA concentration the area of ocular surface epithelial tissue sample processed for the Gene 1.0 ST array experiments was approximately 100,0000 μm2 to 130,0000 μm2. RNA

  7. [Effects of cyclic stretch on the induction of the transdifferentiation in human lung epithelial cells].

    PubMed

    Zhang, Rong; Mao, Pu; Fu, Wei; Pang, Xiao-qing; Wang, Yin-yan; Yang, Chun; He, Wei-qun; Liu, Xiao-qing; Li, Yi-min

    2013-08-01

    To investigate the effect of mechanical stretch induced epithelial-mesenchymal transition in human lung epithelial cells BEAS-2B in vitro. The human lung epithelial cells BEAS-2B were subjected to cyclic stretch by the FX-5000T system at 0.33 Hz of 10% or 20% elongation for 24, 48 and 72 hours respectively. The morphologic changes were observed by microscopy. The mRNA and protein expressions of E-cadherin, Cytokeratin-8 (CK-8), α-smooth muscle actin (α-SMA) and Vimentin were evaluated by immunofluorescence before and after mechanical stretch and fluorescent quantitation reverse transcription-polymerase chain reaction (qRT-PCR). (1) When stretch by 20% elongation for 48 hours, the morphological changes in BEAS-2B cells from cobblestone-like structure to elongated shape and obviously when stretch for up to 72 hours, while 10% elongation showed no significant morphological changes comparing to control. (2) Decreasing E-cadherin and CK-8 protein expression was associated with increased immunostaining for α-SMA protein at 72 hours after 20% mechanical stretch. (3) Expression of E-cadherin mRNA was decreased to 0.388±0.056 and 0.247±0.064 after 20% mechanical stretch for 48 hours and 72 hours compared with control without stretch (set 1, both P<0.05), expression of CK-8 mRNA was decreased to 0.436±0.060 at 72 hours after 20% mechanical stretch (P<0.01), α-SMA mRNA was increased to 1.437±0.267 (48 hours) and 1.261±0.247 (72 hours) after 20% mechanical stretch (both P<0.05), and Vimentin mRNA was increased to 1.679±0.172 (48 hours) after 20% mechanical stretch (P<0.05). Expression of E-cadherin mRNA was decreased to 0.387±0.081 at 72 hours after 10% mechanical stretch (P<0.05), Vimentin mRNA was increased to 1.688±0.179 at 48 hours after 10% mechanical stretch while other markers showed no significant changes comparing with control. Excessive mechanical stretch could induce epithelial-mesenchymal transition in lung epithelial cells BEAS-2B in vitro.

  8. GPR87 mediates lysophosphatidic acid-induced colony dispersal in A431 cells.

    PubMed

    Ochiai, Shoichi; Furuta, Daisuke; Sugita, Kazuya; Taniura, Hideo; Fujita, Norihisa

    2013-09-05

    We have previously reported that an orphan G protein-coupled receptor GPR87 was activated by lysophosphatidic acid (LPA) and that it induced an increase in the intracellular Ca(2+) levels in the CHO cells genetically engineered to express GPR87-Gα16 fusion protein. Because the Ca(2+) response was blocked by the LPA receptor antagonist Ki16425, GPR87 was suggested to be a putative LPA receptor. However, further studies are required to confirm whether GPR87 is an LPA receptor. A previous study showed that colonies of A431 cells treated with LPA showed rapid and synchronized dissociation. Because A431 cells have been shown to express GPR87, we used these cells to examine whether GPR87 acted as an LPA receptor. When A431 cells were treated with gpr87-specific siRNA, the expression of GPR87 was decreased and LPA-induced colony dispersal was significantly reduced. Treatment of the cells with lpa1 siRNA had an additive effect in decrease in the colony dispersal. Studies on the LPA-mediated signaling pathway in A431 cells indicated that transactivation of the epidermal growth factor receptor (EGFR) by LPA led to cell scattering. PD153035, an inhibitor of tyrosine-kinase of EGFR, and BB94, an inhibitor of metalloprotease which produces a ligand for EGFR, significantly prevented the LPA-induced scattering of A431 cells pretreated with lpa1 or gpr87-siRNA. These results strongly suggested that GPR87 acts as an LPA receptor and induces colony dispersal via the transactivation of EGFR in A431 cells. © 2013 Elsevier B.V. All rights reserved.

  9. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  10. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    SciTech Connect

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  11. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells.

    PubMed

    Sparks, Avis E; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-05-20

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells*

    PubMed Central

    Sparks, Avis E.; Chen, Chiachen; Breslin, Mary B.; Lan, Michael S.

    2016-01-01

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity. PMID:27048654

  13. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. Lycium barbarum Polysaccharides Protect Human Lens Epithelial Cells against Oxidative Stress–Induced Apoptosis and Senescence

    PubMed Central

    Wen, Yuechun; Liu, Lian; Guo, Xiaoling; Hou, Guanghui; Wang, Guifang; Zhong, Jingxiang

