Science.gov

Sample records for a5 radionuclide transport

  1. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists ofmore » two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  2. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: amore » flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive

  3. EBS Radionuclide Transport Abstraction

    SciTech Connect

    R. Schreiner

    2001-06-27

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M&O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model willmore » allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by

  4. Drift-Scale Radionuclide Transport

    SciTech Connect

    J. Houseworth

    2004-09-22

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barriermore » system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor

  5. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  6. Modeling Radionuclide Transport in Clays

    SciTech Connect

    Zheng, Liange; Li, Lianchong; Rutqvist, Jonny

    2012-05-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratorymore » scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short

  7. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  8. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  9. Groundwater velocity magnitude in radionuclide transport calculations

    USGS Publications Warehouse

    Goode, Daniel J.

    1988-01-01

    Analytical solutions have been developed for many conceptual models of solute transport in groundwater (Bear 1979). Although these models usually rely on assumptions too restrictive for accurate description of actual field situations, they are useful in understanding groundwater transport and in evaluating the relative importance of the subsurface processes affecting transport. In addition, these simple models are often used for generic and screening-type analyses of groundwater contamination problems (Kent et al. 1985). For example, the Nuclear Regulatory Commission assesses potential doses resulting from the disposal of very slightly contaminated material in the ground using analytical solutions for one- and two-dimensional groundwater transport (Codell and Schreiber 1979; Codell et al. 1982; Goode et al. 1986). This note presents a method for determining a "worst-case" groundwater velocity value for two conceptual models of decaying radionuclide transport, resulting in maximum calculated point concentration.

  10. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs;more » the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and

  11. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    SciTech Connect

    Onishi, Y.; Serne, R.J.; Arnold, E.M.

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients;more » (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.« less

  12. Mathematical simulation of sediment and radionuclide transport in estuaries

    SciTech Connect

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions ofmore » three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions.« less

  13. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  14. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  15. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-basedmore » mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.« less

  16. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    SciTech Connect

    Flury, Markus

    2003-09-14

    project has close relations to the following EMSP projects: Project: 70126, Interfacial Soil Chemistry of Radionuclides in the Unsaturated Zone (PI: Jon Chorover) Project: 70070, Reactivity of Primary Soil Minerals and Secondary Precipitates (PI: Kathy Nagy) Cesium Transport in Hanford Sediments: Application of an Experimentally Based Cation Exchange Model (PI: Susan Carroll and Carl Steefel).« less

  17. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  18. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-12-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  19. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  20. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport.

    PubMed

    Soler, J M

    2001-12-01

    In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters. shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).

  1. The NAGRA/PNC Grimsel test site radionuclide migration experiment: Rigorous field testing of transport models

    SciTech Connect

    Umeki, H.; Hatanaka, K.; Alexander, W.R.

    1995-12-31

    The long-term program of in-situ radionuclide migration experiments in the underground test site at Grimsel (GTS) involves the development and testing of radionuclide transport models with their associated databases. The field experiments are carried out in a water-bearing shear zone in crystalline rock utilizing a suite of tracers of differing geochemical behavior. A rigorous model testing procedure has been developed for the GTS radionuclide migration experiment. This paper describes application of this testing procedure to a solute transport code developed by PNC.

  2. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  3. Anthropogenic radionuclides in sediment in the Japan Sea: distribution and transport processes of particulate radionuclides.

    PubMed

    Otosaka, S; Amano, H; Ito, T; Kawamura, H; Kobayashi, T; Suzuki, T; Togawa, O; Chaykovskaya, E L; Lishavskaya, T S; Novichkov, V P; Karasev, E V; Tkalin, A V; Volkov, Y N

    2006-01-01

    Distributions of anthropogenic radionuclides ((90)Sr, (137)Cs and (239+240)Pu) in seabed sediment in the Japan Sea were collected during the period 1998-2002. Concentration of (90)Sr, (137)Cs and (239+240)Pu in seabed sediment was 0.07-1.6 Bq kg(-1), 0.4-9.1 Bq kg(-1) and 0.002-1.9 Bq kg(-1), respectively. In the northern basin of the sea (Japan Basin), (239+240)Pu/(137)Cs ratios in seabed sediment were higher and their variation was smaller compared to that in the southeastern regions of the sea. The higher (239+240)Pu/(137)Cs ratios throughout the Japan Basin were considered to reflect production of Pu-enriched particles in the surface layer and substantial sinking of particulate materials in this region. In the southern regions of the Japan Sea (<38 degrees N), both inventories and (239+240)Pu/(137)Cs ratios in sediment were larger than those in the other regions. In the southern Japan Sea, observations suggested that supply of particulate radionuclides by the Tsushima Warm Current mainly enhanced accumulation of the radionuclides in this region.

  4. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    SciTech Connect

    Reimus, Paul William

    2017-07-31

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examplesmore » of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.« less

  5. Travel time simulation for radionuclide transport at the Korean underground research facility, KURT

    NASA Astrophysics Data System (ADS)

    Ko, N.; Hwang, Y.; Jeong, J.; Kim, K.

    2013-12-01

    For the research on the deep geological disposal of radioactive waste, it is necessary to understand the underground environment, including the geology and hydrogeology. In Korea, KURT (KAERI Underground Research Tunnel) was constructed in 2006 at KAERI (Korea Atomic Energy Research Institute). Geological and hydrogeological field data have been obtained from the facility, and the groundwater flow system was simulated. Based on the data observed and analyzed on a groundwater flow system, the transport of potential radionuclides, which were assumed to be released at the supposed position, was then calculated in order to prepare the fundamental data for a safety assessment of a hypothetical underground repository. Several pathways with highly water-conductive features were selected to evaluate the elapsed times of radionuclide transport. The transport times were calculated using a TDRW (Time-Domain Random Walk) method. The matrix diffusion and sorption mechanisms in the host rock, as well as the advection-dispersion processes, were considered under the KURT field conditions. To reflect the radioactive decay, some decay chains were selected. The simulation results indicate that the main factors for the shapes of the mass discharge of the radionuclides were the half-life and distribution coefficient. This shows that the long-lived radionuclides must be treated accurately at the steps of determining radioactive waste source term as well as considering the transport process, and intensified research is required for the sorption between radionuclides and host rocks for making the safety assessment process more reliable and less uncertain.

  6. Radiological assessment: predicting the transport, bioaccumulation, and uptake by man of radionuclides released to the environment

    SciTech Connect

    Not Available

    1984-03-15

    This report reviews the current status of the application of radionuclide transport models from the point of discharge to the environment to the point of intake by man. Models are reviewed that describe the transport of radionuclides through the atmosphere, surface and ground waters, deposition on terrestrial surfaces and in sediments, and acccumulation in food products. Usage factors are considered that determine the intake of radionuclides by humans due to dietary habits, physiological parameters, and living customs. Report includes an in-depth analysis of the data base accompanying these models in order to examine potential uncertainties inherent in the choice ofmore » model input parameters. Where available, model validation experimental results are included. References.« less

  7. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    SciTech Connect

    Kersting, A B; Reimus, P W; Abdel-Fattah, A

    2003-02-01

    For the last several years, the Underground Test Area (UGTA) program has funded a series of studies carried out by scientists to investigate the role of colloids in facilitating the transport of low-solubility radionuclides in groundwater, specifically plutonium (Pu). Although the studies were carried out independently, the overarching goals of these studies has been to determine if colloids in groundwater at the NTS can and will transport low-solubility radionuclides such as Pu, define the geochemical mechanisms under which this may or may not occur, determine the hydrologic parameters that may or may not enhance transport through fractures and provide recommendationsmore » for incorporating this information into future modeling efforts. The initial motivation for this work came from the observation in 1997 and 1998 by scientists from Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) that low levels of Pu originally from the Benham underground nuclear test were detected in groundwater from two different aquifers collected from wells 1.3 km downgradient (Kersting et al., 1999). Greater than 90% of the Pu and other radionuclides were associated with the naturally occurring colloidal fraction (< 1 micron particles) in the groundwater. The colloids consisted mainly of zeolite (mordenite, clinoptilolite/heulandite), clays (illite, smectite) and cristobalite (SiO{sub 2}). These minerals were also identified as alteration mineral components in the host rock aquifer, a rhyolitic tuff. The observation that Pu can and has migrated in the subsurface at the NTS has forced a rethinking of our basic assumptions regarding the mechanical and geochemical transport pathways of low-solubility radionuclides. If colloid-facilitated transport is the primary mechanism for transporting low-solubility radionuclides in the subsurface, then current transport models based solely on solubility arguments and retardation estimates may underestimate the

  8. Efficient computational strategies for modeling radionuclide transport in large-scale applications

    NASA Astrophysics Data System (ADS)

    Painter, S.

    2011-12-01

    Performance assessments of high- and low-level radioactive waste disposal systems and risk assessments of radiologically contaminated sites require large-scale modeling of radionuclide migration. Transport modeling in these applications is computationally challenging because of the need to address large spatial scales, long time frames, parametric uncertainties, multiple radionuclides coupled through decay chains, geologic heterogeneity across a wide range of spatial scales, and various radionuclide retention processes. Because of these computational demands, performance assessment studies typically use approximations such as simplified representation of transport pathways, representative waste packages instead full variability of radionuclide sources, and abstracted representations of retention processes. Several variants of particle tracking methods have recently been developed specifically for use in performance assessment (PA) studies. These new PA-oriented modeling strategies are particularly efficient and robust in applications that explicitly address parametric uncertainty and make it possible to avoid many of the previous simplifications. Particle tracking in the time domain, post-processing of particle tracking results to address uncertainties, particle tracking on unstructured grids, and new combinations of these concepts will be reviewed and critically assessed. Geosphere transport results for the proposed Forsmark repository for spent nuclear fuel in Sweden will be presented as an example application.

  9. Performance assessment model development and analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada.

    PubMed

    Robinson, Bruce A; Li, Chunhong; Ho, Clifford K

    2003-01-01

    This paper describes the development and use of a particle-tracking model to perform radionuclide-transport simulations in the unsaturated zone at Yucca Mountain, Nevada. The goal of the effort was to produce a computational model that can be coupled to the project's calibrated 3D site-scale flow model so that the results of that effort could be incorporated directly into the Total System Performance Assessment (TSPA) analyses. The transport model simulates multiple species (typically 20 or more) with complex time-varying and spatially varying releases from the potential repository. Water-table rise, climate-change scenarios, and decay chains are additional features of the model. A cell-based particle-tracking method was employed that includes a dual-permeability formulation, advection, longitudinal dispersion, matrix diffusion, and colloid-facilitated transport. This paper examines the transport behavior of several key radionuclides through the unsaturated zone using the calibrated 3D unsaturated flow fields. Computational results illustrate the relative importance of fracture flow, matrix diffusion, and lateral diversion on the distribution of travel times from the simulated repository to the water table for various climatic conditions. Results also indicate rapid transport through fractures for a portion of the released mass. Further refinement of the model will address several issues, including conservatism in the transport model, the assignment of parameters in the flow and transport models, and the underlying assumptions used to support the conceptual models of flow and transport in the unsaturated zone at Yucca Mountain.

  10. Performance assessment model development and analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce A.; Li, Chunhong; Ho, Clifford K.

    2003-05-01

    This paper describes the development and use of a particle-tracking model to perform radionuclide-transport simulations in the unsaturated zone at Yucca Mountain, Nevada. The goal of the effort was to produce a computational model that can be coupled to the project's calibrated 3D site-scale flow model so that the results of that effort could be incorporated directly into the Total System Performance Assessment (TSPA) analyses. The transport model simulates multiple species (typically 20 or more) with complex time-varying and spatially varying releases from the potential repository. Water-table rise, climate-change scenarios, and decay chains are additional features of the model. A cell-based particle-tracking method was employed that includes a dual-permeability formulation, advection, longitudinal dispersion, matrix diffusion, and colloid-facilitated transport. This paper examines the transport behavior of several key radionuclides through the unsaturated zone using the calibrated 3D unsaturated flow fields. Computational results illustrate the relative importance of fracture flow, matrix diffusion, and lateral diversion on the distribution of travel times from the simulated repository to the water table for various climatic conditions. Results also indicate rapid transport through fractures for a portion of the released mass. Further refinement of the model will address several issues, including conservatism in the transport model, the assignment of parameters in the flow and transport models, and the underlying assumptions used to support the conceptual models of flow and transport in the unsaturated zone at Yucca Mountain.

  11. Colloids and Radionuclide Transport: A Field, Experimental and Modeling Effort

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Zavarin, M.; Sylwester, E. E.; Allen, P. G.; Williams, R. W.; Kersting, A. B.

    2002-05-01

    Natural inorganic colloids (< 1 micron particles) found in groundwater can sorb low-solubility actinides and may provide a pathway for transport through geological aquifers. The importance of colloid-facilitated transport to the transport of low-solubility actinides, such as Pu, is still not well understood. In an effort to better understand the dominant geochemical mechanisms that control Pu transport, we have performed a series of sorption/desorption experiments using mineral colloids. We focused on natural colloidal minerals present in water samples collected from both saturated and vadose zone waters at the Nevada Test Site. These minerals include zeolites, clays, silica, Mn-oxides, Fe-oxides, and calcite. X-ray absorption fine-structure spectroscopy ( both XANES and EXAFS) was performed in order to characterize the speciation of sorbed plutonium. The XANES spectra show that only Pu(IV) was detected (within experimental error) on these mineral surfaces when the starting Pu oxidation state was +5, indicating that Pu(V) was reduced to Pu(IV) during sorption. The EXAFS detected Pu-M and Pu-C interactions (where M=Fe, Mn, or Si) indicating Pu(IV) surface complexation along with carbonate ternary complex formation on most of the minerals tested. Although the plutonium sorption as Pu(IV) species is mineral independent, the actual sorption paths are different for different minerals. The sorption rates were compared to the rates of plutonium disproportionation under similar conditions. The batch sorption/desorption experiments of Pu(IV) and Pu(V) onto colloidal zeolite (clinoptilolite, colloids particle size 171 ñ 25 nm) were conducted in synthetic groundwater (similar to J-13, Yucca Mountain standard) with a pH range from 4 to 10 and initial plutonium concentration of 10-9 M. The results show that Pu(IV) sorption takes place within an hour, while the rates of Pu(V) sorption onto the colloids is much slower and mineral dependent. The kinetic results from the batch

  12. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    NASA Astrophysics Data System (ADS)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  13. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    SciTech Connect

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

  14. Fukushima Daiichi-Derived Radionuclides in the Ocean: Transport, Fate, and Impacts.

    PubMed

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J; Oughton, Deborah; Smith, John N

    2017-01-03

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  15. Size dispersion and colloid mediated radionuclide transport in a synthetic porous media.

    PubMed

    Delos, A; Walther, C; Schäfer, T; Büchner, S

    2008-08-01

    Size dispersion effects during the migration of natural submicron bentonite colloids (<200 nm) through a ceramic column are observed for the first time by laser-induced breakdown detection (LIBD) at ppm (parts per million) mass concentration. Larger size fractions ( approximately 200 nm) arrive prior to smaller size fractions (<100 nm) at the column outlet in agreement with model predictions and earlier findings with carboxylated polystyrene spheres. By addition of trace amounts of americium(III) and plutonium(IV), colloid mediated transport of these radionuclides is studied. The peak arrival times of Pu-244 and Am-241, as measured by ICP-MS, match the bentonite colloid breakthrough and occur significantly prior to the conservative tracer (HTO) indicating the colloid-borne migration of tri- and tetravalent radionuclides.

  16. Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean

    PubMed Central

    Pittauer, Daniela; Tims, Stephen G.; Froehlich, Michaela B.; Fifield, L. Keith; Wallner, Anton; McNeil, Steven D.; Fischer, Helmut W.

    2017-01-01

    Unusually high concentrations of americium and plutonium have been observed in a sediment core collected from the eastern Lombok Basin between Sumba and Sumbawa Islands in the Indonesian Archipelago. Gamma spectrometry and accelerator mass spectrometry data together with radiometric dating of the core provide a high-resolution record of ongoing deposition of anthropogenic radionuclides. A plutonium signature characteristic of the Pacific Proving Grounds (PPG) dominates in the first two decades after the start of the high yield atmospheric tests in 1950’s. Approximately 40–70% of plutonium at this site in the post 1970 period originates from the PPG. This sediment record of transuranic isotopes deposition over the last 55 years provides evidence for the continuous long-distance transport of particle-reactive radionuclides from the Pacific Ocean towards the Indian Ocean. PMID:28304374

  17. Parameter and model sensitivities for colloid-facilitated radionuclide transport on the field scale

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Painter, S.; Turner, D.; Pickett, D.; Bertetti, P.

    2004-06-01

    We investigate the potential effects of inorganic colloids on radionuclide transport in groundwater using generic sensitivity studies and an example based on the alluvial aquifer near Yucca Mountain, Nevada. Our emphasis is on kinetically controlled sorption of radionuclides on mobile and immobile colloids. Three kinetic sorption models are considered for the sensitivity analysis: bilinear, Langmuir, and linear. Plutonium is assumed to be injected into the Yucca Mountain alluvial aquifer at a constant rate and follows a random stream tube to a monitoring boundary. The linear sorption model provides a reasonable upper bound on colloid-facilitated plutonium transport for the site-specific conditions. In the absence of colloid filtration and retardation, colloids enhance the plutonium discharge by a large factor over the situation without colloids. Exchange of plutonium between solution and reversibly attached colloids makes colloid retardation relatively ineffective at reducing colloid-facilitated transport except when the retardation factor is large. Irreversible removal of colloids (filtration) is more effective than retardation at reducing colloid-facilitated transport. For fixed filtration rate the degree of attenuation depends sensitively and nonmonotonically on the rate of plutonium desorption from colloids. These results emphasize the need for accurate measurements of rates of desorption from colloids as well as in situ studies of filtration of naturally occurring colloids.

  18. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    The Nopal I uranium deposit is located at Pena Blanca in Chihuahua, Mexico. Mining of high-grade uranium ore occurred in the early 1980s, with the ore stockpiled nearby. The stockpile was mostly cleared in the 1990s; however, some of the high-grade boulders have remained there, creating localized sources of radioactivity for a period of 25-30 years. This provides a unique opportunity to study radionuclide transport, because the study area did not have any uranium contamination predating the stockpile in the 1980s. One high-grade boulder was selected for study based upon its shape, location, and high activity. The presumed drip-line off of the boulder was marked, samples from the boulder surface were taken, and then the boulder was moved several feet away. Soil samples were taken from directly beneath the boulder, around the drip-line, and down slope. Eight of these samples were collected in a vertical profile directly beneath the boulder. Visible flakes of boulder material were removed from the surficial soil samples, because they would have higher concentrations of U-series radionuclides and cause the activities in the soil samples to be excessively high. The vertical sampling profile used 2-inch thicknesses for each sample. The soil samples were packaged into thin plastic containers to minimize the attenuation and to standardize sample geometry, and then they were analyzed by gamma-ray spectroscopy with a Ge(Li) detector for Th-234, Pa-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, and Pb-210. The raw counts were corrected for self-attenuation and normalized using BL-5, a uranium standard from Beaverlodge, Saskatchewan. BL-5 allowed the counts obtained on the Ge(Li) to be referenced to a known concentration or activity, which was then applied to the soil unknowns for a reliable calculation of their concentrations. Gamma ray spectra of five soil samples from the vertical profile exhibit decreasing activities with increasing depth for the selected radionuclides

  19. High resolution atmospheric transport modelling in support of radionuclide detections at CTBTO network

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Szintai, B.; Kuśmierczyk-Michulec, J.; Carter, J. A.; Given, J. W.

    2014-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of seismic, infrasound, hydroacoustic, referred to as waveform, sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. While the process of event building for the waveform technologies is well-established, the task of event building using the radionuclide detections remains a challenge. One of the reasons is the complexity of the process of atmospheric transport of airborne radionuclides from their sources to the detecting stations and subsequent difficulties in representing this process in models. An atmospheric transport model is driven by meteorological fields generated by numerical models coupled to observations. In addition, it is equipped with parameterisations of sub-grid scale processes to account for incompleteness of the representation of meteorological processes in the meteorological fields. In this presentation we will discuss possibilities of improving the accuracy of the atmospheric transport modelling simulations in support of radionuclide detections at CTBTO. Some of these improvements can be implemented operationally, while others, due to their computational cost, could only be performed on request. We will present the influence an increase of resolution of global meteorological fields, provided by the EMCWF (European Centre of Medium-Range Weather Forecasts), has on the quality of the simulations. We will address possible benefits of using high resolution regional meteorological fields generated with the mesoscale model WRF (Weather research and Forecasting). We will illustrate the impact of parameterisations, namely those linked to the atmospheric

  20. Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-04-01

    As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeksmore » to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).« less

  1. Radionuclide production, transport, and release from normal operation of liquid-metal-cooled fast breeder reactors

    SciTech Connect

    Erdman, C.A.; Kelly, J.L.; Kirbiyik, M.

    1975-11-01

    Sources of radioactivity from the normal operation of an LMFBR, and the transport of this radioactivity, were studied. Reliance was placed predominantly on published results although some new calculations were made where needed. Results were normalized to a 1000 MW(e) LMFBR and compared to values for a 1000 MW(e) LWR. Sources of radioactivity which were studied included plutonium and other transuranium elements, fission products, tritium, corrosion products, activation products, and tramp fuel. The study of the transport of radionuclides included reviews of transport of fission products and fuel from failed fuel, behavior of radioactivity in sodium and cold traps, andmore » operation of gaseous radwaste systems. Operating experience for liquid metal cooled reactors relating to radioactivity was reviewed. Included were data from the fast reactors EBR-II, Fermi, SEFOR, Dounreay, Rapsodie, and BR-5, and limited data from the thermal reactors SRE, S8ER, and Hallam. (auth)« less

  2. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  3. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    SciTech Connect

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-definedmore » deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location.« less

  4. Atmospheric Transport Modelling and Radionuclide Analysis for the NPE 2015 scenario

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Bollhöfer, Andreas; Heidmann, Verena; Krais, Roman; Schlosser, Clemens; Gestermann, Nicolai; Ceranna, Lars

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. For practicing Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification procedures and interplay between the International Data Centre (IDC) and National Data Centres (NDC), prepardness exercises (NPE) are regularly performed with selected events of fictitious CTBT-violation. The German NDC's expertise for radionuclide analyses and operation of station RN33 is provided by the Federal Office for Radiation Protection (BfS) while Atmospheric Transport Modelling (ATM) for CTBT purposes is performed at the Federal Institute for Geosciences and Natural Resources (BGR) for the combination of the radionuclide findings with waveform evidence. The radionuclide part of the NPE 2015 scenario is tackled in a joint effort by BfS and BGR. First, the NPE 2015 spectra are analysed, fission products are identified, and respective activity concentrations are derived. Special focus is on isotopic ratios which allow for source characterization and event timing. For atmospheric backtracking the binary coincidence method is applied for both, SRS fields from IDC and WMO-RSMC, and for in-house backward simulations in higher resolution for the first affected samples. Results are compared with the WebGrape PSR and the spatio-temporal domain with high atmospheric release probability is determined. The ATM results together with the radionuclide fingerprint are used for identification of waveform candidate events. Comparative forward simulations of atmospheric dispersion for candidate events are performed. Finally the overall consistency of various source scenarios is assessed and a fictitious government briefing on

  5. Method for efficient simulation of radionuclide transport in discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Cvetkovic, V.; Mancillas, J. W.; Selroos, J.

    2006-12-01

    Limitations of the advection-dispersion equation for predicting transport in sparsely or moderately fractured rock are well known and have prompted many to consider discrete fracture network (DFN) simulation combined with particle tracking as an alternative. Although it is relatively straightforward to track particles moving only by advection through DFN-derived flow fields, more complex processes such as matrix diffusion, longitudinal dispersion, and decay/in-growth of radionuclides are more difficult and more computationally demanding. Moreover, the DFN simulations themselves are computationally intensive and are usually limited to relatively small volumes. A new time-domain particle method has been developed to efficiently simulate radionuclide transport in pathways derived from DFN simulations. The algorithm moves particles from node to node on a segmented pathway. The time to complete each segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, and a variety of matrix retention processes. The method has been extended to include transport of decay chains and transient flow fields. The result of the simulation is a set of arrival times that can be post-processed with a log-normal kernel method to construct mass discharge (breakthrough) versus time. The approach can be used directly on pathways extracted from DFN models, or it may be combined with pathway simulation algorithms (Painter and Cvetkovic, Water Resources Research 41, 2005) that use information extracted from DFNs to construct realistic artificial pathways. The latter variant helps recover the effects of sub-grid velocity variability in flow fields constructed from continuum flow models. Thus, when combined with flow models based on upscaled permeability tensors, the result is a type of multiscale simulation that is applicable at large scales without making continuum-type assumptions about the transport processes. Verification tests show that

  6. Technical Work Plan for: Near Field Environment: Engineered System: Radionuclide Transport Abstraction Model Report

    SciTech Connect

    J.D. Schreiber

    2006-12-08

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA reportmore » and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model will be revised to be consistent

  7. USE OF TRANSPORTABLE RADIATION DETECTION INSTRUMENTS TO ASSESS INTERNAL CONTAMINATION FROM INTAKES OF RADIONUCLIDES PART I: FIELD TESTS AND MONTE CARLO SIMULATIONS

    PubMed Central

    Anigstein, Robert; Erdman, Michael C.; Ansari, Armin

    2017-01-01

    The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of 60Co, 137Cs, and 241Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides. PMID:27115229

  8. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination From Intakes of Radionuclides Part I: Field Tests and Monte Carlo Simulations.

    PubMed

    Anigstein, Robert; Erdman, Michael C; Ansari, Armin

    2016-06-01

    The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of Co, Cs, and Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides.

  9. Monitoring Radionuclide Transport and Spatial Distribution with a 1D Gamma-Ray Scanner

    NASA Astrophysics Data System (ADS)

    Dozier, R.; Erdmann, B.; Sams, A.; Barber, K.; DeVol, T. A.; Moysey, S. M.; Powell, B. A.

    2016-12-01

    Understanding radionuclide movement in the environment is important for informing strategies for radioactive waste management and disposal. A 1-dimensional (1D) gamma-ray emission scanning system was developed to investigate radionuclide transport behavior within soils. Two case studies illustrate the use of the system for non-destructively monitoring transport processes within a soil column. The first case study explores the system capabilities for simultaneously detecting technetium-99m (99mTc), iodine-131 (131I), and sodium-22 (22Na) moving through a column (length = 14.1 cm, diameter = 3.8 cm) packed with soil from the Department of Energy's Savannah River Site. A sodium iodide (NaI) detector was placed at 4 cm above the influent and a Bismuth germanate (BGO) detector at about 10 cm above the influent. The NaI detector results show 99mTc, 131I, and 22Na having similar breakthrough curves with the tail of 99mTc being lower than that of 131I and 22Na. NaCl tracer results compliment the gamma-ray emission measurements. These results are promising because we are able to monitor movement of the isotopes in the column in real-time. In the second case study, the 1D gamma scanner was used to quantify radionuclide mobility within a lysimeter (length = 51 cm, diameter = 10 cm). A cementitious waste form containing cobalt-60 (60Co), barium-133 (133Ba), cesium-137 (137Cs), and europium-152 (152Eu), with the amount of each contained in the cement ranging from 3 to 8.5 MBq, was placed at the midpoint of the lysimeter. The lysimeter was then exposed to natural rainfall and environmental conditions and effluent samples were collected and quantified on a quarterly basis. Following 3.3 years of exposure, the radionuclide distribution in the lysimeter was quantified with a 0.64 cm collimated high-purity germanium gamma-ray spectrometer. Diffusion of 137Cs away from the cementitious wasteform was observed. No movement was seen for 133Ba, 60Co, or 152Eu within the detection limits

  10. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    SciTech Connect

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    2013-09-28

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and themore » formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron

  11. The impacts of pore-scale physical and chemical heterogeneities on the transport of radionuclide-carrying colloids

    SciTech Connect

    WU, Ning

    2018-04-24

    Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less

  12. Modelling radionuclide transport in fractured media with a dynamic update of K d values

    SciTech Connect

    Trinchero, Paolo; Painter, Scott L.; Ebrahimi, Hedieh

    2015-10-13

    Radionuclide transport in fractured crystalline rocks is a process of interest in evaluating long term safety of potential disposal systems for radioactive wastes. Given their numerical efficiency and the absence of numerical dispersion, Lagrangian methods (e.g. particle tracking algorithms) are appealing approaches that are often used in safety assessment (SA) analyses. In these approaches, many complex geochemical retention processes are typically lumped into a single parameter: the distribution coefficient (Kd). Usually, the distribution coefficient is assumed to be constant over the time frame of interest. However, this assumption could be critical under long-term geochemical changes as it is demonstrated thatmore » the distribution coefficient depends on the background chemical conditions (e.g. pH, Eh, and major chemistry). In this study, we provide a computational framework that combines the efficiency of Lagrangian methods with a sound and explicit description of the geochemical changes of the site and their influence on the radionuclide retention properties.« less

  13. Long-term groundwater transport of radionuclides from seepage basins at the Savannah River Site

    NASA Astrophysics Data System (ADS)

    Wiedmer, A.; Hunt, J. R.; Spycher, N.; Denham, M. E.

    2009-12-01

    The Savannah River Site (SRS) in South Carolina produced tritium and plutonium between 1953 and the beginning of the 1990s. The site released process wastewater containing plutonium, tritium, uranium, and fission products into seepage basins with the intent that short half-life radionuclides would decay in the years required for the groundwater to transport the waste materials to surface waters and that activity levels in the surface waters would not exceed levels considered appropriate in the 1950s. Between 1955 and 1988, the process operations at the F-area lead to the discharge of more than 12×106 cubic meters of low-level liquid radioactive waste solutions into unlined seepage basins. The waste contained longer half life nuclides that did not significantly decay during groundwater transit such as 3H (t½ = 12.28 years), 90Sr (t½ = 28.6 years), 99Tc (t½ = 2.13×105 years) and 129I (t½ = 1.57×107 years). Remediation started with the capping of the basin in 1990 followed by active plume pumping between 1997 and 2003. In 2004 a groundwater barrier was installed and in situ pH neutralization started in 2005. Tritium monitoring detected migration to Four Mile Creek by the end of the 1950s. Other radionuclides such as 90Sr, 99Tc and 129I have also been detected in groundwater seeping into the creek, and tritium levels and conductivity were well correlated at the seepage line. The seepage basin contaminated groundwater plume surfaced at seepage faces near a creek with a pH of 3. This acidity combined with high ionic strengths associated with nitrate mobilized contaminants such as 90Sr. The high levels of tritium, low pH and high conductivity at the seepage line show the likely importance of density driven flow for the salts of the plume and the limited dilution by groundwater flow. The Savannah River Site requires remediation to minimize radionuclide migration off-site, and there has been an extensive monitoring program of process waste discharges, groundwater

  14. Analytical model for radionuclide transport in the buffer zone of the deep geological disposal

    NASA Astrophysics Data System (ADS)

    Tsao, L. D.; Chen, J. S.; Li, M. H.

    2015-12-01

    Radioactive nuclear waste poses long-term threat to human beings and the environment because that remains radioactive after millions of years. Therefore, radioactive wastes must be isolated from the living environment for millennia. A deep geological disposal entails a combination of four parts: vitrified waste form, imaginary zone, buffer zone and excavation-affected zone. The buffer zone constituted by bentonite clay provides a high level of containment of the radioactivity in the wastes over a very long time period. Analytical solution is an efficient tool for the performance evaluation of the buffer zone. This study develops a new analytical model to diffusion equation in cylindrical coordinate for describing radionuclide transport in the buffer zone. The derived solution is compared against the previous solution to illustrate the validity of previous solution which was derived using a diffusion equation in Cartesian coordinates.

  15. Radionuclide transport from yucca Mountain and Inter-basin Flow in Death Valley

    SciTech Connect

    Bredehoeft, J.; Fridrich, C.; King, C.HG.M.

    2007-07-01

    Hydrodynamics and the U.S. Geological survey conducted studies to evaluate far-field issues related to potential transport, by ground water, of radionuclide into Inyo County from Yucca Mountain, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. The specific purpose of our research was to acquire geological, subsurface geology, and hydrologic data to: 1. Establish the existence ofmore » inter-basin flow between the Amargosa Basin and Death Valley Basin, 2. Characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and 3. Evaluate the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA. 4. Evaluate the hydraulic connection between the Yucca Mountain repository and Franklin Lake Playa. The hydraulic characterization of the LCA is of critical interest to Inyo County and the U.S. Department of Energy because: 1. The upward gradient in the LCA at Yucca Mountain provides a natural barrier to radionuclide transport, 2. The LCA is a necessary habitat resource for the endangered Devil's Hole pup fish, and 3. The LCA is the primary water supply and source of water to the major springs in Death Valley National Park. This paper presents the results of our study program to evaluate if inter-basin flow exists between the Amargosa and Death Valley Basins through the LCA. The study presents the results of our structural geology analysis of the Southern Funeral Mountain range, geochemical source analysis of spring waters in the region, and a numerical groundwater model to simulate inter-basin flow in the Southern Funeral Mountain range. (authors)« less

  16. Assessing the impact of hazardous constituents on the mobilization, transport, and fate of radionuclides in RCRA waste disposal units.

    SciTech Connect

    Yu, C.; Orlandini, K. A.; Cheng, J. -J.

    2001-08-29

    This report discusses the impact that hazardous organic chemical constituents could have on the mobilization, transport, and fate of radionuclides in disposal units regulated by the Resource Conservation and Recovery Act (RCRA). The effect on a radionuclide's distribution coefficient (K{sub d}) is used as an indicator. Many factors can affect K{sub d}, including the chemical form of the radionuclide, pH of the leachate, nature of the organic constituents, porosity of the soil, amount of water in the landfill, infiltration rate of the water, presence of a chelating agent or other chemical species, and age of the landfill. A total ofmore » 19 radionuclides were studied. Of these, nine (H-3, C-14, Se-79, Sr-90, Tc-99, I-129, U-238, Np-237, and Am-241) were found to have the potential to reach groundwater and cause contamination; the remaining 10 (Co-60, Ni-63, Sb-125,Cs-137, Sm-151, Eu-152, Eu-154, Th-230, Th-232, and Pu-239) were considered less likely to cause groundwater contamination. It was also found that when organic material is in solution, it tends to lower a radionuclide's K{sub d} (and enhance transport), whereas when it is in a solid phase, it tends to increase the K{sub d}. The study introduces a simple model to estimate effective K{sub d} values on the basis of total organic carbon concentrations in landfill leachate. However, given the fact that the effective K{sub d} values of radionuclides in RCRA disposal units can either increase or decrease as the result of many factors, including the form of the organic matter (solid or in solution), the study concludes that whenever they are available, actual (measured) K{sub d} values rather than modeled values should be used to conduct dose and risk assessments of radionuclides in RCRA disposal units.« less

  17. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    PubMed

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  18. Fate and transport of radionuclides in soil-water environment. Review.

    NASA Astrophysics Data System (ADS)

    Konoplev, Aleksei

    2017-04-01

    is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  19. Transport and accumulation of radionuclides and stable elements in a Missouri River Reservoir

    USGS Publications Warehouse

    Callendar, Edward; Robbins, John A.

    1993-01-01

    Several long sediment cores from the Cheyenne River Embayment of Lake Oahe, a 250-km-long Missouri River reservoir in South Dakota, have been analyzed for radionuclides and stable elements. The combination of fine-scale sampling and rapid sedimentation produces radionuclide distributions that can be used to estimate the detailed chronology of particle transport processes in the Oahe reservoir system. A self-consistent and quantitative treatment of the 137Cs data suggests processes to which characteristic times may be associated. Times that characterize system-wide processes include (1) an integration time of several years reflecting retention of the sediment-bound tracer in regions within or external to the reservoir, (2) a relaxation time of approximately 15 years reflecting a decreasing rate of sediment accumulation ascribed to shoreline stabilization, (3) a time of a few months characterizing the breadth of riverine signatures in cores due to integration effects in the Cheyenne River system and deltaic deposits, and (4) times of a few years associated with propagation of riverine load signatures along the embayment. The distribution of total sedimentary arsenic confirms the validity of the variable sedimentation model. In 1977, a tailings retention facility was built at the Homestake Mine site, and the unrestricted input of As ceased. As a result of this remedial action, the concentration of sedimentary As decreased dramatically. In the upper section of the core, above the depth represented by the year 1976, the concentration of As decreases tenfold. In this same core the distribution of lithologically discriminating chemical elements, calcium and vanadium, relate to major flow events in the Cheyenne River basin. Because there is minimal diagenesis of chemical constituents in these rapidly accumulating sediments, stable element signatures, in addition to radiotracers, may be used to reconstruct hydrologic events in drainage basins that contribute sediment to

  20. The Atmospheric Radionuclide Transport Model (ARTM) - Validation of a long-term atmospheric dispersion model

    NASA Astrophysics Data System (ADS)

    Hettrich, Sebastian; Wildermuth, Hans; Strobl, Christopher; Wenig, Mark

    2016-04-01

    In the last couple of years, the Atmospheric Radionuclide Transport Model (ARTM) has been developed by the German Federal Office for Radiation Protection (BfS) and the Society for Plant and Reactor Security (GRS). ARTM is an atmospheric dispersion model for continuous long-term releases of radionuclides into the atmosphere, based on the Lagrangian particle model. This model, developed in the first place as a more realistic replacement for the out-dated Gaussian plume models, is currently being optimised for further scientific purposes to study atmospheric dispersion in short-range scenarios. It includes a diagnostic wind field model, allows for the application of building structures and multiple sources (including linear, 2-and 3-dimensional source geometries), and considers orography and surface roughness. As an output it calculates the activity concentration, dry and wet deposition and can model also the radioactive decay of Rn-222. As such, ARTM requires to undergo an intense validation process. While for short-term and short-range models, which were mainly developed for examining nuclear accidents or explosions, a few measurement data-sets are available for validation, data-sets for validating long-term models are very sparse and the existing ones mostly prove to be not applicable for validation. Here we present a strategy for the validation of long-term Lagrangian particle models based on the work with ARTM. In our validation study, the first part we present is a comprehensive analysis of the model sensitivities on different parameters like e.g. (simulation grid size resolution, starting random number, amount of simulation particles, etc.). This study provides a good estimation for the uncertainties of the simulation results and consequently can be used to generate model outputs comparable to the available measurements data at various distances from the emission source. This comparison between measurement data from selected scenarios and simulation results

  1. Radionuclide release and transport from nuclear underground tests performed at Mururoa and Fangataufa--predictions under uncertainty.

    PubMed

    Pfingsten, W; Hadermann, J; Perrochet, P

    2001-02-01

    In the context of a study by the International Geomechanical Commission (IGC) and the International Atomic Energy Agency (IAEA) on the effects of nuclear tests at the atolls of Mururoa and Fangataufa, release to the biosphere is estimated for 35 radionuclides originating from 147 nuclear underground tests. Based on a qualitatively characterised hydrogeological situation of atolls and relatively scarce site-specific data, a model chain was developed to conservatively estimate the radionuclide fluxes via groundwater, from their sources, the explosion cavities, towards the biosphere, the ocean or lagoon. Finite element hydro-thermal modelling was used to describe water flow. Parameters were calibrated by a very few measured pre-test temperature profiles in bore holes. The impact of the tests on groundwater flow and mechanical impact on rock was considered. Estimates were made to quantify spatial extensions and temporal evolution of impact by using measurements on refilling rate of the cavities. Tests were categorised according to their specific yield and location although detailed data were missing. A base case parameter set was defined for the hydraulic conditions and for the initial radionuclide inventory of individual tests. Models were used to describe the concentration of radionuclides in the cavities as a function of time. Radionuclide transport from the cavities to the biosphere was represented by two different approaches: a double porosity model for the fractured volcanic rock and a single porosity model for the overlaying, highly porous carbonates. Results consist of conservative estimates on radionuclide release into the environment, or concentration in the lagoon or ocean water. Their sensitivity was investigated using different models and parameters. A few measured data (concentrations in a few cavities, in the deep carbonates and in the lagoons for selected radionuclides, such as 3H, 14C, 36Cl, 90Sr, 129I, 137Cs239 240Pu and 241Am) were available for a

  2. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  3. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-06-30

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix

  4. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  5. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed.

    PubMed

    Agüero, Almudena

    2005-09-15

    This paper describes the methodology developed to construct a model for predicting the behaviour of the natural radioisotopes of U, Th and Ra in a Mediterranean watershed. The methodology includes the development of the performance assessment model, obtaining water flow and radiological parameters based on experimental data and analysis of results. The model, which accounts for both water flows and mass balances of the radionuclides in a semi-natural environment, provides assessments of radionuclide behaviour in grassland and agricultural soils, rivers and reservoirs, including the processes of radionuclide migration through land and water and interactions between both. From field and laboratory data, it has been possible to obtain parameters for the driving processes considered in the model, water fluxes, source term definition, soil to plant transfer factors and distribution coefficient values. Ranges of parameter values obtained have shown good agreement with published literature data. This general methodological approach was developed to be extended to other radionuclides for the modelling of a biosphere watershed in the context of performance assessment of a High Level Waste (HLW) repository under Mediterranean climate conditions, as well as for forecasting radionuclide transport under similar Mediterranean conditions that will occur in the future in other areas. The application of sensitivity and uncertainty analysis was intended to identify key uncertainties with the aim of setting priorities for future research. The model results for the activity concentration in the reservoir indicate that for (238)U and (230)Th the most relevant parameter is the initial concentrations of the radionuclides in the reservoir sediments. However, for (226)Ra the most important parameter is the precipitation rate over the whole watershed.

  6. Monitoring radionuclide and suspended-sediment transport in the Little Colorado River basin, Arizona and New Mexico, USA

    USGS Publications Warehouse

    Gray, John R.; Fisk, Gregory G.

    1992-01-01

    From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.