    2014-01-01

    Objectives We aimed to investigate the protective effect of Lycium barbarum polysaccharides (LBPs) against oxidative stress–induced apoptosis and senescence in human lens epithelial cells. Methods To study apoptosis, SRA01/04 cells, a human lens epithelial cell lines, were exposed to 200 µM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with LBPs. Cell viability was measured using a Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, intracellular reactive oxygen species (ROS), and the loss of mitochondria membrane potential (Δψm) were detected by flow cytometric analyses. Expression levels of Bcl-2 and Bax proteins were measured by western blot analysis. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were quantized using commercial enzymatic kits according to the manufacturer's instructions. To study senescence, SRA01/04 cells were pre-incubated with LBPs and all cells were then exposed to 100 µM H2O2 for 96 h. Cellular senescence was assessed by morphologic examination and senescence-associated β-galactosidase (SA-β-gal) staining. Results LBPs significantly reduced H2O2-induced cell apoptosis, the generation of ROS, the loss of Δψm, and the levels of MDA. LBPs also inhibited H2O2-induced downregulated Bcl-2 and upregulated Bax proteins and increased the levels of SOD and GSH enzyme activity. Moreover, LBPs significantly attenuated H2O2-induced cellular senescence. Conclusions These findings suggested that LBPs protect human lens epithelial cells from H2O2-induced apoptosis by modulating the generation of ROS, loss of Δψm, Bcl-2 family, and antioxidant enzyme activity and attenuating cellular senescence. PMID:25333784

  15. SIGIRR participates in negative regulation of LPS response and tolerance in human bladder epithelial cells.

    PubMed

    Li, Dan; Zhang, Xin; Chen, Baiyi

    2015-12-03

    The innate immune response of urinary tract is critically important in the defense to microbial attack. Toll-like receptor 4 (TLR4) controls initial mucosal response to uropathogenic Escherichia coli (UPEC). However, excessive and dysfunctional TLR signaling may result in severe inflammation and inappropriate tissue damage. Previous studies have demonstrated that single immunoglobulin IL-1R-related receptor/Toll IL-1 receptor 8 (SIGIRR/TIR8) is a member of the toll-interleukin-1 receptor (TIR) family that can negatively modulate TLR4 mediated signaling, but its role in the innate immunity of urinary tract infection remains incompletely defined. In this study, we investigated its cellular distribution and mechanisms involved within the human bladder epithelial cells after LPS stimulation. Immunostaining, reverse transcription PCR and Western blot results showed that SIGIRR was constitutively expressed in the human bladder epithelial cell lines and was downregulated after LPS stimulation. To further define the role of SIGIRR, cells were transiently transfected with SIGIRR siRNA and stimulated with LPS. SIGIRR gene silencing augmented chemokine expression in response to LPS, as indicated by increased levels of IL-6 and IL-8 secretions in the supernatants compared with negative control siRNA. Furthermore, LPS tolerance, a protective mechanism against second LPS stimulation, was significantly reduced in SIGIRR siRNA transfected cells. Moreover, transient gene silencing augmented LPS-induced NF-κB and MAPK activation. In conclusion, our results suggest that SIGIRR plays an important role in the negative regulation of LPS response and tolerance in human bladder epithelial cells, possibly through its impact on TLR-mediated signaling.

  16. Neutrophil and asbestos fiber-induced cytotoxicity in cultured human mesothelial and bronchial epithelial cells.

    PubMed

    Kinnula, V L; Raivio, K O; Linnainmaa, K; Ekman, A; Klockars, M

    1995-03-01

    This study investigates reactive oxygen species generation and oxidant-related cytotoxicity induced by amosite asbestos fibers and polymorphonuclear leucocytes (PMNs) in human mesothelial cells and human bronchial epithelial cells in vitro. Transformed human pleural mesothelial cells (MET 5A) and bronchial epithelial cells (BEAS 2B) were treated with amosite (2 micrograms/cm2) for 48 h. After 24 h of incubation, the cells were exposed for 1 h to nonactivated or amosite (50 micrograms) activated PMNs, washed, and incubated for another 23 h. Reactive oxygen species generation by the PMNs and the target cells was measured by chemiluminescence. Cell injury was assessed by cellular adenine nucleotide depletion, extracellular release of nucleotides, and lactate dehydrogenase (LDH). Amosite-activated (but also to a lesser degree nonactivated) PMNs released substantial amounts of reactive oxygen metabolites, whereas the chemiluminescence of amosite-exposed mesothelial cells and epithelial cells did not differ from the background. Amosite treatment (48 h) of the target cells did not change intracellular adenine nucleotides (ATP, ADP, AMP) or nucleotide catabolite products (xanthine, hypoxanthine, and uric acid). When the target cells were exposed to nonactivated PMNs, significant adenine nucleotide depletion and nucleotide catabolite accumulation was observed in mesothelial cells only. In separate experiments, when the target cells were exposed to amosite-activated PMNs, the target cell injury was further potentiated compared with the amosite treatment alone or exposure to nonactivated PMNs. In conclusion, this study suggests the importance of inflammatory cell-derived free radicals in the development of amosite-induced mesothelial cell injury.

  17. Induction of human alveolar epithelial cell growth factor receptors by dendrimeric nanostructures.

    PubMed

    Omidi, Yadollah; Barar, Jaleh

    2009-01-01

    Although nonviral dendrimeric nanostructures have been widely used as gene delivery systems, key questions about target cells responses to these nanostructures are yet to be answered. Here, we report the responsiveness of A431 and A549 cells upon treatment with polypropylenimine diaminobutane (DAB) dendrimers nanosystems. Complexation of DAB dendrimers with DNA reduced the zeta potential of nanostructures, but increased their size. Fluorescence microscopy revealed high transfection efficiency in both cell lines treated with DAB dendrimers with induced cytotoxicity evidenced by MTT assay. The A549 cells showed upregulation of epidermal growth factor receptor (EGFR) and its downstream signalling biomolecule Akt kinase upon treatment with DAB dendrimers, while no changes were observed in A431 cells. Based on our findings, the biological impacts of these nanosystems appeared to be cell dependent. Thus, the biological responses of target cells should be taken into account when these nanostructures are used as gene delivery system.

  18. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Haupt, L. M.; Crawford, Y. G.

    2001-01-01

    The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.

  19. Grepafloxacin inhibits tumor necrosis factor-alpha-induced interleukin-8 expression in human airway epithelial cells.

    PubMed

    Hashimoto, S; Matsumoto, K; Gon, Y; Maruoka, S; Hayashi, S; Asai, Y; Machino, T; Horie, T

    2000-01-01

    We examined the effect of grepafloxacin (GPFX), a new fluoroquinolone antimicrobial agent, on interleukin-8 (IL-8) expression in tumor necrosis factor-alpha (TNF-alpha)-stimulated human airway epithelial cells (AEC). GPFX inhibited IL-8 protein production as well as mRNA expression in a concentration-dependent manner (2.5 - 25 micro g/ml), but the inhibition of IL-8 expression by corresponding concentrations of GPFX to serum and airway lining fluids was not complete. We discuss the modulatory effect of GPFX on IL-8 production in the context of its efficacy on controlling chronic airway inflammatory diseases.

  20. Human oral mucosal epithelial cell sheets imaging with high-resolution phase-diversity homodyne OCT

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2015-03-01

    There is a need for development of non-invasive technique to evaluate regenerative tissues such as cell sheets for transplantation. We demonstrated non-invasive imaging inside living cell sheets of human oral mucosal epithelial cells by phase-diversity homodyne optical coherence tomography (OCT). The new method OCT developed in Hitachi enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air). Nuclei inside cell sheets were imaged with sufficient spatial resolution to identify each cell. It suggested that the new method OCT could be useful for non-invasive cell sheet evaluation test.

  1. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Haupt, L. M.; Crawford, Y. G.

    2001-01-01

    The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.

  2. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer.

    PubMed

    Kyuno, Daisuke; Yamaguchi, Hiroshi; Ito, Tatsuya; Kono, Tsuyoshi; Kimura, Yasutoshi; Imamura, Masafumi; Konno, Takumi; Hirata, Koichi; Sawada, Norimasa; Kojima, Takashi

    2014-08-21

    Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and -18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1, -7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition (EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.

  3. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer

    PubMed Central

    Kyuno, Daisuke; Yamaguchi, Hiroshi; Ito, Tatsuya; Kono, Tsuyoshi; Kimura, Yasutoshi; Imamura, Masafumi; Konno, Takumi; Hirata, Koichi; Sawada, Norimasa; Kojima, Takashi

    2014-01-01

    Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and -18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1, -7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition (EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer. PMID:25152584

  4. BAX gene over-expression via nucleofection to induce apoptosis in human lens epithelial cells.

    PubMed

    Fang, Yanwen; Mo, Xiaofen; Luo, Yi; Lu, Yi

    2012-09-01

    Despite significant advances in cataract surgery techniques, posterior capsule opacification (PCO) remains a common complication. In PCO, remaining epithelial cells cloud the lens capsule and impair postoperative vision. This in vitro study was designed to investigate the potential of a gene-based approach, specifically over-expression of the proapoptotic BAX gene, to prevent PCO. Human lens epithelial cells (HLECs) were transfected by nucleofection with a plasmid encoding a fusion protein of green fluorescent protein and human BAX. The expression levels of BAX and its antiapoptotic counterpart BCL2 were determined by realtime reverse transcription polymerase chain reaction, Western blotting and immunofluorescence. BAX over-expression-induced cell death was analyzed by fluorescence-activated cell sorting using the Annexin V antibody. Fluorescence microscopy and transmission electron microscopy were used to assess changes in morphology and ultrastructure. Differential expression of the downstream apoptosis-related factor, caspase 3, was detected by Western blotting. Nucleofection efficiency was high (nearly 80%). BAX-transfected HLECs showed remarkably enhanced BAX gene expression and BAX:BCL2 ratio, but relatively little change in endogenous BCL2 expression. BAX over-expression also led to significant cytotoxicity, induction of apoptosis-related characteristics and activation of caspase 3. In conclusion, our results indicate that BAX gene over-expression can trigger cell death in HLECs via an apoptotic pathway. Thus, BAX may be a promising candidate for human gene therapy to treat PCO.

  5. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms

    PubMed Central

    Wörmann, Mirka E.; Horien, Corey L.; Johnson, Errin; Liu, Guangyu; Aho, Ellen; Tang, Christoph M.

    2016-01-01

    In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host–pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus–pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms. PMID:26813911

  6. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  7. Cytostatic and cytotoxic effects of 5-fluorouracil on human corneal epithelial cells and keratocytes.

    PubMed

    Midena, Edoardo; Lazzarini, Daniela; Catania, Anton Giulio; Moretto, Erika; Fregona, Iva; Parrozzani, Raffaele

    2013-03-01

    To investigate the effects of various 5-fluorouracil (5-FU) concentrations, exposure times, and application techniques on in vitro-cultured human corneal cells. Human corneal epithelial cell (HCEC) and human corneal keratocyte (HCK) cultures were exposed to different 5-FU concentrations (0.025%-1%) and incubation durations (5 minutes to 2 hours). The cytostatic effect was evaluated as the percentage of inhibition of migration relative to the control. The evaluation of cytotoxic effect included both phase contrast microscopic observations and viability measures performed using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] colorimetric assay. The results are expressed as ratio of optical density (OD) reduction 24 hours after exposure. The cytostatic effect was time and dose dependent. The 50% inhibiting dose was 0.55% after 1 hour of incubation for HCECs and was 0.5% after 2 hours of incubation for HCKs. A 100% inhibitory effect was never observed at any concentration or incubation duration. No cytotoxic changes were observed using an 5-FU concentration of <1%; 1% 5-FU showed time-dependent cytotoxic changes in HCEC cultures only. MTT analysis showed no OD reduction at 5-FU concentrations of <1%, whereas 1% 5-FU showed OD reduction <50% at any tested exposure time. HCECs showed higher reduction in OD than HCKs. 5-FU formulations topically used in clinical practice showed limited toxicity in normal cultured corneal epithelial cells and keratocytes.