  7. TRANSPORT OF RADIONUCLIDES IN FRESH WATER SYSTEMS. Report of a Working Meeting Held at University of Texas, Austin, January 30-February 1, 1963

    SciTech Connect

    Kornegay, B.H.; Vaughan, W.A.; Jamison, D.K.

    1963-07-01

    Nineteen papers presented at the Conference on the Transport of Radionuclides in Fresh Water Systems are given. Separate abstracts were prepared for 18 papers; one was previously abstracted for NSA. (M.C.G.)

  8. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a

  9. Modeling the long-term transport and accumulation of radionuclides in the landscape for derivation of dose conversion factors.

    PubMed

    Avila, Rodolfo Moreno; Kautsky, Ulrik; Ekström, Per-Anders

    2006-12-01

    To evaluate the radiological impact of potential releases to the biosphere from a geological repository for spent nuclear fuel, it is necessary to assess the long-term dynamics of the distribution of radionuclides in the environment. In this paper, we propose an approach for making prognoses of the distribution and fluxes of radionuclides released from the geosphere, in discharges of contaminated groundwater, to an evolving landscape. The biosphere changes during the temperate part (spanning approximately 20,000 years) of an interglacial period are handled by building biosphere models for the projected succession of situations. Radionuclide transport in the landscape is modeled dynamically with a series of interconnected radioecological models of those ecosystem types (sea, lake, running water, mire, agricultural land and forest) that occur at present, and are projected to occur in the future, in a candidate area for a geological repository in Sweden. The transformation between ecosystems is modeled as discrete events occurring every thousand years by substituting one model by another. Examples of predictions of the radionuclide distribution in the landscape are presented for several scenarios with discharge locations varying in time and space. The article also outlines an approach for estimating the exposure of man resulting from all possible reasonable uses of a potentially contaminated landscape, which was used for derivation of Landscape Dose Factors.

  10. USE OF TRANSPORTABLE RADIATION DETECTION INSTRUMENTS TO ASSESS INTERNAL CONTAMINATION FROM INTAKES OF RADIONUCLIDES PART II: CALIBRATION FACTORS AND ICAT COMPUTER PROGRAM

    PubMed Central

    Anigstein, Robert; Olsher, Richard H.; Loomis, Donald A.; Ansari, Armin

    2017-01-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: 60Co, 131I, 137Cs, and 192Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates

  11. The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5).

    PubMed

    Cormerais, Yann; Massard, Pierre André; Vucetic, Milica; Giuliano, Sandy; Tambutté, Eric; Durivault, Jerome; Vial, Valérie; Endou, Hitoshi; Wempe, Michael F; Parks, Scott K; Pouyssegur, Jacques

    2018-02-23

    The transporters for glutamine and essential amino acids, ASCT2 (solute carrier family 1 member 5, SLC1A5) and LAT1 (solute carrier family 7 member 5, SLC7A5), respectively, are overexpressed in aggressive cancers and have been identified as cancer-promoting targets. Moreover, previous work has suggested that glutamine influx via ASCT2 triggers essential amino acids entry via the LAT1 exchanger, thus activating mechanistic target of rapamycin complex 1 (mTORC1) and stimulating growth. Here, to further investigate whether these two transporters are functionally coupled, we compared the respective knockout (KO) of either LAT1 or ASCT2 in colon (LS174T) and lung (A549) adenocarcinoma cell lines. Although ASCT2 KO significantly reduced glutamine import (>60% reduction), no impact on leucine uptake was observed in both cell lines. Although an in vitro growth-reduction phenotype was observed in A549- ASCT2 KO cells only, we found that genetic disruption of ASCT2 strongly decreased tumor growth in both cell lines. However, in sharp contrast to LAT1 KO cells, ASCT2 KO cells displayed no amino acid (AA) stress response (GCN2/EIF2a/ATF4) or altered mTORC1 activity (S6K1/S6). We therefore conclude that ASCT2 KO reduces tumor growth by limiting AA import, but that this effect is independent of LAT1 activity. These data were further supported by in vitro cell proliferation experiments performed in the absence of glutamine. Together these results confirm and extend ASCT2's pro-tumoral role and indicate that the proposed functional coupling model of ASCT2 and LAT1 is not universal across different cancer types. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    SciTech Connect

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooledmore » fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide

  13. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    SciTech Connect

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less

  14. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    SciTech Connect

    Lin, Wen-Sheng; Liu, Chen-Wuing; Tsao, Jui-Hsuan

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow,more » and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the

  15. Characterization of Exosomal SLC22A5 (OCTN2) carnitine transporter.

    PubMed

    Console, Lara; Scalise, Mariafrancesca; Tonazzi, Annamaria; Giangregorio, Nicola; Indiveri, Cesare

    2018-02-28

    Exosomes are extracellular vesicles involved in cell-to-cell communication. Previous large scale proteomics revealed that they contain SLC proteins. However, no data on the function of exosomal SLCs is available, so far. An SLC localized in exosomes was here characterized for the first time: the carnitine transporter OCTN2 (SLC22A5). The protein was detected by Western Blot analysis in HEK293 exosomes. To investigate the functional properties of the exosomal OCTN2, the proteins extracted from vesicles were reconstituted into proteolipsomes and the transport function was measured as uptake of 3 H-carnitine. Transport was stimulated by sodium and was dependent on pH. 3 H-carnitine uptake was inhibited by Acetyl-carnitine, but not by Asn, Gln and Arg thus excluding interference by ATB 0,+ , an amino acid transporter which also recognizes carnitine. Cardiolipin failed to stimulate transport, excluding the activity of the mitochondrial Carnitine/acylcarnitine transporter. Increased level of exosomal OCTN2 was induced by treatment of HEK293 with the pro-inflammatory cytokine INFγ. All data concurred to demonstrate that OCTN2 present in exosomes is fully functional and is in its native conformation. Functional OCTN2 was detected also in human urinary exosomes, thus suggesting the OCTN2 exosomal protein as a candidate biomarker for inflammation related pathologies.

  16. Application of natural radionuclides for determination of tropospheric ozone and aerosol transport.

    SciTech Connect

    Gaffney, J. S.; Marley, N. A.; Drayton, P. J.

    2000-12-06

    Natural radionuclides have been proposed for use in assessing the transport of ozone and aerosols in the troposphere. For example, {sup 7}Be is known to be produced in the upper troposphere and lower stratosphere by interactions with cosmogenic particles. Beryllium-7 has a 53.28-day half-life and is a gamma emitter that attaches itself to fine particles in the atmosphere once it is formed. Indeed, in tropospheric aerosol samples TBe is typically found in association with aerosol particles that are 0.3 {micro}m in diameter. Some investigators have asserted that ozone from aloft can be transported into rural and urban regions during stratospheric/troposphericmore » folding events, leading to increased background levels of ozone. During the Texas 2000 Air Quality study, aerosol samples with a 2.5-{micro}m cutoff were collected during 12-hour cycles (day/night) for a 30-day period at the Deer Park, Texas, field site in August-September 2000. To monitor {sup 7}Be levels, high-volume samples were collected on glass fiber filters on Julian dates 225-259. Sample collection was at a field site near a city park, away from any nearby traffic. This site is under routine operation by the Texas Natural Resource Conservation Commission. Instruments operated at this same site during the study period included an ozone monitor (Dasibi), a nitrogen oxides instrument (API), a CO instrument (API), a nephelometer, a UV-B meter (Richardson-Berger), and a multifilter rotating shadow band radiometer (MFRSR, Yankee Environmental Systems). In addition, we made modified fast-response NO{sub 2} and peroxyacetyl nitrate (PAN) measurements by using a fast gas chromatography with luminol detection, to be described at this meeting (3). The results for {sup 7}Be (mBq m{sup {minus}3})are compared in Figure 1 with the maximum and average ozone values (ppb) observed at the site to identify potential correlations. In Figure 2, all of the {sup 7}Be data are plotted against the maximum and average

  17. Efficient Modelling of Radionuclide Transport in Highly Heterogeneous Media and Under Variable Hydrochemical Conditions Using an "Intelligent Kd" Approach

    NASA Astrophysics Data System (ADS)

    Trinchero, P.; Painter, S. L.; Ebrahimi, H.; Koskinen, L.; Molinero, J.; Selroos, J. O.

    2014-12-01

    Due to the high heterogeneity of fractured media and the ubiquitous lack of a complete site characterization, deterministic simulations of radionuclide transport in fractured rocks are notoriously highly uncertain. This epistemic uncertainty is typically addressed using stochastic methods; e.g. the connectivity structure of the medium is described using one or multiple realizations of Discrete Fracture Networks (DFN), which are then combined to Time Domain Random Walk (TDRW) simulations (e.g. Painter and Cvetkovic, 2005). In these formulations, many complex geochemical retention processes are usually lumped into a single parameter: the distribution coefficient (Kd). Although this approach is mathematically robust and numerically efficient, it relies on an important assumption: the Kd value of each radionuclide is constant in time. This assumption could be critical under long-term geochemical changes as it is demonstrated that the distribution coefficient depends on the pH, redox conditions and major chemistry of the system. In this work, we present a novel methodology that combines the robustness of stochastic methods with a sound and explicit description of water-solute-rock interaction processes. The reconciliation of all these is achieved by using an "intelligent Kd" approach. The hydrogeochemical evolution of the site of study is first computed using long-term and large-scale mechanistic reactive transport simulations. The simulated hydrochemical conditions are then used to generate a complete database of Kd values, which represent the hydrochemical conditions in every position and time of the model domain. Then, TDRW simulations, based on one or multiple DFN realizations, are fed with these data and the results (e.g. radionuclide breakthrough curves) implicitly bring the signature of the underlying changes in the background geochemistry.

  18. An investigation into the upward transport of uranium-series radionuclides in soils and uptake by plants.

    PubMed

    Pérez-Sánchez, D; Thorne, M C

    2014-09-01

    The upward migration of radionuclides in the (238)U decay series in soils and their uptake by plants is of interest in various contexts, including the geological disposal of radioactive waste and the remediation of former sites of uranium mining and milling. In order to investigate the likely patterns of behaviour of (238)U-series radionuclides being transported upward through the soil column, a detailed soil-plant model originally developed for studying the behaviour of (79)Se in soil-plant systems has been adapted to make it applicable to the (238)U series. By undertaking a reference case simulation and a series of sensitivity studies, it has been found that a wide variety of behaviour can be exhibited by radionuclides in the (238)U decay chain in soils, even when the source term is limited to being a constant flux of either (238)U or (226)Ra. Hydrological conditions are a primary factor, both in respect of the overall advective flow deeper in the soil, which controls the rate of upward migration, and in the influence of seasonally changing flow directions closer to the soil surface, which can result in the accumulation of radionuclides at specific depths irrespective of changes in sorption between the oxic and anoxic regions of the soil. However, such changes in sorption can also be significant in controlling the degree of accumulation that occurs. This importance of seasonally varying factors in controlling radionuclide transport in soils even in very long-term simulations is a strong argument against the use of annually averaged parameters in long-term assessment models. With a water table that was simulated to fluctuate seasonally from a substantial depth in soil to the surface soil layer, the timing of such variations in relation to the period of plant growth was found to have a major impact on the degree of uptake of radionuclides by plant roots. In long-term safety assessment studies it has sometimes been the practice to model the transport of (226)Ra in

  19. Radiation Effects on the Sorption and Mobilization of Radionuclide during Transport through the Geosphere

    SciTech Connect

    L.M. Wang; R.C. Eqing; K.F. Hayes

    2004-03-14

    Site restoration activities at DOE facilities and the permanent disposal of nuclear waste inevitably involve understanding the behavior of materials in a radiation field. Radionuclide decay and the associated radiation fields lead to physical and chemical changes that can degrade or enhance important material properties. Alpha-decay of the actinide elements and beta-decay of the fission products lead to atomic-scale changes in materials (radiation damage and transmutation).

  20. Fusion of waveform events and radionuclide detections with the help of atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Krysta, Monika; Kushida, Noriyuki; Kotselko, Yuriy; Carter, Jerry

    2016-04-01

    Possibilities of associating information from four pillars constituting CTBT monitoring and verification regime, namely seismic, infrasound, hydracoustic and radionuclide networks, have been explored by the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) for a long time. Based on a concept of overlying waveform events with the geographical regions constituting possible sources of the detected radionuclides, interactive and non-interactive tools were built in the past. Based on the same concept, a design of a prototype of a Fused Event Bulletin was proposed recently. One of the key design elements of the proposed approach is the ability to access fusion results from either the radionuclide or from the waveform technologies products, which are available on different time scales and through various different automatic and interactive products. To accommodate various time scales a dynamic product evolving while the results of the different technologies are being processed and compiled is envisioned. The product would be available through the Secure Web Portal (SWP). In this presentation we describe implementation of the data fusion functionality in the test framework of the SWP. In addition, we address possible refinements to the already implemented concepts.

  1. Behaviour and transport of radionuclides in soil and vegetation of a sand dune ecosystem.

    PubMed

    Copplestone, D; Johnson, M S; Jones, S R

    2001-01-01

    A sand dune ecosystem in the vicinity of the British Nuclear Fuels reprocessing plant at Sellafield, Cumbria, UK was used to examine the spatial, temporal and depth distributions of 134Cs, 137Cs, 238Pu, 239 + 240Pu and 241Am in soil and in two species of vegetation (Festuca rubra, Ammophila arenaria). Core samples showed evidence of the accumulation of radionuclides derived mainly from sea-to-land transfer. Accumulated deposits of radioactivity (0-0.1 m) lie within the range: 1.1-3.4 Bq kg-1 (134Cs), 260-440 Bq kg-1 (137Cs), 31-40 Bq kg-1 (238Pu), 150-215 Bq kg-1 (239 + 240Pu) and 190-240 Bq kg-1 (241Am). Soil profiles showed greater activity concentrations in their deeper regions and this is attributed to leaching of radionuclides in percolating drainage water accentuated by the coarse texture, low organic matter and clay mineral content of coastal sands. Radionuclide activity concentrations in F. rubra and A. arenaria were similar, in the ranges 20-70 Bq kg-1 (137Cs), 1-5 Bq kg-1 (238Pu), 10-30 Bq kg-1 (239 + 240Pu) and 10-65 Bq kg-1 (241Am). Clear temporal and spatial variations were observed in both species of vegetation, reflecting the weather conditions antecedent to the sampling period and the influence of sea-to-land transfer. Concentration ratios (vegetation:soil) for activity concentrations in the two species were similar, in the ranges: 0.05-0.14 (137Cs), 0.025-0.097 (238Pu), 0.022-0.057 (239 + 240Pu) and 0.025-0.212 (241Am).

  2. A regional sediment transport modeling for assessing dispersal and recirculation of land-derived radionuclides in the Fukushima coast

    NASA Astrophysics Data System (ADS)

    Yamanishi, T.; Uchiyama, Y.; Tsumune, D.; Miyazawa, Y.

    2014-12-01

    Fluvial discharge from the rivers is viewed as a missing piece in the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP). The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended fine particles (sediments) that are transported quite differently to the dissolved matter. Therefore, we implement a sediment transport model proposed by Blaas et al. (2007) consisting of a multi-class non-cohesive sediment transport model, a wave-enhanced bed boundary layer model, and a stratigraphy model into ROMS. A 128 x 256 km domain with the grid resolution of dx = 250 m centered at FNPP is configured as a test bed embedded in the existing ROMS model domain at dx = 1 km (Uchiyama et al., 2012, 2013). A spectral wave model SWAN at dx = 1 km nested in the JMA GPV-CWM wave reanalysis is used for the wave forcing field. A surface runoff model (Toyota et al., 2009) provides daily-mean discharges and associated sediment fluxes at the mouths of 20 rivers in the study area.The model results show that bed stresses are enhanced in the coastal area about 10 to 20 km from the shore, most part of the semi-sheltered Sendai Bay, and on the continental shelf slope at about 600 m deep. In contrast, band-like structures are formed between the nearshore and the shelf slope where bed stresses are found to be modest. This low stress bands correspond to the areas where fine particles such as silt and clay are predominant in the bed. Since the cesium 137 is quite readily attached to fine particles rather than coarse sediments (sand), this result suggests that the band acts as a hot spot of the sediment-attached radionuclides. Indeed, a qualitative correlation is found between the low stress band with high radioactivity of cesium 137 in the bed sediment off FNPP based on the field measurement (Ambe et al., 2013).

  3. Modeling of long range transport pathways for radionuclides to Korea during the Fukushima Dai-ichi nuclear accident and their association with meteorological circulations.

    PubMed

    Lee, Kwan-Hee; Kim, Ki-Hyun; Lee, Jin-Hong; Yun, Ju-Yong; Kim, Cheol-Hee

    2015-10-01

    The Lagrangian FLEXible PARTicle (FLEXPART) dispersion model and National Centers for Environmental Prediction/Global Forecast System (NCEP/GFS) meteorological data were used to simulate the long range transport pathways of three artificial radionuclides: (131)I, (137)Cs, and (133)Xe, coming into Korean Peninsula during the Fukushima Dai-ichi nuclear accident. Using emission rates of these radionuclides estimated from previous studies, three distinctive transport routes of these radionuclides toward the Korean Peninsula for a period from 10 March to 20 April 2011 were exploited by three spatial scales: 1) intercontinental scale - plume released since mid-March 2011 and transported to the North to arrive Korea on 23 March 2011, 2) global (hemispherical) scale - plume traveling over the whole northern hemisphere passing through the Pacific Ocean/Europe to reach the Korean Peninsula with relatively low concentrations in late March 2011 and, 3) regional scale - plume released on early April 2011 arrived at the Korean Peninsula via southwest sea of Japan influenced directly by veering mesoscale wind circulations. Our identification of these transport routes at three different scales of meteorological circulations suggests the feasibility of a multi-scale approach for more accurate prediction of radionuclide transport in the study area. In light of the fact that the observed arrival/duration time of peaks were explained well by the FLEXPART model coupled with NCEP/GFS input data, our approach can be used meaningfully as a decision support model for radiation emergency situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods

    SciTech Connect

    Rajaram, Harihar; Brutz, Michael; Klein, Dylan R

    2014-09-18

    Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between themore » effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in

  5. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    SciTech Connect

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and

  6. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    SciTech Connect

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic

  7. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  8. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  9. Radionuclide release, transport, and consequence modeling for WIPP: a report of a workshop held on September 16-17, 1981

    SciTech Connect

    Not Available

    1982-02-01

    The purpose of this workshop was to discuss potential mechanisms for release of radionuclides from the WIPP repository years after waste emplacement and termination of institutional controls, and the resultant radiological consequences. Opportunity was also provided for the exchange of information on meaningful release and transport models, and the availability, reliability and significance of data for the parameters applicable to those models. Other than those scenarios provided in draft by the Environmental Evaluation Group (EEG) (Appendix II), there were no new breach scenarios postulated. Also there were no major objections posed to the EEG proposals or the approaches taken inmore » these drafts. Although there were no formal conclusions highlighted by the Conference, the EEG has concluded that the statements below provide a summary of EEG's views concerning the topics covered. These views are based upon the discussions at the Conference, the subsequent comments of the conferees, the information provided in the preceding EEG sponsored geological meeting and field trip, and the information contained in the EEG draft reports (Appendix II).« less

  10. A Transplantable Human Carcinoid as Model for Somatostatin Receptor-Mediated and Amine Transporter-Mediated Radionuclide Uptake

    PubMed Central

    Kölby, Lars; Bernhardt, Peter; Ahlman, Håkan; Wängberg, Bo; Johanson, Viktor; Wigander, Annelie; Forssell-Aronsson, Eva; Karlsson, Sven; Ahrén, Bo; Stenman, Göran; Nilsson, Ola

    2001-01-01

    A human midgut carcinoid tumor was successfully transplanted into nude mice and propagated for five consecutive generations (30 months) with well-preserved phenotype. Tumor cells in nude mice expressed identical neuroendocrine markers as the original tumor, including somatostatin receptors (somatostatin receptors 1 to 5) and vesicular monoamine transporters (VMAT1 and VMAT2). Because of the expression of somatostatin receptors and VMAT1 and VMAT2 the grafted tumors could be visualized scintigraphically using the somatostatin analogue 111In-octreotide and the catecholamine analogue 123I-metaiodobenzylguanidine. The biokinetics of the somatostatin analogue 111In-octreotide in the tumors was studied and showed a high retention 7 days after administration. Cell cultures were re-established from transplanted tumors. Immunocytochemical and ultrastructural studies confirmed the neuroendocrine differentiation. The human origin of transplanted tumor cells was confirmed by cytogenetic and fluorescence it situ hybridization analyses. Spontaneous secretion of serotonin and its metabolite, 5-hydroxyindole acetic acid, from tumor cells was demonstrated. The tumor cells increased their [Ca2+]i in response to β-adrenoceptor stimulation (isoproterenol) and K+-depolarization. All somatostatin receptor subtypes could be demonstrated in cultured cells. This human transplantable carcinoid tumor, designated GOT1, grafted to nude mice, will give unique possibilities for studies of somatostatin receptor- and VMAT-mediated radionuclide uptake as well as for studies of secretory mechanisms. PMID:11159212

  11. Numerical simulation of the transport of a radionuclide chain in a rock medium.

    PubMed

    Sen, Soubhadra; Srinivas, C V; Baskaran, R; Venkatraman, B

    2015-03-01

    For the safe disposal of High Level Waste (HLW), a common practice is to bury the sealed container called canister containing the concentrated and vitrified waste deep inside the earth surface within a rocky medium. In the event of an accidental breach of such a canister, the sealed waste may come in contact of pore water. If this happens, then the parent nuclides present in the HLW and their daughters generated by the radioactive decay reaction start migrating through the surrounding rock medium due to the combined effect of advection and diffusion. The accurate estimation of the transport of such a chain through a rock is important for radiological safety. Here, we report a finite difference based numerical simulation to address the issue. To simplify the problem, we consider the rock to be a collection of identical parallel fractures separated by porous matrices of equal width with a source at one end. A Forward Time and Centered Space (FTCS) finite difference scheme is implemented to solve the set of coupled partial differential equations that govern the transport mechanism. The scheme is validated using the methods available in the literature and subsequently it is applied to estimate the time dependent buildup of the active elements of a chain. Two independent chains each with three members are considered for simulation to address the safety related issues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Simulations of Groundwater Flow and Radionuclide Transport in the Vadose and Saturated Zones beneath Area G, Los Alamos National Laboratory

    SciTech Connect

    Kay H. Birdsell; Kathleen M. Bower; Andrew V. Wolfsberg

    1999-07-01

    Numerical simulations are used to predict the migration of radionuclides from the disposal units at Material Disposal Area G through the vadose zone and into the main aquifer in support of a radiological performance assessment and composite analysis for the site. The calculations are performed with the finite element code, FEHM. The transport of nuclides through the vadose zone is computed using a three-dimensional model that describes the complex mesa top geology of the site. The model incorporates the positions and inventories of thirty-four disposal pits and four shaft fields located at Area G as well as those of proposedmore » future pits and shafts. Only three nuclides, C-14, Tc-99, and I-129, proved to be of concern for the groundwater pathway over a 10,000-year period. The spatial and temporal flux of these three nuclides from the vadose zone is applied as a source term for the three-dimensional saturated zone model of the main aquifer that underlies the site. The movement of these nuclides in the aquifer to a downstream location is calculated, and aquifer concentrations are converted to doses. Doses related to aquifer concentrations are six or more orders of magnitude lower than allowable Department of Energy performance objectives for low-level radioactive waste sites. Numerical studies were used to better understand vadose-zone flow through the dry mesa-top environment at Area G. These studies helped define the final model used to model flow and transport through the vadose zone. The study of transient percolation indicates that a steady flow vadose-zone model is adequate for computing contaminant flux to the aquifer. The fracture flow studies and the investigation of the effect of basalt and pumice properties helped us define appropriate hydrologic properties for the modeling. Finally, the evaporation study helped to justify low infiltration rates.« less

  13. Peculiarities of organizing the construction of nuclear medicine facilities and the transportation of radionuclide

    NASA Astrophysics Data System (ADS)

    Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor

    2017-10-01

    The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.

  14. Variability in dose estimates associated with the food-chain transport and ingestion of selected radionuclides

    SciTech Connect

    Hoffman, F.O.; Gardner, R.H.; Eckerman, K.F.

    1982-06-01

    Dose predictions for the ingestion of /sup 90/Sr and /sup 137/Cs, using aquatic and terrestrial food chain transport models similar to those in the Nuclear Regulatory Commission's Regulatory Guide 1.109, are evaluated through estimating the variability of model parameters and determining the effect of this variability on model output. The variability in the predicted dose equivalent is determined using analytical and numerical procedures. In addition, a detailed discussion is included on /sup 90/Sr dosimetry. The overall estimates of uncertainty are most relevant to conditions where site-specific data is unavailable and when model structure and parameter estimates are unbiased. Based onmore » the comparisons performed in this report, it is concluded that the use of the generic default parameters in Regulatory Guide 1.109 will usually produce conservative dose estimates that exceed the 90th percentile of the predicted distribution of dose equivalents. An exception is the meat pathway for /sup 137/Cs, in which use of generic default values results in a dose estimate at the 24th percentile. Among the terrestrial pathways of exposure, the non-leafy vegetable pathway is the most important for /sup 90/Sr. For /sup 90/Sr, the parameters for soil retention, soil-to-plant transfer, and internal dosimetry contribute most significantly to the variability in the predicted dose for the combined exposure to all terrestrial pathways. For /sup 137/Cs, the meat transfer coefficient the mass interception factor for pasture forage, and the ingestion dose factor are the most important parameters. The freshwater finfish bioaccumulation factor is the most important parameter for the dose prediction of /sup 90/Sr and /sup 137/Cs transported over the water-fish-man pathway.« less

  15. A DFN-based High Performance Computing Approach to the Simulation of Radionuclide Transport in Mineralogically Heterogeneous Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Gylling, B.; Trinchero, P.; Molinero, J.; Deissmann, G.; Svensson, U.; Ebrahimi, H.; Hammond, G. E.; Bosbach, D.; Puigdomenech, I.

    2016-12-01

    Geological repositories for nuclear waste are based multi-barrier concepts using engineered and natural barriers. In fractured crystalline rocks, the efficiency of the host rock as transport barrier is related to the processes: advection along fractures, diffusion into the rock matrix and retention onto the available sorption sites. Anomalous matrix penetration profiles were observed in experiments (i.e. REPRO carried out by Posiva at the ONKALO underground facility in Finland and the Long Term Sorption Diffusion Experiment, LTDE-SD, carried out by SKB at the Äspö Hard Rock Laboratory in Sweden). The textural and mineralogical heterogeneity of the rock matrix was offered as plausible explanation for these anomalous penetration profiles. The heterogeneous structure of the rock matrix was characterised at the grain-scale using a micron-scale Discrete Fracture Network (DFN), which is then represented onto a micron-scale structured grid. Matrix fracture free volumes are identified as reactive biotite-bearing grains whereas the rest of the matrix domain constitutes the inter-granular regions. The reactive transport problem mimics the ingress of cesium along a single transmissive fracture. Part of the injected mass diffuses into the matrix where it might eventually sorb onto the surface of reactive grains. The reactive transport calculations are carried out using iDP (interface between DarcyTools and PFLOTRAN). The generation of the DFN is done by DarcyTools, which also takes care of solving the groundwater flow problem. Computed Darcy velocities are extracted and used as input for PFLOTRAN. All the simulation runs are carried out on the supercomputer JUQUEEN at the Jülich Supercomputing Centre. The results are compared with those derived with an alternative model, where biotite abundance is averaged over the whole matrix volume. The analysis of the cesium breakthrough computed at the fracture outlet shows that the averaged model provides later first-arrival time

  16. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  17. Radionuclide transport in the "sediments - water - plants" system of the water bodies at the Semipalatinsk test site.

    PubMed

    Aidarkhanova, A K; Lukashenko, S N; Larionova, N V; Polevik, V V

    2018-04-01

    This paper provides research data on levels and character of radionuclide contamination distribution in the «sediments- water - plants » system of objects of the Semipalatinsk test site (STS). As the research objects there were chosen water bodies of man-made origin which located at the territory of "Experimental Field", "Balapan", "Telkem" and "Sary-Uzen" testing sites. For research the sampling of bottom sediments, water, lakeside and water plants was taken. Collected samples were used to determine concentration of anthropogenic radionuclides 90 Sr, 239+240 Pu, 241 Am, 137 Cs. The distribution coefficient (K d ) was calculated as the ratio of the content of radionuclides in the sediments to the content in water, and the concentration ratio (F V ) was calculated as the ratio of radionuclide content in plants to the content in sediments or soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  19. Association study of polymorphisms in the neutral amino acid transporter genes SLC1A4, SLC1A5 and the glycine transporter genes SLC6A5, SLC6A9 with schizophrenia

    PubMed Central

    Deng, Xiangdong; Sagata, Noriaki; Takeuchi, Naoko; Tanaka, Masami; Ninomiya, Hideaki; Iwata, Nakao; Ozaki, Norio; Shibata, Hiroki; Fukumaki, Yasuyuki

    2008-01-01

    Background Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the genes involved in glutametergic transmission. We report here association studies of schizophrenia with SLC1A4, SLC1A5 encoding neutral amino acid transporters ASCT1, ASCT2, and SLC6A5, SLC6A9 encoding glycine transporters GLYT2, GLYT1, respectively. Methods We initially tested the association of 21 single nucleotide polymorphisms (SNPs) distributed in the four gene regions with schizophrenia using 100 Japanese cases-control pairs and examined allele, genotype and haplotype association with schizophrenia. The observed nominal significance were examined in the full-size samples (400 cases and 420 controls). Results We observed nominally significant single-marker associations with schizophrenia in SNP2 (P = 0.021) and SNP3 (P = 0.029) of SLC1A4, SNP1 (P = 0.009) and SNP2 (P = 0.022) of SLC6A5. We also observed nominally significant haplotype associations with schizophrenia in the combinations of SNP2-SNP7 (P = 0.037) of SLC1A4 and SNP1-SNP4 (P = 0.043) of SLC6A5. We examined all of the nominal significance in the Full-size Sample Set, except one haplotype with insufficient LD. The significant association of SNP1 of SLC6A5 with schizophrenia was confirmed in the Full-size Sample Set (P = 0.018). Conclusion We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC6A5, whereas SLC1A4, SLC1A5 and SLC6A9 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population. PMID:18638388

  20. Association study of polymorphisms in the neutral amino acid transporter genes SLC1A4, SLC1A5 and the glycine transporter genes SLC6A5, SLC6A9 with schizophrenia.

    PubMed

    Deng, Xiangdong; Sagata, Noriaki; Takeuchi, Naoko; Tanaka, Masami; Ninomiya, Hideaki; Iwata, Nakao; Ozaki, Norio; Shibata, Hiroki; Fukumaki, Yasuyuki

    2008-07-18

    Based on the glutamatergic dysfunction hypothesis for schizophrenia pathogenesis, we have been performing systematic association studies of schizophrenia with the genes involved in glutametergic transmission. We report here association studies of schizophrenia with SLC1A4, SLC1A5 encoding neutral amino acid transporters ASCT1, ASCT2, and SLC6A5, SLC6A9 encoding glycine transporters GLYT2, GLYT1, respectively. We initially tested the association of 21 single nucleotide polymorphisms (SNPs) distributed in the four gene regions with schizophrenia using 100 Japanese cases-control pairs and examined allele, genotype and haplotype association with schizophrenia. The observed nominal significance were examined in the full-size samples (400 cases and 420 controls). We observed nominally significant single-marker associations with schizophrenia in SNP2 (P = 0.021) and SNP3 (P = 0.029) of SLC1A4, SNP1 (P = 0.009) and SNP2 (P = 0.022) of SLC6A5. We also observed nominally significant haplotype associations with schizophrenia in the combinations of SNP2-SNP7 (P = 0.037) of SLC1A4 and SNP1-SNP4 (P = 0.043) of SLC6A5. We examined all of the nominal significance in the Full-size Sample Set, except one haplotype with insufficient LD. The significant association of SNP1 of SLC6A5 with schizophrenia was confirmed in the Full-size Sample Set (P = 0.018). We concluded that at least one susceptibility locus for schizophrenia may be located within or nearby SLC6A5, whereas SLC1A4, SLC1A5 and SLC6A9 are unlikely to be major susceptibility genes for schizophrenia in the Japanese population.

  1. Effect of Selected Modeling Assumptions on Subsurface Radionuclide Transport Projections for the Potential Environmental Management Disposal Facility at Oak Ridge, Tennessee

    SciTech Connect

    Painter, Scott L.

    2016-06-28

    The Department of Energy’s Office of Environmental Management recently revised a Remedial Investigation/ Feasibility Study (RI/FS) that included an analysis of subsurface radionuclide transport at a potential new Environmental Management Disposal Facility (EMDF) in East Bear Creek Valley near Oak Ridge, Tennessee. The effect of three simplifying assumptions used in the RI/FS analyses are investigated using the same subsurface pathway conceptualization but with more flexible modeling tools. Neglect of vadose zone dispersion was found to be conservative or non-conservative, depending on the retarded travel time and the half-life. For a given equilibrium distribution coefficient, a relatively narrow range of half-lifemore » was identified for which neglect of vadose zone transport is non-conservative and radionuclide discharge into surface water is non-negligible. However, there are two additional conservative simplifications in the reference case that compensate for the non-conservative effect of neglecting vadose zone dispersion: the use of a steady infiltration rate and vadose zone velocity, and the way equilibrium sorption is used to represent transport in the fractured material of the saturated aquifer. With more realistic representations of all three processes, the RI/FS reference case was found to either provide a reasonably good approximation to the peak concentration or was significantly conservative (pessimistic) for all parameter combinations considered.« less

  2. N-linked glycosylation of human SLC1A5 (ASCT2) transporter is critical for trafficking to membrane.

    PubMed

    Console, Lara; Scalise, Mariafrancesca; Tarmakova, Zlatina; Coe, Imogen R; Indiveri, Cesare

    2015-07-01

    The human amino acid transporter SLC1A5 (ASCT2) contains two N-glycosylation sites (N163 and N212) located in the large extracellular loop. In the homology structural model of ASCT2 these Asn residues are extracellularly exposed. Mutants of the two Asn exhibited altered electrophoretic mobility. N163Q and N212Q displayed multiple bands with apparent molecular masses from 80kDa to 50kDa. N163/212Q displayed a single band of 50kDa corresponding to the unglycosylated protein. The presence in membrane of WT and mutants was evaluated by protein biotinylation assay followed by immunoblotting. The double mutation significantly impaired the presence of the protein in membrane, without impairment in protein synthesis. [(3)H]glutamine transport was measured in cells transiently transfected with the WT or mutants. N163/212Q exhibited a strongly reduced transport activity correlating with reduced surface expression. The same proteins extracted from cells and reconstituted in liposomes showed comparable transport activities demonstrating that the intrinsic transport function of the mutants was not affected. The rate of endocytosis of ASCT2 was assayed by a reversible biotinylation strategy. N212Q and N163/212Q showed strongly increased rates of endocytosis respect to WT. ASCT2 stability was determined using cycloheximide. N163Q or N163/212Q showed a slightly or significantly lower stability with respect to WT. To assess trafficking to the membrane, a brefeldin-based assay, which caused retention of proteins in ER, was performed. One hour after brefeldin removal WT protein was localized to the plasma membrane while the double mutant was localized in the cytosol. The results demonstrate that N-glycosylation is critical for trafficking. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  4. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site

    SciTech Connect

    Gilbert, R.O.; Shinn, J.H.; Essington, E.H.

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 (Project 57) and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicatemore » that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire.« less

  5. Transport of Escherichia coli and F-RNA bacteriophages in a 5 m column of saturated pea gravel

    NASA Astrophysics Data System (ADS)

    Sinton, Lester W.; Mackenzie, Margaret L.; Karki, Naveena; Braithwaite, Robin R.; Hall, Carollyn H.; Flintoft, Mark J.

    2010-09-01

    The relative transport and attenuation of bacteria, bacteriophages, and bromide was determined in a 5 m long × 0.3 m diameter column of saturated pea gravel. The velocity ( V), longitudinal dispersivity ( αx) and total removal rate ( λ) were calculated from the breakthrough curves at 1 m, 3 m, and 5 m, at a flow rate of 32 L h - 1 . Inactivation ( μ) rates were determined in survival chambers. Two pure culture experiments with Escherichia coli J6-2 and F-RNA phage MS2 produced an overall V ranking of E. coli J6-2 > MS2 > bromide, consistent with velocity enhancement, whereby larger particles progressively move into faster, central streamlines of saturated pores. Removal rates were near zero for MS2, but were higher for E. coli J6-2. In two sewage experiments, E. coli and F-RNA phage Vs were similar (but > bromide). This was attributed to phage adsorption to colloids similar in size to E. coli cells. Sewage phage removal rates were higher than for the pure MS2 cultures. The application of filtration theory suggested that, whereas free phage were unaffected by settling, this was the primary removal mechanism for the colloid-associated phage. However, cultured and sewage E. coli removal rates were similar, suggesting the dominance of free E. coli cells in the sewage. When MS2 was attached to kaolin particles, it was transported faster than free MS2, but at similar rates to sewage phage. The μ values indicated little contribution of inactivation to removal of either cultured or sewage microorganisms. The results showed the importance of association with colloids in determining the relative transport of bacteria and viruses in gravels.

  6. Effect of carbonate soil on transport and dose estimates from long-lived radionuclides at U. S. Pacific Test Site

    SciTech Connect

    Conrado, C.L.; Hamilton, T.F.; Robison, W.L.

    1998-09-01

    The United States conducted a series of nuclear tests from 1946 to 1958 at Bikini, a coral atoll, in the Marshall Islands (MI). The aquatic and terrestrial environments of the atoll are still contaminated with several long-lived radionuclides that were generated during testing. The four major radionuclides found in terrestrial plants and soils are Cesium-137 ({sup 137} Cs), Strontium-90 ({sup 90} Sr), Plutonium-239+ 240 ({sup 239+240}Pu) and Americium-241 ({sup 241}Am). {sup 137}Cs in the coral soils is more available for uptake by plants than {sup 137}Cs associated with continental soils of North America or Europe. Soil-to-plant {sup 137}Cs median concentrationmore » ratios (CR) (kBq kg{sup {minus}1} dry weight plant/kBq kg {sup {minus}1} dry weight soil) for tropical fruits and vegetables range between 0.8 and 36, much larger than the range of 0.005 to 0.5 reported for vegetation in temperate zones. Conversely, {sup 90}Sr median CRs range from 0.006 to 1.0 at the atoll versus a range from 0.02 to 3.0 for continental silica-based soils. Thus, the relative uptake of {sup 137}Cs and {sup 90}Sr by plants in carbonate soils is reversed from that observed in silica-based soils. The CRs for {sup 239+240}Pu and {sup 241}Am are very similar to those observed in continental soils. Values range from 10{sup {minus}6} to 10{sup {minus}4} for both {sup 239+240}Pu and {sup 241}Am. No significant difference is observed between the two in coral soil. The uptake of {sup 137}Cs by plants is enhanced because of the absence of mineral binding sites and the low concentration of potassium in the coral soil. {sup 137}Cs is bound to the organic fraction of the soil, whereas {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am are primarily bound to soil particles. Assessment of plant uptake for {sup 137}Cs and {sup 90}Sr into locally grown food crops was a major contributing factor in (1) reliably predicting the radiological dose for returning residents, and (2) developing a strategy to limit

  7. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    PubMed Central

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-01-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y−1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray. PMID:27184191

  8. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y-1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  9. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment.

    PubMed

    Evangeliou, N; Zibtsev, S; Myroniuk, V; Zhurba, M; Hamburger, T; Stohl, A; Balkanski, Y; Paugam, R; Mousseau, T A; Møller, A P; Kireev, S I

    2016-05-17

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of (137)Cs, 1.5 TBq of (90)Sr, 7.8 GBq of (238)Pu, 6.3 GBq of (239)Pu, 9.4 GBq of (240)Pu and 29.7 GBq of (241)Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y(-1) in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  10. A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis.

    PubMed

    Karim, Sazzad; Alezzawi, Mohamed; Garcia-Petit, Christel; Solymosi, Katalin; Khan, Nadir Zaman; Lindquist, Emelie; Dahl, Peter; Hohmann, Stefan; Aronsson, Henrik

    2014-04-01

    A novel Rab GTPase protein in Arabidopsis thaliana, CPRabA5e (CP = chloroplast localized) is located in chloroplasts and has a role in transport. Transient expression of CPRabA5e:EGFP fusion protein in tobacco (Nicotiana tabacum) leaves, and immunoblotting using Arabidopsis showed localization of CPRabA5e in chloroplasts (stroma and thylakoids). Ypt31/32 in the yeast Saccharomyces cerevisiae are involved in regulating vesicle transport, and CPRabA5e a close homolog of Ypt31/32, restores the growth of the ypt31Δ ypt32(ts) mutant at 37 °C in yeast complementation. Knockout mutants of CPRabA5e displayed delayed seed germination and growth arrest during oxidative stress. Ultrastructural studies revealed that after preincubation at 4 °C mutant chloroplasts contained larger plastoglobules, lower grana, and more vesicles close to the envelopes compared to wild type, and vesicle formation being enhanced under oxidative stress. This indicated altered thylakoid development and organization of the mutants. A yeast-two-hybrid screen with CPRabA5e as bait revealed 13 interacting partner proteins, mainly located in thylakoids and plastoglobules. These proteins are known or predicted to be involved in development, stress responses, and photosynthesis related processes, consistent with the stress phenotypes observed. The results observed suggest a role of CPRabA5e in transport to and from thylakoids, similar to cytosolic Rab proteins involved in vesicle transport.

  11. Radionuclide therapy.

    PubMed

    Chatal, J F; Hoefnagel, C A

    1999-09-11

    Nuclear medicine therapy uses unsealed radioactive sources for the selective delivery of radiation to tumours or target organs. For benign disorders such as thyrotoxicosis and arthritis radionuclide therapy provides an alternative to surgery or medical treatment. In cancer treatment, it often combines the advantage of target selectivity (like brachytherapy or external beam radiotherapy) with that of being systemic, as with chemotherapy, and it may be used as part of a therapeutic strategy with curative intent or for disease control and palliation. Toxicity is generally limited to the haematopoietic tissue and few side-effects are observed. When cure is feasible, the long-term consequences of radionuclide therapy (eg, fertility disorders and leukaemia or other secondary cancers) do compare favourably with the risks associated with and accepted for chemotherapy and radiotherapy.