  8. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    PubMed

    Otsuki, Noriyuki; Nakatsu, Yuichiro; Kubota, Toru; Sekizuka, Tsuyoshi; Seki, Fumio; Sakai, Kouji; Kuroda, Makoto; Yamaguchi, Ryoji; Takeda, Makoto

    2013-01-01

    Canine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  9. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  10. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms.

    PubMed

    Wörmann, Mirka E; Horien, Corey L; Johnson, Errin; Liu, Guangyu; Aho, Ellen; Tang, Christoph M; Exley, Rachel M

    2016-03-01

    In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.

  11. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    NASA Astrophysics Data System (ADS)

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S. P.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-06-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.Inhaled nanoparticles have a high deposition rate in

  12. Fibulin-5 localisation in human endometrial cancer shifts from epithelial to stromal with increasing tumour grade, and silencing promotes endometrial epithelial cancer cell proliferation

    PubMed Central

    WINSHIP, AMY LOUISE; RAINCZUK, KATE; TON, AMANDA; DIMITRIADIS, EVA

    2016-01-01

    Endometrial cancer is the most common invasive gynaecological malignancy. While endocrine, genetic and inflammatory factors are thought to contribute to its pathogenesis, its precise etiology and molecular regulators remain poorly understood. Fibulin-5 is an extracellular matrix (ECM) protein that inhibits cell growth and invasion in several cancer cell types and is downregulated in a number of types of human cancer. However, it is unknown whether fibulin-5 plays a role in endometrial tumourigenesis. In the current report, the expression and localisation of fibulin-5 in type I endometrioid human endometrial cancers of grades (G) 1–3 was investigated using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Fibulin-5 mRNA was found to be significantly reduced in whole tumour tissues from women across G1-3 compared with benign endometrium (P<0.0001). Consistently, fibulin-5 protein was also reduced in the tumour epithelial compartment across increasing tumour grades. By contrast, increased protein localisation to the tumour stroma was observed with increasing grade. Knockdown by small interfering RNA in Ishikawa endometrial epithelial cancer cells expressing fibulin-5 stimulated cell adhesion and proliferation in vitro. Fibulin-5 mRNA expression in Ishikawa cells was induced by transforming growth factor-β and fibulin-5 in turn activated extracellular signal-regulated kinases (ERK1/2), suggesting that it may act via the mitogen-activated protein kinase pathway. In summary, the present study identified fibulin-5 as a downregulated ECM gene in human endometrial cancer and observed a shift from epithelial to stromal protein localisation with increasing tumour grade in women. These data suggest that loss of fibulin-5 function may promote endometrial cancer progression by enhancing epithelial cell adhesion and proliferation. PMID:27347195

  13. Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success.

    PubMed

    Cuman, C; Menkhorst, E M; Rombauts, L J; Holden, S; Webster, D; Bilandzic, M; Osianlis, T; Dimitriadis, E

    2013-05-01

    Do human blastocysts which subsequently implant release factors that regulate endometrial epithelial cell gene expression and adhesion to facilitate endometrial receptivity? Blastocysts which subsequently implanted released factors that altered endometrial epithelial gene expression and facilitated endometrial adhesion while blastocysts that failed to implant did not. Human preimplantation blastocysts are thought to interact with the endometrium to facilitate implantation. Very little is known of the mechanisms by which this occurs and to our knowledge there is no information on whether human blastocysts facilitate blastocyst attachment to the endometrium. We used blastocyst-conditioned medium (BCM) from blastocysts that implanted (n = 28) and blastocysts that did not implant (n = 28) following IVF. Primary human endometrial epithelial cells (HEECs) (n = 3 experiments) were treated with BCM and the effect on gene expression and adhesion to trophoblast cells determined. We compared the protein production of selected genes in the endometrium of women with normal fertility (n = 40) and infertility (n = 6) during the receptive phase. We used real-time RT-PCR arrays containing 84 genes associated with the epithelial to mesenchymal transition. We validated selected genes by real-time RT-PCR (n = 3) and immunohistochemistry in the human endometrium (n = 46). Adhesion assays were performed using HEECs and a trophoblast cell line (n = 3). Blastocysts that implanted released factors that differentially altered mRNA levels for six genes (>1.5 fold) compared with blastocysts that did not implant. A cohort of genes was validated at the protein level: SPARC and Jagged1 were down-regulated (P < 0.01), while SNAI2 and TGF-B1 were up-regulated (P < 0.05) by implanted compared with non-implanted BCM. Jagged-1 (P < 0.05) and Snai-2 protein (P < 0.01) showed cyclical changes in the endometrium across the cycle, and Jagged-1 staining differed in women with normal fertility versus

  14. Respiratory epithelial cell expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice.

    PubMed Central

    Korfhagen, T R; Swantz, R J; Wert, S E; McCarty, J M; Kerlakian, C B; Glasser, S W; Whitsett, J A

    1994-01-01

    Increased production of EGF or TGF-alpha by the respiratory epithelial cells has been associated with the pathogenesis of various forms of lung injury. Growth factors and cytokines are thought to act locally, via paracrine and autocrine mechanisms, to stimulate cell proliferation and matrix deposition by interstitial lung cells resulting in pulmonary fibrosis. To test whether TGF-alpha mediates pulmonary fibrotic responses, we have generated transgenic mice expressing human TGF-alpha under control of regulatory regions of the human surfactant protein C (SP-C) gene. Human TGF-alpha mRNA was expressed in pulmonary epithelial cells in the lungs of the transgenic mice. Adult mice bearing the SP-C-TGF-alpha transgene developed severe pulmonary fibrosis. Fibrotic lesions were observed in peribronchial, peribronchiolar, and perivascular regions, as well as subjacent to pleural surfaces. Lesions consisted of fibrous tissue that included groups of epithelial cells expressing endogenous SP-C mRNA, consistent with their identification as distal respiratory epithelial cells. Peripheral fibrotic regions consisted of thickened pleura associated with extensive collagen deposition. Alveolar architecture was disrupted in the transgenic mice with loss of alveoli in the lung parenchyma. Pulmonary epithelial cell expression of TGF-alpha in transgenic mice disrupts alveolar morphogenesis and produces fibrotic lesions mediated by paracrine signaling between respiratory epithelial and interstitial cells of the lung. Images PMID:8163670

  15. Isolation of Human Amnion Epithelial Cells According to Current Good Manufacturing Procedures.

    PubMed

    Gramignoli, Roberto; Srinivasan, Raghuraman C; Kannisto, Kristina; Strom, Stephen C

    2016-05-12

    Different cell types can be isolated from human placental tissues, and some have been reported to retain phenotypic plasticity and characteristics that make them a promising source of cells for regenerative medicine. Among these are human amnion epithelial cells (hAECs). Adoption of current good manufacturing practices (cGMP) and enhanced quality control is essential when isolating hAECs in order to deliver a safe and effective cellular product for clinical purposes. This unit describes a detailed protocol for selective isolation of hAECs from human term placenta with little to no contamination by other cell types. A method for characterizing the heterogeneity of the hAEC suspension is also provided. The resulting cell product will be useful for clinical as well as basic research applications. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  16. Cre-mediated reversible immortalization of human renal proximal tubular epithelial cells.

    PubMed

    Kowolik, Claudia M; Liang, Shujian; Yu, Ying; Yee, Jiing-Kuan

    2004-08-05

    Primary human renal proximal tubule epithelial cells (RPTECs) are of limited use for basic research and for clinical applications due to their limited lifespan in culture. Here we used two lentivirus vectors carrying the human telomerase (hTERT) and the SV40T antigen (Tag) flanked by loxP sites to reversibly immortalize RPTECs. Transduced RPTEC clones continued to proliferate while retaining biochemical and functional characteristics of primary cells. The clones exhibited contact-inhibited, anchorage- and growth factor-dependent growth and did not form tumors in nude mice, suggesting that the cells were not transformed. Transient Cre expression in these cells led to efficient proviral deletion, upregulation of some renal specific activities, and decreased growth rates. Ultimately, the cells underwent replicative senescence, indicating intact cell cycle control. Thus, reversible immortalization allows the expansion of human RPTECs, leading to large production of RPTECs that retain most tissue-specific properties.

  17. Utility of human amniotic membrane allograft in re-epithelialization of the nasal tip

    PubMed Central

    Dennis, D'Antonio C.; Turnock, Adam R.; Sutton, Collin; Chastant, Bradley; Vanderlan, Wesley B.

    2016-01-01

    Variations in skin thickness and contours pose significant challenges to reconstruction of the lower third of the nose. Human amniotic membrane allograft offers a potential alternative to tissue transfer in reconstruction of the lower third of the nose. We reviewed the procedure and photographs of a healthy 56-year-old male with a 22 × 18 mm lower third nasal defect involving full thickness skin and subcutaneous tissue. Following preparation for grafting, dehydrated human amniotic membrane was fashioned to the dimensions of the defect and applied. No further surgical intervention was provided for 3 months. Complete re-epithelialization of the nasal and adjacent defects was achieved with minimal scar formation. Human amniotic membrane allograft provides an efficacious and cosmetically acceptable alternative to local and regional tissue transfer.

  18. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    PubMed

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  19. Apelin attenuates TGF-β1-induced epithelial to mesenchymal transition via activation of PKC-ε in human renal tubular epithelial cells.

    PubMed

    Wang, Li-Yan; Diao, Zong-Li; Zheng, Jun-Fang; Wu, Yi-Ru; Zhang, Qi-Dong; Liu, Wen-Hu

    2017-08-25

    Epithelial to mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of renal fibrosis. Apelin, a bioactive peptide, has recently been recognized to protect against renal profibrotic activity, but the underlying mechanism has not yet been elucidated. In this study, we investigated the regulation of EMT in the presence of apelin-13 in vitro. Expression of the mesenchymal marker alpha-smooth muscle actin (α-SMA) and the epithelial marker E-cadherin was examined by immunofluorescence and western blotting in transforming growth factor beta 1 (TGF-β1)-stimulated human proximal tubular epithelial cells. Expression of extracellular matrix, fibronectin and collagen-I was examined by quantitative real-time PCR and ELISA. F13A, an antagonist of the apelin receptor APJ, and small interfering RNA targeting protein kinase C epsilon (PKC-ε) were used to explore the relevant signaling pathways. Apelin attenuated TGF-β1-induced EMT, and inhibited the EMT-associated increase in α-SMA, loss of E-cadherin, and secretion of extracellular matrix. Moreover, apelin activated PKC-ε in tubular epithelial cells, which in turn decreased phospho-Smad2/3 levels and increased Smad-7 levels. APJ inhibition or PKC-ε deletion diminished apelin-induced modulation of Smad signaling and suppression of tubular EMT. Our findings identify a novel PKC-ε-dependent mechanism in which apelin suppresses TGF-β1-mediated activation of Smad signaling pathways and thereby inhibits tubular EMT. These results suggest that apelin may be a new agent that can suppress renal fibrosis and retard chronic kidney disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Identification and functional characterization of breast cancer resistance protein in human bronchial epithelial cells (Calu-3)