  12. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5)

    PubMed Central

    Huard, Kim; Brown, Janice; Jones, Jessica C.; Cabral, Shawn; Futatsugi, Kentaro; Gorgoglione, Matthew; Lanba, Adhiraj; Vera, Nicholas B.; Zhu, Yimin; Yan, Qingyun; Zhou, Yingjiang; Vernochet, Cecile; Riccardi, Keith; Wolford, Angela; Pirman, David; Niosi, Mark; Aspnes, Gary; Herr, Michael; Genung, Nathan E.; Magee, Thomas V.; Uccello, Daniel P.; Loria, Paula; Di, Li; Gosset, James R.; Hepworth, David; Rolph, Timothy; Pfefferkorn, Jeffrey A.; Erion, Derek M.

    2015-01-01

    Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints. PMID:26620127

  13. Lagrangian study of surface transport in the Kuroshio Extension area based on simulation of propagation of Fukushima-derived radionuclides

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-02-01

    Lagrangian approach is applied to study near-surface large-scale transport in the Kuroshio Extension area using a simulation with synthetic particles advected by AVISO altimetric velocity field. A material line technique is proposed and applied to find out the origin of water masses in cold-core cyclonic rings pinched off from the jet in summer 2011. Tracking and Lagrangian maps provide the evidence of cross-jet transport. Fukushima-derived caesium isotopes are used as Lagrangian tracers to study transport and mixing in the area a few months after the 11 March 2011 tsunami that caused heavy damage of the Fukushima Nuclear Power Plant (FNPP). Tracking maps are computed to trace the origin of water parcels with measured levels of 134Cs and 137Cs concentrations collected during two research vessel (R/V) cruises in June and July 2011 in the large area of the northwest Pacific (Kaeriyama et al., 2013; Buesseler et al., 2012). It is shown that Lagrangian simulations are useful for finding the surface areas that are potentially dangerous due to the risk of radioactive contamination. The results of simulation are supported by tracks of the surface drifters that were deployed in the area.

  14. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  15. Final Report (BMWi Project No.: 02 E 10971): Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the prese

    SciTech Connect

    Schmeide, Katja; Fritsch, Katharina; Lippold, Holger

    2016-02-29

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg -1) and the background electrolyte (NaCl, CaCl 2, MgCl 2).

  16. M4FT-16LL080303052-State of Knowledge for Colloid Facilitated Radionuclide Transport and Update on Actinide Diffusion in Bentonite Backfill

    SciTech Connect

    Zavarin, Mavrik; Joseph, C.

    2016-08-16

    This progress report (Level 4 Milestone Number M4FT-16LL080303052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Crystalline Disposal R&D Activity Number FT-16LL080303051 and Crystalline International Collaborations Activity Number FT-16LL080303061. The focus of this research is the interaction of radionuclides with Engineered Barrier System (EBS) and host rock materials at various physico-chemical conditions relevant to subsurface repository environments. They include both chemical and physical processes such as solubility, sorption, and diffusion. The colloid-facilitated transport effort focused on preparation of a draft manuscript summarizing the state of knowledge and parameterization of colloid-facilitated transport mechanisms in support of reactive transportmore » and performance assessment models for generic crystalline repositories. This draft manuscript is being submitted as a level 3 milestone with LANL as the primary author. LLNL’s contribution to that effort is summarized only briefly in the present report. A manuscript summarizing long-term U(VI) diffusion experiments through bentonite backfill material was recently accepted for publication; the contents of that manuscript are summarized in the present report. The Np(IV) diffusion experiments were started mid-year and are ongoing. The completion of these experiments is planned for early FY17. Our progress in quantifying Np(IV) diffusion in bentonite backfill is summarized in the present report. Our involvement with the NEA TDB project was summarized in a recent Argillite Disposal activity report. It is not included in this report.« less

  17. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle.

    PubMed

    Poncet, Nadège; Mitchell, Fiona E; Ibrahim, Adel F M; McGuire, Victoria A; English, Grant; Arthur, J Simon C; Shi, Yun-Bo; Taylor, Peter M

    2014-01-01

    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance

  18. Effect of Clay Nanoparticle Transport, Desorption Kinetics and Redox Equilibrium on Radionuclide Mobility in Fractured Rock investigated at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schaefer, T.; Huber, F. M.; Lagos, M.; Quinto, F.; Heck, S.; Martin, A. J.; Blechschmidt, I.; Lanyon, G. W.; Reiche, T.; Noseck, U.

    2015-12-01

    Transport of contaminants in crystalline environments might occur through dissolved species or attached to colloidal or nanoparticulate phases being mobile in water conducting features of the host rock. In this presentation we will discuss the mobility of clay nanoparticles as detected by laser-induced breakdown detection (LIBD) as a function of fracture surface roughness and groundwater chemistry. The on site observed Tc-99, U-233, Np-237, Pu-242 and Am-243 sorption/desorption kinetics with and without natural or synthetic clay minerals (smectites) are compared to laboratory studies under similar groundwater conditions. The desorption or redox kinetics were monitored over a duration of up to 426 days using natural fracture filling material as a concurrence ligand and monitoring the colloid attachment via detection of Al, Si, Ni and Zn as smectite structural elements. For trivalent actinides smectite desorption rates in the range of 1.2-3.7E-3 per hour could be determined and significantly lower desorption rates for tetravalent actinides were found. This results will be compared with field data of migration experiments performed at the Grimsel Test Site (GTS, Switzerland) using the same radionuclides and clay colloidal phases varying the fracture residence time by flow rate adjustment. Furthermore, the long-term actinide mobility will be addressed by presenting AMS/RIMS measurements of (a) samples collected several months into the tailing of the breakthrough curves not any longer detectable by HR-ICP-MS and (b) background samples of different GTS ground waters showing fallout U-236, whereas fallout Pu could not be detected indicating a much lower mobility under the given conditions.

  19. Evaluation of top-down implementation of health regulations in the transport sector in a 5-year period.

    PubMed

    Schuring, Merel; Sluiter, Judith K; Frings-Dresen, Monique H W

    2004-01-01

    A collective labour agreement concerning extended rest periods during long-distance shuttle bus trips of Dutch long-distance coach drivers was established in 1997. The main purpose of this study was to evaluate the extent to which top-down implementation of these health regulations, with respect to rest times and subjective health complaints in the private passenger-transport sector, succeeded in the year 2002. A questionnaire study was carried out on 440 coach drivers and 97 of their employers. The questionnaire for coach drivers focused on the frequency they received the required rest times and on their health status. The questionnaire for employers focused on the number of rest hours that their companies scheduled for long-distance shuttle bus trips for their drivers. Motives for not scheduling the required rest hours were noted as well. Almost every employer (93%) and three-quarters of the drivers (72%) reported at least 12 h rest time before a long-distance shuttle bus trip, as required. Approximately half of the employers (57%) reported planning the required rest during and after these bus trips. Fewer than one-quarter of the drivers (24%) received at least 10 h rest at their destination and fewer than half of the coach drivers (42%) always receive the required 24 h rest after the trip. In addition, the significant results are indicative of a positive relationship between the duration of the rest period during and after the long-distance shuttle bus trip and the level of health complaints of the coach drivers. Top-down implementation of health regulations with respect to rest times resulted in successful implementation after 5 years in approximately half of the companies. Longer rest times during the high season of 2002 were associated with less health complaints at the end of that season.

  20. Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia.

    PubMed

    Hardies, Katia; de Kovel, Carolien G F; Weckhuysen, Sarah; Asselbergh, Bob; Geuens, Thomas; Deconinck, Tine; Azmi, Abdelkrim; May, Patrick; Brilstra, Eva; Becker, Felicitas; Barisic, Nina; Craiu, Dana; Braun, Kees P J; Lal, Dennis; Thiele, Holger; Schubert, Julian; Weber, Yvonne; van 't Slot, Ruben; Nürnberg, Peter; Balling, Rudi; Timmerman, Vincent; Lerche, Holger; Maudsley, Stuart; Helbig, Ingo; Suls, Arvid; Koeleman, Bobby P C; De Jonghe, Peter

    2015-11-01

    The epileptic encephalopathies are a clinically and aetiologically heterogeneous subgroup of epilepsy syndromes. Most epileptic encephalopathies have a genetic cause and patients are often found to carry a heterozygous de novo mutation in one of the genes associated with the disease entity. Occasionally recessive mutations are identified: a recent publication described a distinct neonatal epileptic encephalopathy (MIM 615905) caused by autosomal recessive mutations in the SLC13A5 gene. Here, we report eight additional patients belonging to four different families with autosomal recessive mutations in SLC13A5. SLC13A5 encodes a high affinity sodium-dependent citrate transporter, which is expressed in the brain. Neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates; therefore they rely on the uptake of intermediates, such as citrate, to maintain their energy status and neurotransmitter production. The effect of all seven identified mutations (two premature stops and five amino acid substitutions) was studied in vitro, using immunocytochemistry, selective western blot and mass spectrometry. We hereby demonstrate that cells expressing mutant sodium-dependent citrate transporter have a complete loss of citrate uptake due to various cellular loss-of-function mechanisms. In addition, we provide independent proof of the involvement of autosomal recessive SLC13A5 mutations in the development of neonatal epileptic encephalopathies, and highlight teeth hypoplasia as a possible indicator for SLC13A5 screening. All three patients who tried the ketogenic diet responded well to this treatment, and future studies will allow us to ascertain whether this is a recurrent feature in this severe disorder. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  2. Distribution and transport of radionuclides in a boreal mire--assessing past, present and future accumulation of uranium, thorium and radium.

    PubMed

    Lidman, Fredrik; Ramebäck, Henrik; Bengtsson, Åsa; Laudon, Hjalmar

    2013-07-01

    The spatial distribution of (238)U, (226)Ra, (40)K and the daughters of (232)Th, (228)Ra and (228)Th, were measured in a small mire in northern Sweden. High activity concentrations of (238)U and (232)Th (up to 41 Bq (238)U kg(-1)) were observed in parts of the mire with a historical or current inflow of groundwater from the surrounding till soils, but the activities declined rapidly further out in the mire. Near the outlet and in the central parts of the mire the activity concentrations were low, indicating that uranium and thorium are immobilized rapidly upon their entering the peat. The (226)Ra was found to be more mobile with high activity concentrations further out into the mire (up to 24 Bq kg(-1)), although the central parts and the area near the outlet of the mire still had low activity concentrations. Based on the fluxes to and from the mire, it was estimated that approximately 60-70% of the uranium and thorium entering the mire currently is retained within it. The current accumulation rates were found to be consistent with the historical accumulation, but possibly lower. Since much of the accumulation still is concentrated to the edges of the mire and the activities are low compared to other measurements of these radionuclides in peat, there are no indications that the mire will be saturated with respect to radionuclides like uranium, thorium and radium in the foreseen future. On the contrary, normal peat growth rates for the region suggest that the average activity concentrations of the peat currently may be decreasing, since peat growth may be faster than the accumulation of radionuclides. In order to assess the total potential for accumulation of radionuclides more thoroughly it would, however, be necessary to also investigate the behaviour of other organophilic elements like aluminium, which are likely to compete for binding sites on the organic material. Measurements of the redox potential and other redox indicators demonstrate that uranium possibly

  3. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  4. A methodology for the assessment of rehabilitation success of post mining landscapes--sediment and radionuclide transport at the former Nabarlek uranium mine, Northern Territory, Australia.

    PubMed

    Hancock, G R; Grabham, M K; Martin, P; Evans, K G; Bollhöfer, A

    2006-02-01

    Protection of the environment post-mining is an important issue, especially where runoff and erosion can lead to undesirable material leaving post-mining landscapes and contaminating surrounding land and watercourses. Methods for assessment of the environmental impact and long-term behaviour of post-mining landforms based on scientific methodology are needed especially where field data are absent or poor. An appraisal of the former Nabarlek uranium mine was conducted to assess the site from a soil erosion perspective as part of an independent evaluation of overall rehabilitation success. Determination of the gross erosion occurring, sediment discharge to Cooper Creek and the resultant sediment associated radionuclide load in Cooper Creek were the primary objectives of the study. These objectives were achieved through the application of several models using parameter values collected from the site. The study found that the area containing the mill tailings repository is extremely stable and meets the guidelines established for long-term storage of uranium mill tailings. Most other areas on the site are stable; however there are some areas with a high sediment loss. Sediment concentration in Cooper Creek, which drains the site, was found to be within the Australian water quality guidelines for fresh water, however sediment concentrations in tributaries were found to exceed recommended levels. Radionuclide determinations on soil samples showed that the highest specific activities (Bq kg-1) were present on a small (0.44 ha) area with a relatively high erosion rate. This small area contributed the majority of the estimated flux to Cooper Creek of uranium-series radionuclides sorbed or structurally incorporated to eroded soil particles sourced from the mine site. This study provides a methodology for assessment of the erosional stability of such a landscape and consequent impact on water quality, using extensive field data and readily available and well known models and

  5. Being prepared to verify the CTBT-Atmospheric Transport modeling and radionuclide analysis at the Austrian National Data Centre during the NDC Preparedness Exercise 2009

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Schraick, Irene

    2010-05-01

    An explosion in the Kara-Zhyra mine in Eastern Kazakhstan on 28 November 2009 around 07:20 UTC was recorded by both the CTBTO seismic and infrasound networks. This event triggered a world-wide preparedness exercise among the CTBTO National Data Centres. Within an hour after the event was selected by the German NDC, a computer program developed by NDC Austria based on weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) and from the U.S. National Centers for Environmental Prediction (NCEP) was started to analyse what Radionuclide Stations of the CTBTO International Monitoring System (IMS) would be potentially affected by the release from a nuclear explosion at this place in the course of the following 3-10 days. These calculations were daily updated to consider the observed state of the atmosphere instead of the predicted one. Based on these calculations, automated and reviewed radionuclide reports from the potentially affected stations as produced by the CTBTO International Data Centre (IDC) were looked at. An additional analysis of interesting spectra was provided by the Seibersdorf Laboratories. Based on all the results coming in, no evidence whatsoever was found that the explosion in Kazakhstan was nuclear. This is in accordance with ground truth information saying that the event was caused by the detonation of more than 53 Tons of explosives as part of mining operations. A number of conclusions can be drawn from this exercise. First, the international, bilateral as well as national mechanisms and procedures in place for such an event worked smoothly. Second, the products and services from the CTBTO IDC proved to be very useful to assist the member states in their verification efforts. Last but not least, issues with the availability of data from IMS radionuclide stations do remain.

  6. Brain interstitial fluid glutamine homeostasis is controlled by blood–brain barrier SLC7A5/LAT1 amino acid transporter

    PubMed Central

    Dolgodilina, Elena; Imobersteg, Stefan; Laczko, Endre; Welt, Tobias; Makrides, Victoria

    2015-01-01

    L-glutamine (Gln) is the most abundant amino acid in plasma and cerebrospinal fluid and a precursor for the main central nervous system excitatory (L-glutamate) and inhibitory (γ-aminobutyric acid (GABA)) neurotransmitters. Concentrations of Gln and 13 other brain interstitial fluid amino acids were measured in awake, freely moving mice by hippocampal microdialysis using an extrapolation to zero flow rate method. Interstitial fluid levels for all amino acids including Gln were ∼5–10 times lower than in cerebrospinal fluid. Although the large increase in plasma Gln by intraperitoneal (IP) injection of 15N2-labeled Gln (hGln) did not increase total interstitial fluid Gln, low levels of hGln were detected in microdialysis samples. Competitive inhibition of system A (SLC38A1&2; SNAT1&2) or system L (SLC7A5&8; LAT1&2) transporters in brain by perfusion with α-(methylamino)-isobutyric acid (MeAIB) or 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) respectively, was tested. The data showed a significantly greater increase in interstitial fluid Gln upon BCH than MeAIB treatment. Furthermore, brain BCH perfusion also strongly increased the influx of hGln into interstitial fluid following IP injection consistent with transstimulation of LAT1-mediated transendothelial transport. Taken together, the data support the independent homeostatic regulation of amino acids in interstitial fluid vs. cerebrospinal fluid and the role of the blood–brain barrier expressed SLC7A5/LAT1 as a key interstitial fluid gatekeeper. PMID:26661195

  7. The effect of carbonate soil on transport and dose estimates for long-lived radionuclides at a U.S. Pacific test site

    SciTech Connect

    Conrado, C L; Hamilton, T F; Robison, W L

    1999-01-01

    The US conducted a series of nuclear tests from 1946 to 1958 at Bikini, a coral atoll, in the Marshall Islands (MI). The aquatic and terrestrial environments of the atoll are still contaminated with several long-lived radionuclides that were generated during testing. The four major radionuclides found in terrestrial plants and soils are Cesium-137 ({sup 137}Cs), Strontium-90 ({sup 90}Sr), Plutonium-239+240 ({sup 239+240}Pu) and Americium-241 ({sup 241}Am). {sup 137}Cs in the coral soils is more available for uptake by plants than {sup 137}Cs associated with continental soils of North America or Europe. Soil-to-plant {sup 137}Cs median concentration ratios (CR) (kBq kg{supmore » {minus}1} dry weight plant/kBq kg{sup {minus}1} dry weight soil) for tropical fruits and vegetables range between 0.8 and 36, much larger than the range of 0.005 to 0.5 reported for vegetation in temperate zones. Conversely, {sup 90}Sr median CRs range from 0.006 to 1.0 at the atoll versus a range from 0.02 to 3.0 for continental silica-based soils. Thus, the relative uptake of {sup 137}Cs and {sup 90}Sr by plants in carbonate soils is reversed from that observed in silica-based soils. The CRs for {sup 239+240}Pu and {sup 241}Am are very similar to those observed in continental soils. Values range from 10{sup {minus}6} to 10{sup {minus}4} for both {sup 239+240}Pu and {sup 241}Am. No significant difference is observed between the two in coral soil.« less

  8. Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family.

    PubMed

    Myles-Worsley, Marina; Tiobech, Josepha; Browning, Sharon R; Korn, Jeremy; Goodman, Sarah; Gentile, Karen; Melhem, Nadine; Byerley, William; Faraone, Stephen V; Middleton, Frank A

    2013-03-01

    Growing evidence for genetic overlap between schizophrenia (SCZ) and bipolar disorder (BPD) suggests that causal variants of large effect on disease risk may cross traditional diagnostic boundaries. Extended multigenerational families with both SCZ and BPD cases can be a valuable resource for discovery of shared biological pathways because they can reveal the natural evolution of the underlying genetic disruptions and their phenotypic expression. We investigated a deletion at the SLC1A1 glutamate transporter gene originally identified as a copy number variant exclusively carried by members of a 5-generation Palauan family. Using an expanded sample of 21 family members, quantitative PCR confirmed the deletion in all seven individuals with psychosis, three "obligate-carrier" parents and one unaffected sibling, while four marry-in parents were non-carriers. Linkage analysis under an autosomal dominant model generated a LOD-score of 3.64, confirming co-segregation of the deletion with psychosis. For more precise localization, we determined the approximate deletion end points using alignment of next-generation sequencing data for one affected deletion-carrier and then designed PCR amplicons to span the entire deletion locus. These probes established that the deletion spans 84,298 bp, thus eliminating the entire promoter, the transcription start site, and the first 59 amino acids of the protein, including the first transmembrane Na(2+)/dicarboxylate symporter domain, one of the domains that perform the glutamate transport action. Discovery of this functionally relevant SLC1A1 mutation and its co-segregation with psychosis in an extended multigenerational pedigree provides further support for the important role played by glutamatergic transmission in the pathophysiology of psychotic disorders. Copyright © 2013 Wiley Periodicals, Inc.

  9. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  10. Role of Reservoirs in Radionuclide Transport in the River Systems: Comparative Analyses for the Rivers of the Chernobyl and Fukushima Fallout Zones

    NASA Astrophysics Data System (ADS)

    Zheleznyak, Mark; Kivva, , Sergei; Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi

    2015-04-01

    The 1986 accident at the Chernobyl Nuclear Power Plant (ChNPP), Ukraine, caused a significant radioactive contamination of the Dnieper River basin, and, in particular, the Pripyat River watershed. The ChNPP is situated approximately 30 km from the confluence of the Pripyat River with the Kiev Reservoir of the Dnieper river. The watersheds and floodplain territory in the vicinity of the ChNPP and the surrounding watersheds (including those in Russia and Belarus) are heavy contaminated by 137Cs and 90Sr. From these contaminated areas, radionuclides migrate into the Kiev Reservoir, and, consequently, downstream along the cascade of six Dnieper reservoirs toward the Black Sea. Spring flood events, generated by snow melting, and periodic rainfall floods in the Pripyat River watershed lead to elevated levels of radioactive contamination of the water supply sources for the Ukrainian population consuming the Dnieper River water downstream from Kiev. The 2011 accident at the Fukushima Daiichi NPP, Japan caused 137Cs contamination of the watersheds of Abukuma River - the largest river of the fallout area, and the number of the rivers crossing the heavy contaminated "no exit" territories and flowing to the populated areas of the Fukushima Prefecture. There are deep reservoirs on some of these rivers at Mano Dam - Manogawa River, at Yokokawa Dam - Otagawa River, Takanakura Dam - Mizunashi Gawa River. In both cases - after Chernobyl accident and after Fukushima accident the reservoirs play a role of the "traps" for the contaminated sediments. However the potential risks of the secondary remobilization of 137Cs during the extreme events - the highest floods of in a cases of the dam breaks should be studied as a part of the post accidental radiation safety analyses. The objective of this presentation is to provide an overview of the results of the monitoring of radionuclide fate in the rivers and reservoirs of the Dnieper River basin in comparison with the data for the rivers and

  11. Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima

    SciTech Connect

    Onishi, Yasuo

    2013-03-29

    Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenariosmore » would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.« less

  12. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures.

    PubMed

    Foster, Alan C; Farnsworth, Jill; Lind, Genevieve E; Li, Yong-Xin; Yang, Jia-Ying; Dang, Van; Penjwini, Mahmud; Viswanath, Veena; Staubli, Ursula; Kavanaugh, Michael P

    2016-01-01

    N-methyl-D-aspartate (NMDA) receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1) and SLC1A5 (ASCT2) mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1) may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity.

  13. D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures

    PubMed Central

    Foster, Alan C.; Farnsworth, Jill; Lind, Genevieve E.; Li, Yong-Xin; Yang, Jia-Ying; Dang, Van; Penjwini, Mahmud; Viswanath, Veena; Staubli, Ursula; Kavanaugh, Michael P.

    2016-01-01

    N-methyl-D-aspartate (NMDA) receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1) and SLC1A5 (ASCT2) mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1) may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity. PMID:27272177

  14. Geochronological reconstruction of 137Cs transport from the Coruh river to the SE Black Sea: comparative assessment of radionuclide retention in the mountainous catchment area

    NASA Astrophysics Data System (ADS)

    Gulin, S. B.; Polikarpov, G. G.; Martin, J.-M.

    2003-11-01

    The deposition record of 137Cs was traced in the SE Black Sea sediments adjacent to the Coruh river mouth in comparison with the earlier studied chronology of 137Cs deposition in front of the Danube delta (NW Black Sea). In both cases, the 137Cs profiles showed two subsurface peaks attributable to maximum fallout of 'bomb' and Chernobyl radionuclides. The Coruh profile revealed a larger contribution of 'bomb' 137Cs in comparison with the Chernobyl input, suggesting different coverage of NW and SE Black Sea regions with the Chernobyl fallout. The 137Cs-derived dating showed that maximum deposition of particulate bound 137Cs in sediments adjacent to the Coruh river mouth was delayed for ˜14 yr relative to date of Chernobyl accident, reflecting a buffer effect of the watershed soils. This transit time is 3 times longer than in the Danube catchment area, indicating a difference in retention processes in these mountainous (Coruh) and lowland (Danube) river basins. The 137Cs profile in Coruh sediments showed penetration of 137Cs to much greater depth than would be expected from 137Cs fallout chronology, suggesting the sediment mixing rate of 1.3 cm 2 yr -1. This value was used to evaluate deposition chronology of 137Cs, applying the model developed for pulse fallout case. Comparing the measured and modelled data has allowed differentiation of the flood-induced discharge of the 137Cs-containing suspended matter and the slower transit of eroded soil particles from the contaminated catchment areas. The obtained results may be used for the prediction of period when the pollutants, deposited over the river basins, can reach the Black Sea.

  15. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  16. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from anmore » operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.« less

  17. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  18. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  19. Source inversion for the CTBTO radionuclide network

    NASA Astrophysics Data System (ADS)

    Krysta, M.; Kusmierczyk-Michulec, J.; Nikkinen, M.; Carter, J. A.

    2013-12-01

    In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of, respectively, seismic, infrasound, hydroacoustic sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. One of the aspects of associating detections with emitters is the problem of inferring the sources of radionuclides from the detections made at CTBTO radionuclide network stations. This task is particularly challenging because the average transport distance between a release point and detectors is large. Complex processes of turbulent diffusion are responsible for efficient mixing and consequently for decreasing the information content of detections with an increasing distance from the source. The problem is generally addressed in a two-step process. In the first step, an atmospheric transport model establishes a link between the detections and the regions of possible source location. In the second step this link is inverted to infer source information from the detections. In this presentation, we will discuss enhancements of the presently used regression-based inversion algorithm to reconstruct a source of radionuclides. To this aim, modern inversion algorithms accounting for prior information and appropriately regularizing an under-determined reconstruction problem will be briefly introduced. Emphasis will be on the CTBTO context and the choice of inversion methods. An illustration of the first tests will be provided using a framework of twin experiments, i.e. fictitious detections in the CTBTO radionuclide network generated with an atmospheric transport model.

  20. Transportability

    DTIC Science & Technology

    2013-04-25

    21 4.7 Air Transportability - Rotary Wing/ Tiltrotor Internal ........... 24 4.8 Air Transportability - Rotary Wing/ Tiltrotor External...Rotary Wing/ Tiltrotor , Internal .......... 31 5.8 Air Transportability - Rotary Wing/ Tiltrotor , External ......... 32 5.9 Air Transportability...item when lifted are examined in this test. Test procedures for lifting in general and for external (rotary wing and tiltrotor aircraft) air transport

  1. Large scale production of the active human ASCT2 (SLC1A5) transporter in Pichia pastoris--functional and kinetic asymmetry revealed in proteoliposomes.

    PubMed

    Pingitore, Piero; Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Hedfalk, Kristina; Indiveri, Cesare

    2013-09-01

    The human glutamine/neutral amino acid transporter ASCT2 (hASCT2) was over-expressed in Pichia pastoris and purified by Ni(2+)-chelating and gel filtration chromatography. The purified protein was reconstituted in liposomes by detergent removal with a batch-wise procedure. Time dependent [(3)H]glutamine/glutamine antiport was measured in proteoliposomes which was active only in the presence of external Na(+). Internal Na(+) slightly stimulated the antiport. Optimal activity was found at pH7.0. A substantial inhibition of the transport was observed by Cys, Thr, Ser, Ala, Asn and Met (≥70%) and by mercurials and methanethiosulfonates (≥80%). Heterologous antiport of [(3)H]glutamine with other neutral amino acids was also studied. The transporter showed asymmetric specificity for amino acids: Ala, Cys, Val, Met were only inwardly transported, while Gln, Ser, Asn, and Thr were transported bi-directionally. From kinetic analysis of [(3)H]glutamine/glutamine antiport Km values of 0.097 and 1.8mM were measured on the external and internal sides of proteoliposomes, respectively. The Km for Na(+) on the external side was 32mM. The homology structural model of the hASCT2 protein was built using the GltPh of Pyrococcus horikoshii as template. Cys395 was the only Cys residue externally exposed, thus being the potential target of SH reagents inhibition and, hence, potentially involved in the transport mechanism. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Migration of radionuclides in porous rock in the presence of colloids: effects of kinetic interactions.

    PubMed

    Li, S H; Jen, C P

    2001-01-01

    This work investigates the colloid-facilitated migration of radionuclides with radioactive decay in porous media. The sorption processes for radionuclides with both the solid matrix and colloids are treated as equilibrium or nonequilibrium. An analytical solution is obtained from a simplified linear equilibrium interaction mechanism. In addition, the adsorption processes for radionuclides with colloids and porous rock can be assumed as nonequilibrium and modeled by the linear kinetic adsorption. The numerical method is employed to solve the coupled colloid and radionuclide transport equations under nonequilibrium sorption assumption. Moreover, the reaction rates of the adsorption processes for radionuclides with the solid matrix and colloids affect the transport characteristics of radionuclides. The fast reaction rate of radionuclides with colloids causes a higher concentration of radionuclides adsorbed on colloids in a dispersed phase and enlarges acceleration caused by colloids. However, the fast reaction rate for radionuclides with solid matrix increases the retardation effect caused by the solid matrix. This work developed a predictive model for the transport of colloid-facilitated radionuclides in porous medium and to assess the importance of various phenomenological coefficients, particularly parameters for the adsorption interactions.

  3. Global transport of Fukushima-derived radionuclides from Japan to Asia, North America and Europe. Estimated doses and expected health effects

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Stohl, Andreas; Balkanski, Yves

    2017-04-01

    The earthquake and the subsequent tsunami that occurred offshore of Japan resulted in a serious accident at the nuclear facility of Fukushima. A large number of fission products were released and transported worldwide. We estimate that around 23% of the released 137Cs remained into Japan, while 76% deposited in the oceans. Around 163 TBq deposited over North America, among which 95 TBq over USA, 40 TBq over Canada and 5 TBq over Greenland). About 14 TBq deposited over Europe (mostly in the European part of Russia, Sweden and Norway) and 47 TBq over Asia (mostly in the Asian part of Russia, Philippines and South Korea), while traces were observed over Africa, Oceania and Antarctica. Since the radioactive plume followed a northward direction before its arrival to USA and then to Europe, a significant amount of about 69 TBq deposited in the Arctic, as well. An attempt to assess exposure of the population and the environment showed that the effective dose from gamma irradiation during the first 3 months was estimated between 1-5 mSv in Fukushima and the neighbouring prefectures. In the rest of Japan, the respective doses were found to be less than 0.5 mSv, whereas in the rest of the world it was less than 0.1 mSv. Such doses are equivalent with the obtained dose from a simple X-ray; for the highly contaminated regions, they are close to the dose limit for exposure due to radon inhalation (10 mSv). The calculated dose rates from radiocesium exposure on reference organisms ranged from 0.03 to 0.18 μGy h-1, which are 2 orders of magnitude below the screening dose limit (10 μGy h-1) that could result in obvious effects on the population. However, monitoring data have shown that much higher dose rates were committed to organisms raising ecological risk for small mammals and reptiles in terms of cytogenetic damage and reproduction.

  4. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) For special form Class 7 (radioactive) material, the activity which may be transported in a Type A... (i) is the A1 value for radionuclide i. (2) For normal form Class 7 (radioactive) material, the... contains both special and normal form Class 7 (radioactive) material, the activity which may be transported...

  5. Accumulation of radionuclides by plants as a monitor system.

    PubMed Central

    Koranda, J J; Robison, W L

    1978-01-01

    The accumulation of radionuclides by plants acting as a monitoring system in the environment may occur by two modes; foliar absorption by the leaves and shoot of the plant, or by root uptake from the soil. Data on plant accumulation of radionuclides may be obtained from studies of fission product radionuclides deposited as worldwide fallout, and from tracer studies of plant physiology. The epidermal features of plant foliage may exert an effect upon particle retention by leaves, and subsequent uptake of radionuclides from the surface. The transport of radionuclides across the cuticle and epidermis of plant leaves is determined in part by the anatomy of the leaf, and by physiological factors. The foliar uptake of fallout radionuclides, 99Sr, 131I, and 137Cs, is described with examples from the scientific literature. The environmental half-life of 131I, for example, is considerably shorter than its physical half-life because of physical and biological factors which may produce a half-life as short as 0.23/day. 99Sr and 137Cs are readily taken up by the leaf, but 137Cs undergoes more translocation into fruit and seeds than 99Sr which tends to remain in the plant part in which it was initially absorbed. Soil-root uptake is conditioned primarily by soil chemical and physical factors which may selectively retain a radionuclide, such as 137Cs. The presence of organic matter, inorganic colloids (clay), and competing elements will strongly affect the uptake of 99Sr and 137Cs by plants from the soil. The role of plants as monitors of radionuclides is twofold: as monitors of recent atmospheric releases of radionuclides; and as indicators of the long-term behavior of aged deposits of radionuclides in the soil. PMID:367767

  6. Fukushima Daiichi Radionuclide Inventories

    SciTech Connect

    Cardoni, Jeffrey N.; Jankovsky, Zachary Kyle

    2016-09-01

    Radionuclide inventories are generated to permit detailed analyses of the Fukushima Daiichi meltdowns. This is necessary information for severe accident calculations, dose calculations, and source term and consequence analyses. Inventories are calculated using SCALE6 and compared to values predicted by international researchers supporting the OECD/NEA's Benchmark Study on the Accident at Fukushima Daiichi Nuclear Power Station (BSAF). Both sets of inventory information are acceptable for best-estimate analyses of the Fukushima reactors. Consistent nuclear information for severe accident codes, including radionuclide class masses and core decay powers, are also derived from the SCALE6 analyses. Key nuclide activity ratios are calculated asmore » functions of burnup and nuclear data in order to explore the utility for nuclear forensics and support future decommissioning efforts.« less

  7. Radionuclide therapy beyond radioiodine.

    PubMed

    Gabriel, Michael

    2012-10-01

    For decades, Iodine-131 has been used for the treatment of patients with thyroid cancer. In recent years, increasingly, other radiopharmaceuticals are in clinical use in the treatment of various malignant diseases. Although in principle these therapies-as in all applications of radionuclides-special radiation protection measures are required, a separate nuclear medicine therapy department is not necessary in many cases due to the lower or lack of gamma radiation. In the following article, four different radionuclide therapies are more closely presented which are emerging in the last years. One of them is the "Peptide Receptor Radionuclide Therapy," the so-called PRRT in which radiolabeled somatostatin (SST)-receptor(R) ligands are used in patients with neuroendocrine tumors. On the basis of radiolabeled antibodies against CD20-positive cells, the so-called radioimmunotherapy is used in the treatment of certain forms of malignant lymphoma. In primary or secondary liver tumors, the (90)Y-labeled particles can be administered. Last but not the least, the palliative approach of bone-seeking radiopharmaceuticals is noted in patients with painful bone metastases.

  8. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  9. History of medical radionuclide production.

    PubMed

    Ice, R D

    1995-11-01

    Radionuclide production for medical use originally was incidental to isotope discoveries by physicists and chemists. Once the available radionuclides were identified they were evaluated for potential medical use. Hevesy first used 32P in 1935 to study phosphorous metabolism in rats. Since that time, the development of cyclotrons, linear accelerators, and nuclear reactors have produced hundreds of radionuclides for potential medical use. The history of medical radionuclide production represents an evolutionary, interdisciplinary development of applied nuclear technology. Today the technology is represented by a mature industry and provides medical benefits to millions of patients annually.

  10. Cys Site-Directed Mutagenesis of the Human SLC1A5 (ASCT2) Transporter: Structure/Function Relationships and Crucial Role of Cys467 for Redox Sensing and Glutamine Transport.

    PubMed

    Scalise, Mariafrancesca; Pochini, Lorena; Console, Lara; Pappacoda, Gilda; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2018-02-25

    The human plasma membrane transporter ASCT2 is responsible for mediating Na- dependent antiport of neutral amino acids. New insights into structure/function relationships were unveiled by a combined approach of recombinant over-expression, site-directed mutagenesis, transport assays in proteoliposomes and bioinformatics. WT and Cys mutants of hASCT2 were produced in P. pastoris and purified for functional assay. The reactivity towards SH reducing and oxidizing agents of WT protein was investigated and opposite effects were revealed; transport activity increased upon treatment with the Cys reducing agent DTE, i.e., when Cys residues were in thiol (reduced) state. Methyl-Hg, which binds to SH groups, was able to inhibit WT and seven out of eight Cys to Ala mutants. On the contrary, C467A loses the sensitivity to both DTE activation and Methyl-Hg inhibition. The C467A mutant showed a Km for Gln one order of magnitude higher than that of WT. Moreover, the C467 residue is localized in the substrate binding region of the protein, as suggested by bioinformatics on the basis of the EAAT1 structure comparison. Taken together, the experimental data allowed identifying C467 residue as crucial for substrate binding and for transport activity modulation of hASCT2.

  11. Reactor-Produced Medical Radionuclides

    SciTech Connect

    Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A

    2011-01-01

    The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chaptermore » is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.« less

  12. Transportation

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G.

    1986-01-01

    A summary of tether transportation is given. Four steps were used over a period of time. First, theoretical engineering feasibility and technology requirements were determined. Then the survivors of that effort went into step two in the analysis of promising candidates. Those survivors went into the third phase which is engineering design and cost benefits. Survivors entered into the demonstration mission definition phase. Transportation studies have covered two kinds of deployments. First, steady state deployment was studied. Like the TSS, it's nearly vertical. It takes a long time to deploy and involves relatively high tether tension. Secondly, dynamic deployment was studied. Deployment started in an almost horizontal direction under a very shallow angle which allows a high deployment rate under very low tension. Momentum transfer here occurs by libration. Specific payloads were used to study tethered transportation benefits. Four transportation concepts were studied with regard to cost benefits. A tethered orbiter deboost from the space station, an OTV boost up from the Space Station, a science platform on a tether with a possible micro-g lab moving in between platform and station, and a tethered boost of payloads fromthe orbiter are the four concepts. These benefits are examined in detail.

  13. Beta-emitting radionuclides for peptide receptor radionuclide therapy.

    PubMed

    Parus, J L; Mikolajczak, R

    2012-01-01

    The paper focuses on the β-emitting radionuclides which might be useful for peptide receptor radionuclide therapy, PRRT. For the effective design of the radiopharmaceutical, the choice of radionuclide will depend on the purpose for which the radioligand is being used and on the physicochemical properties of the radionuclide. The important factor is also the availability and the cost of production. The physical characteristics of several radionuclides which are currently used or can be considered as potential candidates for PRRT is provided, followed by short description of production methods and chemical aspects of their use in preparation of peptide-based radiopharmaceuticals. Somatostatin analogues labeled with radionuclides have been a successful example of PRRT. For treatment of patients with inoperable or metastasized neuroendocrine tumors, somatostatin analogues labeled with the radioisotopes (111)In, (90)Y and (177)Lu have been used so far. Labeling with (111)In, mainly an Auger electron emitter, resulted in no reduction of tumor size while somatostatin analogues labeled with (90)Y and (177)Lu gave overall positive response and improved the patients' quality of life. These promising results together with the increasing availability of other β-emitting radionuclides are a good basis for further studies.

  14. Targeted radionuclide therapies for pancreatic cancer.

    PubMed

    Shah, M; Da Silva, R; Gravekamp, C; Libutti, S K; Abraham, T; Dadachova, E

    2015-08-01

    Pancreatic malignancies, the fourth leading cause of cancer deaths, have an aggressive behavior with poor prognosis, resulting in a 5-year survival rate of only 4%. It is typically a silent malignancy until patients develop metastatic disease. Targeted radionuclide therapies of cancer such as radiolabeled peptides, which bind to the receptors overexpressed by cancer cells and radiolabeled antibodies to tumor-specific antigens provide a viable alternative to chemotherapy and external beam radiation of metastatic cancers. Multiple clinical trials of targeted radionuclide therapy of pancreatic cancer have been performed in the last decade and demonstrated safety and potential efficacy of radionuclide therapy for treatment of this formidable disease. Although a lot of progress has been made in treatment of pancreatic neuroendocrine tumors with radiolabeled (90)Y and (177)Lu somatostatin peptide analogs, pancreatic adenocarcinomas remain a major challenge. Novel approaches such as peptides and antibodies radiolabeled with alpha emitters, pre-targeting, bispecific antibodies and biological therapy based on the radioactive tumorlytic bacteria might offer a potential breakthrough in treatment of pancreatic adenocarcinomas.

  15. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain informationmore » on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.« less

  16. Radionuclide gastroesophageal motor studies.

    PubMed

    Mariani, Giuliano; Boni, Giuseppe; Barreca, Marco; Bellini, Massimo; Fattori, Bruno; AlSharif, Abedallatif; Grosso, Mariano; Stasi, Cristina; Costa, Francesco; Anselmino, Marco; Marchi, Santino; Rubello, Domenico; Strauss, H William

    2004-06-01

    Disorders of the upper digestive tract have a high impact on modern society, in terms of both direct and indirect health care costs and of social burden. The most common presenting symptom is either dysphagia or dyspepsia. Discriminating specific diagnoses within this wide group of diseases requires sound clinical judgment and application of procedures to distinguish organic from nonorganic disease and to further characterize the functional or motility disturbance of nonorganic diseases. Non-radionuclide-based diagnostic techniques include both noninvasive tests (upper gastrointestinal barium series, ultrasonography, and breath test for gastric emptying) and invasive procedures (fiberoptic endoscopy, esophagogastroduodenoscopy, pharyngeal manometry, stationary esophageal manometry, 24-h pH monitoring, esophageal biliary reflux monitoring, multichannel intraluminal impedance, and electrogastrography). Some of these techniques are not well tolerated by patients or not widely available. Radionuclide transit/emptying scintigraphy provides a means of characterizing exquisite functional abnormalities with a set of low-cost procedures that are easy to perform and widely available, entail a low radiation burden, closely reflect the physiology of the tract under evaluation, are well tolerated and require minimum cooperation by patients, and provide quantitative data for better intersubject comparison and for monitoring response to therapy. Despite the relatively low degree of standardization both in the scintigraphic technique per se and in image processing, these methods have shown excellent diagnostic performance in several function or motility disorders of the upper digestive tract. Dynamic scintigraphy with a radioactive liquid or semisolid bolus provides important information on both the oropharyngeal and the esophageal phases of swallowing, thus representing a useful complement or even a valid alternative to conventional invasive tests (such as stationary esophageal

  17. Radionuclide speciation in effluent from La Hague reprocessing plant in France.

    PubMed

    Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G

    2003-09-01

    Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide

  18. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  19. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  1. Radionuclide Therapy for Neuroendocrine Tumors.