    PubMed Central

    Paturi, Durga Kalyani; Kwatra, Deep; Ananthula, Hari Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2010-01-01

    Breast cancer resistance protein (BCRP), a 72 kDa protein belongs to the subfamily G of the human ATP binding cassette transporter superfamily. Overexpression of BCRP was found to play a major role in the development of resistance against various chemotherapeutic agents. BCRP plays an important role in absorption, distribution and elimination of several therapeutic agents. BCRP expression and functional activity across human bronchial epithelium and its impact on pulmonary drug accumulation has not been established. The objective of this study is to identify and characterize the BCRP efflux transporter across human bronchial epithelium. Calu-3, a human bronchial epithelial cell line was employed as a model for this study. Reverse transcription-polymerase chain reaction (RT-PCR), western blot and immunocytochemical studies were performed to identify and characterize the expression of BCRP. RT-PCR studies detected ABCG2 mRNA levels in Calu-3 cells. A strong band for BCRP with a molecular weight of approximately 72 kDa was observed in Western blot analysis. Immunocytochemical studies confirmed the presence of BCRP on the apical membrane of human bronchial epithelium. Functional activity of BCRP was determined by performing uptake of radioactive substrate [3H]-mitoxantrone in the presence and absence of BCRP inhibitors. Uptake of [3H]-mitoxantrone was elevated significantly in the presence of GF120918 and fumitremorgin C. An increase in the accumulation of Hoechst 33342, a fluorescent dye was also detected in the presence of BCRP inhibitors when compared to control. In summary, this study provides evidence for the presence of an ATP dependent, membrane bound efflux transporter BCRP across human bronchial epithelial cell line, Calu-3. PMID:19782742

  1. Precancerous model of human breast epithelial cells induced by NNK for prevention.

    PubMed

    Siriwardhana, Nalin; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2008-06-01

    Epidemiological investigations have suggested that exposure to tobacco and environmental carcinogens increase the risk of developing human breast cancer. In light of the chronic exposure of human breast tissues to tobacco and environmental carcinogens, we have taken an approach of analyzing cellular changes of immortalized non-cancerous human breast epithelial MCF10A cells during the acquisition of cancerous properties induced by repeated exposure to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at a low concentration of 100 pM. We found that accumulated exposures of MCF10A cells to NNK result in progressive development of cellular carcinogenesis from a stage of immortalization to precancerous sub-stages of acquiring a reduced dependence on growth factors and acquiring anchorage-independent growth. Using Matrigel for MCF10A cells to form size-restricted acini, we detected that exposures to NNK resulted in altered acinar conformation. Analysis of gene expression profiles by cDNA microarrays revealed up- and down-regulated genes associated with NNK-induced carcinogenesis. Using this cellular carcinogenesis model as a target system to identify anticancer agents, we detected that grape seed proanthocyanadin extract significantly suppressed NNK-induced carcinogenesis of MCF10A cells. Our studies provide a carcinogenesis-cellular model mimicking the accumulative exposure to carcinogens in the progression of human breast epithelial cells to increasingly acquire cancerous properties, as likely occurs in the development of precancerous human breast cells. Our cellular model also serves as a cost-efficient, in vitro system to identify preventive agents that inhibit human breast cell carcinogenesis induced by chronic exposures to carcinogens.

  2. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    PubMed

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.

  3. Cultured Human Airway Epithelial Cells (Calu-3): A Model of Human Respiratory Function, Structure, and Inflammatory Responses

    PubMed Central

    Zhu, Yan; Chidekel, Aaron; Shaffer, Thomas H.

    2010-01-01

    This article reviews the application of the human airway Calu-3 cell line as a respiratory model for studying the effects of gas concentrations, exposure time, biophysical stress, and biological agents on human airway epithelial cells. Calu-3 cells are grown to confluence at an air-liquid interface on permeable supports. To model human respiratory conditions and treatment modalities, monolayers are placed in an environmental chamber, and exposed to specific levels of oxygen or other therapeutic modalities such as positive pressure and medications to assess the effect of interventions on inflammatory mediators, immunologic proteins, and antibacterial outcomes. Monolayer integrity and permeability and cell histology and viability also measure cellular response to therapeutic interventions. Calu-3 cells exposed to graded oxygen concentrations demonstrate cell dysfunction and inflammation in a dose-dependent manner. Modeling positive airway pressure reveals that pressure may exert a greater injurious effect and cytokine response than oxygen. In experiments with pharmacological agents, Lucinactant is protective of Calu-3 cells compared with Beractant and control, and perfluorocarbons also protect against hyperoxia-induced airway epithelial cell injury. The Calu-3 cell preparation is a sensitive and efficient preclinical model to study human respiratory processes and diseases related to oxygen- and ventilator-induced lung injury. PMID:20948883

  4. Validation of Normal Human Bronchial Epithelial Cells as a Model for Influenza A Infections in Human Distal Trachea

    PubMed Central

    Davis, A. Sally; Chertow, Daniel S.; Moyer, Jenna E.; Suzich, Jon; Sandouk, Aline; Dorward, David W.; Logun, Carolea; Shelhamer, James H.

    2015-01-01

    Primary normal human bronchial/tracheal epithelial (NHBE) cells, derived from the distal-most aspect of the trachea at the bifurcation, have been used for a number of studies in respiratory disease research. Differences between the source tissue and the differentiated primary cells may impact infection studies based on this model. Therefore, we examined how well-differentiated NHBE cells compared with their source tissue, the human distal trachea, as well as the ramifications of these differences on influenza A viral pathogenesis research using this model. We employed a histological analysis including morphological measurements, electron microscopy, multi-label immunofluorescence confocal microscopy, lectin histochemistry, and microarray expression analysis to compare differentiated NHBEs to human distal tracheal epithelium. Pseudostratified epithelial height, cell type variety and distribution varied significantly. Electron microscopy confirmed differences in cellular attachment and paracellular junctions. Influenza receptor lectin histochemistry revealed that α2,3 sialic acids were rarely present on the apical aspect of the differentiated NHBE cells, but were present in low numbers in the distal trachea. We bound fluorochrome bioconjugated virus to respiratory tissue and NHBE cells and infected NHBE cells with human influenza A viruses. Both indicated that the pattern of infection progression in these cells correlated with autopsy studies of fatal cases from the 2009 pandemic. PMID:25604814

  5. Human airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a model.

    PubMed

    S Banach, Bridget; Orenstein, Jan M; Fox, Linda M; Randell, Scott H; Rowley, Anne H; Baker, Susan C

    2009-03-01

    Propagation of new human respiratory virus pathogens in established cell lines is hampered by a lack of predictability regarding cell line permissivity and by availability of suitable antibody reagents to detect infection in cell lines that do not exhibit significant cytopathic effect. Recently, molecular methods have been used to amplify and identify novel nucleic acid sequences directly from clinical samples, but these methods may be hampered by the quantity of virus present in respiratory secretions at different time points following the onset of infection. Human airway epithelial (HAE) cultures, which effectively mimic the human bronchial environment, allow for cultivation of a wide variety of human respiratory viral pathogens. The goal of the experiments described here was to determine if propagation and identification of a human respiratory virus may be achieved through inoculation of HAE cultures followed by whole transcriptome amplification (WTA) and sequence analysis. To establish proof-of-principle human coronavirus NL63 (HCoV-NL63) was evaluated, and the first visualization of HCoV-NL63 virus by transmission electron microscopy (TEM) is reported. Initial propagation of human respiratory secretions onto HAE cultures followed by TEM and WTA of culture supernatant may be a useful approach for visualization and detection of new human respiratory pathogens that have eluded identification by traditional approaches.

  6. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    PubMed Central

    Bennett, Jason; Cassidy, Hilary; Slattery, Craig; Ryan, Michael P.; McMorrow, Tara

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity. PMID:27128949

  7. Detergent solubilization of the EGF receptor from A431 cells

    NASA Technical Reports Server (NTRS)

    Dayanidhi, R.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Functional reconstitution of purified preparations of human epidermal growth factor receptor (EGFR) requires dissociation of the protein from its plasma membrane lipid environment. Solubilization of membrane proteins in this manner requires the use of detergents, which are known to disrupt plasma membrane lipid/protein interactions. We have investigated the ability of three nonionic detergents to solubilize the human EGFR selectively, and have also analyzed the effect of these various treatments on the intrinsic tyrosyl kinase activity of the receptor. The nonionic detergent known as n-octyl glucoside (n-octyl beta-D-glucopyranoside) was found to give the best combination of selectivity, yield, and maintenance of enzymatic activity of the human EGFR.

  8. Detergent solubilization of the EGF receptor from A431 cells

    NASA Technical Reports Server (NTRS)

    Dayanidhi, R.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Functional reconstitution of purified preparations of human epidermal growth factor receptor (EGFR) requires dissociation of the protein from its plasma membrane lipid environment. Solubilization of membrane proteins in this manner requires the use of detergents, which are known to disrupt plasma membrane lipid/protein interactions. We have investigated the ability of three nonionic detergents to solubilize the human EGFR selectively, and have also analyzed the effect of these various treatments on the intrinsic tyrosyl kinase activity of the receptor. The nonionic detergent known as n-octyl glucoside (n-octyl beta-D-glucopyranoside) was found to give the best combination of selectivity, yield, and maintenance of enzymatic activity of the human EGFR.

  9. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells

    PubMed Central

    Chen, Congcong; Dienhart, Jason A.; Bolton, Eric C.

    2016-01-01

    Androgen receptor (AR) signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT) treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS), TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP) in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2) were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1) were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins, such that

  10. Human endometrial mesenchymal stem cells exhibit intrinsic anti-tumor properties on human epithelial ovarian cancer cells

    PubMed Central

    Bu, Shixia; Wang, Qian; Zhang, Qiuwan; Sun, Junyan; He, Biwei; Xiang, Charlie; Liu, Zhiwei; Lai, Dongmei

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal tumor of all gynecologic tumors. There is no curative therapy for EOC thus far. The tumor-homing ability of adult mesenchymal stem cells (MSCs) provide the promising potential to use them as vehicles to transport therapeutic agents to the site of tumor. Meanwhile, studies have showed the intrinsic anti-tumor properties of MSCs against various kinds of cancer, including epithelial ovarian cancer. Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a novel source for adult MSCs and exert restorative function in some diseases. Whether EnSCs endow innate anti-tumor properties on EOC cells has never been reported. By using tumor-bearing animal model and ex vivo experiments, we found that EnSCs attenuated tumor growth by inducing cell cycle arrest, promoting apoptosis, disturbing mitochondria membrane potential and decreasing pro-angiogenic ability in EOC cells in vitro and/or in vivo. Furthermore, EnSCs decreased AKT phosphorylation and promoted nuclear translocation of Forkhead box O-3a (FoxO3a) in EOC cells. Collectively, our findings elucidated the potential intrinsic anti-tumor properties of EnSCs on EOC cells in vivo and in vitro. This research provides a potential strategy for EnSC-based anti-cancer therapy against epithelial ovarian cancer. PMID:27845405

  11. Pro-inflammatory NF-κB and early growth response gene 1 regulate epithelial barrier disruption by food additive carrageenan in human intestinal epithelial cells.