    PubMed

    Cives, Mauro; Strosberg, Jonathan

    2017-02-01

    Peptide receptor radionuclide therapy (PRRT) is a form of systemic radiotherapy that allows targeted delivery of radionuclides to tumor cells expressing high levels of somatostatin receptors. The two radiopeptides most commonly used for PRRT, 90 Y-DOTATOC and 177 Lu-DOTATATE, have been successfully employed for more than a decade for the treatment of advanced neuroendocrine tumors (NETs). Recently, the phase III, randomized NETTER-1 trial has compared 177 Lu-DOTATATE versus high-dose octreotide LAR in patients with progressive, metastatic midgut NETs, demonstrating exceptional tolerability and efficacy. This review summarizes recent developments in the field of radionuclide therapy for gastroenteropancreatic and lung NETs and considers possible strategies to further enhance its clinical efficacy.

  2. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  3. Prospects for the methods of radionuclide production

    NASA Astrophysics Data System (ADS)

    Karamian, S. A.; Dmitriev, S. N.

    2015-03-01

    In the present report, methods of radionuclide production for the nuclear-medicine purposes are described. In a budget approach, the application of low-energy accelerators is especially advantageous. Intense flux of bremsstrahlung at electron accelerators or high-current cyclotron beams of alpha particles must supply a great yield for many isotopes. The choice of a target material and of the projectile energy provides enough variation for concrete species formation. The innovating procedures are here proposed for optimizing of methods, for instance, application of the noble-gas target for production and transport of activities. The known and new variants of the "generator" scheme are discussed. Many isotopes are listed as promising in the context of the therapeutic and theragnostic applications. Among them are isotopes/isomers emitting soft radiation for the selective and careful body treatment, also the positron emitters for PET, and the halogen and alkali-metal species convenient for chemical separation.

  4. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

    1983-05-03

    Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  5. 49 CFR 178.33a-5 - Material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Material. 178.33a-5 Section 178.33a-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-5 Material. (a) Uniform quality steel plate such as black plate, electrotin...

  6. 49 CFR 178.33a-5 - Material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Material. 178.33a-5 Section 178.33a-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-5 Material. (a) Uniform quality steel plate such as black plate, electrotin...

  7. 49 CFR 178.33a-5 - Material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Material. 178.33a-5 Section 178.33a-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-5 Material. (a) Uniform quality steel plate such as black plate, electrotin...

  8. 49 CFR 178.33a-5 - Material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Material. 178.33a-5 Section 178.33a-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33a-5 Material. (a) Uniform quality steel plate such as black plate, electrotin...

  9. 49 CFR 178.33a-5 - Material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Material. 178.33a-5 Section 178.33a-5 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS...

  10. Removal of radionuclides at a waterworks.

    PubMed

    Gäfvert, T; Ellmark, C; Holm, E

    2002-01-01

    A waterworks with an average production rate of 1.3 m3 s(-1), providing several large cities in the province of Scania with drinking water has been studied regarding its capacity to remove several natural and anthropogenic radionuclides. The raw water is surface water from lake Bolmen which is transported through an 80 km long tunnel in the bedrock before it enters the waterworks. The method used for purification is a combination of coagulation-flocculation and filtration in sand filters. Two different purification lines are currently in use, one using Al2(SO4)3 as a coagulant and one using FeCl3. After coagulation and flocculation the precipitate is removed and the water is passed through two different sand filters (rapid filtration and slow filtration). Water samples were collected at the lake, the inlet to the waterworks, after each of the flocculation basins (Al2(SO4)3 and FeCl3), after rapid filtration and from the municipal distribution network. The samples were analysed with respect to their content of uranium, thorium, polonium, radium, plutonium and caesium. The results show a high removal capacity for uranium (about 85%), thorium (>90%), plutonium (>95%) and polonium (>90% in the coagulation-flocculation process) while caesium, strontium and radium pass through the purification process with almost unchanged activity concentrations. During transportation of the water in the tunnel it was also observed that infiltration of groundwater leads to a change in isotopic ratios and/or activity concentrations for the naturally occurring radionuclides and plutonium.

  11. [Role of Radionuclide Technologies in Medicine].

    PubMed

    Chernyaev, A P; Belousov, A V; Varzar, S M; Borchegovskaya, P Y; Nikolaeva, A A; Krusanov, G A

    2016-01-01

    The paper describes the role of radionuclide technologies among the nuclear-physical methods used in medicine. The condition and prospects of the development of nuclear technology with use of radionuclides in medicine, and in particular, the method of brachytherapy are analyzed. The analysis of the current state of applying radionuclide facilities in medicine is provided.

  12. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  13. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.

    1986-01-01

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  14. Modeling radionuclide migration from underground nuclear explosions

    SciTech Connect

    Harp, Dylan Robert; Stauffer, Philip H.; Viswanathan, Hari S.

    2017-03-06

    The travel time of radionuclide gases to the ground surface in fracture rock depends on many complex factors. Numerical simulators are the most complete repositories of knowledge of the complex processes governing radionuclide gas migration to the ground surface allowing us to verify conceptualizations of physical processes against observations and forecast radionuclide gas travel times to the ground surface and isotopic ratios

  15. IMS radionuclide monitoring after the announced nuclear test of the DPRK on 3 September 2017

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Boxue, L.; Gheddou, A.; Klingberg, F.; Leppaenen, A. P.; Schoeppner, M.; Werzi, R.; Wang, J.

    2017-12-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. The radionuclide network comprises 80 stations, out of which 40 are to be equipped with noble gas systems. The aim of radionuclide stations is a global monitoring of radioactive aerosols, radioactive noble gases and atmospheric transport modelling (ATM). To investigate the transport of radionuclide emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. The aim of this study is to demonstrate the RN analysis and the application of ATM to investigate the episodes of elevated levels of radioxenon observed by IMS stations after the sixth nuclear test, announced by the Democratic People's Republic of Korea (DPRK) at the Punggye-ri Nuclear Test Site on 3 September 2017. A comparison to the previous tests will be presented.

  16. Tumor immunotargeting using innovative radionuclides.

    PubMed

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-02-11

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality.

  17. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  18. Dynamic phantom for radionuclide cardiology

    SciTech Connect

    Nickles, R.J.

    1979-06-01

    A flow-based phantom has been developed to verify analysis routines most frequently employed in clinical radionuclide cardiology. Ejection-fraction studies by first-pass or equilibrium techniques are simulated, as well as assessment of shunts and cardiac output. This hydraulic phantom, with its valve-selectable dysfunctions, offers a greater role in training than in quality control, as originally intended.

  19. Identification of CSF fistulas by radionuclide counting

    SciTech Connect

    Yamamoto, Y.; Kunishio, K.; Sunami, N.

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  20. Probabilistic distribution coefficients (K(d)s) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th: implications for uncertainty analysis of models simulating the transport of radionuclides in rivers.

    PubMed

    Ciffroy, P; Durrieu, G; Garnier, J-M

    2009-09-01

    The objective of this study was to provide operational probability density functions (PDFs) for distribution coefficients (K(d)s) in freshwater, representing the partition of radionuclides between the particulate and the dissolved phases respectively. Accordingly, the K(d) variability should be considered in uncertainty analysis of transport and risk assessment models. The construction of PDFs for 8 elements (Ag, Am, Co, Cs, I, Mn, Pu and Sr) was established according to the procedure already tested in Durrieu et al. [2006. A weighted bootstrap method for the determination of probability density functions of freshwater distribution coefficients (K(d)s) of Co, Cs, Sr and I radioisotopes. Chemosphere 65 (8), 1308-1320]: (i) construction of a comprehensive database where K(d)s values obtained under various environments and parametric conditions were collected; (ii) scoring procedure to account for the 'quality' of each datapoint (according to several criteria such as the presentation of data (e.g. raw data vs mean with or without replicates), contact time, pH, solid-to-liquid ratio, expert judgement) in the construction of the PDF; (iii) weighted bootstrapping procedure to build the PDFs, in order to give more importance to the most relevant datapoints. Two types of PDFs were constructed: (i) non-conditional, usable when no knowledge about the site of concern is available; (ii) conditional PDFs corresponding to a limited range of parameters such as pH or contact time; conditional PDFs can thus be used when some parametric information is known on the site under study. For 7 other radionuclides (Ba, Be, Ce, Ra, Ru, Sb and Th), a simplified procedure was adopted because of the scarcity of data: only non-conditional PDFs were built, without incorporating a scoring procedure.

  1. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  2. Optimizing diagnosis in Parkinson's disease: Radionuclide imaging.

    PubMed

    Arena, Julieta E; Stoessl, A Jon

    2016-01-01

    Parkinson's disease (PD) and other disorders characterized by basal ganglia dysfunction are often associated with limited structural imaging changes that might assist in the clinical or research setting. Radionuclide imaging has been used to assess characteristic functional changes. Presynaptic dopaminergic dysfunction in PD can be revealed through the imaging of different steps in the process of dopamine synthesis and storage: L-aromatic amino acid decarboxylase (AADC) activity, Vesicular Monoamine Transporter type 2 (VMAT2) binding or its reuptake via the dopamine transporter (DAT). Postsynaptic dopamine dysfunction can also be studied with a variety of different tracers that primarily assess D2-like dopamine receptor availability. The function of other neurotransmitters such as norepinephrine, serotonin and acetylcholine can be imaged as well, giving important information about the underlying pathophysiologic process of PD and its complications. The imaging of metabolic activity and pathologic changes has also provided great advances in the field. Together, these techniques have allowed for a better understanding of PD, may be of aid for differentiating PD from other forms of parkinsonism and will undoubtedly be useful for the establishment of new therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Simple model for the reconstruction of radionuclide concentrations and radiation exposures along the Techa River

    NASA Technical Reports Server (NTRS)

    Vorobiova, M. I.; Degteva, M. O.; Neta, M. O. (Principal Investigator)

    1999-01-01

    The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.

  4. Identification of penetration path and deposition distribution of radionuclides in houses by experiments and numerical model

    NASA Astrophysics Data System (ADS)

    Hirouchi, Jun; Takahara, Shogo; Iijima, Masashi; Watanabe, Masatoshi; Munakata, Masahiro

    2017-11-01

    In order to lift of an evacuation order in evacuation areas and return residents to their homes, human dose assessments are required. However, it is difficult to exactly assess indoor external dose rate because the indoor distribution and infiltration pathways of radionuclides are unclear. This paper describes indoor and outdoor dose rates measured in eight houses in the difficult-to-return area in Fukushima Prefecture and identifies the distribution and main infiltration pathway of radionuclides in houses. In addition, it describes dose rates calculated with a Monte Carlo photon transport code to aid a thorough understanding of the measurements. The measurements and calculations indicate that radionuclides mainly infiltrate through visible openings such as vents, windows, and doors, and then deposit near these visible openings; however, they hardly infiltrate through sockets and air conditioning outlets. The measurements on rough surfaces such as bookshelves implies that radionuclides discharged from the Fukushima-Daiichi nuclear power plant did not deposit locally on rough surfaces.

  5. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  6. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  7. Targeted Radionuclide Therapy of Human Tumors

    PubMed Central

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. PMID:26729091

  8. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  9. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  10. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  11. Radionuclides in groundwater flow system understanding

    NASA Astrophysics Data System (ADS)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  12. IMPACTS OF SOLUBILITY AND OTHER GEOCHEMICAL PROCESSES ON RADIONUCLIDE RETARDATION IN THE NATURAL SYSTEM

    SciTech Connect

    B. Arnold

    2005-08-02

    This report documents results and findings of a study of solubility/co-precipitation effects and enhanced sorption due to variations in redox conditions on radionuclide transport in the natural system (BSC 2005 [DIRS 173951]; BSC 2005 [DIRS 173859]) conducted in response to DOE Contracting Officer Authorization Letter 05-001, Item d (Mitchell 2005 [DIRS 173265]). The purpose of this study is to assess the potential impacts of precipitation and enhanced sorption due to variations in redox conditions on radionuclide transport in the saturated zone (SZ) at Yucca Mountain. The information presented in this report is intended to aid in assessing the conservatism inmore » the SZ transport model for supporting the total system performance assessment (TSPA) calculations. A similar study was performed for the impact of solubility/precipitation on radionuclide transport in the unsaturated zone (UZ). However, because the unsaturated zone is under predominantly oxidizing conditions and that the radionuclides released from the engineered barrier system are not expected to precipitate in the UZ for the reasons described below, it was concluded that the effect on unsaturated zone transport is not significant to warrant a detailed study. Solubility limiting conditions for neptunium in the UZ are expected to be similar to the conditions for neptunium solubility in the waste emplacement drift invert, where Np{sub 2}O{sub 5} is recommended as the controlling solid phase (BSC 2005 [DIRS 174566], Section 6.6.1). Solubility limits for neptunium inside the waste package, however, are expected to be controlled by NpO{sub 2} (BSC 2005 [DIRS 174566], Section 6.6.1). The solubility limits for Np2O5 are generally much higher than for NpO{sub 2} (BSC 2005 [DIRS 174566], Tables 6.6-4 and 6.6-7). Therefore, the low concentrations of neptunium releases from waste packages are unlikely to be affected by solubility limits in the unsaturated zone. The SZ is part of the Lower Natural Barrier to the

  13. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  14. Radionuclide studies in coccidioidal meningitis

    SciTech Connect

    Corbus, H.F.; Lippert, R.G.; Radding, J.

    1976-10-01

    Although the uniformly fatal outcome in untreated meningitis due to Coccidioides immitis has been modified by amphotericin B, use of this drug presents a challenge to therapists striving to maximize its effectiveness and minimize its not inconsiderable toxicity. Many of the complications of intraventricular therapy, using an Ommaya reservoir, were encountered in a patient with coccidioidal meningitis, and this experience is reported to reemphasize the usefulness of radionuclide studies in guiding therapy and assessing the progress of the disease. The examples presented may be of interest to those faced with the difficult task of treating this still dangerous infection.

  15. Tracing Fukushima Radionuclides in the Northern Hemisphere -An Overview

    NASA Astrophysics Data System (ADS)

    Thakur, Punam; Ballard, Sally; Nelson, Roger

    2013-04-01

    A massive 9.0 earthquake and ensuing tsunami struck the northern coast of the Honshu-island, Japan on March 11, 2011 and severely damaged the electric system of the Fukushima- Daiichi Nuclear Power Plant (NPP). The structural damage to the plant disabled the reactor's cooling systems. Subsequent fires, a hydrogen explosion and possible partial core meltdowns released radioactive fission products into the atmosphere. The atmospheric release from the crippled Fukushima NPP started on March 12, 2011 with a maximum release phase from March 14 to 17. The radioactivity released was dominated by volatile fission products including isotopes of the noble gases xenon (Xe-133) and krypton (Kr-85); iodine (I-131,I-132); cesium (Cs-134,Cs-136,Cs-137); and tellurium (Te-132). The non-volatile radionuclides such as isotopes of strontium and plutonium are believed to have remained largely inside the reactor, although there is evidence of plutonium release into the environment. Global air monitoring across the northern hemisphere was increased following the first reports of atmospheric releases. According to the source term, declared by the Nuclear and Industrial Safety Agency (NISA) of Japan), approximately 160 PBq (1 PBq (Peta Becquerel = 10^15 Bq)) of I-131 and 15 PBq of Cs-137 (or 770 PBq "iodine-131 equivalent"), were released into the atmosphere. The 770 PBq figure is about 15% of the Chernobyl release of 5200 PBq of "iodine-131 equivalent". For the assessment of contamination after the accident and to track the transport time of the contaminated air mass released from the Fukushima NPP across the globe, several model calculations were performed by various research groups. All model calculations suggested long-range transport of radionuclides from the damaged Fukushima NPP towards the North American Continent to Europe and to Central Asia. As a result, an elevated level of Fukushima radionuclides were detected in air, rain, milk, and vegetation samples across the northern

  16. Stochastic approach for radionuclides quantification

    NASA Astrophysics Data System (ADS)

    Clement, A.; Saurel, N.; Perrin, G.

    2018-01-01

    Gamma spectrometry is a passive non-destructive assay used to quantify radionuclides present in more or less complex objects. Basic methods using empirical calibration with a standard in order to quantify the activity of nuclear materials by determining the calibration coefficient are useless on non-reproducible, complex and single nuclear objects such as waste packages. Package specifications as composition or geometry change from one package to another and involve a high variability of objects. Current quantification process uses numerical modelling of the measured scene with few available data such as geometry or composition. These data are density, material, screen, geometric shape, matrix composition, matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator backgrounds. The French Commissariat à l'Energie Atomique (CEA) is developing a new methodology to quantify nuclear materials in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This method suggests combining a global stochastic approach which uses, among others, surrogate models available to simulate the gamma attenuation behaviour, a Bayesian approach which considers conditional probability densities of problem inputs, and Markov Chains Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray emission radionuclide spectrum, and outside dimensions of interest objects. The methodology is testing to quantify actinide activity in different kind of matrix, composition, and configuration of sources standard in terms of actinide masses, locations and distributions. Activity uncertainties are taken into account by this adjustment methodology.

  17. Fructose synthesis and transport at the uterine-placental interface of pigs: cell-specific localization of SLC2A5, SLC2A8, and components of the polyol pathway

    USDA-ARS?s Scientific Manuscript database

    The fetal fluids and uterine flushings of pigs contain higher concentrations of fructose than glucose, but fructose is not detected in maternal blood. Fructose can be synthesized from glucose via enzymes of the polyol pathway, aldose reductase (AKR1B1) and sorbitol dehydrogenase (SORD), transported ...

  18. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  19. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    SciTech Connect

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less

  20. Modeling of Radionuclides from the Fukushima Dai-ichi Nuclear Accident to Korea

    NASA Astrophysics Data System (ADS)

    Lee, K.; Yun, J. Y.

    2016-12-01

    FLEXPART Lagrangian model and NCEP/GFS meteorological data were employed and transport of radionuclides from Fukushima Dai-ichi nuclear plant toward Korean Peninsula was simulated for three key artificial radionuclides (Cs-137, I-131, and Xe-133). By simulating horizontal distributions and tracking the trajectories of the radionuclides for the period of 10 March 2011 to 20 April 2011, the following three distinctive different arrival pathways were detected; 1) intercontinental scale - plume released since mid-March 2011 and transported to the North to arrive Korea on 23 March 2011, 2) global(hemispherical) scale - plume traveling over the whole northern hemisphere passing through the Pacific Ocean/Europe to reach the Korean Peninsula with relatively low concentrations in late March 2011 and, 3) regional scale - plume released on early April 2011 arrived at the Korean Peninsula via southwest sea of Japan influenced directly by veering mesoscale wind circulations. Our identification of these transport routes at three different scales of meteorological circulations suggests the feasibility of a multi-scale approach for more accurate prediction of radionuclide transport in the study area. In light of the fact that the observed arrival/duration time of peaks were explained well by the FLEXPART model coupled with NCEP/GFS input data, our approach can be used meaningfully as a decision support model for radiation emergency situations

  1. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    USDA-ARS?s Scientific Manuscript database

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  2. VULNERABILITY OF HEADWATER CATCHMENT RESOURCES TO INCIDENCES OF 210PB EXCESS AND 137CS RADIONUCLIDE FALLOUT

    EPA Science Inventory

    Recent identification of elevated excess 210Pb (≤302.6 mBq L-1) and 137Cs (≤ 111.3 mBq L-1) activity in drinking water wells up to 20 m depth indicates some transport of airborne radionuclide fallout beyond soils in the Shaker Village c...

  3. Radionuclide Diagnosis of Pulmonary Embolism.

    PubMed

    Hess, Søren; Madsen, Poul Henning

    2017-01-01

    Diagnostic imaging plays an integral role in the diagnostic workup of suspected pulmonary embolism, and several modalities have been employed over the years. In recent years, the choice has been narrowed to either computer tomographic or radionuclide based methods, i.e. computer tomographic angiography (CTA) and ventilation-perfusion scintigraphy (V/Q-scan). Both methods display advantages and shortcomings, and while we provide some insights into CTA and alternative methods, the paper's main focus is a review of the V/Q-scan. We discuss basic considerations, interpretation criteria, clinical value, and controversies of conventional planar lung scintigraphy as well as the more contemporary 3-dimensional imaging technique of single photon emission tomography (SPECT) with or without CT.

  4. Transverse section radionuclide scanning system

    DOEpatents

    Kuhl, David E.; Edwards, Roy Q.

    1976-01-01

    This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.

  5. Cosmogenic radionuclides in stone meteorites

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    This document presents the techniques and compilation of results of cosmogenic Al-26 measurements at Goddard Space Flight Center on 91 samples of 76 stone meteorites. Short-lived radionuclides, including Na-22, Sc-46, Mn-54, and Co-60, were measured in 13 of these meteorites. About one-third of these data has not previously been published. The results are discussed briefly in terms of (1) depletion of Al-26 and natural potassium due to weathering, (2) possible exposure of several chondrites to an unusually high cosmic-ray flux, (3) comparison of Al-26, Na-22, Sc-46, and Mn5-54 in chondrites with the spallation Ne-22/Ne-21 ratio as a shielding indicator, and (4) comparison of (Al-26)-(Ne-22)/Ne-21 data for achondrite classes with the chondrite trend.

  6. Radionuclides in surface and groundwater

    USGS Publications Warehouse

    Campbell, Kate M.

    2009-01-01

    Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.

  7. Comprehensive analysis of atmospheric radionuclides just after the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Moriguchi, Yuichi; Nakajima, Teruyuki

    2017-04-01

    Even six years passed after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident, we still have large uncertainty for atmospheric transport and deposition models, the estimate of release rate of source terms and of internal exposure from inhalation. For our better understanding and to reduce the uncertainty, we thoroughly analyzed all the published data of radionuclides such as Cs-137, I-131 and Xe-133, and of radiation dose rates at many monitoring sites in eastern Japan. We also retrieved the spatio-temporal distributions of Cs-137 just after the accident by using the unique dataset of hourly radionuclides in atmospheric aerosols collected on the used filter-tapes installed in the suspended particulate matter (SPM) monitors operated at more than 100 stations in the air pollution monitoring network of Japan. The most important findings are summarized as follows. Analyzing the hourly Cs-137 concentrations at two SPM stations located within 20 km from the FD1NPP, we revealed the complicated behavior of plumes and atmospheric radionuclides near the FD1NPP just after the accident. The transport pathways to the northwestern and northern areas from the FD1NPP are clarified especially on March 12-21, 2011. Analysis of the published data clearly shows that atmospheric ratio of I-131/Cs-137 (=R) was mainly divided into two groups, one (R≦10) is for the plumes before March 21, 2011, and the other (R>100) is after that day. These two groups are consistent in all the measured sites, whether the sites are in the Fukushima prefecture or in the Tokyo Metropolitan area. These results are expected partially to identify the source term for each plume.

  8. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound.

    PubMed

    Zhang, Lanqiu; Rasenick, Mark M

    2010-03-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Galpha(s) from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Galpha(s) in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Galpha(s) in lipid rafts, whereas there was no change in overall Galpha(s) content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Galpha(s) localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Galpha(s) and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Galpha(s) from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs.

  9. Chronic Treatment with Escitalopram but Not R-Citalopram Translocates Gαs from Lipid Raft Domains and Potentiates Adenylyl Cyclase: A 5-Hydroxytryptamine Transporter-Independent Action of This Antidepressant Compound

    PubMed Central

    Zhang, Lanqiu

    2010-01-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Gαs from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Gαs in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Gαs in lipid rafts, whereas there was no change in overall Gαs content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Gαs localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Gαs and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Gαs from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs. PMID:19996298

  10. Therapeutic radionuclides: biophysical and radiobiologic principles.

    PubMed

    Kassis, Amin I

    2008-09-01

    Although the general radiobiologic principles underlying external beam therapy and radionuclide therapy are the same, there are significant differences in the biophysical and radiobiologic effects between the 2 types of radiation. In addition to the emission of particulate radiation, targeted radionuclide therapy is characterized by (1) extended exposures and, usually, declining dose rates; (2) nonuniformities in the distribution of radioactivity and, thus, absorbed dose; and (3) particles of varying ionization density and, hence, quality. This review explores the special features that distinguish the biologic effects consequent to the traversal of charged particles through mammalian cells. It also highlights what has been learned when these radionuclides and radiotargeting pharmaceuticals are used to treat cancers.

  11. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide teletherapy source. 892.5740 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source. (a) Identification. A radionuclide teletherapy source is a device consisting of a radionuclide...

  12. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    PubMed

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. Copyright 2010 Elsevier B.V. All

  13. Options to meet the future global demand of radionuclides for radionuclide therapy.

    PubMed

    Das, Tapas; Pillai, M R A

    2013-01-01

    Nuclear medicine continues to represent one of the important modalities for cancer management. While diagnostic nuclear medicine for cancer management is fairly well established, therapeutic strategies using radionuclides are yet to be utilized to their full potential. Even if 1% of the patients undergoing diagnostic nuclear medicine procedures can benefit from subsequent nuclear therapeutic intervention, the radionuclide requirement for nuclear therapeutics would be expected to be in the multi-million Curie levels. Meeting the demand for such high levels of therapeutic radionuclides at an affordable price is an important task for the success of radionuclide therapy. Although different types of particle emitters (beta, alpha, Auger electron etc.) have been evaluated for treating a wide variety of diseases, the use of β⁻ emitting radionuclides is most feasible owing to their ease of production and availability. Several β⁻ emitting radionuclides have been successfully used to treat different kind of diseases. However, many of these radionuclides are not suitable to meet the projected demand owing to the non-availability with sufficiently high specific activity and adequate quantity because of high production costs, relatively short half-lives etc. This article describes the advantages and disadvantages for broader uses of some of the well known therapeutic radionuclides. In addition, radioisotopes which are expected to have the potential to meet the growing demand of therapeutic radionuclides are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  15. Radionuclide carriers for targeting of cancer

    PubMed Central

    Sofou, Stavroula

    2008-01-01

    This review describes strategies for the delivery of therapeutic radionuclides to tumor sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor morphology. These determine the radionuclides of choice for suggested targeting ligands, and the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general strategies and molecular constructs currently explored for the delivery of therapeutic radionuclides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting of cancer are at a very exciting and creative stage. It is expected that the current emphasis on multidisciplinary approaches for exploring such therapeutic directions should enable internal radiotherapy to reach its full potential. PMID:18686778

  16. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving

  17. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... values, and for the listing of radionuclides on shipping papers and labels. 173.433 Section 173.433... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual radionuclides listed in the table in § 173.435 and § 173.436: (1) A1 and A2 values are given in the table in...

  18. The Search for Supernova-Produced Radionuclides in Terrestrial Deep-Sea Archives

    NASA Astrophysics Data System (ADS)

    Feige, J.; Wallner, A.; Winkler, S. R.; Merchel, S.; Fifield, L. K.; Korschinek, G.; Rugel, G.; Breitschwerdt, D.

    2012-03-01

    An enhanced concentration of 60Fe was found in a deep ocean crust in 2004 in a layer corresponding to an age of ~2Myr. The confirmation of this signal in terrestrial archives as supernova-induced and the detection of other supernova-produced radionuclides is of great interest. We have identified two suitable marine sediment cores from the South Australian Basin and estimated the intensity of a possible signal of the supernova-produced radionuclides 26Al, 53Mn, 60Fe, and the pure r-process element 244Pu in these cores. The finding of these radionuclides in a sediment core might allow us to improve the time resolution of the signal and thus to link the signal to a supernova event in the solar vicinity ~2Myr ago. Furthermore, it gives us an insight into nucleosynthesis scenarios in massive stars, condensation into dust grains and transport mechanisms from the supernova shell into the solar system.

  19. a Generalized Program for Internal Radionuclide Dosimetry

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Karl

    The development of monoclonal antibodies specific for tumor surface antigens promises a highly specific carrier medium for delivering a tumorcidal radiation dose. Dosimetry calculations of monoclonal antibodies are made difficult, however, precisely because the focus of radioactivity is targeted for a nonstandard volume in a nonstandard geometry. This precludes straightforward application of the formalism developed for internal radionuclide dosimetry by the Medical Internal Radiation Dose Committee. A software program was written to account for the perturbations introduced by the inclusion of a tumor mass as an additional source of, and target for, radiation. The program allows the interactive development of a mathematical model to account for observed biodistribution data. The model describes the time dependence of radioactivity in each organ system that retains radiolabeled antibody, including tumor. Integration of these "time-activity" curves yield cumulative activity for each organ system identified as a 'source' of radioactivity. A Monte Carlo simulation of photon transport is then executed for each source organ to obtain the fraction of radiation energy absorbed by various 'target' organs. When combined with the cumulative activity, this absorbed fraction allows an estimate of dose to be made for each target organ. The program has been validated against ten analytic models designed to span a range of common input data types. Additionally, a performance benchmark has been defined to assess the practicality of implementing the program on different computing hardware platforms. Sources of error in the computation are elaborated on, and future directions and improvements discussed. The software presents an integrated modeling/dosimetry environment particularly suited for performing Monoclonal Antibody dosimetry. It offers a viable methodology for performing prospective treatment planning, based on extrapolation of tracer kinetic data to therapeutic levels.

  20. Alchemy with short-lived radionuclides

    SciTech Connect

    Rubio, F.F.; Finn, R.D.; Gilson, A.J.

    1981-04-01

    A variety of short-lived radionuclides are produced and subsequently incorporated into radiopharmaceutical compounds in the radionuclide production program currently being conducted at the Cyclotron Facility of Mount Sinai Medical Center. The recovery of high specific activity oxygen-15 labelled water prepared by means of an inexpensive system operating in conjunction with an on-line radiogas target routinely utilized for oxygen-15 labelled carbon dioxide studies is currently receiving particular attention.

  1. Sellafield waste radionuclides in Irish sea intertidal and salt marsh sediments.

    PubMed

    Mackenzie, A B; Scott, R D

    1993-09-01

    Low level liquid radioactive waste discharges from the Sellafield nuclear fuel reprocessing plant in north west England had generated environmental inventories of about 3 × 10(16) Bq of(137)Cs, 6.8 × 10(14) Bq of(239,240)Pu and 8.9 × 10(14) Bq of(241)Am by 1990. Most of the(239,240)Pu and(241)Am and about 10% of the(137)Cs has been retained in a deposit of fine marine sediment close to the discharge point. The quantities of radionuclides discharged annually from Sellafield decreased by two orders of magnitude from the mid-1970s to 1990 but estimated critical group internal and external exposure decreased by less than one order of magnitude over this period. This indicates that during the period of reduced discharges, radionuclides already in the environment from previous releases continued to contribute to the critical group exposure and highlights the need to understand processes controlling the environmental distribution of the radionuclides.Redistribution of the contaminated marine sediment is potentially of major significance in this context, in particular if it results in transport of radionuclides to intertidal areas, where contact with the human population is relatively likely.A review is presented of published work relating to Sellafield waste radionuclides in Irish Sea sediments. Data on temporal and spatial trends in radionuclide concentrations and activity ratios are collated from a number of sources to show that the dominant mechanism of radionuclide supply to intertidal areas is by redistribution of the contaminated marine sediment. The implications of this mechanism of supply for trends in critical group radiation exposure are considered.

  2. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects ofmore » microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.« less

  3. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to somemore » uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.« less

  4. Bio-inspired digital signal processing for fast radionuclide mixture identification

    NASA Astrophysics Data System (ADS)

    Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.

    2015-05-01

    Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.

  5. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    NASA Astrophysics Data System (ADS)

    Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik; Alias, Masitah

    2015-04-01

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 (226Ra), radium-228 (228Ra) and potassium-40 (40K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (Hin), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  6. Techniques for Loading Technetium-99m and Rhenium-186/188 Radionuclides into Preformed Liposomes for Diagnostic Imaging and Radionuclide Therapy.

    PubMed

    Goins, Beth; Bao, Ande; Phillips, William T

    2017-01-01

    Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m ( 99m Tc), for noninvasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 ( 186/188 Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load 99m Tc or 186/188 Re into preformed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport 99m Tc or 186/188 Re across the lipid bilayer of the preformed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the 99m Tc and 186/188 Re within the liposomes. In the first method, 99m Tc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and 99m Tc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, 99m Tc or 186/188 Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), and 99m Tc-BMEDA or 186/188 Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for 99m Tc or 186/188 Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, 99m Tc/ 186/188 Re-BMEDA complex becomes protonated and more hydrophilic, which results in stable

  7. Isolation of uranium mill tailings and their component radionuclides from the biosphere; some earth science perspectives

    USGS Publications Warehouse

    Landa, Edward

    1980-01-01

    Uranium mining and milling is an expanding activity in the. Western United States. Although the milling process yields a uranium concentrate, the large volume of tailings remaining contains about 85 percent of the radioactivity originally associated with the ore. By virtue of the physical and chemical processing of the ore and the redistribution of the contained radionuclides at the Earth's surface, these tailings constitute a technologically enhanced source of natural radiation exposure. Sources of potential human radiation exposure from uranium mill tailings include the emanation of radon gas, the transport of particles by wind and water, and the transport of soluble radionuclides, seeping from disposal areas, by ground water. Due to the 77,000 year half-life of thorium-230, the parent of radium-226, the environmental effects associated with radionuclides contained in these railings must be conceived of within the framework of geologic processes operating over geologic time. The magnitude of erosion of cover materials and tailings and the extent of geochemical mobilization of the contained radionuclides to the atmosphere and hydrosphere should be considered in the evaluation of the potential, long-term consequences of all proposed uranium mill tailings management plans.

  8. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  9. Preparation of Radiopharmaceuticals Labeled with Metal Radionuclides

    SciTech Connect

    Welch, M.J.

    2012-02-16

    The overall goal of this project was to develop methods for the production of metal-based radionuclides, to develop metal-based radiopharmaceuticals and in a limited number of cases, to translate these agents to the clinical situation. Initial work concentrated on the application of the radionuclides of Cu, Cu-60, Cu-61 and Cu-64, as well as application of Ga-68 radiopharmaceuticals. Initially Cu-64 was produced at the Missouri University Research Reactor and experiments carried out at Washington University. A limited number of studies were carried out utilizing Cu-62, a generator produced radionuclide produced by Mallinckrodt Inc. (now Covidien). In these studies, copper-62-labeled pyruvaldehyde Bis(N{supmore » 4}-methylthiosemicarbazonato)-copper(II) was studied as an agent for cerebral myocardial perfusion. A remote system for the production of this radiopharmaceutical was developed and a limited number of patient studies carried out with this agent. Various other copper radiopharmaceuticals were investigated, these included copper labeled blood imaging agents as well as Cu-64 labeled antibodies. Cu-64 labeled antibodies targeting colon cancer were translated to the human situation. Cu-64 was also used to label peptides (Cu-64 octriatide) and this is one of the first applications of a peptide radiolabeled with a positron emitting metal radionuclide. Investigations were then pursued on the preparation of the copper radionuclides on a small biomedical cyclotron. A system for the production of high specific activity Cu-64 was developed and initially the Cu-64 was utilized to study the hypoxic imaging agent Cu-64 ATSM. Utilizing the same target system, other positron emitting metal radionuclides were produced, these were Y-86 and Ga-66. Radiopharmaceuticals were labeled utilizing both of these radionuclides. Many studies were carried out in animal models on the uptake of Cu-ATSM in hypoxic tissue. The hypothesis is that Cu-ATSM retention in vivo is dependent upon

  10. Proceedings of the Radionuclide Contamination in Water Resources Workshop

    SciTech Connect

    Richardson, J H; Duisebayev, B; Janecky, D R

    2001-07-26

    A workshop entitled ''Radionuclide Contamination in Water Resources'' was held in Almaty, Kazakhstan from Tuesday 29 May through Friday 1 June. This workshop was co-sponsored by the U.S. Department of Energy, Lawrence Livermore National Laboratory, and three organizations from the Republic of Kazakhstan: the Institute of Nonproliferation, the Institute of Hydrogeology and Hydrophysics, and KazAtomProm. Representatives from the U.S. Department of Energy, three national laboratories, and 13 different organizations from the Republic of Kazakhstan attended the workshop. A complete list of attendees, the workshop program, and information on the background and motivation for this workshop are provided in this report.more » The objective of the workshop was to identify critical problems, discover what is known about the problems related to radionuclide contamination of groundwater resources, form collaborative teams, and produce a small number proposals that both address further characterization and assess risk via contaminant fate and transport modeling. We plan to present these proposals to U.S. government agencies and international sponsors for funding.« less

  11. Airborne radionuclides in mosses collected at different latitudes.

    PubMed

    Krmar, M; Wattanavatee, K; Radnović, D; Slivka, J; Bhongsuwan, T; Frontasyeva, M V; Pavlov, S S

    2013-03-01

    Terrestrial mosses are a promising medium for investigation and monitoring of airborne radionuclide depositions due to their widespread occurrence, ease of sampling, and the possibility of high-resolution gamma spectrometry measurements without preparatory chemical treatment of samples. The overall objective of the present study was to compare (7)Be, (210)Pb and (137)Cs activity concentrations (in Bq/kg) in moss samples collected at two different climate zones: the south of Thailand (7 °N) and in Serbia (∼45 °N) in order to examine deposition of airborne radionuclide in these distant areas. Significant difference of the (210)Pb content (almost a factor of 2) in mosses was observed. The mean value of (7)Be activity in samples from Serbia was almost 40% higher than activity of those collected in Thailand. Level of (137)Cs in Thailand mosses was below the detection limit. It was shown that air transport of water droplets in the area of waterfalls and strong turbulence can deposit U and Th daughter nuclei. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Tracing Fallout Radionuclide Behavior During Atmospheric Deposition and Pedogenesis

    NASA Astrophysics Data System (ADS)

    Landis, J. D.

    2017-12-01

    Short-lived fallout radionuclides 7Be (54 day half-life) and 210Pbexcess (22.3 year half-life) inform problems in geomorphology covering timespans of days to decades. Linking these radionuclides together is a powerful strategy, since the ratio 7Be:210Pb can control for changes in the activity of each, provided that the tracers have similar behavior through relevant chemical and physical processes such as interception, sorption, dilution, transport, etc. To investigate the extent to which 7Be and 210Pbxs share a common behavior, I measured these radionuclides in atmospheric deposition, vegetation, and stable soil, sediment and peat profiles. Bulk deposition of 7Be and 210Pb was measured in weekly intervals for 6 years of continuous record. Samples of red oak leaves (Quercus rubra) were collected regularly over 4 years at a site co-located with precipitation collection. Soil pits were sampled by high resolution methods at regional, undisturbed sites. In all samples 7Be, 210Pb, and other nuclides were measured by high-precision gamma spectrometry. Depositional fluxes of 7Be and 210Pb were highly correlated, with 7Be:210Pb converging to the long-term mean activity ratio of ca. 10.5 over intervals of 7 to 14 days. Red oak foliage accumulated 7Be and 210Pb at a linear rate during both growth and senescence, and appeared to maintain a dynamic equilibrium with atmospheric deposition. Canopies of both forest and grass intercepted on the order of 50% of deposition; the remainder reached underlying soil, where 7Be activity showed an exponential decline due to rapid hydrologic penetration of soil surface. Features of 210Pbxs soil profiles, including a subsurface maximum, reflect the same penetration pattern integrated over decades of deposition. Application of the Linked Radionuclide aCcumulation (LRC) model demonstrated that 210Pb moves through soil, peat and fluvial sediment profiles at rates on the order of 1 mm per year, similar to other atmospherically-derived metals

  13. Therapeutic Radionuclides: Biophysical and Radiobiologic Principles

    PubMed Central

    Kassis, Amin I.

    2008-01-01

    Although the general radiobiologic principles underlying external beam therapy and radionuclide therapy are the same, there are significant differences in the biophysical and radiobiologic effects from the two types of radiation. In addition to the emission of particulate radiation, targeted radionuclide therapy is characterized by (i) extended exposures and, usually, declining dose rates; (ii) nonuniformities in the distribution of radioactivity and, thus, absorbed dose; and (iii) particles of varying ionization density and, hence, quality. This chapter explores the special features that distinguish the biologic effects consequent to the traversal of charged particles through mammalian cells. It also highlights what has been learned when these radionuclides and radiotargeting pharmaceuticals are used to treat cancers. PMID:18662557

  14. Peptide-Targeted Radionuclide Therapy for Melanoma

    PubMed Central

    Miao, Yubin; Quinn, Thomas P.

    2011-01-01

    Melanocortin-1 receptor (MC1-R) and melanin are two attractive melanoma-specific targets for peptide-targeted radionuclide therapy for melanoma. Radiolabeled peptides targeting MC1-R/melanin can selectively and specifically target cytotoxic radiation generated from therapeutic radionuclides to melanoma cells for cell killing, while sparing the normal tissues and organs. This review highlights the recent advances of peptide-targeted radionuclide therapy of melanoma targeting MC1R and melanin. The promising therapeutic efficacies of 188Re-(Arg11)CCMSH (188Re-[Cys3,4,10, d-Phe7, Arg11]-α-MSH3-13), 177Lu- and 212Pb-labeled DOTA-Re(Arg11)CCMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[ReO-(Cys3,4,10, d-Phe7, Arg11)]-α-MSH3-13) and 188Re-HYNIC-4B4 (188Re-hydrazinonicotinamide-Tyr-Glu-Arg-Lys-Phe-Trp-His-Gly-Arg-His) in preclinical melanoma-bearing models demonstrate an optimistic outlook for peptide-targeted radionuclide therapy for melanoma. Peptide-targeted radionuclide therapy for melanoma will likely contribute in an adjuvant setting, once the primary tumor has been surgically removed, to treat metastatic deposits and for treatment of end-stage disease. The lack of effective treatments for metastatic melanoma and end stage disease underscores the necessity to develop and implement new treatment strategies, such as peptide-targeted radionuclide therapy. PMID:18387816

  15. Data Authentication Demonstration for Radionuclide Stations

    SciTech Connect

    Harris, Mark; Herrington, Pres; Miley, Harry

    1999-08-03

    Data authentication is required for certification of sensor stations in the International Monitoring System (IMS). Authentication capability has been previously demonstrated for continuous waveform stations (seismic and infrasound). This paper addresses data surety for the radionuclide stations in the IMS, in particular the Radionuclide Aerosol Sampler/Analyzer (RASA) system developed by Pacific Northwest National Laboratory (PNNL). Radionuclide stations communicate data by electronic mail using formats defined in IMS 1.0, Formats and Protocols for Messages. An open message authentication standard exists, called S/MIME (Secure/Multipurpose Internet Mail Extensions), which has been proposed for use with all IMS radionuclide station message communications. This standardmore » specifies adding a digital signature and public key certificate as a MIME attachment to the e-mail message. It is advantageous because it allows authentication to be added to all IMS 1.0 messages in a standard format and is commercially supported in e-mail software. For command and control, the RASA system uses a networked Graphical User Interface (GUI) based upon Common Object Request Broker Architecture (CORBA) communications, which requires special authentication procedures. The authors have modified the RASA system to meet CTBTO authentication guidelines, using a FORTEZZA card for authentication functions. They demonstrated signing radionuclide data messages at the RASA, then sending, receiving, and verifying the messages at a data center. They demonstrated authenticating command messages and responses from the data center GUI to the RASA. Also, the particular authentication system command to change the private/public key pair and retrieve the new public key was demonstrated. This work shows that data surety meeting IMS guidelines may be immediately applied to IMS radionuclide systems.« less

  16. An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Viswanathan, H.; Eddebbarh, A.; Ding, M.; Reimus, P.; Robinson, B.; Arnold, B.; Meijer, A.

    2006-12-01

    The Yucca Mountain site scale saturated zone transport model has been revised to incorporate the updated flow model based on a hydrogeologic framework model using the latest lithology data, increased grid resolution that better resolves the geology within the model domain, updated Kd distributions for radionuclides of interest, and updated retardation factor distributions for colloid filtration. The resulting numerical transport model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The transport model results are validated by comparing the model transport pathways with those derived from geochemical data, and by comparing the transit times from the repository footprint to the compliance boundary at the accessible environment with those derived from 14C-based age estimates. The transport model includes the processes of advection, dispersion, fracture flow, matrix diffusion, sorption, and colloid-facilitated transport. The transport of sorbing radionuclides in the aqueous phase is modeled as a linear, equilibrium process using the Kd model. The colloid-facilitated transport of radionuclides is modeled using two approaches: the colloids with irreversibly embedded radionuclides undergo reversible filtration only, while the migration of radionuclides that reversibly sorb to colloids is modeled with modified values for sorption coefficient and matrix diffusion coefficients. Model breakthrough curves for various radionuclides at the compliance boundary are presented along with their sensitivity to various parameters.

  17. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    SciTech Connect

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurementsmore » have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.« less

  18. Accumulation of radionuclides in bed sediments of the Columbia River between Hanford reactors and McNary Dam

    USGS Publications Warehouse

    Nelson, Jack L.; Haushild, W.L.

    1970-01-01

    Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.

  19. The presence of some artificial and natural radionuclides in a Eucalyptus forest in the south of Spain.

    PubMed

    Vaca, F; Manjón, G; Garcia-León, M

    2001-01-01

    Long-lived artificial radionuclides (137Cs, 90Sr) were studied in a Eucalyptus plantation located in the south-west of Spain. Radionuclide concentrations were determined in different types of samples corresponding to specific forest components (soil, trees, herbs and litter). Depth profile distributions were obtained in two selected core soils. Two layers were separately measured in three other cores. The concentration factor, defined as the ratio between the mean activity concentration in a component and the mean activity concentration in the soil, was calculated for each component. The biomass of different components was estimated in order to evaluate the total density concentration (Bq/ha) of the artificial radionuclides (137Cs, 90Sr) in the Eucalyptus plantation. The transfer of the radionuclides between the different forest components can be inferred from the results. Additionally, other naturally occurring radionuclides (40K, 226Ra, 228Ra, 228Ac) were determined for comparison. Transport of radionuclides from forest to a nearby pulp mill is also discussed.

  20. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan

    PubMed Central

    Kinoshita, Norikazu; Sueki, Keisuke; Sasa, Kimikazu; Kitagawa, Jun-ichi; Ikarashi, Satoshi; Nishimura, Tomohiro; Wong, Ying-Shee; Satou, Yukihiko; Handa, Koji; Takahashi, Tsutomu; Sato, Masanori; Yamagata, Takeyasu

    2011-01-01

    A tremendous amount of radioactivity was discharged because of the damage to cooling systems of nuclear reactors in the Fukushima No. 1 nuclear power plant in March 2011. Fukushima and its adjacent prefectures were contaminated with fission products from the accident. Here, we show a geographical distribution of radioactive iodine, tellurium, and cesium in the surface soils of central-east Japan as determined by gamma-ray spectrometry. Especially in Fukushima prefecture, contaminated area spreads around Iitate and Naka-Dori for all the radionuclides we measured. Distributions of the radionuclides were affected by the physical state of each nuclide as well as geographical features. Considering meteorological conditions, it is concluded that the radioactive material transported on March 15 was the major contributor to contamination in Fukushima prefecture, whereas the radioactive material transported on March 21 was the major source in Ibaraki, Tochigi, Saitama, and Chiba prefectures and in Tokyo. PMID:22084070

  1. Radionuclide Therapies in Molecular Imaging and Precision Medicine.

    PubMed

    Kendi, A Tuba; Moncayo, Valeria M; Nye, Jonathon A; Galt, James R; Halkar, Raghuveer; Schuster, David M

    2017-01-01

    This article reviews recent advances and applications of radionuclide therapy. Individualized precision medicine, new treatments, and the evolving role of radionuclide therapy are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Natural Radionuclides in Private Wells | RadTown USA | US ...

    EPA Pesticide Factsheets

    2017-08-07

    About 15 percent of Americans use private wells as their main source of drinking water. Those who use private wells should remember: Test for radionuclides every three years. Take appropriate steps if radionuclide levels are higher than EPA's limits.

  3. Migration of conservative and sorbing radionuclides in heterogeneous fractured rock aquifers at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Boryta, J. R.; Wolfsberg, A. V.

    2003-12-01

    The Nevada Test Site (NTS) is the United States continental nuclear weapons testing site. The larger underground tests, including BENHAM and TYBO, were conducted at Pahute Mesa. The BENHAM test, conducted in 1968, was detonated 1.4 km below the surface and the TYBO test, conducted in 1975, was detonated at a depth of 765 m. Between 1996 and 1998, several radionuclides were discovered in trace concentrations in a monitoring well complex 273 m from TYBO and 1300 m from BENHAM. Previous studies associated with these measurements have focused primarily on a) plutonium discovered in the observation wells, which was identified through isotopic finger printing as originating at BENHAM, b) colloid-facilitated plutonium transport processes, and c) vertical convection in subsurface nuclear test collapse chimneys. In addition to plutonium, several other non-, weakly-, and strongly-sorbing radionuclides were discovered in trace concentrations in the observation wells, including tritium, carbon-14, chlorine-36, iodine-129, technetium-99, neptunium-237, strontium-90, cesium-137, americium-241, and europium-152,154,155. The range in retardation processes affecting these different radionuclides provides additional information for assessing groundwater solute transport model formulations. For all radionuclides, simulation results are most sensitive to the fracture porosity and fracture aperture. Additionally, for weakly sorbing Np, simulation results are highly sensitive to the matrix sorption coefficient. For strongly sorbing species, migration in the absence of colloids can only be simulated if fracture apertures are set very large, reducing the amount of diffusion that can occur. For these species, colloid-facilitated transport appears to be a more likely explanation for the measurements. This is corroborated with colloid-transport model simulations.

  4. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  5. THE USE OF BATCH TESTS AS A SCREENING TOOL FOR RADIONUCLIDE SORPTION CHARACTERIZATION STUDIES, HANFORD, WASHINGTON, U.S.A.

    EPA Science Inventory

    The U.S. Department of Energy was studying the feasibility of locating a high-level radioactive waste repository in basalt at the Hanford site in south-central Washington. This is a saturated site where ground water transport of radionuclides away from a repository is the mechani...

  6. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachmentmore » rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  7. Transport of fission products with a helium gas-jet at TRIGA-SPEC

    NASA Astrophysics Data System (ADS)

    Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Herfurth, F.; Geppert, C.; Ketelaer, J.; Ketter, J.; Krämer, J.; Krieger, A.; Knuth, K.; Nagy, Sz.; Nörtershäuser, W.; Smorra, C.

    2010-02-01

    A helium gas-jet system for the transport of fission products from the research reactor TRIGA Mainz has been developed, characterized and tested within the TRIGA-SPEC experiment. For the first time at TRIGA Mainz carbon aerosol particles have been used for the transport of radionuclides from a target chamber with high efficiency. The radionuclides have been identified by means of γ-spectroscopy. Transport time, efficiency as well as the absolute number of transported radionuclides for several species have been determined. The design and the characterization of the gas-jet system are described and discussed.

  8. Surface Complexation Modeling of Radionuclide Sorption in the Saturated Zone of Yucca Mountain Rocks

    NASA Astrophysics Data System (ADS)

    Ding, M.; Kelkar, S.; Fabryka-Martin, J. T.; Caporuscio, F. A.; Meijer, A.

    2008-12-01

    The U.S. DOE is preparing to submit a license application to the Nuclear Regulatory Commission (NRC) to create a geologic repository at the Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high- level radioactive waste. In the event of a radionuclide release, the ground water beneath the Yucca Mountain is the primary medium through which most radionuclides might move from the geologic repository to the accessible environment. Sorption of radionuclides onto rock surfaces is one of the important processes affecting the transport in the saturated zone of Yucca Mountain (SZ). For this reason, a considerable experimental effort has been devoted over the last two decades to the measurements of sorption distribution coefficients (Kd) for various radionuclides in rock samples from the vicinity of the repository site at the Yucca Mountain. Despite the quantity and quality of the data, they are strictly valid only under the experimental conditions at which they were measured, whereas the Kd distributions used as inputs in performance assessment calculations need to represent the range of geochemical conditions and rock types expected to occur along the transport pathways. Hence geochemical modeling was used to calculate and predict chemical speciation of elements of interest in solid and solution under a variety of different conditions. The computer code PHREEQC v2.3 and the thermodynamic database PHREEQCDATA025.DAT were used for this geochemical modeling. The modeling provides a basis for extrapolating the experimentally derived Kd's, and provides improved understanding of the underlying sorption mechanisms, thus justifying and defending the Kd's selected for further radionuclide transport modeling development. This presentation focuses on the elements Am, U, Np and Pu which sorb in the SZ primarily via surface complexation reactions. We discuss quantitatively the influence of groundwater compositions, rock surface area, binding constants, and

  9. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... gaseous or volatile radionuclide or a radionuclide-labeled aerosol and permit it to be respired by the...

  10. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... gaseous or volatile radionuclide or a radionuclide-labeled aerosol and permit it to be respired by the...

  11. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... gaseous or volatile radionuclide or a radionuclide-labeled aerosol and permit it to be respired by the...

  12. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... gaseous or volatile radionuclide or a radionuclide-labeled aerosol and permit it to be respired by the...

  13. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... gaseous or volatile radionuclide or a radionuclide-labeled aerosol and permit it to be respired by the...

  14. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator system. (a) Identification. A manual radionuclide applicator system is a manually operated device...

  15. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled radionuclide applicator system. (a) Identification. A remote controlled radionuclide applicator system is an...

  16. Surrogate Indicators of Radionuclide Migration at the Amargosa Desert Research Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.

    2005-05-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (<2 m) and two vertical arrays of deep (5-109 m) gas-sampling ports, plus ground-water monitoring wells. Migration is dominated by lateral transport in the upper 50 m of sediments. Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.

  17. Understanding Radionuclide Interactions with Layered Materials

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  18. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  19. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE PAGES

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...

    2018-02-13

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  20. Xenon adsorption on geological media and implications for radionuclide signatures.

    PubMed

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  2. Dosimetry assessment of DNA damage by Auger-emitting radionuclides: Experimental and Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Di Maria, S.; Belchior, A.; Pereira, E.; Quental, L.; Oliveira, M. C.; Mendes, F.; Lavrado, J.; Paulo, A.; Vaz, P.

    2017-11-01

    Recently there has been considerable effort to investigate the potential use and efficacy of Auger-electron emitters in targeted radiotherapy. Auger electrons travel a short distance within human tissues (at nano-scale level) and, therefore, if an Auger-emitting radionuclide is transported to the cell nucleus it will cause enhanced DNA damage. Among the Auger-emitting radionuclides, 125I is of particular interest, as it emits about 25 electrons per decay. 99mTc only emits 5 electrons per decay, but presents some attractive characteristics such as a short half-life, easy procurement and availability and ideal imaging properties for therapy monitoring. In order to study the dosimetric behavior of these two radionuclides (125I and 99mTc) at nano-scale sizes and given the DNA-intercalation properties of Acridine Orange (AO), we have designed 99mTc (I)-tricarbonyl complexes and 125I-heteroaromatic compounds that contain AO derivatives, in order to promote a closer proximity between the radionuclides and the DNA structure. With the aim to have an insight on the relevance of these radiolabelled compounds for DNA-targeted Auger therapy, different aspects were investigated: i) their ability to cause DNA strand breaks; ii) the influence of the two different radionuclides in DNA damage; iii) the effect of the distance between the AO intercalating unit and the radioactive atom (99mTc or 125I). To address these issues several studies were carried out encompassing the evaluation of plasmid DNA damage, molecular docking and nanodosimetric Monte Carlo modelling and calculations. Results show that the two classes of compounds are able to induce DNA double strand breaks (dsb), but the number of DNA damages (e.g. dsb yield) is strongly dependent on the linker used to attach the Auger emitting radionuclide (125I or 99mTc) to the AO moiety. In addition, nanodosimetric calculations confirm a strong gradient of the absorbed energy with the DNA-radionuclide distance for the two

  3. Labeling of monoclonal antibodies with radionuclides

    SciTech Connect

    Bhargava, K.K.; Acharya, S.A.

    1989-07-01

    Antibodies, specifically monoclonal antibodies, are potentially very useful and powerful carriers of therapeutic agents to target tissues and diagnostic agents. The loading or charging of antibodies with agents, especially radiotracers, is reviewed here. The choice of radioisotope for immunodetection and/or immunotherapy is based on its availability, half-life, nature of the radiation emitted, and the metabolic pathways of the radionuclide in the body. Most important of all are the derivatization techniques available for labeling the antibody with the given radionuclide. Isotopes of iodine and divalent metal ions are the most commonly used radionuclides. Antibodies labeled with iodine at tyrosine residues aremore » metabolized rapidly in vivo. This leads to the incorporation of metabolized radioactive iodine into various tissues, mainly the thyroid gland and stomach, and to the accumulation of high levels of circulating iodine in the blood, which masks tumor uptake considerably. To overcome these limitations, the use of iodohippurate as an iodine-anchoring molecule to the protein should be considered. When divalent or multivalent metal ions are used as the preferred radionuclide, bifunctional chelating reagents such as EDTA or DTPA are first coupled to the protein or antibody. These chelating molecules are attached to the protein by formation of an isopeptide linkage between the carboxylate of the chelating reagent and the amino group of the protein. Several procedures are available to generate the isopeptide linkage. When the anchoring of the chelating agent through isopeptide linkage results in the inactivation of the antibody, periodate oxidation of the carbohydrate moiety of the antibody, followed by reductive coupling of chelator, could be considered as an alternative. There is still a need for better, simpler, and more direct methods for labeling antibodies with radionuclides. 78 references.« less

  4. Targeted radionuclide therapy--an overview.

    PubMed

    Dash, Ashutosh; Knapp, F F Russ; Pillai, M R A

    2013-09-01

    Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors.

  5. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  6. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    SciTech Connect

    Rose, T P; Hu, Q; Zhao, P

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu,more » and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two

  7. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE PAGES

    Santschi, P. H.; Xu, C.; Zhang, S.; ...

    2017-03-09

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  8. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium.

    PubMed

    Santschi, P H; Xu, C; Zhang, S; Schwehr, K A; Lin, P; Yeager, C M; Kaplan, D I

    2017-05-01

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds that are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed here that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. More importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Origin of artificial radionuclides in soil and sediment from North Wales.

    PubMed

    Al-Qasmi, Hamza; Law, Gareth T W; Fifield, L Keith; Livens, Francis R

    2016-01-01

    During the operations at the Sellafield nuclear fuel reprocessing complex, artificial radionuclides are discharged to the Irish Sea under authorisation, where they are dispersed. In this study, the southern distribution and transport of Sellafield derived radionuclides have been investigated. Both natural and artificial radionuclides have been studied in a soil core from the riverbank of the Afon Goch in Anglesey, North Wales. Particulate input is dominant for all artificial radionuclides (including the more soluble (137)Cs and (236)U) with an estimated lag time of about a decade. The preferential northward seawater movement in the NE Irish Sea limits solution input of (137)Cs and (236)U to the areas south of Sellafield. The relatively long lag time reflects both the water circulation pattern and distance between the study site in north Wales and the source point in Cumbria. Two redox active zones are observed in the top and the bottom of this core, although there is no evidence for any redistribution of Pu and natural uranium by these redox processes. However, (236)U, derived from irradiated uranium, showed variable distribution in the core. This could be a potential response to the geochemical conditions, showing that (236)U may be a promising tracer for the environmental processes and a signature of the Sellafield historical discharges of irradiated uranium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quantifying particulate and colloidal release of radionuclides in waste-weathered hanford sediments.

    PubMed

    Perdrial, Nicolas; Thompson, Aaron; LaSharr, Kelsie; Amistadi, Mary Kay; Chorover, Jon

    2015-05-01

    At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. The cycling of radionuclides through the macroflora of White Oak Lake

    SciTech Connect

    Mohrbacher, D.A.

    1992-01-01

    This research considers the role of aquatic macrophytes as one process influencing the transport and cycling of [sup 137]Cs and [sup 60]Co in White Oak Lake and the weir pools of its two tributaries. White Oak Creek and Melton Branch by examining the mechanisms of plant uptake and decomposition. The source of radionuclides, the sediment or the water, to the rooted, submerged macrophytes Myriophyllum spicatum L. and Elodea canadensis L., was determined to evaluate their potential for remobilizing sedimented contaminants to the overlying water column. These plants accumulated approximately 30-50% of their [sup 137]Cs content, and up to 67% ofmore » their [sup 60]Co content from the sediments. Approximately 68% of the total [sup 137]Cs and 35% of the total [sup 60]Co contained in Myriophyllum was released in a dissolved state to the water column during the course of senescence. The release was constant and linear over time. This is in contrast to litter bag studies also conducted using air-dried plants, where the radionuclides were released exponentially. Assessing the role macrophytes play in the transport and cycling of radionuclides in White Oak Lake is considered in relation to the total radioecology of the system. The macrophyte populations in the three systems were characterized by examining species composition, abundance, distribution and biomass dynamics in relation to their radionuclide content. This information, along with the data gathered from the uptake and decomposition studies, and measurements of various abiotic and physicochemical parameters were used to develop a dynamic compartmental box model of White Oak Lake to understand how macrophytes influence [sup 137]Cs transport and cycling. Model simulations showed that if the discharge of [sup 137]Cs to the lake were to cease, the rooted, submerged plants would continue to contribute [sup 137]Cs to the water column as a result of sediment remobilization.« less

  12. Surface Complexation Modeling of Radionuclide Sorption in the Saturated Zone of Yucca Mountain Rocks

    NASA Astrophysics Data System (ADS)

    Ding, M.; Kelkar, S.; Fabryka-Martin, J.; Caporuscio, F.; Meijer, A.

    2007-12-01

    The U.S. DOE is preparing to submit a license application to the Nuclear Regulatory Commission (NRC) to create a geologic repository at the Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. In the event of a radionuclide release, the ground water beneath the Yucca Mountain is the primary medium through which most radionuclides might move from the geologic repository to the accessible environment. Sorption of radionuclides onto rock surfaces in the saturated zone of Yucca Mountain (SZ) is one of the most important processes retarding their release to the accessible environment. For this reason, a considerable experimental effort has been devoted over the last two decades to the measurements of sorption distribution coefficients (Kd) for various radionuclides in rock samples from the vicinity of the repository site at the Yucca Mountain. Despite the quantity and quality of the data, they are strictly valid only under the experimental conditions at which they were measured, whereas the Kd distributions used as inputs in performance assessment calculations need to represent the range of geochemical conditions and rock types expected to occur along the transport pathways. Hence geochemical modeling was used to calculate and predict chemical speciation of elements of interest in solid and solution under a variety of different conditions. The computer code PHREEQC v2.3 and the thermodynamic database PHREEQCDATA025.DAT were used for this geochemical modeling. The modeling provides a basis for extrapolating the experimentally derived Kd's, and provides improved understanding of the underlying sorption mechanisms, thus justifying and defending the Kd's selected for further radionuclide transport modeling development. This presentation focuses on the elements Am, U, Np and Pu which sorb in the SZ primarily via surface complexation reactions. We discuss quantitatively the influence of groundwater compositions, rock surface area

  13. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    SciTech Connect

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen

    2013-08-01

    Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchmanmore » Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling

  14. U/Th series radionuclides as coastal groundwater tracers

    USGS Publications Warehouse

    Swarzenski, P.W.

    2007-01-01

    The study of coastal groundwater has recently surfaced as an active interdisciplinary area of research, driven foremost by its importance as a poorly quantified pathway for subsurface material transport into coastal ecosystems. Key issue in coastal groundwater research include a complete geochemical characterization of the groundwater(s); quantification of the kinetics of subsurface transport, including rock-water interactions; determination of groundwater ages; tracing of groundwater discharge into coastal waters using radiochemical fingerprints; and an assessment of the potential ecological impact of such subsurface flow to a reviving water body. For such applications, the isotopic systemics of select naturally occurring radionucludes in the U/Th series has proven to be particularly useful. These radionuclides (e.g., U, Th, Ram and Rn) are ubiquitous in all groundwaters ad are represented by several isotopes with widely different half-lives and chemistries (Figure 1). As a result, varied biogeochemical processes occurring over a broad range of time scales can be studied. In source rock, most U/Th series isotopes in secular equilibrium; that is, the rate of decay of a daughter isotope is equal to that of it radiogenic parent, and so will have equal activities (in this context, the specific activity is simply a measure of the amount of radioactivity per unit amount). In contrast, these nuclides exhibit strong fractionations within the surrounding groundwaters because of their respective physiochemical differences. Disequilibria in U/Th series radionuclides can thus be used to identify distinct water masses, quantify release rates from source rocks, assess groundwater migration rates, and assess groundwater discharge rates in coastal waters., Large isotopic variations also have the potential for providing precise fingerprints for groundwaters from specific aquifers and have been explored as a means for calculating groundwater ages and estuarine water mass transit

  15. [Radionuclide therapy for bone metastases: new opportunities].

    PubMed

    Krylov, V V; Kochetova, T Yu; Voloznev, L V

    2015-01-01

    Treatment of patients with multiple bone metastases accompanied by pain syndrome is a complicated clinical task. Radionuclide therapy is one of its solutions, which is used to achieve long reduction of pain syndrome and significant improvement the quality of patients' life. However mechanism of action of bone-seeking radiopharmaceuticals suggests not only pain control but antitumor effect as well. In early clinical studies of safety and efficacy of the most common bone-seeking radiopharmaceuticals in single administration there were not any preferences in overall survival but individual clinical cases with extraordinary tumor regression after radionuclide therapy were reported. Repeated bone targeted therapy and combination with other treatment modalities can help to gain statistical significant increase in overall survival of patients.

  16. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less

  17. Cadastral valuation of lands polluted with radionuclides

    NASA Astrophysics Data System (ADS)

    Makarov, O. A.; Tsvetnov, E. V.; Shcheglov, A. I.; Romashkina, A. D.; Ermiyaev, Ya. R.

    2016-11-01

    The major method to correct the cadastral value of land for contamination with radionuclides is to reduce it by the sum of expenses necessary for land remediation and for special measures ensuring the obtaining of agricultural and forestry products satisfying safety norms. Lands contaminated with radionuclides and used in agriculture and forestry are often removed from the system of land taxation. In this case, their cadastral value becomes an excessive element of the state cadaster of real estate. An approach toward cadastral valuation of such lands suggested by the authors assumes the creation of a system of compensation payments as the main source of financing of land rehabilitation and soil conservation measures. An original system of calculation of such payments has been tested for radioactively contaminated lands in Plavsk district of Tula oblast. It is argued that compensation payments for radioactively contaminated agrocenoses should be higher than those for natural cenoses.

  18. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  19. Radionuclide studies in vascular infantile hemiplegia

    SciTech Connect

    Aita, J.F.; Keyes, J.W. Jr.

    1974-04-01

    Two cases of acute infantile hemiplegia are presented. The first case is a patient with moyamoya disease with excellent correlation between the brain scan findings and her clinical signs and symptoms and the carotid arteriogram. The second patient had occlusive cerebrovascular disease secondary to thromboemboli with excellent correlation between the brain scan findings and his clinical state and the neuropathologic examination. In both cases the static brain scans and the radionuclide angiogram were comparable to those reported in adults with cerebrovascular disease both in appearance and in temporal sequence. Radionuclide studies can be an important and reliable diagnostic tool inmore » the evaluation of acute infantile hemiplegia. (auth)« less

  20. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    SciTech Connect

    Abdullah, Anisa, E-mail: coppering@ymail.com; Hamzah, Zaini; Wood, Ab. Khalik

    2015-04-29

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marinemore » biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 ({sup 226}Ra), radium-228 ({sup 228}Ra) and potassium-40 ({sup 40}K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (H{sub in}), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.« less

  1. Effects of hydrodynamic chromatography on colloid-facilitated migration of radionuclides in the fractured rock.

    PubMed

    Jen, C P; Li, S H

    2001-01-01

    The performance assessment of high level radioactive waste disposal has emphasized the role of colloids in the migration of radionuclides in the geosphere. Previous literature [Nagasaki S, Tanaka S, Suzuki A. Fast transport of colloidal particles through quartz-packed columns. J. Nucl. Sci. Technol. 1975;30(11):1136] indicates that owing to hydrodynamic chromatography the colloid velocity may not be equal to that of groundwater. Using hydrodynamic chromatography, this work investigates the effects of the size of colloidal particles on the radionuclide migration facilitated by colloids in a single fractured porous rock. Also, a methodology is proposed to develop a predictive model to assess transport within the fracture rock as well as various other phenomenological coefficients, particularly the size of colloidal particles. In addition, a fully developed concentration profile for non-reactive colloids in the fracture is developed to elucidate hydrodynamic chromatography of colloids in geological media. The external forces acting on colloidal particles hypothesized in the model proposed herein include inertial force, van der Waals attractive force, double layer force as well as gravitational force. The dispersion coefficient of colloids and the distribution coefficient for radionuclides with colloids are also considered as they pertain to the size of the colloid. In addition, the size distributions of colloids are utilized to investigate the effects of polydispersed colloids.

  2. Accelerator mass spectrometry of the heaviest long-lived radionuclides with a 3-MV tandem accelerator

    NASA Astrophysics Data System (ADS)

    Vockenhuber, Christof; Golser, Robin; Kutschera, Walter; Priller, Alfred; Steier, Peter; Winkler, Stephan; Liechtenstein, Vitaly

    2002-12-01

    A 3-MV pelletron tandem accelerator is the heart of the Vienna environmental research accelerator (VERA). The original design of the beam transport components allows the transport of ions of all elements, from the lightest to the heaviest. For light ions the suppression of neighboring masses was sufficient to measure isotopic ratios of {(14}) C/{(12}) C and {(26}) Al/{(27}) Al as low as 10{(-15}) and {(10}) Be/{(9}) Be down to 10{(-13}) . To suppress neighboring masses for the heaviest radionuclides in the energy range of 10-20 MeV, the resolution of VERA was increased both by improving the ion optics of existing elements at the injection side and by installing a new high-resolution electrostatic separator at the high-energy side. Interfering ions which pass all beam filters are identified with a Bragg-type ionization detector and a high-resolution time-of-flight system. Two ultra-thin diamond-like carbon (DLC) foils are used in the start and stop detector, which substantially reduces losses due to beam straggling. This improved set up enables us to measure even the heaviest long-lived radionuclides, where stable isobaric interferences are absent (e.g. {(236}) U and {(244}) Pu), down to environmental levels. Moreover, the advantage of a `small' and well manageable machine like VERA lies in its higher stability and reliability which allows to measure these heavy radionuclides more accurately, and also a large number of samples.

  3. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    SciTech Connect

    R. Aguilar

    2003-06-24

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  4. Radionuclide transfer from feed to camel milk.

    PubMed

    Al-Masri, M S; Al-Hamwi, A; Amin, Y; Safieh, M B; Zarkawi, M; Soukouti, A; Dayyoub, R; Voigt, G; Fesenko, S

    2014-06-01

    The transfer of (137)Cs, (85)Sr, (131)I, (210)Po, (210)Pb and (238)U from feed to camel's milk was investigated in a pilot experiment with three lactating camels. For a period of 60 days, the animals were fed on spiked feed containing the studied radionuclides. They were subsequently returned to a contamination-free diet and monitored for another 90 days. The activity concentrations of (137)Cs, (85)Sr and (131)I in milk decreased with time and reached background levels after 20 days. Equilibrium transfer coefficients and biological half-lives were estimated and transfer coefficients were calculated as (8.1 ± 3.6) × 10(-4), (4.4 ± 1.6) × 10(-2), (7.8 ± 3.9) × 10(-4), (2.7 ± 3.5) × 10(-4), (1.8 ± 1.5) × 10(-4) and (7.0 ± 3.6) × 10(-3) d L(-1) for (85)Sr, (131)I, (137)Cs, (210)Po, (210)Pb and (238)U, respectively. The biological half-lives were estimated to be 6.4, 4.2, 8.9, and 53.3 days for (85)Sr, (131)I, (137)Cs, and (238)U, respectively. Estimates of the half-lives were based on a one component model: it was found that the half-life values measured for artificial radionuclides were slightly shorter than those for natural radionuclides. The data obtained in the study are the first published experimental data on radionuclide transfer to camel milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Detection of osteoporotic sacral fractures with radionuclides

    SciTech Connect

    Ries, T.

    1983-03-01

    Osteoporotic sacral fractures usually occur in elerly patients as a result of mild trauma. Clinical symptoms range from localized sacral tenderness to neurologic problems attributable to sacral nerve root irritation or cauda equina compression. Although the radiographic diagnosis is difficult to establish, bone scans show a characteristic H-shaped pattern of radionuclide uptake across the sacrum and sacroiliac joints. Four cases of osteoporotic sacral fracture with confirmation by computed tomography are included in this report.

  6. Breast-Dedicated Radionuclide Imaging Systems.

    PubMed

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Radionuclide Incorporation in Secondary Crystalline Minerals Resulting from Chemical Weathering of Selected Waste Glasses: Progress Report for Subtask 3d

    SciTech Connect

    SV Mattigod; DI Kaplan; VL LeGore

    1998-10-23

    Experiments were conducted in fiscal year 1998 by Pacific Northwest National Laboratory to evaluate potential incorporation of radionuclides in secondary mineral phases that form from weathering vitrified nuclear waste glasses. These experiments were conducted as part of the Immobilized Low- Activity Waste-Petiormance Assessment (ILAW-PA) to generate data on radionuclide mobilization and transport in a near-field enviromnent of disposed vitrified wastes. An initial experiment was conducted to identify the types of secondary minerals that form from two glass samples of differing compositions, LD6 and SRL202. Chemical weathering of LD6 glass at 90oC in contact with an aliquot of uncontaminated Hanford Sitemore » groundwater resulted in the formation of a Crystalline zeolitic mineral, phillipsite. In contrast similar chemical weathering of SRL202 glass at 90"C resulted in the formation of a microcrystalline smectitic mineral, nontronite. A second experiment was conducted at 90"C to assess the degree to which key radionuclides would be sequestered in the structure of secondary crystalline minerals; namely, phillipsite and nontronite. Chemical weathering of LD6 in contact with radionuclide-spiked Hanford Site groundwater indicated that substantial ilactions of the total activities were retained in the phillipsite structure. Similar chemical weathering of SRL202 at 90"C, also in contact with radionuclide-spiked Hanford Site groundwater, showed that significant fractions of the total activities were retained in the nontronite structure. These results have important implications regarding the radionuclide mobilization aspects of the ILAW-PA. Additional studies are required to confkm the results and to develop an improved under- standing of mechanisms of sequestration and attenuated release of radionuclides to help refine certain aspects of their mobilization.« less

  8. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    SciTech Connect

    Duff, M; S Crump, S; Robert02 Ray, R

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research wasmore » to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less

  9. Targeted radionuclide therapies for pancreatic cancer

    PubMed Central

    Shah, M.; Da Silva, R.; Gravekamp, C.; Libutti, S. K.; Abraham, T.; Dadachova, E.

    2016-01-01

    Pancreatic malignancies, the 4th leading cause of cancer deaths, have an aggressive behavior with poor prognosis, resulting in a five-year survival rate of only 4%. It is typically a silent malignancy until patients develop metastatic disease. Targeted radionuclide therapies of cancer such as radiolabeled peptides which bind to the receptors overexpressed by cancer cells and radiolabeled antibodies to tumor-specific antigens provide a viable alternative to chemotherapy and external beam radiation of metastatic cancers. Multiple clinical trials of targeted radionuclide therapy of pancreatic cancer have been performed in the last decade and demonstrated safety and potential efficacy of radionuclide therapy for treatment of this formidable disease. While a lot progress has been made in treatment of pancreatic neuroendocrine tumors with radiolabeled with 90Y and 177Lu somatostatin peptide analogues, pancreatic adenocarcinomas remain a major challenge. Novel approaches such as peptides and antibodies radiolabeled with alpha emitters, pre-targeting, bispecific antibodies and biological therapy based on the radioactive tumorlytic bacteria might offer a potential breakthrough in treatment of pancreatic adenocarcinomas. PMID:26227823

  10. Ion beam analyses of radionuclide migration in heterogeneous rocks

    SciTech Connect

    Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel

    2013-07-18

    The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less

  11. COMIDA: a radionuclide food chain model for acute fallout deposition.

    PubMed

    Abbott, M L; Rood, A S

    1994-01-01

    A dynamic food chain model and computer code, named "COMIDA," has been developed to estimate radionuclide concentrations in agricultural food products following an acute fallout event. COMIDA estimates yearly harvest concentrations for five human crop types (Bq kg-1 crop per Bq m-2 deposited) and integrated concentrations for four animal products (Bq d kg-1 animal product per Bq m-2) for a unit deposition that occurs on any user-specified day of the year. COMIDA is structurally very similar to the PATHWAY model and includes the same seasonal transport processes and discrete events for soil and vegetation compartments. Animal product assimilation is modeled using simpler equilibrium models. Differential transport and ingrowth of up to three radioactive progeny are also evaluated. Benchmark results between COMIDA and PATHWAY for monthly fallout events show very similar seasonal agreement for integrated concentrations in milk and beef. Benchmark results between COMIDA and four international steady-state models show good agreement for deposition events that occur during the middle of the growing season. COMIDA will be implemented in the new Department of Energy version of the MELCOR Accident Consequence Code System for evaluation of accidental releases from nuclear power plants.

  12. Radionuclide concentration processes in marine organisms: A comprehensive review.

    PubMed

    Carvalho, Fernando P

    2018-06-01

    The first measurements made of artificial radionuclides released into the marine environment did reveal that radionuclides are concentrated by marine biological species. The need to report radionuclide accumulation in biota in different conditions and geographical areas prompted the use of concentration factors as a convenient way to describe the accumulation of radionuclides in biota relative to radionuclide concentrations in seawater. Later, concentration factors became a tool in modelling radionuclide distribution and transfer in aquatic environments and to predicting radioactivity in organisms. Many environmental parameters can modify the biokinetics of accumulation and elimination of radionuclides in marine biota, but concentration factors remained a convenient way to describe concentration processes of radioactive and stable isotopes in aquatic organisms. Revision of CF values is periodically undertaken by international organizations, such as the International Atomic Energy Agency (IAEA), to make updated information available to the international community. A brief commented review of radionuclide concentration processes and concentration factors in marine organisms is presented for key groups of radionuclides such as fission products, activation products, transuranium elements, and naturally-occurring radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Estimation of apparent rate coefficients for radionuclides interacting with marine sediments from Novaya Zemlya.

    PubMed

    Børretzen, P; Salbu, B

    2000-10-30

    residuals were compared. The rate of sorption of the irreversibly (or slowly reversibly) associated fraction was greater than the rate of desorption of the reversibly bound fractions (i.e. k3 > k2) for both radionuclides. Thus, the Novaya Zemlya sediment are supposed to act as a sink for the radionuclides under oxic conditions, and transport to the water phase should mainly be attributed to resuspended particles.

  14. Twenty-five years of environmental radionuclide concentrations near a nuclear power plant.

    PubMed

    Harris, Charles; Kreeger, Danielle; Patrick, Ruth; Palms, John

    2015-05-01

    The areas in and along a 262-km length of the Susquehanna River in Pennsylvania were monitored for the presence of radioactive materials. This study began two months after the 1979 Three Mile Island (TMI) partial reactor meltdown; it spanned the next 25 y. Monitoring points included stations at the PPL Susquehanna and TMI nuclear power plants. Monthly gamma measurements document concentrations of radionuclides from natural and anthropogenic sources. During this study, various series of gamma-emitting radionuclide concentration measurements were made in many general categories of animals, plants, and other inorganic matter. Sampling began in 1979 before the first start-up of the PPL Susquehanna power plant. Although all species were not continuously monitored for the entire period, an extensive database was compiled. In 1986, the ongoing measurements detected fallout from the Chernobyl nuclear accident. These data may be used in support of dose or environmental transport calculations.

  15. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides.

    PubMed

    Handkiewicz-Junak, Daria; Poeppel, Thorsten D; Bodei, Lisa; Aktolun, Cumali; Ezziddin, Samer; Giammarile, Francesco; Delgado-Bolton, Roberto C; Gabriel, Michael

    2018-05-01

    The skeleton is the most common metastatic site in patients with advanced cancer. Pain is a major healthcare problem in patients with bone metastases. Bone-seeking radionuclides that selectively accumulate in the bone are used to treat cancer-induced bone pain and to prolong survival in selected groups of cancer patients. The goals of these guidelines are to assist nuclear medicine practitioners in: (a) evaluating patients who might be candidates for radionuclide treatment of bone metastases using beta-emitting radionuclides such as strontium-89 ( 89 Sr), samarium-153 ( 153 Sm) lexidronam ( 153 Sm-EDTMP), and phosphorus-32 ( 32 P) sodium phosphate; (b) performing the treatments; and ©) understanding and evaluating the treatment outcome and side effects.

  16. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data.

    PubMed

    Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U

    2014-07-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  17. Model analysis of the colloid and radionuclide retardation experiment at the Grimsel Test Site.

    PubMed

    Kurosawa, Susumu; James, Scott C; Yui, Mikazu; Ibaraki, Motomu

    2006-06-01

    The colloid and radionuclide retardation experiments performed at NAGRA's Grimsel Test Site in Switzerland are part of an international collaboration program designed to collect in situ data on the impacts of colloids on radionuclide transport. In this work, breakthrough behaviors of trivalent americium (i.e., 241Am and 243Am) both in the absence and presence of bentonite colloids are analyzed with COLFRAC--a code that models colloid-facilitated solute transport in discretely-fractured, porous media. Model fits to the experimental results indicate that Am sorbed onto mobile colloids, which enhance Am transport relative to a non-sorbing tracer, 131I. Modelling results suggest that Am is kinetically sorbed onto both naturally occurring and exogenous bentonite colloids. Results also indicate that desorption of Am from colloids is slow with respect to the duration of the experiment. In addition, early colloid breakthrough compared to a conservative tracer suggests the effects of hydrodynamic chromatography. Overall, Am breakthrough curves suggest enhanced mobility due to co-transport with both naturally occurring and bentonite colloids.

  18. A vector Wiener filter for dual-radionuclide imaging.

    PubMed

    Links, J M; Prince, J L; Gupta, S N

    1996-01-01

    The routine use of a single radionuclide for patient imaging in nuclear medicine can be complemented by studies employing two tracers to examine two different processes in a single organ, most frequently by simultaneous imaging of both radionuclides in two different energy windows. In addition, simultaneous transmission/emission imaging with dual-radionuclides has been described, with one radionuclide used for the transmission study and a second for the emission study. There is thus currently considerable interest in dual-radionuclide imaging. A major problem with all dual-radionuclide imaging is the "crosstalk" between the two radionuclides. Such crosstalk frequently occurs, because scattered radiation from the higher energy radionuclide is detected in the lower energy window, and because the lower energy radionuclide may have higher energy emissions which are detected in the higher energy window. The authors have previously described the use of Fourier-based restoration filtering in single photon emission computed tomography (SPECT) and positron emission tomography (PET) to improve quantitative accuracy by designing a Wiener or other Fourier filter to partially restore the loss of contrast due to scatter and finite spatial resolution effects. The authors describe here the derivation and initial validation of an extension of such filtering for dual-radionuclide imaging that simultaneously 1) improves contrast in each radionuclide's "direct" image, 2) reduces image noise, and 3) reduces the crosstalk contribution from the other radionuclide. This filter is based on a vector version of the Wiener filter, which is shown to be superior [in the minimum mean square error (MMSE) sense] to the sequential application of separate crosstalk and restoration filters.

  19. Quality assurance of Mo-99/Tc-99m radionuclide generators

    NASA Astrophysics Data System (ADS)

    Uzunov, Nikolay; Yordanova, Galina; Salim, Seniha; Stancheva, Natalya; Mineva, Vanya; Meléndez-Alafort, Laura; Rosato, Antonio

    2018-03-01

    Gamma-ray spectrometry analyses of the radionuclide content of eluate from two Mo-99/Tc-99m radionuclide generators POLTECHNET have been performed. The relative activities of 99Mo 103Ru and 131I radioisotopes with respect to the activity of 99mTc at different time intervals after the primary pertechnetate elution of the generators have been analyzed. The relative activities of the isotopes were determined and compared to the radionuclidic purity requirements for 99mTc.

  20. Deposition of radionuclides by fogwater on plants at Houdelaincourt, France

    NASA Astrophysics Data System (ADS)

    Tav, Jackie; Masson, Olivier; Burnet, Frédéric; De Visme, Anne; Paulat, Pascal; Bourrianne, Thierrry; Conil, Sébastien; Simon, Maxime

    2015-04-01

    polystyrene support; the whole set was placed on a precision balance and under a protection box to avoid wind induced variations. The box was removed for ten minutes for the fog droplets to be deposited, then the box was put back for weighing. Simultaneously another precision balance was used to determine the deposition of water only on the polystyrene support in order to remove its weight from that of the precious set. A mass of water deposited by surface or mass unit of plant was measured for each fog event. The first results of fog activity levels and fogwater deposition on plants are presented along with the characterization of the studied fog events. References Bourcier, L. (2009). "Transport and deposition of radionuclides and particles at the Puy De DÙme, France". Demoz, B. B., J. L. Collett Jr, et al. (1996). "On the Caltech Active Strand Cloudwater Collectors." Atmospheric Research 41(1): 47-62.

  1. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). Thismore » report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.« less

  2. Seven years of radionuclide laboratory at IMC - important achievements.

    PubMed

    Hrubý, M; Kučka, J; Pánek, J; Štěpánek, P

    2016-10-20

    For many important research topics in polymer science the use of radionuclides brings significant benefits concerning nanotechnology, polymer drug delivery systems, tissue engineering etc. This contribution describes important achievements of the radionuclide laboratory at Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic (IMC) in the area of polymers for biomedical applications. Particular emphasis will be given to water-soluble polymer carriers of radionuclides, thermoresponsive polymer radionuclide carriers, thermoresponsive polymers for local brachytherapy, polymer scaffolds modified with (radiolabeled) peptides and polymer copper chelators for the therapy of Wilson´s disease.

  3. Peptide receptor radionuclide therapy: an overview.

    PubMed

    Dash, Ashutosh; Chakraborty, Sudipta; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F Russ

    2015-03-01

    Peptide receptor radionuclide therapy (PRRT) is a site-directed targeted therapeutic strategy that specifically uses radiolabeled peptides as biological targeting vectors designed to deliver cytotoxic levels of radiation dose to cancer cells, which overexpress specific receptors. Interest in PRRT has steadily grown because of the advantages of targeting cellular receptors in vivo with high sensitivity as well as specificity and treatment at the molecular level. Recent advances in molecular biology have not only stimulated advances in PRRT in a sustainable manner but have also pushed the field significantly forward to several unexplored possibilities. Recent decades have witnessed unprecedented endeavors for developing radiolabeled receptor-binding somatostatin analogs for the treatment of neuroendocrine tumors, which have played an important role in the evolution of PRRT and paved the way for the development of other receptor-targeting peptides. Several peptides targeting a variety of receptors have been identified, demonstrating their potential to catalyze breakthroughs in PRRT. In this review, the authors discuss several of these peptides and their analogs with regard to their applications and potential in radionuclide therapy. The advancement in the availability of combinatorial peptide libraries for peptide designing and screening provides the capability of regulating immunogenicity and chemical manipulability. Moreover, the availability of a wide range of bifunctional chelating agents opens up the scope of convenient radiolabeling. For these reasons, it would be possible to envision a future where the scope of PRRT can be tailored for patient-specific application. While PRRT lies at the interface between many disciplines, this technology is inextricably linked to the availability of the therapeutic radionuclides of required quality and activity levels and hence their production is also reviewed.

  4. Advances in Peptide Receptor Radionuclide Therapy.

    PubMed

    Sabet, Amir; Biersack, Hans-Jürgen; Ezziddin, Samer

    2016-01-01

    Peptide receptor radionuclide therapy (PRRT) is a very effective treatment modality for advanced neuroendocrine tumors (NETs), representing a teaching model for truly targeted antitumor therapy. With the growing cumulative evidence of PRRT in various treatment settings, we are witnessing increased perception of this modality as a potent treatment option in advanced disease. Although most data derives from retrospective analyses, results from prospective comparative evaluations, such as the NETTER-1 trial, are eagerly awaited and should help to raise PRRT to a higher level of evidence. At the same time, as increased levels of evidence are anticipated by prospective evaluations, further methodological improvements are going on in different ways and aspects of radionuclide therapy, mainly regarding the radiopharmaceuticals, the combination with other radionuclides or cytotoxic drugs, and the route of administration. Although diversity of PRRT increases-not supporting cumulative evidence as opposed to uniform treatment-it is very likely to achieve significant increase of efficacy by these efforts in the near future. As the intraarterial administration of PRRT agents in liver-dominant metastatic disease has the potential to improve outcome, it would have to be shown as to which patients would benefit from this approach, to what extent the benefit would be, and to when it would justify the increased efforts for patients and treating institutes. The approach of combining cytotoxic or radiosensitizing drugs with the PRRT agents seems to trigger a major boost of efficacy in pancreatic NET. The midterm future would show the extent of benefit in terms of long-term outcome and would probably lead to inclusion into clinical routine for this particular NET entity. The translation of somatostatin-receptor antagonists into human application represents another major source of significant improvement in terms of PRRT's benefit-toxicity ratio. Eventually, it may not be completely

  5. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  6. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  7. Role of radionuclide imaging in spleen trauma

    SciTech Connect

    Lutzker, L.; Koenigsberg, M.; Meng, C.H.

    1974-02-01

    Sixteen patients with abdominal trauma and possible spleen injury were screened by radionuclide imaging. A multiple-view negative examination appears to weigh heavily against any significant splenic injury requiring surgical intervention. Angiography probably is not needed if the spleen scintigram is negative. False positive examinations may be minimized by performing oblique and angulated views, bearing in mind the potential existence of normal grooves and clefts such as rib imprints. Unexplained bands and areas of diminished activity mav be encountered. Careful correlation with the patient's history, physical findings, and clinical course should clarify such problems. Angiography may be necessary in many ofmore » these cases. (auth)« less

  8. Selective laser ionisation of radionuclide 63Ni

    NASA Astrophysics Data System (ADS)

    Tsvetkov, G. O.; D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Firsov, V. A.; Panchenko, V. Ya.

    2017-02-01

    We report a search for a scheme of selective laser stepwise ionisation of radionuclide 63Ni by radiation of a dye laser pumped by a copper vapour laser. A three-stage scheme is found with ionisation through an autoionising state (AIS): 3d 84s2 3F4(E = 0) → 3d 94p 1Fo3(31030.99 cm-1) → 3d 94d 2[7/2]4(49322.56 cm-1) → AIS(67707.61 cm-1) which, by employing saturated radiation intensities provides the ionisation selectivity of above 1200 for 63Ni.

  9. Radionuclides at Descartes in the central highlands

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.

    1973-01-01

    Throium, uranium, potassium, aluminium-26, and sodium-22 were measured by nondestructive gamma ray spectrometry in six soil and two rock samples gathered by Apollo 16 in the lunar central highlands. The soil samples probably include both major geologic formations in the vicinity, the Cayley and Descartes Formations, although it is possible that the Descartes Formation is not represented. The rock samples have low concentrations of primordial radionuclides. The Al concentrations were lower than could be expected from the high abundance of alumina in the Apollo 16 soils reported earlier, but this could be due to lower concentrations of target elements in these soils, sampling depth variations, or regolithic mixing (exposure age variations).

  10. Radionuclide evaluation of nonmalignant bone disorders

    SciTech Connect

    Winzelberg, G.G.

    1983-02-01

    Recent advances in nuclear imaging have improved the noninvasive evaluation of patients with nonmalignant bone disorders. When bone scanning agents are combined with bone marrow scanning agents and gallium-67 scintigraphy, a more accurate diagnosis can be obtained. By selecting the appropriate imaging sequence, it is often possible to distinguish cellulitis from underlying osteomyelitis. In patients with total hip replacements, it may be possible to separate postsurgical changes from prosthetic loosening or infection. Stress fractures in joggers may be detected by radionuclide bone scintigraphy before radiographs become abnormal. These nuclear imaging procedures can be done in most hospitals.

  11. Research remote laser methods for radionuclides monitoring

    NASA Astrophysics Data System (ADS)

    Kascheev, S. V.; Elizarov, Valentin V.; Grishkanich, Alexander S.; Bespalov, V. G.; Vasil'ev, Sergey K.; Zhevlakov, A. P.

    2014-05-01

    Laser sensing can serve as a highly effective method of searching and monitoring of radioactive contamination. The first method is essence consists in definition the Sr90 and Сs137 concentration by excitation and registration of fluorescence at wavelength of λ = 0.347÷7.0 μm at laser sounding. The second method experiments were carried out under the Raman-scattering circuit. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 108÷109 сm-3 on a safe distance from the infected object.

  12. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  13. The effect of gravel size fraction on the distribution coefficients of selected radionuclides radionuclides

    SciTech Connect

    Um, Wooyong; Serne, R. Jeffrey; Last, George V.

    2009-06-26

    This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient (Kd) construct can be estimated from laboratory tests on < 2mm fraction of sediments. As shown within the use of this common assumption can lead to inaccurate estimates of the mobility and sorption capacity of key radionuclides (Tc, U, and Np) at the Hanford Site where gravel dominates the lower Hanford formation and upper Ringold Formation. Batch sorption and column experiments showed that the distribution coefficient measured using onlymore » < 2mm fraction were not in agreement with those obtained from the bulk sediments depending on the radionuclide. The least reactive radionuclide, Tc showed the lowest effects from the presence of gravel. However, differences between measured Kds using < 2mm fractions of the sediment and the Kds measured on the bulk sediment were significant for strongly reactive radionuclides such as Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxides coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the Kd,<2 mm and Kd,>2 mm values to estimate the Kd for the bulk sediment were found to best describe Kds for radionuclides on the bulk sediment. However, more detailed characterization of gravel surfaces should be also conducted to identify those gravels with higher reactive sorbents, if present. Gravel correction factors should be considered to predict precisely the sorption capacity of bulk sediments that contain more than 10% gravel and to estimate the mobility of contaminants in subsurface environments.« less

  14. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  15. [Radionuclide therapy of endocrine-related cancer].

    PubMed

    Kratochwil, C; Giesel, F L

    2014-10-01

    This article gives an overview of the established radionuclide therapies for endocrine-related cancer that already have market authorization or are currently under evaluation in clinical trials. Radioiodine therapy is still the gold standard for differentiated iodine-avid thyroid cancer. In patients with bone and lung metastases (near) total remission is seen in approximately 50% and the 15-year survival rate for these patients is approximately 90%. In contrast to the USA, meta-iodobenzylguanidine (MIBG) therapy has market approval in Europe. According to the current literature, in the setting of advanced stage neuroblastoma and malignant pheochromocytoma or paraganglioma, radiological remission can be achieved in >30% and symptom control in almost 80% of the treated patients. Somatostatin receptor targeted radionuclide therapies (e.g. with DOTATATE or DOTATOC) demonstrated promising results in phase 2 trials, reporting progression-free survival in the range of 24-36 months. A first phase 3 pivotal trial for intestinal carcinoids is currently recruiting and another trial for pancreatic neuroendocrine tumors is planned. Radiopharmaceuticals based on glucagon-like peptide 1 (GLP1) or minigastrins are in the early evaluation stage for application in the treatment of insulinomas and medullary thyroid cancer. In general, radiopharmaceutical therapy belongs to the group of so-called theranostics which means that therapy is tailored for individual patients based on molecular imaging diagnostics to stratify target positive or target negative tumor phenotypes.

  16. Traces of natural radionuclides in animal food

    SciTech Connect

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine themore » concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.« less

  17. Estimation of radionuclide content in contaminated laundry.

    PubMed

    Schrader, B J

    2001-08-01

    Radioactively contaminated laundry is normally sent off site for processing. Laundry is defined as radiologically contaminated anti-cs and respirators. This laundry is shipped as "limited quantity," in accordance with 49CFR173.421. This requires that 95% of the radionuclides shipped are characterized and quantified. In addition, the total quantity must be 10(-3) below the A2 limits specified in 49CFR173. In any facility evaluated, the most conservative (highest activity) waste stream was used as the source term. If a new waste stream is established for a facility, its normalized activity should be compared to the evaluated waste stream to ensure the limits are not exceeded. This article documents a method used for estimating the radionuclide content in contaminated laundry. The maximum values were compared to 49CFR173. Itwas determined that if the contaminated laundry/respirators are shipped in an Interstate Nuclear Services (INS), L-59, limited quantity shipping container and the highest contact radiation level on any side, as measured with an ion chamber, does not exceed 0.5 mR h(-1), the container complies with the requirements of 49CFR173 and could be shipped "limited quantity" from any of the facilities evaluated.

  18. Application of radionuclide ventriculography to cardiac screening

    SciTech Connect

    Lindsay, J. Jr.; Milner, M.R.; Chandeysson, P.L.

    1989-05-01

    Screening asymptomatic individuals for latent coronary disease often requires sequential testing because exercise electrocardiography typically produces more false positive than true positive results in a population with a low prevalence of coronary disease. Cardiac scintigraphy is a technique that may be employed as a confirmatory test in lieu of coronary arteriography to further evaluate the significance of a positive exercise electrocardiogram. Radionuclide ventriculography was employed in 98 asymptomatic individuals who were considered to be at moderate risk of heart disease after risk factor analysis and exercise electrocardiography. Seventeen (17%) patients had an abnormal study and underwent cardiac catheterization. Seven hadmore » coronary artery disease, two had cardiomyopathy, and eight were normal. Eighty-one (83%) patients had a normal study. Because the sensitivity of radionuclide ventriculography is 63-80%, it was postulated that 2 to 5 individuals with disease were missed. Thus, from a population with an 11-14% prevalence of disease, two subsets were identified. A large subset in which a prevalence of 2-6% could be estimated was separated from a much smaller one in which a prevalence of approximately 50% was demonstrated.« less

  19. FOREWORD: Special issue on radionuclide metrology

    NASA Astrophysics Data System (ADS)

    Simpson, Bruce; Judge, Steven

    2007-08-01

    This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure

  20. Off-line experiments on radionuclide detection based on the sequential Bayesian approach

    NASA Astrophysics Data System (ADS)

    Qingpei, Xiang; Dongfeng, Tian; Fanhua, Hao; Ge, Ding; Jun, Zeng; Fei, Luo

    2013-11-01

    The sequential Bayesian approach proposed by Candy et al. for radioactive materials detection has aroused increasing interest in radiation detection research and is potentially a useful tool for prevention of the transportation of radioactive materials by terrorists. In our previous work, the performance of the sequential Bayesian approach was studied numerically through a simulation experiment platform. In this paper, a sequential Bayesian processor incorporating a LaBr3(Ce) detector, and using the energy, decay rate and emission probability of the radionuclide, is fully developed. Off-line experiments for the performance of the sequential Bayesian approach in radionuclide detection are developed by placing 60Co, 137Cs, 133Ba and 152Eu at various distances from the front face of the LaBr3(Ce) detector. The off-line experiment results agree well with the results of previous numerical experiments. The maximum detection distance is introduced to evaluate the processor‧s ability to detect radionuclides with a specific level of activity.

  1. SU-E-T-15: A Comparison of COMS and EP917 Eye Plaque Applicators Using Different Radionuclides

    SciTech Connect

    Aryal, P; Molloy, JA; Rivard, MJ

    2015-06-15

    Purpose: To investigate the effect of plaque design and radionuclides on eye plaque dosimetry. Methods: The Monte Carlo N-particle Code version 6 (MCNP6) was used for radiation transport simulations. The 14 mm and 16 mm diameter COMS plaques and the model EP917 plaque were simulated using brachytherapy seeds containing I-125, Pd-103, and Cs-131 radionuclides. The origin was placed at the scleral inner surface. The central axis (CAX) doses of both COMS plaques at −1 mm, 0 mm, 1 mm, 2 mm, 5 mm, 10 mm, 15 mm, 20 mm, and 22.6 mm were compared to the model EP917 plaque. Dosemore » volume histograms (DVHs) were also created for both COMS plaques for the tumor and outer sclera then compared to results for the model EP917 plaque. Results: For all radionuclides, the EP917 plaque delivered higher dose (max 343%) compared to the COMS plaques, except for the 14 mm COMS plaque with Cs-131 at 1 mm and 2 mm depths from outer sclera surface. This could be due to source design. For all radionuclides, the 14 mm COMS plaque delivered higher doses compared to the 16 mm COMS plaque for the depths up to 5 mm. Dose differences were not significant beyond depths of 10 mm due to ocular lateral scatter for the different plaque designs. Tumor DVHs for the 16 mm COMS plaque with Cs-131 provided better dose homogeneity and conformity compared to other COMS plaques with I-125 and Pd-103. Using Pd-103, DVHs for the 16 mm COMS plaque delivered less dose to outer sclera compared to other plaques. Conclusion: This study identified improved tumor homogeneity upon considering radionuclides and plaque designs, and found that scleral dose with the model EP917 plaque was higher than for the 16 mm COMS plaque for all the radionuclides studied.« less

  2. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  3. Sources of anthropogenic radionuclides in the environment: a review.

    PubMed

    Hu, Qin-Hong; Weng, Jian-Qing; Wang, Jin-Sheng

    2010-06-01

    Studies of radionuclides in the environment have entered a new era with the renaissance of nuclear energy and associated fuel reprocessing, geological disposal of high-level nuclear wastes, and concerns about national security with respect to nuclear non-proliferation. This work presents an overview on sources of anthropogenic radionuclides in the environment, as well as a brief discussion of salient geochemical behavior of important radionuclides. We first discuss the following major anthropogenic sources and current developments that have lead, or could potentially contribute, to the radionuclide contamination of the environment: (1) nuclear weapons program; (2) nuclear weapons testing; (3) nuclear power plants; (4) uranium mining and milling; (5) commercial fuel reprocessing; (6) geological repository of high-level nuclear wastes that include radionuclides might be released in the future, and (7) nuclear accidents. Then, we briefly summarize the inventory of radionuclides (99)Tc and (129)I, as well as geochemical behavior for radionuclides (99)Tc, (129)I, and (237)Np, because of their complex geochemical behavior, long half-lives, and presumably high mobility in the environment; biogeochemical cycling and environment risk assessment must take into account speciation of these redox-sensitive radionuclides. Copyright (c) 2008 Elsevier Ltd. All rights reserved.

  4. Natural Radionuclide Activity Concentrations In Spas Of Argentina

    SciTech Connect

    Gnoni, G.; Czerniczyniec, M.; Canoba, A.

    2008-08-07

    Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

  5. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy...

  6. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source...

  7. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom...

  8. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  9. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy...

  10. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  11. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator...

  12. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator...

  13. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  14. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source...

  15. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  16. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source...

  17. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator...

  18. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom...

  19. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual radionuclide applicator system. 892.5650 Section 892.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5650 Manual radionuclide applicator...

  20. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy...

  1. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  2. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom...

  3. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source...

  4. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy...

  5. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom...

  6. Preparation of proton rich radionuclides in support of radiochemical analysis.

    PubMed

    Jerome, Simon; Larijani, Cyrus; Parker, David

    2012-09-01

    The production of proton rich radionuclides supports a wide range of radiochemical analyses via radioactive yield tracers ((95m)Tc and (236)Pu). In recent years, NPL and the University of Birmingham cyclotron have collaborated to produce these, and other, radionuclides. Copyright © 2012. Published by Elsevier Ltd.

  7. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.

  8. Considerations for Bioassay Monitoring of Mixtures of Radionuclides

    SciTech Connect

    Klumpp, John; Waters, Tom; Bertelli, Luiz

    2017-10-01

    Complying with regulations for bioassay monitoring of radionuclide intakes is significantly more complex for mixtures than it is for pure radionuclides. Different constituents will naturally have different dose coefficients, be detectable at significantly different levels, and may require very different amounts of effort to bioassay. The ability to use certain constituents as surrogates for others will depend on how well characterized the mixture is, as well as whether the employee is also working with other radionuclides. This is further compounded by the fact that the composition of a mixture (or even of a pure radionuclide) is likely to change overmore » time. Internal dosimetrists must decide how best to monitor employees who work with radionuclide mixtures. In particular, they must decide which constituents should be monitored routinely, which constituents only need to be monitored in the case of an intake, and how to estimate doses based on intakes of monitored and unmonitored constituents.« less

  9. Radionuclide bone scan in initial staging of breast cancer.

    PubMed

    Boughattas, Sami; Hassine, Habib; Chatti, Kaouther; Essabbah, Habib

    2003-03-01

    Radionuclide bone scans of 100 patients with newly diagnosed breast cancer were retrospectively analysed. The number and topography of increased area of uptake were noted. Diagnosis criterion was defined by at least four foci of increased uptake, outside peripheral articular joints. In case of a number between one and three, the result was considered doubtful and radionuclide bone scan was confronted to available standard X Rays or/and radionuclide bone scan follow-up. Correlations of radionuclide bone scans with T, N and the clinical stage were assessed using chi-square methods. Metastases were present in 9 patients (9%). In five of these cases, the pattern was manifestly metastatic without the need to other investigation. In the other cases, interpretation required complementary investigation. The yield of metastases was very low in localized stages, this pointed out the difficulty in interpretation of radionuclide bone scans for localized stages, probably due to a less skeletal extension.

  10. Microbial metabolism of triethylphosphate, a potential phosphate source for radionuclide mineralization

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Lam, B. R.; Chou, J.; Bill, M.; Henriksen, J.; Wright, K. E.; Brodie, E. L.; Andersen, G. L.; Hazen, T. C.; Fujita, Y.; Conrad, M. E.

    2009-12-01

    Significant quantities of metals and radionuclides contaminate unsaturated zones at several sites in the western U.S. In many cases, this contamination has migrated to groundwater, sometimes decades after being released into the subsurface. A potentially useful approach for immobilizing radionuclides such as uranium and strontium in the vadose zone is precipitation with microbially-generated phosphate. Triethylphosphate (TEP) is a low-toxicity organophosphate that can be vaporized and delivered to the vadose zone. Microbes can catalyze TEP degradation, leading to the release of inorganic phosphate that can then lead to the precipitation of phosphate minerals. These minerals are typically highly stable and poorly soluble under environmental conditions. Sequestration in phosphate minerals is a promising strategy for mitigating radionuclide transport in the environment. To examine the feasibility of this strategy, we set up lab-scale incubation experiments with TEP-amended synthetic groundwater inoculated with vadose zone-derived mixed cultures from the Idaho National Laboratory (INL), and sediment slurries using solids from the Hanford Reservation in Washington (U.S. Department of Energy facilities with significant radionuclide contamination in the vadose zone). The amount of phosphate released in the cultures was monitored, and the microbial communities were characterized with a high-density microarray (PhyloChip). Significant biodegradation of TEP was observed in the experiments with the synthetic groundwater amended with 5 mM TEP. Phosphate concentrations in live cultures steadily increased to >0.25 mM after 13 months with no phosphate accumulated in killed controls. Surprisingly, no evidence for phosphate mineral precipitation was observed, contrary to expectations based on equilibrium considerations. Studies are underway to investigate potential kinetic inhibition of precipitation under these conditions. Cell counts increased by approximately one order of

  11. Monitoring radionuclide contamination in the unsaturated zone - Lessons learned at the Amargosa Desert Research Site, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann

    2004-01-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.

  12. Hazardous Material Packaging and Transportation

    SciTech Connect

    Hypes, Philip A.

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for amore » given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.« less

  13. Cadastral valuation of land contaminated with radionuclides

    NASA Astrophysics Data System (ADS)

    Ratnikov, A. N.; Sapozhnikov, P. M.; Sanzharova, N. I.; Sviridenko, D. G.; Zhigareva, T. L.; Popova, G. I.; Panov, A. V.; Kozlova, I. Yu.

    2016-01-01

    The methodology and procedure for cadastral valuation of land in the areas contaminated with radionuclides are presented. The efficiency of rehabilitation measures applied to decrease crop contamination to the levels satisfying sanitary-hygienic norms is discussed. The differentiation of cadastral value of radioactively contaminated agricultural lands for the particular farms and land plots is suggested. An example of cadastral valuation of agricultural land contaminated during the Chernobyl Nuclear Power Plant accident is given. It is shown that the use of sandy and loamy sandy soddy-podzolic soils with the 137Cs contamination of 37-185 and >185 kBq/m2 for crop growing is unfeasible. The growing of grain crops and potatoes on clay loamy soddy-podzolic soils with the 137Cs contamination of 555-740 kBq/m2 is unprofitable. The maximum cadastral value of radioactively contaminated lands is typical of leached chernozems.

  14. Radionuclides accumulation in milk and its products

    NASA Astrophysics Data System (ADS)

    Marmuleva, N. I.; Barinov, E. Ya.; Petukhov, V. L.

    2003-05-01

    The problem of radioactive pollution is extremely urgent in Russia in connection with presence of territories polluted by radionuclides on places of nuclear tests, in zones around the enterprises on production, processing and storage of radioactive materials, and also in areas of emergency pollution (Barakhtin, 2001). The aim of our investigation was a determination of the levels of the main radioactive elements - Cs-137 and Sr-90 in diary products. 363 samples of milk, dry milk, butter, cheese and yogurt from Novosibirsk region were examined. Cs-137 level was 3.7...9.2 times higher than Sr-90 one in milk, cheese and yogurt. At the same time the level of these radio nuclides in butter was identical (8.03 Bk/kg).

  15. Radionuclide metrology research for nuclear site decommissioning

    NASA Astrophysics Data System (ADS)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  16. Graphene oxide for effective radionuclide removal.

    PubMed

    Romanchuk, Anna Yu; Slesarev, Alexander S; Kalmykov, Stepan N; Kosynkin, Dmitry V; Tour, James M

    2013-02-21

    Here we show the efficacy of graphene oxide (GO) for rapid removal of some of the most toxic and radioactive long-lived human-made radionuclides from contaminated water, even from acidic solutions (pH < 2). The interaction of GO with actinides including Am(III), Th(IV), Pu(IV), Np(V), U(VI) and typical fission products Sr(II), Eu(III) and Tc(VII) were studied, along with their sorption kinetics. Cation/GO coagulation occurs with the formation of nanoparticle aggregates of GO sheets, facilitating their removal. GO is far more effective in removal of transuranium elements from simulated nuclear waste solutions than other routinely used sorbents such as bentonite clays and activated carbon. These results point toward a simple methodology to mollify the severity of nuclear waste contamination, thereby leading to effective measures for environmental remediation.

  17. Systemic targeted radionuclide therapy: potential new areas.

    PubMed

    Wong, Jeffrey Y C

    2006-01-01

    Radiation oncology is entering an exciting new era with therapies being delivered in a targeted fashion through an increasing number of novel approaches. External beam radiotherapy now integrates functional and anatomic tumor imaging to guide delivery of conformal radiation to the tumor target. Systemic targeted radionuclide therapy (STaRT) adds an important new dimension by making available to the radiation oncologist biologically targeted radiation therapy. Impressive clinical results with antibody-targeted radiotherapy, leading to the Food and Drug Administration's approval of two anti-CD20 radiolabeled antibodies, highlight the potential of STaRT. Optimization strategies will further improve the efficacy of STaRT by improving delivery systems, modifying the tumor microenvironment to increase targeted dose, and maximizing dose effect. Ultimately, the greatest potential for STaRT will not be as monotherapy, but as therapy integrated into established multimodality regimens and used as adjuvant or consolidative therapy in patients with minimal or micrometastatic disease.

  18. Therapeutic radionuclides in nuclear medicine: current and future prospects

    PubMed Central

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-01-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374

  19. Technical Advances in Image Guidance of Radionuclide Therapy.

    PubMed

    Beijst, Casper; Kunnen, Britt; Lam, Marnix G E H; de Jong, Hugo W A M

    2017-12-01

    Internal radiation therapy with radionuclides (i.e., radionuclide therapy) owes its success to the many advantages over other, more conventional, treatment options. One distinct advantage of radionuclide therapies is the potential to use (part of) the emitted radiation for imaging of the radionuclide distribution. The combination of diagnostic and therapeutic properties in a set of matched radiopharmaceuticals (sometimes combined in a single radiopharmaceutical) is often referred to as theranostics and allows accurate diagnostic imaging before therapy. The use of imaging benefits treatment planning, dosimetry, and assessment of treatment response. This paper focuses on a selection of advances in imaging technology relevant for image guidance of radionuclide therapy. This involves developments in nuclear imaging modalities, as well as other anatomic and functional imaging modalities. The quality and quantitative accuracy of images used for guidance of radionuclide therapy is continuously being improved, which in turn may improve the therapeutic outcome and efficiency of radionuclide therapies. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Therapeutic radionuclides in nuclear medicine: current and future prospects.

    PubMed

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-10-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 ((131)I), phosphorous-32 ((32)P), strontium-90 ((90)Sr), and yttrium-90 ((90)Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies.

  1. A review of numerical models to predict the atmospheric dispersion of radionuclides.

    PubMed

    Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert

    2018-02-01

    The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown

  2. Survey of radionuclides in foods, 1978-1982.

    PubMed

    Stroube, W B; Jelinek, C F; Baratta, E J

    1985-11-01

    Samples from the U.S. Food and Drug Administration's total-diet, market-basket program, samples of imported foods, and samples collected near nuclear power plants were analyzed for radionuclides. Most radionuclides were below the limit of detection for a majority of the samples; however, data are reported for 3H, 90Sr and 137Cs in certain samples. Generally a downward trend is observed for 90Sr when data for the 5-yr period were compared. The total dietary intake of either 90Sr or 137Cs is well within Range I of the Federal Radiation Council (FRC) radiation protection guides for these radionuclides.

  3. Proficiency test exercises for particulate systems at CTBT radionuclide laboratories.

    PubMed

    Nakashima, Naoko; Duran, Emerenciana B

    2018-04-01

    The Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Organization organizes Proficiency Test Exercises (PTE) annually for the 16 radionuclide laboratories supporting its network of radionuclide air monitoring stations since 2000. These laboratories re-analyze samples from radionuclide stations for quality control. The PTEs, in turn, are a means of checking the quality of analytical results provided by laboratories. Laboratories implement corrective actions for PTE discrepant results. These actions are checked in subsequent PTEs or during surveillance assessment. Copyright © 2017. Published by Elsevier Ltd.

  4. Characteristics of airborne radionuclides concentration in a coastal environment.

    PubMed

    Lee, Dong-Myung; Kim, Byoung-Jik; Choi, Hee-Yeoul

    2013-09-01

    Airborne radionuclides from the Fukushima nuclear power plant accident in 2011 were measured in 12 regional monitoring stations in Korea. The Gangneung (GN) monitoring station located in a coastal region almost always has a higher radioactivity concentration of airborne radionuclides than any other station. The possible cause of this higher concentration was analysed in terms of the local meteorology and topography. The increase in surface concentrations of radionuclides at the GN region might be attributed to the downslope windstorm, temperature inversion and coupled sea breeze and mountain flows.

  5. Impact of repository depth on residence times for leaking radionuclides in land-based surface water

    NASA Astrophysics Data System (ADS)

    Wörman, Anders; Marklund, Lars; Xu, Shulan; Dverstorp, Björn

    2007-03-01

    The multiple scales of landscape topography produce a wide distribution of groundwater circulation cells that control the hydro-geological environments surrounding geological repositories for nuclear waste. The largest circulation cells tend to discharge water into major river reaches, large freshwater systems or the nearby Baltic Sea. We investigated numerically the release of radionuclides from repositories placed in bedrock with depths between 100 to 2000 meters in a Swedish coastal area and found that leakage from the deeper positions emerges primarily in the major aquatic systems. In effect, radionuclides from the deeper repositories are more rapidly transported towards the Sea by the stream system compared to leakage from more shallow repositories. The release from the shallower repositories is significantly retained in the initial stage of the transport in the (superficial) landscape because the discharge occurs in or near low-order streams with high retention characteristics. This retention and residence time for radioactivity in the landscape control radiological doses to biota and can, thus, be expected to constitute an essential part of an associated risk evaluation.

  6. Targeted radionuclide therapy: theoretical study of the relationship between tumour control probability and tumour radius for a 32P/33P radionuclide cocktail.

    PubMed

    Lechner, A; Blaickner, M; Gianolini, S; Poljanc, K; Aiginger, H; Georg, D

    2008-04-07

    As revealed by previous theoretical studies, targeted radionuclide therapy (TRT) that relies on a single beta-emitting radioisotope is likely to be inappropriate for clinical scenarios such as disseminated malignancy. For a patient with a vast number of tumours and metastases of largely differing sizes a high level of therapeutical efficiency might be achieved only for a restricted range of tumour sizes. This is due to the limited range of beta-electrons in human tissue, essentially causing the therapeutical impact to vary tremendously with tumour size. The dependence of curability on the tumour dimension is expected to be significantly altered if a radionuclide cocktail, consisting of a long-range and a short-range beta-emitter, such as (32)P and (33)P, is involved in the treatment. In this study, a radiation transport simulation was performed, using the MCNP4c2 Monte Carlo code, in order to investigate the relationship between tumour control probability (TCP) and tumour size, associated with concurrent use of (32)P and (33)P. Two different models of intratumoural distribution of cumulated activity were taken into account. One simulated an ideal radionuclide uptake in tumour tissue and the other referred to a limited radiotracer penetration. The results were examined in comparison to tumours targeted with pure (32)P, (33)P and (131)I. For both uptake scenarios a considerable reduction of the overall variation of TCP and thus an increasing chance of achieving tumour cure was observed for tumour sizes ranging from microscopic dimensions up to macroscopic diameters, if the targeted radionuclide treatment relies on a (32)P/(33)P cocktail. It was revealed that particular attention has to be given to the ratio of the (32)P and (33)P specific cumulated activities (SCA) in the tumour, since this is a significant determinant of the resulting behaviour of tumour control probability as the tumour diameter varies. This study suggests that a 32P/33P approach is more applicable

  7. Voxel based internal dosimetry during radionuclide therapy.

    PubMed

    Vamvakas, Ioannis; Lyra, Maria

    2015-01-01

    Many radionuclides have been used for several decades in cancer treatment. (131)I, (90)Y, (89)Sr, (111)In, (177)Lu and (223)Ra are some of the most widely used radioisotopes. Therapeutic results and side effects can be associated only if the absorbed dose is well estimated. Knowledge of the absorbed dose during radionuclide therapy is the only method that can compare therapeutic results between different therapeutic techniques such as external radiotherapy and radio immunotherapy. Accurate patient specific estimation of the absorbed dose to the tumor and normal tissue can be achieved with voxel based internal dosimetry. The aim of this study is to develop a computer algorithm that calculates absorbed dose at every voxel of quantitative SPET scintigraphy image and establish a general internal dosimetry protocol for therapy by radionuclides. SPET scintigraphy images of known (131)I activities were obtained. The known activity of (131)I was contained in a cylindrical phantom of 16cm radius. A numerical factor was determined to convert the measured count rate from the SPET images to activity. The algorithm that calculate absorbed dose at every voxel of the scintigraphy image was developed by MATLAB. MATLAB is a high level computer language with interactive environment and performs mathematical calculations by matrices. The scintigraphy images were imported in MATLAB and were converted to 3-dimensional matrices. Every element of the matrix was assigned with the respective count rate. The matrix was multiplied with the conversion factor and the new elements represented the activity at every voxel. A cumulative activity matrix was made from activity matrices that were obtained at different time points. The absorbed dose at every voxel of the cumulative activity matrix was computed with the convolution method. A3- dimensional convolution matrix with size 5x5x5 was created. The elements of this matrix are numerical factors that convert cumulative activity to absorbed dose

  8. Continuing contamination of north Atlantic and Arctic waters by Sellafield radionuclides.

    PubMed

    Kershaw, P J; McCubbin, D; Leonard, K S

    1999-09-30

    Discharges of 99Tc and 129I from the reprocessing plant at Sellafield have increased significantly since the mid-1990s, against the overall trend of most other radionuclides. The 'pulsed' release of 99Tc has provided an opportunity to study transport pathways and transit times in UK waters, the North Sea and beyond. Transit times estimated from the 99Tc data are signifcantly shorter than rates reported previously using other radiotracers. The possible reasons for this are discussed. A comparison is made between the response of seawater concentrations and those in the brown seaweed Fucus vesiculosus to variations in the release rates. Current discharges of plutonium are very low compared with the 1970s and 1980s. However, the seabed sediments of the Irish Sea represent a substantial source and remobilisation into the water column results in the continuing export of plutonium from the Irish Sea and its transport to Arctic waters.

  9. Numerical modeling of radionuclide migration through a borehole disposal site.

    PubMed

    Yeboah, Serwaa; Akiti, Thomas T; Fletcher, John J

    2014-01-01

    The migration of radionuclides from a borehole repository located about 20 km from the Akwapim fault line which lies in an area of high seismicity was analyzed for some selected radionuclides. In the event of a seismic activity, fractures and faults could be rejuvenated or initiated resulting in container failure leading to the release of radionuclides. A numerical model was solved using a two-dimensional finite element code (Comsol Multiphysics) by taking into account the effect of heterogeneities. Results showed that, the fractured medium created preferential pathways indicating that, fault zones generated potential paths for released radionuclides from a radioactive waste repository. The results obtained showed that variations in hydraulic conductivity as a result of the heterogeneity considered within the domain significantly affected the direction of flow.

  10. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  11. Modeling the Dispersal and Deposition of Radionuclides: Lessons from Chernobyl.

    ERIC Educational Resources Information Center

    ApSimon, H. M.; And Others

    1988-01-01

    Described are theoretical models that simulate the dispersion of radionuclides on local and global scales following the accident at the Chernobyl nuclear power plant. Discusses the application of these results to nuclear weapons fallout. (CW)

  12. Monitored natural attenuation forum: MNA of metals and radionuclides

    EPA Science Inventory

    While the natural attenuation of many organic compounds is established and accepted by the regulated and regulatory communities, there is some debate whether monitored natural attenuation (MNA) of metals and radionuclides is a reasonable remedial alternative to consider. Do you...

  13. Site Characterization for MNA of Radionuclides in Ground Water

    EPA Science Inventory

    Monitored natural attenuation is often evaluated as a component of the remedy for ground water contaminated with radionuclides. When properly employed, monitored natural attenuation (MNA) may provide an effective knowledge-based remedy where a thorough engineering analysis inform...

  14. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom... performance characteristic of a nuclear medicine imaging device. (b) Classification. Class I (general controls...

  15. Statistical analyses of plume composition and deposited radionuclide mixture ratios

    SciTech Connect

    Kraus, Terrence D.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia

    2014-01-01

    A proposed method is considered to classify the regions in the close neighborhood of selected measurements according to the ratio of two radionuclides measured from either a radioactive plume or a deposited radionuclide mixture. The subsequent associated locations are then considered in the area of interest with a representative ratio class. This method allows for a more comprehensive and meaningful understanding of the data sampled following a radiological incident.

  16. Evaluation of meniscus tears of the knee by radionuclide imaging

    SciTech Connect

    Marymont, J.V.; Lynch, M.A.; Henning, C.E.

    We compare the accuracy of radionuclide imaging of the knee with Tc99m-pyrophosphate with arthrography for the evaluation of meniscus tears in young athletes with clinically suspected knee injury. All patients had arthroscopy which was used as the standard against which the other two diagnostic procedures were compared. Radionuclide scintigraphy and arthrography were comparable in their ability to detect tears of the medial meniscus. Scintigraphy was superior for the detection of tears of the lateral meniscus and of both menisci.

  17. Compositions and methods for removal of toxic metals and radionuclides

    NASA Technical Reports Server (NTRS)

    Cuero, Raul G. (Inventor); McKay, David S. (Inventor)

    2007-01-01

    The present invention relates to compositions and methods for the removal of toxic metals or radionuclides from source materials. Toxic metals may be removed from source materials using a clay, such as attapulgite or highly cationic bentonite, and chitin or chitosan. Toxic metals may also be removed using volcanic ash alone or in combination with chitin or chitosan. Radionuclides may be removed using volcanic ash alone or in combination with chitin or chitosan.

  18. Transfer of natural radionuclides from hay and silage to cow's milk in the vicinity of a former uranium mine.

    PubMed

    Strok, Marko; Smodiš, Borut

    2012-08-01

    After the closure of the former Žirovski Vrh uranium mine in Slovenia, mining and milling wastes were deposited on two waste piles, which are located close to the mine. These wastes contain elevated levels of natural radionuclides from the uranium decay chain. Due to different migration processes (erosion, aerial deposition, through groundwater), these radionuclides can be transported via fodder into cow's milk, which is an important foodstuff for Slovenian people. Therefore, natural radionuclides were analysed in the transfer food chain from soil to cow's fodder and cow's milk. After sampling, (238)U, (234)U, (230)Th, (226)Ra, (210)Pb and (210)Po were determined using radiochemical separation methods and alpha spectrometry or proportional counting. Hay and silage to milk concentration ratios (kg dry weight L(-1)) were calculated and were 0.260 for (238)U, 0.255 for (230)Th, 0.070 for (226)Ra, 0.021 for (210)Pb and 0.019 for (210)Po. The calculated annual ingestion dose due to milk consumption for the natural radionuclides analysed was 9 μSv/year for adults and 389 μSv/year for infants with the highest contribution of (210)Po (51% for adults and 63% for infants) and (210)Pb (36% for adults and 24% for infants). This study provides new data quantifying the transfer of natural radionuclides to milk, which is a parameter for which there have been very few previously reported values. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A comparison of marine radionuclide dispersion models for the Baltic Sea in the frame of IAEA MODARIA program.

    PubMed

    Periáñez, R; Bezhenar, R; Iosjpe, M; Maderich, V; Nies, H; Osvath, I; Outola, I; de With, G

    2015-01-01

    Four radionuclide dispersion models have been applied to simulate the transport and distribution of (137)Cs fallout from Chernobyl accident in the Baltic Sea. Models correspond to two categories: box models and hydrodynamic models which solve water circulation and then an advection/diffusion equation. In all cases, interactions of dissolved radionuclides with suspended matter and bed sediments are included. Model results have been compared with extensive field data obtained from HELCOM database. Inventories in the water column and seabed, as well as (137)Cs concentrations along 5 years in water and sediments of several sub-basins of the Baltic, have been used for model comparisons. Values predicted by the models for the target magnitudes are very similar and close to experimental values. Results suggest that some processes are not very relevant for radionuclide transport within the Baltic Sea, for instance the roles of the ice cover and, surprisingly, water stratification. Also, results confirm previous findings concerning multi-model applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Overview of research on water, gas, and radionuclide transport at the Amargosa Desert Research Site, Nevada: A section in U.S. Geological Survey Toxic Substances Hydrology Program: Proceedings of the technical meeting, Charleston, South Carolina, March 8-12, 1999: Volume 3 (Part C) (WRI 99-4018C)

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    Studies at the U.S. Geological Survey Amargosa Desert Research Site have focused on characterizing factors and processes that control transport and fate of contaminants in arid environments. This paper summarizes research results that have been published through 1998. Results have improved understanding of water and gas movement through a thick unsaturated zone, including the degree to which features of the natural unsaturated-flow system can be altered by installation of a waste-disposal facility. The study of radioactive-contaminant transport at the site is at an early stage. Field data measured in association with this new component of research have generated speculation regarding the exact mechanisms that control tritium transport in arid unsaturated zones.

  1. Radionuclide therapy of painful bone metastases--a comparative study between consecutive radionuclide infusions, combination with chemotherapy, and radionuclide infusions alone: an in vivo comparison of their effectiveness.

    PubMed

    Sideras, Panagiotis A; Stavraka, Anastasia; Gouliamos, Athanasios; Limouris, Georgios S

    2013-12-01

    Radionuclides have been long used for the palliation of skeletal-related metastatic pain. They are almost invariably used as the last resource for pain palliation. Their use as single agents with dose escalations, in combination with biphosphonates or chemotherapy is well known in the peer-reviewed literature; however, little is known about the combination between different agents. In our study, we used consecutive administration of 2 different radionuclides such as (186)Re-1,1-hydroxyethylidenediphosphonate ((186)Re-HEDP) and (89)Strontium Chloride ((89)Sr-Cl) separated by adequate period of time to allow bone marrow recovery in patients with high chance of bone pain relapse and compared it with (89)Sr-Cl and chemotherapy group and (186)Re-HEDP with bisphosphonates. The end result was that treatment with consecutive radionuclides was much more effective and safe than the other 2 groups.

  2. Somatostatin receptor based imaging and radionuclide therapy.

    PubMed

    Xu, Caiyun; Zhang, Hong

    2015-01-01

    Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors.

  3. Radionuclide Leaching from Organic Ion Exchange Resin

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolite{trademark} NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support themore » Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900{trademark}, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material.« less

  4. Somatostatin Receptor Based Imaging and Radionuclide Therapy

    PubMed Central

    Zhang, Hong

    2015-01-01

    Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors. PMID:25879040

  5. Peptide receptor radionuclide therapy for metastatic paragangliomas.

    PubMed

    Pinato, David J; Black, James R M; Ramaswami, Ramya; Tan, Tricia M; Adjogatse, Delali; Sharma, Rohini

    2016-05-01

    There is little evidence to direct the management of malignant paragangliomas (mPGL) beyond initial surgical treatment. Peptide receptor radionuclide therapy (PRRT), using somatostatin analogues, is effective in other neuroendocrine tumours, but data on its efficacy in treating mPGL are scarce. We report safety and efficacy outcomes from a case series of five patients with advanced mPGLs treated with (177)Lu-DOTATATE PRRT. The mean age of our cohort was 34 years (range 16-47); 4 patients were male with bone disease being the most prevalent metastatic site. PRRT scheme varied between 1 and 4 cycles, with premature cessation due to suspected pneumonitis in one case and disease progression in another. Three patients with previously documented progressive disease achieved stabilization following treatment; one had partial response and one was treatment refractory. Median progression-free survival was 17 months (range 0-78 months). 177-Lu-DOTATATE is an effective therapy in mPGLs in this molecularly defined patient cohort, warranting further investigation in larger studies including hereditary and sporadic mPGL.

  6. GEPNETs update: Radionuclide therapy in neuroendocrine tumors.

    PubMed

    van der Zwan, Wouter A; Bodei, Lisa; Mueller-Brand, Jan; de Herder, Wouter W; Kvols, Larry K; Kwekkeboom, Dik J

    2015-01-01

    Peptide receptor radionuclide therapy (PRRT) is a promising new treatment modality for inoperable or metastasized gastroenteropancreatic neuroendocrine tumors (GEPNETs) patients. Most studies report objective response rates in 15-35% of patients. Also, outcome in terms of progression free survival (PFS) and overall survival compares very favorably with that for somatostatin analogs, chemotherapy, or new, 'targeted' therapies. They also compare favorably to PFS data for liver-directed therapies. Two decades after the introduction of PRRT, there is a growing need for randomized controlled trials comparing PRRT to 'standard' treatment, that is treatment with agents that have proven benefit when tested in randomized trials. Combining PRRT with liver-directed therapies or with targeted therapies could improve treatment results. The question to be answered, however, is whether a combination of therapies performed within a limited time-span from one another results in a better PFS than a strategy in which other therapies are reserved until after (renewed) tumor progression. Randomized clinical trials comparing PRRT with other treatment modalities should be undertaken to determine the best treatment options and treatment sequelae for patients with GEPNETs. © 2015 European Society of Endocrinology.

  7. Improving cancer treatment with cyclotron produced radionuclides

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunologymore » projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.« less

  8. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  9. An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Ding, M.; Chu, S.; Robinson, B.; Arnold, B.; Meijer, A.

    2007-12-01

    The Yucca Mountain site scale saturated zone transport model has been revised to incorporate the updated flow model based on a hydrogeologic framework model using the latest lithology data, increased grid resolution that better resolves the geology within the model domain, updated sorption coefficient (Kd ) distributions for radionuclides of interest, and updated retardation factor distributions. The resulting numerical transport model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The transport model results are validated by comparing the model transport pathways with those derived from geochemical data, and by comparing the transit times from the repository footprint to the compliance boundary at the accessible environment with those derived from 14C-based age estimates. The transport model includes the processes of advection, dispersion, fracture flow, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. The transport of sorbing radionuclides in the aqueous phase is modeled as a linear, equilibrium process using the Kd model. The colloid-facilitated transport of radionuclides is modeled using two approaches: the colloids with irreversibly embedded radionuclides undergo reversible filtration only, while the migration of radionuclides that reversibly sorb to colloids is modeled with modified values for sorption coefficients and matrix diffusion coefficients. The base case results predict a transport time of 810 years for the breakthrough of half of the mass of a nonreactive radionuclide originating at a point within the footprint of the repository to the compliance boundary of the accessible environment at a distance of ~18 km downstream. The transport time is quite sensitive to the specific discharge through the model, varying between 31 to 52840 years for a range of specific discharge multiplier values between 0.1 to 8.9. Other

  10. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energymore » deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.« less

  11. Polish experience in Peptide receptor radionuclide therapy.

    PubMed

    Kunikowska, Jolanta; Królicki, Leszek; Sowa-Staszczak, Anna; Hubalewska-Dydejczyk, Alicja; Pawlak, Dariusz; Mikolajczak, Renata; Handkiewicz-Junak, Daria; Szaluś, Norbert; Kamiński, Grzegorz; Cwikla, Jaroslaw; Jakuciński, Maciej; Lukiewicz, Anna; Kowalska, Aldona; Gut, Pawel

    2013-01-01

    During the period from April 2004 to December 2010, 358 patients underwent peptide receptor radionuclide therapy (PRRT) ((90)Y-DOTATATE, (177)Lu-DOTATATE, and (90)Y/(177)Lu-DOTATATE) in Poland. The majority of patients underwent (90)Y-DOTATATE therapy (n = 177) with progression-free survival (PFS)/time to progression (TTP) of 17-44 months and overall survival (OS) of 22-34.2 months. Twelve-month follow-up revealed stable disease (SD) in 46-60%, disease regression (RD) in 16-35%, disease progression (PD) in 7-17%, and complete remission (CR) in 3% of patients. In patients treated with (90)Y/(177)Lu-DOTATATE (n = 44), PFS/TTP was 24.2-28.3 months and OS was 49.8-52.8 months. Twelve-month follow-up showed SD in 62-70%, RD in 15-20%, and PD in 10-12% of patients. The treatment was well tolerated. No severe adverse events occurred. Grade 3 toxicity [in leucocytes (WBC) and thrombocytes (PLT)] was seen in 6-20% of patients treated with (90)Y-DOTATATE. In that group, renal toxicity grade 3 was seen in 5-12% and grade 4 in 3-8%. In patients treated with tandem therapy with (90)Y/(177)Lu-DOTATATE or (177)Lu-DOTATATE alone, hematological and renal toxicity grade 3 or 4 was not observed. The results indicate that PRRT with the procedures and isotopes used is an effective and safe therapy option for patients with metastatic or inoperable neuroendocrine tumors (NETs). Our results suggest that tandem therapy with (90)Y/(177)Lu-DOTATATE provides longer overall survival than single-isotope treatment. Hematological toxicity was rare in all treated patients. Renal toxicity grade 3 and 4 was observed only in the group treated with (90)Y-DOTATATE.

  12. Radionuclide Esophageal Transit Scintigraphy in Primary Hypothyroidism.

    PubMed

    Khan, Shoukat H; P, Madhu Vijay; Rather, Tanveer A; Laway, Bashir A

    2017-01-30

    Esophageal dysmotility is associated with gastrointestinal dysmotility in various systemic and neuroregulatory disorders. Hypothyroidism has been reported to be associated with impaired motor function in esophagus due to accumulation of glycosaminoglycan hyaluronic acid in its soft tissues, leading to changes in various contraction and relaxation parameters of esophagus, particularly in the lower esophageal sphincter. In this study we evaluated esophageal transit times in patients of primary hypothyroidism using the technique of radionuclide esophageal transit scintigraphy. Thirty-one patients of primary hypothyroidism and 15 euthyroid healthy controls were evaluated for esophageal transit time using 15-20 MBq of Technetium-99m sulfur colloid diluted in 10-15 mL of drinking water. Time activity curve was generated for each study and esophageal transit time was calculated as time taken for clearance of 90% radioactive bolus from the region of interest encompassing the esophagus. Esophageal transit time of more than 10 seconds was considered as prolonged. Patients of primary hypothyroidism had a significantly increased mean esophageal transit time of 19.35 ± 20.02 seconds in comparison to the mean time of 8.25 ± 1.71 seconds in healthy controls ( P < 0.05). Esophageal transit time improved and in some patients even normalized after treatment with thyroxine. A positive correlation ( r = 0.39, P < 0.05) albeit weak existed between the serum thyroid stimulating hormone and the observed esophageal transit time. A significant number of patients with primary hypothyroidism may have subclinical esophageal dysmotility with prolonged esophageal transit time which can be reversible by thyroxine treatment. Prolonged esophageal transit time in primary hypothyroidism may correlate with serum thyroid stimulating hormone levels.

  13. Fukushima-derived radionuclides in the ocean and biota off Japan.

    PubMed

    Buesseler, Ken O; Jayne, Steven R; Fisher, Nicholas S; Rypina, Irina I; Baumann, Hannes; Baumann, Zofia; Breier, Crystaline F; Douglass, Elizabeth M; George, Jennifer; Macdonald, Alison M; Miyamoto, Hiroomi; Nishikawa, Jun; Pike, Steven M; Yoshida, Sashiko

    2012-04-17

    The Tōhoku earthquake and tsunami of March 11, 2011, resulted in unprecedented radioactivity releases from the Fukushima Dai-ichi nuclear power plants to the Northwest Pacific Ocean. Results are presented here from an international study of radionuclide contaminants in surface and subsurface waters, as well as in zooplankton and fish, off Japan in June 2011. A major finding is detection of Fukushima-derived (134)Cs and (137)Cs throughout waters 30-600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio Current acting as a southern boundary for transport. Fukushima-derived Cs isotopes were also detected in zooplankton and mesopelagic fish, and unique to this study we also find (110 m)Ag in zooplankton. Vertical profiles are used to calculate a total inventory of ~2 PBq (137)Cs in an ocean area of 150,000 km(2). Our results can only be understood in the context of our drifter data and an oceanographic model that shows rapid advection of contaminants further out in the Pacific. Importantly, our data are consistent with higher estimates of the magnitude of Fukushima fallout and direct releases [Stohl et al. (2011) Atmos Chem Phys Discuss 11:28319-28394; Bailly du Bois et al. (2011) J Environ Radioact, 10.1016/j.jenvrad.2011.11.015]. We address risks to public health and marine biota by showing that though Cs isotopes are elevated 10-1,000× over prior levels in waters off Japan, radiation risks due to these radionuclides are below those generally considered harmful to marine animals and human consumers, and even below those from naturally occurring radionuclides.

  14. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.

    PubMed

    Wu, J; Liu, Y L; Chang, S J; Chao, M M; Tsai, S Y; Huang, D E

    2012-11-01

    Monte Carlo (MC) simulation has been commonly used in the dose evaluation of radiation accidents and for medical purposes. The accuracy of simulated results is affected by the particle-tracking algorithm, cross-sectional database, random number generator and statistical error. The differences among MC simulation software packages must be validated. This study simulated the dose point kernel (DPK) and the cellular S-values of monoenergetic electrons ranging from 0.01 to 2 MeV and the radionuclides of (90)Y, (177)Lu and (103 m)Rh, using Fluktuierende Kaskade (FLUKA) and MC N-Particle Transport Code Version 5 (MCNP5). A 6-μm-radius cell model consisting of the cell surface, cytoplasm and cell nucleus was constructed for cellular S-value calculation. The mean absolute percentage errors (MAPEs) of the scaled DPKs, simulated using FLUKA and MCNP5, were 7.92, 9.64, 4.62, 3.71 and 3.84 % for 0.01, 0.1, 0.5, 1 and 2 MeV, respectively. For the three radionuclides, the MAPEs of the scaled DPKs were within 5 %. The maximum deviations of S(N←N), S(N←Cy) and S(N←CS) for the electron energy larger than 10 keV were 6.63, 6.77 and 5.24 %, respectively. The deviations for the self-absorbed S-values and cross-dose S-values of the three radionuclides were within 4 %. On the basis of the results of this study, it was concluded that the simulation results are consistent between FLUKA and MCNP5. However, there is a minor inconsistency for low energy range. The DPK and the cellular S-value should be used as the quality assurance tools before the MC simulation results are adopted as the gold standard.

  15. Fukushima-derived radionuclides in the ocean and biota off Japan

    PubMed Central

    Buesseler, Ken O.; Jayne, Steven R.; Fisher, Nicholas S.; Rypina, Irina I.; Baumann, Hannes; Baumann, Zofia; Breier, Crystaline F.; Douglass, Elizabeth M.; George, Jennifer; Macdonald, Alison M.; Miyamoto, Hiroomi; Nishikawa, Jun; Pike, Steven M.; Yoshida, Sashiko

    2012-01-01

    The Tōhoku earthquake and tsunami of March 11, 2011, resulted in unprecedented radioactivity releases from the Fukushima Dai-ichi nuclear power plants to the Northwest Pacific Ocean. Results are presented here from an international study of radionuclide contaminants in surface and subsurface waters, as well as in zooplankton and fish, off Japan in June 2011. A major finding is detection of Fukushima-derived 134Cs and 137Cs throughout waters 30–600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio Current acting as a southern boundary for transport. Fukushima-derived Cs isotopes were also detected in zooplankton and mesopelagic fish, and unique to this study we also find 110mAg in zooplankton. Vertical profiles are used to calculate a total inventory of ∼2 PBq 137Cs in an ocean area of 150,000 km2. Our results can only be understood in the context of our drifter data and an oceanographic model that shows rapid advection of contaminants further out in the Pacific. Importantly, our data are consistent with higher estimates of the magnitude of Fukushima fallout and direct releases [Stohl et al. (2011) Atmos Chem Phys Discuss 11:28319–28394; Bailly du Bois et al. (2011) J Environ Radioact, 10.1016/j.jenvrad.2011.11.015]. We address risks to public health and marine biota by showing that though Cs isotopes are elevated 10–1,000× over prior levels in waters off Japan, radiation risks due to these radionuclides are below those generally considered harmful to marine animals and human consumers, and even below those from naturally occurring radionuclides. PMID:22474387

  16. Radiation dosimetry for radionuclide therapy in a nonmyeloablative strategy.

    PubMed

    DeNardo, Gerald L; Siantar, Christine L Hartmann; DeNardo, Sally J

    2002-02-01

    Radionuclide therapy extends the usefulness of radiation from localized disease of multifocal disease by combining radionuclides with disease-seeking drugs, such as antibodies or custom-designed synthetic agents. Like conventional radiotherapy, the effectiveness of targeted radionuclides is ultimately limited by the amount of undesired radiation given to a critical, dose-limiting normal tissue, most often the bone marrow. Because radionuclide therapy relies on biological delivery of radiation, its optimization and characterization are necessarily different than for conventional radiation therapy. However, the principals of radiobiology and of absorbed radiation dose remain important for predicting radiation effects. Fortunately, most radionuclides emit gamma rays that allow the measurement of isotope concentrations in both tumor and normal tissues in the body. By administering a small "test dose" of the intended therapeutic drug, the clinician can predict the radiation dose distribution in the patient. This can serve as a basis to predict therapy effectiveness, optimize drug selection, and select the appropriate drug dose, in order to provide the safest, most effective treatment for each patient. Although treatment planning for individual patients based upon tracer radiation dosimetry is an attractive concept and opportunity, practical considerations may dictate simpler solutions under some circumstances. There is agreement that radiation dosimetry (radiation absorbed dose distribution, cGy) should be utilized to establish the safety of a specific radionuclide drug during drug development, but it is less generally accepted that absorbed radiation dose should be used to determine the dose of radionuclide (radioactivity, GBq) to be administered to a specific patient (i.e., radiation dose-based therapy). However, radiation dosimetry can always be utilized as a tool for developing drugs, assessing clinical results, and establishing the safety of a specific radionuclide

  17. 32 CFR 168a.5 - Responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Responsibilities. 168a.5 Section 168a.5 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.5 Responsibilities. (a) The Deputy Director, Defense...

  18. 32 CFR 168a.5 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Responsibilities. 168a.5 Section 168a.5 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.5 Responsibilities. (a) The Deputy Director, Defense...

  19. 32 CFR 168a.5 - Responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Responsibilities. 168a.5 Section 168a.5 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.5 Responsibilities. (a) The Deputy Director, Defense...

  20. 32 CFR 352a.5 - Relationships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Relationships. 352a.5 Section 352a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.5 Relationships. (a) In the performance of...

  1. 32 CFR 352a.5 - Relationships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Relationships. 352a.5 Section 352a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.5 Relationships. (a) In the performance of...

  2. 32 CFR 352a.5 - Relationships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Relationships. 352a.5 Section 352a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.5 Relationships. (a) In the performance of...

  3. 32 CFR 352a.5 - Relationships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Relationships. 352a.5 Section 352a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.5 Relationships. (a) In the performance of...

  4. 32 CFR 352a.5 - Relationships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Relationships. 352a.5 Section 352a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.5 Relationships. (a) In the performance of...

  5. Medical countermeasures against nuclear threats: radionuclide decorporation agents.

    PubMed

    Cassatt, David R; Kaminski, Joseph M; Hatchett, Richard J; DiCarlo, Andrea L; Benjamin, Jessica M; Maidment, Bert W

    2008-10-01

    Exposure to radionuclides disseminated by a radiological dispersion device or deposited as fallout after a nuclear power plant accident or detonation of an improvised nuclear device could result in internal contamination of a significant number of individuals. Internalized radionuclides may cause both acute and chronic radiation injury and increase an individual's risk of developing cancer. This damage and risk can be mitigated by the use of decorporation agents that reduce internal contamination. Unfortunately, most effective agents decorporate only a limited range of radionuclides, and some are formulated in ways that would make administration in mass casualty situations challenging. There is a need for new radionuclide decorporation agents, reformulations of existing agents, and/or expansion of the labeled indications for existing treatments. Researchers developing novel or improved decorporation agents should also understand the regulatory pathway for these products. This workshop, the first in nearly half a century to focus exclusively on radionuclide decorporation, brought together researchers and scientific administrators from academia, government and industry as well as senior regulatory affairs officers and U.S. Food and Drug Administration personnel. Meeting participants reviewed recent progress in the development of decorporation agents and contemplated the future of the field.

  6. Nanotargeted Radionuclides for Cancer Nuclear Imaging and Internal Radiotherapy

    PubMed Central

    Ting, Gann; Chang, Chih-Hsien; Wang, Hsin-Ell; Lee, Te-Wei

    2010-01-01

    Current progress in nanomedicine has exploited the possibility of designing tumor-targeted nanocarriers being able to deliver radionuclide payloads in a site or molecular selective manner to improve the efficacy and safety of cancer imaging and therapy. Radionuclides of auger electron-, α-, β-, and γ-radiation emitters have been surface-bioconjugated or after-loaded in nanoparticles to improve the efficacy and reduce the toxicity of cancer imaging and therapy in preclinical and clinical studies. This article provides a brief overview of current status of applications, advantages, problems, up-to-date research and development, and future prospects of nanotargeted radionuclides in cancer nuclear imaging and radiotherapy. Passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy are reviewed and summarized. Research on combing different modes of selective delivery of radionuclides through nanocarriers targeted delivery for tumor imaging and therapy offers the new possibility of large increases in cancer diagnostic efficacy and therapeutic index. However, further efforts and challenges in preclinical and clinical efficacy and toxicity studies are required to translate those advanced technologies to the clinical applications for cancer patients. PMID:20811605

  7. Radionuclides, radiotracers and radiopharmaceuticals for in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Wiebe, Leonard I.

    Radioactive tracers for in vivo clinical diagnosis fall within a narrow, strictly-defined set of specifications in respect of their physical properties, chemical and biochemical characteristics, and (approved) medical applications. The type of radioactive decay and physical half-life of the radionuclide are immutable properties which, along with the demands of production and supply, limit the choice of radionuclides used in medicine to only a small fraction of those known to exist. In use, the biochemical and physiological properties of a radiotracer are dictated by the chemical form of the radionuclide. This chemical form may range from elemental, molecular or ionic, to complex compounds formed by coordinate or covalent bonding of the radionuclide to either simple organic or inorganic molecules, or complex macromolecules. Few of the radiotracers which are tested in model systems ever become radiopharmaceuticals in the strictest sense. Radionuclides, radiotracers and radiopharmaceuticals in use are reviewed. Drug legislation and regulations concerning drug manufacture, as well as hospital ethical constraints and legislation concerning unsealed sources of radiation must all be satisfied in order to translate a radiopharmaceutical from the laboratory to clinical use.

  8. Exposure to radionuclides in smoke from vegetation fires.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Malta, Margarida

    2014-02-15

    Naturally occurring radionuclides of uranium, thorium, radium, lead and polonium were determined in bushes and trees and in the smoke from summer forest fires. Activity concentrations of radionuclides in smoke particles were much enriched when compared to original vegetation. Polonium-210 ((210)Po) in smoke was measured in concentrations much higher than all other radionuclides, reaching 7,255 ± 285 Bq kg(-1), mostly associated with the smaller size smoke particles (<1.0 μm). Depending on smoke particle concentration, (210)Po in surface air near forest fires displayed volume concentrations up to 70 m Bq m(-3), while in smoke-free air (210)Po concentration was about 30 μ Bq m(-3). The estimated absorbed radiation dose to an adult member of the public or a firefighter exposed for 24h to inhalation of smoke near forest fires could exceed 5 μSv per day, i.e, more than 2000 times above the radiation dose from background radioactivity in surface air, and also higher than the radiation dose from (210)Po inhalation in a chronic cigarette smoker. It is concluded that prolonged exposure to smoke allows for enhanced inhalation of radionuclides associated with smoke particles. Due to high radiotoxicity of alpha emitting radionuclides, and in particular of (210)Po, the protection of respiratory tract of fire fighters is strongly recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Bioremediation: a genuine technology to remediate radionuclides from the environment.

    PubMed

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-07-01

    Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of '-omics'-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Personalized Dosimetry for Radionuclide Therapy Using Molecular Imaging Tools

    PubMed Central

    Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2016-01-01

    For treatment of systemic malignancies, when external radiation therapy is not applicable, radionuclide therapy can be an alternative. In this form of therapy, radionuclides are administered to the patient, often in a form where the radionuclide is labelled to a molecule that plays the active part in the localization of the tumor. Since the aim is to impart lethal damage to tumor cells while maintaining possible side-effects to normal tissues at tolerable levels, a proper and accurate personalized dosimetry should be a pre-requisite. In radionuclide therapy, there is a need to measure the distribution of the radiopharmaceutical in vivo, as well as its re-distribution over time, in order estimate the total energy released in radioactive decays and subsequent charged-particle interactions, governing the absorbed dose to different organs and tumors. Measurements are usually performed by molecular imaging, more specifically planar and SPECT (Single-Photon Emission Computed Tomography) imaging, combined with CT. This review describes the different parts in the dosimetry chain of radionuclide therapy. Emphasis is given to molecular imaging tools and the requirements for determining absorbed doses from quantitative planar and SPECT images. As example solutions to the different problems that need to be addressed in such a dosimetric chain, we describe our tool, Lundadose, which is a set of methods that we have developed for personalized dosimetry. PMID:28536392

  11. Use of CTRW for Prediction of Radionuclide Migration in Fractured Tuff

    NASA Astrophysics Data System (ADS)

    Pickman, L. H.; Parashar, R.; Reeves, D. M.

    2014-12-01

    Non-local contaminant transport methods have been extensively studied as an alternative for the classical Advection Dispersion Equation (ADE) to model particle migration in heterogeneous media and in regions with geologic patterns that shape secondary porosity. The challenges encountered in fractured media are usually more complex than un-fractured porous media because of the irregular connectivity patterns between individual fractures, large number of parameters, and wide distribution of parameter space. The Continuous Random Time Walk (CTRW) methodology provides a framework for modeling non-Fickian transport through fracture networks by employing probabilistic distributions to generate particle jump lengths and residence time spanning over orders of magnitude. We apply CTRW framework to model transport of radionuclides in the fractured volcanic tuff of Western Pahute Mesa located at the Nevada National Security Site (NNSS). By analyzing borehole data recorded at the NNSS, statistical attributes of fracture parameters are derived that are used to generate discrete fracture network (DFN) realizations. Through convolution of both particle travel time and fracture length distribution, transport is modeled on a continuum of spatial scales via the CTRW technique and the predictions are compared against DFN results to ascertain the efficacy of upscaling.

  12. Artificial Radionuclides (236U and 129I) in the Arctic and North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Casacuberta, N.; Christl, M.; Henderson, G. M.; Rutgers van der Loeff, M.; Masque, P.; Vockenhuber, C.; Bauch, D.; Walther, C.

    2016-02-01

    Global fallout and continuous liquid releases by the two European Nuclear Reprocessing Plants of Sellafield (Great Britain) and La Hague (France) are the major contributors of artificial radionuclides to the Arctic and North Atlantic Oceans. Anthropogenic 236U and the 236U/238U ratio are becoming a new transient tracer in oceanography, which combined to 129I (129I/236U ratio) can be used as a novel oceanographic tool in the Arctic and North Atlantic Oceans. Main strengths of using 129I/236U and 236U/238U atomic ratios are: i) identify sources of artificial radionuclides in water masses (global fallout, reprocessing plants and/or rivers); and ii) evaluating water mass ages. Here we will present results from different GEOTRACES expeditions in the Arctic and North Atlantic Oceans during the years 2011 - 2015, including the two pan-arctic expeditions onboard German RV Polarstern and US RV Healy. Seawater samples and ice cores are analyzed for 129I and 236U, contributing to a better understanding of the general Arctic water circulation and their further transport to the North Atlantic Ocean.

  13. VIDA: A Voxel-Based Dosimetry Method for Targeted Radionuclide Therapy Using Geant4

    PubMed Central

    Dewaraja, Yuni K.; Abramson, Richard G.; Stabin, Michael G.

    2015-01-01

    Abstract We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy (131I, 90Y, 111In, 177Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by 131I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression. PMID:25594357

  14. VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4.

    PubMed

    Kost, Susan D; Dewaraja, Yuni K; Abramson, Richard G; Stabin, Michael G

    2015-02-01

    We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy ((131)I, (90)Y, (111)In, (177)Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by (131)I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression.

  15. Review: Technical and policy challenges in deep vadose zone remediation of metals and radionuclides.

    PubMed

    Dresel, P Evan; Wellman, Dawn M; Cantrell, Kirk J; Truex, Michael J

    2011-05-15

    Contamination in deep vadose zone environments is isolated from exposure so direct contact is not a factor in its risk to human health and the environment. Instead, movement of contamination to the groundwater creates the potential for exposure and risk to receptors. Limiting flux from contaminated vadose zone is key for protection of groundwater resources, thus the deep vadose zone is not necessarily considered a resource requiring restoration. Contaminant discharge to the groundwater must be maintained low enough by natural attenuation (e.g., adsorption processes or radioactive decay) or through remedial actions (e.g., contaminant mass reduction or mobility reduction) to meet the groundwater concentration goals. This paper reviews the major processes for deep vadose zone metal and radionuclide remediation that form the practical constraints on remedial actions. Remediation of metal and radionuclide contamination in the deep vadose zone is complicated by heterogeneous contaminant distribution and the saturation-dependent preferential flow in heterogeneous sediments. Thus, efforts to remove contaminants have generally been unsuccessful although partial removal may reduce downward flux. Contaminant mobility may be reduced through abiotic and biotic reactions or through physical encapsulation. Hydraulic controls may limit aqueous transport. Delivering amendments to the contaminated zone and verifying performance are challenges for remediation.

  16. Radionuclide field lysimeter experiment (RadFLEx): geochemical and hydrological data for SRS performance assessments

    SciTech Connect

    Kaplan, D.; Powell, B.; Barber, K.

    2017-12-12

    The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2)more » to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.« less

  17. Systemic radionuclide therapy in pain palliation.

    PubMed

    Liepe, Knut; Runge, Roswitha; Kotzerke, Jörg

    2005-01-01

    and fifth week after treatment for all radionuclides and was reversible within 12 weeks. The nadir was earlier for 188Re-HEDP with a shorter physical half-life compared with 89Sr. There were no significant differences in bone marrow toxicity (p = 0.123-0.421). Results of this study indicate that all evaluated radiopharmaceuticals were effective in pain palliation without induction of severe side effects. The increase in KPS after 188Re-HEDP was the only statistically significant finding (p = 0.001).

  18. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident.

    PubMed

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-07-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon-thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m(-3), respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-01-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m−3, respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. PMID:26838130

  20. Distribution of artificial radionuclides in lacustrine sediments in China.

    PubMed

    Wu, Fengchang; Zheng, Jian; Liao, Haiqing; Yamada, Masatoshi

    2011-07-01

    Establishing accurate historical records of the distribution, inventory and source of artificial radionuclides in the environment is important for environmental monitoring and radiological health protection due to their potential toxicity, and is also useful for identification and risk assessment of possible future environmental inputs of radionuclides from nuclear weapons tests and accidental release from the nuclear fuel reprocessing facilities or nuclear power reactors. A sector-field inductively coupled plasma mass spectrometer was used to study the recent sedimentation of Pu isotopes in 11 lakes in China. The distribution of (137)Cs was investigated using the conventional radiometric analytical methods. Based on the isotopic compositions of Pu and the activity ratio of (137)Cs/(239+240)Pu, the sources of artificial radionuclides were identified. The potential applications of Pu isotopes for sediment dating and for regional and global environmental change studies were discussed.

  1. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    SciTech Connect

    Meinhold, A.F.; Morris, S.C.; Dionne, B.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection ofmore » public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.« less

  2. Use of tree bark to monitor radionuclide pollution

    SciTech Connect

    Brownridge, J.D.

    1985-08-01

    The outer surface bark of many trees is an excellent monitoring source of fallout radionuclides. The accumulation and retention of these pollutants is evident by the presence of /sup 106/Ru, /sup 125/Sb, /sup 144/Ce and /sup 155/Eu in the outer layer of bark from many trees surveyed during this study. The accumulation and retention of these and other radionuclides suggest that tree bark is an ecosystem monitoring resource that should be exploited for these and possible other environmental pollutants. Therefore, the emphasis of this study was a broad survey of the detectability of gamma-ray emitting radionuclides in and on treemore » bark rather than a narrow quantitative study.« less

  3. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    SciTech Connect

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  4. 44 CFR Appendix A(5) to Part 61 - Appendix A(5) to Part 61

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Appendix A(5) to Part 61 A(5) Appendix A(5) to Part 61 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... COVERAGE AND RATES Pt. 61, App. A(5) Appendix A(5) to Part 61 Federal Emergency Management Agency, Federal...

  5. 44 CFR Appendix A(5) to Part 61 - Appendix A(5) to Part 61

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Appendix A(5) to Part 61 A(5) Appendix A(5) to Part 61 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... COVERAGE AND RATES Pt. 61, App. A(5) Appendix A(5) to Part 61 Federal Emergency Management Agency, Federal...

  6. Report to the American Physical Society of the Study Group on Radionuclide Release From Severe Accidents at Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Shaw, George

    The release of radioiodine during the Three Mile Island (TMI) accident was more than an order of magnitude smaller than what had been predicted from analyses of hypothetical nuclear accidents. The Reactor Safety Study of 1975 (RSS), which carried out the analyses, is a fundamental factor in formulating regulations concerned with such accidents. This American Physical Society (APS) study group report is a result of the obvious need to reevaluate the RSS analysis of the “source term,” that is, the amount of various radionuclides that are predicted to be emitted under various reactor failure scenarios.The report includes an introductory background to the history of nuclear reactor accidents and accident studies and to the health aspects of radionuclide releases. It then describes nuclear reactors and reactor failure modes, including reasonably detailed descriptions of particular modes thought to be especially critical. The most extensive discussion concerns the chemical and physical processes important in the generation, transport, and release of radionuclides. The large computer codes used to model these processes are considered and evaluated. The results of some of the computer runs are examined in the light of a simplified but informative model to evaluate those features of an accident that are most likely to affect the source term. A review of the research programs currently underway precedes both the study group conclusions about the need to revise the source terms from those in the RSS and recommendations for further studies that are necessary to better evaluate the source term.

  7. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock.

    PubMed

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock

    NASA Astrophysics Data System (ADS)

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.

  9. Stochastic Simulations of Colloid-Facilitated Transport for Long Time and Space Scales

    NASA Astrophysics Data System (ADS)

    Painter, S.; Pickett, D.; Cvetkovic, V.

    2004-12-01

    Although it is widely recognized that naturally occurring inorganic colloids can potentially enhance the transport of radionuclides in the subsurface, comparatively few analyses have considered the long times and large travel distances associated with potential nuclear waste repositories. One-dimensional transient simulations in a stochastic Lagrangian framework are used to explore model and parameter sensitivities for colloid-facilitated transport at large scales. The model accounts for (i) advection and dispersion of radionuclides and colloids, (ii) radionuclide decay, (iii) exchange of radionuclides among colloid-bound, dissolved, and fixed substrate phases, and (iv) attachment and detachment of colloids to the fixed substrate. Kinetics of the exchanges between dissolved and colloid-bound states are addressed using linear and non-linear models. Generic sensitivity studies addressing both fractured and granular aquifers are considered, as is an example based on the groundwater transport pathway for the potential repository at Yucca Mountain, Nevada. In the absence of mitigating factors such as permanent filtration of colloids, transport may be enhanced over the situation without colloids, but only for strongly sorbing radionuclides. Mass transfer between solution and immobilized colloids makes colloid retardation relatively ineffective at reducing facilitated transport except when the retardation factor is large. Results are particularly sensitive to the rate of desorption from colloids, a parameter that is difficult to measure with short-duration experiments. This paper is an independent product of the CNWRA and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.

  10. Transportation Expressions

    DOT National Transportation Integrated Search

    1994-11-01

    This report compiles definitions of transportation terms used throughout the Department of Transportation and other US government agencies. This is the first edition of Transportation Expressions; future editions will be expanded in scope to include ...

  11. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  12. Value of radionuclide imaging techniques in assessing cardiomyopathy

    SciTech Connect

    Goldman, M.R.; Boucher, C.A.

    1980-12-18

    Radionuclide imaging techniques add an important dimension to the diagnosis, classification and management of myocardial disease. The gated blood pool scan provides information allowing determination of the functional type of cardiomyopathy (congestive, restrictive or hypertrophic) as well as evaluation of ventricular performance. Myocardial perfusion imaging with thallium-201 is useful in distinguishing congestive cardiomyopathy from severe coronary artery disease and also in depicting septal abnormalities in hypertrophic cardiomyopathy. Radionuclide techniques also prove useful in following progression of disease and in evaluating the efficacy of therapeutic interventions.

  13. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  14. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  15. Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides

    SciTech Connect

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark D.

    2012-03-21

    Deep vadose zone contamination is a significant issue facing the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). Contamination in the deep vadose zone is isolated from exposure such that direct contact is not a factor in risk to human health and the environment; rather, movement of contamination from the deep vadose zone to the groundwater creates the potential for exposure and risk to receptors. Transport of deep vadose zone contamination and discharge to the groundwater creates the potential for exposure and risk to receptors, so limiting flux to groundwater is key for protection of groundwater resources. Remediationmore » approaches for the deep vadose zone need to be considered within the regulatory context, targeted at mitigating the source of contamination and reduce contaminant flux to groundwater. This paper reviews the processes for deep vadose zone metal and radionuclide remediation as well as challenges and opportunities for implementation.« less

  16. Monitoring release of disposable radionuclides in the Kara sea: Bioaccumulation of long-lived radionuclides in echinoderms and molluscs

    SciTech Connect

    Fisher, N.S.

    1994-01-01

    The objective of the present proposal is to continue and extend our research on the trophic transfer of important radionuclides in benthic fauna of the Kara Sea. This project is assessing the extent to which select species of seastars, brittle stars, and clams typical of the Kara Sea concentrate and retain a variety of long-lived radionuclides known to be (or suspected to be) present in the disposed wastes in the Russian Arctic. The rates and routes of uptake and depuration of isotopes in the same or in closely related species are being quantified so that endemic benthic organisms can bemore » assessed as potential bioindicators of released radionuclides in Arctic waters.« less

  17. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    SciTech Connect

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that usesmore » thisstrategy.« less

  18. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations.

    PubMed

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-22

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric (137)Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric (137)Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  19. Waste site reclamation with recovery of radionuclides and metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-03-08

    A method for decontaminating radionuclides and other toxic metal-contaminate The U.S. government has certain rights in this invention pursuant to Contract Number DE-AC02-76CH00016 between the U.S. Department of Energy and Associated Universities, Inc.

  20. Radionuclide transfer to fruit in the IAEA TRS No. 472

    NASA Astrophysics Data System (ADS)

    Carini, F.; Pellizzoni, M.; Giosuè, S.

    2012-04-01

    This paper describes the approach taken to present the information on fruits in the IAEA report TRS No. 472, supported by the IAEA-TECDOC-1616, which describes the key transfer processes, concepts and conceptual models regarded as important for dose assessment, as well as relevant parameters for modelling radionuclide transfer in fruits. Information relate to fruit plants grown in agricultural ecosystems of temperate regions. The relative significance of each pathway after release of radionuclides depends upon the radionuclide, the kind of crop, the stage of plant development and the season at time of deposition. Fruit intended as a component of the human diet is borne by plants that are heterogeneous in habits, and morphological and physiological traits. Information on radionuclides in fruit systems has therefore been rationalised by characterising plants in three groups: woody trees, shrubs, and herbaceous plants. Parameter values have been collected from open literature, conference proceedings, institutional reports, books and international databases. Data on root uptake are reported as transfer factor values related to fresh weight, being consumption data for fruits usually given in fresh weight.

  1. Isonitrile radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1984-06-04

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  2. Radionuclide Inventory and Distribution Program: the Galileo area

    SciTech Connect

    McArthur, R.D.; Kordas, J.F.

    1983-12-28

    The Galileo area is the first region of the Nevada Test Site to be surveyed by the Radionuclide Inventory and Distribution Program (RIDP). This report describes in detail the use of soil sampling and in situ spectrometry to estimate radionuclide activities at selected sampling locations; the descriptions of these methods will be used as a reference for future RIDP reports. The data collected at Galileo were analyzed by kriging and the polygons of influence method to estimate the total inventory and the distribution of six man-made radionuclides. The results of the different statistical methods agree fairly well, although the datamore » did not give very good estimates of the variogram for kriging, and further study showed the results of kriging to be highly dependent on the variogram parameters. The results also showed that in situ spectrometry gives better estimates of radionuclide activity than soil sampling, which tends to miss highly radioactive particles associated with vegetation. 18 references, 28 figures, 11 tables.« less

  3. Waste site reclamation with recovery of radionuclides and metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-01-01

    A method for decontaminating radionuclides and other toxic metal-contaminate The U.S. government has certain rights in this invention pursuant to Contract Number DE-AC02-76CH00016 between the U.S. Department of Energy and Associated Universities, Inc.

  4. Radionuclide diagnosis of splenic rupture in infectious mononucleosis

    SciTech Connect

    Vezina, W.C.; Nicholson, R.L.; Cohen, P.

    1984-06-01

    Spontaneous splenic rupture is a rare but serious complication of infectious mononucleosis. Although radionuclide spleen imaging is a well accepted method for diagnosis of traumatic rupture, interpretation can be difficult in the setting of mononucleosis, as tears may be ill-defined and diagnosis hampered by inhomogeneous splenic uptake. Four proven cases of spontaneous rupture are presented, three of which illustrate these diagnostic problems.

  5. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...

  6. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...

  7. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...

  8. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...

  9. Radionuclides in Ecosystems| RadTown USA | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Radioactive elements are part of our ecosystem, part of the air we breathe, the water we drink and the food we eat. Radionuclides can occur naturally, or can be man-made. Over half of the average annual radiation exposure of people in the U.S. comes from natural sources.

  10. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  11. Environmental effects of radionuclides--observations on natural ecosystems.

    PubMed

    Copplestone, D; Toal, M E; Johnson, M S; Jackson, D; Jones, S R

    2000-03-01

    To better quantify risk to non-human species from exposure to environmental radioactivity, understanding of the behaviour of radionuclides in the biosphere needs to be increased. This study outlines current thinking on ecological risk assessment (ERA) methodology and applies the indicator species or critical groups approach to biota inhabiting a semi-natural coniferous woodland contaminated with the radionuclides 137Cs, 238Pu, 239+240Pu and 241Am. The majority of these radionuclides originate from routine aerial emissions from the nuclear fuel reprocessing plant at BNFL, Sellafield, Cumbria, UK. Radionuclide activity concentrations have been determined in biota from the woodland and estimates of absorbed dose rates (mGy d(-1)) have been calculated using the dosimetric models outlined. Dose rates to the key indicator species, Oniscus asellus, Carabus violaceous and Apodemus sylvaticus (detritivorous invertebrate, predatory invertebrate and the granivorous wood mouse) have been determined at 3.0 x 10(-3) mGy d(-1), 2.2 x 10(-3) mGy d(-1) and 1.0 x 10(-3) mGy d(-1) respectively. The values are at least three orders of magnitude lower than the 1 mGy d(-1) level below which no observable effects on populations in a terrestrial ecosystem are thought to occur. Limitations of this approach are discussed.

  12. Chernobyl radionuclide distribution, migration, and environmental and agricultural impacts.

    PubMed

    Alexakhin, R M; Sanzharova, N I; Fesenko, S V; Spiridonov, S I; Panov, A V

    2007-11-01

    The distribution and migration of radionuclides released into the environment following the Chernobyl accident in 1986 are described. The Chernobyl disaster resulted in the consumption of farm products containing radionuclides as a source of irradiation of the population due to the prevalence of a rural type of human nutrition in the affected region. Economic and radiologic importance of countermeasures for reducing the impacts of the accident are described. The basic radioecological problem is described in which the area where direct radiation contamination of biota was observed is considerably smaller than the zone where concentrations of radionuclides through the food chain exceeded the permissible standards. The radiation-induced effects in biota in the affected area are described. In the long-term post-accident period, the radionuclide distribution between components of ecosystems (including humans) and doses are considered in comparison to a technologically normal situation of nuclear power plant operation. This analysis demonstrates that if radiation standards protect humans, then biota are also adequately protected against ionizing radiation.

  13. Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis

    PubMed Central

    Surti, Suleman

    2013-01-01

    Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. PMID:23725989

  14. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems.

    PubMed

    Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E; Klapp, Jaime; Gómez-Gesteira, Moncho; Sigalotti, Leonardo Di G

    2016-04-01

    A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Assessment of radionuclide contents in food in Hong Kong

    SciTech Connect

    Yu, K.N.; Mao, S.Y.

    1999-12-01

    Baseline values of concentrations of the natural radionuclides ({sup 238}U, {sup 226}Ra, {sup 228}Ra/{sup 232}Th, {sup 210}Pb) and artificial radionuclides ({sup 137}Cs, {sup 60}Co) in food and drinks (tap water, milk, and water-based drinks) were determined by gamma spectroscopy. All food and drinks were found to contain detectable {sup 40}K contents: 0.1 to 160 Bq Kg{sup {minus}1} for food and 0.006 to 61 Bq L{sup {minus}1} for drinks. Most of the other natural radionuclides in solid food were found to have contents below the minimum detectable activities (MDA). More samples in the leafy vegetable, tomato, carrot and potato categories containedmore » detectable amounts of {sup 228}Ra than the meat, cereal, and fish categories, with concentrations up to 1.2 Bq kg{sup {minus}1} for the former categories and 0.35 Bq kg{sup {minus}1} for the latter categories. The {sup 238}U and {sup 226}Ra radionuclides were detectable in most of the water-based drink samples, and the {sup 228}Ra and {sup 210}Pb radionuclides were detectable in fewer water-based drink samples. The {sup 137}Cs contents in solid food were detectable in most of the solid food samples (reaching 0.59 Bq kg{sup {minus}1}), but in drinks the {sup 137}Cs contents were very low and normally lower than the MDA values. Nearly all the {sup 60}Co contents in food and drinks were below the MDA values and their contents were below those of {sup 137}Cs.« less

  16. Hydrogeological interpretation of natural radionuclide contents in Austrian groundwaters

    NASA Astrophysics Data System (ADS)

    Schubert, Gerhard; Berka, Rudolf; Hörhan, Thomas; Katzlberger, Christian; Landstetter, Claudia; Philippitsch, Rudolf

    2010-05-01

    The Austrian Agency for Health and Food Safety (AGES) stores comprehensive data sets of radionuclide contents in Austrian groundwater. There are several analyses concerning Rn-222, Ra-226, gross alpha and gross beta as well as selected analyses of Ra-228, Pb-210, Po-210, Uranium and U-234/U-238. In a current project financed by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, AGES and the Geological Survey of Austria (GBA) are evaluating these data sets with regard to the geological backgrounds. Several similar studies based on groundwater monitoring have been made in the USA (for instance by Focazio, M.J., Szabo, Z., Kraemer, T.F., Mullin, A.H., Barringer, T.H., De Paul, V.T. (2001): Occurrence of selected radionuclides in groundwater used for drinking water in the United States: a reconnaissance survey, 1998. U.S. Geological Survey Water-Resources Investigations Report 00-4273). The geological background for the radionuclide contents of groundwater will be derived from geological maps in combination with existing Thorium and Uranium analyses of the country rocks and stream-sediments and from airborne radiometric maps. Airborne radiometric data could contribute to identify potential radionuclide hot spot areas as only airborne radiometric mapping could provide countrywide Thorium and Uranium data coverage in high resolution. The project will also focus on the habit of the sampled wells and springs and the hydrological situation during the sampling as these factors can have an important influence on the Radon content of the sampled groundwater (Schubert, G., Alletsgruber, I., Finger, F., Gasser, V., Hobiger, G. and Lettner, H. (2010): Radon im Grundwasser des Mühlviertels (Oberösterreich) Grundwasser. - Springer (in print). Based on the project results an overview map (1:500,000) concerning the radionuclide potential should be produced. The first version should be available in February 2011.

  17. The influence of natural organic matter on radionuclide mobility under conditions relevant to cementitious disposal of radioactive wastes: A review of direct evidence

    NASA Astrophysics Data System (ADS)

    Stockdale, Anthony; Bryan, Nick D.

    2013-06-01

    A concept for the disposal of intermediate level radioactive wastes involves emplacement within a geological disposal facility, followed by backfilling of the facility with cement. When the closed facility is re-saturated with groundwater, this will create a high pH environment due to dissolution of the cement minerals. Dissolved organic matter (DOM; defined here as naturally occurring organic acids and humin) will be present in the groundwater at a concentration that reflects the host rock environment and the recharge source and pathway. Interactions between DOM and radionuclides may enhance transport away from the facility and are an important consideration in safety performance assessments. This review specifically focuses on studies of DOM-radionuclide interactions at the high pH range that is expected during a repository lifetime. Whilst the vast majority of available data cover binary (DOM-radionuclide) and batch ternary systems (mineral-radionuclide-DOM), this review also covers other potentially important areas, such as reversibility kinetics and redox processes that can be mediated by DOM.

  18. Modeling of radionuclide migration through the geologic media. Application to the Meuse/Haute-Marne site in France

    SciTech Connect

    Hoyos, A.K. de; Mathieu, G.; Viennot, P.P.

    2007-07-01

    In order to review ANDRA's modeling of a deep geological disposal of HLW in a clay formation located in the Meuse/Haute Marne area, IRSN has developed its own modeling methodology, based on three numerical models. A first 'host rock model', including a simplified repository design, is used to simulate the activity transport throughout the repository and the argillite host layer. The model aims at evaluating the role of components of the repository design, together with the host formation, on the activity transport. Then, a second 'hydrogeological model', set on hydrodynamic parameters measured in situ, allows the determination of possible watermore » pathways, outlets and associated transfer times taking into account the possible hydraulic role of identified or postulated tectonic structures in the vicinity of the site. Several possible combinations for the hydraulic parameters (hydraulic conductivities and transmissivities) allow to fit the in situ measured hydraulic heads. The 'hydrogeological model' is finally coupled with a radionuclide 'transport model', devoted to simulate the transport of radionuclides out of the host rock to the outlets. Considering the uncertainties related to both advection and diffusion processes in the aquifers, a sensitivity analysis is carried out in order to assess its influence on the activity transport through the different layers above the host formation. Two specific outlets are considered: at the ground surface, a 'natural' outlet above the location of the repository system, and in the host rock's overlying aquifer, in a 'well drilling' zone. It is shown that the activity reaching the 'natural' outlet is mainly governed by diffusive fluxes whereas the activity reaching the 'well drilling' zone depends on the advective properties of the fault zones. The lesson learnt from this modeling is that the diffusion regime needs to be better quantified in order to discriminate the respective influence of both outlets. (authors)« less

  19. Health impacts of large releases of radionuclides. Internal exposure of populations to long-lived radionuclides released into the environment.

    PubMed

    Balonov, M I

    1997-01-01

    This chapter discusses the events that led to the contamination of environments with the long-lived radionuclides of caesium, strontium and other elements, and to the internal exposure of populations living in contaminated areas. Among these events are radioactive releases into the river Techa from the Soviet nuclear weapons facility Mayak in 1949-1956, thermonuclear weapons tests in the 1950s and 1960s, the Kyshtim and Windscale accidents in 1957, and the Chernobyl and Tomsk-7 accidents in 1986 and 1993, respectively. Methods of environmental monitoring and individual internal dose monitoring of inhabitants are described. These are based on measuring the content of radionuclides not only in the air, drinking water and local food products, but also in humans using whole-body counters and analysing excreta and autopsy samples. The dynamics of internal exposure of people of different ages to radionuclides of caesium, strontium and plutonium from the environment are considered. Examples of radionuclide distributions in the environment, and of individual/collective internal doses and related medical effects are presented.

  20. A multi-radionuclide approach to evaluate the suitability of (239+240)Pu as soil erosion tracer.

    PubMed

    Meusburger, Katrin; Mabit, Lionel; Ketterer, Michael; Park, Ji-Hyung; Sandor, Tarjan; Porto, Paolo; Alewell, Christine

    2016-10-01

    Fallout radionuclides have been used successfully worldwide as tracers for soil erosion, but relatively few studies exploit the full potential of plutonium (Pu) isotopes. Hence, this study aims to explore the suitability of the plutonium isotopes (239)Pu and (240)Pu as a method to assess soil erosion magnitude by comparison to more established fallout radionuclides such as (137)Cs and (210)Pbex. As test area an erosion affected headwater catchment of the Lake Soyang (South Korea) was selected. All three fallout radionuclides confirmed high erosion rates for agricultural sites (>25tha(-1)yr(-1)). Pu isotopes further allowed determining the origin of the fallout. Both (240)Pu/(239)Pu atomic ratios and (239+240)Pu/(137)Cs activity ratios were close to the global fallout ratio. However, the depth profile of the (239+240)Pu/(137)Cs activity ratios in undisturbed sites showed lower ratios in the top soil increments, which might be due to higher migration rates of (239+240)Pu. The activity ratios further indicated preferential transport of (137)Cs from eroded sites (higher ratio compared to the global fallout) to the depositional sites (smaller ratio). As such the (239+240)Pu/(137)Cs activity ratio offered a new approach to parameterize a particle size correction factor that can be applied when both (137)Cs and (239+240)Pu have the same fallout source. Implementing this particle size correction factor in the conversion of (137)Cs inventories resulted in comparable estimates of soil loss for (137)Cs and (239+240)Pu. The comparison among the different fallout radionuclides highlights the suitability of (239+240)Pu through less preferential transport compared to (137)Cs and the possibility to gain information regarding the origin of the fallout. In conclusion, (239+240)Pu is a promising soil erosion tracer, however, since the behaviour i.e. vertical migration in the soil and lateral transport during water erosion was shown to differ from that of (137)Cs, there is a clear

  1. DNA Transport in Nanoparticle Porous-Wall Nanochannels

    DTIC Science & Technology

    2015-08-04

    of investigations of nanofluidic properties, electrophoresis , DNA stretching properties and transport in nanostructures, influence of electric field...investigations of nanofluidic properties, electrophoresis , DNA stretching properties and transport in nanostructures, influence of electric field and dye...Silica Nanoparticles Integrated Affinity Microcolumns and Affinity Capillary Electrophoresis 5a: 5f-1a: 5f-c: 5a: 5f-1a: 5f-c: 5a: 5f-1a: 5f-c: 5a: 5f

  2. Biomedical research with cyclotron produced radionuclides

    SciTech Connect

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.

    1979-09-01

    Progress is reported on: metabolic and tumor localization in man and animals; radiodrug development; dosimetry for internally deposited isotopes; and radioactive material transfer system. Based on experience with /sup 13/N-glutamate in osteogenic sarcoma and Ewing's sarcoma, we conclude that (a) the /sup 13/N label enters tumor tissue rapidly at a rate similar to that at which activity leaves the blood, suggesting that the labeled glutamate itself is being transported into the tumor rather than some labeled metabolite; (b) uptake in the tumor is related to its metabolic activity, but factors such as blood flow are also important; (c) changes inmore » the glutamate scan accurately reflect the response of osteogenic sarcoma to pre-operative chemotherapy as measured by conventional means, and that it is desirable to extend this experience to other types of tumors. /sup 13/N-Glutamate (and other /sup 13/N-labeled compounds) afford several advantages over conventional tumor imaging agents, such as rapid blood clearance and localization, low radiation exposure and the possibility of obtaining accurate, three-dimensional quantitative images via positron emission tomography. It is doubtful that these advantages will justify the routine use of /sup 13/N-glutamate to detect tumors or to monitor therapy except in clinical situations where conventional techniques are unsatisfactory. The value of /sup 1/3N-glutamate is as a tool to assess the metabolic requirement of neoplastic tissue in cancer patients in-vivo. (PCS)« less

  3. Decision Framework for Applying Attenuation Processes to Metals and Radionuclides

    NASA Astrophysics Data System (ADS)

    Nyman, J.; Goswami, D.; Spreng, C.

    2010-12-01

    Until recently, there has been little regulatory guidance to support attenuation-based remedies for groundwater contaminated with metals and radionuclides. This has contributed to inconsistent application of those remedies and generally discouraged their consideration. The net result is that many sites face intractable closure problems. The U.S. Environmental Protection Agency (EPA) recently issued a three-volume technical guidance set that specifically addresses monitored natural attenuation (MNA) of inorganic contaminants. These new documents provide technical information related to the dominant attenuation mechanisms, as well as methods for characterization and evaluation of specific inorganic contaminants and radionuclides. Attenuation-based remedies for metals and long-lived radionuclides rely primarily on immobilization of contaminants as stable and/or nontoxic species. This stabilization and toxicity reduction can result from natural processes, geochemical gradients, or biogeochemical manipulation. Except for a few radionuclides, the original contaminant remains in the subsurface so that documentation of the sustainability, or permanence, of stabilization and detoxification is crucial to assessing performance. Another challenge in applying the existing and emerging guidance is the need to simultaneously address multiple contaminants at a target site, as is often the case in actual practice. The Interstate Technology & Regulatory Council (ITRC) has developed a technical and regulatory guidance to facilitate implementation of the new EPA guidance for MNA of metals and radionuclides. To determine the specific approach of this document, ITRC conducted a web-based survey of state regulators and stakeholders to determine the existing state of knowledge and acceptance regarding the application of attenuation processes as a remedy. The document addresses issues identified in the survey and provides examples of state protocols and stakeholder issues related to the

  4. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    SciTech Connect

    Jardine, P.M.; Watson, D.B.; Blake, D.A.

    2004-11-14

    detailed monitoring of coupled hydrological, geochemical/geophysical, and microbial processes. In the following manuscript we will (1) discuss contaminant fate and transport problems in humid regimes, (2) efforts to immobilize metals and radionuclides in situ via bioremediation, and (3) state-of-the-art techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides. These included (a) in situ solution and solid phase monitoring, (b) in situ and laboratory microbial community analysis, (c) noninvasive geophysical methods, and (d) solid phase speciation via high resolution spectroscopy.« less

  5. Transport: Introduction

    NASA Technical Reports Server (NTRS)

    Lewis, William; Rosenberg, Sanders D.

    1992-01-01

    Space transportation requirements for the NASA baseline scenario for future space missions are discussed. Spacecraft/propulsion technologies required for surface-to-orbit, orbit-to-orbit, and surface (lunar) transportation are addressed.

  6. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of

  7. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  8. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunologymore » and pharmacology components of the program.« less

  9. Radio-nuclide mixture identification using medium energy resolution detectors

    DOEpatents

    Nelson, Karl Einar

    2013-09-17

    According to one embodiment, a method for identifying radio-nuclides includes receiving spectral data, extracting a feature set from the spectral data comparable to a plurality of templates in a template library, and using a branch and bound method to determine a probable template match based on the feature set and templates in the template library. In another embodiment, a device for identifying unknown radio-nuclides includes a processor, a multi-channel analyzer, and a memory operatively coupled to the processor, the memory having computer readable code stored thereon. The computer readable code is configured, when executed by the processor, to receive spectral data, to extract a feature set from the spectral data comparable to a plurality of templates in a template library, and to use a branch and bound method to determine a probable template match based on the feature set and templates in the template library.

  10. The necessity of nuclear reactors for targeted radionuclide therapies.

    PubMed

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Commercial Availability of Alpha-Emitting Radionuclides for Medicine

    SciTech Connect

    Fisher, Darrell R.

    2008-09-15

    Alpha-emitting radionuclides provide effective cell-killing properties and have been shown to be effective in cancer treatment. The number of different alpha emitters having suitable physical and chemical characteristics for applications in medicine is relatively few. Development and testing of new radiopharmaceuticals requires a reliable supply of alpha-emitters in high quality, with timely delivery, but at reasonable cost. Applications and commercial availability of the follow alpha emitters are reviewed: Actinium-225, bismuth-213, astatine-211, radium-223, bismuth-212, radium-224, radium-226, terbium-149, and thorium-227. Recommendations for improving the supply of these alpha emitters include an increased federal commitment (through funding and joint-agency cooperation), establishing new productionmore » capabilities, and strengthening federal-private partnerships with companies involved in helping to meet critical radionuclide supplies.« less

  12. Radionuclide transit: a sensitive screening test for esophageal dysfunction

    SciTech Connect

    Russell, C.O.; Hill, L.D.; Holmes, E.R. III

    1981-05-01

    The purpose of this study was to extend existing nuclear medicine techniques for the diagnosis of esophageal motor disorders. A standard homogeneous bolus of 99mtechnetium sulfur colloid in water was swallowed in the supine position under the collimator of a gamma camera linked to a microprocessor. Bolus transit was recorded at 0.4-s intervals, and the movie obtained was used to analyze transit in an objective manner. Ten normal volunteers and 30 subjects with dysphagia not related to mechanical obstruction were studied with this technique. Radionuclide transit studies detected a higher incidence of esophageal motor abnormality than manometry or radiology inmore » the dysphagia group. In addition a definitive description of the functional problem was possible in most cases. Radionuclide transit is a safe noninvasive test and suitable as a screening test for esophageal motor disorders.« less

  13. Peptide receptor radionuclide therapy for advanced neuroendocrine tumors.

    PubMed

    Bodei, Lisa; Cremonesi, Marta; Kidd, Mark; Grana, Chiara M; Severi, Stefano; Modlin, Irvin M; Paganelli, Giovanni

    2014-08-01

    Peptide receptor radionuclide therapy (PRRT) consists of the systemic administration of a synthetic peptide, labeled with a suitable β-emitting radionuclide, able to irradiate tumors and their metastases via internalization through a specific receptor (usually somatostatin S2), over-expressed on the cell membrane. After almost 2 decades of experience, PRRT, with either (90)Y-octreotide or (177)Lu-octreotate, has established itself to be an efficient and effective therapeutic modality. As a treatment, it is relatively safe up to the known thresholds of absorbed and bio-effective isotope dosages and the renal and hematological toxicity profiles are acceptable if adequate protective measures are undertaken. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals†

    PubMed Central

    Dixit, Manish

    2013-01-01

    Metallic radionuclides are the mainstay of both diagnostic and therapeutic radiopharmaceuticals. Therapeutic nuclear medicine is less advanced but has tremendous potential if the radionuclide is accurately targeted. Great interest exists in the field of inorganic chemistry for developing target specific radiopharmaceuticals based on radiometals for non-invasive disease detection and cancer radiotherapy. This perspective will focus on the nuclear properties of a few important radiometals and their recent applications to developing radiopharmaceuticals for imaging and therapy. Other topics for discussion will include imaging techniques, radiotherapy, analytical techniques, and radiation safety. The ultimate goal of this perspective is to introduce inorganic chemists to the field of nuclear medicine and radiopharmaceutical development, where many applications of fundamental inorganic chemistry can be found. PMID:21541393

  15. Endotoxin as a cause of aseptic meningitis after radionuclide cisternography

    SciTech Connect

    Cooper, J.F.; Harbert, J.C.

    1975-09-01

    The role of pyrogens in aseptic meningitis after radionuclide cisternography was studied by means of the Limulus test, a sensitive detector of endotoxin. During a 15-month period, 39 reactions associated with cisternography were reported. Ten samples of specific lots of the radioactive drugs implicated in 20 of these reactions were tested and all reacted strongly positive to the Limulus test. The less sensitive rabbit pyrogen test was negative for these preparations when tested on a dose-per-weight basis. Our findings apparently provide clinical evidence for the observation made in animals that endotoxin is at least 1,000 times more toxic intrathecally thanmore » intravenously. The data implicate endotoxin contamination as a cause of adverse reactions to radionuclide cisternography. We conclude that the USP pyrogen test is insufficiently sensitive for intrathecal injectables and should be supplemented by the Limulus test. (auth)« less

  16. Natural radionuclides and toxic elements in transboundary rivers of Kazakhstan.

    PubMed

    Solodukhin, V; Poznyak, V; Kabirova, G; Stepanov, V; Ryazanova, L; Lennik, S; Liventsova, A; Bychenko, A; Zheltov, D

    2015-06-01

    The paper reports on the study of radionuclide and elemental composition of water, bottom sediment and soil samples collected at the border areas of the following transboundary rivers in Kazakhstan: Chagan, Ural, Ilek, Tobol, Ayat, Irtysh, Emel, Ili, Tekes, Shu, Karabalta, Talas and Syrdarya. The employed analyses include the following methods: instrumental gamma-ray spectrometry, radiochemical analysis, neutron activation analysis, XRF and the inductively coupled plasma mass spectrometry (ICP-MS). Evidence of water environment contamination with radionuclides and toxic elements has been revealed in many of the studied rivers both in Kazakhstan and in adjacent countries. Transboundary transfer of the contaminants is most likely related to local industry (uranium mining and processing) and the presence of radioactive substances in the river basins. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use inmore » the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.« less

  18. School Transportation.

    ERIC Educational Resources Information Center

    Executive Educator, 1990

    1990-01-01

    This special section on student transportation offers a case study of a school system that recycles buses for safety drills; articles on fuel-saving strategies, the pros and cons of contracting for transportation services or operating a publicly owned bus fleet, and advice on full cost accounting for transportation costs; and a transportation…

  19. Transport Experiments

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Wuebbles, Donald J.; Boering, Kristie A.; Eckman, Richard S.; Lerner, Jean; Plumb, R. Alan; Rind, David H.; Rinsland, Curtis P.; Waugh, Darryn W.; Wei, Chu-Feng

    1999-01-01

    MM II defined a series of experiments to better understand and characterize model transport and to assess the realism of this transport by comparison to observations. Measurements from aircraft, balloon, and satellite, not yet available at the time of MM I [Prather and Remsberg, 1993], provide new and stringent constraints on model transport, and address the limits of our transport modeling abilities. Simulations of the idealized tracers the age spectrum, and propagating boundary conditions, and conserved HSCT-like emissions probe the relative roles of different model transport mechanisms, while simulations of SF6 and C02 make the connection to observations. Some of the tracers are related, and transport diagnostics such as the mean age can be derived from more than one of the experiments for comparison to observations. The goals of the transport experiments are: (1) To isolate the effects of transport in models from other processes; (2) To assess model transport for realistic tracers (such as SF6 and C02) for comparison to observations; (3) To use certain idealized tracers to isolate model mechanisms and relationships to atmospheric chemical perturbations; (4) To identify strengths and weaknesses of the treatment of transport processes in the models; (5) To relate evaluated shortcomings to aspects of model formulation. The following section are included:Executive Summary, Introduction, Age Spectrum, Observation, Tropical Transport in Models, Global Mean Age in Models, Source-Transport Covariance, HSCT "ANOY" Tracer Distributions, and Summary and Conclusions.

  20. Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks.

    PubMed

    Masson, O; Baeza, A; Bieringer, J; Brudecki, K; Bucci, S; Cappai, M; Carvalho, F P; Connan, O; Cosma, C; Dalheimer, A; Didier, D; Depuydt, G; De Geer, L E; De Vismes, A; Gini, L; Groppi, F; Gudnason, K; Gurriaran, R; Hainz, D; Halldórsson, Ó; Hammond, D; Hanley, O; Holeý, K; Homoki, Zs; Ioannidou, A; Isajenko, K; Jankovic, M; Katzlberger, C; Kettunen, M; Kierepko, R; Kontro, R; Kwakman, P J M; Lecomte, M; Leon Vintro, L; Leppänen, A-P; Lind, B; Lujaniene, G; Mc Ginnity, P; Mc Mahon, C; Malá, H; Manenti, S; Manolopoulou, M; Mattila, A; Mauring, A; Mietelski, J W; Møller, B; Nielsen, S P; Nikolic, J; Overwater, R M W; Pálsson, S E; Papastefanou, C; Penev, I; Pham, M K; Povinec, P P; Ramebäck, H; Reis, M C; Ringer, W; Rodriguez, A; Rulík, P; Saey, P R J; Samsonov, V; Schlosser, C; Sgorbati, G; Silobritiene, B V; Söderström, C; Sogni, R; Solier, L; Sonck, M; Steinhauser, G; Steinkopff, T; Steinmann, P; Stoulos, S; Sýkora, I; Todorovic, D; Tooloutalaie, N; Tositti, L; Tschiersch, J; Ugron, A; Vagena, E; Vargas, A; Wershofen, H; Zhukova, O

    2011-09-15

    Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Dai-ichi nuclear power plant (NPP) started on March 12th, 2011. Among the various radionuclides released, iodine-131 ((131)I) and cesium isotopes ((137)Cs and (134)Cs) were transported across the Pacific toward the North American continent and reached Europe despite dispersion and washout along the route of the contaminated air masses. In Europe, the first signs of the releases were detected 7 days later while the first peak of activity level was observed between March 28th and March 30th. Time variations over a 20-day period and spatial variations across more than 150 sampling locations in Europe made it possible to characterize the contaminated air masses. After the Chernobyl accident, only a few measurements of the gaseous (131)I fraction were conducted compared to the number of measurements for the particulate fraction. Several studies had already pointed out the importance of the gaseous (131)I and the large underestimation of the total (131)I airborne activity level, and subsequent calculations of inhalation dose, if neglected. The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous (131)I fraction to total (131)I, both on a spatial scale and its temporal variation. It can be pointed out that during the Fukushima event, the (134)Cs to (137)Cs ratio proved to be different from that observed after the Chernobyl accident. The data set provided in this paper is the most comprehensive survey of the main relevant airborne radionuclides from the Fukushima reactors, measured across Europe. A rough estimate of the total (131)I inventory that has passed over Europe during this period was <1% of the released amount. According to the measurements, airborne activity levels remain of no concern for public health in Europe.

  1. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    NASA Astrophysics Data System (ADS)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  2. Radionuclide migration in groundwater at a low-level waste disposal site: a comparison of predictive performance modeling versus field observations

    SciTech Connect

    Robertson, D.E. Myers, D.A.; Bergeron, M.P.; Champ, D.R.

    1985-08-01

    This paper describes a project which is structured to test the concept of modeling a shallow land low-level waste burial site. The project involves a comparison of the actual observed radionuclide migration in groundwaters at a 30-year-old well-monitored field site with the results of predictive transport modeling. The comparison is being conducted as a cooperative program with the Atomic Energy of Canada Ltd. (AECL) at the low-level waste management area at the Chalk River Nuclear Laboratories, Ontario, Canada. A joint PNL-AECL field inviestigation was conducted in 1983 and 1984 to complement the existing extensive data base on actual radionuclide migration.more » Predictive transport modeling is currently being conducted for this site; first, as if it were a new location being considered for a low-level waste shallow-land burial site and only minimal information about the site were available, and second, utilizing the extensive data base available for the site. The modeling results will then be compared with the empirical observations to provide insight into the level of effort needed to reasonably predict the spacial and temporal movement of radionuclides in the groundwater enviroment. 8 refs., 5 figs.,« less

  3. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  4. Computed cranial tomography and radionuclide cisternography in hydrocephalus

    SciTech Connect

    Harbert, J.C.; McCullough, D.C.; Schellinger, D.

    1977-04-01

    Computerized Cranial Tomographic scanning has replaced radionuclide cisternography in screening both adult and pediatric patients for hydrocephalus. Nevertheless, cisternography provides indispensable information about the CSF clearance capacity and remains a valuable adjunct to the excellent anatomic detail provided by CCT scans. In patients without emergency symptoms, cisternography provides the best indication as to whether or not diversionary shunting is likely to relieve the patient's symptoms.

  5. Peptide Receptor Radionuclide Therapy in the Treatment of Neuroendocrine Tumors.

    PubMed

    Kwekkeboom, Dik J; Krenning, Eric P

    2016-02-01

    Peptide receptor radionuclide therapy (PRRT) is a promising new treatment modality for inoperable or metastasized gastroenteropancreatic neuroendocrine tumors patients. Most studies report objective response rates in 15% to 35% of patients. Progression-free (PFS) and overall survival (OS) compare favorably with that for somatostatin analogues, chemotherapy, or newer, "targeted" therapies. Prospective, randomized data regarding the potential PFS and OS benefit of PRRT compared with standard therapies is anticipated. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Radionuclide methods and instrumentation for breast cancer detection and diagnosis.

    PubMed

    Surti, Suleman

    2013-07-01

    Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Single-photon ultrashort-lived radionuclides: symposium proceedings

    SciTech Connect

    Paras, P.; Thiessen, J.W.

    1985-01-01

    The purpose was to define the current role and state-of-the-art regarding the development, clinical applications, and usefulness of generator-produced single-photon ultrashort-lived radionuclides (SPUSLR's) and to predict their future impact on medicine. Special emphasis was placed on the generator production of iridium-191, gold-195, and krypton-81. This report contains expanded summaries of the included papers. (ACR)

  8. EFFECT OF TEMPERATURE ON THE SORPTION OF CHELATED RADIONUCLIDES.

    USGS Publications Warehouse

    Maest, Ann S.; Crerar, David A.; Dillon, Edward C.; Trehu, Stephen M.; Rountree, Tamara N.; ,

    1985-01-01

    Temperature effects in the near-field radioactive waste disposal environment can result in changes in the adsorptive capacity and character of the substrate and the chemistry of the reacting fluids. This work examines the effect of temperature on 1) the kinetics of radionuclide sorption onto clays from 25 degree -75 degree C and 2) the degradation and metal-binding ability of two organic complexing agents found in chelated radioactive wastes and natural groundwaters.

  9. Cosmogenic radionuclides on LDEF: An unexpected Be-10 result

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Dezfouly-Arjomandy, B.; Harmon, B. A.

    1993-01-01

    Following the discovery of the atmospheric derived cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), a search began for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enabled its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained.

  10. Bayesian statistics in radionuclide metrology: measurement of a decaying source

    NASA Astrophysics Data System (ADS)

    Bochud, François O.; Bailat, Claude J.; Laedermann, Jean-Pascal

    2007-08-01

    The most intuitive way of defining a probability is perhaps through the frequency at which it appears when a large number of trials are realized in identical conditions. The probability derived from the obtained histogram characterizes the so-called frequentist or conventional statistical approach. In this sense, probability is defined as a physical property of the observed system. By contrast, in Bayesian statistics, a probability is not a physical property or a directly observable quantity, but a degree of belief or an element of inference. The goal of this paper is to show how Bayesian statistics can be used in radionuclide metrology and what its advantages and disadvantages are compared with conventional statistics. This is performed through the example of an yttrium-90 source typically encountered in environmental surveillance measurement. Because of the very low activity of this kind of source and the small half-life of the radionuclide, this measurement takes several days, during which the source decays significantly. Several methods are proposed to compute simultaneously the number of unstable nuclei at a given reference time, the decay constant and the background. Asymptotically, all approaches give the same result. However, Bayesian statistics produces coherent estimates and confidence intervals in a much smaller number of measurements. Apart from the conceptual understanding of statistics, the main difficulty that could deter radionuclide metrologists from using Bayesian statistics is the complexity of the computation.

  11. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  12. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE PAGES

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore » too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  13. Reactor-released radionuclides in Susquehanna River sediments

    USGS Publications Warehouse

    Olsen, C.R.; Larsen, I.L.; Cutshall, N.H.; Donoghue, J.F.; Bricker, O.P.; Simpson, H.J.

    1981-01-01

    Three Mile Island (TMI) and Peach Bottom (PB) reactors have introduced 137Cs, 134Cs, 60Co, 58Co and several other anthropogenic radionuclides into the lower Susquehanna River. Here we present the release history for these nuclides (Table 1) and radionuclide concentration data (Table 2) for sediment samples collected in the river and upper portions of the Chesapeake Bay (Fig. 1) within a few months after the 28 March 1979 loss-of-coolant-water problem at TMI. Although we found no evidence for nuclides characteristic of a ruptured fuel element, we did find nuclides characteristic of routine operations. Despite the TMI incident, more than 95% of the total 134Cs input to the Susquehanna has been a result of controlled low-level releases from the PB site. 134Cs activity released into the river is effectively trapped by sediments with the major zones of reactor-nuclide accumulation behind Conowingo Dam and in the upper portions of Chesapeake Bay. The reported distributions document the fate of reactor-released radionuclides and their extent of environmental contamination in the Susquehanna-Upper Chesapeake Bay System. ?? 1981 Nature Publishing Group.

  14. Radionuclides in surface soil at the Nevada Test Site

    SciTech Connect

    McArthur, R D

    1991-08-01

    In 1981, the US Department of Energy began the Radionuclide Inventory and Distribution Program, an attempt to assess the amount and distribution of radioactivity in surface soil at the Nevada Test Site (NTS). Over the next several years, researchers used a combination of aerial radiological surveys, soil sampling, and in situ measurements to study the regions of the NTS where soil radioactivity was above background levels. These regions included the ground zeros of above-ground nuclear tests, underground tests that vented, and some safety shots, as well as the sites of nuclear rocket experiments. The results of the program were publishedmore » in a series of five reports between 1983 and 1989. In this report, those results have been combined to provide an integrated picture of the current levels of soil radioactivity on the NTS. The estimated inventories of the nine most important manmade radionuclides have been reviewed (and in some cases recalculated), decay-corrected to January 1, 1990, and tabulated. New distribution maps have been prepared that show isopleths of decay-corrected radionuclide concentrations over the entire NTS. Two additional maps show the measurement locations where the gamma exposure rate exceeds 100 {mu}R/hr and where the {sup 239, 240}Pu concentration exceeds 500 pCi/g. 21 refs., 12 figs., 6 tabs.« less

  15. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  16. 32 CFR 168a.5 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.5 Responsibilities. (a) The Deputy Director, Defense Research and Engineering (Research and Advanced Technology) [DDDR&E(R&AT)], shall: (1) Administer this part... coordination with a representative of the Deputy Director, Defense Research and Engineering (Research and...

  17. 32 CFR 168a.5 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.5 Responsibilities. (a) The Deputy Director, Defense Research and Engineering (Research and Advanced Technology) [DDDR&E(R&AT)], shall: (1) Administer this part... coordination with a representative of the Deputy Director, Defense Research and Engineering (Research and...

  18. Colloid Facilitated Transport of Plutonium in Fractured Volcanic Tuff

    NASA Astrophysics Data System (ADS)

    Kersting, A. B.; Zhao, P.; Walensky, J. R.; Roberts, S. K.; Johnson, M. R.; Zavarin, M.; Ramon, E. C.

    2004-12-01

    The transport of low-solubility radionuclides in a colloidal- or colloidal bound state is frequently suspected or observed. Groundwater contaminated with radionuclides associated with underground nuclear tests was collected from several different well locations at the Nevada Test Site (NTS). In each case, the low-levels of plutonium detected in the groundwater were overwhelmingly (>95percent) associated with the colloidal and not the dissolved fraction of the groundwater. The colloidal fractions consisted of secondary minerals such as clays and zeolites. To better understand the mechanisms controlling the potential colloidal transport of plutonium, colloid-facilitated fracture flow laboratory experiments are being conducted. Pseudocolloids consisting of Pu(IV) sorbed to clinoptilolite were combined with a radionuclide solution cocktail consisting of Np, U, Cs, Sr, Sm and 3H and Re (analog to Tc) tracers in NTS-type synthetic groundwater (4.5mM NaHCO3-). The cocktail was injected into a smooth fracture in a volcanic tuff rock core from the NTS and the effluent analyzed. Autoradiography and secondary ion mass spectrometry will be used to understand the mineral -colloid-radionuclide interactions in the fracture volcanic tuff.

  19. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.

    PubMed

    Pacilio, M; Lanconelli, N; Lo, Meo S; Betti, M; Montani, L; Torres, Aroche L A; Coca, Pérez M A

    2009-05-01

    Several updated Monte Carlo (MC) codes are available to perform calculations of voxel S values for radionuclide targeted therapy. The aim of this work is to analyze the differences in the calculations obtained by different MC codes and their impact on absorbed dose evaluations performed by voxel dosimetry. Voxel S values for monoenergetic sources (electrons and photons) and different radionuclides (90Y, 131I, and 188Re) were calculated. Simulations were performed in soft tissue. Three general-purpose MC codes were employed for simulating radiation transport: MCNP4C, EGSnrc, and GEANT4. The data published by the MIRD Committee in Pamphlet No. 17, obtained with the EGS4 MC code, were also included in the comparisons. The impact of the differences (in terms of voxel S values) among the MC codes was also studied by convolution calculations of the absorbed dose in a volume of interest. For uniform activity distribution of a given radionuclide, dose calculations were performed on spherical and elliptical volumes, varying the mass from 1 to 500 g. For simulations with monochromatic sources, differences for self-irradiation voxel S values were mostly confined within 10% for both photons and electrons, but with electron energy less than 500 keV, the voxel S values referred to the first neighbor voxels showed large differences (up to 130%, with respect to EGSnrc) among the updated MC codes. For radionuclide simulations, noticeable differences arose in voxel S values, especially in the bremsstrahlung tails, or when a high contribution from electrons with energy of less than 500 keV is involved. In particular, for 90Y the updated codes showed a remarkable divergence in the bremsstrahlung region (up to about 90% in terms of voxel S values) with respect to the EGS4 code. Further, variations were observed up to about 30%, for small source-target voxel distances, when low-energy electrons cover an important part of the emission spectrum of the radionuclide (in our case, for 131I

  20. Re-assessing gallium-67 as a therapeutic radionuclide.

    PubMed

    Othman, Muhamad F Bin; Mitry, Nabil R; Lewington, Valerie J; Blower, Philip J; Terry, Samantha Y A

    2017-03-01

    Despite its desirable half-life and low energy Auger electrons that travel further than for other radionuclides, 67 Ga has been neglected as a therapeutic radionuclide. Here, 67 Ga is compared with Auger electron emitter 111 In as a potential therapeutic radionuclide. Plasmid pBR322 studies allowed direct comparison between 67 Ga and 111 In (1MBq) in causing DNA damage, including the effect of chelators (EDTA and DTPA) and the effects of a free radical scavenger (DMSO). The cytotoxicity of internalized (by means of delivery in the form of oxine complexes) and non-internalized 67 Ga and 111 In was measured in DU145 prostate cancer cells after a one-hour incubation using cell viability (trypan blue) and clonogenic studies. MDA-MB-231 and HCC1954 cells were also used. Plasmid DNA damage was caused by 67 Ga and was comparable to that caused by 111 In; it was reduced in the presence of EDTA, DTPA and DMSO. The A 50 values (internalized activity of oxine complexes per cell required to kill 50% of cells) as determined by trypan blue staining was 1.0Bq/cell for both 67 Ga and 111 In; the A 50 values determined by clonogenic assay were 0.7Bq/cell and 0.3Bq/cell for 111 In and 67 Ga respectively. At the concentrations required to achieve these uptake levels, non-internalized 67 Ga and 111 In caused no cellular toxicity. Qualitatively similar results were found for MDA-MB-231 and HCC1954 cells. 67 Ga causes as much damage as 111 In to plasmid DNA in solution and shows similar toxicity as 111 In at equivalent internalized activity per cell. 67 Ga therefore deserves further evaluation for radionuclide therapy. The data presented here is at the basic level of science. If future in vivo and clinical studies are successful, 67 Ga could become a useful radionuclide with little healthy tissue toxicity in the arsenal of weapons for treating cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.