    PubMed

    Choi, Hye Jin; Kim, Juil; Park, Seong-Hwan; Do, Kee Hun; Yang, Hyun; Moon, Yuseok

    2012-06-20

    The widely used food additive carrageenan (CGN) has been shown to induce intestinal inflammation, ulcerative colitis-like symptoms, or neoplasm in the gut epithelia in animal models, which are also clinical features of human inflammatory bowel disease. In this study, the effects of CGN on pro-inflammatory transcription factors NF-κB and early growth response gene 1 product (EGR-1) were evaluated in terms of human intestinal epithelial barrier integrity. Both pro-inflammatory transcription factors were elevated by CGN and only NF-κB activation was shown to be involved in the induction of pro-inflammatory cytokine interleukin-8. Moreover, the integrity of the in vitro epithelial monolayer under the CGN insult was maintained by both activated pro-inflammatory transcription factors NF-κB and EGR-1. Suppression of NF-κB or EGR-1 aggravated barrier disruption by CGN, which was associated with the reduced gene expression of tight junction component zonula occludens 1 and its irregular localization in the epithelial monolayer.

  12. Arsenic Exposure Transforms Human Epithelial Stem/Progenitor Cells into a Cancer Stem-like Phenotype

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2010-01-01

    Background Inorganic arsenic is a ubiquitous environmental carcinogen affecting millions of people worldwide. Evolving theory predicts that normal stem cells (NSCs) are transformed into cancer stem cells (CSCs) that then drive oncogenesis. In humans, arsenic is carcinogenic in the urogenital system (UGS), including the bladder and potentially the prostate, whereas in mice arsenic induces multiorgan UGS cancers, indicating that UGS NSCs may represent targets for carcinogenic initiation. However, proof of emergence of CSCs induced by arsenic in a stem cell population is not available. Methods We continuously exposed the human prostate epithelial stem/progenitor cell line WPE-stem to an environmentally relevant level of arsenic (5 μM) in vitro and determined the acquired cancer phenotype. Results WPE-stem cells rapidly acquired a malignant CSC-like phenotype by 18 weeks of exposure, becoming highly invasive, losing contact inhibition, and hypersecreting matrix metalloproteinase-9. When hetero-transplanted, these cells (designated As-CSC) formed highly pleomorphic, aggressive tumors with immature epithelial- and mesenchymal-like cells, suggesting a highly pluripotent cell of origin. Consistent with tumor-derived CSCs, As-CSCs formed abundant free-floating spheres enriched in CSC-like cells, as confirmed by molecular analysis and the fact that only these floating cells formed xenograft tumors. An early loss of NSC self-renewal gene expression (p63, ABCG2, BMI-1, SHH, OCT-4, NOTCH-1) during arsenite exposure was subsequently reversed as the tumor suppressor gene PTEN was progressively suppressed and the CSC-like phenotype acquired. Conclusions Arsenite transforms prostate epithelial stem/progenitor cells into CSC-like cells, indicating that it can produce CSCs from a model NSC population. PMID:20056578

  13. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke.

    PubMed

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air-liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×10(4) 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.

  14. Immortalization of human corneal epithelial cells using simian virus 40 large T antigen and cell characterization.

    PubMed

    Kim, Cho-Won; Go, Ryeo-Eun; Lee, Geum-A; Kim, Chang Deok; Chun, Young-Jin; Choi, Kyung-Chul

    2016-01-01

    Primary cultures of human corneal epithelial (HCE) cells usually cease to grow after four or five passages. This result in a small cell yield for experiments such as the eye irritancy test represents a serious problem for human and animal corneal epithelial research. In the present study, we established an HCE cell line immortalized by simian virus 40 (SV40), a polyomavirus, and characterized the inherent morphologic and cytologic cell properties. Primary cultured HCE cells were infected with a SV40 large T antigen (SV40 T)-expressing retrovirus, and were selected using G418 solution, an aminoglycoside antibiotic. To ensure that the immortalized cell lines express SV40 T and cytokeratin-3, a corneal epithelial-specific marker, we conducted reverse-transcription (RT)-PCR and Western blot analysis. These cell lines continued to grow for more than 50 generations, exhibiting a cobble stone-like appearance similar to normal HCE cells and an increased proliferation rate compared to primary cultured HCE cells. RT-PCR results showed that the immortalized cell lines expressed SV40 T while the primary cultured cells did not. In the Western blot assay, protein levels of phosphorylated (Ser15) p53 protein were significantly decreased in the immortalized cell lines while the expression of total p53 protein was constant. In addition, expression of p21(cip1), a cell cycle protein, was down-regulated in the immortalized cells. Moreover, a cornea epithelium-specific marker, cytokeratin-3 (CK-3), was expressed at equal levels in the immortalized cells and primary HCE cells. Taken together, these results indicate that immortalized HCE cell lines were successfully established using the SV40-retroviral vector. These cells may be an excellent model for detecting the adverse effects of standard toxic materials and could replace the traditional eye irritation test as an animal-free alternative method. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial