Science.gov

Sample records for a53t-alpha-synuclein overexpression impairs

  1. The different faces of the p. A53T alpha-synuclein mutation: A screening of Greek patients with parkinsonism and/or dementia.

    PubMed

    Breza, Marianthi; Koutsis, Georgios; Karadima, Georgia; Potagas, Constantin; Kartanou, Chrisoula; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Stefanis, Leonidas; Panas, Marios

    2018-04-13

    The p. A53T mutation in the alpha-synuclein (SNCA) gene is a rare cause of autosomal dominant Parkinson's disease (PD). Although generally rare, it is particularly common in the Greek population due to a founder effect. A53T-positive PD patients often develop dementia during disease course and may very rarely present with dementia. We screened for the p. A53T SNCA mutation a total of 347 cases of Greek origin with parkinsonism and/or dementia, collected over 15 years at the Neurogenetics Unit, Eginition Hospital, University of Athens. Cases were classified into: "pure parkinsonism", "pure dementia" and "parkinsonism plus dementia". In total, 4 p. A53T SNCA mutation carriers were identified. All had autosomal dominant family history and early onset. Screening of the "pure parkinsonism" category revealed 2 cases with typical PD. The other two mutation carriers were identified in the "parkinsonism plus dementia" category. One had a diagnosis of PD dementia and the other of behavioral variant frontotemporal dementia. Screening of patients with "pure dementia" failed to identify any further A53T-positive cases. Our results confirm that the p. A53T SNCA mutation is relatively common in Greek patients with PD or PD plus dementia, particularly in cases with early onset and/or autosomal dominant family history. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing.

    PubMed

    Drew, Michael R; Simpson, Eleanor H; Kellendonk, Christoph; Herzberg, William G; Lipatova, Olga; Fairhurst, Stephen; Kandel, Eric R; Malapani, Chara; Balsam, Peter D

    2007-07-18

    The striatum receives prominent dopaminergic innervation that is integral to appetitive learning, performance, and motivation. Signaling through the dopamine D2 receptor is critical for all of these processes. For instance, drugs with high affinity for the D2 receptor potently alter timing of operant responses and modulate motivation. Recently, in an attempt to model a genetic abnormality encountered in schizophrenia, mice were generated that reversibly overexpress D2 receptors specifically in the striatum (Kellendonk et al., 2006). These mice have impairments in working memory and behavioral flexibility, components of the cognitive symptoms of schizophrenia, that are not rescued when D2 overexpression is reversed in the adult. Here we report that overexpression of striatal D2 receptors also profoundly affects operant performance, a potential index of negative symptoms. Mice overexpressing D2 exhibited impairments in the ability to time food rewards in an operant interval timing task and reduced motivation to lever press for food reward in both the operant timing task and a progressive ratio schedule of reinforcement. The motivational deficit, but not the timing deficit, was rescued in adult mice by reversing D2 overexpression with doxycycline. These results suggest that early D2 overexpression alters the organization of interval timing circuits and confirms that striatal D2 signaling in the adult regulates motivational process. Moreover, overexpression of D2 under pathological conditions such as schizophrenia and Parkinson's disease could give rise to motivational and timing deficits.

  3. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    PubMed

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  4. Transglutaminase 2 overexpression induces depressive-like behavior and impaired TrkB signaling in mice

    PubMed Central

    Pandya, Chirayu D; Hoda, Nasrul; Crider, Amanda; Peter, Diya; Kutiyanawalla, Ammar; Kumar, Sanjiv; Ahmed, Anthony O; Turecki, Gustavo; Hernandez, Caterina M; Terry, Alvin V

    2016-01-01

    Serotonin (5-HT) and brain derived neurotrophic factor (BDNF) are two signaling molecules that play important regulatory roles in the development and plasticity of neural circuits that are known to be altered in depression. However, the mechanism by which 5-HT regulates BDNF signaling is unknown. In the present study, we found that 5-HT treatment increases BDNF receptor, TrkB (tropomyosin related kinase B) levels in mouse primary cortical neurons via a Rac1 (RAS-related C3 botulinum toxin substrate 1)-dependent mechanism. Significant increases in the levels of transglutaminase 2 (TG2, which is implicated in transamidation of 5-HT to Rac1) are observed in the mouse prefrontal cortex (PFC) following chronic exposure to stress. We also found that TG2 levels are increased in the postmortem PFC of depressed suicide subjects relative to matched controls. Moreover, in mice, neuronal overexpression of TG2 resulted in the atrophy of neurons and reduced levels of TrkB in the PFC as well as a depressive-like phenotype. Overexpression of TG2 in mouse cortical neurons reduced TrkB levels as a result of impaired endocytosis of TrkB. TG2 inhibition by either a viral particle or pharmacological approach attenuated behavioral deficits caused by chronic unpredictable stress. Moreover, the overexpression of TrkB in the mouse PFC ameliorated the depressive-like phenotype of TG2 overexpressed mice. Taken together, these postmortem and preclinical findings identify TG2 as a critical mediator of the altered TrkB expression and depressive-like behaviors associated with chronic exposure to stress and suggest that TG2 may represent a novel therapeutic target in depression. PMID:27620841

  5. β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development

    PubMed Central

    Abdellatif, Ahmed M.; Oishi, Hisashi; Itagaki, Takahiro; Jung, Yunshin; Shawki, Hossam H.; Okita, Yukari; Hasegawa, Yoshikazu; Suzuki, Hiroyuki; El-Morsy, Salah E.; El-Sayed, Mesbah A.; Shoaib, Mahmoud B.; Sugiyama, Fumihiro; Takahashi, Satoru

    2016-01-01

    The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas. PMID:26901059

  6. Transgenic mice overexpressing the extracellular domain of NCAM are impaired in working memory and cortical plasticity

    PubMed Central

    Brennaman, Leann H.; Kochlamazashvili, Gaga; Stoenica, Luminita; Nonneman, Randall J.; Moy, Sheryl S.; Schachner, Melitta; Dityatev, Alexander; Maness, Patricia F.

    2011-01-01

    The neural cell adhesion molecule, NCAM, is a pivotal regulator of neural development, with key roles in axonal and dendritic growth and synaptic plasticity. Alterations in NCAM expression or proteolytic cleavage have been linked to human neuropsychiatric disorders such as schizophrenia, bipolar disorder and Alzheimer’s disease, and may contribute to cognitive dysfunction. We have generated mice overexpressing the NCAM extracellular (EC) proteolytic cleavage fragment which has been reported to be increased in schizophrenic versus normal brains. These mice show impaired GABAergic innervation and reduced number of apical dendritic spines on pyramidal neurons in the prefrontal cortex (PFC). Here, these NCAM-EC transgenic mice were subjected to behavioral tasks and electrophysiological measurements to determine the impact of structural abnormalities in the PFC on synaptic and cognitive functions. NCAM-EC mice exhibited impaired working memory in a delayed non-match-to-sample task, which requires PFC function, but showed no differences in anxiety, olfactory abilities, or sociability. Transgenic mice displayed impaired long- and short-term potentiation in the PFC but normal synaptic plasticity in the hippocampus, suggesting that the abnormal synaptic innervation in NCAM-EC mice impairs PFC plasticity and alters working memory. These findings may have implications for cognitive dysfunctions observed in neuropsychiatric disorders. PMID:21515372

  7. Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation.

    PubMed

    Wan, Feng; Letavernier, Emmanuel; Le Saux, Claude Jourdan; Houssaini, Amal; Abid, Shariq; Czibik, Gabor; Sawaki, Daigo; Marcos, Elisabeth; Dubois-Rande, Jean-Luc; Baud, Laurent; Adnot, Serge; Derumeaux, Geneviève; Gellen, Barnabas

    2015-12-01

    The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment. Copyright © 2015 the American Physiological Society.

  8. Overexpression of SIRT1 in Mouse Forebrain Impairs Lipid/Glucose Metabolism and Motor Function

    PubMed Central

    Wu, Dongmei; Qiu, Yifu; Gao, Xiang; Yuan, Xiao-Bing; Zhai, Qiwei

    2011-01-01

    SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function. PMID:21738790

  9. Genetic overexpression of glutathione peroxidase-1 attenuates microcystin-leucine-arginine-induced memory impairment in mice.

    PubMed

    Shin, Eun-Joo; Hwang, Yeong Gwang; Pham, Duc Toan; Lee, Ji Won; Lee, Yu Jeung; Pyo, Dongjin; Lei, Xin Gen; Jeong, Ji Hoon; Kim, Hyoung-Chun

    2018-06-13

    Microcystin-leucine-arginine (MCLR) is the most common form of microcystins, which are environmental toxins produced by cyanobacteria, and its hepatotoxicity has been well-documented. However, the neurotoxic potential of MCLR remains to be further elucidated. In the present study, we investigated whether intracerebroventricular (i.c.v.) infusion of MCLR induces mortality and neuronal loss in the hippocampus of mice. Because we found that MCLR impairs memory function in the hippocampus at a low dose (4 ng/μl/mouse, i.c.v.) without a significant neuronal loss, we focused on this dose for further analyses. Results showed that MCLR (4 ng/μl/mouse, i.c.v.) significantly increased oxidative stress (i.e., malondialdehyde, protein carbonyl, and synaptosomal ROS) in the hippocampus. In addition, MCLR significantly increased superoxide dismutase (SOD) activity without corresponding induction of glutathione peroxidase (GPx) activity, and thus led to significant decrease in the ratio of GPx/SODs activity. The GSH/GSSG ratio was also significantly reduced after MCLR treatment. GPx-1 overexpressing transgenic mice (GPx-1 Tg) were significantly protected from MCLR-induced memory impairment and oxidative stress. The DNA binding activity of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) in these mice was significantly enhanced, and the ratios of GPx/SODs activity and GSH/GSSG returned to near control levels in the hippocampus. Importantly, memory function exhibited a significant positive correlation with the ratios of GPx/SODs activity and GSH/GSSG in the hippocampus of MCLR-treated non-transgenic (non-Tg)- and GPx-1 Tg-mice. Combined, our results suggest that MCLR induces oxidative stress and memory impairment without significant neuronal loss, and that GPx-1 gene constitutes an important protectant against MCLR-induced memory impairment and oxidative stress via maintaining antioxidant defense system homeostasis, possibly through the induction of Nrf2

  10. Overexpression of Wnt5a in mouse epidermis causes no psoriasis phenotype but an impairment of hair follicle anagen development.

    PubMed

    Zhu, Xuming; Wu, Yumei; Huang, Sixia; Chen, Yingwei; Tao, Yixin; Wang, Yushu; He, Shigang; Shen, Sanbing; Wu, Ji; Guo, Xizhi; Li, Baojie; He, Lin; Ma, Gang

    2014-12-01

    Increased Wnt5a expression has been observed in psoriatic plaques. However, whether Wnt5a overexpression directly causes psoriasis is unknown. In this study, we generated transgenic (TG) mice with epidermal Wnt5a overexpression under the control of the human K14 promoter. The skin of Wnt5a TG mice was not psoriatic, but characterized with normal proliferation and homeostasis of epidermis. Instead, these TG mice displayed impaired hair follicle transition from telogen to anagen, most likely due to impaired canonical Wnt signalling. These results suggest that increased Wnt5a expression alone is inadequate to induce psoriasis in the skin and possible involvement of Wnt5a in hair follicle cycling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Overexpression of angiotensin II type 2 receptor promotes apoptosis and impairs insulin secretion in rat insulinoma cells.

    PubMed

    Liu, Min; Jing, Danqing; Wang, Yan; Liu, Yu; Yin, Shinan

    2015-02-01

    Angiotensin II (Ang II), the major effector hormone of renin-angiotensin system, acts as a promoter of insulin resistance and diabetes mellitus type 2 pathogenesis. Activation of Ang II type 2 receptor (AT2R) has been examined as a potential therapeutic strategy. However, there are conflicting findings regarding the role of AT2R. In the current study, we evaluated the effects of overexpressing AT2R by viral vector transduction on the apoptosis and function of pancreatic β-islet cells. The rat insulinoma cell line, INS-1, was transduced with a recombinant adenoviral vector expressing AT2R (Ad-G-AT2R-EGFP). AT2R overexpression resulted in significantly reduced cell viability and subsequently impaired glucose-stimulated insulin secretion (GSIS) function in INS-1 cells. Down-regulated expressions of GSIS pathway components, insulin, glucose transporter 2, and glucokinase were associated with AT2R overexpression. Further analysis determined that overexpression of AT2R induced G1-phase cell cycle arrest and Ang II-independent apoptotic cell death as indicated by increased Annexin V staining. To understand the apoptosis signaling triggered by AT2R overexpression, levels of caspase proteins were measured. Overexpression of AT2R significantly induced caspase-8, caspase-9, and caspase-3 cleavage, and decreased Bcl-2, pAkt, and pERK expression levels. AT2R-induced cell apoptosis was successfully blocked by the caspase inhibitor Z-VAD-FMK. Our findings suggested that AT2R overexpression triggers the apoptosis of INS-1 cells and dysfunction in insulin secretion. In conclusion, more careful design and consideration are required when applying AT2R-related therapies in treating diabetes.

  12. Glutathione peroxidase overexpression does not rescue impaired neurogenesis in the injured immature brain.

    PubMed

    Potts, Matthew B; Rola, Radoslaw; Claus, Catherine P; Ferriero, Donna M; Fike, John R; Noble-Haeusslein, Linda J

    2009-06-01

    Traumatic brain injury (TBI) is a leading cause of disability among young children and is associated with long-term cognitive deficits. These clinical findings have prompted an investigation of the hippocampus in an experimental model of trauma to the developing brain at postnatal day (p21). Previous studies using this model have revealed a progressive loss of neurons in the hippocampus as brain-injured animals mature to young adulthood. Here we determined whether this hippocampal vulnerability is likewise reflected in altered neurogenesis and whether the antioxidant glutathione peroxidase (GPx) modulates neurogenesis during maturation of the injured immature brain. Male transgenic mice that overexpress GPx and wild-type littermates were subjected to controlled cortical impact or sham surgery on p21. At 2 weeks postinjury, the numbers of proliferating cells and immature neurons within the subgranular zone were measured by using Ki-67 and doublecortin, respectively. Bromodeoxyuridine (BrdU) was used to label dividing cells beginning 2 weeks postinjury. Survival (BrdU(+)) and neuronal differentiation (BrdU(+)/NeuN(+)) were then measured 4 weeks later via confocal microscopy. Two-way ANOVA revealed no significant interaction between genotype and injury. Subsequent analysis of the individual effects of injury and genotype, however, showed a significant reduction in subgranular zone proliferation (Ki-67) at 2 weeks postinjury (P = 0.0003) and precursor cell survival (BrdU(+)) at 6 weeks postinjury (P = 0.016) and a trend toward reduced neuronal differentiation (BrdU(+)/NeuN(+)) at 6 weeks postinjury (P = 0.087). Overall, these data demonstrate that traumatic injury to the injured immature brain impairs neurogenesis during maturation and suggest that GPx cannot rescue this reduced neurogenesis. (c) 2009 Wiley-Liss, Inc.

  13. Overexpression of SIRT6 in the hippocampal CA1 impairs the formation of long-term contextual fear memory

    PubMed Central

    Yin, Xi; Gao, Yuan; Shi, Hai-Shui; Song, Li; Wang, Jie-Chao; Shao, Juan; Geng, Xu-Hong; Xue, Gai; Li, Jian-Li; Hou, Yan-Ning

    2016-01-01

    Histone modifications have been implicated in learning and memory. Our previous transcriptome data showed that expression of sirtuins 6 (SIRT6), a member of Histone deacetylases (HDACs) family in the hippocampal cornu ammonis 1 (CA1) was decreased after contextual fear conditioning. However, the role of SIRT6 in the formation of memory is still elusive. In the present study, we found that contextual fear conditioning inhibited translational expression of SIRT6 in the CA1. Microinfusion of lentiviral vector-expressing SIRT6 into theCA1 region selectively enhanced the expression of SIRT6 and impaired the formation of long-term contextual fear memory without affecting short-term fear memory. The overexpression of SIRT6 in the CA1 had no effect on anxiety-like behaviors or locomotor activity. Also, we also found that SIRT6 overexpression significantly inhibited the expression of insulin-like factor 2 (IGF2) and amounts of proteins and/or phosphoproteins (e.g. Akt, pAkt, mTOR and p-mTOR) related to the IGF2 signal pathway in the CA1. These results demonstrate that the overexpression of SIRT6 in the CA1 impaired the formation of long-term fear memory, and SIRT6 in the CA1 may negatively modulate the formation of contextual fear memory via inhibiting the IGF signaling pathway. PMID:26732053

  14. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    PubMed

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Impaired Embryonic Development in Mice Overexpressing the RNA-Binding Protein TIAR

    PubMed Central

    Kharraz, Yacine; Salmand, Pierre-Adrien; Camus, Anne; Auriol, Jacques; Gueydan, Cyril; Kruys, Véronique; Morello, Dominique

    2010-01-01

    Background TIA-1-related (TIAR) protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs). Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. Methodology/Principal Findings To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR) allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2α that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. Conclusions/Significance This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming. PMID:20596534

  16. Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice.

    PubMed

    García-Gutiérrez, María S; Manzanares, Jorge

    2011-01-01

    Mice overexpressing CB2r (CB2xP) were exposed to open field (OF), light-dark box (LDB) and elevated plus maze (EPM) tests. Corticotropin-releasing factor (CRF) and pro-opiomelanocortin (POMC) mRNA were measured in paraventricular (PVN) and arcuate (ARC) nuclei of the hypothalamus after 30 minutes of restraint stress (RS). Anxiolytic effects of alprazolam (45 or 70 µg/kg, ip) were evaluated. GABA(A)α(2) and GABA(A)γ(2) mRNA were measured in the hippocampus (HIPP) and amygdala (AMY) of CB2xP and wild type (WT) mice. No differences were observed in the total distance travelled by CB2xP and WT mice in OF. Central and peripheral distances travelled significantly increased and decreased in CB2xP mice. Overexpression of CB2r reduced anxiety-like behaviours in LDB and EPM. In WT mice, RS increased CRF (82%) and POMC (42%) mRNA in the PVN and ARC nuclei, respectively. In CB2xP mice, RS also increased POMC (22%) mRNA in the ARC nucleus, but had no effect on CRF mRNA in the PVN nucleus. Administration of alprazolam was without effect in CB2xP mice. An increase of GABA(A)α(2) and GABA(A)γ(2) mRNA in the hippocampus and amygdala of CB2xP mice was observed. Our findings revealed that increased expression of CB2r significantly reduced anxiogenic-related behaviours, modified the response to stress and impaired the action of anxiolytic drugs.

  17. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome.

    PubMed

    Copping, Nycole A; Christian, Sarah G B; Ritter, Dylan J; Islam, M Saharul; Buscher, Nathalie; Zolkowska, Dorota; Pride, Michael C; Berg, Elizabeth L; LaSalle, Janine M; Ellegood, Jacob; Lerch, Jason P; Reiter, Lawrence T; Silverman, Jill L; Dindot, Scott V

    2017-10-15

    Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∼40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice

    PubMed Central

    Asahi, Michio; Otsu, Kinya; Nakayama, Hiroyuki; Hikoso, Shungo; Takeda, Toshihiro; Gramolini, Anthony O.; Trivieri, Maria G.; Oudit, Gavin Y.; Morita, Takashi; Kusakari, Yoichiro; Hirano, Shuta; Hongo, Kenichi; Hirotani, Shinichi; Yamaguchi, Osamu; Peterson, Alan; Backx, Peter H.; Kurihara, Satoshi; Hori, Masatsugu; MacLennan, David H.

    2004-01-01

    Sarcolipin (SLN) inhibits the cardiac sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) by direct binding and is superinhibitory if it binds through phospholamban (PLN). To determine whether overexpression of SLN in the heart might impair cardiac function, transgenic (TG) mice were generated with cardiac-specific overexpression of NF-SLN (SLN tagged at its N terminus with the FLAG epitope). The level of NF-SLN expression (the NF-SLN/PLN expression ratio) was equivalent to that which induces profound superinhibition when coexpressed with PLN and SERCA2a in HEK-293 cells. In TG hearts, the apparent affinity of SERCA2a for Ca2+ was decreased compared with non-TG littermate control hearts. Invasive hemodynamic and echocardiographic analyses revealed impaired cardiac contractility and ventricular hypertrophy in TG mice. Basal PLN phosphorylation was reduced. In isolated papillary muscle subjected to isometric tension, peak amplitudes of Ca2+ transients and peak tensions were reduced, whereas decay times of Ca2+ transients and relaxation times of tension were increased in TG mice. Isoproterenol largely restored contractility in papillary muscle and stimulated PLN phosphorylation to wild-type levels in intact hearts. No compensatory changes in expression of SERCA2a, PLN, ryanodine receptor, and calsequestrin were observed in TG hearts. Coimmunoprecipitation indicated that overexpressed NF-SLN was bound to both SERCA2a and PLN, forming a ternary complex. These data suggest that NF-SLN overexpression inhibits SERCA2a through stabilization of SERCA2a–PLN interaction in the absence of PLN phosphorylation and through the inhibition of PLN phosphorylation. Inhibition of SERCA2a impairs contractility and calcium cycling, but responsiveness to β-adrenergic agonists may prevent progression to heart failure. PMID:15201433

  19. [Effect of Moxibustion on Learning-memory Ability and Hippocampal Amyloid beta Protein Overexpression in Mild Cognitive Impairment Rats].

    PubMed

    Zhu, Cai-feng; Sun, Jian-jian; Han, Wei; Yang, Jun

    2016-04-01

    To observe the effect of moxibustion of "Baihui" (GV 20), etc. on learning-memory ability, hip- pocampal amyloid beta (AP) protein expression and immune activity in mild cognitive impairment (MCI) rats, so as to reveal its mechanism underlying improving cognitive impairment. A total of 48 SD rats were randomly divided into normal, model, moxibustion, and medication groups (n = 12 in each group). The MCI model was established by intraperitoneal injection of 2 mL mixture solution containing D-galactose (120 mg - kg- - d-) and Sodium Nitrite (90 mg x kg(-1) x d(-1)), once daily for 40 days. Moxibustion (separated by Radix Aconiti Praeparata cake) was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14) for 20 min, once daily for 2 weeks, with one day's rest between two weeks. The rats of the medication group were given with Nimodipine (2 mg x kg(-1) x d(-1), t.i.d.) by lavage for 2 weeks (except Sundays). The learning-memory ability was detected by Morris maze water swimming tasks. The expression level of hippocampal AP protein was detected by immunohistochemistry, and those of hippocampal presenilin-1 (PS-1) mRNA and cleaving enzyme (BACE-1) mRNA were detected by real time-PCR, and serum IL-6 level was assayed by ELISA. Following modeling, the average escape latency of location navigation tests of Morris maze water swimming tests, the expression levels of hippocampal Abeta protein, PS-1 mRNA and BACE-1 mRNA, and serum IL-6 content were significantly increased in the model group( P<0.01) , while the target-platform crossing times and the percentage of target-quadrant swimming duration of spacial probe trials were remarkably decreased in the model group (P<0.01). After moxibustion, the increased escape latency, hippocampal AP protein, PS-i mHNA and BACE-1 mRNA ex- pression and serum IL-6 content, and the decreased target-platform crossing times and the percentage of target-quadrant swim- ming duration were reversed in both moxibustion and medication

  20. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex.

    PubMed

    Ruiz-Mejias, Marcel; Martinez de Lagran, Maria; Mattia, Maurizio; Castano-Prat, Patricia; Perez-Mendez, Lorena; Ciria-Suarez, Laura; Gener, Thomas; Sancristobal, Belen; García-Ojalvo, Jordi; Gruart, Agnès; Delgado-García, José M; Sanchez-Vives, Maria V; Dierssen, Mara

    2016-03-30

    The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified

  1. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs.

    PubMed

    Yee, Benjamin K; Singer, Philipp; Chen, Jiang-Fan; Feldon, Joram; Boison, Detlev

    2007-12-01

    The neuromodulator adenosine fulfills a unique role in the brain affecting glutamatergic neurotransmission and dopaminergic signaling via activation of adenosine A1 and A2A receptors, respectively. The adenosine system is thus ideally positioned to integrate glutamatergic and dopaminergic neurotransmission, which in turn could affect behavior and cognition. In the adult brain, adenosine levels are largely regulated by its key metabolic enzyme adenosine kinase (ADK), which may assume the role of an 'upstream regulator' of these two neurotransmitter pathways. To test this hypothesis, transgenic mice with an overexpression of ADK in brain (Adk-tg), and therefore reduced brain adenosine levels, were evaluated in a panel of behavioral and psychopharmacological assays to assess possible glutamatergic and dopaminergic dysfunction. In comparison to non-transgenic control mice, Adk-tg mice are characterized by severe learning deficits in the Morris water maze task and in Pavlovian conditioning. The Adk-tg mice also exhibited reduced locomotor reaction to systemic amphetamine, whereas their reaction to the non-competitive N-methyl-d-aspartate receptor antagonist MK-801 was enhanced. Our results confirmed that ADK overexpression could lead to functional concomitant alterations in dopaminergic and glutamatergic functions, which is in keeping with the hypothesized role of ADK in the balance and integration between glutamatergic and dopaminergic neurotransmission. The present findings are of relevance to current pathophysiological hypotheses of schizophrenia and its pharmacotherapy.

  2. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    PubMed

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  3. PD-L1 Overexpression During Endotoxin Tolerance Impairs the Adaptive Immune Response in Septic Patients via HIF1α.

    PubMed

    Avendaño-Ortiz, José; Maroun-Eid, Charbel; Martín-Quirós, Alejandro; Toledano, Víctor; Cubillos-Zapata, Carolina; Gómez-Campelo, Paloma; Varela-Serrano, Aníbal; Casas-Martin, Jose; Llanos-González, Emilio; Alvarez, Enrique; García-Río, Francisco; Aguirre, Luis A; Hernández-Jiménez, Enrique; López-Collazo, Eduardo

    2018-01-17

    Sepsis, among other pathologies, is an endotoxin tolerance (ET)-related disease. On admission, we classified 48 patients with sepsis into 3 subgroups according to the ex vivo response to lipopolysaccharide. This response correlates with the Acute Physiology and Chronic Health Evaluation (APACHE) II score and the ET degree. Moreover, the ET-related classification determines the outcome of these patients. Programmed cell death-ligand 1 (PD-L1) expression on septic monocytes is also linked with ET status. In addition to the regulation of cytokine production, one of the hallmarks of ET that significantly affects patients with sepsis is T-cell proliferation impairment or a poor switch to the adaptive response. PD-L1/programmed cell death-1 (PD-1) blocking and knockdown assays on tolerant monocytes from both patients with sepsis and the in vitro model reverted the impaired adaptive response. Mechanistically, the transcription factor hypoxia-inducible factor-1α (HIF1α) has been translocated into the nucleus and drives PD-L1 expression during ET in human monocytes. This fact, together with patient classification according to the ex vivo lipopolysaccharide response, opens an interesting field of study and potential personalized clinical applications, not only for sepsis but also for all ET-associated pathologies. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  4. RanBP9 overexpression down-regulates phospho-cofilin, causes early synaptic deficits and impaired learning, and accelerates accumulation of amyloid plaques in the mouse brain.

    PubMed

    Palavicini, Juan Pablo; Wang, Hongjie; Minond, Dmitriy; Bianchi, Elisabetta; Xu, Shaohua; Lakshmana, Madepalli K

    2014-01-01

    Loss of synaptic proteins and functional synapses in the brains of patients with Alzheimer's disease (AD) as well as transgenic mouse models expressing amyloid-β protein precursor is now well established. However, the earliest age at which such loss of synapses occurs, and whether known markers of AD progression accelerate functional deficits is completely unknown. We previously showed that RanBP9 overexpression leads to enhanced amyloid plaque burden in a mouse model of AD. In this study, we found significant reductions in the levels of synaptophysin and spinophilin, compared with wild-type controls, in both the cortex and the hippocampus of 5- and 6-month old but not 3- or 4-month old APΔE9/RanBP9 triple transgenic mice, and not in APΔE9 double transgenic mice, nor in RanBP9 single transgenic mice. Interestingly, amyloid plaque burden was also increased in the APΔE9/RanBP9 mice at 5-6 months. Consistent with these results, we found significant deficits in learning and memory in the APΔE9/RanBP9 mice at 5 and 6 month. These data suggest that increased amyloid plaques and accelerated learning and memory deficits and loss of synaptic proteins induced by RanBP9 are correlated. Most importantly, APΔE9/RanBP9 mice also showed significantly reduced levels of the phosphorylated form of cofilin in the hippocampus. Taken together these data suggest that RanBP9 overexpression down-regulates cofilin, causes early synaptic deficits and impaired learning, and accelerates accumulation of amyloid plaques in the mouse brain.

  5. Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice.

    PubMed

    Tomas-Roig, J; Piscitelli, F; Gil, V; Del Río, J A; Moore, T P; Agbemenyah, H; Salinas-Riester, G; Pommerenke, C; Lorenzen, S; Beißbarth, T; Hoyer-Fender, S; Di Marzo, V; Havemann-Reinecke, U

    2016-04-15

    Prolonged and sustained stimulation of the hypothalamo-pituitary-adrenal axis have adverse effects on numerous brain regions, including the cerebellum. Motor coordination and motor learning are essential for animal and require the regulation of cerebellar neurons. The G-protein-coupled cannabinoid CB1 receptor coordinates synaptic transmission throughout the CNS and is of highest abundance in the cerebellum. Accordingly, the aim of this study was to investigate the long-lasting effects of chronic psychosocial stress on motor coordination and motor learning, CB1 receptor expression, endogenous cannabinoid ligands and gene expression in the cerebellum. After chronic psychosocial stress, motor coordination and motor learning were impaired as indicated the righting reflex and the rota-rod. The amount of the endocannabinoid 2-AG increased while CB1 mRNA and protein expression were downregulated after chronic stress. Transcriptome analysis revealed 319 genes differentially expressed by chronic psychosocial stress in the cerebellum; mainly involved in synaptic transmission, transmission of nerve impulse, and cell-cell signaling. Calreticulin was validated as a stress candidate gene. The present study provides evidence that chronic stress activates calreticulin and might be one of the pathological mechanisms underlying the motor coordination and motor learning dysfunctions seen in social defeat mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Betacellulin overexpression in the mouse ovary leads to MAPK3/MAPK1 hyperactivation and reduces litter size by impairing fertilization.

    PubMed

    Gratao, Ana A; Dahlhoff, Maik; Sinowatz, Fred; Wolf, Eckhard; Schneider, Marlon R

    2008-01-01

    The epidermal growth factor receptor (EGFR) and its ligands are emerging as key molecules in regulating female reproduction. Here, we used a transgenic mouse model to evaluate whether and at which level of the reproduction cascade higher-than-normal levels of the EGFR ligand betacellulin (BTC) in the reproductive organs affect fertility. Western blots and immunohistochemistry revealed increased BTC levels in uterus and ovaries from transgenic females, particularly evident in granulosa cells of antral follicles. Onset of puberty, estrous cyclicity, and the anatomy and histology of reproductive organs at puberty were not altered as compared to control females. Fertility tests revealed a reduction (~50%) in litter size as the major reproductive deficit of transgenic females. Embryo implantation was delayed in transgenic females, but this was not the reason for the reduced litter size. Transgenic females produced a normal number of oocytes after natural ovulation. The in vivo fertilization rate was significantly reduced in untreated transgenic females but returned to normal levels after superovulation. Impaired oocyte fertilization in the absence of superovulation treatment was associated with MAPK3/MAPK1 hyperactivation in BTC transgenic ovaries, whereas similar levels of MAPK3/MAPK1 activation were detected in transgenic and control ovaries after superovulation treatment. Thus, tight regulation of MAPK3/MAPK1 activity appears to be essential for appropriate granulosa cell function during oocyte maturation. Our study identified hitherto unknown effects of BTC overabundance in reproduction and suggests BTC as a novel candidate protein for the modulation of fertility.

  7. Selective Impairment of TH17-Differentiation and Protection against Autoimmune Arthritis after Overexpression of BCL2A1 in T Lymphocytes.

    PubMed

    Iglesias, Marcos; Augustin, Juan Jesús; Alvarez, Pilar; Santiuste, Inés; Postigo, Jorge; Merino, Jesús; Merino, Ramón

    2016-01-01

    The inhibition of apoptotic cell death in T cells through the dysregulated expression of BCL2 family members has been associated with the protection against the development of different autoimmune diseases. However, multiple mechanisms were proposed to be responsible for such protective effect. The purpose of this study was to explore the effect of the T-cell overexpression of BCL2A1, an anti-apoptotic BCL2 family member without an effect on cell cycle progression, in the development of collagen-induced arthritis. Our results demonstrated an attenuated development of arthritis in these transgenic mice. The protective effect was unrelated to the suppressive activity of regulatory T cells but it was associated with a defective activation of p38 mitogen-activated protein kinase in CD4+ cells after in vitro TCR stimulation. In addition, the in vitro and in vivo TH17 differentiation were impaired in BCL2A1 transgenic mice. Taken together, we demonstrated here a previously unknown role for BCL2A1 controlling the activation of CD4+ cells and their differentiation into pathogenic proinflammatory TH17 cells and identified BCL2A1 as a potential target in the control of autoimmune/inflammatory diseases.

  8. The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment.

    PubMed

    Crépin, Delphine; Benomar, Yacir; Riffault, Laure; Amine, Hamza; Gertler, Arieh; Taouis, Mohammed

    2014-03-25

    Early in life, leptin plays a crucial role in hypothalamic neural organization. Leptin, most likely, controls neural gene expression conferring then specific phenotype regarding energy homeostasis. MicroRNAs are new regulators for several physiological functions, including the regulation of metabolism. However, the impact of leptin on hypothalamic microRNA patterns remains unknown. Here, we demonstrate that miR-200a, miR-200b and miR-429 are up-regulated in the hypothalamus of genetically obese and leptin deficient ob/ob mice. Leptin treatment down-regulates these miRNAs in ob/ob hypothalamus. The hypothalamic silencing of miR-200a increased the expression level of leptin receptor and insulin receptor substrate 2, reduced body weight gain, and restored liver insulin responsiveness. In addition, the overexpression of pre-miR-200a in a human neuroblastoma cell line impaired insulin and leptin signaling. These findings link the alteration of leptin and insulin signaling to the up-regulation of hypothalamic miR-200a which could be a new target for treatment of obesity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis.

    PubMed

    Wu, Zhen; Shi, Wangping; Jiang, Chendi

    2018-08-25

    Circular RNAs (circRNAs) are a novel class of noncoding RNAs, whose importance in cancer has been gradually acknowledged. However, the functions of circRNAs in tumorigenesis have not been fully understood. In the present study, we identified a novel circRNA hsa_circ_0002052 significantly downregulated in osteosarcoma (OS) tissues and cell lines. Moreover, we found that hsa_circ_0002052 could act as a biomarker to indicate the prognosis of OS patients. Functionally, we showed that hsa_circ_0002052 overexpression significantly suppressed OS cell proliferation, migration and invasion while promoting apoptosis in vitro. Similarly, in vivo assay indicated that ectopic expression of hsa_circ_0002052 impaired OS cell growth. In terms of mechanism, we found that hsa_circ_0002052 inhibited miR-1205 while miR1205 targeted APC2, a negative regulator of Wnt/β-catenin signaling pathway. By releasing the inhibition of miR-1205 on APC2 expression, hsa_circ_0002052 suppressed the activation of Wnt/β-catenin signaling pathway, leading to attenuated OS progression. Taken together, our study for the first time revealed a suppressive circRNA hsa_circ_0002052 involved in OS progression. Our study suggested hsa_circ_0002052/miR-1205/APC2/Wnt/β-catenin axis might be a potential target for OS therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Impaired natriuretic response to high-NaCl diet plus aldosterone infusion in mice overexpressing human CD39, an ectonucleotidase (NTPDase1).

    PubMed

    Zhang, Yue; Robson, Simon C; Morris, Kaiya L; Heiney, Kristina M; Dwyer, Karen M; Kishore, Bellamkonda K; Ecelbarger, Carolyn M

    2015-06-15

    Extracellular nucleotides acting through P2 receptors facilitate natriuresis. To define how purinergic mechanisms are involved in sodium homeostasis, we used transgenic (TG) mice that globally overexpress human CD39 (hCD39, NTPDase1), an ectonucleotidase that hydrolyzes extracellular ATP/ADP to AMP, resulting in an altered extracellular purine profile. On a high-sodium diet (HSD, 3.5% Na(+)), urine volume and serum sodium were significantly higher in TG mice but sodium excretion was unaltered. Furthermore, TG mice showed an attenuated fall in urine aldosterone with HSD. Western blot analysis revealed significantly lower densities (∼40%) of the β-subunit of the epithelial sodium channel (ENaC) in medulla, and the major band (85-kDa) of γ-ENaC in TG mice cortex. To evaluate aldosterone-independent differences, in a second experiment, aldosterone was clamped by osmotic minipump at 20 μg/day, and mice were fed either an HSD or a low-sodium diet (LSD, 0.03% Na(+)). Here, no differences in urine volume or osmolality, or serum aldosterone were found, but TG mice showed a modest, yet significant impairment in late natriuresis (days 3 and 4). Several major sodium transporters or channel subunits were differentially expressed between the genotypes. HSD caused a downregulation of Na-Cl cotransporter (NCC) in both genotypes; and had higher cortical levels of NCC, Na-K-ATPase (α-1 subunit), and α- and γ-ENaC. The Na-K-2Cl cotransporter (NKCC2) was downregulated by HSD in wild-type mice, but it increased in TG mice. In summary, our data support the concept that extracellular nucleotides facilitate natriuresis; they also reveal an aldosterone-independent downregulation of major renal sodium transporters and channel subunits by purinergic signaling.

  11. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function.

    PubMed

    He, Xiaoyu; Lai, Qiaohong; Chen, Cai; Li, Na; Sun, Fei; Huang, Wenting; Zhang, Shu; Yu, Qilin; Yang, Ping; Xiong, Fei; Chen, Zhishui; Gong, Quan; Ren, Boxu; Weng, Jianping; Eizirik, Décio L; Zhou, Zhiguang; Wang, Cong-Yi

    2018-04-01

    Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9 Δbeta ) and transgenic (Ubc9 Tg ) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. Upon induction of Ubc9 deficiency, Ubc9 Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9 f/f control islets. Islets from Ubc9 Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9 Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9 Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9 Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9 Δbeta mice, which spontaneously developed diabetes, Ubc9 Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in

  12. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space

    PubMed Central

    Miao, Zhengqiang; Tan, Kaeling; Vyas, Valmik K.; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E.

    2018-01-01

    The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition. PMID:29590106

  13. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.

    PubMed

    Veri, Amanda O; Miao, Zhengqiang; Shapiro, Rebecca S; Tebbji, Faiza; O'Meara, Teresa R; Kim, Sang Hu; Colazo, Juan; Tan, Kaeling; Vyas, Valmik K; Whiteway, Malcolm; Robbins, Nicole; Wong, Koon Ho; Cowen, Leah E

    2018-03-01

    The capacity to respond to temperature fluctuations is critical for microorganisms to survive within mammalian hosts, and temperature modulates virulence traits of diverse pathogens. One key temperature-dependent virulence trait of the fungal pathogen Candida albicans is its ability to transition from yeast to filamentous growth, which is induced by environmental cues at host physiological temperature. A key regulator of temperature-dependent morphogenesis is the molecular chaperone Hsp90, which has complex functional relationships with the transcription factor Hsf1. Although Hsf1 controls global transcriptional remodeling in response to heat shock, its impact on morphogenesis remains unknown. Here, we establish an intriguing paradigm whereby overexpression or depletion of C. albicans HSF1 induces morphogenesis in the absence of external cues. HSF1 depletion compromises Hsp90 function, thereby driving filamentation. HSF1 overexpression does not impact Hsp90 function, but rather induces a dose-dependent expansion of Hsf1 direct targets that drives overexpression of positive regulators of filamentation, including Brg1 and Ume6, thereby bypassing the requirement for elevated temperature during morphogenesis. This work provides new insight into Hsf1-mediated environmentally contingent transcriptional control, implicates Hsf1 in regulation of a key virulence trait, and highlights fascinating biology whereby either overexpression or depletion of a single cellular regulator induces a profound developmental transition.

  14. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    PubMed Central

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  15. The over-expression of the β2 catalytic subunit of the proteasome decreases homologous recombination and impairs DNA double-strand break repair in human cells.

    PubMed

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  16. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    PubMed Central

    Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro

    2011-01-01

    By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p. PMID:21660142

  17. Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots.

    PubMed

    Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang

    2013-01-01

    Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.

  18. AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease.

    PubMed

    Ip, Chi Wang; Klaus, Laura-Christin; Karikari, Akua A; Visanji, Naomi P; Brotchie, Jonathan M; Lang, Anthony E; Volkmann, Jens; Koprich, James B

    2017-02-01

    α-Synuclein is a protein implicated in the etiopathogenesis of Parkinson's disease (PD). AAV1/2-driven overexpression of human mutated A53T-α-synuclein in rat and monkey substantia nigra (SN) induces degeneration of nigral dopaminergic neurons and decreases striatal dopamine and tyrosine hydroxylase (TH). Given certain advantages of the mouse, especially it being amendable to genetic manipulation, translating the AAV1/2-A53T α-synuclein model to mice would be of significant value. AAV1/2-A53T α-synuclein or AAV1/2 empty vector (EV) at a concentration of 5.16 x 10 12 gp/ml were unilaterally injected into the right SN of male adult C57BL/6 mice. Post-mortem examinations included immunohistochemistry to analyze nigral α-synuclein, Ser129 phosphorylated α-synuclein and TH expression, striatal dopamine transporter (DAT) levels by autoradiography and dopamine levels by high performance liquid chromatography. At 10 weeks, in AAV1/2-A53T α-synuclein mice there was a 33% reduction in TH+ dopaminergic nigral neurons (P < 0.001), 29% deficit in striatal DAT binding (P < 0.05), 38% and 33% reductions in dopamine (P < 0.001) and DOPAC (P < 0.01) levels and a 60% increase in dopamine turnover (homovanilic acid/dopamine ratio; P < 0.001). Immunofluorescence showed that the AAV1/2-A53T α-synuclein injected mice had widespread nigral and striatal expression of vector-delivered A53T-α-synuclein. Concurrent staining with human PD SN samples using gold standard histological methodology for Lewy pathology detection by proteinase K digestion and application of specific antibody raised against human Lewy body α-synuclein (LB509) and Ser129 phosphorylated α-synuclein (81A) revealed insoluble α-synuclein aggregates in AAV1/2-A53T α-synuclein mice resembling Lewy-like neurites and bodies. In the cylinder test, we observed significant paw use asymmetry in the AAV1/2-A53T α-synuclein group when compared to EV controls at 5 and 9 weeks post injection (P

  19. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    ERIC Educational Resources Information Center

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  20. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse

    PubMed Central

    Tichauer, Juan Enrique; Morales, María Gabriela; Amigo, Ludwig; Galdames, Leopoldo; Klein, Andrés; Quiñones, Verónica; Ferrada, Carla; R, Alejandra Alvarez; Rio, Marie-Christine; Miquel, Juan Francisco; Rigotti, Attilio; Zanlungo, Silvana

    2007-01-01

    AIM: To examine the in vivo phenotype associated with hepatic metastatic lymph node 64 (MLN64) over-expression. METHODS: Recombinant-adenovirus-mediated MLN64 gene transfer was used to overexpress MLN64 in the livers of C57BL/6 mice. We measured the effects of MLN64 overexpression on hepatic cholesterol content, bile flow, biliary lipid secretion and apoptosis markers. For in vitro studies cultured CHO cells with transient MLN64 overexpression were utilized and apoptosis by TUNEL assay was measured. RESULTS: Livers from Ad.MLN64-infected mice exhibited early onset of liver damage and apoptosis. This response correlated with increases in liver cholesterol content and biliary bile acid concentration, and impaired bile flow. We investigated whether liver MLN64 expression could be modulated in a murine model of hepatic injury. We found increased hepatic MLN64 mRNA and protein levels in mice with chenodeoxycholic acid-induced liver damage. In addition, cultured CHO cells with transient MLN64 overexpression showed increased apoptosis. CONCLUSION: In summary, hepatic MLN64 over-expression induced damage and apoptosis in murine livers and altered cholesterol metabolism. Further studies are required to elucidate the relevance of these findings under physiologic and disease conditions. PMID:17589922

  1. Visual Impairment

    MedlinePlus

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ...

  2. Thidoredxin-2 overexpression fails to rescue chronic high calorie diet induced hippocampal dysfunction.

    PubMed

    Liu, Yong; Yang, Ying; Dong, Hui; Cutler, Roy G; Strong, Randy; Mattson, Mark P

    2016-01-01

    A high calorie diet (HCD) can impair hippocampal synaptic plasticity and cognitive function in animal models. Mitochondrial thioredoxin 2 (TRX-2) is critical for maintaining intracellular redox status, but whether it can protect against HCD-induced impairment of synaptic plasticity is unknown. We found that levels of TRX-2 are reduced in the hippocampus of wild type mice maintained for 8 months on a HCD, and that the mice on the HCD exhibit impaired hippocampal synaptic plasticity (long-term potentiation at CA1 synapses) and cognitive function (novel object recognition). Transgenic mice overexpressing human TRX-2 (hTRX-2) exhibit increased resistance to diquat-induced oxidative stress in peripheral tissues. However, neither the HCD nor hTRX-2 overexpression affected levels of lipid peroxidation products (F2 isoprostanes) in the hippocampus, and hTRX-2 transgenic mice were not protected against the adverse effects of the HCD on hippocampal synaptic plasticity and cognitive function. Our findings indicate that TRX-2 overexpression does not mitigate adverse effects of a HCD on synaptic plasticity, and also suggest that oxidative stress may not be a pivotal factor in the impairment of synaptic plasticity and cognitive function caused by HCDs. Published by Elsevier Inc.

  3. Taste - impaired

    MedlinePlus

    ... last slightly longer. Causes of impaired taste include: Bell's palsy Common cold Flu and other viral infections Nasal ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  4. Hearing Impairment

    MedlinePlus

    ... deafness ) or loses hearing later in life (after learning to hear and speak, which is known as ... Impaired? For people who lose their hearing after learning to speak and hear, it can be difficult ...

  5. Impaired Driving

    MedlinePlus

    ... 497 people died in alcohol-impaired driving crashes, accounting for 28% of all traffic-related deaths in ... visual and auditory information processing *Blood Alcohol Concentration Measurement The number of drinks listed represents the approximate ...

  6. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  7. Habituation, discrimination and anxiety in transgenic mice overexpressing acetylcholinesterase splice variants.

    PubMed

    Kofman, Ora; Shavit, Yehoshua; Ashkenazi, Sarit; Gabay, Shai

    2007-12-14

    TgS and TgR transgenic mice overexpress different splice variants of acetylcholinesterase and serve as models for genetic disruption of the cholinergic system. Whereas the TgS mouse overexpresses synaptic AChE, the TgR mouse overexpresses the rare readthrough variant whose C-terminal lacks the cysteine residue which permits adherence to the membrane. The two genotypes were compared to the parent strain, FVB/N mice on locomotion, discrimination learning and anxiety behavior following two exposures to the elevated plus maze. Male TgS mice were slower to acquire a simple odor discrimination, failed to habituate to a novel environment but were not impaired on reversal or set shifting compared to the FVB/N or TgR mice. In addition, TgS mice showed less avoidance behavior on the first exposure and but less exploration on the second exposure to the EPM. TgR mice were not impaired on discrimination learning; however, the females showed excessive running in circles in the activity meter. The findings suggest that the effects of overexpression of AChE are unique to different splice variants and may be sex-dependent.

  8. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin

    PubMed Central

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N.; Matuschewski, Kai

    2016-01-01

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1–3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin–binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. PMID:27226484

  9. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    PubMed Central

    Hinds, Terry D.; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S.

    2016-01-01

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids. PMID:26875982

  10. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    PubMed

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  11. CREB Overexpression Ameliorates Age-related Behavioral and Biophysical Deficits

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Wen

    Age-related cognitive deficits are observed in both humans and animals. Yet, the molecular mechanisms underlying these deficits are not yet fully elucidated. In aged animals, a decrease in intrinsic excitability of pyramidal neurons from the CA1 sub-region of hippocampus is believed to contribute to age-related cognitive impairments, but the molecular mechanism(s) that modulate both these factors has yet to be identified. Increasing activity of the transcription factor cAMP response element-binding protein (CREB) in young adult rodents has been shown to facilitate cognition, and increase intrinsic excitability of their neurons. However, how CREB changes with age, and how that impacts cognition in aged animals, is not clear. Therefore, we first systematically characterized age- and training-related changes in CREB levels in dorsal hippocampus. At a remote time point after undergoing behavioral training, levels of total CREB and activated CREB (phosphorylated at S133, pCREB) were measured in both young and aged rats. We found that pCREB, but not total CREB was significantly reduced in dorsal CA1 of aged rats. Importantly, levels of pCREB were found to be positively correlated with short-term spatial memory in both young and aged rats i.e. higher pCREB in dorsal CA1 was associated with better spatial memory. These findings indicate that an age-related deficit in CREB activity may contribute to the development of age-related cognitive deficits. However, it was still unclear if increasing CREB activity would be sufficient to ameliorate age-related cognitive, and biophysical deficits. To address this question, we virally overexpressed CREB in CA1, where we found the age-related deficit. Young and aged rats received control or CREB virus, and underwent water maze training. While control aged animals exhibited deficits in long-term spatial memory, aged animals with CREB overexpression performed at levels comparable to young animals. Concurrently, aged neurons

  12. Physical Impairment

    NASA Astrophysics Data System (ADS)

    Trewin, Shari

    Many health conditions can lead to physical impairments that impact computer and Web access. Musculoskeletal conditions such as arthritis and cumulative trauma disorders can make movement stiff and painful. Movement disorders such as tremor, Parkinsonism and dystonia affect the ability to control movement, or to prevent unwanted movements. Often, the same underlying health condition also has sensory or cognitive effects. People with dexterity impairments may use a standard keyboard and mouse, or any of a wide range of alternative input mechanisms. Examples are given of the diverse ways that specific dexterity impairments and input mechanisms affect the fundamental actions of Web browsing. As the Web becomes increasingly sophisticated, and physically demanding, new access features at the Web browser and page level will be necessary.

  13. Impaired Driving

    MedlinePlus

    ... texting Having a medical condition which affects your driving For your safety and the safety of others, do not drive while impaired. Have someone else drive you or take public transportation when you cannot drive. If you need to take a call or send a text ...

  14. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy.

    PubMed

    Altmann, Christine; Hardt, Stefanie; Fischer, Caroline; Heidler, Juliana; Lim, Hee-Young; Häussler, Annett; Albuquerque, Boris; Zimmer, Béla; Möser, Christine; Behrends, Christian; Koentgen, Frank; Wittig, Ilka; Schmidt, Mirko H H; Clement, Albrecht M; Deller, Thomas; Tegeder, Irmgard

    2016-12-01

    Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Capsule Depolymerase Overexpression Reduces Bacillus anthracis Virulence

    DTIC Science & Technology

    2010-01-01

    protein that autocatalytically forms a heterodimer consisting of 35 kDa and 15 kDa subunits. CapD shares 32 % identity with the Bacillus subtilis GGT and 35...Immun 49, 291–297. Kimura, K., Tran, L. S., Uchida, I. & Itoh, Y. (2004). Characterization of Bacillus subtilis gamma-glutamyltransferase and its...Capsule depolymerase overexpression reduces Bacillus anthracis virulence Angelo Scorpio,3 Donald J. Chabot, William A. Day,4 Timothy A. Hoover and

  16. Hand1 overexpression inhibits medulloblastoma metastasis.

    PubMed

    Asuthkar, Swapna; Guda, Maheedhara R; Martin, Sarah E; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J; Velpula, Kiran K

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hand1 overexpression inhibits medulloblastoma metastasis

    SciTech Connect

    Asuthkar, Swapna; Guda, Maheedhara R.; Martin, Sarah E.

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Amongmore » the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over

  18. PA700, the regulatory complex of the 26S proteasome, interferes with alpha-synuclein assembly.

    PubMed

    Ghee, Medeva; Melki, Ronald; Michot, Nadine; Mallet, Jacques

    2005-08-01

    Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.

  19. Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin.

    PubMed

    Sato, Yuko; Hliscs, Marion; Dunst, Josefine; Goosmann, Christian; Brinkmann, Volker; Montagna, Georgina N; Matuschewski, Kai

    2016-07-15

    Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1-3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin-binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping. © 2016 Sato et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Nuclear overexpression of the overexpressed in lung cancer 1 predicts worse prognosis in gastric adenocarcinoma.

    PubMed

    Wang, Jue; Shen, Hongchang; Fu, Guobin; Zhao, Dandan; Wang, Weibo

    2017-02-07

    We have performed this retrospective study to elucidate whether elevated expression of the overexpressed in lung cancer 1 (OLC1) was related to the clinicopathological parameters and prognosis of patients with gastric adenocarcinoma. Additionally, different effects of various subcellular OLC1 expression on gastric adeno-carcinogenesis were focused on in our study. Both overall and subcellular expression of OLC1 was evaluated by immunohistochemistry(IHC) via tissue microarrays from total 393 samples. The Kaplan-Meier method and Cox's proportional hazard model were exerted to further explore the correlation between OLC1 and prognosis. Total overexpression of OLC1 was significantly associated with stage (P = 0.004) and differentiation (P = 0.009), and only the strong total expression could predict a poor prognosis (HR = 1.31, P = 0.04). There were significant associations found between nuclear overexpression and tumor invasion depth(P = 0.002), lymph node (P < 0.001), stage (P = 0.004), differentiation (P < 0.001) and smoking history (P = 0.045). Furthermore, over-expressed nuclear OLC1 protein could be an independent risk factor for gastric adenocarcinoma (univariate: HR = 1.43, P = 0.003; multivariate: HR = 1.39, P = 0.011). In general, both total and nuclear overexpression of OLC1 could be the signs of gastric adeno-carcinogenesis, which might be served as the biomarkers for diagnosis at an early stage, even at the onset of tumorigenesis. Rather than the total expression, nuclear overexpression of OLC1 was correlated with most clinicopathological parameters and could predict a poor overall survival as an independent factor for prognosis, which made it a more effective and sensitive biomarker for gastric adenocarcinoma.

  1. Frequent Nek1 overexpression in human gliomas

    SciTech Connect

    Zhu, Jun; Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; Cai, Yu, E-mail: aihaozuqiu22@163.com

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG,more » U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.« less

  2. Interleukin-6 overexpression induces pulmonary hypertension.

    PubMed

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  3. Nucleophosmin is overexpressed in thyroid tumors

    SciTech Connect

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed inmore » tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.« less

  4. Mild Cognitive Impairment

    MedlinePlus

    ... your local chapter Join our online community Mild Cognitive Impairment Mild cognitive impairment (MCI) causes a slight ... About Symptoms Diagnosis Causes & risks Treatments About Mild Cognitive Impairment Prevalence of MCI Approximately 15 to 20 ...

  5. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice

    PubMed Central

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher anxiety-like scores, high self-grooming, impaired prepulse inhibition, and higher susceptibility to seizures when placed in a new empty cage, as compared with wild-type (WT) littermate controls. Control measures of general health, locomotor activity, motor coordination, depression-related behaviors, and sociability did not differ between genotypes. The present findings, indicating detrimental effects of life-long increased BDNF in mice, may inform human studies evaluating the role of BDNF functional genetic variations on cognitive abilities and vulnerability to psychiatric disorders. PMID:21791566

  6. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia.

    PubMed

    Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G

    2009-09-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.

  7. Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia

    PubMed Central

    Li, Xin; Gonzalez, Maria E.; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D.; Kleer, Celina G.

    2009-01-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with β-catenin, inducing β-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/β-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with β-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma. PMID:19661437

  8. Endothelial Nitric Oxide Synthase Overexpression Restores the Efficiency of Bone Marrow Mononuclear Cell-Based Therapy

    PubMed Central

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. PMID:21224043

  9. Activin C Antagonizes Activin A in Vitro and Overexpression Leads to Pathologies in Vivo

    PubMed Central

    Gold, Elspeth; Jetly, Niti; O'Bryan, Moira K.; Meachem, Sarah; Srinivasan, Deepa; Behuria, Supreeti; Sanchez-Partida, L. Gabriel; Woodruff, Teresa; Hedwards, Shelley; Wang, Hong; McDougall, Helen; Casey, Victoria; Niranjan, Birunthi; Patella, Shane; Risbridger, Gail

    2009-01-01

    Activin A is a potent growth and differentiation factor whose synthesis and bioactivity are tightly regulated. Both follistatin binding and inhibin subunit heterodimerization block access to the activin receptor and/or receptor activation. We postulated that the activin-βC subunit provides another mechanism regulating activin bioactivity. To test our hypothesis, we examined the biological effects of activin C and produced mice that overexpress activin-βC. Activin C reduced activin A bioactivity in vitro; in LNCaP cells, activin C abrogated both activin A-induced Smad signaling and growth inhibition, and in LβT2 cells, activin C antagonized activin A-mediated activity of an follicle-stimulating hormone-β promoter. Transgenic mice that overexpress activin-βC exhibited disease in testis, liver, and prostate. Male infertility was caused by both reduced sperm production and impaired sperm motility. The livers of the transgenic mice were enlarged because of an imbalance between hepatocyte proliferation and apoptosis. Transgenic prostates showed evidence of hypertrophy and epithelial cell hyperplasia. Additionally, there was decreased evidence of nuclear Smad-2 localization in the testis, liver, and prostate, indicating that overexpression of activin-βC antagonized Smad signaling in vivo. Underlying the significance of these findings, human testis, liver, and prostate cancers expressed increased activin-βC immunoreactivity. This study provides evidence that activin-βC is an antagonist of activin A and supplies an impetus to examine its role in development and disease. PMID:19095948

  10. Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression.

    PubMed

    Pietropaoli, Stefano; Leonetti, Alessia; Cervetto, Chiara; Venturini, Arianna; Mastrantonio, Roberta; Baroli, Giulia; Persichini, Tiziana; Colasanti, Marco; Maura, Guido; Marcoli, Manuela; Mariottini, Paolo; Cervelli, Manuela

    2018-02-03

    Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2'-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system x c - transporter, a Nrf-2 target, was observed. Sulfasalazine, a system x c - transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.

  11. Targeted anticancer therapy: overexpressed receptors and nanotechnology.

    PubMed

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alrokayan, Salman A; Kumar, Sudhir

    2014-09-25

    Targeted delivery of anticancer drugs to cancer cells and tissues is a promising field due to its potential to spare unaffected cells and tissues, but it has been a major challenge to achieve success in these therapeutic approaches. Several innovative approaches to targeted drug delivery have been devised based on available knowledge in cancer biology and on technological advancements. To achieve the desired selectivity of drug delivery, nanotechnology has enabled researchers to design nanoparticles (NPs) to incorporate anticancer drugs and act as nanocarriers. Recently, many receptor molecules known to be overexpressed in cancer have been explored as docking sites for the targeting of anticancer drugs. In principle, anticancer drugs can be concentrated specifically in cancer cells and tissues by conjugating drug-containing nanocarriers with ligands against these receptors. Several mechanisms can be employed to induce triggered drug release in response to either endogenous trigger or exogenous trigger so that the anticancer drug is only released upon reaching and preferentially accumulating in the tumor tissue. This review focuses on overexpressed receptors exploited in targeting drugs to cancerous tissues and the tumor microenvironment. We briefly evaluate the structure and function of these receptor molecules, emphasizing the elegant mechanisms by which certain characteristics of cancer can be exploited in cancer treatment. After this discussion of receptors, we review their respective ligands and then the anticancer drugs delivered by nanotechnology in preclinical models of cancer. Ligand-functionalized nanocarriers have delivered significantly higher amounts of anticancer drugs in many in vitro and in vivo models of cancer compared to cancer models lacking such receptors or drug carrying nanocarriers devoid of ligand. This increased concentration of anticancer drug in the tumor site enabled by nanotechnology could have a major impact on the efficiency of cancer

  12. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    PubMed Central

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  13. RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells

    PubMed Central

    Strillacci, A; Griffoni, C; Spisni, E; Manara, M C; Tomasi, V

    2006-01-01

    Silencing those genes that are overexpressed in cancer and contribute to the survival and progression of tumour cells is the aim of several researches. Cyclooxygenase-2 (COX-2) is one of the most intensively studied genes since it is overexpressed in most tumours, mainly in colon cancer. The use of specific COX-2 inhibitors to treat colon cancer has generated great enthusiasm. Yet, the side effects of some inhibitors emerging during long-term treatment have caused much concern. Genes silencing by RNA interference (RNAi) has led to new directions in the field of experimental oncology. In this study, we detected sequences directed against COX-2 mRNA, that potently downregulate COX-2 gene expression and inhibit phorbol 12-myristate 13-acetate-induced angiogenesis in vitro in a specific, nontoxic manner. Moreover, we found that the insertion of a specific cassette carrying anti-COX-2 short hairpin RNA sequence into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT29) without activating any interferon response. Phenotypically, COX-2 deficient HT29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, the retroviral approach enhancing COX-2 knockdown, mediated by RNAi, proved to be an useful tool to better understand the role of COX-2 in colon cancer. Furthermore, the higher infection efficiency we observed in tumour cells, if compared to normal endothelial cells, may disclose the possibility to specifically treat tumour cells without impairing endothelial COX-2 activity. PMID:16622456

  14. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.

    PubMed

    Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise

    2004-10-20

    Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.

  15. Overexpression of Insulin-Like Growth Factor 1 Enhanced the Osteogenic Capability of Aging Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Chen, Ching-Yun; Tseng, Kuo-Yun; Lai, Yen-Liang; Chen, Yo-Shen; Lin, Feng-Huei; Lin, Shankung

    2017-01-01

    Many studies have indicated that loss of the osteoblastogenic potential in bone marrow mesenchymal stem cells (bmMSCs) is the major component in the etiology of the aging-related bone deficit. But how the bmMSCs lose osteogenic capability in aging is unclear. Using 2-dimentional cultures, we examined the dose response of human bmMSCs, isolated from adult and aged donors, to exogenous insulin-like growth factor 1 (IGF-1), a growth factor regulating bone formation. The data showed that the mitogenic activity and the osteoblastogenic potential of bmMSCs in response to IGF-1 were impaired with aging, whereas higher doses of IGF-1 increased the proliferation rate and osteogenic potential of aging bmMSCs. Subsequently, we seeded IGF-1-overexpressing aging bmMSCs into calcium-alginate scaffolds and incubated in a bioreactor with constant perfusion for varying time periods to examine the effect of IGF-1 overexpression to the bone-forming capability of aging bmMSCs. We found that IGF-1 overexpression in aging bmMSCs facilitated the formation of cell clusters in scaffolds, increased the cell survival inside the cell clusters, induced the expression of osteoblast markers, and enhanced the biomineralization of cell clusters. These results indicated that IGF-1 overexpression enhanced cells' osteogenic capability. Thus, our data suggest that the aging-related loss of osteogenic potential in bmMSCs can be attributed in part to the impairment in bmMSCs' IGF-1 signaling, and support possible application of IGF-1-overexpressing autologous bmMSCs in repairing bone defect of the elderly and in producing bone graft materials for repairing large scale bone injury in the elderly.

  16. DEK oncogene is overexpressed during melanoma progression.

    PubMed

    Riveiro-Falkenbach, Erica; Ruano, Yolanda; García-Martín, Rosa M; Lora, David; Cifdaloz, Metehan; Acquadro, Francesco; Ballestín, Claudio; Ortiz-Romero, Pablo L; Soengas, María S; Rodríguez-Peralto, José L

    2017-03-01

    DEK is an oncoprotein involved in a variety of cellular functions, such as DNA repair, replication, and transcriptional control. DEK is preferentially expressed in actively proliferating and malignant cells, including melanoma cell lines in which DEK was previously demonstrated to play a critical role in proliferation and chemoresistance. Still, the impact of this protein in melanoma progression remains unclear. Thus, we performed a comprehensive analysis of DEK expression in different melanocytic tumors. The immunostaining results of 303 tumors demonstrated negligible DEK expression in benign lesions. Conversely, malignant lesions, particularly in metastatic cases, were largely positive for DEK expression, which was partially associated with genomic amplification. Importantly, DEK overexpression was correlated with histological features of aggressiveness in primary tumors and poor prognosis in melanoma patients. In conclusion, our study provides new insight into the involvement of DEK in melanoma progression, as well as proof of concept for its potential application as a marker and therapeutic target of melanoma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    PubMed Central

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  18. ZIC1 Overexpression Is Oncogenic in Liposarcoma

    PubMed Central

    Brill, Elliott; Gobble, Ryan; Angeles, Christina; Lagos-Quintana, Mariana; Crago, Aimee; Laxa, Bernadette; DeCarolis, Penelope; Zhang, Lei; Antonescu, Cristina; Socci, Nicholas D.; Taylor, Barry S.; Sander, Chris; Koff, Andrew; Singer, Samuel

    2012-01-01

    Liposarcomas are aggressive mesenchymal cancers with poor outcomes that exhibit remarkable histologic diversity, with five recognized subtypes. Currently, the mainstay of therapy for liposarcoma is surgical excision since liposarcomas are often resistant to traditional chemotherapy. In light of the high mortality associated with liposarcoma and the lack of effective systemic therapy, we sought novel genomic alterations driving liposarcomagenesis that might serve as therapeutic targets. ZIC1, a critical transcription factor for neuronal development, is overexpressed in all five subtypes of liposarcoma compared with normal fat and in liposarcoma cell lines compared with adipose-derived stem cells (ASC). Here we show that ZIC1 contributes to the pathogenesis of liposarcoma. ZIC1 knockdown inhibits proliferation, reduces invasion, and induces apoptosis in dedifferentiated and myxoid/round cell liposarcoma cell lines, but not in either ASC or a lung cancer cell line with low ZIC1 expression. ZIC1 knockdown is associated with increased nuclear expression of p27 protein, and the down-regulation of pro-survival target genes: BCL2L13, JunD, Fam57A, and EIF3M. Our results demonstrate that ZIC1 expression is essential for liposarcomagenesis and that targeting ZIC1 or its downstream targets may lead to novel therapy for liposarcoma. PMID:20713527

  19. Overexpression of Buffy enhances the loss of parkin and suppresses the loss of Pink1 phenotypes in Drosophila.

    PubMed

    M'Angale, P Githure; Staveley, Brian E

    2017-03-01

    Mutations in parkin (PARK2) and Pink1 (PARK6) are responsible for autosomal recessive forms of early onset Parkinson's disease (PD). Attributed to the failure of neurons to clear dysfunctional mitochondria, loss of gene expression leads to loss of nigrostriatal neurons. The Pink1/parkin pathway plays a role in the quality control mechanism aimed at eliminating defective mitochondria, and the failure of this mechanism results in a reduced lifespan and impaired locomotor ability, among other phenotypes. Inhibition of parkin or Pink1 through the induction of stable RNAi transgene in the Ddc-Gal4-expressing neurons results in such phenotypes to model PD. To further evaluate the effects of the overexpression of the Bcl-2 homologue Buffy, we analysed lifespan and climbing ability in both parkin-RNAi- and Pink1-RNAi-expressing flies. In addition, the effect of Buffy overexpression upon parkin-induced developmental eye defects was examined through GMR-Gal4-dependent expression. Curiously, Buffy overexpression produced very different effects: the parkin-induced phenotypes were enhanced, whereas the Pink1-enhanced phenotypes were suppressed. Interestingly, the overexpression of Buffy along with the inhibition of parkin in the neuron-rich eye results in the suppression of the developmental eye defects.

  20. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    PubMed Central

    Macovei, Anca; Faè, Matteo; Biggiogera, Marco; de Sousa Araújo, Susana; Carbonera, Daniela; Balestrazzi, Alma

    2018-01-01

    The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells. PMID:29868059

  1. Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism

    PubMed Central

    Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A.; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua

    2017-01-01

    Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMPK signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling. PMID:25616953

  2. Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.

    PubMed

    Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua

    2016-03-01

    Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.

  3. Mild Cognitive Impairment (MCI)

    MedlinePlus

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It ...

  4. Impaired Waters and TMDLs

    EPA Pesticide Factsheets

    The 303(d) program provides guidance and technical resources to assist States in submitting lists of impaired waterbodies and the development of Total Maximum Daily Loads of the pollutant causing the impairment.

  5. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance.

    PubMed

    Okochi, Mina; Kanie, Kei; Kurimoto, Masaki; Yohda, Masafumi; Honda, Hiroyuki

    2008-06-01

    Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.

  6. Adapting for Impaired Patrons.

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1999-01-01

    Describes how a library, with an MCI Corporation grant, approached the process of setting up computers for the visually impaired. Discusses preparations, which included hiring a visually-impaired user as a consultant and contacting the VIP (Visually Impaired Persons) group; equipment; problems with the graphical user interface; and training.…

  7. The Impaired Social Worker.

    ERIC Educational Resources Information Center

    Reamer, Frederic G.

    1992-01-01

    Discusses concept of the impaired professional; reviews research on various types of impairment (personality disorders, depression and other emotional problems, marital problems, and physical illness), prevalence and causes of impairment, and responses to it; and outlines model assessment and action plan for social workers who encounter an…

  8. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    PubMed Central

    Rey, Pascal; Sanz-Barrio, Ruth; Innocenti, Gilles; Ksas, Brigitte; Courteille, Agathe; Rumeau, Dominique; Issakidis-Bourguet, Emmanuelle; Farran, Inmaculada

    2013-01-01

    Plants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast. PMID:24137166

  9. Endothelial nitric oxide synthase overexpression restores the efficiency of bone marrow mononuclear cell-based therapy.

    PubMed

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. cFLIP overexpression in T cells in thymoma-associated myasthenia gravis

    PubMed Central

    Belharazem, Djeda; Schalke, Berthold; Gold, Ralf; Nix, Wilfred; Vitacolonna, Mario; Hohenberger, Peter; Roessner, Eric; Schulze, Torsten J; Saruhan-Direskeneli, Güher; Yilmaz, Vuslat; Ott, German; Ströbel, Philipp; Marx, Alexander

    2015-01-01

    Objective The capacity of thymomas to generate mature CD4+ effector T cells from immature precursors inside the tumor and export them to the blood is associated with thymoma-associated myasthenia gravis (TAMG). Why TAMG(+) thymomas generate and export more mature CD4+ T cells than MG(−) thymomas is unknown. Methods Unfixed thymoma tissue, thymocytes derived thereof, peripheral blood mononuclear cells (PBMCs), T-cell subsets and B cells were analysed using qRT-PCR and western blotting. Survival of PBMCs was measured by MTT assay. FAS-mediated apoptosis in PBMCs was quantified by flow cytometry. NF-κB in PBMCs was inhibited by the NF-κB-Inhibitor, EF24 prior to FAS-Ligand (FASLG) treatment for apoptosis induction. Results Expression levels of the apoptosis inhibitor cellular FLICE-like inhibitory protein (c-FLIP) in blood T cells and intratumorous thymocytes were higher in TAMG(+) than in MG(−) thymomas and non-neoplastic thymic remnants. Thymocytes and PBMCs of TAMG patients showed nuclear NF-κB accumulation and apoptosis resistance to FASLG stimulation that was sensitive to NF-κB blockade. Thymoma removal reduced cFLIP expression in PBMCs. Interpretation We conclude that thymomas induce cFLIP overexpression in thymocytes and their progeny, blood T cells. We suggest that the stronger cFLIP overexpression in TAMG(+) compared to MG(−) thymomas allows for the more efficient generation of mature CD4+ T cells in TAMG(+) thymomas. cFLIP overexpression in thymocytes and exported CD4+ T cells of patients with TAMG might contribute to the pathogenesis of TAMG by impairing central and peripheral T-cell tolerance. PMID:26401511

  11. Neuroprotective effects of Bcl-2 overexpression on nerve cells of rats with acute cerebral infarction.

    PubMed

    Zhang, H R; Peng, J H; Zhu, G Y; Xu, R X

    2015-07-13

    We aimed to investigate the influence of lentiviral-mediated Bcl-2 overexpression in cerebral tissues of rats with acute cerebral infarction. Forty-five rats were randomly divided into sham, model, and treatment groups. The sham and model groups were administered a control lentiviral vector via the intracranial arteries 10 days before surgery, while the treatment group received lentivirus encoding a Bcl-2 overexpression vector. We induced cerebral artery infarction using a suture-occlusion method and analyzed the cerebral expression levels of apoptosis-related genes (caspase-3, Bax), total cerebral apoptosis, range of cerebral tissue infarction, and changes in nerve cell function after 72 h. The Bcl-2-encoding lentivirus was well expressed in rat cerebral tissues. The treatment group had significantly higher expression levels of Bcl-2 than the other two groups. After cerebral infarction, the model group had significantly increased expression levels of caspase-3 and Bax protein in cerebral tissues than the sham (P < 0.05). Expression of these apoptosis-related proteins in the treatment group was obviously lower than that in the model group (P < 0.05), but significantly higher than in the sham group (P < 0.05). Compared to sham, neuronal apoptosis levels and infarction range of cerebral tissues was increased in the model and treatment groups; however, these values in the treatment group were significantly lower than that in the model group (P < 0.05). Importantly, the treatment group had significantly decreased neurological impairment scores (P < 0.05). In conclusion, Bcl-2 over-expression can decrease neuronal apoptosis in rat cerebral tissue, and thus is neuroprotective after cerebral ischemia.

  12. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells

    SciTech Connect

    Li, Zanhua; The Chest Hospital of Jiangxi Province Department of Respiration; Jiang, Xunsheng

    2016-01-29

    Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosismore » (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.« less

  13. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia

    PubMed Central

    Horiki, Mitsuru; Imamura, Takeshi; Okamoto, Mina; Hayashi, Makoto; Murai, Junko; Myoui, Akira; Ochi, Takahiro; Miyazono, Kohei; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2004-01-01

    Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo. PMID:15123739

  14. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation.

    PubMed

    Antonchuk, J; Sauvageau, G; Humphries, R K

    2001-09-01

    Hox transcription factors have emerged as important regulators of hematopoiesis. In particular, we have shown that overexpression of HOXB4 in mouse bone marrow can greatly enhance the level of hematopoietic stem cell (HSC) regeneration achieved at late times (> 4 months) posttransplantation. The objective of this study was to resolve if HOXB4 increases the rate and/or duration of HSC regeneration, and also to see if this enhancement was associated with impaired production of end cells or would lead to competitive reconstitution of all compartments. Retroviral vectors were generated with the GFP reporter gene +/- HOXB4 to enable the isolation and direct tracking of transduced cells in culture or following transplantation. Stem cell recovery was measured by limit dilution assay for long-term competitive repopulating cells (CRU). HOXB4-overexpressing cells have enhanced growth in vitro, as demonstrated by their rapid dominance in mixed cultures and their shortened population doubling time. Furthermore, HOXB4-transduced cells have a marked competitive repopulating advantage in vivo in both primitive and mature compartments. CRU recovery in HOXB4 recipients was extremely rapid, reaching 25% of normal by 14 days posttransplant or some 80-fold greater than control transplant recipients, and attaining normal numbers by 12 weeks. Mice transplanted with even higher numbers of HOXB4-transduced CRU regenerated up to but not beyond the normal CRU levels. HOXB4 is a potent enhancer of primitive hematopoietic cell growth, likely by increasing self-renewal probability but without impairing homeostatic control of HSC population size or the rate of production and maintenance of mature end cells.

  15. Targeted overexpression of amelotin disrupts the microstructure of dental enamel.

    PubMed

    Lacruz, Rodrigo S; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L; White, Shane N; Paine, Michael L; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.

  16. Targeted Overexpression of Amelotin Disrupts the Microstructure of Dental Enamel

    PubMed Central

    Lacruz, Rodrigo S.; Nakayama, Yohei; Holcroft, James; Nguyen, Van; Somogyi-Ganss, Eszter; Snead, Malcolm L.; White, Shane N.; Paine, Michael L.; Ganss, Bernhard

    2012-01-01

    We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms. PMID:22539960

  17. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  18. Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1

    PubMed Central

    Zhang, Yue; Morris, Kaiya L.; Sparrow, Shannon K.; Dwyer, Karen M.; Enjyoji, Keiichi; Robson, Simon C.

    2012-01-01

    Ectonucleoside triphosphate diphosphohydrolase-1 hydrolyzes extracellular ATP and ADP to AMP. Previously, we showed that CD39 is expressed at several sites within the kidney and thus may impact the availability of type 2 purinergic receptor (P2-R) ligands. Because P2-Rs appear to regulate urinary concentrating ability, we have evaluated renal water handling in transgenic mice (TG) globally overexpressing hCD39. Under basal conditions, TG mice exhibited significantly impaired urinary concentration and decreased protein abundance of AQP2 in the kidney compared with wild-type (WT) mice. Urinary excretion of total nitrates/nitrites was significantly higher in TG mice, but the excretion of AVP or PGE2 was equivalent to control WT mice. There were no significant differences in electrolyte-free water clearance or fractional excretion of sodium. Under stable hydrated conditions (gelled diet feeding), the differences between the WT and TG mice were negated, but the decrease in urine osmolality persisted. When water deprived, TG mice failed to adequately concentrate urine and exhibited impaired AVP responses. However, the increases in urinary osmolalities in response to subacute dDAVP or chronic AVP treatment were similar in TG and WT mice. These observations suggest that TG mice have impaired urinary concentrating ability despite normal AVP levels. We also note impaired AVP release in response to water deprivation but that TG kidneys are responsive to exogenous dDAVP or AVP. We infer that heightened nucleotide scavenging by increased levels of CD39 altered the release of endogenous AVP in response to dehydration. We propose that ectonucleotidases and modulated purinergic signaling impact urinary concentration and indicate potential utility of targeted therapy for the treatment of water balance disorders. PMID:22622462

  19. Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells.

    PubMed

    Martinez, Victor G; Ontoria-Oviedo, Imelda; Ricardo, Carolina P; Harding, Sian E; Sacedon, Rosa; Varas, Alberto; Zapata, Agustin; Sepulveda, Pilar; Vicente, Angeles

    2017-09-29

    Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK

  20. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice.

    PubMed

    Rodriguez-Ortiz, Carlos J; Hoshino, Hitomi; Cheng, David; Liu-Yescevitz, Liqun; Blurton-Jones, Mathew; Wolozin, Benjamin; LaFerla, Frank M; Kitazawa, Masashi

    2013-08-01

    Mutations in valosin-containing protein (VCP) cause a rare, autosomal dominant disease called inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD). One-third of patients with IBMPFD develop frontotemporal dementia, characterized by an extensive neurodegeneration in the frontal and temporal lobes. Neuropathologic hallmarks include nuclear and cytosolic inclusions positive to ubiquitin and transactive response DNA-binding protein 43 (TDP-43) in neurons and glial activation in affected regions. However, the pathogenic mechanisms by which mutant VCP triggers neurodegeneration remain unknown. Herein, we generated a mouse model selectively overexpressing a human mutant VCP in neurons to study pathogenic mechanisms of mutant VCP-mediated neurodegeneration and cognitive impairment. The overexpression of VCPA232E mutation in forebrain regions produced significant progressive impairments of cognitive function, including deficits in spatial memory, object recognition, and fear conditioning. Although overexpressed or endogenous VCP did not seem to focally aggregate inside neurons, TDP-43 and ubiquitin accumulated with age in transgenic mouse brains. TDP-43 was also found to co-localize with stress granules in the cytosolic compartment. Together with the appearance of high-molecular-weight TDP-43 in cytosolic fractions, these findings demonstrate the mislocalization and accumulation of abnormal TDP-43 in the cytosol of transgenic mice, which likely lead to an increase in cellular stress and cognitive impairment. Taken together, these results highlight an important pathologic link between VCP and cognition. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Biglycan Overexpression on Tooth Enamel Formation in Transgenic Mice

    PubMed Central

    Wen, Xin; Zou, YanMing; Luo, Wen; Goldberg, Michel; Moats, Rex; Conti, Peter S.; Snead, Malcolm L.; Paine, Michael L.

    2008-01-01

    Previously it was shown that the volume of forming enamel of molar teeth in biglycan-null mice was greater than in genetically matched wild-type mice. This phenotypic change appeared to result from an increase in amelogenin expression, implying that biglycan directly influences amelogenin synthesis. To determine whether biglycan over-expression resulted in decreased amelogenin expression, we engineered transgenic mice to over-express biglycan in the enamel organ epithelium. Biglycan over-expression did not significantly affect the amelogenin expression in incisor and molar teeth in 3-day transgenic mice. In the transgenic animals we observed that the immature and mature enamel appeared normal. These results suggested that increasing the biglycan expression, in the cells that synthesize the precursor protein matrix for enamel, has a negligible influence on amelogenesis. PMID:18727043

  2. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    PubMed

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. © 2015 International Federation for Cell Biology.

  3. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    PubMed Central

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  4. Transgenic sugarcane overexpressing CaneCPI-1 negatively affects the growth and development of the sugarcane weevil Sphenophorus levis.

    PubMed

    Schneider, Vanessa Karine; Soares-Costa, Andrea; Chakravarthi, Mohan; Ribeiro, Carolina; Chabregas, Sabrina Moutinho; Falco, Maria Cristina; Henrique-Silva, Flavio

    2017-01-01

    Transgenic sugarcane expressing CaneCPI-1 exhibits resistance to Sphenophorus levis larvae. Transgenic plants have widely been used to improve resistance against insect attack. Sugarcane is an economically important crop; however, great losses are caused by insect attack. Sphenophorus levis is a sugarcane weevil that digs tunnels in the stem base, leading to the destruction of the crop. This insect is controlled inefficiently by chemical insecticides. Transgenic plants expressing peptidase inhibitors represent an important strategy for impairing insect growth and development. Knowledge of the major peptidase group present in the insect gut is critical when choosing the most effective inhibitor. S. levis larvae use cysteine peptidases as their major digestive enzymes, primarily cathepsin L-like activity. In this study, we developed transgenic sugarcane plants that overexpress sugarcane cysteine peptidase inhibitor 1 (CaneCPI-1) and assessed their potential through feeding bioassays with S. levis larvae. Cystatin overexpression in the transgenic plants was evaluated using semi-quantitative RT-PCR, RT-qPCR, and immunoblot assays. A 50% reduction of the average weight was observed in larvae that fed on transgenic plants in comparison to larvae that fed on non-transgenic plants. In addition, transgenic sugarcane exhibited less damage caused by larval attack than the controls. Our results suggest that the overexpression of CaneCPI-1 in sugarcane is a promising strategy for improving resistance against this insect.

  5. SOD1 overexpression prevents acute hyperglycemia-induced cerebral myogenic dysfunction: relevance to contralateral hemisphere and stroke outcomes

    PubMed Central

    Coucha, Maha; Li, Weiguo; Hafez, Sherif; Abdelsaid, Mohammed; Johnson, Maribeth H.; Fagan, Susan C.

    2014-01-01

    Admission hyperglycemia (HG) amplifies vascular injury and neurological deficits in acute ischemic stroke, but the mechanisms remain controversial. We recently reported that ischemia-reperfusion (I/R) injury impairs the myogenic response in both hemispheres via increased nitration. However, whether HG amplifies contralateral myogenic dysfunction and whether loss of tone in the contralateral hemisphere contributes to stroke outcomes remain to be determined. Our hypothesis was that contralateral myogenic dysfunction worsens stroke outcomes after acute hyperglycemic stroke in an oxidative stress-dependent manner. Male wild-type or SOD1 transgenic rats were injected with saline or 40% glucose solution 10 min before surgery and then subjected to 30 min of ischemia/45 min or 24 h of reperfusion. In another set of animals (n = 5), SOD1 was overexpressed only in the contralateral hemisphere by stereotaxic adenovirus injection 2–3 wk before I/R. Myogenic tone and neurovascular outcomes were determined. HG exacerbated myogenic dysfunction in contralateral side only, which was associated with infarct size expansion, increased edema, and more pronounced neurological deficit. Global and selective SOD1 overexpression restored myogenic reactivity in ipsilateral and contralateral sides, respectively, and enhanced neurovascular outcomes. In conclusion, our results show that SOD1 overexpression nullified the detrimental effects of HG on myogenic tone and stroke outcomes and that the contralateral hemisphere may be a novel target for the management of acute hyperglycemic stroke. PMID:25552308

  6. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression

    PubMed Central

    Headrick, John P; Willems, Laura; Ashton, Kevin J; Holmgren, Kirsten; Peart, Jason; Matherne, G Paul

    2003-01-01

    The genesis of the ischaemia intolerant phenotype in aged myocardium is poorly understood. We tested the hypothesis that impaired adenosine-mediated protection contributes to ischaemic intolerance, and examined whether this is countered by A1 adenosine receptor (A1AR) overexpression. Responses to 20 min ischaemia and 45 min reperfusion were assessed in perfused hearts from young (2–4 months) and moderately aged (16–18 months) mice. Post-ischaemic contractility was impaired by ageing with elevated ventricular diastolic (32 ± 2 vs. 18 ± 2 mmHg in young) and reduced developed (37 ± 3 vs. 83 ± 6 mmHg in young) pressures. Lactate dehydrogenase (LDH) loss was exaggerated (27 ± 2 vs. 16 ± 2 IU g−1in young) whereas the incidence of tachyarrhythmias was similar in young (15 ± 1 %) and aged hearts (16 ± 1 %). Functional analysis confirmed equipotent effects of 50 μm adenosine at A1 and A2 receptors in young and aged hearts. Nonetheless, while 50 μm adenosine improved diastolic (5 ± 1 mmHg) and developed pressures (134 ± 7 mmHg) and LDH loss (6 ± 2 IU g−1) in young hearts, it did not alter these variables in the aged group. Adenosine did attenuate arrhythmogenesis for both ages (to ∼10 %). In contrast to adenosine, 50 μm diazoxide reduced ischaemic damage and arrhythmogenesis for both ages. Contractile and anti-necrotic effects of adenosine were limited by 100 μm 5-hydroxydecanoate (5-HD) and 3 μm chelerythrine. Anti-arrhythmic effects were limited by 5-HD but not chelerythrine. Non-selective (100 μm 8-sulfophenyltheophylline) and A1-selective (150 nm 8-cyclopentyl-1,3-dipropylxanthine) adenosine receptor antagonism impaired ischaemic tolerance in young but not aged hearts. Quantitative real-time PCR and radioligand analysis indicated that impaired protection is unrelated to changes in A1AR mRNA transcription, or receptor density (∼8 fmol mg−1 protein in both age groups). However, A1AR overexpression improved tolerance for both ages, restoring

  7. Education for the Hearing Impaired (Auditorily Impaired).

    ERIC Educational Resources Information Center

    World Federation of the Deaf, Rome (Italy).

    Education for the hearing impaired is discussed in nine conference papers. J. N. Howarth describes "The Education of Deaf Children in Schools for Hearing Pupils in the United Kingdom" and A.I.Dyachkov of the U.S.S.R. outlines Didactical Principles of Educating the Deaf in the Light of their Rehabilitation Goal." Seven papers from…

  8. Altered Tnnt3 characterizes selective weakness of fast fibers in mice overexpressing FSHD region gene 1 (FRG1)

    PubMed Central

    Sancisi, Valentina; Germinario, Elena; Esposito, Alessandra; Morini, Elisabetta; Peron, Samantha; Moggio, Maurizio; Tomelleri, Giuliano; Danieli-Betto, Daniela

    2013-01-01

    Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is characterized by atrophy and weakness of selective muscle groups. FSHD is considered an autosomal dominant disease with incomplete penetrance and unpredictable variability of clinical expression within families. Mice overexpressing FRG1 (FSHD region gene 1), a candidate gene for this disease, develop a progressive myopathy with features of the human disorder. Here, we show that in FRG1-overexpressing mice, fast muscles, which are the most affected by the dystrophic process, display anomalous fast skeletal troponin T (fTnT) isoform, resulting from the aberrant splicing of the Tnnt3 mRNA that precedes the appearance of dystrophic signs. We determine that muscles of FRG1 mice develop less strength due to impaired contractile properties of fast-twitch fibers associated with an anomalous MyHC-actin ratio and a reduced sensitivity to Ca2+. We demonstrate that the decrease of Ca2+ sensitivity of fast-twitch fibers depends on the anomalous troponin complex and can be rescued by the substitution with the wild-type proteins. Finally, we find that the presence of aberrant splicing isoforms of TNNT3 characterizes dystrophic muscles in FSHD patients. Collectively, our results suggest that anomalous TNNT3 profile correlates with the muscle impairment in both humans and mice. On the basis of these results, we propose that aberrant fTnT represents a biological marker of muscle phenotype severity and disease progression. PMID:24305066

  9. Laboratory and field studies of guayule modified to overexpress HMGR

    USDA-ARS?s Scientific Manuscript database

    We report the genetic modification of guayule to overexpress the isoprenoid pathway enzyme HMGR. The rubber content of two-month old in vitro transformed plantlets showed a 65% increase in rubber over the control for one line (HMGR6), and lower resin for another (HMGR2). In field evaluations HMGR6...

  10. Control of cellulose biosynthesis by overexpression of a transcription factor

    DOEpatents

    Han, Kyung-Hwan; Ko, Jae-Heung; Kim, Won-Chan; Kim; , Joo-Yeol

    2017-05-16

    The invention relates to the over-expression of a transcription factor selected from the group consisting of MYB46, HAM1, HAM2, MYB112, WRKY11, ERF6, and any combination thereof in a plant, which can modulate and thereby modulating the cellulose content of the plant.

  11. Vascular Cognitive Impairment.

    PubMed

    Dichgans, Martin; Leys, Didier

    2017-02-03

    Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts. © 2017 American Heart Association, Inc.

  12. Hearing or speech impairment - resources

    MedlinePlus

    Resources - hearing or speech impairment ... The following organizations are good resources for information on hearing impairment or speech impairment: Alexander Graham Bell Association for the Deaf and Hard of Hearing -- www.agbell. ...

  13. Speech impairment (adult)

    MedlinePlus

    ... sound different from the way it normally sounds. Causes Some of these disorders develop gradually, but anyone can develop a speech and language impairment suddenly, usually in a trauma. APHASIA Alzheimer disease Brain tumor (more common in aphasia than ...

  14. Kids' Quest: Vision Impairment

    MedlinePlus

    ... most important job. Return to Steps World-Wide Web Search Kids Health: What is Vision Impairment What ... for the Blind (AFB) created the Braille Bug web site to teach sighted children about braille, and ...

  15. Specific Language Impairment

    MedlinePlus

    ... impairment is one of the most common childhood learning disabilities, affecting approximately 7 to 8 percent of children ... It is one of the most common childhood learning disabilities, affecting approximately 7 to 8 percent of children ...

  16. Visual Impairment, Including Blindness

    MedlinePlus

    ... Tips for parents Resources of more info Julian’s Story When Julian was almost two years old, he ... as orientation and mobility (O&M); use assistive technologies designed for children with visual impairments; use what ...

  17. Mild Cognitive Impairment

    MedlinePlus

    ... people their age. This condition is called mild cognitive impairment, or MCI. People with MCI can take care of themselves and do their normal activities. MCI memory problems may include Losing things often Forgetting to ...

  18. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein

    PubMed Central

    d'Uscio, Livius V.; Das, Pritam; Santhanam, Anantha V.R.; He, Tongrong; Younkin, Steven G.; Katusic, Zvonimir S.

    2012-01-01

    Aims Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Methods and results Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser1177 in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH4) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH4 and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH4 bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91phox and SODs, thereby reducing production of superoxide anion in the aortas. Conclusion Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production. PMID:22886847

  19. Activation of PPARδ prevents endothelial dysfunction induced by overexpression of amyloid-β precursor protein.

    PubMed

    d'Uscio, Livius V; Das, Pritam; Santhanam, Anantha V R; He, Tongrong; Younkin, Steven G; Katusic, Zvonimir S

    2012-12-01

    Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser(1177) in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH(4)) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH(4) and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH(4) bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91(phox) and SODs, thereby reducing production of superoxide anion in the aortas. Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production.

  20. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling.

    PubMed

    Bangasser, D A; Dong, H; Carroll, J; Plona, Z; Ding, H; Rodriguez, L; McKennan, C; Csernansky, J G; Seeholzer, S H; Valentino, R J

    2017-08-01

    Several neuropsychiatric and neurodegenerative disorders share stress as a risk factor and are more prevalent in women than in men. Corticotropin-releasing factor (CRF) orchestrates the stress response, and excessive CRF is thought to contribute to the pathophysiology of these diseases. We previously found that the CRF 1 receptor (CRF 1 ) is sex biased whereby coupling to its GTP-binding protein, Gs, is greater in females, whereas β-arrestin-2 coupling is greater in males. This study used a phosphoproteomic approach in CRF-overexpressing (CRF-OE) mice to test the proof of principle that when CRF is in excess, sex-biased CRF 1 coupling translates into divergent cell signaling that is expressed as different brain phosphoprotein profiles. Cortical phosphopeptides that distinguished female and male CRF-OE mice were overrepresented in unique pathways that were consistent with Gs-dependent signaling in females and β-arrestin-2 signaling in males. Notably, phosphopeptides that were more abundant in female CRF-OE mice were overrepresented in an Alzheimer's disease (AD) pathway. Phosphoproteomic results were validated by demonstrating that CRF overexpression in females was associated with increased tau phosphorylation and, in a mouse model of AD pathology, phosphorylation of β-secretase, the enzyme involved in the formation of amyloid β. These females exhibited increased formation of amyloid β plaques and cognitive impairments relative to males. Collectively, the findings are consistent with a mechanism whereby the excess CRF that characterizes stress-related diseases initiates distinct cellular processes in male and female brains, as a result of sex-biased CRF 1 signaling. Promotion of AD-related signaling pathways through this mechanism may contribute to female vulnerability to AD.

  1. Dopamine D2 receptor over-expression alters behavior and physiology in Drd2-EGFP mice

    PubMed Central

    Kramer, Paul F.; Christensen, Christine H.; Hazelwood, Lisa A.; Dobi, Alice; Bock, Roland; Sibley, David R.; Mateo, Yolanda; Alvarez, Veronica A.

    2011-01-01

    BAC transgenic mice expressing the fluorescent reporter protein EGFP under the control of the D1 and D2 dopamine receptor promoters (Drd1-EGFP and Drd2-EGFP) have been widely used to study striatal function and have contributed to our understanding of the physiological and pathological function of the basal ganglia. These tools were produced and promptly made available to address questions in a cell-specific manner that has transformed the way we frame hypotheses in neuroscience. However, these mice have not been fully characterized until now. We found that Drd2-EGFP mice display a ~40% increase in membrane expression of the dopamine D2 receptor (D2R) and a two-fold increase in D2R mRNA levels in the striatum when compared to wild-type and Drd1-EGFP mice D2R over-expression was accompanied by behavioral hypersensitivity to D2R-like agonists, as well as enhanced electrophysiological responses to D2R activation in midbrain dopaminergic neurons. DA transients evoked by stimulation in the nucleus accumbens showed slower clearance in Drd2-EGFP mice and cocaine actions on DA clearance were impaired in these mice. Thus, it was not surprising to find that Drd2-EGFP mice were hyperactive when exposed to a novel environment and locomotion was suppressed by acute cocaine administration. All together, this study demonstrates that Drd2-EGFP mice over-express D2R and have altered dopaminergic signaling that fundamentally differentiates them from wild-type and Drd1-EGFP mice. PMID:21209197

  2. Mild overexpression of Mecp2 in mice causes a higher susceptibility toward seizures.

    PubMed

    Bodda, Chiranjeevi; Tantra, Martesa; Mollajew, Rustam; Arunachalam, Jayamuruga P; Laccone, Franco A; Can, Karolina; Rosenberger, Albert; Mironov, Sergej L; Ehrenreich, Hannelore; Mannan, Ashraf U

    2013-07-01

    An intriguing finding about the gene encoding methyl-CpG binding protein 2 (MeCP2) is that the loss-of-function mutations cause Rett syndrome and duplication (gain-of-function) of MECP2 leads to another neurological disorder termed MECP2 duplication syndrome. To ensure proper neurodevelopment, a precise regulation of MeCP2 expression is critical, and any gain or loss of MeCP2 over a narrow threshold level may lead to postnatal neurological impairment. To evaluate MeCP2 dosage effects, we generated Mecp2(WT_EGFP) transgenic (TG) mouse in which MeCP2 (endogenous plus TG) is mildly overexpressed (approximately 1.5×). The TG MeCP2(WT_EGFP) fusion protein is functionally active, as cross breeding of these mice with Mecp2 knockout mice led to alleviation of major phenotypes in the null mutant mice, including premature lethality. To characterize the Mecp2(WT_EGFP) mouse model, we performed an extensive battery of behavioral tests, which revealed that these mice manifest increased aggressiveness and higher pentylenetetrazole (PTZ)-induced seizure propensity. Evaluation of neuronal parameters revealed a reduction in the number of tertiary branching sites and increased spine density in Mecp2(WT_EGFP) transgenic (TG) neurons. Treatment of TG neurons with epileptogenic compound-PTZ led to a marked increase in amplitude and frequency of calcium spikes. Based on our ex vivo and in vivo data, we conclude that epileptic seizures are manifested as the first symptom when MeCP2 is mildly overexpressed in mice. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species

    SciTech Connect

    Yu, Suyeun; Jang, Yeogil; Paik, Donggi

    NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan.more » - Highlights: • Ubiquitous Nmdmc overexpression enhanced lifespan and stress tolerance. • Nmdmc overexpression in the fat body extended longevity. • Fat body-specific Nmdmc overexpression increased oxidative stress resistance. • Nmdmc overexpression decreased Hsp22 transcript levels and ROS. • Nmdmc overexpression increased mitochondrial DNA copy number.« less

  4. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells.

    PubMed

    Sasaki, Natsuki; Nakamura, Masayuki; Kodama, Akiko; Urata, Yuka; Shiokawa, Nari; Hayashi, Takehiro; Sano, Akira

    2016-11-01

    The autophagy pathway has recently been implicated in several neurodegenerative diseases. Recently, it was reported that chorein-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. Here, we demonstrate that chorein overexpression preserves cell viability from starvation-induced cell death in human embryonic kidney 293 (HEK293) cells. Subsequent coimmunoprecipitation and reverse coimmunoprecipitation assays using extracts from chorein that stably overexpressed HEK293 cells revealed that chorein interacts with α-tubulin and histone deacetylase 6, a known α-tubulin deacetylater and central component of basal autophagy. Indeed, acetylated α-tubulin immunoreactivity was significantly decreased in chorein that stably overexpressed HEK293 cells. These results suggest that chorein/histone deacetylase 6/α-tubulin interactions may play an important role in starvation-induced cell stress, and their disruption may be one of the molecular pathogenic mechanisms of chorea-acanthocytosis.-Sasaki, N., Nakamura, M., Kodama, A., Urata, Y., Shiokawa, N., Hayashi, T., Sano, A. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells. © FASEB.

  5. Osteoblast-Specific Krm2 Overexpression and Lrp5 Deficiency Have Different Effects on Fracture Healing in Mice

    PubMed Central

    Liedert, Astrid; Röntgen, Viktoria; Schinke, Thorsten; Benisch, Peggy; Ebert, Regina; Jakob, Franz; Klein-Hitpass, Ludger; Lennerz, Jochen K.; Amling, Michael; Ignatius, Anita

    2014-01-01

    The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5−/−) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5−/− mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5−/− mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis. PMID:25061805

  6. Hearing impairment and retirement.

    PubMed

    Fischer, Mary E; Cruickshanks, Karen J; Pinto, Alex; Klein, Barbara E K; Klein, Ronald; Dalton, Dayna S

    2014-02-01

    Many factors influence the decision to retire including age, insurance, and pension availability along with physical and mental health. Hearing impairment may be one such factor. The purpose of this study was to compare the 15 yr retirement rate among subjects with and without hearing impairment. Prospective, population-based study. Subjects were participants in the Epidemiology of Hearing Loss Study (EHLS), a longitudinal investigation of age-related hearing loss. Participants who were working full- or part-time in 1993-1995 were included (n = 1410, mean age = 57.8 yr). Data from four EHLS phases (1993-1995, 1998-2000, 2003-2005, and 2009-2010) were analyzed in 2010-2012. Hearing impairment was defined as a pure tone threshold average (at 0.5, 1, 2, and 4 kHz) greater than 25 dB HL in the worse ear. Employment status was determined at each of the four phases. Kaplan-Meier estimates of the cumulative incidence of retirement were calculated, and Cox discrete-time modeling was used to determine the effect of hearing impairment on the rate of retirement. The cumulative incidence of retirement was significantly (p < 0.02) higher in those with a hearing impairment (77%) compared to those without a hearing impairment (74%). After adjustment for age, gender, self-reported health, and history of chronic disease, there was no significant difference in the rate of retirement between those with and without a hearing impairment (hazard ratio [HR] = 0.9, 95% confidence interval (CI) = 0.7, 1.1). Similar results were observed when hearing aid users were excluded, when hearing impairment was based on the better ear thresholds, and when analyses were restricted to those under 65 yr of age and working full-time at baseline. Participants with a hearing impairment were less likely to state that the main reason for retirement was that the time seemed right. Hearing impairment was found to be associated with a higher rate of retirement, but the association was not independent of the

  7. Hearing Impairment and Retirement

    PubMed Central

    Fischer, Mary E; Cruickshanks, Karen J; Pinto, Alex; Klein, Barbara E K; Klein, Ronald; Dalton, Dayna S

    2013-01-01

    BACKGROUND Many factors influence the decision to retire including age, insurance and pension availability along with physical and mental health. Hearing impairment may be one such factor. PURPOSE The purpose of this study was to compare the 15 year retirement rate among subjects with and without hearing impairment. RESEARCH DESIGN Prospective, population-based study STUDY SAMPLE Subjects were participants in the Epidemiology of Hearing Loss Study (EHLS), a longitudinal investigation of age-related hearing loss. Participants who were working full- or part-time in 1993–1995 were included (n=1410, mean age=57.8 years). DATA COLLECTION AND ANALYSIS Data from four EHLS phases (1993–1995, 1998–2000, 2003–2005, and 2009–2010) were analyzed in 2010–2012. Hearing impairment was defined as a pure tone threshold average (at 0.5,1,2 and 4 kHz) greater than 25 dB HL in the worse ear. Employment status was determined at each of the four phases. Kaplan-Meier estimates of the cumulative incidence of retirement were calculated and Cox discrete-time modeling was used to determine the effect of hearing impairment on the rate of retirement. RESULTS The cumulative incidence of retirement was significantly (p < 0.02) higher in those with a hearing impairment (77%) compared to those without a hearing impairment (74%). After adjustment for age, gender, self-reported health, and history of chronic disease, there was no significant difference in the rate of retirement between those with and without a hearing impairment (Hazard Ratio (HR) = 0.9, 95% Confidence Interval (CI) = 0.7, 1.1). Similar results were observed when hearing aid users were excluded, when hearing impairment was based on the better ear thresholds, and when analyses were restricted to those less than 65 years of age and working full-time at baseline. Participants with a hearing impairment were less likely to state that the main reason for retirement was that the time seemed right. CONCLUSIONS Hearing impairment

  8. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    PubMed Central

    Loughna, S; Bennett, P; Gau, G; Nicolaides, K; Blunt, S; Moore, G

    1993-01-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. Images Figure 1 Figure 2 Figure 3 PMID:8213811

  9. Overexpression of esterase D in kidney from trisomy 13 fetuses

    SciTech Connect

    Loughna, S.; Moore, G.; Gau, G.

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D wasmore » found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.« less

  10. Transgenic overexpression of p23 induces spontaneous hydronephrosis in mice

    PubMed Central

    Lee, Jaehoon; Kim, Hye Jin; Moon, Jung Ah; Sung, Young Hoon; Baek, In-Jeoung; Roh, Jae-il; Ha, Na Young; Kim, Seung-Yeon; Bahk, Young Yil; Lee, Jong Eun; Yoo, Tae Hyun; Lee, Han-Woong

    2011-01-01

    p23 is a cochaperone of heat shock protein 90 and also interacts functionally with numerous steroid receptors and kinases. However, the in vivo roles of p23 remain unclear. To explore its in vivo function, we generated the transgenic (TG) mice ubiquitously overexpressing p23. The p23 TG mice spontaneously developed kidney abnormalities closely resembling human hydronephrosis. Consistently, kidney functions deteriorate significantly in the p23 TG mice compared to their wild-type (WT) littermates. Furthermore, the expression of target genes for aryl hydrocarbon receptor (AhR), such as cytochrome P450, family 1, subfamily A, polypeptide 1 (Cyp1A1) and cytochrome P450, family 1, subfamily B, polypeptide 1 (Cyp1B1), were induced in the kidneys of the p23 TG mice. These results indicate that the overexpression of p23 contributes to the development of hydronephrosis through the upregulation of the AhR pathway in vivo. PMID:21323770

  11. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma.

    PubMed

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-05-23

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer.

  12. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma

    PubMed Central

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-01-01

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer. PMID:28416766

  13. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.

  14. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    PubMed

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  15. Neuroligin-1 overexpression in newborn granule cells in vivo.

    PubMed

    Schnell, Eric; Bensen, Aesoon L; Washburn, Eric K; Westbrook, Gary L

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.

  16. Overexpression of Mafb in Podocytes Protects against Diabetic Nephropathy

    PubMed Central

    Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-01-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. PMID:24722438

  17. Overexpression of Mafb in podocytes protects against diabetic nephropathy.

    PubMed

    Morito, Naoki; Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-11-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. Copyright © 2014 by the American Society of Nephrology.

  18. Role of overexpressed CFA/I fimbriae in bacterial swimming

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  19. Sox9 overexpression in uterine epithelia induces endometrial gland hyperplasia

    PubMed Central

    Gonzalez, Gabriel; Mehra, Shyamin; Wang, Ying; Akiyama, Haruhiko

    2016-01-01

    SOX9 is a high mobility group transcription factor that is required in many biological processes, including cartilage differentiation, endoderm progenitor maintenance, hair differentiation, and testis determination. SOX9 has also been linked to colorectal, prostate, and lung cancer. We found that SOX9 is expressed in the epithelium of the adult mouse and human uterus, predominantly marking the uterine glands. To determine if SOX9 plays a role in the development of endometrial cancer we overexpressed Sox9 in the uterine epithelium using a progesterone receptor-Cre mouse model. Sox9 overexpression in the uterine epithelium led to the formation of simple and complex cystic glandular structures in the endometrium of aged-females. Histological analysis revealed that these structures appeared morphologically similar to structures present in patients with endometrial hyperplastic lesions and endometrial polyps that are thought to be precursors of endometrial cancer. The molecular mechanisms that cause the glandular epithelium to become hyperplastic, leading to endometrial cancer are still poorly understood. These findings indicate that chronic overexpression of Sox9 in the uterine epithelium can induce the development of endometrial hyperplastic lesions. Thus, SOX9 expression may be a factor in the formation of endometrial cancer. PMID:27262401

  20. Trainable Mentally Impaired/Severely Multiply Impaired/Autistic Impaired/Severely Mentally Impaired. Product Evaluation Report 1989-1990.

    ERIC Educational Resources Information Center

    Claus, Richard N.; And Others

    The evaluation report describes special education services provided to trainable mentally impaired (TMI), autistic impaired (AI), severely multiply impaired (SXI), and severely mentally impaired (SMI) students at and through the Melvin G. Millet Learning Center (Bridgeport, Michigan). The eight program components are described individually and…

  1. Social communication impairments: pragmatics.

    PubMed

    Russell, Robert L

    2007-06-01

    Social communication or pragmatic impairments are characterized and illustrated as involving inappropriate or ineffective use of language and gesture in social contexts. Three clinical vignettes illustrate different pragmatic impairments and the wealth of diagnostic information that can be garnered from observation of a child's social communication behavior. Definitions of, and developmental milestones in, domains of pragmatic competence are provided. Several screening instruments are suggested for use in assessing pragmatic competence within the time-frame of a pediatric examination. Frequent comorbid psychiatric conditions are described and a sample of current neurobiologic research is briefly summarized.

  2. Overexpression of Indian hedgehog partially rescues short stature homeobox 2-overexpression-associated congenital dysplasia of the temporomandibular joint in mice

    PubMed Central

    LI, XIHAI; LIANG, WENNA; YE, HONGZHI; WENG, XIAPING; LIU, FAYUAN; LIN, PINGDONG; LIU, XIANXIANG

    2015-01-01

    The role of short stature homeobox 2 (shox2) in the development and homeostasis of the temporomandibular joint (TMJ) has been well documented. Shox2 is known to be expressed in the progenitor cells and perichondrium of the developing condyle. A previous study by our group reported that overexpression of shox2 leads to congenital dysplasia of the TMJ via downregulation of the Indian hedgehog (Ihh) signaling pathway, which is essential for embryonic disc primordium formation and mandibular condylar growth. To determine whether overexpression of Ihh may rescue the overexpression of shox2 leading to congenital dysplasia of the TMJ, a mouse model in which Ihh and shox2 were overexpressed (Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice) was utilized to assess the consequences of this overexpression on TMJ development during post-natal life. The results showed that the developmental process and expression levels of runt-related transcription factor 2 and sex determining region Y-box 9 in the TMJ of the Wnt1-Cre; pMes-stop shox2; pMes-stop Ihh mice were similar to those in wild-type mice. Overexpression of Ihh rescued shox2 overexpression-associated reduction of extracellular matrix components. However, overexpression of Ihh did not inhibit the shox2 overexpression-associated increase of matrix metalloproteinases (MMPs) MMP9, MMP13 and apoptosis in the TMJ. These combinatory cellular and molecular defects appeared to account for the observed congenital dysplasia of TMJ, suggesting that overexpression of Ihh partially rescued shox2 overexpression-associated congenital dysplasia of the TMJ in mice. PMID:26096903

  3. Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes

    SciTech Connect

    Kang, Kyeongah; Nam, Sorim; Kim, Bomi

    N-Myc downstream-regulated gene 2 (NDRG2), a member of the NDRG family of differentiation-related genes, has been characterized as a regulator of dendritic cell differentiation from monocytes, CD34{sup +} progenitor cells, and myelomonocytic leukemic cells. In this study, we show that NDRG2 overexpression inhibits the differentiation of U937 cells into osteoclasts in response to stimulation with a combination of macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (RANKL). U937 cells stably expressing NDRG2 are unable to differentiate into multinucleated osteoclast-like cells and display reduced tartrate-resistant acid phosphatase (TRAP) activity and resorption pit formation. Furthermore, NDRG2 expression significantly suppressesmore » the expression of genes that are crucial for the proliferation, survival, differentiation, and function of osteoclasts, including c-Fos, Atp6v0d2, RANK, and OSCAR. The activation of ERK1/2 and p38 is also inhibited by NDRG2 expression during osteoclastogenesis, and the inhibition of osteoclastogenesis by NDRG2 correlates with the down-regulation of the expression of the transcription factor PU.1. Taken together, our results suggest that the expression of NDRG2 potentially inhibits osteoclast differentiation and plays a role in modulating the signal transduction pathway responsible for osteoclastogenesis. - Highlights: • The expression of NDRG2 significantly impairs osteoclast differentiation. • PU.1 and p38 MAPK inhibitions by NDRG2 are critical for the inhibition of osteoclastogenesis. • Knockdown of NDRG2 rescues the ability of monocytes to differentiate into osteoclasts. • NDRG2 expression in BM and primary macrophages also impairs osteoclast differentiation. • This study implies the potential of NDRG2 expression in the inhibition of osteoclastogenesis.« less

  4. Hearing Impaired: Curriculum Guide.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    The curriculum guide is intended to assist families, school administrators, and teachers providing educational services to hearing impaired (HI) children in regular and special classes in Alberta, Canada. Explained in the introduction are such curriculum aspects as goals and purpose, population to be served, eligibility criteria, three…

  5. Medications and impaired driving.

    PubMed

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  6. Overexpression of PLK3 Mediates the Degradation of Abnormal Prion Proteins Dependent on Chaperone-Mediated Autophagy.

    PubMed

    Wang, Hui; Tian, Chan; Sun, Jing; Chen, Li-Na; Lv, Yan; Yang, Xiao-Dong; Xiao, Kang; Wang, Jing; Chen, Cao; Shi, Qi; Shao, Qi-Xiang; Dong, Xiao-Ping

    2017-08-01

    Polo-like kinase 3 (PLK3) is the main cause of cell cycle reentry-related neuronal apoptosis which has been implicated in the pathogenesis of prion diseases. Previous work also showed the regulatory activity of exogenous PLK3 on the degradation of PrP (prion protein) mutants and pathogenic PrP Sc ; however, the precise mechanisms remain unknown. In this study, we identified that the overexpression of PLK3-mediated degradation of PrP mutant and PrP Sc was repressed by lysosome rather than by proteasomal and macroautophagy inhibitors. Core components of chaperone-mediated autophagy (CMA) effectors, lysosome-associated membrane protein type 2A (LAMP2a), and heat shock cognate protein 70 (Hsc70) are markedly decreased in the HEK293T cells expressing PrP mutant and scrapie-infected cell line SMB-S15. Meanwhile, PrP mutant showed ability to interact with LAMP2a and Hsc70. Overexpression of PLK3 sufficiently increased the cellular levels of LAMP2a and Hsc70, accompanying with declining the accumulations of PrP mutant and PrP Sc . The kinase domain (KD) of PLK3 was responsible for elevating LAMP2a and Hsc70. Knockdown of endogenous PLK3 enhanced the activity of macroautophagy in the cultured cells. Moreover, time-dependent reductions of LAMP2a and Hsc70 were also observed in the brain tissues of hamster-adapted scrapie agent 263K-infected hamsters, indicating an impairment of CMA during prion infection. Those data indicate that the overexpression of PLK3-mediated degradation of abnormal PrP is largely dependent on CMA pathway.

  7. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance.

    PubMed

    Qiu, Yanyan; Sui, Xianxian; Zhan, Yongkun; Xu, Chen; Li, Xiaobo; Ning, Yanxia; Zhi, Xiuling; Yin, Lianhua

    2017-04-01

    Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress.

    PubMed

    Ma, Shuangtao; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Yang, Yongjian

    2014-03-01

    Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.

  9. Excess Coenzyme A Reduces Skeletal Muscle Performance and Strength in Mice Overexpressing Human PANK2

    PubMed Central

    Corbin, Deborah R.; Rehg, Jerold E.; Shepherd, Danielle L.; Stoilov, Peter; Percifield, Ryan J.; Horner, Linda; Frase, Sharon; Zhang, Yong-Mei; Rock, Charles O.; Hollander, John M.; Jackowski, Suzanne; Leonardi, Roberta

    2017-01-01

    Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function. PMID:28189602

  10. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

    PubMed Central

    Al-Share, Qusai Y.; DeAngelis, Anthony M.; Lester, Sumona Ghosh; Bowman, Thomas A.; Ramakrishnan, Sadeesh K.; Abdallah, Simon L.; Russo, Lucia; Patel, Payal R.; Kaw, Meenakshi K.; Raphael, Christian K.; Kim, Andrea Jung; Heinrich, Garrett; Lee, Abraham D.; Kim, Jason K.; Kulkarni, Rohit N.; Philbrick, William M.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance. PMID:25972571

  11. Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion.

    PubMed

    Zhao, Haiying; Yang, Fuquan; Zhao, Wenyan; Zhang, Chunjv; Liu, Jingang

    2016-04-01

    Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma. © The Author(s) 2015.

  12. Chronic administration of phenytoin induces efflux transporter overexpression in rats.

    PubMed

    Alvariza, Silvana; Fagiolino, Pietro; Vázquez, Marta; Feria-Romero, Iris; Orozco-Suárez, Sandra

    2014-12-01

    Efflux transporters overexpression has been proposed as one of the responsible mechanism for refractory epilepsy by preventing access of the antiepileptic drug to the brain. In this work we investigated whether phenytoin (PHT), could induce efflux transporters overexpression, at different biological barriers and to evaluate the implication it could have on its pharmacokinetics and therapeutic/toxic response. Forty-two adult females Sprague Dawley divided in five groups were treated with oral doses of 25, 50 and 75mg/kg/6h of PHT for 3 days and two additionally groups were treated with intraperitoneal (ip) doses of 25mg/kg/6h or 100mg/kg/24h. At day 4 PHT plasma concentrations were measured and, obtained several organs, brain, parotid gland, liver and duodenum in which were analyzed for the Pgp expression. At day 4 PHT plasma concentrations were measured and several tissues: brain, parotid gland, liver and duodenum were obtained in order to analyze Pgp expression. In order to evaluate the oral bioavailability of PHT, two groups were administered with oral or intraperitoneal doses of 100mg/kg and plasma level were measured. An induction of the expression of efflux transporter mediated by phenytoin in a concentration-and-time dependent manner was found when increasing oral and ip doses of phenytoin, One week after the interruption of ip treatment a basal expression of transporters was recovered. Overexpression of efflux transporters can be mediated by inducer agents like PHT in a local-concentration dependent manner, and it is reversible once the substance is removed from the body. The recovery of basal Pgp expression could allow the design of dosing schedules that optimize anticonvulsant therapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Overexpression of Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in Arabidopsis

    PubMed Central

    Pattanayak, Gopal K.; Tripathy, Baishnab C.

    2011-01-01

    Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen (1O2). As there is no enzymatic detoxification mechanism available in plants to destroy 1O2, its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the 1O2 generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of 1O2 and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to 1O2-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of genes involved in 5

  14. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration.

    PubMed

    Shin, M; Chavez, M B; Ikeda, A; Foster, B L; Bartlett, J D

    2018-07-01

    Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20 +/+ Tg + ) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20 +/+ Tg + mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20 +/+ Tg + molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20 +/+ Tg + mouse molar enamel organs had increased levels

  15. Targeting GPR110 in HER2-Overexpressing Breast Cancers

    DTIC Science & Technology

    2015-10-01

    lentiviral plasmids containing GPR110 cDNA using the pHAGE system, which includes the HA tag, under the control of inducible Tet-on promoter. The map of... pHAGE lentiviral plasmid is shown in Figure 3A. Using this, the BT474 and SKBR3 parental cells were stably infected with the lentiviral plasmid...in HER2+ breast cancer. Figure𔃽.’GPR110/overexpression’using’pHAGE’len:viral’mediated’infec:on’of’BT474’cells.’ A.#Map#of# pHAGE # len/viral

  16. BRCA1-IRIS Overexpression Promotes Formation of Aggressive Breast Cancers

    PubMed Central

    Shimizu, Yoshiko; Luk, Hugh; Horio, David; Miron, Penelope; Griswold, Michael; Iglehart, Dirk; Hernandez, Brenda; Killeen, Jeffrey; ElShamy, Wael M.

    2012-01-01

    Introduction Women with HER2+ or triple negative/basal-like (TN/BL) breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2+ and/or TN/BL tumors. Methodology/Principal Findings Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME) cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/RasV12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU), followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. Conclusion/Significance BRCA1-IRIS overexpression triggers aggressive breast tumor formation

  17. Enhanced Stress Response in 5-HT1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation.

    PubMed

    Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Díaz, Álvaro; Garro-Martínez, Emilio; Linge, Raquel; Castro, Elena; Haberzettl, Robert; Fink, Heidrun; Bert, Bettina; Brosda, Jan; Romero, Beatriz; Crespo-Facorro, Benedicto; Pazos, Ángel

    2017-11-15

    Postsynaptic 5-HT 1A receptors (5-HT 1A R) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT 1A Rs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT 1A Rs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT 1A R overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT 1A R activation might predispose to a high anxious phenotype and an impaired stress coping behavior.

  18. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    PubMed

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  19. Grammatical Impairments in PPA

    PubMed Central

    Thompson, Cynthia K.; Mack, Jennifer E.

    2015-01-01

    Background Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. Aims We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. Main Contribution PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Conclusions Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real

  20. Grammatical Impairments in PPA.

    PubMed

    Thompson, Cynthia K; Mack, Jennifer E

    2014-09-01

    Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in

  1. Overexpression of Hsp20 Prevents Endotoxin-Induced Myocardial Dysfunction and Apoptosis via Inhibition of NF-κB Activation

    PubMed Central

    Wang, Xiaohong; Zingarelli, Basilia; Connor, Michael O’; Zhang, Pengyuan; Adeyemo, Adeola; Kranias, Evangelia G.; Wang, Yigang; Fan, Guo-Chang

    2009-01-01

    The occurrence of cardiovascular dysfunction in sepsis is associated with a significantly increased mortality rate of 70% to 90% compared with 20% in septic patients without cardiovascular impairment. Thus, rectification or blockade of myocardial depressant factors should partly ameliorate sepsis progression. Heat shock protein 20 (Hsp20) has been shown to enhance myocardial contractile function and protect against doxorubicin-induced cardiotoxicity. To investigate the possible role of Hsp20 in sepsis-mediated cardiac injury, we first examined the expression profiles of five major Hsps in response to lipopolysaccharide (LPS) challenge, and observed that only the expression of Hsp20 was downregulated in LPS-treated myocardium, suggesting that this decrease might be one of mechanisms contributing to LPS-induced cardiovascular defects. Further studies using loss-of-function and gain-of function approaches in adult rat cardiomyocytes verified that reduced Hsp20 levels were indeed correlated with the impaired contractile function. In fact, overexpression of Hsp20 significantly enhanced cardiomyocyte contractility upon LPS treatment. Moreover, after administration of LPS (25μg/g) in vivo, Hsp20 transgenic mice (10-fold overexpression) displayed: 1) an improvement in myocardial function; 2) reduced the degree of cardiac apoptosis; and 3) decreased NF-κB activity, accompanied with reduced myocardial cytokines IL-1β and TNF-α production, compared to the LPS-treated non-transgenic littermate controls. Thus, the increases in Hsp20 levels can protect against LPS-induced cardiac apoptosis and dysfunction, associated with inhibition of NF-κB activity, suggesting that Hsp20 may be a new therapeutic agent for the treatment of sepsis. PMID:19501592

  2. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo

    PubMed Central

    Shi, Q; Zhang, W; Guo, S; Jian, Z; Li, S; Li, K; Ge, R; Dai, W; Wang, G; Gao, T; Li, C

    2016-01-01

    Oxidative stress has a critical role in the pathogenesis of vitiligo. However, the specific molecular mechanism involved in oxidative stress-induced melanocyte death is not well characterized. Given the powerful role of microRNAs (miRNAs) in the regulation of cell survival as well as the fact that the generation of miRNAs can be affected by oxidative stress, we hypothesized that miRNAs may participate in vitiligo pathogenesis by modulating the expression of vital genes in melanocytes. In the present study, we initially found that miR-25 was increased in both serum and lesion samples from vitiligo patients, and its serum level was correlated with the activity of vitiligo. Moreover, restoration of miR-25 promoted the H2O2-induced melanocyte destruction and led to the dysfunction of melanocytes. Further experiments proved that MITF, a master regulator in melanocyte survival and function, accounted for the miR-25-caused damaging impact on melanocytes. Notably, other than the direct role on melanocytes, we observed that miR-25 inhibited the production and secretion of SCF and bFGF from keratinocytes, thus impairing their paracrine protective effect on the survival of melanocytes under oxidative stress. At last, we verified that oxidative stress could induce the overexpression of miR-25 in both melanocytes and keratinocytes possibly by demethylating the promoter region of miR-25. Taken together, our study demonstrates that oxidative stress-induced overexpression of miR-25 in vitiligo has a crucial role in promoting the degeneration of melanocytes by not only suppressing MITF in melanocytes but also impairing the paracrine protective effect of keratinocytes. Therefore, it is worthy to investigate the possibility of miR-25 as a potential drug target for anti-oxidative therapy in vitiligo. PMID:26315342

  3. Overexpression of host plant urease in transgenic silkworms.

    PubMed

    Jiang, Liang; Huang, Chunlin; Sun, Qiang; Guo, Huizhen; Peng, Zhengwen; Dang, Yinghui; Liu, Weiqiang; Xing, Dongxu; Xu, Guowen; Zhao, Ping; Xia, Qingyou

    2015-06-01

    Bombyx mori and mulberry constitute a model of insect-host plant interactions. Urease hydrolyzes urea to ammonia and is important for the nitrogen metabolism of silkworms because ammonia is assimilated into silk protein. Silkworms do not synthesize urease and acquire it from mulberry leaves. We synthesized the artificial DNA sequence ureas using the codon bias of B. mori to encode the signal peptide and mulberry urease protein. A transgenic vector that overexpresses ure-as under control of the silkworm midgut-specific P2 promoter was constructed. Transgenic silkworms were created via embryo microinjection. RT-PCR results showed that urease was expressed during the larval stage and qPCR revealed the expression only in the midgut of transgenic lines. Urea concentration in the midgut and hemolymph of transgenic silkworms was significantly lower than in a nontransgenic line when silkworms were fed an artificial diet. Analysis of the daily body weight and food conversion efficiency of the fourth and fifth instar larvae and economic characteristics indicated no differences between transgenic silkworms and the nontransgenic line. These results suggested that overexpression of host plant urease promoted nitrogen metabolism in silkworms.

  4. Prothymosin α overexpression contributes to the development of pulmonary emphysema

    PubMed Central

    Su, Bing-Hua; Tseng, Yau-Lin; Shieh, Gia-Shing; Chen, Yi-Cheng; Shiang, Ya-Chieh; Wu, Pensee; Li, Kuo-Jung; Yen, Te-Hsin; Shiau, Ai-Li; Wu, Chao-Liang

    2013-01-01

    Emphysema is one of the disease conditions that comprise chronic obstructive pulmonary disease. Prothymosin α transgenic mice exhibit an emphysema phenotype, but the pathophysiological role of prothymosin α in emphysema remains unclear. Here we show that prothymosin α contributes to the pathogenesis of emphysema by increasing acetylation of histones and nuclear factor-kappaB, particularly upon cigarette smoke exposure. We find a positive correlation between prothymosin α levels and the severity of emphysema in prothymosin α transgenic mice and emphysema patients. Prothymosin α overexpression increases susceptibility to cigarette smoke-induced emphysema, and cigarette smoke exposure further enhances prothymosin α expression. We show that prothymosin α inhibits the association of histone deacetylases with histones and nuclear factor-kappaB, and that prothymosin α overexpression increases expression of nuclear factor-kappaB-dependent matrix metalloproteinase 2 and matrix metalloproteinase 9, which are found in the lungs of patients with chronic obstructive pulmonary disease. These results demonstrate the clinical relevance of prothymosin α in regulating acetylation events during the pathogenesis of emphysema. PMID:23695700

  5. Parkin overexpression protects retinal ganglion cells against glutamate excitotoxicity.

    PubMed

    Hu, Xinxin; Dai, Yi; Sun, Xinghuai

    2017-01-01

    To investigate the role of parkin in regulating mitochondrial homeostasis of retinal ganglion cells (RGCs) under glutamate excitotoxicity. Rat RGCs were purified from dissociated retinal tissue with a modified two-step panning protocol. Cultured RGCs were transfected with parkin using an adenovirus system. The distribution and morphology of mitochondria in the RGCs were assessed with MitoTracker. The expression and distribution of parkin and optineurin proteins were measured with western blot analysis and immunofluorescence. Cytotoxicity of RGCs was evaluated by measuring lactate dehydrogenase (LDH) activity. Mitochondrial membrane potential was determined with the JC-1 assay. The expression of Bax and Bcl-2 were measured with western blot analysis. In the presence of glutamate-induced excitotoxicity, the number of mitochondria in the axons of the RGCs was predominantly increased, and the mitochondrial membrane potential in RGCs was depolarized. The expression of the parkin and optineurin proteins was upregulated and distributed mostly in the axons of the RGCs. Overexpression of parkin stabilized the mitochondrial membrane potential of RGCs, decreased cytotoxicity and apoptosis, attenuated the expression of Bax, and promoted the expression of optineurin under glutamate excitotoxicity. Overexpression of parkin exerted a significant protective effect on cultured RGCs against glutamate excitotoxicity. Interventions to alter the parkin-mediated mitochondria pathway may be useful in protecting RGCs against excitotoxic RGC damage.

  6. c-myc overexpression causes anaplasia in medulloblastoma.

    PubMed

    Stearns, Duncan; Chaudhry, Aneeka; Abel, Ty W; Burger, Peter C; Dang, Chi V; Eberhart, Charles G

    2006-01-15

    Both anaplasia and increased c-myc gene expression have been shown to be negative prognostic indicators for survival in medulloblastoma patients. myc gene amplification has been identified in many large cell/anaplastic medulloblastoma, but no causative link between c-myc and anaplastic changes has been established. To address this, we stably overexpressed c-myc in two medulloblastoma cell lines, DAOY and UW228, and examined the changes in growth characteristics. When analyzed in vitro, cell lines with increased levels of c-myc had higher rates of growth and apoptosis as well as significantly improved ability to form colonies in soft agar compared with control. When injected s.c. into nu/nu mice, flank xenograft tumors with high levels of c-myc in DAOY cell line background were 75% larger than those derived from control. Overexpression of c-myc was required for tumor formation by UW228 cells. Most remarkably, the histopathology of the Myc tumors was severely anaplastic, with large areas of necrosis/apoptosis, increased nuclear size, and macronucleoli. Indices of proliferation and apoptosis were also significantly higher in Myc xenografts. Thus, c-myc seems to play a causal role in inducing anaplasia in medulloblastoma. Because anaplastic changes are often observed in recurrent medulloblastoma, we propose that c-myc dysregulation is involved in the progression of these malignant embryonal neoplasms.

  7. Overexpression of neurofilament H disrupts normal cell structure and function

    NASA Technical Reports Server (NTRS)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  8. Overexpression of mutant HSP27 causes axonal neuropathy in mice.

    PubMed

    Lee, Jinho; Jung, Sung-Chul; Joo, Jaesoon; Choi, Yu-Ri; Moon, Hyo Won; Kwak, Geon; Yeo, Ha Kyung; Lee, Ji-Su; Ahn, Hye-Jee; Jung, Namhee; Hwang, Sunhee; Rheey, Jingeun; Woo, So-Youn; Kim, Ji Yon; Hong, Young Bin; Choi, Byung-Ok

    2015-06-19

    Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F.

  9. Prothymosin α overexpression contributes to the development of pulmonary emphysema.

    PubMed

    Su, Bing-Hua; Tseng, Yau-Lin; Shieh, Gia-Shing; Chen, Yi-Cheng; Shiang, Ya-Chieh; Wu, Pensee; Li, Kuo-Jung; Yen, Te-Hsin; Shiau, Ai-Li; Wu, Chao-Liang

    2013-01-01

    Emphysema is one of the disease conditions that comprise chronic obstructive pulmonary disease. Prothymosin α transgenic mice exhibit an emphysema phenotype, but the pathophysiological role of prothymosin α in emphysema remains unclear. Here we show that prothymosin α contributes to the pathogenesis of emphysema by increasing acetylation of histones and nuclear factor-kappaB, particularly upon cigarette smoke exposure. We find a positive correlation between prothymosin α levels and the severity of emphysema in prothymosin α transgenic mice and emphysema patients. Prothymosin α overexpression increases susceptibility to cigarette smoke-induced emphysema, and cigarette smoke exposure further enhances prothymosin α expression. We show that prothymosin α inhibits the association of histone deacetylases with histones and nuclear factor-kappaB, and that prothymosin α overexpression increases expression of nuclear factor-kappaB-dependent matrix metalloproteinase 2 and matrix metalloproteinase 9, which are found in the lungs of patients with chronic obstructive pulmonary disease. These results demonstrate the clinical relevance of prothymosin α in regulating acetylation events during the pathogenesis of emphysema.

  10. Suppression of Hepatocellular Carcinoma by Inhibition of Overexpressed Ornithine Aminotransferase.

    PubMed

    Zigmond, Ehud; Ben Ya'acov, Ami; Lee, Hyunbeom; Lichtenstein, Yoav; Shalev, Zvi; Smith, Yoav; Zolotarov, Lidya; Ziv, Ehud; Kalman, Rony; Le, Hoang V; Lu, Hejun; Silverman, Richard B; Ilan, Yaron

    2015-08-13

    Hepatocellular carcinoma is the second leading cause of cancer death worldwide. DNA microarray analysis identified the ornithine aminotransferase (OAT) gene as a prominent gene overexpressed in hepatocellular carcinoma (HCC) from Psammomys obesus. In vitro studies demonstrated inactivation of OAT by gabaculine (1), a neurotoxic natural product, which suppressed in vitro proliferation of two HCC cell lines. Alpha-fetoprotein (AFP) secretion, a biomarker for HCC, was suppressed by gabaculine in both cell lines, but not significantly. Because of the active site similarity between GABA aminotransferase (GABA-AT) and OAT, a library of 24 GABA-AT inhibitors was screened to identify a more selective inhibitor of OAT. (1S,3S)-3-Amino-4-(hexafluoropropan-2-ylidene)cyclopentane-1-carboxylic acid (2) was found to be an inactivator of OAT that only weakly inhibits GABA-AT, l-aspartate aminotransferase, and l-alanine aminotransferase. In vitro administration of 2 significantly suppressed AFP secretion in both Hep3B and HepG2 HCC cells; in vivo, 2 significantly suppressed AFP serum levels and tumor growth in HCC-harboring mice, even at 0.1 mg/kg. Overexpression of the OAT gene in HCC and the ability to block the growth of HCC by OAT inhibitors support the role of OAT as a potential therapeutic target to inhibit HCC growth. This is the first demonstration of suppression of HCC by an OAT inactivator.

  11. Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity

    PubMed Central

    Tittarelli, A; Guerrero, I; Tempio, F; Gleisner, M A; Avalos, I; Sabanegh, S; Ortíz, C; Michea, L; López, M N; Mendoza-Naranjo, A; Salazar-Onfray, F

    2015-01-01

    Background: Alterations in connexin 43 (Cx43) expression and/or gap junction (GJ)-mediated intercellular communication are implicated in cancer pathogenesis. Herein, we have investigated the role of Cx43 in melanoma cell proliferation and apoptosis sensitivity in vitro, as well as metastatic capability and tumour growth in vivo. Methods: Connexin 43 expression levels, GJ coupling and proliferation rates were analysed in four different human melanoma cell lines. Furthermore, tumour growth and lung metastasis of high compared with low Cx43-expressing FMS cells were evaluated in vivo using a melanoma xenograft model. Results: Specific inhibition of Cx43 channel activity accelerated melanoma cell proliferation, whereas overexpression of Cx43 increased GJ coupling and reduced cell growth. Moreover, Cx43 overexpression in FMS cells increased basal and tumour necrosis factor-α-induced apoptosis and resulted in decreased melanoma tumour growth and lower number and size of metastatic foci in vivo. Conclusions: Our findings reveal an important role for Cx43 in intrinsically controlling melanoma growth, death and metastasis, and emphasise the potential use of compounds that selectively enhance Cx43 expression on melanoma in the future chemotherapy and/or immunotherapy protocols. PMID:26135897

  12. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum.

    PubMed

    Heaton, M B; Mitchell, J J; Paiva, M

    2000-11-05

    Transgenic mice overexpressing NGF in the central nervous system under the control of the glial fibrillary acidic protein (GFAP) promoter were exposed to ethanol via vapor inhalation on postnatal days 4 and 5 (P4-5), the period of maximal cerebellar Purkinje cell sensitivity to ethanol. Wild-type controls were exposed in a similar manner. There were no differences in body weight or size following these procedures, but the transgenic brain weights at this age were significantly greater than wild-type controls. In the wild-type animals, a significant 33.3% ethanol-mediated loss of Purkinje cells in lobule I was detected via unbiased three-dimensional stereological counting on P5. In the GFAP-NGF transgenic animals, however, the 17.6% difference in Purkinje cell number in control and ethanol-exposed animals was not significant. There was a similar difference in Purkinje cell density in both groups, which did reach statistical significance (-32.7% in wild-type ethanol-treated animals, -17% in transgenic ethanol-exposed animals). These results suggest that endogenous overexpression of neurotrophic factors, which have previously been shown to protect against ethanol neurotoxicity in culture, can serve a similar protective function in the intact animal. Copyright 2000 John Wiley & Sons, Inc.

  13. Epigenetic regulation of NFE2 overexpression in myeloproliferative neoplasms.

    PubMed

    Peeken, Jan C; Jutzi, Jonas S; Wehrle, Julius; Koellerer, Christoph; Staehle, Hans F; Becker, Heiko; Schoenwandt, Elias; Seeger, Thalia S; Schanne, Daniel H; Gothwal, Monika; Ott, Christopher J; Gründer, Albert; Pahl, Heike L

    2018-05-03

    The transcription factor "nuclear factor erythroid 2" (NFE2) is overexpressed in the majority of patients with myeloproliferative neoplasms (MPNs). In murine models, elevated NFE2 levels cause an MPN phenotype with spontaneous leukemic transformation. However, both the molecular mechanisms leading to NFE2 overexpression and its downstream targets remain incompletely understood. Here, we show that the histone demethylase JMJD1C constitutes a novel NFE2 target gene. JMJD1C levels are significantly elevated in polycythemia vera (PV) and primary myelofibrosis patients; concomitantly, global H3K9me1 and H3K9me2 levels are significantly decreased. JMJD1C binding to the NFE2 promoter is increased in PV patients, decreasing both H3K9me2 levels and binding of the repressive heterochromatin protein-1α (HP1α). Hence, JMJD1C and NFE2 participate in a novel autoregulatory loop. Depleting JMJD1C expression significantly reduced cytokine-independent growth of an MPN cell line. Independently, NFE2 is regulated through the epigenetic JAK2 pathway by phosphorylation of H3Y41. This likewise inhibits HP1α binding. Treatment with decitabine lowered H3Y41ph and augmented H3K9me2 levels at the NFE2 locus in HEL cells, thereby increasing HP1α binding, which normalized NFE2 expression selectively in JAK2 V617F -positive cell lines. © 2018 by The American Society of Hematology.

  14. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability.

    PubMed

    Kontou, Maria; Adelfalk, Caroline; Ramirez, Maria Helena; Ruppitsch, Werner; Hirsch-Kauffmann, Monica; Schweiger, Manfred

    2002-04-04

    The cause of the molecular defect of Fanconi anemia (FA) remains unknown. Cells from patients with FA exert an elevated spontaneous chromosomal instability which is further triggered by mitomycin C. The induced lability is reduced by overexpression of thioredoxin which is not the case for spontaneous instability. However, both are eliminated by overexpression of thioredoxin cDNA with an added nuclear localization signal. This implies that thioredoxin is lacking in the nuclei of FA cells. The total thioredoxin content in all FA cells tested is reduced. The resultant lack of nuclear thioredoxin can be the explanation for the major symptomatology in FA. Since thioredoxin is known to be the reactive cofactor of ribonucleotid reductase its shortcoming reduces the supply of deoxyribonucleotides thus hindering the DNA and replication repair with resultant chromosomal breaks. Furthermore, depression of tyrosine hydroxylase, the key enzyme of melanine synthesis, could be the basis for the pathognomotic 'café au lait' spots of FA. The observation of thioredoxin reduction in FA cells permits insight into the molecular phathophysiology of FA.

  15. Impaired Consciousness in Epilepsy

    PubMed Central

    Blumenfeld, Hal

    2013-01-01

    Consciousness is essential to normal human life. In epileptic seizures consciousness is often transiently lost making it impossible for the individual to experience or respond. This has huge consequences for safety, productivity, emotional health and quality of life. To prevent impaired consciousness in epilepsy it is necessary to understand the mechanisms leading to brain dysfunction during seizures. Normally the “consciousness system”—a specialized set of cortical-subcortical structures—maintains alertness, attention and awareness. Recent advances in neuroimaging, electrophysiology and prospective behavioral testing have shed new light on how epileptic seizures disrupt the consciousness system. Diverse seizure types including absence, generalized tonic-clonic and complex partial seizures converge on the same set of anatomical structures through different mechanisms to disrupt consciousness. Understanding these mechanisms may lead to improved treatment strategies to prevent impaired consciousness and improve quality of life in people with epilepsy. PMID:22898735

  16. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    PubMed Central

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of < 24 or history of dementia or Alzheimer’s disease. Hearing impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of < 1.55 log units in the better eye and olfactory impairment was a San Diego Odor Identification Test score of < 6. Results Hearing, visual, and olfactory impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  17. Age-Related Sensory Impairments and Risk of Cognitive Impairment.

    PubMed

    Fischer, Mary E; Cruickshanks, Karen J; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara E K; Klein, Ronald; Tweed, Ted S

    2016-10-01

    To evaluate the associations between sensory impairments and 10-year risk of cognitive impairment. The Epidemiology of Hearing Loss Study (EHLS), a longitudinal, population-based study of aging in the Beaver Dam, Wisconsin community. Baseline examinations were conducted in 1993 and follow-up examinations have been conducted every 5 years. General community. EHLS members without cognitive impairment at EHLS-2 (1998-2000). There were 1,884 participants (mean age 66.7) with complete EHLS-2 sensory data and follow-up information. Cognitive impairment was defined as a Mini-Mental State Examination score of <24 or history of dementia or Alzheimer's disease. Hearing impairment was a pure-tone average of hearing thresholds (0.5, 1, 2, 4 kHz) of >25 dB hearing level in either ear, visual impairment was a Pelli-Robson contrast sensitivity of <1.55 log units in the better eye, and olfactory impairment was a San Diego Odor Identification Test score of <6. Hearing, visual, and olfactory impairment were independently associated with cognitive impairment risk (hearing: hazard ratio (HR) = 1.90, 95% confidence interval (CI) = 1.11-3.26; vision: HR = 2.05, 95% CI = 1.24-3.38; olfaction: HR = 3.92, 95% CI = 2.45-6.26)). Nevertheless, 85% of participants with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. The relationship between sensory impairment and cognitive impairment was not unique to one sensory system, suggesting that sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  18. GRK5 deficiency leads to susceptibility to intermittent hypoxia-induced cognitive impairment.

    PubMed

    Singh, Prabhakar; Peng, Wei; Zhang, Qiang; Ding, XueFeng; Suo, William Z

    2016-04-01

    Obstructive sleep apnea (OSA) leads to cognitive impairment in about 25% patients, though it remains elusive what makes one more susceptible than the other to be cognitively impaired. G protein-coupled receptor kinase-5 (GRK5) deficiency is recently found to render subjects more susceptible to cognitive impairment triggered by over-expression of Swedish mutant ß-amyloid precursor protein. This study is to determine whether GRK5 deficiency also renders subjects more susceptible to the OSA-triggered cognitive impairment. Both wild type (WT) and GRK5 knockout (KO) mice were placed in conditions absence and presence of intermittent hypoxia (IH) with 8%/21% O2 90-s cycle for 8h a day for a month, and then followed by behavioral assessments with battery of tasks. We found that the selected IH condition only induced marginally abnormal behavior (slightly elevated anxiety with most others unchanged) in the WT mice but it caused significantly more behavioral deficits in the KO mice, ranging from elevated anxiety, impaired balancing coordination, and impaired short-term spatial memory. These results suggest that GRK5 deficiency indeed makes the mice more susceptible to wide range of behavioral impairments, including cognitive impairments. Published by Elsevier B.V.

  19. Assessment of Hearing Impaired Youth.

    ERIC Educational Resources Information Center

    Hicks, Doin E., Ed.; And Others

    1980-01-01

    The issue of Directions contains 11 articles on assessment of hearing impaired individuals. Entries have the following titles and authors: "Classroom Assessment Techniques for Hearing Impaired Students--A Literature Review" (B. McKee, M. Hausknecht); "Informal Assessment of Hearing Impaired Students In the Classroom" (B. Culhane, R. Hein);…

  20. Specific Language Impairments in Children.

    ERIC Educational Resources Information Center

    Watkins, Ruth V., Ed.; Rice, Mabel L., Ed.

    The fourth volume in a series on communication and language intervention focuses on specific language impairments in children, and contains papers presented at a 1992 conference. Papers include the following: "Specific Language Impairments in Children: An Introduction" (Ruth V. Watkins); "Studies of Genetics of Specific Language Impairment" (J.…

  1. Impaired growth and development of Colorado potato beetle larvae on potato plants overexpressing the oryzacystatin II gene

    USDA-ARS?s Scientific Manuscript database

    Plant proteinase inhibitors are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. Oryzacystatins I and II (OCI and OCII) show potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate ...

  2. Impaired ventilatory acclimatization to hypoxia in female mice overexpressing erythropoietin: unexpected deleterious effect of estradiol in carotid bodies.

    PubMed

    Gassmann, Max; Pfistner, Christine; Doan, Van Diep; Vogel, Johannes; Soliz, Jorge

    2010-12-01

    Apart from enhancing the production of red blood cells, erythropoietin (Epo) alters the ventilatory response when oxygen supply is reduced. We recently demonstrated that Epo's beneficial effect on the ventilatory response to acute hypoxia is sex dependent, with female mice being better able to cope with reduced oxygenation. In the present work, we hypothesized that ventilatory acclimatization to chronic hypoxia (VAH) in transgenic female mice (Tg6) harboring high levels of Epo in the brain and blood will also be improved compared with wild-type (WT) animals. Surprisingly, VAH was blunted in Tg6 female mice. To define whether this phenomenon had a central (brain stem respiratory centers) and/or peripheral (carotid bodies) origin, a bilateral transection of carotid sinus nerve (chemodenervation) was performed. This procedure allowed the analysis of the central response in the absence of carotid body information. Interestingly, chemodenervation restored the VAH in Tg6 mice, suggesting that carotid bodies were responsible for the blunted response. Coherently with this observation, the sensitivity to oxygen alteration in arterial blood (Dejour test) after chronic hypoxia was lower in transgenic carotid bodies compared with the WT control. As blunted VAH occurred in female but not male transgenic mice, the involvement of sex female steroids was obvious. Indeed, measurement of sexual female hormones revealed that the estradiol serum level was 4 times higher in transgenic mice Tg6 than in WT animals. While ovariectomy decreased VAH in WT females, this treatment restored VAH in Tg6 female mice. In line with this observation, injections of estradiol in ovariectomized Tg6 females dramatically reduced the VAH. We concluded that during chronic hypoxia, estradiol in carotid bodies suppresses the Epo-mediated elevation of ventilation. Considering the increased application of recombinant Epo for a variety of disorders, our data imply the need to take the patient's hormonal status into consideration.

  3. Overexpression of the vesicular acetylcholine transporter enhances dendritic complexity of adult-born hippocampal neurons and improves acquisition of spatial memory during aging.

    PubMed

    Nagy, Paul Michael; Aubert, Isabelle

    2015-05-01

    Aging is marked by progressive impairments in the process of adult neurogenesis and spatial memory performance. The underlying mechanisms for these impairments have not been fully established; however, they may coincide with decline of cholinergic signaling in the hippocampus. This study investigates whether augmenting cholinergic neurotransmission, by enhancing the expression of the vesicular acetylcholine transporter (VAChT), influences the age-related decline in the development of newborn hippocampal cells and spatial memory. We found that enhanced VAChT expression in the hippocampus of mice contributes to lifelong increases in the dendritic complexity of newborn neurons. Furthermore, enhanced VAChT expression improved memory acquisition through an increased use of spatially precise search strategies in the Morris water maze through the course of the aging process. These data suggest that VAChT overexpression contributes to increases in dendritic complexity and improved spatial memory during aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cytotoxic Effect Associated with Overexpression of QNR Proteins in Escherichia coli.

    PubMed

    Machuca, Jesús; Diaz de Alba, Paula; Recacha, Esther; Pascual, Álvaro; Rodriguez-Martinez, José Manuel

    2017-10-01

    The objective was to evaluate the cytotoxic effect associated with overexpression of multiple Qnr-like plasmid-mediated quinolone resistance (PMQR) mechanisms in Escherichia coli. Coding regions of different PMQR genes (qnrA1, qnrB1, qnrC, qnrD1, qnrS1, and qepA2) and efsqnr were cloned into pET29a(+) vector and overexpressed in E. coli BL21. E. coli BL21 with and without an empty pET29a(+) vector were used as controls. The cytotoxic effect associated with PMQR mechanism overexpression was determined by transmission electron microscopy and viability assays. Overexpressed qnr genes produced loss of bacterial viability in the range of 77-97% compared with the controls, comparable with loss of viability associated with EfsQnr overexpression (97%). No loss of viability was observed in E. coli overexpressing QepA2. In transmission electron microscopy assays, signs of cytotoxicity were observed in E. coli cells overexpressing EfsQnr and Qnr proteins (30-45% of the bacterial population showed morphological changes). Morphological changes were observed in less than 5% of bacterial populations from the control strains and E. coli overexpressing QepA2. Overexpression of qnr genes produces a cytotoxic cellular and structural effect in E. coli, the magnitude of which varies depending on the family of Qnr proteins.

  5. Protection against vascular leak in neprilysin transgenic mice with complex overexpression pattern.

    PubMed

    Wick, Marilee J; Loomis, Zoe L; Harral, Julie W; Le, Mysan; Wehling, Carol A; Miller, York E; Dempsey, Edward C

    2016-12-01

    Neprilysin (NEP) is a cell surface metallopeptidase found in many tissues. Based mostly on pharmacological manipulations, NEP has been thought to protect blood vessels from plasma extravasation. We have suggested that NEP may protect against pulmonary vascular injury. However, these prior studies did not utilize mice which overexpress NEP. The aims of the present investigation were to develop and characterize doubly transgenic (DT) mice that overexpress NEP universally and conditionally, and to investigate the protective effect that overexpressed NEP may have against plasma extravasation in the vasculature. The duodenum, which is often used to assess vascular permeability, and in which the NEP protein was overexpressed in our DT mice two-fold, was selected as our experimental preparation. We found that substance P-induced plasma extravasation was decreased substantially (3.5-fold) in the duodenums of our doxycycline-treated DT mice, giving independent evidence of NEP's protective effects against plasma extravasation. Transgenic lung NEP protein was not stably expressed in the DT mice, so we were not able to test the effect of NEP overexpression in the lung. Although initially overexpressed nearly nine-fold at that site, pulmonary NEP protein overexpression eventually dissipated. Surprisingly, at a time when there was no lung transgenic NEP protein overexpression, lung NEP mRNA expression was still increased 23-fold, indicating that the expression defect probably is not transcriptional. These studies help to characterize our complex transgenic model of NEP overexpression and further demonstrate NEP's protective effects against plasma extravasation.

  6. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    PubMed

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-06-13

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement.

  7. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice

    PubMed Central

    Madathil, Sindhu K.; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Ye, Ping; D’Ercole, A. Joseph; Saatman, Kathryn E.

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI. PMID:23826235

  8. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.

    PubMed

    Madathil, Sindhu K; Carlson, Shaun W; Brelsfoard, Jennifer M; Ye, Ping; D'Ercole, A Joseph; Saatman, Kathryn E

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.

  9. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.

    PubMed

    Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young

    2004-10-01

    Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.

  10. RNAi or overexpression: Alternative therapies for Spinocerebellar Ataxia Type 1

    PubMed Central

    Keiser, Megan S.; Geoghegan, James C.; Boudreau, Ryan L.; Lennox, Kim A.; Davidson, Beverly L.

    2014-01-01

    Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant late onset neurodegenerative disease caused by an expanded polyglutamine tract in ataxin-1. Here, we compared the protective effects of overexpressing ataxin-1-like using recombinant AAVs, or reducing expression of mutant ataxin-1 using virally delivered RNA interference (RNAi), in a transgenic mouse model of SCA1. For the latter, we used an artificial microRNA (miR) design that optimizes potency, efficacy and safety to suppress ataxin-1 expression (miS1). Delivery of either ataxin-1-like or miS1 viral vectors to SCA1 mice cerebella resulted in widespread cerebellar Purkinje cell transduction and improved behavioral and histological phenotypes. Our data indicate the utility of either approach as a possible therapy for SCA1 patients. PMID:23583610

  11. Electrophysiology and metabolism of caveolin-3 overexpressing mice

    PubMed Central

    Schilling, Jan M.; Horikawa, Yousuke T.; Zemljic-Harpf, Alice E.; Vincent, Kevin P.; Tyan, Leonid; Yu, Judith K.; McCulloch, Andrew D.; Balijepalli, Ravi C.; Patel, Hemal H.; Roth, David M.

    2017-01-01

    Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: 1) ECG telemetry recordings at baseline and during pharmacological interventions, 2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and 3) baseline metabolism in Cav-3 OE and transgene negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. Expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, and heat generation, feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection. PMID:27023865

  12. Clinical significance of TC21 overexpression in oral cancer.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Sriram, Uma; Thakkar, Alok; Shukla, N K; Datta Gupta, Siddhartha; Ralhan, Ranju

    2010-07-01

    In search of novel molecular markers for oral cancer, we reported increased levels of TC21/R-Ras2 transcripts in oral squamous cell carcinoma by differential display. The aim of this study was to determine the clinical significance of TC21 in oral cancer. Immunohistochemical analysis of TC21 protein expression was carried out in 120 leukoplakias, 83 OSCCs and 30 non-malignant tissues, confirmed by immunoblotting, and correlated with clinicopathological parameters as well as disease prognosis. Co-immunoprecipitation assays were carried out to identify the interaction partners of TC21 protein in oral cancer cells and tissues. TC21 nuclear expression increased from normal oral tissues to leukoplakia and frank malignancy (P < 0.001). TC21 overexpression was observed in 74.2% leukoplakia with no dysplasia, 75.9% dysplasias and 79.5% OSCCs in comparison with normal oral tissues. Receiver operating characteristic analysis showed that the area-under-the curve values were 0.895, 0.885, and 0.919, while the positive predictive values were 95.8%, 95.6%, and 97.1%, for nuclear immunostaining for normal versus leukoplakia with no dysplasia, leukoplakic lesions with dysplasia, and OSCCs, respectively. Immunoblotting confirmed overexpression of TC21 in oral lesions. Using co-immunoprecipitation assays, we showed interactions of TC21 with Erk2, PI3-K, 14-3-3zeta and 14-3-3sigma proteins in oral cancer cells. Our findings suggested that alteration in TC21 expression is an early event in oral cancer and correlates with poor prognosis of OSCCs. TC21 interactions with Erk2, PI3-K, 14-3-3zeta and 14-3-3sigma proteins in oral cancer cells and tissues suggests the involvement of TC21 in signaling pathways in oral cancer.

  13. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Sarcolipin overexpression improves muscle energetics and reduces fatigue

    PubMed Central

    Sopariwala, Danesh H.; Pant, Meghna; Shaikh, Sana A.; Goonasekera, Sanjeewa A.; Molkentin, Jeffery D.; Weisleder, Noah; Ma, Jianjie; Pan, Zui

    2015-01-01

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (SlnOE) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that SlnOE mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that SlnOE EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and SlnOE EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in SlnOE EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from SlnOE mice fatigued significantly less than WT muscles. Interestingly, SlnOE muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in SlnOE EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of SlnOE compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics. PMID:25701006

  15. Cognitive impairment and pragmatics.

    PubMed

    Gutiérrez-Rexach, Javier; Schatz, Sara

    2016-01-01

    One of the most important ingredients of felicitous conversation exchanges is the adequate expression of illocutionary force and the achievement of perlocutionary effects, which can be considered essential to the functioning of pragmatic competence. The breakdown of illocutionary and perlocutionary functions is one of the most prominent external features of cognitive impairment in Alzheimer's Disease, with devastating psychological and social consequences for patients, their family and caregivers. The study of pragmatic functions is essential for a proper understanding of the linguistic and communicative aspects of Alzheimer's disease.

  16. Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    PubMed Central

    Manuel, Martine; Pratt, Thomas; Liu, Min; Jeffery, Glen; Price, David J

    2008-01-01

    optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6+/- heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm. PMID:18507827

  17. 20 CFR 220.104 - Multiple impairments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... physical or mental impairment or impairments are of a sufficient medical severity that such impairment or... throughout the disability evaluation process. If a medically severe combination of impairments is not found...

  18. Cardiac-restricted Overexpression of TRAF3 Interacting Protein 2 (TRAF3IP2) Results in Spontaneous Development of Myocardial Hypertrophy, Fibrosis, and Dysfunction *

    PubMed Central

    Sakamuri, Siva S. V. P.; Siddesha, Jalahalli M.; Saifudeen, Zubaida; Ma, Lixin; Siebenlist, Ulrich; Gardner, Jason D.; Chandrasekar, Bysani

    2016-01-01

    TRAF3IP2 (TRAF3 interacting protein 2; previously known as CIKS or Act1) is a key intermediate in the normal inflammatory response and the pathogenesis of various autoimmune and inflammatory diseases. Induction of TRAF3IP2 activates IκB kinase (IKK)/NF-κB, JNK/AP-1, and c/EBPβ and stimulates the expression of various inflammatory mediators with negative myocardial inotropic effects. To investigate the role of TRAF3IP2 in heart disease, we generated a transgenic mouse model with cardiomyocyte-specific TRAF3IP2 overexpression (TRAF3IP2-Tg). Echocardiography, magnetic resonance imaging, and pressure-volume conductance catheterization revealed impaired cardiac function in 2-month-old male transgenic (Tg) mice as evidenced by decreased ejection fraction, stroke volume, cardiac output, and peak ejection rate. Moreover, the male Tg mice spontaneously developed myocardial hypertrophy (increased heart/body weight ratio, cardiomyocyte cross-sectional area, GATA4 induction, and fetal gene re-expression). Furthermore, TRAF3IP2 overexpression resulted in the activation of IKK/NF-κB, JNK/AP-1, c/EBPβ, and p38 MAPK and induction of proinflammatory cytokines, chemokines, and extracellular matrix proteins in the heart. Although myocardial hypertrophy decreased with age, cardiac fibrosis (increased number of myofibroblasts and enhanced expression and deposition of fibrillar collagens) increased progressively. Despite these adverse changes, TRAF3IP2 overexpression did not result in cell death at any time period. Interestingly, despite increased mRNA expression, TRAF3IP2 protein levels and activation of its downstream signaling intermediates remained unchanged in the hearts of female Tg mice. The female Tg mice also failed to develop myocardial hypertrophy. In summary, these results demonstrate that overexpression of TRAF3IP2 in male mice is sufficient to induce myocardial hypertrophy, cardiac fibrosis, and contractile dysfunction. PMID:27466370

  19. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation1[C][W

    PubMed Central

    Campo, Sonia; Baldrich, Patricia; Messeguer, Joaquima; Lalanne, Eric; Coca, María; San Segundo, Blanca

    2014-01-01

    The OsCPK4 gene is a member of the complex gene family of calcium-dependent protein kinases in rice (Oryza sativa). Here, we report that OsCPK4 expression is induced by high salinity, drought, and the phytohormone abscisic acid. Moreover, a plasma membrane localization of OsCPK4 was observed by transient expression assays of green fluorescent protein-tagged OsCPK4 in onion (Allium cepa) epidermal cells. Overexpression of OsCPK4 in rice plants significantly enhances tolerance to salt and drought stress. Knockdown rice plants, however, are severely impaired in growth and development. Compared with control plants, OsCPK4 overexpressor plants exhibit stronger water-holding capability and reduced levels of membrane lipid peroxidation and electrolyte leakage under drought or salt stress conditions. Also, salt-treated OsCPK4 seedlings accumulate less Na+ in their roots. We carried out microarray analysis of transgenic rice overexpressing OsCPK4 and found that overexpression of OsCPK4 has a low impact on the rice transcriptome. Moreover, no genes were found to be commonly regulated by OsCPK4 in roots and leaves of rice plants. A significant number of genes involved in lipid metabolism and protection against oxidative stress appear to be up-regulated by OsCPK4 in roots of overexpressor plants. Meanwhile, OsCPK4 overexpression has no effect on the expression of well-characterized abiotic stress-associated transcriptional regulatory networks (i.e. ORYZA SATIVA DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN1 and ORYZA SATIVA No Apical Meristem, Arabidopsis Transcription Activation Factor1-2, Cup-Shaped Cotyledon6 genes) and LATE EMBRYOGENESIS ABUNDANT genes in their roots. Taken together, our data show that OsCPK4 functions as a positive regulator of the salt and drought stress responses in rice via the protection of cellular membranes from stress-induced oxidative damage. PMID:24784760

  20. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    PubMed

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  1. BDNF overexpression prevents cognitive deficit elicited by adolescent cannabis exposure and host susceptibility interaction.

    PubMed

    Segal-Gavish, Hadar; Gazit, Neta; Barhum, Yael; Ben-Zur, Tali; Taler, Michal; Hornfeld, Shay Henry; Gil-Ad, Irit; Weizman, Abraham; Slutsky, Inna; Niwa, Minae; Kamiya, Atsushi; Sawa, Akira; Offen, Daniel; Barzilay, Ran

    2017-07-01

    Cannabis abuse in adolescence is associated with increased risk of psychotic disorders. Δ-9-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. Disrupted-In-Schizophrenia-1 (DISC1) protein is a driver for major mental illness by influencing neurodevelopmental processes. Here, utilizing a unique mouse model based on host (DISC1) X environment (THC administration) interaction, we aimed at studying the pathobiological basis through which THC exposure elicits psychiatric manifestations. Wild-Type and dominant-negative-DISC1 (DN-DISC1) mice were injected with THC (10 mg/kg) or vehicle for 10 days during mid-adolescence-equivalent period. Behavioral tests were conducted to assess exploratory activity (open field test, light-dark box test) and cognitive function (novel object recognition test). Electrophysiological effect of THC was evaluated using acute hippocampal slices, and hippocampal cannabinoid receptor type 1 and brain-derived neurotrophic factor (BDNF) protein levels were measured. Our results indicate that THC exposure elicits deficits in exploratory activity and recognition memory, together with reduced short-term synaptic facilitation and loss of BDNF surge in the hippocampus of DN-DISC mice, but not in wild-type mice. Over-expression of BDNF in the hippocampus of THC-treated DN-DISC1 mice prevented the impairment in recognition memory. The results of this study imply that induction of BDNF following adolescence THC exposure may serve as a homeostatic response geared to maintain proper cognitive function against exogenous insult. The BDNF surge in response to THC is perturbed in the presence of mutant DISC1, suggesting DISC1 may be a useful probe to identify biological cascades involved in the neurochemical, electrophysiological, and behavioral effects of cannabis related psychiatric manifestations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Suppression of Non-Homologous End Joining Repair by Overexpression of HMGA2

    PubMed Central

    Li, Angela Y.J.; Boo, Lee Ming; Wang, Shih-Ya; Lin, H. Helen; Wang, Clay C.C.; Yen, Yun; Chen, Benjamin P.C.; Chen, David J.; Ann, David K.

    2009-01-01

    Understanding the molecular details associated with aberrant high mobility group A2 (HMGA2) gene expression is key to establishing the mechanism(s) underlying its oncogenic potential and impact on the development of therapeutic strategies. Here, we report the involvement of HMGA2 in impairing DNA-dependent protein kinase (DNA-PK) during the non-homologous end joining (NHEJ) process. We demonstrated that HMGA2-expressing cells displayed deficiency in overall and precise DNA end-joining repair and accumulated more endogenous DNA damage. Proper and timely activation of DNA-PK, consisting of Ku70, Ku80 and DNA-PKcs subunits, is essential for the repair of DNA double strand breaks (DSBs) generated endogenously or by exposure to genotoxins. In cells overexpressing HMGA2, accumulation of histone 2A variant X phosphorylation at Ser-139 (γ-H2AX) was associated with hyper-phosphorylation of DNA-PKcs at Thr-2609 and Ser-2056 before and after the induction of DSBs. Also, the steady-state complex of Ku and DNA ends was altered by HMGA2. Microirradiation and real-time imaging in living cells revealed that HMGA2 delayed the release of DNA-PKcs from DSB sites, similar to observations found in DNA-PKcs mutants. Moreover, HMGA2 alone was sufficient to induce chromosomal aberrations, a hallmark of deficiency in NHEJ-mediated DNA repair. In summary, a novel role for HMGA2 to interfere with NHEJ processes was uncovered, implicating HMGA2 in the promotion of genome instability and tumorigenesis. PMID:19549901

  3. Infertility in transgenic mice overexpressing the bovine growth hormone gene: luteal failure secondary to prolactin deficiency.

    PubMed

    Cecim, M; Kerr, J; Bartke, A

    1995-05-01

    Overexpression of growth hormone (GH) in transgenic mice is associated with various degrees of impairment of female reproductive functions. Transgenic PEPCK.bGH mice express high GH levels, and only around 20% of the females will carry gestation to Day 7. The objective of the present study was to investigate luteal function in PEPCK.bGH mice during early pregnancy, when CL are fully dependent on the pituitary. Plasma progesterone levels measured on Days 2 or 7 postcoitum (p.c.) were lower in transgenic than in normal females. In transgenic females with a previous history of infertility, daily injections of 1 mg progesterone starting on Day 2 p.c. significantly increased the proportion of animals pregnant on Day 7. When ovaries from transgenic mice were transplanted into ovariectomized normal littermates, the recipients exhibited normal vaginal cycles and responded to mating by vaginal cytology changes consistent with pseudopregnancy. In contrast, ovariectomized transgenic females bearing transplants of ovaries from normal mice had slightly prolonged estrous cycles and failed to become pseudopregnant after mating. Plasma progesterone levels on Days 2 and 7 p.c. in normal females with transgenic ovaries were not different from plasma progesterone levels measured in normal females into which normal ovaries had been transplanted. Twice-daily injections of 100 micrograms of prolactin (PRL) in saline or in polyvinylpyrrolidone starting on the evening of Day 2 p.c. were able to rescue luteal function. The proportion of PRL-injected transgenic animals that were pregnant on Day 7 was significantly higher than that of saline-injected transgenic controls and resembled the pregnancy rate of normal animals.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. KCNQ Channels Regulate Age-Related Memory Impairment

    PubMed Central

    Cavaliere, Sonia; Malik, Bilal R.; Hodge, James J. L.

    2013-01-01

    In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ) when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/βneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment. PMID:23638087

  5. [Complex diagnostic of cognitive impairment].

    PubMed

    Emelin, A Yu; Lobzin, V Yu

    2017-01-01

    In this article, the authors discussed the various aspects of pre-dementia stages of cognitive impairment, predominantly of neurodegenerative etiology. The modern conception of the pathophysiology of initial stages of cognitive impairment, the potential for lifetime pathological markers of amyloidosis and neurodegeneration are discussed. The authors proposed to use the concept of 'early signs of cognitive impairment'. The algorithm of the complex early diagnosis of cognitive impairment as well as the opportunities and prospects of clinical, neuropsychological, neuroimaging and laboratory examination methods are presented. The data on main diseases characterized by cognitive impairment and prospects for the use of new highly informative methods for early and differential diagnosis of Alzheimer's disease and vascular cognitive impairment are discussed.

  6. Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of Candida albicans▿

    PubMed Central

    Fu, Yue; Luo, Guanpingsheng; Spellberg, Brad J.; Edwards, John E.; Ibrahim, Ashraf S.

    2008-01-01

    We developed a conditional overexpression/suppression genetic strategy in Candida albicans to enable simultaneous testing of gain or loss of function in order to identify new virulence factors. The strategy involved insertion of a strong, tetracycline-regulated promoter in front of the gene of interest. To validate the strategy, a library of genes encoding glycosylphosphatidylinositol (GPI)-anchored surface proteins was screened for virulence phenotypes in vitro. During the screening, overexpression of IFF4 was found to increase the adherence of C. albicans to plastic and to human epithelial cells, but not endothelial cells. Consistent with the in vitro results, IFF4 overexpression modestly increased the tissue fungal burden during murine vaginal candidiasis. In addition to the in vitro screening tests, IFF4 overexpression was found to increase C. albicans susceptibility to neutrophil-mediated killing. Furthermore, IFF4 overexpression decreased the severity of hematogenously disseminated candidiasis in normal mice, but not in neutropenic mice, again consistent with the in vitro phenotype. Overexpression of 12 other GPI proteins did not affect normal GPI protein cell surface accumulation, demonstrating that the overexpression strategy did not affect the cell capacity for making such proteins. These data indicate that the same gene can increase or decrease candidal virulence in distinct models of infection, emphasizing the importance of studying virulence genes in different anatomical contexts. Finally, these data validate the use of a conditional overexpression/suppression genetic strategy to identify candidal virulence factors. PMID:18178776

  7. NF-E2 Overexpression Delays Erythroid Maturation and Increases Erythrocyte Production

    PubMed Central

    Mutschler, Manuel; Magin, Angela S.; Buerge, Martina; Roelz, Roland; Schanne, Daniel H.; Will, Britta; Pilz, Ingo H.; Migliaccio, Anna Rita; Pahl, Heike L.

    2009-01-01

    Summary The transcription factor Nuclear Factor-Erythroid 2 (NF-E2) is overexpressed in the vast majority of patients with polycythaemia vera (PV). In murine models, NF-E2 overexpression increases proliferation and promotes cellular viability in the absence of erythropoietin (EPO). EPO-independent growth is a hallmark of PV. We therefore hypothesized that NF-E2 overexpression contributes to erythrocytosis, the pathognomonic feature of PV. Consequently, we investigated the effect of NF-E2 overexpression in healthy CD34+ cells. NF-E2 overexpression led to a delay in erythroid maturation, manifested by a belated appearance of glycophorin A-positive erythroid precursors. Maturation delay was similarly observed in primary PV patient erythroid cultures compared to healthy controls. Protracted maturation led to a significant increase in the accumulated number of erythroid cells both in PV cultures and in CD34+ cells overexpressing NF-E2. Similarly, NF-E2 overexpression altered erythroid colony formation, leading to an increase in BFU-E formation. These data indicate that NF-E2 overexpression delays the early phase of erythroid maturation, resulting in an expansion of erythroid progenitors, thereby increasing the number of erythrocytes derived from one CD34+ cell. These data propose a role for NF-E2 in mediating the erythrocytosis of PV. PMID:19466964

  8. Impairments in Skin Integrity.

    PubMed

    Murphree, Rose W

    2017-09-01

    Altered skin integrity increases the chance of infection, impaired mobility, and decreased function and may result in the loss of limb or, sometimes, life. Skin is affected by both intrinsic and extrinsic factors. Intrinsic factors can include altered nutritional status, vascular disease issues, and diabetes. Extrinsic factors include falls, accidents, pressure, immobility, and surgical procedures. Ensuring skin integrity in the elderly requires a team approach and includes the individual, caregivers, and clinicians. The twenty-first century clinician has several online, evidence-based tools to assist with optimal treatment plans. Understanding best practices in addressing skin integrity issues can promote positive outcomes with the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cholinergic neurodegeneration in an Alzheimer mouse model overexpressing amyloid-precursor protein with the Swedish-Dutch-Iowa mutations.

    PubMed

    Foidl, Bettina Maria; Do-Dinh, Patricia; Hutter-Schmid, Bianca; Bliem, Harald R; Humpel, Christian

    2016-12-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is mainly characterized by beta-amyloid (Aβ) plaque deposition, Tau pathology and dysfunction of the cholinergic system causing memory impairment. The aim of the present study was to examine (1) anxiety and cognition, (2) Aβ plaque deposition and (3) degeneration of cholinergic neurons in the nucleus basalis of Meynert (nbM) and cortical cholinergic innervation in an Alzheimer mouse model (APP_SweDI; overexpressing amyloid precursor protein (APP) with the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations). Our results show that 12-month-old APP_SweDI mice were more anxious and had more memory impairment. A large number of Aβ plaques were already visible at the age of 6 months and increased with age. A significant decrease in cholinergic neurons was seen in the transgenic mouse model in comparison to the wild-type mice, identified by immunohistochemistry against choline acetyltransferase (ChAT) and p75 neurotrophin receptor as well as by in situ hybridization. Moreover, a significant decrease in cortical cholinergic fiber density was found in the transgenic mice as compared to the wild-type. In the cerebral cortex of APP_SweDI mice, swollen cholinergic varicosities were seen in the vicinity of Aβ plaques. In conclusion, the present study shows that in an AD mouse model (APP_SweDI mice) a high Aβ plaque load in the cortex causes damage to cholinergic axons in the cortex, followed by subsequent retrograde-induced cell death of cholinergic neurons and some forms of compensatory processes. This degeneration was accompanied by enhanced anxiety and impaired cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cognitive Impairment and Tramadol Dependence.

    PubMed

    Bassiony, Medhat M; Youssef, Usama M; Hassan, Mervat S; Salah El-Deen, Ghada M; El-Gohari, Hayam; Abdelghani, Mohamed; Abdalla, Ahmed; Ibrahim, Dalia H

    2017-02-01

    Cognitive impairment is one of the consequences of substance abuse. Tramadol abuse is a public health problem in Egypt. The objective of this study was to estimate the prevalence and correlates of cognitive impairment among tramadol-abuse patients and control subjects. This study included 100 patients with tramadol abuse and 100 control subjects (matched for age, sex, and education) who were recruited from Zagazig University Hospital, Egypt. Patients were divided into 2 groups: patients who used tramadol only (tramadol-alone group) and patients who used tramadol and other substances (polysubstance group). The participants were interviewed using Montreal Cognitive Assessment test and had urine screening for drugs. Twenty-four percent of the cases used tramadol alone, whereas the remaining used tramadol and other substances, mainly cannabis (66%) and benzodiazepines (27%). Tramadol-abuse patients were about 3 times more likely to have cognitive impairment than control subjects (81% vs 28%). Tramadol-alone patients were more than 2 times more likely to have cognitive impairment than control subjects (67% vs 28%). Cognitive impairment was significantly associated with polysubstance abuse. There was no association between cognitive impairment and sociodemographic or clinical factors. Cognitive impairment occurs commonly among tramadol-abuse patients. Memory impairment is the most common cognitive domain to be affected. There is a significant association between cognitive impairment and polysubstance abuse.

  11. Overexpression of peptide deformylase in breast, colon, and lung cancers.

    PubMed

    Randhawa, Harsharan; Chikara, Shireen; Gehring, Drew; Yildirim, Tuba; Menon, Jyotsana; Reindl, Katie M

    2013-07-01

    Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression

  12. Overexpression of peptide deformylase in breast, colon, and lung cancers

    PubMed Central

    2013-01-01

    Background Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. Methods The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. Results PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. Conclusions This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the

  13. Impaired Verb Fluency: A Sign of Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Ostberg, Per; Fernaeus, Sven-Erik; Hellstrom, Ake; Bogdanovic, Nenad; Wahlund, Lars Olof

    2005-01-01

    We assessed verb fluency vs. noun and letter-based fluency in 199 subjects referred for cognitive complaints including Subjective Cognitive Impairment, Mild Cognitive Impairment, and Alzheimer's disease. ANCOVAs and factor analyses identified verb, noun, and letter-based fluency as distinct tasks. Verb fluency performance in Mild Cognitive…

  14. Overexpression of hypoxia/inflammatory markers in atherosclerotic carotid plaques.

    PubMed

    Luque, Ana; Turu, Marta; Juan-Babot, Oriol; Cardona, Pere; Font, Angels; Carvajal, Ana; Slevin, Mark; Iborra, Elena; Rubio, Francisco; Badimon, Lina; Krupinski, Jerzy

    2008-05-01

    Hypoxia, angiogenesis and inflammation leads to plaque progression and remodelling and may significantly contribute towards plaque rupture and subsequent cerebrovascular events. Our aim was to study, markers of hypoxia and inflammation previously identified by microarray analysis, in atherosclerotic carotid arteries with low to moderate stenosis. We hoped to describe different cellular populations expressing the studied markers. The location of selected inflammatory molecules obtained as vascular transplants from organ donors were analysed by immunohistochemistry with monoclonal and polyclonal antibodies. Paraffin-embedded sections were cut and probed with antibodies recognizing active B and T-lymphocytes (CD30), hypoxia-inducible factor-1alpha, endoglin (CD105), Interleukin-6 and C-reactive protein. We observed a notable overexpression of HIF-1alpha in inflammatory and hypoxic areas of carotid arteries in all types of lesions from type II-V taken from the patients with carotid stenosis less than 50%. This suggests that HIF-1alpha may have a putative role in atherosclerosis progression and angiogenesis. Dynamic changes in the non-occluding plaques may explain some of the clinical events in patients with low to moderate carotid stenosis.

  15. Hakai overexpression effectively induces tumour progression and metastasis in vivo.

    PubMed

    Castosa, Raquel; Martinez-Iglesias, Olaia; Roca-Lema, Daniel; Casas-Pais, Alba; Díaz-Díaz, Andrea; Iglesias, Pilar; Santamarina, Isabel; Graña, Begoña; Calvo, Lourdes; Valladares-Ayerbes, Manuel; Concha, Ángel; Figueroa, Angélica

    2018-02-22

    At early stages of carcinoma progression, epithelial cells undergo a program named epithelial-to-mesenchymal transition characterized by the loss of the major component of the adherens junctions, E-cadherin, which in consequence causes the disruption of cell-cell contacts. Hakai is an E3 ubiquitin-ligase that binds to E-cadherin in a phosphorylated-dependent manner and induces its degradation; thus modulating cell adhesions. Here, we show that Hakai expression is gradually increased in adenoma and in different TNM stages (I-IV) from colon adenocarcinomas compared to human colon healthy tissues. Moreover, we confirm that Hakai overexpression in epithelial cells drives transformation in cells, a mesenchymal and invasive phenotype, accompanied by the downregulation of E-cadherin and the upregulation of N-cadherin, and an increased proliferation and an oncogenic potential. More importantly, for the first time, we have studied the role of Hakai during cancer progression in vivo. We show that Hakai-transformed MDCK cells dramatically induce tumour growth and local invasion in nude mice and tumour cells exhibit a mesenchymal phenotype. Furthermore, we have detected the presence of micrometastasis in the lung mice, further confirming Hakai role during tumour metastasis in vivo. These results lead to the consideration of Hakai as a potential new therapeutic target to block tumour development and metastasis.

  16. Overexpression of the obesity hormone leptin in human colorectal cancer

    PubMed Central

    Koda, Mariusz; Sulkowska, Mariola; Kanczuga‐Koda, Luiza; Surmacz, Eva; Sulkowski, Stanislaw

    2007-01-01

    Background Leptin is an adipocyte‐derived neurohormone, high levels of which are found in obese individuals. Leptin controls energy expenditure, acting in the brain, and regulates different processes in peripheral organs. Recent studies have suggested that leptin may be involved in cancer development and progression. Aims To analyse leptin expression in human colorectal cancer as well as in colorectal mucosa and colorectal adenomas. Methods Leptin expression was assessed by immunohistochemistry in 166 colorectal cancers, 101 samples of colorectal mucosa and 41 adenomas. Leptin concentration in colorectal cancer was correlated with selected clinicopathological features. Results Immunoreactivity for leptin was observed in 51.2% (85/166) of primary colorectal cancers. In adenomas leptin expression was observed in 14.6% (6/41) of studied cases. In normal mucosa, leptin was present at low levels, except in tumour bordering areas where its concentration appeared to reflect levels in the adjacent cancer tissue. Leptin expression in colorectal cancer significantly correlated with tumour G2 grade (p = 0.002) as well as with histological type (adenocarcinoma) of tumours (p = 0.044). Conclusions Results indicate that leptin is overexpressed in human colorectal cancer, which suggests that the hormone might contribute to colorectal cancer development and progression. PMID:17660334

  17. Clinicopathological significance of SLP-2 overexpression in human gallbladder cancer.

    PubMed

    Wang, Wei-Xin; Lin, Qing-Feng; Shen, Dong; Liu, Shao-Ping; Mao, Wei-Dong; Ma, Gui; Qi, Wei-Dong

    2014-01-01

    Several studies have indicated that overexpression of stomatin-like protein 2 (SLP-2) has been identified in several types of cancer. However, its role and clinical relevance in gallbladder cancer (GBC) is unknown. The purpose of this study was to reveal the prognostic significance of SLP-2 in GBC. The SLP-2 expression was examined at mRNA and protein levels by real-time quantitative polymerase chain reaction (qRT-PCR), and immunohistochemistry in GBC tissues and adjacent noncancerous tissues. Statistical analyses were applied to test the associations between SLP-2 expression, clinicopathologic factors, and prognosis. Immunohistochemistry and qRT-PCR showed that the protein and mRNA expression levels of SLP-2 were both significantly higher in GBC tissues than in adjacent noncancerous tissues. In addition, immunohistochemistry analysis showed that SLP-2 expression was significantly correlated with histological grade (P <0.001), pathologic T stage (P = 0.019), clinical stage (P = 0.001), and lymph node metastasis (P = 0.026). The Kaplan-Meier survival curves indicated that patients with high expression of SLP-2 had shorter overall survival than those with low expression (P <0.001). Meanwhile, the Cox multivariate analysis indicated that high expressions of SLP-2 were an independent prognostic factor for patients with GBC. These data showed that SLP-2 may play an important role in human GBC tumorigenesis, and SLP-2 might serve as a novel prognostic marker in human GBC.

  18. Overexpression of antibiotic resistance genes in hospital effluents over time

    PubMed Central

    Baker-Austin, Craig; Verner-Jeffreys, David W.; Ryan, Jim J.; Micallef, Christianne; Maskell, Duncan J.; Pearce, Gareth P.

    2017-01-01

    Objectives: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Methods: Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. Results: We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital (ρ = 0.9, two-tailed P <0.0001) and farm (ρ = 0.5, two-tailed P  <0.0001) effluents and that two β-lactam resistance genes (blaGES and blaOXA) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. Conclusions: We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. PMID:28175320

  19. Overexpression of mouse TTF-2 gene causes cleft palate

    PubMed Central

    Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing

    2012-01-01

    In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410

  20. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments.

  1. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    PubMed

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  3. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols

    PubMed Central

    2010-01-01

    Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NFκB, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NFκB, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NFκB inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NFκB target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NFκB inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis. PMID:20438634

  4. Overexpression of the erythropoietin receptor in RAMA 37 breast cancer cells alters cell growth and sensitivity to tamoxifen.

    PubMed

    Ilkovičová, Lenka; Trošt, Nina; Szentpéteriová, Erika; Solár, Peter; Komel, Radovan; Debeljak, Nataša

    2017-08-01

    Erythropoietin (EPO) is the main regulator of erythropoiesis, and its receptor (EPOR) is expressed in various tissues, including tumors. Expression of EPOR in breast cancer tissue has been shown to correlate with expression of the estrogen receptor (ER). However, EPOR promotes proliferation in an EPO-independent manner. In patients with breast cancer, EPOR is associated with impaired tamoxifen response in ER-positive tumors, but not in ER-negative tumors. Furthermore, a positive correlation between EPOR/ER status and increased local cancer recurrence has been demonstrated, and EPOR expression is associated with G-protein coupled ER (GPER). Herein, we assessed the effects of EPOR on cell physiology and tamoxifen response in the absence of EPO stimulation using two cell lines that differ only in their EPOR expression status: RAMA 37 cells (low EPOR expression) and RAMA 37-28 cells (high EPOR expression). Alterations in cell growth, morphology, response to tamoxifen cytotoxicity, and EPOR-activated signal transduction were observed. RAMA 37 cells showed higher proliferation capacity without tamoxifen treatment, while RAMA 37-28 cells were more resistant to tamoxifen and proliferated more rapidly in the presence of tamoxifen. EPOR overexpression induced cell-morphology changes upon tamoxifen treatment, which resulted in the production of cell protrusions and subsequent cell death. Short-term treatment with tamoxifen (6 h) prompted RAMA 37 cells to acquired longer protrusions than RAMA 37-28 cells, which indicated a pre-apoptotic stage. Furthermore, prolonged treatment with tamoxifen (72 h) caused a greater reduction in RAMA 37 cell numbers, which indicated a higher rate of cell death. RAMA 37-28 cells showed prolonged activation of AKT signaling. We propose sustained AKT phosphorylation in EPOR-overexpressing cells as a mechanism that can lead to EPOR-induced tamoxifen resistance.

  5. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury

    PubMed Central

    Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun

    2017-01-01

    The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866

  6. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    PubMed

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  7. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver

    PubMed Central

    Li, Yu; Xu, Shanqin; Giles, Amber; Nakamura, Kazuto; Lee, Jong Woo; Hou, Xiuyun; Donmez, Gizem; Li, Ji; Luo, Zhijun; Walsh, Kenneth; Guarente, Leonard; Zang, Mengwei

    2011-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of human type 2 diabetes (T2DM). Although SIRT1 has a therapeutic effect on metabolic deterioration in T2DM, the precise mechanisms by which SIRT1 improves insulin resistance remain unclear. Here, we demonstrate that adenovirus-mediated overexpression of SIRT1 in the liver of diet-induced insulin-resistant low-density lipoprotein receptor-deficient mice and of genetically obese ob/ob mice attenuates hepatic steatosis and ameliorates systemic insulin resistance. These beneficial effects were associated with decreased mammalian target of rapamycin complex 1 (mTORC1) activity, inhibited the unfolded protein response (UPR), and enhanced insulin receptor signaling in the liver, leading to decreased hepatic gluconeogenesis and improved glucose tolerance. The tunicamycin-induced splicing of X-box binding protein-1 and expression of GRP78 and CHOP were reduced by resveratrol in cultured cells in a SIRT1-dependent manner. Conversely, SIRT1-deficient mouse embryonic fibroblasts challenged with tunicamycin exhibited markedly increased mTORC1 activity and impaired ER homeostasi and insulin signaling. These effects were abolished by mTORC1 inhibition by rapamycin in human HepG2 cells. These studies indicate that SIRT1 serves as a negative regulator of UPR signaling in T2DM and that SIRT1 attenuates hepatic steatosis, ameliorates insulin resistance, and restores glucose homeostasis, largely through the inhibition of mTORC1 and ER stress.—Li, Y., Xu, S., Giles, A., Nakamura, K., Lee, J. W., Hou, X., Donmez, G., Li, J., Luo, Z., Walsh, K., Guarente, L., Zang, M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. PMID:21321189

  8. Impaired Driving. Prevention Resource Guide.

    ERIC Educational Resources Information Center

    Lane, Amy

    This booklet focuses on impaired driving. The first section presents 21 facts on impaired driving. These include the number of people who lost their lives in alcohol-related crashes; the leading cause of death for young people; the average amount of alcohol consumed by people arrested for driving under the influence; the estimation that a tax…

  9. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    SciTech Connect

    Li, Ran; Xie, Jun; Wu, Han

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4more » protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues

  10. Cognitive Impairment Associated with Cancer

    PubMed Central

    Pendergrass, J. Cara; Harrison, John E.

    2018-01-01

    This brief review explores the areas of cognitive impairment that have been observed in cancer patients and survivors, the cognitive assessment tools used, and the management of the observed cognitive changes. Cognitive changes and impairment observed in patients with cancer and those in remission can be related to the direct effects of cancer itself, nonspecific factors or comorbid conditions that are independent of the actual disease, and/or the treatments or combination of treatments administered. Attention, memory, and executive functioning are the most frequently identified cognitive domains impacted by cancer. However, the prevalence and extent of impairment remains largely unknown due to marked differences in methodology, definitions of cognitive impairment, and the assessment measures used. Assessment of cognitive functioning is an important and necessary part of a comprehensive oncological care plan. Research is needed to establish a better understanding of cognitive changes and impairments associated with cancer so that optimal patient outcomes can be achieved. PMID:29497579

  11. The visually impaired patient.

    PubMed

    Rosenberg, Eric A; Sperazza, Laura C

    2008-05-15

    Blindness or low vision affects more than 3 million Americans 40 years and older, and this number is projected to reach 5.5 million by 2020. In addition to treating a patient's vision loss and comorbid medical issues, physicians must be aware of the physical limitations and social issues associated with vision loss to optimize health and independent living for the visually impaired patient. In the United States, the four most prevalent etiologies of vision loss in persons 40 years and older are age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy. Exudative macular degeneration is treated with laser therapy, and progression of nonexudative macular degeneration in its advanced stages may be slowed with high-dose antioxidant and zinc regimens. The value of screening for glaucoma is uncertain; management of this condition relies on topical ocular medications. Cataract symptoms include decreased visual acuity, decreased color perception, decreased contrast sensitivity, and glare disability. Lifestyle and environmental interventions can improve function in patients with cataracts, but surgery is commonly performed if the condition worsens. Diabetic retinopathy responds to tight glucose control, and severe cases marked by macular edema are treated with laser photocoagulation. Vision-enhancing devices can help magnify objects, and nonoptical interventions include special filters and enhanced lighting.

  12. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  13. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    SciTech Connect

    Ma, Lijie; Dong, Pingping; Liu, Longzi

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstratedmore » that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.« less

  14. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    PubMed Central

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  15. B7-H4 overexpression in ovarian tumors.

    PubMed

    Tringler, Barbara; Liu, Wenhui; Corral, Laura; Torkko, Kathleen C; Enomoto, Takayuki; Davidson, Susan; Lucia, M Scott; Heinz, David E; Papkoff, Jackie; Shroyer, Kenneth R

    2006-01-01

    Despite great advances in therapeutic management, the mortality rate for ovarian cancer has remained relatively stable over the past 50 years. This study was designed to evaluate the expression of B7-H4 protein, recently identified as a potential molecular marker of breast and ovarian cancer by quantitative PCR analysis, in benign tumors, tumors of low malignant potential and malignant tumors of the ovary. Archival formalin-fixed tissue blocks from serous, mucinous, endometrioid and clear cell ovarian tumors were evaluated by immunohistochemistry for the distribution of B7-H4 expression, and staining intensity was measured by automated image analysis. Univariate analyses were used to test for statistically significant relationships. B7-H4 cytoplasmic and membranous expression was detected in all primary serous (n = 32), endometrioid (n = 12), and clear cell carcinomas (n = 15), and in all metastatic serous (n = 23) and endometrioid (n = 7) ovarian carcinomas. By contrast, focal B7-H4 expression was detected in only 1/11 mucinous carcinomas. The proportion of positive cells and median staining intensity was greater in serous carcinomas than in serous cystadenomas or serous tumors of low malignant potential, and the differences were statistically significant (P < 0.0001 and P = 0.034, respectively). The median staining intensity was also significantly greater in endometrioid carcinomas than in endometriosis (P = 0.005). The consistent overexpression of B7-H4 in serous, endometrioid and clear cell ovarian carcinomas and the relative absence of expression in most normal somatic tissues indicates that B7-H4 should be further investigated as a potential diagnostic marker or therapeutic target for ovarian cancer.

  16. Overexpression of antibiotic resistance genes in hospital effluents over time.

    PubMed

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  <0.0001) and farm ( ρ  = 0.5, two-tailed P   <0.0001) effluents and that two β-lactam resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  17. Wnt-11 overexpression promoting the invasion of cervical cancer cells.

    PubMed

    Wei, Heng; Wang, Ning; Zhang, Yao; Wang, Shizhuo; Pang, Xiaoao; Zhang, Shulan

    2016-09-01

    Wnt-11 is a positive regulator of the Wnt signaling pathway, which plays a crucial role in carcinogenesis. However, Wnt-11 expression in cervical cancer has not been well investigated. The aim of this study was to investigate the role of Wnt-11 in cervical tumor proliferation and invasion. This study examined 24 normal cervical squamous epithelia, 29 cervical intraepithelial neoplasia (CIN), and 78 cervical cancer samples. The expression of Wnt-11 was investigated by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction analysis. The expression of the high-risk human papilloma virus (HR-HPV) E6 oncoprotein was also investigated by immunohistochemistry. In addition, the expression of Wnt-11, HR-HPV E6, JNK-1, phosphorylated JNK-1(P-JNK1), and β-catenin was examined by western blot analysis following Wnt-11 knockdown or overexpression in HeLa or SiHa cells, respectively. The promotion of cervical cancer cell proliferation and invasion was investigated using the cell counting kit-8 and Matrigel invasion assay, respectively. Wnt-11 and HR-HPV E6 expression increased in a manner that corresponded with the progression of cervical cancer and was significantly correlated with the International Federation of Gynecology and Obstetrics cancer stage, lymph node metastasis, tumor size, and HPV infection. Wnt-11 protein expression was positively associated with HR-HPV E6 protein expression in all 78 cervical cancer samples (P < 0.001). Furthermore, Wnt-11 was positively associated with P-JNK1 expression and promoted cervical cancer cell proliferation and invasion. These observations suggest that the increased Wnt-11 expression observed in cervical cancer cells may lead to the phosphorylation and activation of JNK-1 and significantly promote tumor cell proliferation and cell migration/invasion through activation of the Wnt/JNK pathway. Consequently, Wnt-11 may serve as a novel target for cervical cancer therapy.

  18. Behavioral Characterization of the Hyperphagia Synphilin-1 Overexpressing Mice

    PubMed Central

    Moghadam, Alexander; Smith, Megan; Ofeldt, Erica; Yang, Dejun; Li, Tianxia; Tamashiro, Kellie; Choi, Pique; Moran, Timothy H.; Smith, Wanli W.

    2014-01-01

    Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference (“pre-obese”) and when SP1 mice were heavier (“obese”). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both “pre-obese” and “obese“ SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis. PMID:24829096

  19. Behavioral characterization of the hyperphagia synphilin-1 overexpressing mice.

    PubMed

    Li, Xueping; Treesukosol, Yada; Moghadam, Alexander; Smith, Megan; Ofeldt, Erica; Yang, Dejun; Li, Tianxia; Tamashiro, Kellie; Choi, Pique; Moran, Timothy H; Smith, Wanli W

    2014-01-01

    Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference ("pre-obese") and when SP1 mice were heavier ("obese"). At both time points, meal pattern analyses revealed that SP1 mice displayed higher daily chow intake than non-transgenic control mice. Furthermore, there was an increase in meal size in SP1 mice compared with NTg control mice at the obese stage. In contrast, there was no meal number change between SP1 and NTg control mice. In a brief-access taste procedure, both "pre-obese" and "obese" SP1 mice displayed concentration-dependent licking across a sucrose concentration range similar to their NTg controls. However, at the pre-obese stage, SP1 mice initiated significantly more trials to sucrose across the testing sessions and licked more vigorously at the highest concentration presented, than the NTg counterparts. These group differences in responsiveness to sucrose were no longer apparent in obese SP1 mice. These results suggest that at the pre-obese stage, the increased trials to sucrose in the SP1 mice reflects increased appetitive behavior to sucrose that may be indicative of the behavioral changes that may contribute to hyperphagia and development of obesity in SP1 mice. These studies provide new insight into synphilin-1 contributions to energy homeostasis.

  20. RGS4 Overexpression in Lung Attenuates Airway Hyperresponsiveness in Mice.

    PubMed

    Madigan, Laura A; Wong, Gordon S; Gordon, Elizabeth M; Chen, Wei-Sheng; Balenga, Nariman; Koziol-White, Cynthia J; Panettieri, Reynold A; Levine, Stewart J; Druey, Kirk M

    2018-01-01

    A cardinal feature of asthma is airway hyperresponsiveness (AHR) to spasmogens, many of which activate G protein-coupled receptors (GPCRs) on airway smooth muscle (ASM) cells. Asthma subtypes associated with allergy are characterized by eosinophilic inflammation in the lung due to the type 2 immune response to allergens and proinflammatory mediators that promote AHR. The degree to which intrinsic abnormalities of ASM contribute to this phenotype remains unknown. The regulators of G protein signaling (RGS) proteins are a large group of intracellular proteins that inhibit GPCR signaling pathways. RGS2- and RGS5-deficient mice develop AHR spontaneously. Although RGS4 is upregulated in ASM from patients with severe asthma, the effects of increased RGS4 expression on AHR in vivo are unknown. Here, we examined the impact of forced RGS4 overexpression in lung on AHR using transgenic (Tg) mice. Tg RGS4 was expressed in bronchial epithelium and ASM in vivo, and protein expression in lung was increased at least 4-fold in Tg mice compared with wild-type (WT) mice. Lung slices from Tg mice contracted less in response to the m3 muscarinic receptor agonist methacholine compared with the WT, although airway resistance in live, unchallenged mice of both strains was similar. Tg mice were partially protected against AHR induced by fungal allergen challenge due to weakened contraction signaling in ASM and reduced type 2 cytokine (IL-5 and IL-13) levels in Tg mice compared with the WT. These results provide support for the hypothesis that increasing RGS4 expression and/or function could be a viable therapeutic strategy for asthma.

  1. The Clinical Impact of c-MET Over-Expression in Advanced Biliary Tract Cancer (BTC).

    PubMed

    Heo, Mi Hwa; Kim, Hee Kyung; Lee, Hansang; Kim, Kyoung-Mee; Lee, Jeeyun; Park, Se Hoon; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Kim, Seung Tae

    2017-01-01

    Background : c-MET is a proto-oncogene that encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF). Activation of HGF-c-MET signaling involves cell invasiveness and evokes metastasis through direct involvement of tumor angiogenesis. However, the value of c-MET overexpression is still unknown in metastatic biliary tract cancer (BTC). Methods : We analyzed the incidence and clinicopathologic characteristics of c-MET overexpression in advanced BTC. Moreover, we investigated the value of c-MET overexpression in predicting response to gemicitabine plus cisplatin (GC), a first line standard regimen, and as a prognostic marker in metastatic BTC. Results : The BTC subtype distribution (N=44) was as follows: intrahepatic cholangiocarcinoma (IHCC, n=7), extrahepatic cholangiocarcinoma (EHCC, n=25) and gallbladder cancer (GBC, n=12). Liver (52.3%) was the predominant metastatic site, followed by lymph nodes (36.4%) and bone (15.9%). Among the 44 patients analyzed for c-MET expression, 15 (34.1%) exhibited c-MET overexpression in tumor tissues. There was no significant difference in the prevalence of c-MET overexpression among primary sites in EHCC (7/25, 28.0%), IHCC (3/7, 42.9%), and GBC (5/12, 41.7%). There was also no significant correlation between specific clinicopathologic variables and c-MET expression. Comparing the tumor-response to GC according to c-MET expression (overexpression vs. non-overexpression), there was no significant difference in either RR or DCR (p=0.394 and p >0.999, respectively). The median PFS for all 44 patients was 9.00 months (95% CI, 7.5-10.5 months) and there was no significant difference for PFS between patients with c-MET overexpression and those without (p=0.917). The median OS was 14.4 months (95% CI, 11.9-16.9 months). There was no significant difference in OS between patients with c-MET overexpression compared to those without (13.7 vs. 14.4 months, respectively; p=0.708). Conclusions : c-MET overexpression was detected

  2. A framework for communication between visually impaired, hearing impaired and speech impaired using arduino

    NASA Astrophysics Data System (ADS)

    Sujatha, R.; Khandelwa, Prakhar; Gupta, Anusha; Anand, Nayan

    2017-11-01

    A long time ago our society accepted the notion of treating people with disabilities not as unviable and disabled but as differently-abled, recognizing their skills beyond their disabilities. The next step has to be taken by our scientific community, that is, to normalize lives of the people with disabilities and make it so as if they are no different to us. The primary step in this direction would be to normalize communication between people. People with an impaired speech or impaired vision or impaired hearing face difficulties while having a casual conversation with others. Any form of communication feels so strenuous that the impaired end up communicating just the important information and avoid a casual conversation. To normalize conversation between the impaired we need a simple and compact device which facilitates the conversation by providing the information in the desired form.

  3. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization.

    PubMed

    Arthikala, Manoj-Kumar; Sánchez-López, Rosana; Nava, Noreide; Santana, Olivia; Cárdenas, Luis; Quinto, Carmen

    2014-05-01

    The reactive oxygen species (ROS) generated by respiratory burst oxidative homologs (Rbohs) are involved in numerous plant cell signaling processes, and have critical roles in the symbiosis between legumes and nitrogen-fixing bacteria. Previously, down-regulation of RbohB in Phaseolus vulgaris was shown to suppress ROS production and abolish Rhizobium infection thread (IT) progression, but also to enhance arbuscular mycorrhizal fungal (AMF) colonization. Thus, Rbohs function both as positive and negative regulators. Here, we assessed the effect of enhancing ROS concentrations, by overexpressing PvRbohB, on the P. vulgaris--rhizobia and P. vulgaris--AMF symbioses. We estimated superoxide concentrations in hairy roots overexpressing PvRbohB, determined the status of early and late events of both Rhizobium and AMF interactions in symbiont-inoculated roots, and analyzed the nodule ultrastructure of transgenic plants overexpressing PvRbohB. Overexpression of PvRbohB significantly enhanced ROS production, the formation of ITs, nodule biomass, and nitrogen-fixing activity, and increased the density of symbiosomes in nodules, and the density and size of bacteroides in symbiosomes. Furthermore, PvCAT, early nodulin, PvSS1, and PvGOGAT transcript abundances were elevated in these nodules. By contrast, mycorrhizal colonization was reduced in roots that overexpressed RbohB. Overexpression of PvRbohB augmented nodule efficiency by enhancing nitrogen fixation and delaying nodule senescence, but impaired AMF colonization. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Empowering human cardiac progenitor cells by P2Y14 nucleotide receptor overexpression.

    PubMed

    Khalafalla, Farid G; Kayani, Waqas; Kassab, Arwa; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-12-01

    patients with a relatively lower ejection fraction and patients diagnosed with diabetes. hCPC lines with lower P2Y 14 R expression did not respond to P2Y 14 R agonist UDP-glucose (UDP-Glu) while hCPCs with higher P2Y 14 R expression showed enhanced proliferation in response to UDP-Glu stimulation. Mechanistically, UDP-Glu stimulation enhanced the activation of canonical growth signalling pathways ERK1/2 and AKT. Restoring P2Y 14 R expression levels in functionally compromised hCPCs via lentiviral-mediated overexpression improved proliferation, migration and survival under stress stimuli. Additionally, P2Y 14 R overexpression reversed senescence-associated morphology and reduced levels of molecular markers of senescence p16 INK4a , p53, p21 and mitochondrial reactive oxygen species. Findings from this study unveil novel biological roles of the UDP-sugar receptor P2Y 14 in hCPCs and suggest purinergic signalling modulation as a promising strategy to improve phenotypic properties of functionally impaired hCPCs. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  5. Skeletal muscle damage and impaired regeneration due to LPL-mediated lipotoxicity

    PubMed Central

    Tamilarasan, K P; Temmel, H; Das, S K; Al Zoughbi, W; Schauer, S; Vesely, P W; Hoefler, G

    2012-01-01

    According to the concept of lipotoxicity, ectopic accumulation of lipids in non-adipose tissue induces pathological changes. The most prominent effects are seen in fatty liver disease, lipid cardiomyopathy, non-insulin-dependent diabetes mellitus, insulin resistance and skeletal muscle myopathy. We used the MCK(m)-hLPL mouse distinguished by skeletal and cardiac muscle-specific human lipoprotein lipase (hLPL) overexpression to investigate effects of lipid overload in skeletal muscle. We were intrigued to find that ectopic lipid accumulation induced proteasomal activity, apoptosis and skeletal muscle damage. In line with these findings we observed reduced Musculus gastrocnemius and Musculus quadriceps mass in transgenic animals, accompanied by severely impaired physical endurance. We suggest that muscle loss was aggravated by impaired muscle regeneration as evidenced by reduced cross-sectional area of regenerating myofibers after cardiotoxin-induced injury in MCK(m)-hLPL mice. Similarly, an almost complete loss of myogenic potential was observed in C2C12 murine myoblasts upon overexpression of LPL. Our findings directly link lipid overload to muscle damage, impaired regeneration and loss of performance. These findings support the concept of lipotoxicity and are a further step to explain pathological effects seen in muscle of obese patients, patients with the metabolic syndrome and patients with cancer-associated cachexia. PMID:22825472

  6. Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    PubMed Central

    Ciron, C.; Lengacher, S.; Dusonchet, J.; Aebischer, P.; Schneider, B.L.

    2012-01-01

    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity. PMID:22246294

  7. 20 CFR 416.923 - Multiple impairments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... determining whether your physical or mental impairment or impairments are of a sufficient medical severity... process. If we do not find that you have a medically severe combination of impairments, we will determine...

  8. 20 CFR 404.1523 - Multiple impairments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... impairments. In determining whether your physical or mental impairment or impairments are of a sufficient... disability determination process. If we do not find that you have a medically severe combination of...

  9. Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1

    PubMed Central

    Dierssen, Mara; Arqué, Gloria; McDonald, Jerome; Andreu, Nuria; Martínez-Cué, Carmen; Flórez, Jesús; Fillat, Cristina

    2011-01-01

    DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term. PMID:21364922

  10. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice

    PubMed Central

    Kanatsou, Sofia; Ter Horst, Judith P.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harmen J.; Joëls, Marian

    2016-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice. PMID:26858618

  11. Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression.

    PubMed

    Escudero-Lourdes, C; Uresti-Rivera, E E; Oliva-González, C; Torres-Ramos, M A; Aguirre-Bañuelos, P; Gandolfi, A J

    2016-10-01

    Long-term exposure to inorganic arsenic (iAs) through drinking water has been associated with cognitive impairment in children and adults; however, the related pathogenic mechanisms have not been completely described. Increased or chronic inflammation in the brain is linked to impaired cognition and neurodegeneration; iAs induces strong inflammatory responses in several cells, but this effect has been poorly evaluated in central nervous system (CNS) cells. Because astrocytes are the most abundant cells in the CNS and play a critical role in brain homeostasis, including regulation of the inflammatory response, any functional impairment in them can be deleterious for the brain. We propose that iAs could induce cognitive impairment through inflammatory response activation in astrocytes. In the present work, rat cortical astrocytes were acutely exposed in vitro to the monomethylated metabolite of iAs (MMA III ), which accumulates in glial cells without compromising cell viability. MMA III LD 50 in astrocytes was 10.52 μM, however, exposure to sub-toxic MMA III concentrations (50-1000 nM) significantly increased IL-1β, IL-6, TNF-α, COX-2, and MIF-1 gene expression. These effects were consistent with amyloid precursor protein (APP) and β-secretase (BACE-1) increased gene expression, mainly for those MMA III concentrations that also induced TNF-α over-expression. Other effects of MMA III on cortical astrocytes included increased proliferative and metabolic activity. All tested MMA III concentrations led to an inhibition of intracellular lactate dehydrogenase (LDH) activity. Results suggest that MMA III induces important metabolic and functional changes in astrocytes that may affect brain homeostasis and that inflammation may play a major role in cognitive impairment-related pathogenicity in As-exposed populations.

  12. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation

    PubMed Central

    Johnston, Andrew; Fritz, Yi; Dawes, Sean M.; Diaconu, Doina; Al-Attar, Paul M.; Guzman, Andrew M.; Chen, Cynthia S.; Fu, Wen; Gudjonsson, Johann E.; McCormick, Thomas S.; Ward, Nicole L.

    2013-01-01

    IL-17C is a functionally distinct member of the IL-17 family that binds IL-17RE/A to promote innate defense in epithelial cells and regulate Th17 cell differentiation. We demonstrate that IL-17C (not IL-17A) is the most abundant IL-17 isoform in lesional psoriasis skin (1058pg/ml vs. 8pg/ml; p<0.006) and localizes to keratinocytes (KCs), endothelial cells (ECs) and leukocytes. ECs stimulated with IL-17C produce increased TNFα and KCs stimulated with IL-17C/TNFα produce similar inflammatory gene response patterns as those elicited by IL-17A/TNFα, including increases in IL-17C, TNFα, IL-8, IL-1α/β, IL-1F5, IL-1F9, IL-6, IL-19, CCL20, S100A7/A8/A9, DEFB4, LCN2 and PI3 (p<0.05); indicating a positive pro-inflammatory feedback loop between the epidermis and ECs. Psoriasis patients treated with etanercept rapidly decrease cutaneous IL-17C levels, suggesting IL-17C/TNFα-mediated inflammatory signaling is critical for psoriasis pathogenesis. Mice genetically engineered to overexpress IL-17C in KCs develop well-demarcated areas of erythematous, flakey “involved” skin adjacent to areas of normal appearing “uninvolved” skin despite increased IL-17C expression in both areas (p<0.05). Uninvolved skin displays increased angiogenesis and elevated S100A8/A9expression (p<0.05) but no epidermal hyperplasia; whereas involved skin exhibits robust epidermal hyperplasia, increased angiogenesis and leukocyte infiltration and upregulated TNFα, IL-1α/β, IL-17A/F, IL-23p19, VEGF, IL-6 and CCL20 (p<0.05) suggesting that IL-17C, when coupled with other pro-inflammatory signals, initiates the development of psoriasiform dermatitis. This skin phenotype was significantly improved following 8 weeks of TNFα inhibition. These findings identify a role for IL-17C in skin inflammation and suggest a pathogenic function for the elevated IL-17C observed in lesional psoriasis skin. PMID:23359500

  13. Vascular cognitive impairment and dementia.

    PubMed

    Gorelick, Philip B; Counts, Scott E; Nyenhuis, David

    2016-05-01

    Vascular contributions to cognitive impairment are receiving heightened attention as potentially modifiable factors for dementias of later life. These factors have now been linked not only to vascular cognitive disorders but also Alzheimer's disease. In this chapter we review 3 related topics that address vascular contributions to cognitive impairment: 1. vascular pathogenesis and mechanisms; 2. neuropsychological and neuroimaging phenotypic manifestations of cerebrovascular disease; and 3. prospects for prevention of cognitive impairment of later life based on cardiovascular and stroke risk modification. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 303(d) Listed Impaired Waters

    EPA Pesticide Factsheets

    Geospatial data for 303(d) Impaired Waters are available as prepackaged national downloads or as GIS web and and data services. EPA provides geospatial data in the formats: GIS compatible shapefiles and geodatabases and ESRI and OGC web mapping.

  15. Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines.

    PubMed

    Bazewicz, Magdalena; Draganova, Dafina; Makhoul, Maya; Chtarto, Abdel; Elmaleh, Valerie; Tenenbaum, Liliane; Caspers, Laure; Bruyns, Catherine; Willermain, François

    2016-09-06

    The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  17. Hyaluronic Acid is Overexpressed in Fibrotic Lung Tissue and Promotes Collagen Expression

    DTIC Science & Technology

    2008-04-01

    cause of morbidity and mortality in scleroderma . The overexpression of collagen is accompanied by the overexpression of other extracellular matrix...7 Appendices…………………………………………………………………………… 7 3 INTRODUCTION Systemic scleroderma is a debilitating disease...excessive accumulation of extracellular matrix [ECM] proteins, particularly collagen I) is the major cause of morbidity and mortality in scleroderma . The

  18. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  19. Overexpression of K-p21Ras play a prominent role in lung cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Peng-bo; Zhou, Xin-liang; Yang, Ju-lun

    2018-06-01

    The proto-oncogene ras product, p21Ras, has been found overexpression in many human tumors. However, the subtypes of overexpressed p21Ras still remain unclear. The purpose of this study was to investigate overexpressed isoforms of p21Ras and their roles in the progress of lung cancer. Method: The expression of total p21Ras in normal lung tissues and lung cancers was determined by immunohistochemically staining with monoclonal antibody (Mab) KGHR-1 which could recognize and broad spectrum reaction with the (K/H/N) ras protein. Then, the isoforms of p21Ras was examined by specific Mab for each p21Ras subtypes. Results: Low expression of total p21Ras was found in 26.67% (8/30) of normal lung tissues, and 81.31% (87/107) of adenocarcinoma harbored overexpressed total p21Ras. Besides, 70.00% (35/50) of squamous cell carcinoma were detected overexpressed total p21Ras. In addition, 122 lung cancer tissues from overexpression of total p21Ras protein were selected to detect the expression of each subtype. And all the 122 lung cancer tissues were K-p21Ras overexpression. Moreover, there was a statistical significance difference between the expression level of total p21Ras and differentiation, and the same results were observed between the expression level of total p21Ras and lymph node metastasis (P<0.05). However, there was no correlation between the expression level of total p21Ras and gender, age, tumor size (P>0.05). Conclusions: Overexpression of K-p21Ras plays a prominent role in the progress of lung cancer and it is suggested that the p21Ras could serve as a promising treatment target in lung cancer.

  20. Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes.

    PubMed

    Upton, Dana C; Unniraman, Shyam

    2011-11-01

    B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence

  1. Effects of CASP5 gene overexpression on angiogenesis of HMEC-1 cells.

    PubMed

    Li, Haiyan; Li, Yuzhen; Cai, Limin; Bai, Bingxue; Wang, Yanhua

    2015-01-01

    The efficacy of gene overexpression of CASP5, a caspase family member, in angiogenesis in vitro and its mechanisms were clarified. Human full-length CASP5 gene was delivered into human microvascular endothelial HMEC-1 cells by recombinant lentivirus. The infection was estimated by green fluorescent protein. MTT method was used to analyze the efficacy of gene overexpression in cell proliferation ability, and Matrigel was used to estimate its effects in angiogenesis ability of cells. Meanwhile, Western blot was used to analyze the effects of CASP5 gene overexpression on the expression levels of angpt-1, angpt-2, Tie2 and VEGF-1 in the cells, which were signaling pathway factors related to angiogenesis. Recombinant lentivirus containing human full-length CASP5 gene was packed and purified successfully, with virus titer of 1×10(8) TU/ml. The recombinant lentivirus was used to infect HMEC-1 cells with MOI of 1, leading to a cell infection rate of 100%. There were no significant effects of CASP5 gene overexpression on both cell proliferation ability and the expression level of angpt-1. Meanwhile, expressions of angpt-2 and VEGF-1 were both enhanced, while Tie2 expression was inhibited. Results indicated that CASP5 gene overexpression promoted angiogenesis of HMEC-1 cells. CASP5 gene overexpression significantly promoted angiogenesis ability of HMEC-1 cells, which was probably achieved by inhibiting angpt-1/Tie2 and promoting VEGF-1 signal pathway.

  2. Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells.

    PubMed

    Matsu-ura, Toru; Sasaki, Hiroshi; Okada, Motoi; Mikoshiba, Katsuhiko; Ashraf, Muhammad

    2016-02-15

    Pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, have a great potential for regenerative medicine. Induced pluripotent stem cells, in particular, are suitable for replacement of tissue by autologous transplantation. However, tumorigenicity is a major risk in clinical application of both embryonic stem cells and induced pluripotent stem cells. This study explores the possibility of manipulating the cell cycle for inhibition of tumorigenicity. We genetically modified mouse induced pluripotent stem cells (miPSCs) to overexpress p27 tumor suppressor and examined their proliferation rate, gene expression, cardiac differentiation, tumorigenicity, and therapeutic potential in a mouse model of coronary artery ligation. Overexpression of p27 inhibited cell division of miPSCs, and that inhibition was dependent on the expression level of p27. p27 overexpressing miPSCs had pluripotency characteristics but lost stemness earlier than normal miPSCs during embryoid body and teratoma formation. These cellular characteristics led to none or smaller teratoma when the cells were injected into nude mice. Transplantation of both miPSCs and p27 overexpressing miPSCs into the infarcted mouse heart reduced the infarction size and improved left ventricular function. The overexpression of p27 attenuated tumorigenicity by reducing proliferation and earlier loss of stemness of miPSCs. The overexpression of p27 did not affect pluripotency and differentiation characteristics of miPSC. Therefore, regulation of the proliferation rate of miPSCs offers great therapeutic potential for repair of the injured myocardium.

  3. Prediction of recombinant protein overexpression in Escherichia coli using a machine learning based model (RPOLP).

    PubMed

    Habibi, Narjeskhatoon; Norouzi, Alireza; Mohd Hashim, Siti Z; Shamsir, Mohd Shahir; Samian, Razip

    2015-11-01

    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Enhancement of geraniol resistance of Escherichia coli by MarA overexpression.

    PubMed

    Shah, Asad Ali; Wang, Chonglong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung; Kim, Seon-Won

    2013-03-01

    Improvement of a microorganism's tolerance against organic solvents is required for a microbial factory producing terpenoid based biofuels. The bacterial genes, marA, imp, cls and cti have been found to increase organic solvent tolerance. Thus, the tolerance against the following terpenoids (isopentenol, geraniol, myrcene, and farnesol) was studied with overexpression of marA, imp, cls and cti genes in Escherichia coli. The marA overexpression significantly enhanced the tolerance of E. coli against geraniol, whereas there was no tolerance improvement against the terpenoids by overexpression of cls and cti genes. The imp overexpression even yielded sensitive phenotype to the tested solvents. The colony forming efficiency of the marA overexpressing E. coli was increased by 10(4)-fold in plate overlay of geraniol compared to that of wild type E. coli and a two-fold decrease of intracellular geraniol accumulation was also observed in liquid culture of geraniol. Single knock-out mutations of marA, or one of the following genes (acrA, acrB and tolC) encoding AcrAB-TolC efflux pump made E. coli hypersensitive to geraniol. The geraniol tolerance conferred by marA overexpression was attributed to the AcrAB-TolC efflux pump that is activated by MarA. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. YorkieCA overexpression in the posterior silk gland improves silk yield in Bombyx mori.

    PubMed

    Zhang, Panli; Liu, Shumin; Song, Hong-Sheng; Zhang, Guozheng; Jia, Qiangqiang; Li, Sheng

    2017-07-01

    The traditional hybrid breeding techniques can no longer meet the increasing demands for silk production by the silkworm, Bombyx mori, and further improvement of the silk yield will depend on modern molecular breeding techniques. Here, we report improved silk yield in transgenic silkworms overexpressing the oncogene Yorkie CA specifically in the posterior silk gland (PSG). The Yorkie CA cDNA was ligated downstream of the hr3 enhancer and the fibroin L-chain (Fil) promoter, then inserted into a piggyBac vector for transgene. Overexpression of Yorkie CA in the PSG significantly increased the weight of the PSG, and also increased the weight of the cocoon, larval body, and pupal body to decreasing degrees. Overexpression of Yorkie CA up-regulated the Yorkie target genes resulting in increased cell size, endomitosis, the number of protein synthesis organelles, the expression of fibroin genes in the PSG, and eventually silk yield. Additionally, as we reported previously using the binary GAL4/UAS system, transgenic silkworms overexpressing Ras1 CA with the hr3 enhancer and the Fil promoter also showed improved silk yield. Unfortunately, the hybrid progeny of Yorkie CA -overexpressing silkworms and Ras1 CA -overexpressing silkworms did not show overlapping improved silk yield due to the failure to increase expression of both Yorkie and Ras1. Copyright © 2017. Published by Elsevier Ltd.

  6. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    PubMed Central

    Faria, Márcia; Capinha, Liliana; Simões-Pereira, Joana; Bugalho, Maria João; Silva, Ana Luísa

    2016-01-01

    RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC) is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs) and 33 follicular thyroid adenomas (FTAs). RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01) and poorer clinical outcome (P = 0.01) suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions. PMID:27127508

  7. Heme oxygenase-1 overexpression fails to attenuate hypertension when the nitric oxide synthase system is not fully operative.

    PubMed

    Polizio, Ariel H; Santa-Cruz, Diego M; Balestrasse, Karina B; Gironacci, Mariela M; Bertera, Facundo M; Höcht, Christian; Taira, Carlos A; Tomaro, Maria L; Gorzalczany, Susana B

    2011-01-01

    Heme oxygenase (HO) is an enzyme that is involved in numerous secondary actions. One of its products, CO, seems to have an important but unclear role in blood pressure regulation. CO exhibits a vasodilator action through the activation of soluble guanylate cyclase and the subsequent production of cyclic guanosine monophosphate (cGMP). The aim of the present study was to determine whether pathological and pharmacological HO-1 overexpression has any regulatory role on blood pressure in a renovascular model of hypertension. We examined the effect of zinc protoporyphyrin IX (ZnPP-IX) administration, an inhibitor of HO activity, on mean arterial pressure (MAP) and heart rate in sham-operated and aorta-coarcted (AC) rats and its interaction with the nitric oxide synthase (NOS) pathway. Inhibition of HO increased MAP in normotensive rats with and without hemin pretreatment but not in hypertensive rats. Pretreatment with NG-nitro-L-arginine methyl ester blocked the pressor response to ZnPP-IX, suggesting a key role of NOS in the cardiovascular action of HO inhibition. In the same way, AC rats, an experimental model of hypertension with impaired function and low expression of endothelial NOS (eNOS), did not show any cardiovascular response to inhibition or induction of HO. This finding suggests that eNOS was necessary for modulating the CO response in the hypertensive group. In conclusion, the present study suggests that HO regulates blood pressure through CO only when the NOS pathway is fully operative. In addition, chronic HO induction fails to attenuate the hypertensive stage induced by coarctation as a consequence of the impairment of the NOS pathway. Copyright © 2011 S. Karger AG, Basel.

  8. [What is impaired consciousness? Revisiting impaired consciousness as psychiatric concept].

    PubMed

    Kanemoto, Kousuke

    2004-01-01

    For decades, psychiatrists have considered that concepts of impaired consciousness in the study of psychiatry were inconsistent with those applied in the field of neurology, in which the usefulness of the concept of consciousness has long been seriously doubted. Gloor concluded that the concept of consciousness does not further the understanding of seizure mechanisms or brain function, which is the current representative opinion of most epileptologists. Loss of consciousness tends to be reduced to aggregates of individual impairments of higher cognitive functions, and the concept of consciousness is preferably avoided by neurologists by assigning various behavioral disturbances during disturbed consciousness to particular neuropsychological centers. In contrast, psychiatrists, especially those in Europe, are more likely to include phenomena involving problems related to phenomenological intentionality in impaired consciousness. For the present study, we first divided consciousness into vigilance and recursive consciousness, and then attempted to determine what kind of impaired consciousness would be an ideal candidate to represent pure disturbance of recursive consciousness. Then, 4 patients, 1 each with pure amnestic states followed immediately by complex partial seizures, an akinetic mutistic state caused by absence status, and mental diplopia as a manifestation of postictal psychosis, as well as a patient with Alzheimer's disease who gracefully performed Japanese tea ceremony, were studied. Based on our findings, we concluded that impaired consciousness as a generic term in general medicine does not indicate any unitary entity corresponding to some well-demarcated physiological function or constitute a base from which recursive consciousness emerges as a superstructure. From that, we stressed that a pure form of impairment of recursive consciousness could occur without the impaired consciousness named generically in general medicine. Second, following

  9. Overexpression of the Coq8 Kinase in Saccharomyces cerevisiae coq Null Mutants Allows for Accumulation of Diagnostic Intermediates of the Coenzyme Q6 Biosynthetic Pathway*

    PubMed Central

    Xie, Letian X.; Ozeir, Mohammad; Tang, Jeniffer Y.; Chen, Jia Y.; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F.; Pierrel, Fabien

    2012-01-01

    Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q6 biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q6 biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q6. Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q6 biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway. PMID:22593570

  10. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study

    PubMed Central

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  11. Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway.

    PubMed

    Xie, Letian X; Ozeir, Mohammad; Tang, Jeniffer Y; Chen, Jia Y; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F; Pierrel, Fabien

    2012-07-06

    Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q(6) biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q(6) biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q(6). Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q(6) biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway.

  12. Overexpression of Plastidic Protoporphyrinogen IX Oxidase Leads to Resistance to the Diphenyl-Ether Herbicide Acifluorfen1

    PubMed Central

    Lermontova, Inna; Grimm, Bernhard

    2000-01-01

    The use of herbicides to control undesirable vegetation has become a universal practice. For the broad application of herbicides the risk of damage to crop plants has to be limited. We introduced a gene into the genome of tobacco (Nicotiana tabacum) plants encoding the plastid-located protoporphyrinogen oxidase of Arabidopsis, the last enzyme of the common tetrapyrrole biosynthetic pathway, under the control of the cauliflower mosaic virus 35S promoter. The transformants were screened for low protoporphyrin IX accumulation upon treatment with the diphenyl ether-type herbicide acifluorfen. Leaf disc incubation and foliar spraying with acifluorfen indicated the lower susceptibility of the transformants against the herbicide. The resistance to acifluorfen is conferred by overexpression of the plastidic isoform of protoporphyrinogen oxidase. The in vitro activity of this enzyme extracted from plastids of selected transgenic lines was at least five times higher than the control activity. Herbicide treatment that is normally inhibitory to protoporphyrinogen IX oxidase did not significantly impair the catalytic reaction in transgenic plants and, therefore, did not cause photodynamic damage in leaves. Therefore, overproduction of protoporphyrinogen oxidase neutralizes the herbicidal action, prevents the accumulation of the substrate protoporphyrinogen IX, and consequently abolishes the light-dependent phytotoxicity of acifluorfen. PMID:10631251

  13. Behavioural inflexibility in a comorbid rat model of striatal ischemic injury and mutant hAPP overexpression.

    PubMed

    Levit, Alexander; Regis, Aaron M; Garabon, Jessica R; Oh, Seung-Hun; Desai, Sagar J; Rajakumar, Nagalingam; Hachinski, Vladimir; Agca, Yuksel; Agca, Cansu; Whitehead, Shawn N; Allman, Brian L

    2017-08-30

    Alzheimer disease (AD) and stroke coexist and interact; yet how they interact is not sufficiently understood. Both AD and basal ganglia stroke can impair behavioural flexibility, which can be reliably modeled in rats using an established operant based set-shifting test. Transgenic Fischer 344-APP21 rats (TgF344) overexpress pathogenic human amyloid precursor protein (hAPP) but do not spontaneously develop overt pathology, hence TgF344 rats can be used to model the effect of vascular injury in the prodromal stages of Alzheimer disease. We demonstrate that the injection of endothelin-1 (ET1) into the dorsal striatum of TgF344 rats (Tg-ET1) produced an exacerbation of behavioural inflexibility with a behavioural phenotype that was distinct from saline-injected wildtype & TgF344 rats as well as ET1-injected wildtype rats (Wt-ET1). In addition to profiling the types of errors made, interpolative modeling using logistic exposure-response regression provided an informative analysis of the timing and efficiency of behavioural flexibility. During set-shifting, Tg-ET1 committed fewer perseverative errors than Wt-ET1. However, Tg-ET1 committed significantly more regressive errors and had a less efficient strategy change than all other groups. Thus, behavioural flexibility was more vulnerable to striatal ischemic injury in TgF344 rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Dystypia: isolated typing impairment without aphasia, apraxia or visuospatial impairment.

    PubMed

    Otsuki, Mika; Soma, Yoshiaki; Arihiro, Shoji; Watanabe, Yoshimasa; Moriwaki, Hiroshi; Naritomi, Hiroaki

    2002-01-01

    We report a 60-year-old right-handed Japanese man who showed an isolated persistent typing impairment without aphasia, agraphia, apraxia or any other neuropsychological deficit. We coined the term 'dystypia' for this peculiar neuropsychological manifestation. The symptom was caused by an infarction in the left frontal lobe involving the foot of the second frontal convolution and the frontal operculum. The patient's typing impairment was not attributable to a disturbance of the linguistic process, since he had no aphasia or agraphia. The impairment was not attributable to the impairment of the motor execution process either, since he had no apraxia. Thus, his typing impairment was deduced to be based on a disturbance of the intermediate process where the linguistic phonological information is converted into the corresponding performance. We hypothesized that there is a specific process for typing which branches from the motor programming process presented in neurolinguistic models. The foot of the left second frontal convolution and the operculum may play an important role in the manifestation of 'dystypia'. Copyright 2002 S. Karger AG, Basel

  15. Arterial stiffness and cognitive impairment.

    PubMed

    Li, Xiaoxuan; Lyu, Peiyuan; Ren, Yanyan; An, Jin; Dong, Yanhong

    2017-09-15

    Arterial stiffness is one of the earliest indicators of changes in vascular wall structure and function and may be assessed using various indicators, such as pulse-wave velocity (PWV), the cardio-ankle vascular index (CAVI), the ankle-brachial index (ABI), pulse pressure (PP), the augmentation index (AI), flow-mediated dilation (FMD), carotid intima media thickness (IMT) and arterial stiffness index-β. Arterial stiffness is generally considered an independent predictor of cardiovascular and cerebrovascular diseases. To date, a significant number of studies have focused on the relationship between arterial stiffness and cognitive impairment. To investigate the relationships between specific arterial stiffness parameters and cognitive impairment, elucidate the pathophysiological mechanisms underlying the relationship between arterial stiffness and cognitive impairment and determine how to interfere with arterial stiffness to prevent cognitive impairment, we searched PUBMED for studies regarding the relationship between arterial stiffness and cognitive impairment that were published from 2000 to 2017. We used the following key words in our search: "arterial stiffness and cognitive impairment" and "arterial stiffness and cognitive impairment mechanism". Studies involving human subjects older than 30years were included in the review, while irrelevant studies (i.e., studies involving subjects with comorbid kidney disease, diabetes and cardiac disease) were excluded from the review. We determined that arterial stiffness severity was positively correlated with cognitive impairment. Of the markers used to assess arterial stiffness, a higher PWV, CAVI, AI, IMT and index-β and a lower ABI and FMD were related to cognitive impairment. However, the relationship between PP and cognitive impairment remained controversial. The potential mechanisms linking arterial stiffness and cognitive impairment may be associated with arterial pulsatility, as greater arterial pulsatility

  16. Impairment Rating Ambiguity in the United States: The Utah Impairment Guides for Calculating Workers' Compensation Impairments

    PubMed Central

    Hunter, Bradley; Bunkall, Larry D.; Holmes, Edward B.

    2009-01-01

    Since the implementation of workers' compensation, accurately and consistently rating impairment has been a concern for the employee and employer, as well as rating physicians. In an attempt to standardize and classify impairments, the American Medical Association (AMA) publishes the AMA Guides ("Guides"), and recently published its 6th edition of the AMA Guides. Common critiques of the AMA Guides 6th edition are that they are too complex, lacking in evidence-based methods, and rarely yield consistent ratings. Many states mandate use of some edition of the AMA Guides, but few states are adopting the current edition due to the increasing difficulty and frustration with their implementation. A clearer, simpler approach is needed. Some states have begun to develop their own supplemental guides to combat problems in complexity and validity. Likewise studies in Korea show that past methods for rating impairment are outdated and inconsistent, and call for measures to adapt current methods to Korea's specific needs. The Utah Supplemental Guides to the AMA Guides have been effective in increasing consistency in rating impairment. It is estimated that litigation of permanent impairment has fallen below 1% and Utah is now one of the least costly states for obtaining workers' compensation insurance, while maintaining a medical fee schedule above the national average. Utah's guides serve as a model for national or international impairment guides. PMID:19503678

  17. Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels.

    PubMed

    Nguyen, Hong Phuong; Jeong, Ho Young; Jeon, Seung Ho; Kim, Donghyuk; Lee, Chanhui

    2017-01-01

    Pectin methylesterases (PMEs, EC 3.1.1.11) belonging to carbohydrate esterase family 8 cleave the ester bond between a galacturonic acid and an methyl group and the resulting change in methylesterification level plays an important role during the growth and development of plants. Optimal pectin methylesterification status in each cell type is determined by the balance between PME activity and post-translational PME inhibition by PME inhibitors (PMEIs). Rice contains 49 PMEIs and none of them are functionally characterized. Genomic sequence analysis led to the identification of rice PMEI28 (OsPMEI28). Recombinant OsPMEI28 exhibited inhibitory activity against commercial PME protein with the highest activities detected at pH 8.5. Overexpression of OsPMEI28 in rice resulted in an increased level of cell wall bound methylester groups and differential changes in the composition of cell wall neutral monosaccharides and lignin content in culm tissues. Consequently, transgenic plants overexpressing OsPMEI28 exhibited dwarf phenotypes and reduced culm diameter. Our data indicate that OsPMEI28 functions as a critical structural modulator by regulating the degree of pectin methylesterification and that an impaired status of pectin methylesterification affects physiochemical properties of the cell wall components and causes abnormal cell extensibility in rice culm tissues. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway.

    PubMed

    Guo, Zhiying; Zhao, Ming; Howard, Erin W; Zhao, Qingxia; Parris, Amanda B; Ma, Zhikun; Yang, Xiaohe

    2017-09-01

    Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25-75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro . Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics.

  19. Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway

    PubMed Central

    Guo, Zhiying; Zhao, Ming; Howard, Erin W.; Zhao, Qingxia; Parris, Amanda B.; Ma, Zhikun; Yang, Xiaohe

    2017-01-01

    Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25–75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro. Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics. PMID:28947975

  20. Cognitive impairment and driving safety.

    PubMed

    Eby, David W; Molnar, Lisa J

    2012-11-01

    As the populations of many countries continue to age, cognitive impairment will likely become more common. Individuals with cognitive impairment pose special challenges for families, health professionals, driving safety professionals, and the larger community, particularly if these older adults depend on driving as their primary means of community mobility. It is vital that we continue to extend our knowledge about the driving behavior of individuals' with cognitive impairment, as well as try to develop effective means of screening and assessing these individuals for fitness to drive and help facilitate their transition to non-driving when appropriate. This special issue is intended to provide researchers and practitioners an opportunity to present the most recent research findings on driving-related issues among older adults with cognitive impairment. The issue contains 11 original contributions from seven countries. The topics covered by these papers are: crash risks; screening, assessment, and fitness to drive; driving performance using a driving simulator; and driving behaviors and driving-related decisions of people with cognitive impairments. Copyright © 2012. Published by Elsevier Ltd.

  1. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    SciTech Connect

    Lu, Li, E-mail: luli7300@126.com; Song, Hui-Fang; Wei, Jiao-Long

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limitingmore » catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.« less

  2. Lysosomal impairment in Parkinson's disease.

    PubMed

    Dehay, Benjamin; Martinez-Vicente, Marta; Caldwell, Guy A; Caldwell, Kim A; Yue, Zhenyue; Cookson, Mark R; Klein, Christine; Vila, Miquel; Bezard, Erwan

    2013-06-01

    Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies

  3. Death decoy receptor overexpression and increased malignancy risk in colorectal cancer.

    PubMed

    Zong, Liang; Chen, Ping; Wang, Da-Xin

    2014-04-21

    To evaluate human epidermal growth factor receptor 2 (HER2) and death decoy receptor (DcR3) as colorectal cancer prognostic indicators. Colorectal carcinoma specimens from 300 patients were analyzed by immunohistochemistry to detect the staining patterns of HER2 and DcR3. Classification of HER2 staining was carried out using the United States Food and Drug Administration semi-quantitative scoring system, with scores of 0 or 1+ indicating a tumor-negative (normal expression) status and scores of 2+ and 3+ indicating a tumor-positive (overexpression) status. Classification of DcR3 was carried out by quantitating the percentage of positive cells within the stained section, with < 10% indicating a tumor-negative status and ≥ 10% indicating a tumor-positive status. Correlation of the HER2 and DcR3 staining status with clinicopathological parameters [age, sex, tumor size, differentiation, and the tumor, node, metastasis (pTNM) classification] and survival was statistically assessed. Tumor-positive status for HER2 and DcR3 was found in 18.33% and 58.33% of the 300 colorectal carcinoma specimens, respectively. HER2 tumor-positive status showed a significant correlation with tumor size (P = 0.003) but not with other clinicopathological parameters. DcR3 tumor-positive status showed a significant correlation with tumor differentiation (P < 0.001), pTNM stage (P < 0.001), and lymph node metastasis (P < 0.001). However, correlation coefficient analysis did not indicate that a statistically significant correlation exists between tumor-positive status for the HER2 and DcR3 overexpression (P = 0.236). Patients with specimens classified as DcR3-overexpressing had a significantly worse overall survival (OS) rate than those without DcR3 overexpression (median OS: 42.11 vs 61.21 mo; HR = 50.27, 95%CI: 44.90-55.64, P < 0.001). HER2 overexpression had no significant impact on median OS (35.10 mo vs 45.25 mo; HR = 44.40, 95%CI: 39.32-49.48, P = 0.344). However, patients with specimens

  4. Visitation arrangements for impaired parents.

    PubMed

    Montgomery, Stephen A; Street, David F

    2011-07-01

    Forensic mental health professionals are frequently asked to evaluate the parenting skills of divorcing parents because the court seeks help in determining the custody, visitation, and parenting time arrangements for the children. When one of the parents is impaired, the court wants to know the way to help the children have a good relationship with that parent and keep the children safe. There is little empirical research to answer such questions. In this article, the authors describe their methodology for providing useful clinical information to the court to help guide their decisions regarding visitation with impaired parents. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    PubMed

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Targeted overexpression of calcitonin in gonadotrophs of transgenic mice leads to chronic hypoprolactinemia.

    PubMed

    Yuan, Ren; Kulkarni, Trupti; Wei, Fu; Shah, Girish V

    2005-01-14

    It was previously shown that calcitonin-like pituitary peptide (pit-CT) is synthesized and secreted by gonadotrophs, and pit-CT inhibits PRL gene transcription and lactotroph cell proliferation. Present studies examined long-term consequences of pit-CT overexpression on the functioning of mouse anterior pituitary (AP) gland. Targeted overexpression of pit-CT in gonadotrophs of mouse pituitaries was achieved by generating mice overexpressing bovine luteinizing hormone (LH)-alpha subunit promoter-pit-CT cDNA transgene. Transgenic (pit-CT+) mice displayed chronic but selective overexpression of pit-CT in gonadotrophs. The mice also displayed a dramatic decline in PRL gene expression as assessed by PRL mRNA abundance, PRL immunohistochemistry (IHC) and serum PRL levels. LH secretion in pit-CT+ mice was also reduced, without any change in FSH secretion. Reproductive abnormalities such as prolonged estrous cycles, reduced pregnancy rate, delivery of smaller litters, increased neonatal mortality and deficient lactation were also observed. Administration of PRL during early pregnancy significantly increased the pregnancy rate and neonatal survival of newborns. These results demonstrate that overexpression of pit-CT leads to chronic hypoprolactinemia and reproductive dysfunction in female mice, and reinforces the possibility that gonadotroph-derived pit-CT is an important paracrine regulator of lactotroph function.

  7. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803.

    PubMed

    Liang, Feiyan; Lindblad, Peter

    2016-11-01

    Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO 2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100μmolphotonsm -2 s -1 light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100μmolphotonsm -2 s -1 light condition. Under 15μmolphotonsm -2 s -1 light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Overexpression of SPAG9 in human gastric cancer is correlated with poor prognosis.

    PubMed

    Miao, Zhi-Feng; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Ying-Ying; Wu, Jian-Hua; Liu, Xing-Yu; Xu, Hao; You, Yi; Xu, Hui-Mian

    2015-11-01

    Sperm associated antigen 9 (SPAG9) protein has been found to play an important role in cancer progression but the involved mechanisms are still obscure. Its clinical significance in human gastric cancers remains unexplored. In the present study, SPAG9 expression was analyzed in 147 gastric cancer specimens. We observed weak staining in normal gastric mucosa and positive staining in 65 out of 147 (44.2 %) cancer samples. Overexpression of SPAG9 correlated with local invasion (p = 0.0101), lymph node metastasis (p = 0.0488), TNM stage (p = 0.0002), and relapse (p = 0.0018). Importantly, SPAG9 overexpression correlated with poor overall survival (p = 0.0008). Furthermore, we performed siRNA knockdown of SPAG9 in HGC-27 cells with high endogenous expression and transfected SPAG9 plasmid in SGC-7901 cell line with low endogenous level. SPAG9 overexpression promoted while its depletion inhibited cell proliferation, cell cycle transition, and invasive cell growth. SPAG9 overxpression also increased chemoresistance to 5--fluorouracil (5-FU) in SGC-7901 cells. Further analysis showed that SPAG9 knockdown downregulated and its overexpression upregulated cyclin D1, MMP9, and p-p38 expression. In conclusion, SPAG9 overexpression in gastric cancer correlates with poor prognosis and contributes to gastric cancer cell proliferation, invasion, and chemoresistance. SPAG9 promotes gastric cancer invasion, possibly through p38-MMP9 signaling pathways.

  9. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation.

    PubMed

    Brun, Caroline; Périé, Luce; Baraige, Fabienne; Vernus, Barbara; Bonnieu, Anne; Blanquet, Véronique

    2014-01-01

    Overexpression of Gasp-1, an inhibitor of myostatin, leads to a hypermuscular phenotype due to hypertrophy rather than hyperplasia in mice. However to date, the cellular and molecular mechanisms underlying this phenotype are not investigated. Skeletal muscles of overexpressing Gasp-1 mice, called Tg(Gasp-1) mice, were analyzed by histological methods. Satellite cell-derived myoblasts from these mice were used to investigate the molecular mechanisms. We demonstrated that hypertrophy in Tg(Gasp-1) mice was related to a myonuclear accretion during the first 3 postnatal weeks and an activation of the pro-hypertrophic Akt/mTORC/p70S6K signaling. In accordance with these results, we showed that overexpressing Gasp-1 primary myoblasts proliferated faster and myonuclei average per myotube was increased during differentiation. Molecular analysis revealed that Gasp-1 overexpression resulted in increased myostatin expression related to its auto-regulation. Despite its inhibition, myostatin led to Pax7 deregulation through its non-canonical Erk1/2 signaling pathway. Consistent with this, inhibition of Erk1/2 signaling pathway as well as neutralization of secreted myostatin rescue the Pax7 expression in overexpressing Gasp-1 myoblasts. Our study shows that myostatin is able to act independently of its canonical pathway to regulate the Pax7 expression. Altogether, our results indicate that myostatin could regulate muscle development despite its protein inhibition. © 2014 S. Karger AG, Basel.

  10. Estrogen receptor alpha deletion enhances the metastatic phenotype of Ron overexpressing mammary tumors in mice

    PubMed Central

    2012-01-01

    Background The receptor tyrosine kinase family includes many transmembrane proteins with diverse physiological and pathophysiological functions. The involvement of tyrosine kinase signaling in promoting a more aggressive tumor phenotype within the context of chemotherapeutic evasion is gaining recognition. The Ron receptor is a tyrosine kinase receptor that has been implicated in the progression of breast cancer and evasion of tamoxifen therapy. Results Here, we report that Ron expression is correlated with in situ, estrogen receptor alpha (ERα)-positive tumors, and is higher in breast tumors following neoadjuvant tamoxifen therapy. We also demonstrate that the majority of mammary tumors isolated from transgenic mice with mammary specific-Ron overexpression (MMTV-Ron mice), exhibit appreciable ER expression. Moreover, genetic-ablation of ERα, in the context of Ron overexpression, leads to delayed mammary tumor initiation and growth, but also results in an increased metastasis. Conclusions Ron receptor overexpression is associated with ERα-positive human and murine breast tumors. In addition, loss of ERα on a Ron overexpressing background in mice leads to the development of breast tumors which grow slower but which exhibit more metastasis and suggests that targeting of ERα, as in the case of tamoxifen therapy, may reduce the growth of Ron overexpressing breast cancers but may cause these tumors to be more metastatic. PMID:22226043

  11. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior

    PubMed Central

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Pereira Gimba, Etel Rodrigues; Soares, Paula

    2016-01-01

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches. PMID:27409830

  12. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior.

    PubMed

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Gimba, Etel Rodrigues Pereira; Soares, Paula

    2016-08-09

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches.

  13. 20 CFR 404.1598 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false If you become disabled by another impairment... Disability § 404.1598 If you become disabled by another impairment(s). If a new severe impairment(s) begins... are still disabled under § 404.1594. [50 FR 50136, Dec. 6, 1985] ...

  14. 20 CFR 404.1598 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false If you become disabled by another impairment... Disability § 404.1598 If you become disabled by another impairment(s). If a new severe impairment(s) begins... are still disabled under § 404.1594. [50 FR 50136, Dec. 6, 1985] ...

  15. 20 CFR 404.1598 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false If you become disabled by another impairment... Disability § 404.1598 If you become disabled by another impairment(s). If a new severe impairment(s) begins... are still disabled under § 404.1594. [50 FR 50136, Dec. 6, 1985] ...

  16. 20 CFR 404.1598 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false If you become disabled by another impairment... Disability § 404.1598 If you become disabled by another impairment(s). If a new severe impairment(s) begins... are still disabled under § 404.1594. [50 FR 50136, Dec. 6, 1985] ...

  17. 20 CFR 404.1598 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false If you become disabled by another impairment... Disability § 404.1598 If you become disabled by another impairment(s). If a new severe impairment(s) begins... are still disabled under § 404.1594. [50 FR 50136, Dec. 6, 1985] ...

  18. [Functional impairment associated with cognitive impairment in hospitalised elderly].

    PubMed

    Ocampo-Chaparro, José Mauricio; Mosquera-Jiménez, José Ignacio; Davis, Annabelle S; Reyes-Ortiz, Carlos A

    The aim of this study was to analyse the effect of cognitive impairment on functional decline in hospitalised patients aged ≥60 years. Measurements at admission included demographic data, Charlson's comorbidity index, and cognitive impairment (according to education level). Data were also collected on hospital length of stay, depression, and delirium developed during hospitalisation. The outcome, Barthel Index (BI), was measured at admission, discharge, and 1-month post-discharge. Patients with BI≤75 at admission (n=54) or with a missing BI value were excluded (n=1). Multivariate logistic regression analyses were conducted to explore predictive factors with functional decline (BI≤75) from admission to discharge, and 1-month later. Of the 133 patients included, 24.8% and 19.6% had a BI≤75 at discharge and at 1-month, respectively. Compared with men, women had more than double risk for functional decline at discharge and 1-month (P<.05). Compared with those without delirium and without cognitive impairment, those with delirium and cognitive impairment had an increased risk for functional decline (BI≤75) at discharge (OR 5.15, 95% CI; 1.94-13.67), and at 1-month (OR 6.26, 95% CI; 2.30-17.03). Similarly, those with comorbidity (≥2) had increased functional decline at discharge (OR 2.36, 95% CI; 1.14-4.87), and at 1-month after discharge (OR 2.71, 95% CI; 1.25-5.89). Delirium during hospitalisation, together with cognitive impairment on admission, was a strong predictor of functional decline. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Overexpression of stearoyl-CoA desaturase 1 in bone marrow mesenchymal stem cells enhance the expression of induced endothelial cells

    PubMed Central

    2014-01-01

    Background Bone marrow mesenchymal stem cells (BM-MSCs) are capable of differentiating into endothelial cells in vitro and acquire major characteristics of mature endothelial-like expression of vWF and CD31. SFAs and lipid oxidation products have been linked with postprandial endothelial dysfunction. Consumption of SFAs impairs arterial endothelial function, while a Mediterranean-type MUFA-diet has a beneficial effect on endothelial function by producing a decrease in levels of vWF, TFPI and PAI-1. Stearoyl-CoA desaturase 1 (SCD1), which converts SFA to MUFA, is involved in the cellular biosynthesis of MUFAs from SFA substrates. High expression of SCD1 is corresponded with low rates of fatty acid oxidation, therefore it might reduce inflammatory responses and be beneficial for the growth of induced endothelial cells. Overexpression of SCD1 in BM-MSCs might increase the growth of induced endothelial cells. The goal of this research is to study the relationship between overexpression of SCD1 and the expression of induced endothelial cells in BM-MSCs in vitro. Methods The gene SCD1 was integrated into a lentiviral vector, and then 293 T cells were transfected by the connected product to produce a packaged virus. BM-MSCs were infected by the packaged virus. Cell culture and endothelial induction were performed. Fluorescent quantitative PCR of CD31, vWF and VE-cad was performed after 1 week and 2 weeks to test the growth of induced endothelial cells. Results The mRNA amount of CD31, vWF and VE-cad of the SCD1 overexpressed group was statistically higher than that of the empty vector (EV) group and that of the normal group after 1 week and 2 weeks, respectively (p < 0.05). Immunocytochemical staining of CD31 or vWF was detected by visualizing red color. Conclusions This study suggested that overexpression of SCD1 in BM-MSCs could increase the expression of induced endothelial cells in vitro. PMID:24650127

  20. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.

    PubMed

    Wellberg, Elizabeth A; Rudolph, Michael C; Lewis, Andrew S; Padilla-Just, Nuria; Jedlicka, Paul; Anderson, Steven M

    2014-12-04

    Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated

  1. Oceanography for the Visually Impaired

    ERIC Educational Resources Information Center

    Fraser, Kate

    2008-01-01

    Amy Bower is a physical oceanographer and senior scientist at the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Massachusetts--she has also been legally blind for 14 years. Through her partnership with the Perkins School for the Blind in Watertown, Massachusetts, the oldest K-12 school for the visually impaired in the United States,…

  2. Hearing impairment: a family crisis.

    PubMed

    Goldberg, H K

    1979-01-01

    This paper reviews the initial crisis for hearing impaired children and their families from the perspective of the clinician who must assess their adjustment at the point of entry into a school for the deaf. The use of crisis theory as it relates to the special needs of this client group is discussed.

  3. Battlefield training in impaired visibility

    NASA Astrophysics Data System (ADS)

    Gammarino, Rudolph R.; Surhigh, James W.

    1991-04-01

    A laser training system entitled Shoot Through Obscuration MILES (STOM) is being developed to operate with Forward Looking InfraRed (FLIR) systems during battlefield exercises where visibility is impaired. The STOM system is capable of ranges in excess of 6 km and can penetrate battlefield obscurants such as fog-oil, smoke, dust, and rain.

  4. Mainstreaming the Visually Impaired Child.

    ERIC Educational Resources Information Center

    Calovini, Gloria, Ed.

    Intended for school administrators and regular classroom teachers, the document presents guidelines for working with visually impaired students being integrated into regular classes. Included is a description of the special education program in Illinois. Sections cover the following topics: identification and referral of visually impaired…

  5. Resources for the Visually Impaired.

    ERIC Educational Resources Information Center

    Oseroff, Andrew; And Others

    1987-01-01

    Suggestions for resource room teachers working with visually impaired learning disabled students include: consideration of students' unique learning needs; assessment of functional vision; use of assistive devices (such as closed-circuit television); classroom arrangement that facilitates organization and movement; and basic skills instruction…

  6. Language Impairment in Autistic Children.

    ERIC Educational Resources Information Center

    Deaton, Ann Virginia

    Discussed is the language impairment of children with infantile autism. The speech patterns of autistic children, including echolalia, pronomial reversal, silent language, and voice imitation, are described. The clinical picture of the autistic child is compared to that of children with such other disorders as deafness, retardation, and…

  7. Hyaluronic Acid is Overexpressed in Fibrotic Lung Tissue and Promotes Collagen Expression

    DTIC Science & Technology

    2009-04-01

    inflammation, and fibrosis (i.e. the overexpression of collagen). Lung fibrosis is the major cause of morbidity and mortality in scleroderma and is...References……………………………………………………………………………. 8 Appendices…………………………………………………………………………… 9 INTRODUCTION Systemic scleroderma is a... scleroderma . The overexpression of collagen I in fibrotic lung tissue is accompanied by the overexpression of other ECM molecules (e.g. the proteins

  8. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  9. EMMPRIN overexpression in SVZ neural progenitor cells increases their migration towards ischemic cortex.

    PubMed

    Kanemitsu, Michiko; Tsupykov, Oleg; Potter, Gaël; Boitard, Michael; Salmon, Patrick; Zgraggen, Eloisa; Gascon, Eduardo; Skibo, Galina; Dayer, Alexandre G; Kiss, Jozsef Z

    2017-11-01

    Stimulation of endogenous neurogenesis and recruitment of neural progenitors from the subventricular zone (SVZ) neurogenic site may represent a useful strategy to improve regeneration in the ischemic cortex. Here, we tested whether transgenic overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN), the regulator of matrix metalloproteinases (MMPs) expression, in endogenous neural progenitor cells (NPCs) in the subventricular zone (SVZ) could increase migration towards ischemic injury. For this purpose, we applied a lentivector-mediated gene transfer system. We found that EMMPRIN-transduced progenitors exhibited enhanced MMP-2 activity in vitro and showed improved motility in 3D collagen gel as well as in cortical slices. Using a rat model of neonatal ischemia, we showed that EMMPRIN overexpressing SVZ cells invade the injured cortical tissue more efficiently than controls. Our results suggest that EMMPRIN overexpression could be suitable approach to improve capacities of endogenous or transplanted progenitors to invade the injured cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase.

    PubMed

    Rothe, Grit; Hachiya, Akira; Yamada, Yasuyuki; Hashimoto, Takashi; Dräger, Birgit

    2003-09-01

    Putrescine N-methyltransferase (PMT) is the first alkaloid-specific enzyme for nicotine and tropane alkaloid formation. The pmt gene from Nicotiana tabacum was fused to the CaMV 35S promoter and integrated into the Atropa belladonna genome. Transgenic plants and derived root cultures were analysed for gene expression and for levels of alkaloids and their precursors. Scopolamine, hyoscyamine, tropine, pseudotropine, tropinone, and calystegines were found unaltered or somewhat decreased in pmt-overexpressing lines compared to controls. When root cultures were treated with 5% sucrose, calystegine levels were elevated in control roots, but were not affected in pmt-overexpressing roots. 1 microM auxin reduced calystegine levels in control roots, while in pmt-overexpressing roots all alkaloids remained unaltered. Expression level of pmt alone is apparently not limiting for tropane alkaloid formation in A. belladonna.

  11. Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-01-01

    We constructed a self-cloning diploid baker's yeast strain that overexpressed the transcription activator Msn2. It showed higher tolerance to freeze-thaw stress and higher intracellular trehalose level than observed in the wild-type strain. Overexpression of Msn2 also enhanced the fermentation ability of baker's yeast cells in frozen dough. Hence, Msn2-overexpressing baker's yeast should be useful in frozen-dough baking.

  12. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    DTIC Science & Technology

    2008-03-01

    were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas , suggesting that these proteins play a...1-4). In addition, short CUX1 isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas ...alternative mRNA. The p110 and p75 isoforms are overexpressed in different types of cancers, such as in leiomyomas and breast cancers. In tissue culture

  13. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    DTIC Science & Technology

    2007-03-01

    overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas , suggesting that these proteins play a key role in tumor...isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas , suggesting that these proteins...G1/S transition. In addition, the p110 and p75 isoforms are overexpressed in different types of human cancers, such as in leiomyomas and breast

  14. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.

    PubMed

    Ishikawa, Toshiki; Aki, Toshihiko; Yanagisawa, Shuichi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2015-10-01

    BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Overexpression of FKBP51 in idiopathic myelofibrosis regulates the growth factor independence of megakaryocyte progenitors.

    PubMed

    Giraudier, Stéphane; Chagraoui, Hédia; Komura, Emiko; Barnache, Stéphane; Blanchet, Benoit; LeCouedic, Jean Pierre; Smith, David F; Larbret, Frédéric; Taksin, Anne-Laure; Moreau-Gachelin, Françoise; Casadevall, Nicole; Tulliez, Michel; Hulin, Anne; Debili, Najet; Vainchenker, William

    2002-10-15

    Idiopathic myelofibrosis (IMF) is a chronic myeloproliferative disorder characterized by megakaryocyte hyperplasia and bone marrow fibrosis. Biologically, an autonomous megakaryocyte growth and differentiation is noticed, which contributes to the megakaryocyte accumulation. To better understand the molecular mechanisms involved in this spontaneous growth, we searched for genes differentially expressed between normal megakaryocytes requiring cytokines to grow and IMF spontaneously proliferating megakaryocytes. Using a differential display technique, we found that the immunophilin FKBP51 was 2 to 8 times overexpressed in megakaryocytes derived from patients' CD34(+) cells in comparison to normal megakaryocytes. Overexpression was moderate and confirmed in 8 of 10 patients, both at the mRNA and protein levels. Overexpression of FKBP51 in a UT-7/Mpl cell line and in normal CD34(+) cells induced a resistance to apoptosis mediated by cytokine deprivation with no effect on proliferation. FKBP51 interacts with both calcineurin and heat shock protein (HSP)70/HSP90. However, a mutant FKBP51 deleted in the HSP70/HSP90 binding site kept the antiapoptotic effect, suggesting that the calcineurin pathway was responsible for the FKBP51 effect. Overexpression of FKBP51 in UT-7/Mpl cells induced a marked inhibition of calcineurin activity. Pharmacologic inhibition of calcineurin by cyclosporin A mimicked the effect of FKBP51. The data support the conclusion that FKBP51 inhibits apoptosis through a calcineurin-dependent pathway. In conclusion, FKBP51 is overexpressed in IMF megakaryocytes and this overexpression could be, in part, responsible for the megakaryocytic accumulation observed in this disorder by regulating their apoptotic program.

  16. Overexpression of PBK/TOPK relates to tumour malignant potential and poor outcome of gastric carcinoma

    PubMed Central

    Ohashi, Takuma; Komatsu, Shuhei; Ichikawa, Daisuke; Miyamae, Mahito; Okajima, Wataru; Imamura, Taisuke; Kiuchi, Jun; Kosuga, Toshiyuki; Konishi, Hirotaka; Shiozaki, Atsushi; Fujiwara, Hitoshi; Okamoto, Kazuma; Tsuda, Hitoshi; Otsuji, Eigo

    2017-01-01

    Background: PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) is a serine–threonine kinase and overexpressed in various types of cancer by inhibiting the transactivation activities of p53 and PTEN. We tested whether PBK/TOPK acts as a cancer-promoting gene through its activation/overexpression in gastric cancer (GC). Methods: We analysed five GC cell lines and 144 primary tumours, which were curatively resected in our hospital between 2001 and 2003. Results: Overexpression of the PBK/TOPK protein was frequently detected in GC cell lines (4 out of 5 lines, 80.0%) was detected in primary tumour samples of GC (24 out of 144 cases, 16.6%) and was significantly correlated with venous invasion, tumour depth and recurrence rate. PDZ-binding kinase/T-LAK cell-originated protein kinase-overexpressing tumours had a worse survival rate than those with non-expressing tumours (P=0.0009, log-rank test). PDZ-binding kinase/T-LAK cell-originated protein kinase positivity was independently associated with a worse outcome in multivariate analysis (P<0.0001, hazard ratio 6.40 (2.71–14.49)). In PBK/TOPK-overexpressing GC cells, knockdown of PBK/TOPK inhibited the cell proliferation through the p53 activation in a TP53 mutation-dependent manner and inhibited the migration/invasion through the PTEN upregulation in a TP53 mutation-independent manner. Conclusions: These findings suggest PBK/TOPK plays a crucial role in tumour malignant potential through its overexpression and highlight its usefulness as a prognostic factor and potential therapeutic target in GC. PMID:27898655

  17. Aurora-A overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma.

    PubMed

    Lassus, Heini; Staff, Synnöve; Leminen, Arto; Isola, Jorma; Butzow, Ralf

    2011-01-01

    Aurora-A is a potential oncogene and therapeutic target in ovarian carcinoma. It is involved in mitotic events and overexpression leads to centrosome amplification and chromosomal instability. The objective of this study was to evaluate the clinical significance of Aurora-A and DNA ploidy in serous ovarian carcinoma. Serous ovarian carcinomas were analysed for Aurora-A protein by immunohistochemistry (n=592), Aurora-A copy number by CISH (n=169), Aurora-A mRNA by real-time PCR (n=158) and DNA ploidy by flowcytometry (n=440). Overexpression of Aurora-A was found in 27% of the tumors, cytoplasmic overexpression in 11% and nuclear in 17%. The cytoplasmic and nuclear overexpression were nearly mutually exclusive. Both cytoplasmic and nuclear overexpression were associated with shorter survival, high grade, high proliferation index and aberrant p53. Interestingly, only cytoplasmic expression was associated with aneuploidy and expression of phosphorylated Aurora-A. DNA ploidy was associated with poor patient outcome as well as aggressive clinicopathological parameters. In multivariate analysis, Aurora-A overexpression appeared as an independent prognostic factor for disease-free survival, together with grade, stage and ploidy. Aurora-A protein expression is strongly linked with poor patient outcome and aggressive disease characteristics, which makes Aurora-A a promising biomarker and a potential therapeutic target in ovarian carcinoma. Cytoplasmic and nuclear Aurora-A protein may have different functions. DNA aneuploidy is a strong predictor of poor prognosis in serous ovarian carcinoma. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Strong and rapid induction of osteoblast differentiation by Cbfa1/Til-1 overexpression for bone regeneration.

    PubMed

    Kojima, Hiroko; Uemura, Toshimasa

    2005-01-28

    Core binding factor alpha-1 (Cbfa1), known as an essential transcription factor for osteogenic lineage, has two major N-terminal isoforms: Pebp2alphaA and Til-1. To study the roles of these isoforms in bone regeneration, we applied an adenoviral vector carrying their genes to transduce primary osteoprogenitor cells in vitro and in vivo. Overexpression of the two isoforms induced rapid and marked osteoblast differentiation, with Til-1 being more effective in vitro, by examination of the alkaline phosphatase activity, calcium content, and Alizarin red staining. Til-1 overexpressing cells/porous ceramic composites were transplanted into subcutaneous and bone defect sites in Fischer rats (cultured bone transplantation model) and markedly affected in vivo bone formation and osteoblast markers. The results demonstrated that the reconstitution of bone tissues, such as cortical bone and trabecular bone was accelerated by implantation of Til-1 overexpressing cells/porous ceramic composites. Moreover, the new bone formation by Til-1 overexpression appeared to reflect replacement of new bone within the implant boundaries. To ascertain whether implanted Cbfa1 overexpressing cells could differentiate into osteogenic cells to create bone or whether it stimulated the surrounding recipient tissue to regenerate bone, implanted male donor cells were visualized by fluorescent in situ hybridization analysis. The proportion of implanted cells in the presumptive bone forming region was over 80% and did not change throughout from 3 days to 8 weeks after implantation. These findings suggested that the newly formed bone in the porous area of the scaffold is mostly produced by the implanted donor cells or their derived cells, effectively by Til-1 overexpression.

  19. Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes.

    PubMed

    Rozier, Kelvin; Bondarenko, Vladimir E

    2018-03-01

    Transgenic (TG) mice overexpressing β 2 -adrenergic receptors (β 2 -ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β 2 -ARs. We found that most of the β 2 -ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca 2+ current and intracellular Ca 2+ concentration ([Ca 2+ ] i ) transients upon stimulation of β 2 -ARs in control, after the application of pertussis toxin, upon stimulation with a specific β 2 -AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the β 2 -AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca 2+ ] i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing β 2 -ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing β 2 -ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca 2+ current to the changes in the action potential and [Ca 2+ ] i transient upon stimulation of β 2 -ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing β 2 -adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the

  20. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    PubMed

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  1. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    PubMed

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  2. c-MET Overexpression in Colorectal Cancer: A Poor Prognostic Factor for Survival.

    PubMed

    Lee, Su Jin; Lee, Jeeyun; Park, Se Hoon; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Kim, Seung Tae

    2018-03-02

    Increased mesenchymal-epithelial transition factor gene (c-MET) expression in several human malignancies is related to increased tumor progression and is a new potential drug target for several types of cancers. In the present study, we investigated the incidence of c-MET overexpression and its prognostic significance in patients with colorectal cancer (CRC). We retrospectively reviewed the data from 255 stage IV CRC patients who had results from a c-MET immunohistochemical test at Samsung Medical Center. We explored the relationships between c-MET overexpression and clinicopathological features and survival. Primary tumor sites were 67 right-sided colon, 98 left-sided colon, and 90 rectum. Forty-two patients (16.7%) had poorly differentiated or mucinous carcinoma. Among the 255 patients, 39 (15.3%) exhibited c-MET overexpression. There was no significant difference in the prevalence of c-MET overexpression according to primary site, histologic differentiation, molecular markers, or metastatic sites. In a comparison of the tumor response to first-line chemotherapy according to the level of c-MET expression, we found no significant difference in either partial response or disease control rate. In the survival analysis, patients with c-MET overexpression had significantly shorter overall survival (39 vs. 27 months; P = .018) and progression-free survival (PFS) during bevacizumab treatment (10 vs. 7 months; P = .024). c-MET overexpression, which was detected in 39 CRC patients (15.3%) irrespective of primary sites or molecular markers, indicated a poor survival prognosis and predicted shorter PFS during bevacizumab treatment in patients with CRC. Further studies are warranted to elucidate the value of c-MET-targeted therapy in CRC patients. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Overexpression of Selenoprotein SelK in BGC-823 Cells Inhibits Cell Adhesion and Migration.

    PubMed

    Ben, S B; Peng, B; Wang, G C; Li, C; Gu, H F; Jiang, H; Meng, X L; Lee, B J; Chen, C L

    2015-10-01

    Effects of human selenoprotein SelK on the adhesion and migration ability of human gastric cancer BGC-823 cells using Matrigel adhesion and transwell migration assays, respectively, were investigated in this study. The Matrigel adhesion ability of BGC-823 cells that overexpressed SelK declined extremely significantly (p < 0.01) compared with that of the cells not expressing the protein. The migration ability of BGC-823 cells that overexpressed SelK also declined extremely significantly (p < 0.01). On the other hand, the Matrigel adhesion ability and migration ability of the cells that overexpressed C-terminally truncated SelK did not decline significantly. The Matrigel adhesion ability and migration ability of human embryonic kidney HEK-293 cells that overexpressed SelK did not show significant change (p > 0.05) with the cells that overexpressed the C-terminally truncated protein. In addition to the effect on Matrigel adhesion and migration, the overexpression of SelK also caused a loss in cell viability (as measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT) colorimetric assay) and induced apoptosis as shown by confocal microscopy and flow cytometry. The cytosolic free Ca2+ level of these cells was significantly increased as detected by flow cytometry. But the overexpression of SelK in HEK-293 cells caused neither significant loss in cell viability nor apoptosis induction. Only the elevation of cytosolic free Ca2+ level in these cells was significant. Taken together, the results suggest that the overexpression of SelK can inhibit human cancer cell Matrigel adhesion and migration and cause both the loss in cell viability and induction of apoptosis. The release of intracellular Ca2+ from the endoplasmic reticulum might be a mechanism whereby the protein exerted its impact. Furthermore, only the full-length protein, but not C-terminally truncated form, was capable of producing such impact. The embryonic cells were not influenced by the

  4. Dietary salt loading increases nitric oxide synthesis in transgenic mice overexpressing sodium-proton exchanger.

    PubMed

    Kiraku, J; Nakamura, T; Sugiyama, T; Takahashi, N; Kuro-o, M; Fujii, J; Nagai, R

    1999-06-01

    We studied the role of nitric oxide (NO) synthesis in amelioration of blood pressure elevation during dietary salt loading in transgenic mice overexpressing sodium proton exchanger. Systolic blood pressure rose after starting salt loading only in the high-salt group of transgenic mice. However, this elevation of blood pressure was not continued. Urinary excretion of inorganic nitrite and nitrate in the high-salt group of transgenic mice was significantly higher than in the high-salt group of control mice. These results suggest that increased NO synthesis in response to salt loading is one of the anti-hypertensive mechanisms in transgenic mice overexpressing sodium proton exchanger.

  5. Distance between RBS and AUG plays an important role in overexpression of recombinant proteins.

    PubMed

    Berwal, Sunil K; Sreejith, R K; Pal, Jayanta K

    2010-10-15

    The spacing between ribosome binding site (RBS) and AUG is crucial for efficient overexpression of genes when cloned in prokaryotic expression vectors. We undertook a brief study on the overexpression of genes cloned in Escherichia coli expression vectors, wherein the spacing between the RBS and the start codon was varied. SDS-PAGE and Western blot analysis indicated a high level of protein expression only in constructs where the spacing between RBS and AUG was approximately 40 nucleotides or more, despite the synthesis of the transcripts in the representative cases investigated. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  7. Visuoconstructional Impairment in Subtypes of Mild Cognitive Impairment

    PubMed Central

    Ahmed, Samrah; Brennan, Laura; Eppig, Joel; Price, Catherine C.; Lamar, Melissa; Delano-Wood, Lisa; Bangen, Katherine J.; Edmonds, Emily C.; Clark, Lindsey; Nation, Daniel A.; Jak, Amy; Au, Rhoda; Swenson, Rodney; Bondi, Mark W.; Libon, David J.

    2018-01-01

    Clock Drawing Test performance was examined alongside other neuropsychological tests in mild cognitive impairment (MCI). We tested the hypothesis that clock-drawing errors are related to executive impairment. The current research examined 86 patients with MCI for whom, in prior research, cluster analysis was used to sort patients into dysexecutive (dMCI, n=22), amnestic (aMCI, n=13), and multi-domain (mMCI, n=51) subtypes. First, principal components analysis (PCA) and linear regression examined relations between clock-drawing errors and neuropsychological test performance independent of MCI subtype. Second, between-group differences were assessed with analysis of variance (ANOVA) where MCI subgroups were compared to normal controls (NC). PCA yielded a 3-group solution. Contrary to expectations, clock-drawing errors loaded with lower performance on naming/lexical retrieval, rather than with executive tests. Regression analyses found increasing clock-drawing errors to command were associated with worse performance only on naming/lexical retrieval tests. ANOVAs revealed no differences in clock-drawing errors between dMCI versus mMCI or aMCI versus NCs. Both the dMCI and mMCI groups generated more clock-drawing errors than the aMCI and NC groups in the command condition. In MCI, language-related skills contribute to clock-drawing impairment. PMID:26397732

  8. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    PubMed

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  9. Visual impairment in Northern Ireland.

    PubMed Central

    Canavan, Y. M.; Jackson, A. J.; Stewart, A.

    1997-01-01

    Statistics on the registration of blind and partially-sighted patients in Northern Ireland underestimate the true extent of visual impairment within our community. In comparison to other UK regions, where between 0.53% and 0.59% of the population avail of blind or partial sight registration, only 0.35% of residents in Northern Ireland appear on the respective registers. Most patients on the combined registers are in the older age groups and many also suffer from other disabilities. Regional discrepancies may be attributed to a combination of factors including: patient attitudes to the registration process, medical attitudes to registration and local anomalies in the way in which social services departments both record and present annual registration returns. Better liaison is necessary between the community, hospital and voluntary sector providers to improve identification and support services for the visually impaired in the future. PMID:9414937

  10. Teaching Technology Education to Visually Impaired Students.

    ERIC Educational Resources Information Center

    Mann, Rene

    1987-01-01

    Discusses various types of visual impairments and how the learning environment can be adapted to limit their effect. Presents suggestions for adapting industrial arts laboratory activities to maintain safety standards while allowing the visually impaired to participate. (CH)

  11. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    PubMed

    de Moura, Michelle Barbi; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  12. VEGF Receptor-2 (Flk-1) Overexpression in Mice Counteracts Focal Epileptic Seizures

    PubMed Central

    Nikitidou, Litsa; Kanter-Schlifke, Irene; Dhondt, Joke; Carmeliet, Peter; Lambrechts, Diether; Kokaia, Mérab

    2012-01-01

    Vascular endothelial growth factor (VEGF) was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1). VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity. PMID:22808185

  13. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    PubMed Central

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  14. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.

    PubMed

    Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui

    2011-02-08

    Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum.

    PubMed

    Li, Ping; Guo, Xuewu; Shi, Tingting; Hu, Zhihui; Chen, Yefu; Du, Liping; Xiao, Dongguang

    2017-11-01

    As a byproduct of yeast valine metabolism during fermentation, diacetyl can produce a buttery aroma in wine. However, high diacetyl concentrations generate an aromatic off-flavor and poor quality in wine. 2,3-Butanediol dehydrogenase encoded by BDH1 can catalyze the two reactions of acetoin from diacetyl and 2,3-butanediol from acetoin. BDH2 is a gene adjacent to BDH1, and these genes are regulated reciprocally. In this study, BDH1 and BDH2 were overexpressed in Saccharomyces uvarum to reduce the diacetyl production of wine either individually or in combination. Compared with those in the host strain WY1, the diacetyl concentrations in the recombinant strains WY1-1 with overexpressed BDH1, WY1-2 with overexpressed BDH2 alone, and WY1-12 with co-overexpressed BDH1 and BDH2 were decreased by 39.87, 33.42, and 46.71%, respectively. BDH2 was only responsible for converting diacetyl into acetoin, but not for the metabolic pathway of acetoin to 2,3-butanediol in S. uvarum. This study provided valuable insights into diacetyl reduction in wine.

  16. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  17. Relationship between HER-2 overexpression and brain metastasis in esophageal cancer patients

    PubMed Central

    Abu Hejleh, Taher; DeYoung, Barry R; Engelman, Eric; Deutsch, Jeremy M; Zimmerman, Bridget; Halfdanarson, Thorvardur R; Berg, Daniel J; Parekh, Kalpaj R; Lynch, William R; Iannettoni, Mark D; Bhatia, Sudershan; Clamon, Gerald

    2012-01-01

    AIM: To study if HER-2 overexpression by locally advanced esophageal cancers increase the chance of brain metastasis following esophagectomy. METHODS: We retrospectively reviewed the medical records of esophageal cancer patients who underwent esophagectomy at University of Iowa Hospitals and Clinics between 2000 and 2010. Data analyzed consisted of demographic and clinical variables. The brain metastasis tissue was assayed for HER-2 overexpression utilizing the FDA approved DAKO Hercept Test®. RESULTS: One hundred and forty two patients were reviewed. Median age was 64 years (36-86 years). Eighty eight patients (62%) received neoadjuvant chemoradiotherapy. Pathological complete and partial responses were achieved in 17 (19%) and 71 (81%) patients. Cancer relapsed in 43/142 (30%) patients. The brain was the first site of relapse in 9/43 patients (21%, 95% CI: 10%-36%). HER-2 immunohistochemistry testing of the brain metastasis tissue showed that 5/9 (56%) cases overexpressed HER-2 (3+ staining). CONCLUSION: HER-2 overexpression might be associated with increased risk of brain metastasis in esophageal cancer patients following esophagectomy. Further studies will be required to validate this observation. PMID:22645633

  18. Overexpression of Plastid Transketolase in Tobacco Results in a Thiamine Auxotrophic Phenotype[OPEN

    PubMed Central

    Khozaei, Mahdi; Fisk, Stuart; Lawson, Tracy; Gibon, Yves; Sulpice, Ronan; Stitt, Mark; Lefebvre, Stephane C.; Raines, Christine A.

    2015-01-01

    To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants. PMID:25670766

  19. Overexpression of SbMyb60 in sorghum bicolor impacts both primary and secondary metabolism

    USDA-ARS?s Scientific Manuscript database

    Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, overexpression of SbMyb60 in sorghum (Sorghum bicolor (L.) Moench) was shown to induce monolignol synthesis, which led to elevated lignin deposition and al...

  20. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    SciTech Connect

    Brizio, Carmen; Galluccio, Michele; Wait, Robin

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-stepmore » affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.« less

  1. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    NASA Astrophysics Data System (ADS)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  2. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

    PubMed

    da Silva Delabona, Priscila; Rodrigues, Gisele Nunes; Zubieta, Mariane Paludetti; Ramoni, Jonas; Codima, Carla Aloia; Lima, Deise Juliana; Farinas, Cristiane Sanchez; da Cruz Pradella, José Geraldo; Seiboth, Bernhard

    2017-03-20

    This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and β-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    PubMed

    Matrka, Marie C; Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F; Lane, Andrew N; Romick-Rosendale, Lindsey E; Wells, Susanne I

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  4. The overexpression of Rabl3 is associated with pathogenesis and clinicopathologic variables in hepatocellular carcinoma.

    PubMed

    Pan, Yuhang; Liu, Zhiyong; Feng, Zhiying; Hui, Dayang; Huang, Xiangqi; Tong, Dayue; Jin, Yi

    2017-04-01

    Overexpression of Rabl3 is associated with some malignancies. However, their relationship with hepatocellular carcinoma remains unclear. In this study, the expression of Rabl3 in hepatocellular carcinoma cell lines, and four pairs of matched hepatocellular carcinoma tissues and their adjacent normal hepatic tissues were detected by quantitative reverse transcription polymerase chain reaction and western blot. In addition, the protein expression of Rabl3 was examined in 162 cases of hepatocellular carcinoma by immunohistochemistry. Rabl3 in hepatocellular carcinoma cell lines was elevated at both messenger RNA and protein levels, and the Rabl3 protein was significantly upregulated by upto 3.3-fold in hepatocellular carcinoma compared with the paired normal hepatic tissues. Immunohistochemical analysis revealed that overexpressions of Rabl3 were 80.2% in hepatocellular carcinoma. Rabl3 is expressed at significantly higher rates in hepatocellular carcinoma compared with adjacent normal hepatic tissue (p < 0.01). Statistical analysis suggested the upregulation of Rabl3 was significantly associated with lymph node metastasis, tumor thrombus of the portal vein, and advanced clinical stage (p < 0.05). Furthermore, we found that overexpression of Rabl3 in hepatocellular carcinoma cells could significantly enhance cell proliferation and growth ability. Conversely, silencing Rabl3 by small hairpin RNA interference caused an inhibition of cell proliferation and growth. Our studies suggest that the Rabl3 is a valuable marker of hepatocellular carcinoma progression and that the overexpression of Rabl3 plays an important role in the development and pathogenesis of hepatocellular carcinoma.

  5. Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

    PubMed

    Tanami, Hideaki; Imoto, Issei; Hirasawa, Akira; Yuki, Yasuhiro; Sonoda, Itaru; Inoue, Jun; Yasui, Kohichiro; Misawa-Furihata, Akiko; Kawakami, Yutaka; Inazawa, Johji

    2004-11-18

    Comparative genomic hybridization (CGH) using 40 cell lines derived from malignant melanomas (MMs) revealed frequent amplification at 7q33-q34 containing BRAF gene, which often is mutated in MM. We found this gene to be amplified to a remarkable degree in the MM cell lines that exhibited high-level gains at 7q33-q34 in CGH. Among 40 cell lines, the eight lines that revealed neither BRAF nor NRAS mutations showed even higher levels of BRAF mRNA expression than the 32 mutated lines, although DNA amplification at 7q33-q34 was not detected in every lines overexpressing BRAF. MM cells that carried wild-type BRAF and NRAS showed constitutive overexpression of B-Raf protein and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), even after serum starvation. Not only downregulation of the endogenously overexpressed wild-type B-Raf by antisense oligonucleotide but also a treatment with an inhibitor of mitogen-activated protein kinase kinase (MAPKK, MEK) reduced phosphorylated ERK1/2 and cell growth, whereas the exogenously expressed wild-type B-Raf promoted cell growth in MM cells. Our results provide the evidence that overexpression of wild-type B-Raf, in part but not always as a result of gene amplification, is one of the mechanisms underlying constitutive activation of the MAPK pathway that stimulates growth of MM cells.

  6. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    PubMed Central

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  7. Striatal Pleiotrophin Overexpression Provides Functional and Morphological Neuroprotection in the 6-Hydroxydopamine Model

    PubMed Central

    Gombash, Sara E; Lipton, Jack W; Collier, Timothy J; Madhavan, Lalitha; Steece-Collier, Kathy; Cole-Strauss, Allyson; Terpstra, Brian T; Spieles-Engemann, Anne L; Daley, Brian F; Wohlgenant, Susan L; Thompson, Valerie B; Manfredsson, Fredric P; Mandel, Ronald J; Sortwell, Caryl E

    2012-01-01

    Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult. PMID:22008908

  8. Transcriptomic and field evaluation of apple trees overexpressing a peach CBF gene

    USDA-ARS?s Scientific Manuscript database

    The role of CBF genes in cold response and acclimation has been well documented in both herbaceous and woody plants. Our initial research demonstrated that overexpression of a peach CBF gene (PpCBF1) in ‘M.26’ apple increases freezing tolerance of non-acclimated plants and unexpectedly also results...

  9. Overexpression of neuropeptide Y in the dorsomedial hypothalamus causes hyperphagia and obesity in rats.

    PubMed

    Zheng, Fenping; Kim, Yonwook J; Chao, Pei-Ting; Bi, Sheng

    2013-06-01

    We sought to determine a role for NPY overexpression in the dorsomedial hypothalamus (DMH) in obesity etiology using the rat model of adeno-associated virus (AAV)-mediated expression of NPY (AAVNPY) in the DMH. Rats received bilateral DMH injections of AAVNPY or control vector and were fed on regular chow. Five-week postviral injection, half the rats from each group were switched to access to a high-fat diet for another 11 weeks. We examined variables including body weight, food intake, energy efficiency, meal patterns, glucose tolerance, fat mass, plasma insulin, plasma leptin, and hypothalamic gene expression. Rats with DMH NPY overexpression had increased food intake and body weight and lowered metabolic efficiency. The hyperphagia was mediated through increased meal size during the dark. Although these rats had normal blood glucose, their plasma insulin levels were increased in both basal and glucose challenge conditions. While high-fat diet induced hyperphagia, obesity, and hyperinsulinemia, these effects were amplified in rats with DMH NPY overexpression. Arcuate Npy, agouti-related protein and proopiomelanocortin expression was appropriately regulated in response to positive energy balance. These results indicate that DMH NPY overexpression can cause hyperphagia and obesity and DMH NPY may have actions in glucose homeostasis. Copyright © 2013 The Obesity Society.

  10. Effects of camptothecin or TOP1 overexpression on genetic stability in Saccharomyces cerevisiae.

    PubMed

    Sloan, Roketa; Huang, Shar-Yin Naomi; Pommier, Yves; Jinks-Robertson, Sue

    2017-11-01

    Topoisomerase I (Top1) removes DNA torsional stress by nicking and resealing one strand of DNA, and is essential in higher eukaryotes. The enzyme is frequently overproduced in tumors and is the sole target of the chemotherapeutic drug camptothecin (CPT) and its clinical derivatives. CPT stabilizes the covalent Top1-DNA cleavage intermediate, which leads to toxic double-strand breaks (DSBs) when encountered by a replication fork. In the current study, we examined genetic instability associated with CPT treatment or with Top1 overexpression in the yeast Saccharomyces cerevisiae. Two types of instability were monitored: Top1-dependent deletions in haploid strains, which do not require processing into a DSB, and instability at the repetitive ribosomal DNA (rDNA) locus in diploid strains, which reflects DSB formation. Three 2-bp deletion hotspots were examined and mutations at each were elevated either when a wild-type strain was treated with CPT or when TOP1 was overexpressed, with the mutation frequency correlating with the level of TOP1 overexpression. Under both conditions, deletions at novel positions were enriched. rDNA stability was examined by measuring loss-of-heterozygosity and as was observed previously upon CPT treatment of a wild-type strain, Top1 overexpression destabilized rDNA. We conclude that too much, as well as too little of Top1 is detrimental to eukaryotic genomes, and that CPT has destabilizing effects that extend beyond those associated with DSB formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lipid Partitioning, Incomplete Fatty Acid Oxidation, and Insulin Signal Transduction in Primary Human Muscle Cells: Effects of Severe Obesity, Fatty Acid Incubation, and Fatty Acid Translocase/CD36 Overexpression

    PubMed Central

    Bell, Jill A.; Reed, Melissa A.; Consitt, Leslie A.; Martin, Ola J.; Haynie, Kimberly R.; Hulver, Matthew W.; Muoio, Deborah M.; Dohm, G. Lynis

    2010-01-01

    Context: Intracellular lipid partitioning toward storage and the incomplete oxidation of fatty acids (FA) have been linked to insulin resistance. Objective: To gain insight into how intracellular lipid metabolism is related to insulin signal transduction, we examined the effects of severe obesity, excess FA, and overexpression of the FA transporter, FA translocase (FAT)/CD36, in primary human skeletal myocytes. Design, Setting, and Patients: Insulin signal transduction, FA oxidation, and metabolism were measured in skeletal muscle cells harvested from lean and severely obese women. To emulate the obesity phenotype in our cell culture system, we incubated cells from lean individuals with excess FA or overexpressed FAT/CD36 using recombinant adenoviral technology. Results: Complete oxidation of FA was significantly reduced, whereas total lipid accumulation, FA esterification into lipid intermediates, and incomplete oxidation were up-regulated in the muscle cells of severely obese subjects. Insulin signal transduction was reduced in the muscle cells from severely obese subjects compared to lean controls. Incubation of muscle cells from lean subjects with lipids reduced insulin signal transduction and increased lipid storage and incomplete FA oxidation. CD36 overexpression increased FA transport capacity, but did not impair complete FA oxidation and insulin signal transduction in muscle cells from lean subjects. Conclusions: Cultured myocytes from severely obese women express perturbations in FA metabolism and insulin signaling reminiscent of those observed in vivo. The obesity phenotype can be recapitulated in muscle cells from lean subjects via exposure to excess lipid, but not by overexpressing the FAT/CD36 FA transporter. PMID:20427507

  12. Personality impairment in male pedophiles.

    PubMed

    Cohen, Lisa J; McGeoch, Pamela G; Watras-Gans, Sniezyna; Acker, Sara; Poznansky, Olga; Cullen, Ken; Itskovich, Yelena; Galynker, Igor

    2002-10-01

    Despite the large body of literature on the psychological sequelae of childhood sexual abuse, the literature on the psychopathology of pedophiles is surprisingly underdeveloped. The present article explores the hypothesis that pedophiles evidence deficits in interpersonal functioning (lack of assertiveness and empathy, passive-aggressiveness) and in self-concept, which might contribute to the motivation for pedophilic acts, as well as elevated sociopathy, impulsivity, and propensity for cognitive distortions, which might underlie the inhibitory failure. Twenty male heterosexual pedophiles (DSM-IV criteria) recruited from an outpatient clinic for sex offenders were compared with 24 demographically similar, healthy male controls using 3 personality instruments: the Millon Clinical Multiaxial Inventory-II, the Dimensional Assessment of Personality Impairment-Questionnaire, and the Temperament and Character Inventory. The data suggested that pedophiles have impaired interpersonal functioning, specifically, reduced assertiveness and elevated passive-aggressiveness, as well as impaired self-concept. Regarding disinhibitory traits, pedophiles demonstrated elevated sociopathy and propensity for cognitive distortions. Our data are consistent with previous reports of pathologic personality traits in pedophiles and lend support to a hypothesis that such pathology is related to both motivation for and failure to inhibit pedophilic behavior. Such information could potentially have important treatment implications.

  13. Pancreatic β-cell overexpression of the glucagon receptor gene results in enhanced β-cell function and mass

    PubMed Central

    Gelling, Richard W.; Vuguin, Patricia M.; Du, Xiu Quan; Cui, Lingguang; Rømer, John; Pederson, Raymond A.; Leiser, Margarita; Sørensen, Heidi; Holst, Jens J.; Fledelius, Christian; Johansen, Peter B.; Fleischer, Norman; McIntosh, Christopher H. S.; Nishimura, Erica; Charron, Maureen J.

    2009-01-01

    In addition to its primary role in regulating glucose production from the liver, glucagon has many other actions, reflected by the wide tissue distribution of the glucagon receptor (Gcgr). To investigate the role of glucagon in the regulation of insulin secretion and whole body glucose homeostasis in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic β-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin release in response to glucagon and glucose, the glucose excursion resulting from both a glucagon challenge and intraperitoneal glucose tolerance test (IPGTT) was significantly reduced in RIP-Gcgr mice compared with controls. However, RIP-Gcgr mice display similar glucose responses to an insulin challenge. β-Cell mass and pancreatic insulin content were also increased (20 and 50%, respectively) in RIP-Gcgr mice compared with controls. When fed a high-fat diet (HFD), both control and RIP-Gcgr mice developed similar degrees of obesity and insulin resistance. However, the severity of both fasting hyperglycemia and impaired glucose tolerance (IGT) were reduced in RIP-Gcgr mice compared with controls. Furthermore, the insulin response of RIP-Gcgr mice to an IPGTT was twice that of controls when fed the HFD. These data indicate that increased pancreatic β-cell expression of the Gcgr increased insulin secretion, pancreatic insulin content, β-cell mass, and, when mice were fed a HFD, partially protected against hyperglycemia and IGT. PMID:19602585

  14. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

    PubMed

    Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory

    2016-04-01

    Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH

  15. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast.

    PubMed

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Yamaoka, Masakazu

    2013-08-01

    Lipid production by Saccharomyces cerevisiae was improved by overexpression of the yeast diacylglycerol acyltransferase Dga1p lacking the N-terminal 29 amino acids (Dga1∆Np), which was previously found to be an active form in the ∆snf2 mutant. Overexpression of Dga1∆Np in the ∆snf2 mutant, however, did not increase lipid content as expected, which prompted us to search for a more suitable strain in which to study the role of Dga1∆Np in lipid accumulation. We found that the overexpression of Dga1∆Np in the ∆dga1 mutant effectively increased the lipid content up to about 45 % in the medium containing 10 % glucose. The high lipid content of the transformant was dependent on glucose concentration, nitrogen limitation, and active leucine biosynthesis. To better understand the effect of dga1 disruption on the ability of Dga1∆Np to stimulate lipid accumulation, the ∆dga1-1 mutant, in which the 3'-terminal 36 bp of the dga1 open reading frame (ORF) remained, and the ∆dga1-2 mutant, in which the 3'-terminal 36 bp were also deleted, were prepared with URA3 disruption cassettes. Surprisingly, the overexpression of Dga1∆Np in the ∆dga1-1 mutant had a lower lipid content than the original ∆dga1 mutant, whereas overexpression in the ∆dga1-2 mutant led to a high lipid content of about 45 %. These results indicated that deletion of the 3' terminal region of the dga1 ORF, rather than abrogation of genomic Dga1p expression, was crucial for the effect of Dga1∆Np on lipid accumulation. To investigate whether dga1 disruption affected gene expression adjacent to DGA1, we found that the overexpression of Esa1p together with Dga1∆Np in the ∆dga1 mutant reverted the lipid content to the level of the wild-type strain overexpressing Dga1∆Np. In addition, RT-qPCR analysis revealed that ESA1 mRNA expression in the ∆dga1 mutant was decreased compared to the wild-type strain at the early stages of culture, suggesting that lowered Esa1p expression is

  16. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker

    PubMed Central

    2013-01-01

    Background Diabetic cardiomyopathy (DCM) is defined as structural and functional changes in the myocardium due to metabolic and cellular abnormalities induced by diabetes mellitus (DM). The impact of prediabetic conditions on the cardiac tissue remains to be elucidated. The goal of this study was to elucidate whether cardiac dysfunction is already present in a state of prediabetes, in the presence of insulin resistance, and to unravel the underlying mechanisms, in a rat model without obesity and hypertension as confounding factors. Methods Two groups of 16-week-old Wistar rats were tested during a 9 week protocol: high sucrose (HSu) diet group (n = 7) – rats receiving 35% of sucrose in drinking water vs the vehicle control group (n = 7). The animal model was characterized in terms of body weight (BW) and the glycemic, insulinemic and lipidic profiles. The following parameters were assessed to evaluate possible early cardiac alterations and underlying mechanisms: blood pressure, heart rate, heart and left ventricle (LV) trophism indexes, as well as the serum and tissue protein and/or the mRNA expression of markers for fibrosis, hypertrophy, proliferation, apoptosis, angiogenesis, endothelial function, inflammation and oxidative stress. Results The HSu-treated rats presented normal fasting plasma glucose (FPG) but impaired glucose tolerance (IGT), accompanied by hyperinsulinemia and insulin resistance (P < 0.01), confirming this rat model as prediabetic. Furthermore, although hypertriglyceridemia (P < 0.05) was observed, obesity and hypertension were absent. Regarding the impact of the HSu diet on the cardiac tissue, our results indicated that 9 weeks of treatment might be associated with initial cardiac changes, as suggested by the increased LV weight/BW ratio (P < 0.01) and a remarkable brain natriuretic peptide (BNP) mRNA overexpression (P < 0.01), together with a marked trend for an upregulation of other important mediators of

  17. Evaluating the Visually Impaired: Neuropsychological Techniques.

    ERIC Educational Resources Information Center

    Price, J. R.; And Others

    1987-01-01

    Assessment of nonvisual neuropsychological impairments in visually impaired persons can be achieved through modification of existing intelligence, memory, sensory-motor, personality, language, and achievement tests so that they do not require vision or penalize visually impaired persons. The Halstead-Reitan and Luria-Nebraska neuropsychological…

  18. The Relationship between Visual Impairment and Gestures.

    ERIC Educational Resources Information Center

    Frame, Melissa J.

    2000-01-01

    A study found the gestural activity of 15 adolescents with visual impairments differed from that of 15 adolescents with sight. Subjects with visual impairments used more adapters (especially finger-to-hand gestures) and fewer conversational gestures. Differences in gestural activity by degree of visual impairment and grade in school were also…

  19. Mobile Device Impairment ... Similar Problems, Similar Solutions?

    ERIC Educational Resources Information Center

    Harper, Simon; Yesilada, Yeliz; Chen, Tianyi

    2011-01-01

    Previous studies have defined a new type of impairment in which an able-bodied user's behaviour is impaired by both the characteristics of a device and the environment in which it is used. This behavioural change is defined as a situationally-induced impairment and is often associated with small devices used in a mobile setting or constrained…

  20. Nature Trails for the Visually Impaired.

    ERIC Educational Resources Information Center

    Schwartz, Jonathan R.

    Many interpretive nature trails have been established for the visually impaired in recent years. The objectives of the investigation were to (a) identify what has been done in the past in the way of nature trail design for the visually impaired, (b) compare this with what professional workers for the visually impaired consider important in the…

  1. Communication Skills and Learning in Impaired Individuals

    ERIC Educational Resources Information Center

    Eliöz, Murat

    2016-01-01

    The purpose of this study is to compare the communication skills of individuals with different disabilities with athletes and sedentary people and to examine their learning abilities which influence the development of communication. A total of 159 male subjects 31 sedentary, 30 visually impaired, 27 hearing impaired, 40 physically impaired and 31…

  2. Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice

    PubMed Central

    Murphy, Kate T.; Ham, Daniel J.; Church, Jarrod E.; Naim, Timur; Trieu, Jennifer; Williams, David A.

    2012-01-01

    Abstract Sarcopenia is the progressive age-related loss of skeletal muscle mass associated with functional impairments that reduce mobility and quality of life. Overt muscle wasting with sarcopenia is usually preceded by a slowing of the rate of relaxation and a reduction in maximum force production. Parvalbumin (PV) is a cytosolic Ca2+ buffer thought to facilitate relaxation in muscle. We tested the hypothesis that restoration of PV levels in muscles of old mice would increase the magnitude and hasten relaxation of submaximal and maximal force responses. The tibialis anterior (TA) muscles of young (6 month), adult (13 month), and old (26 month) C57BL/6 mice received electroporation-assisted gene transfer of plasmid encoding PV or empty plasmid (pcDNA3.1). Contractile properties of TA muscles were assessed in situ 14 days after transfer. In old mice, muscles with increased PV expression had a 40% slower rate of tetanic force development (p<0.01), and maximum twitch and tetanic force were 22% and 16% lower than control values, respectively (p<0.05). Muscles with increased PV expression from old mice had an 18% lower maximum specific (normalized) force than controls, and absolute force was ∼26% lower at higher stimulation frequencies (150–300 Hz, p<0.05). In contrast, there was no effect of increased PV expression on TA muscle contractile properties in young and adult mice. The impairments in skeletal muscle function in old mice argue against PV overexpression as a therapeutic strategy for ameliorating aspects of contractile dysfunction with sarcopenia and help clarify directions for therapeutic interventions for age-related changes in skeletal muscle structure and function. PMID:22455364

  3. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    SciTech Connect

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E., E-mail: creekk@sccp.sc.edu

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistancemore » to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.« less

  4. Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth

    USDA-ARS?s Scientific Manuscript database

    In recent years, the scientific literature has become replete with examples of the improvement of abiotic stress tolerance by overexpression of specific genes. Few studies, however, have evaluated transgenic plants under field conditions or the impact of overexpression on non-target traits. We pre...

  5. TIMP3 Overexpression Improves the Sensitivity of Osteosarcoma to Cisplatin by Reducing IL-6 Production

    PubMed Central

    Han, Xiu-guo; Mo, Hui-min; Liu, Xu-qiang; Li, Yan; Du, Lin; Qiao, Han; Fan, Qi-ming; Zhao, Jie; Zhang, Shu-hong; Tang, Ting-ting

    2018-01-01

    Osteosarcoma is the most common bone cancer in children and adolescents. Tissue inhibitors of metalloproteinases (TIMPs)-3 inhibit matrix metalloproteinases to limit extracellular matrix degradation. Cisplatin is a widely used chemotherapeutic drug used to cure osteosarcoma. Interleukin (IL)-6 and TIMP3 play important roles in the drug resistance of osteosarcoma; however, their relationship in this process remains unclear. This study aimed to explore the role of TIMP3 in the cisplatin sensitivity of osteosarcoma and its underlying molecular mechanisms in vitro and in vivo. We compared TIMP3 expression levels between patients with cisplatin-sensitive and -insensitive osteosarcoma. TIMP3 was overexpressed or knocked down in the Saos2-lung cell line, which is a Saos2 subtype isolated from pulmonary metastases that has higher cisplatin chemoresistance than Saos2 cells. IL-6 expression, cell proliferation, sensitivity to cisplatin, migration, and invasion after TIMP3 overexpression or knockdown were determined. The same experiments were performed using MG63 and U2OS cells. Subsequently, luciferase-labeled Saos2-lung cells overexpressing TIMP3 were injected into the tibiae of nude mice treated with cisplatin. The results showed that IL-6 inhibited TIMP3 expression in Saos2 and Saos2-lung cells via signal transducer and activator of transcription 3 (STAT3) activation. STAT3 knockdown reversed the effect of IL-6. The expression of TIMP3 was higher in patients with cisplatin-sensitive osteosarcoma than in those with insensitive osteosarcoma. IL-6 expression was downregulated upon TIMP3 overexpression, and upregulated by TIMP3 knockdown. TIMP3 overexpression suppressed cell proliferation and enhanced cisplatin sensitivity by activating apoptosis-related signal pathways and inhibiting IL-6 expression in vitro and in vivo. In conclusion, cisplatin sensitivity correlated positively with TIMP3 expression, which is regulated by the IL-6/TIMP3/caspase pathway. The TIMP3 pathway

  6. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma.

    PubMed

    Gopalan, Vinod; Islam, Farhadul; Pillai, Suja; Tang, Johnny Cheuk-On; Tong, Daniel King-Hung; Law, Simon; Chan, Kwok-Wah; Lam, Alfred King-Yin

    2016-11-01

    This study aims to examine the expression profiles miR-1288 in oesophageal squamous cell carcinoma (ESCC). The cellular implications and target interactions of ESCC cells following miR-1288 overexpression was also examined. In total, 120 oesophageal tissues (90 primary ESCCs and 30 non-neoplastic tissues) were recruited for miR-1288 expression analysis using qRT-PCR. An exogenous miR-1288 mimic and its inhibitor were used to explore the in-vitro effects of miR-1288 on ESCC cells by performing cell proliferation, colony formation, cell invasion and migration assays. Localisation and modulatory changes of various miR-1288 regulated proteins such as FOXO1, p53, TAB3, BCL2 and kRAS was examined using immunofluorescence and western blot. Overexpression of miR-1288 was more often noted in ESCC tissues when compared to non-neoplastic oesophageal tissues. High expression was often noted in high grade carcinomas and with metastases. Patients with high levels of miR-1288 expression showed a slightly better survival compared to patients with low miR-1288 levels. Furthermore, overexpression of miR-1288 showed increased cell proliferation and colony formation, improved cell migration and enhanced cell invasion properties in ESCC cells. In addition, miR-1288 overexpression in ESCC cells showed repression of cytoplasmic tumour suppressor FOXO1 protein expression. Inversely, inhibition of miR-1288 expression exhibited remarkable upregulation of FOXO1 protein, while expressions of other tested proteins remain unchanged. Up regulation of miR-1288 expression in ESCC tissues and miR-1288 induced oncogenic features of ESCC cells in-vitro indicates the oncogenic roles of miR-1288 in ESCCs. Overexpression of miR-1288 play a key role in the pathogenesis of ESCCs and its modulation may have potential therapeutic value in patients with ESCC. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ

    PubMed Central

    Gardner, Brandon B.; Gao, Quan Q.; Hadhazy, Michele; Vo, Andy H.; Wren, Lisa; Molkentin, Jeffery D.; McNally, Elizabeth M.

    2016-01-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  8. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ.

    PubMed

    Lamar, Kay-Marie; Bogdanovich, Sasha; Gardner, Brandon B; Gao, Quan Q; Miller, Tamari; Earley, Judy U; Hadhazy, Michele; Vo, Andy H; Wren, Lisa; Molkentin, Jeffery D; McNally, Elizabeth M

    2016-05-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.

  9. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase.

    PubMed

    Zhang, Gui-Yun; Liu, Ru-Ru; Xu, Geng; Zhang, Peng; Li, Yin; Tang, Ke-Xuan; Liang, Guo-Hua; Liu, Qiao-Quan

    2013-02-01

    Vitamin E comprises a group of eight lipid soluble antioxidant compounds that are an essential part of the human diet. The α-isomers of both tocopherol and tocotrienol are generally considered to have the highest antioxidant activities. γ-tocopherol methyltransferase (γ-TMT) catalyzes the final step in vitamin E biosynthesis, the methylation of γ- and δ-isomers to α- and β-isomers. In present study, the Arabidopsis γ-TMT (AtTMT) cDNA was overexpressed constitutively or in the endosperm of the elite japonica rice cultivar Wuyujing 3 (WY3) by Agrobacterium-mediated transformation. HPLC analysis showed that, in brown rice of the wild type or transgenic controls with empty vector, the α-/γ-tocotrienol ratio was only 0.7, much lower than that for tocopherol (~19.0). In transgenic rice overexpressing AtTMT driven by the constitutive Ubi promoter, most of the γ-isomers were converted to α-isomers, especially the γ- and δ-tocotrienol levels were dramatically decreased. As a result, the α-tocotrienol content was greatly increased in the transgenic seeds. Similarly, over-expression of AtTMT in the endosperm also resulted in an increase in the α-tocotrienol content. The results showed that the α-/γ-tocopherol ratio also increased in the transgenic seeds, but there was no significant effect on α-tocopherol level, which may reflect the fact that γ-tocopherol is present in very small amounts in wild type rice seeds. AtTMT overexpression had no effect on the absolute total content of either tocopherols or tocotrienols. Taken together, these results are the first demonstration that the overexpression of a foreign γ-TMT significantly shift the tocotrienol synthesis in rice, which is one of the world's most important food crops.

  10. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    SciTech Connect

    Takabe, Piia, E-mail: piia.takabe@uef.fi; Bart, Geneviève; Ropponen, Antti

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanomamore » cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.« less

  11. Gene therapy mediated seizure suppression in Genetic Generalised Epilepsy: Neuropeptide Y overexpression in a rat model.

    PubMed

    Powell, Kim L; Fitzgerald, Xavier; Shallue, Claire; Jovanovska, Valentina; Klugmann, Matthias; Von Jonquieres, Georg; O'Brien, Terence J; Morris, Margaret J

    2018-05-01

    Neuropeptide Y (NPY) is an important 36 amino acid peptide that is abundantly expressed in the mammalian CNS and is known to be an endogenous modulator of seizure activity, including in rat models of Genetic Generalised Epilepsy (GGE) with absence seizures. Studies have shown that viral-mediated "gene therapy" with overexpression of NPY in the hippocampus can suppress seizures in acquired epilepsy animal models. This study investigated whether NPY gene delivery to the thalamus or somatosensory cortex, using recombinant adeno-associated viral vector (rAAV), could produce sustained seizure suppression in the GAERS model of GGE with absence seizures. Three cohorts of GAERS were injected bilaterally into the thalamus (short term n = 14 and long term n = 8) or the somatosensory cortex (n = 26) with rAAV-NPY or rAAV-empty. EEG recordings were acquired weekly post-treatment and seizure expression was quantified. Anxiety levels were tested using elevated plus maze and open field test. NPY and NPY receptor mRNA and protein expression were evaluated using quantitative PCR, immunohistochemistry and immunofluorescence. Viral overexpression of human NPY in the thalamus and somatosensory cortex in GAERS significantly reduced the time spent in seizure activity and number of seizures, whereas seizure duration was only reduced after thalamic NPY overexpression. Human and rat NPY and rat Y2 receptor mRNA expression was significantly increased in the somatosensory cortex. NPY overexpression in the thalamus was observed in rAAV-NPY treated rats compared to controls in the long term cohort. No effect was observed on anxiety behaviour. We conclude that virally-mediated human NPY overexpression in the thalamus or somatosensory cortex produces sustained anti-epileptic effects in GAERS. NPY gene therapy may represent a novel approach for the treatment of patients with genetic generalised epilepsies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The relationship between cisplatin resistance and histone deacetylase isoform overexpression in epithelial ovarian cancer cell lines

    PubMed Central

    Kim, Min-Gyun; Pak, Jhang Ho; Choi, Won Ho; Park, Jeong-Yeol; Nam, Joo-Hyun

    2012-01-01

    Objective To investigate the relationship between cisplatin resistance and histone deacetylase (HDAC) isoform overexpression in ovarian cancer cell lines. Methods Expression of four HDAC isoforms (HDAC 1, 2, 3, and 4) in two ovarian cancer cell lines, SKOV3 and OVCAR3, exposed to various concentrations of cisplatin was examined by western blot analyses. Cells were transfected with plasmid DNA of each HDAC. The overexpression of protein and mRNA of each HDAC was confirmed by western blot and reverse transcriptase-polymerase chain reaction analyses, respectively. The cell viability of the SKOV3 and OVCAR3 cells transfected with HDAC plasmid DNA was measured using the cell counting kit-8 assay after treatment with cisplatin. Results The 50% inhibitory concentration of the SKOV3 and OVCAR3 cells can be determined 15-24 hours after treatment with 15 µg/mL cisplatin. The expression level of acetylated histone 3 protein in SKOV3 cells increased after exposure to cisplatin. Compared with control cells at 24 hours after cisplatin exposure, the viability of SKOV3 cells overexpressing HDAC 1 and 3 increased by 15% and 13% (p<0.05), respectively. On the other hand, OVCAR3 cells that overexpressed HDAC 2 and 4 exhibited increased cell viability by 23% and 20% (p<0.05), respectively, compared with control cells 24 hours after exposure to cisplatin. Conclusion In SKOV3 and OVCAR3 epithelial ovarian cancer cell lines, the correlation between HDAC overexpression and cisplatin resistance was confirmed. However, the specific HDAC isoform associated with resistance to cisplatin varied depending on the ovarian cancer cell line. These results may suggest that each HDAC isoform conveys cisplatin resistance via different mechanisms. PMID:22808361

  13. [Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum].

    PubMed

    Zheng, Yueliang; Cao, Shuang; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2014-12-04

    To study the regulation of laeA overexpression on mevastatin production and sporulation in Penicillium citrinum. We cloned the laeA gene from Penicillium citrinum and constructed the vector pGiHTGi-laeA. The plasmid pGiHTGi-laeA was transformed in Penicillium citrinum by agrobacterium tumefaciens-mediated transformation. Positive transformants were detected by cloning the hygromycin gene. The mevastatin production of the wild type and OE:: laeA was compared by HPLC. The conidia number was counted by blood counting chamber. The biosynthetic gene cluster expression quantity of mevastatin in the wild type and OE: :laeA were analyzed by qRT-PCR. We constructed the plasmid pGiHTGi-laeA, and screened the positive transformants that overexpress the laeA in Penicillium citrinum. With the overexpression of laeA, the mevastatin production was increased from (0.69 ± 0.12) mg/g to (4.02 ± 0.50) mg/g dry cell weight. Compared to the wild type strain, the laeA expression quantity in the OE :: laeA strain increased 29%, and the mlcB expression increased 72%, the mlcR expression increased 153%. Moreover, the overexpression of laeA would decrease the conidia number. Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum, with increases expression of pathway-regulator mlcR, and biosynthetic gene MlcR. These results could guide global regulatory mechanism of mevastatin biosynthesis and the exploitation of high-production strain.

  14. The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Arnold, Robyn E; Weigent, Douglas A

    2003-05-01

    A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.

  15. PTEN-mediated ERK1/2 inhibition and paradoxical cellular proliferation following Pnck overexpression

    PubMed Central

    Deb, Tushar B; Barndt, Robert J; Zuo, Annie H; Sengupta, Surojeet; Coticchia, Christine M; Johnson, Michael D

    2014-01-01

    Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK 1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed. PMID:24552815

  16. Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation

    PubMed Central

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2014-01-01

    Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058

  17. t-Darpp overexpression in HER2-positive breast cancer confers a survival advantage in lapatinib.

    PubMed

    Christenson, Jessica L; Denny, Erin C; Kane, Susan E

    2015-10-20

    Drug resistance is a major barrier to successful cancer treatment. For patients with HER2-positive breast cancer who initially respond to therapy, the majority develop resistance within one year of treatment. Patient outcomes could improve significantly if we can find and exploit common mechanisms of acquired resistance to different targeted therapies. Overexpression of t-Darpp, a truncated form of the dual kinase/phosphatase inhibitor Darpp-32, has been linked to acquired resistance to trastuzumab, a front-line therapy for HER2-positive breast cancer. Darpp-32 reverses t-Darpp's effect on trastuzumab resistance. In this study, we examined whether t-Darpp could be involved in resistance to lapatinib, another HER2-targeted therapeutic. Lapatinib-resistant SKBR3 cells (SK/LapR) showed a marked change in the Darpp-32:t-Darpp ratio toward a predominance of t-Darpp. Overexpression of t-Darpp alone was not sufficient to confer lapatinib resistance, but cells that overexpress t-Darpp partially mimicked the molecular resistance phenotype observed in SK/LapR cells exposed to lapatinib. SK/LapR cells failed to down-regulate Survivin and failed to induce BIM accumulation in response to lapatinib; cells overexpressing t-Darpp exhibited only the failed BIM accumulation. t-Darpp knock-down reversed this phenotype. Using a fluorescence-based co-culture system, we found that cells overexpressing t-Darpp formed colonies in lapatinib within 3-4 weeks, whereas parental cells in the same co-culture did not. Overall, t-Darpp appears to mediate a survival advantage in lapatinib, possibly linked to failed lapatinib-induced BIM accumulation. t-Darpp might also be relevant to acquired resistance to other cancer drugs that rely on BIM accumulation to induce apoptosis.

  18. Overexpression of IRM1 Enhances Resistance to Aphids in Arabidopsis thaliana

    PubMed Central

    Chen, Xi; Zhang, Zhao; Visser, Richard G. F.; Broekgaarden, Colette; Vosman, Ben

    2013-01-01

    Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth. PMID:23951039

  19. Overexpression of Cullin7 is associated with hepatocellular carcinoma progression and pathogenesis.

    PubMed

    An, Jun; Zhang, Zhigang; Liu, Zhiyong; Wang, Ruizhi; Hui, Dayang; Jin, Yi

    2017-12-06

    Overexpression of Cullin7 is associated with some types of malignancies. However, the part of Cullin7 in hepatocellular carcinoma remains unclear. The aim of this study was to investigate the role of Cullin7 in pathogenesis and the progression of hepatocellular carcinoma. In the present study, the expression of Cullin7 in hepatocellular carcinoma cell lines and five surgical hepatocellular carcinoma specimens was detected with quantitative reverse transcription PCR and western blotting. In addition, the protein expression of Cullin7 was examined in 162 cases of archived hepatocellular carcinoma using immunohistochemistry. We found elevated expression of both mRNA and protein levels of Cullin7 in hepatocellular carcinoma cell lines, and Cullin7 protein was significantly upregulated in hepatocellular carcinoma compared with paired normal hepatic tissues. The immunohistochemistry analysis revealed that overexpression of Cullin7 occurred in 69.1% of hepatocellular carcinoma samples, which was a significantly higher rate than that in adjacent normal hepatic tissue (P < 0.01). Statistical analysis found that overexpression of Cullin7 was significantly associated with lymph node metastasis, tumor thrombus of the portal vein and advanced clinical stage (P < 0.05). Furthermore, by overexpressing Cullin7 in hepatocellular carcinoma HepG2 cells, we revealed that Cullin7 could significantly enhance cell proliferation, growth, migration and invasion. Conversely, knocking down Cullin7 expression with short hairpin RNAi in hepatocellular carcinoma HepG2 cells inhibited cell proliferation, growth, migration and invasion. Our studies provide evidence that overexpression of Cullin7 plays an important role in the pathogenesis and progression of hepatocellular carcinoma and may be a valuable marker for hepatocellular carcinoma management.

  20. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.

    PubMed

    Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B

    2017-01-01

    Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

  1. Overexpression of a novel cell cycle regulator ecdysoneless in breast cancer: a marker of poor prognosis in HER2/neu-overexpressing breast cancer patients.

    PubMed

    Zhao, Xiangshan; Mirza, Sameer; Alshareeda, Alaa; Zhang, Ying; Gurumurthy, Channabasavaiah Basavaraju; Bele, Aditya; Kim, Jun Hyun; Mohibi, Shakur; Goswami, Monica; Lele, Subodh M; West, William; Qiu, Fang; Ellis, Ian O; Rakha, Emad A; Green, Andrew R; Band, Hamid; Band, Vimla

    2012-07-01

    Uncontrolled proliferation is one of the hallmarks of breast cancer. We have previously identified the human Ecd protein (human ortholog of Drosophila Ecdysoneless, hereafter called Ecd) as a novel promoter of mammalian cell cycle progression, a function related to its ability to remove the repressive effects of Rb-family tumor suppressors on E2F transcription factors. Given the frequent dysregulation of cell cycle regulatory components in human cancer, we used immunohistochemistry of paraffin-embedded tissues to examine Ecd expression in normal breast tissue versus tissues representing increasing breast cancer progression. Initial studies of a smaller cohort without outcomes information showed that Ecd expression was barely detectable in normal breast tissue and in hyperplasia of breast, but high levels of Ecd were detected in benign breast hyperplasia, ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDCs) of the breast. In this cohort of 104 IDC patients, Ecd expression levels showed a positive correlation with higher grade (P=0.04). Further analyses of Ecd expression using a larger, independent cohort (954) confirmed these results, with a strong positive correlation of elevated Ecd expression with higher histological grade (P=0.013), mitotic index (P=0.032), and Nottingham Prognostic Index score (P=0.014). Ecd expression was positively associated with HER2/neu (P=0.002) overexpression, a known marker of poor prognosis in breast cancer. Significantly, increased Ecd expression showed a strong positive association with shorter breast cancer specific survival (BCSS) (P=0.008) and disease-free survival (DFS) (P=0.003) in HER2/neu overexpressing patients. Taken together, our results reveal Ecd as a novel marker for breast cancer progression and show that levels of Ecd expression predict poorer survival in Her2/neu overexpressing breast cancer patients.

  2. Reporting by Physicians of Impaired Drivers and Potentially Impaired Drivers

    PubMed Central

    Berger, Jeffrey T; Rosner, Fred; Kark, Pieter; Bennett, Allen J

    2000-01-01

    Physicians routinely care for patients whose ability to operate a motor vehicle is compromised by a physical or cognitive condition. Physician management of this health information has ethical and legal implications. These concerns have been insufficiently addressed by professional organizations and public agencies. The legal status in the United States and Canada of reporting of impaired drivers is reviewed. The American Medical Association's position is detailed. Finally, the Bioethics Committee of the Medical Society of the State of New York proposes elements for an ethically defensible public response to this problem. PMID:11029682

  3. 20 CFR 416.998 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false If you become disabled by another impairment... INCOME FOR THE AGED, BLIND, AND DISABLED Determining Disability and Blindness Continuing Or Stopping Disability Or Blindness § 416.998 If you become disabled by another impairment(s). If a new severe impairment...

  4. 20 CFR 416.998 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false If you become disabled by another impairment... INCOME FOR THE AGED, BLIND, AND DISABLED Determining Disability and Blindness Continuing Or Stopping Disability Or Blindness § 416.998 If you become disabled by another impairment(s). If a new severe impairment...

  5. 20 CFR 416.998 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false If you become disabled by another impairment... INCOME FOR THE AGED, BLIND, AND DISABLED Determining Disability and Blindness Continuing Or Stopping Disability Or Blindness § 416.998 If you become disabled by another impairment(s). If a new severe impairment...

  6. 20 CFR 416.998 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false If you become disabled by another impairment... INCOME FOR THE AGED, BLIND, AND DISABLED Determining Disability and Blindness Continuing Or Stopping Disability Or Blindness § 416.998 If you become disabled by another impairment(s). If a new severe impairment...

  7. 20 CFR 416.998 - If you become disabled by another impairment(s).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false If you become disabled by another impairment... INCOME FOR THE AGED, BLIND, AND DISABLED Determining Disability and Blindness Continuing Or Stopping Disability Or Blindness § 416.998 If you become disabled by another impairment(s). If a new severe impairment...

  8. Manneristic behaviors of visually impaired children.

    PubMed

    Molloy, Alysha; Rowe, Fiona J

    2011-09-01

    To review the literature on visual impairment in children in order to determine which manneristic behaviors are associated with visual impairment, and to establish why these behaviors occur and whether severity of visual impairment influences these behaviors. A literature search utilizing PubMed, OVID, Google Scholar, and Web of Knowledge databases was performed. The University of Liverpool ( www.liv.ac.uk/orthoptics/research ) and local library facilities were also searched. The main manneristic or stereotypic behaviors associated with visual impairment are eye-manipulatory behaviors, such as eye poking and rocking. The degree of visual impairment influences the type of behavior exhibited by visually impaired children. Totally blind children are more likely to adopt body and head movements whereas sight-impaired children tend to adopt eye-manipulatory behaviors and rocking. The mannerisms exhibited most frequently are those that provide a specific stimulation to the child. Theories to explain these behaviors include behavioral, developmental, functional, and neurobiological approaches. Although the precise etiology of these behaviors is unknown, it is recognized that each of the theories is useful in providing some explanation of why certain behaviors may occur. The age at which the frequency of these behaviors decreases is associated with the child's increasing development, thus those visually impaired children with additional disabilities, whose development is impaired, are at an increased risk of developing and maintaining these behaviors. Certain manneristic behaviors of the visually impaired child may also help indicate the cause of visual impairment. There is a wide range of manneristic behaviors exhibited by visually impaired children. Some of these behaviors appear to be particularly associated with certain causes of visual impairment or severity of visual impairment, thus they may supply the practitioner with useful information. Further research into the

  9. Impaired angiogenesis in aminopeptidase N-null mice

    PubMed Central

    Rangel, Roberto; Sun, Yan; Guzman-Rojas, Liliana; Ozawa, Michael G.; Sun, Jessica; Giordano, Ricardo J.; Van Pelt, Carolyn S.; Tinkey, Peggy T.; Behringer, Richard R.; Sidman, Richard L.; Arap, Wadih; Pasqualini, Renata

    2007-01-01

    Aminopeptidase N (APN, CD13; EC 3.4.11.2) is a transmembrane metalloprotease with several functions, depending on the cell type and tissue environment. In tumor vasculature, APN is overexpressed in the endothelium and promotes angiogenesis. However, there have been no reports of in vivo inactivation of the APN gene to validate these findings. Here we evaluated, by targeted disruption of the APN gene, whether APN participates in blood vessel formation and function under normal conditions. Surprisingly, APN-null mice developed with no gross or histological abnormalities. Standard neurological, cardiovascular, metabolic, locomotor, and hematological studies revealed no alterations. Nonetheless, in oxygen-induced retinopathy experiments, APN-deficient mice had a marked and dose-dependent deficiency of the expected retinal neovascularization. Moreover, gelfoams embedded with growth factors failed to induce functional blood vessel formation in APN-null mice. These findings establish that APN-null mice develop normally without physiological alterations and can undergo physiological angiogenesis but show a severely impaired angiogenic response under pathological conditions. Finally, in addition to vascular biology research, APN-null mice may be useful reagents in other medical fields such as malignant, cardiovascular, immunological, or infectious diseases. PMID:17360568

  10. Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.

    PubMed

    Li, Zhiqiang; Huang, Lihua; Yu, Xiao; Yu, Can; Zhu, Hongwei; Li, Xia; Han, Duo; Huang, Hui

    2017-01-01

    The study aimed to explore the alteration of autophagy in rat pancreas treated with exenatide. Normal Sprague-Dawley rats and diabetes-model rats induced by 2-month high-sugar and high-fat diet and streptozotocin injection were subcutaneously injected with exenatide, respectively, for 10 weeks, with homologous rats treated with saline as control. Meanwhile, AR42J cells, pancreatic acinar cell line, were cultured with exenatide at doses of 5 pM for 3 days. The pancreas was disposed, and several sections were stained with hematoxylin-eosin. Immunohistochemistry was used to measure the expressions of glucagon-like peptide 1 receptor (GLP-1R) and cysteine-aspartic acid protease-3 in rat pancreas, and Western blot was used to test the expressions of GLP-1R, light chain 3B-I and -II, and p62 in rat pancreas and AR42J cells. The data were expressed as mean (standard deviation) and analyzed by unpaired Student's t-test. Exenatide can induce pathological changes in rat pancreas. The GLP-1R, p62, light chain 3B-II, and cysteine-aspartic acid protease-3 in rat pancreas and AR42J cells treated with exenatide were significantly overexpressed. Exenatide can activate and upregulate its receptor, GLP-1R, then impair autophagy flux and activate apoptosis in the pancreatic acinar cell, thus damaging rat pancreas.

  11. The Amyloid Precursor Protein (APP) Triplicated Gene Impairs Neuronal Precursor Differentiation and Neurite Development through Two Different Domains in the Ts65Dn Mouse Model for Down Syndrome*

    PubMed Central

    Trazzi, Stefania; Fuchs, Claudia; Valli, Emanuele; Perini, Giovanni; Bartesaghi, Renata; Ciani, Elisabetta

    2013-01-01

    Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS. PMID:23740250

  12. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    SciTech Connect

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effectmore » on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.« less

  13. Superoxide Dismutase 1 In Vivo Ameliorates Maternal Diabetes Mellitus-Induced Apoptosis and Heart Defects Through Restoration of Impaired Wnt Signaling.

    PubMed

    Wang, Fang; Fisher, Steven A; Zhong, Jianxiang; Wu, Yanqing; Yang, Peixin

    2015-10-01

    Oxidative stress is manifested in embryos exposed to maternal diabetes mellitus, yet specific mechanisms for diabetes mellitus-induced heart defects are not defined. Gene deletion of intermediates of Wingless-related integration (Wnt) signaling causes heart defects similar to those observed in embryos from diabetic pregnancies. We tested the hypothesis that diabetes mellitus-induced oxidative stress impairs Wnt signaling, thereby causing heart defects, and that these defects can be rescued by transgenic overexpression of the reactive oxygen species scavenger superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-overexpressing embryos from nondiabetic WT control dams and nondiabetic/diabetic WT female mice mated with SOD1 transgenic male mice were analyzed. No heart defects were observed in WT and SOD1 embryos under nondiabetic conditions. WT embryos of diabetic dams had a 26% incidence of cardiac outlet defects that were suppressed by SOD1 overexpression. Insulin treatment reduced blood glucose levels and heart defects. Diabetes mellitus increased superoxide production, canonical Wnt antagonist expression, caspase activation, and apoptosis and suppressed cell proliferation. Diabetes mellitus suppressed Wnt signaling intermediates and Wnt target gene expression in the embryonic heart, each of which were reversed by SOD1 overexpression. Hydrogen peroxide and peroxynitrite mimicked the inhibitory effect of high glucose on Wnt signaling, which was abolished by the SOD1 mimetic, tempol. The oxidative stress of diabetes mellitus impairs Wnt signaling and causes cardiac outlet defects that are rescued by SOD1 overexpression. This suggests that targeting of components of the Wnt5a signaling pathway may be a viable strategy for suppression of congenital heart defects in fetuses of diabetic pregnancies. © 2015 American Heart Association, Inc.

  14. Depression and academic impairment in college students.

    PubMed

    Heiligenstein, E; Guenther, G; Hsu, K; Herman, K

    1996-09-01

    Impairment from depression and its impact on productivity are of profound societal importance. We report the results of an evaluation of depression and academic impairment in university students, using standardized measures. Sixty-three students completed the Beck Depression Inventory and the work role section from the Social Adjustment Scale-Self Report. Academic impairment, manifested as missed time from class, decreased academic productivity, and significant interpersonal problems at school, was seen in 92% of the students. More severe depression was related to a higher level of impairment. At all levels of depression, affective impairment-inadequacy, distress, and disinterest in school-was more prevalent than was academic impairment. The risk of academic impairment became likely at only moderate-to-severe levels of depression. Discussing the implications of depression with students and aggressively pursuing both medication and nonmedication therapies are essential in preventing the high morbidity associated with untreated depression.

  15. Targeted overexpression of endothelial nitric oxide synthase in endothelial cells improves cerebrovascular reactivity in Ins2Akita-type-1 diabetic mice.

    PubMed

    Chandra, Saurav B; Mohan, Sumathy; Ford, Bridget M; Huang, Lei; Janardhanan, Preethi; Deo, Kaiwalya S; Cong, Linlin; Muir, Eric R; Duong, Timothy Q

    2016-06-01

    Reduced bioavailability of nitric oxide due to impaired endothelial nitric oxide synthase (eNOS) activity is a leading cause of endothelial dysfunction in diabetes. Enhancing eNOS activity in diabetes is a potential therapeutic target. This study investigated basal cerebral blood flow and cerebrovascular reactivity in wild-type mice, diabetic mice (Ins2(Akita+/-)), nondiabetic eNOS-overexpressing mice (TgeNOS), and the cross of two transgenic mice (TgeNOS-Ins2(Akita+/-)) at six months of age. The cross was aimed at improving eNOS expression in diabetic mice. The major findings were: (i) Body weights of Ins2(Akita+/-) and TgeNOS-Ins2(Akita+/-) were significantly different from wild-type and TgeNOS mice. Blood pressure of TgeNOS mice was lower than wild-type. (ii) Basal cerebral blood flow of the TgeNOS group was significantly higher than cerebral blood flow of the other three groups. (iii) The cerebrovascular reactivity in the Ins2(Akita+/-) mice was significantly lower compared with wild-type, whereas that in the TgeNOS-Ins2(Akita+/-) was significantly higher compared with the Ins2(Akita+/-) and TgeNOS groups. Overexpression of eNOS rescued cerebrovascular dysfunction in diabetic animals, resulting in improved cerebrovascular reactivity. These results underscore the possible role of eNOS in vascular dysfunction in the brain of diabetic mice and support the notion that enhancing eNOS activity in diabetes is a potential therapeutic target. © The Author(s) 2015.

  16. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    PubMed

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  17. Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S.

    PubMed

    Li, Xianting; Patel, Jyoti C; Wang, Jing; Avshalumov, Marat V; Nicholson, Charles; Buxbaum, Joseph D; Elder, Gregory A; Rice, Margaret E; Yue, Zhenyu

    2010-02-03

    PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.

  18. Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation.

    PubMed

    Vicente-Rodríguez, Marta; Rojo Gonzalez, Loreto; Gramage, Esther; Fernández-Calle, Rosalía; Chen, Ying; Pérez-García, Carmen; Ferrer-Alcón, Marcel; Uribarri, María; Bailey, Alexis; Herradón, Gonzalo

    2016-11-01

    It was previously shown that mice with genetic deletion of the neurotrophic factor pleiotrophin (PTN-/-) show enhanced amphetamine neurotoxicity and impair extinction of amphetamine conditioned place preference (CPP), suggesting a modulatory role of PTN in amphetamine neurotoxicity and reward. We have now studied the effects of amphetamine (10mg/kg, 4 times, every 2h) in the striatum of mice with transgenic PTN overexpression (PTN-Tg) in the brain and in wild type (WT) mice. Amphetamine caused an enhanced loss of striatal dopaminergic terminals, together with a highly significant aggravation of amphetamine-induced increase in the number of GFAP-positive astrocytes, in the striatum of PTN-Tg mice compared to WT mice. Given the known contribution of D1 and D2 dopamine receptors to the neurotoxic effects of amphetamine, we also performed quantitative receptor autoradiography of both receptors in the brains of PTN-Tg and WT mice. D1 and D2 receptors binding in the striatum and other regions of interest was not altered by genotype or treatment. Finally, we found that amphetamine CPP was significantly reduced in PTN-Tg mice. The data demonstrate that PTN overexpression in the brain blocks the conditioning effects of amphetamine and enhances the characteristic striatal dopaminergic denervation caused by this drug. These results indicate for the first time deleterious effects of PTN in vivo by mechanisms that are probably independent of changes in the expression of D1 and D2 dopamine receptors. The data also suggest that PTN-induced neuroinflammation could be involved in the enhanced neurotoxic effects of amphetamine in the striatum of PTN-Tg mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  19. Overexpression of RBM5 induces autophagy in human lung adenocarcinoma cells.

    PubMed

    Su, Zhenzhong; Wang, Ke; Li, Ranwei; Yin, Jinzhi; Hao, Yuqiu; Lv, Xuejiao; Li, Junyao; Zhao, Lijing; Du, Yanwei; Li, Ping; Zhang, Jie

    2016-02-29

    Dysfunctions in autophagy and apoptosis are closely interacted and play an important role in cancer development. RNA binding motif 5 (RBM5) is a tumor suppressor gene, which inhibits tumor cells' growth and enhances chemosensitivity through inducing apoptosis in our previous studies. In this study, we investigated the relationship between RBM5 overexpression and autophagy in human lung adenocarcinoma cells. Human lung adenocarcinoma cancer (A549) cells were cultured in vitro and were transiently transfected with a RBM5 expressing plasmid (GV287-RBM5) or plasmid with scrambled control sequence. RBM5 expression was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Intracellular LC-3 I/II, Beclin-1, lysosome associated membrane protein-1 (LAMP1), Bcl-2, and NF-κB/p65 protein levels were detected by Western blot. Chemical staining with monodansylcadaverine (MDC) and acridine orange (AO) was applied to detect acidic vesicular organelles (AVOs). The ultrastructure changes were observed under transmission electron microscope (TEM). Then, transplanted tumor models of A549 cells on BALB/c nude mice were established and treated with the recombinant plasmids carried by attenuated Salmonella to induce RBM5 overexpression in tumor tissues. RBM5, LC-3, LAMP1, and Beclin1 expression was determined by immunohistochemistry staining in plasmids-treated A549 xenografts. Our study demonstrated that overexpression of RBM5 caused an increase in the autophagy-related proteins including LC3-I, LC3-II, LC3-II/LC3-I ratio, Beclin1, and LAMP1 in A549 cells. A large number of autophagosomes with double-membrane structure and AVOs were detected in the cytoplasm of A549 cells transfected with GV287-RBM5 at 24 h. We observed that the protein level of NF-κB/P65 was increased and the protein level of Bcl-2 decreased by RBM5 overexpression. Furthermore, treatment with an autophagy inhibitor, 3-MA, enhanced RBM5-induced cell death and

  20. Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition

    PubMed Central

    Deniaud, Emmanuelle; Baguet, Joël; Chalard, Roxane; Blanquier, Bariza; Brinza, Lilia; Meunier, Julien; Michallet, Marie-Cécile; Laugraud, Aurélie; Ah-Soon, Claudette; Wierinckx, Anne; Castellazzi, Marc; Lachuer, Joël; Gautier, Christian

    2009-01-01

    Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1

  1. Genetic testing for hearing impairment.

    PubMed

    Topsakal, V; Van Camp, G; Van de Heyning, P

    2005-01-01

    For some patients, genetic testing can reveal the etiology of their hearing impairment, and can provide evidence for a medical diagnosis. However, a gap between fundamental genetic research on hereditary deafness and clinical otology emerges because of the steadily increasing number of discovered genes for hereditary hearing impairment (HHI) and the comparably low clinical differentiation of the HHIs. In an attempt to keep up with the scientific progress, this article enumerates the indications of genetic testing for HHI from a clinical point of view and describes the most frequently encountered HHIs in Belgium. Domains of recent scientific interest, molecular biological aspects, and some pitfalls with HHIs are highlighted. The overview comprises bilateral congenital hearing loss, late-onset progressive high frequency hearing loss, progressive bilateral cochleo-vestibular deficit, and progressive low frequency hearing loss. Also, several syndromal forms of HHI are summarized, and the availability of genetic tests mentioned. Finally, the requirements for successful linkage analysis, an important genetic research tool for localizing the potential genes of a trait on a chromosome, are briefly described.

  2. Reduced Mastication Impairs Memory Function.

    PubMed

    Fukushima-Nakayama, Y; Ono, Takehito; Hayashi, M; Inoue, M; Wake, H; Ono, Takashi; Nakashima, T

    2017-08-01

    Mastication is an indispensable oral function related to physical, mental, and social health throughout life. The elderly tend to have a masticatory dysfunction due to tooth loss and fragility in the masticatory muscles with aging, potentially resulting in impaired cognitive function. Masticatory stimulation has influence on the development of the central nervous system (CNS) as well as the growth of maxillofacial tissue in children. Although the relationship between mastication and cognitive function is potentially important in the growth period, the cellular and molecular mechanisms have not been sufficiently elucidated. Here, we show that the reduced mastication resulted in impaired spatial memory and learning function owing to the morphological change and decreased activity in the hippocampus. We used an in vivo model for reduced masticatory stimuli, in which juvenile mice were fed with powder diet and found that masticatory stimulation during the growth period positively regulated long-term spatial memory to promote cognitive function. The functional linkage between mastication and brain was validated by the decrease in neurons, neurogenesis, neuronal activity, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. These findings taken together provide in vivo evidence for a functional linkage between mastication and cognitive function in the growth period, suggesting a need for novel therapeutic strategies in masticatory function-related cognitive dysfunction.

  3. Ego depletion impairs implicit learning.

    PubMed

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  4. Empathy in schizophrenia: impaired resonance.

    PubMed

    Haker, Helene; Rössler, Wulf

    2009-09-01

    Resonance is the phenomenon of one person unconsciously mirroring the motor actions as basis of emotional expressions of another person. This shared representation serves as a basis for sharing physiological and emotional states of others and is an important component of empathy. Contagious laughing and contagious yawning are examples of resonance. In the interpersonal contact with individuals with schizophrenia we can often experience impaired empathic resonance. The aim of this study is to determine differences in empathic resonance-in terms of contagion by yawning and laughing-in individuals with schizophrenia and healthy controls in the context of psychopathology and social functioning. We presented video sequences of yawning, laughing or neutral faces to 43 schizophrenia outpatients and 45 sex- and age-matched healthy controls. Participants were video-taped during the stimulation and rated regarding contagion by yawning and laughing. In addition, we assessed self-rated empathic abilities (Interpersonal Reactivity Index), psychopathology (Positive and Negative Syndrome Scale in the schizophrenia group resp. Schizotypal Personality Questionnaire in the control group), social dysfunction (Social Dysfunction Index) and executive functions (Stroop, Fluency). Individuals with schizophrenia showed lower contagion rates for yawning and laughing. Self-rated empathic concern showed no group difference and did not correlate with contagion. Low rate of contagion by laughing correlated with the schizophrenia negative syndrome and with social dysfunction. We conclude that impaired resonance is a handicap for individuals with schizophrenia in social life. Blunted observable resonance does not necessarily reflect reduced subjective empathic concern.

  5. Sleep, Torpor and Memory Impairment

    NASA Astrophysics Data System (ADS)

    Palchykova, S.; Tobler, I.

    It is now well known that daily torpor induces a sleep deficit. Djungarian hamsters emerging from this hypometabolic state spend most of the time in sleep. This sleep is characterized by high initial values of EEG slow-wave activity (SWA) that monotonically decline during recovery sleep. These features resemble the changes seen in numerous species during recovery after prolonged wakefulness or sleep deprivation (SD). When hamsters are totally or partially sleep deprived immediately after emerging from torpor, an additional increase in SWA can be induced. It has been therefore postulated, that these slow- waves are homeostatically regulated, as predicted by the two-process model of sleep regulation, and that during daily torpor a sleep deficit is accumulated as it is during prolonged waking. The predominance of SWA in the frontal EEG observed both after SD and daily torpor provides further evidence for the similarity of these conditions. It has been shown in several animal and human studies that sleep can enhance memory consolidation, and that SD leads to memory impairment. Preliminary data obtained in the Djungarian hamster showed that both SD and daily torpor result in object recognition deficits. Thus, animals subjected to SD immediately after learning, or if they underwent an episode of daily torpor between learning and retention, displayed impaired recognition memory for complex object scenes. The investigation of daily torpor can reveal mechanisms that could have important implications for hypometabolic state induction in other mammalian species, including humans.

  6. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  7. Behavioral decline and premature lethality upon pan-neuronal ferritin overexpression in Drosophila infected with a virulent form of Wolbachia

    PubMed Central

    Kosmidis, Stylianos; Missirlis, Fanis; Botella, Jose A.; Schneuwly, Stephan; Rouault, Tracey A.; Skoulakis, Efthimios M. C.

    2014-01-01

    Iron is required for organismal growth. Therefore, limiting iron availability may be a key part of the host’s innate immune response to various pathogens, for example, in Drosophila infected with Zygomycetes. One way the host can transiently reduce iron bioavailability is by ferritin overexpression. To study the effects of neuronal-specific ferritin overexpression on survival and neurodegeneration we generated flies simultaneously over-expressing transgenes for both ferritin subunits in all neurons. We used two independent recombinant chromosomes bearing UAS-Fer1HCH, UAS-Fer2LCH transgenes and obtained qualitatively different levels of late-onset behavioral and lifespan declines. We subsequently discovered that one parental strain had been infected with a virulent form of the bacterial endosymbiont Wolbachia, causing widespread neuronal apoptosis and premature death. This phenotype was exacerbated by ferritin overexpression and was curable by antibiotic treatment. Neuronal ferritin overexpression in uninfected flies did not cause evident neurodegeneration but resulted in a late-onset behavioral decline, as previously reported for ferritin overexpression in glia. The results suggest that ferritin overexpression in the central nervous system of flies is tolerated well in young individuals with adverse manifestations appearing only late in life or under unrelated pathophysiological conditions. PMID:24772084

  8. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    PubMed

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Over-expression of phage HK022 Nun protein is toxic for Escherichia coli

    PubMed Central

    Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.

    2008-01-01

    The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198

  10. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    PubMed

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Overexpression of Mitochondrial Phosphate Transporter 3 Severely Hampers Plant Development through Regulating Mitochondrial Function in Arabidopsis.

    PubMed

    Jia, Fengjuan; Wan, Xiaomin; Zhu, Wei; Sun, Dan; Zheng, Chengchao; Liu, Pei; Huang, Jinguang

    2015-01-01

    Mitochondria are abundant and important organelles present in nearly all eukaryotic cells, which maintain metabolic communication with the cytosol through mitochondrial carriers. The mitochondrial membrane localized phosphate transporter (MPT) plays vital roles in diverse development and signaling processes, especially the ATP biosynthesis. Among the three MPT genes in Arabidopsis genome, AtMPT3 was proven to be a major member, and its overexpression gave rise to multiple developmental defects including curly leaves with deep color, dwarfed stature, and reduced fertility. Transcript profiles revealed that genes involved in plant metabolism, cellular redox homeostasis, alternative respiration pathway, and leaf and flower development were obviously altered in AtMPT3 overexpression (OEMPT3) plants. Moreover, OEMPT3 plants also accumulated higher ATP content, faster respiration rate and more reactive oxygen species (ROS) than wild type plants. Overall, our studies showed that AtMPT3 was indispensable for Arabidopsis normal growth and development, and provided new sights to investigate its possible regulation mechanisms.

  12. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats.

    PubMed

    Taravini, Irene Re; Chertoff, Mariela; Cafferata, Eduardo G; Courty, José; Murer, Mario G; Pitossi, Fernando J; Gershanik, Oscar S

    2011-06-07

    Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration.

  13. Over-expressed maltose transporters in laboratory and lager yeasts: localization and competition with endogenous transporters.

    PubMed

    Vidgren, Virve; Londesborough, John

    2018-05-31

    Plain and fluorescently tagged versions of Agt1, Mtt1 and Malx1 maltose transporters were over-expressed in two laboratory yeasts and one lager yeast. The plain and tagged versions of each transporter supported similar transport activities, indicating that they are similarly trafficked and have similar catalytic activities. When they were expressed under the control of the strong constitutive PGK1 promoter only minor proportions of the fluorescent transporters were associated with the plasma membrane, the rest being found in intracellular structures. Transport activity of each tagged transporter in each host was roughly proportional to the plasma membrane-associated fluorescence. All three transporters were subject to glucose-triggered inactivation when the medium glucose concentration was abruptly raised. Results also suggest competition between endogenous and over-expressed transporters for access to the plasma membrane. This article is protected by copyright. All rights reserved.

  14. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.

    PubMed

    Kumsta, Caroline; Hansen, Malene

    2017-06-03

    The cellular recycling process of macroautophagy/autophagy is an essential homeostatic system induced by various stresses, but it remains unclear how autophagy contributes to organismal stress resistance. In a recent study, we report that a mild and physiologically beneficial ("hormetic") heat shock as well as overexpression of the heat-shock responsive transcription factor HSF-1 systemically increases autophagy in C. elegans. Accordingly, we found HSF-1- and heat stress-inducible autophagy to be required for C. elegans thermoresistance and longevity. Moreover, a hormetic heat shock or HSF-1 overexpression alleviated PolyQ protein aggregation in an autophagy-dependent manner. Collectively, we demonstrate a critical role for autophagy in C. elegans stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1 regulated functions in the heat-shock response, proteostasis, and aging.

  15. Smad3 mutant mice develop colon cancer with overexpression of COX-2

    PubMed Central

    Zhu, Yu-Ping; Liu, Zhuo; Fu, Zhi-Xuan; Li, De-Chuan

    2017-01-01

    Colon cancer is the second most common cause of cancer-associated mortality in human populations. The aim of the present study was to identify the role of cyclooxygenase-2 (COX-2) in Smad3 mutant mice, which are known to develop colon cancer. Homozygous Smad3 (−/−) mutant mice were generated from inbred and hybrid Smad3 mouse strains by intercrossing the appropriate heterozygotes. Immunohistochemistry with COX-2 antibody was performed throughout this experiment and the data was validated and cross-checked with reverse transcription-polymerase chain reaction (RT-PCR). Homozygous mutant Smad3 mice were generated and the overexpression pattern of COX-2 was identified by immunohistochemistry and validated with RT-PCR. The results of the present study demonstrated a link between the Smad3 mutant mice, colon cancer and COX-2. In addition, the overexpression pattern of COX-2 in Smad3 mutant mice that develop colon cancer was identified. PMID:28454287

  16. Overexpression of 20-Oxidase Confers a Gibberellin-Overproduction Phenotype in Arabidopsis

    PubMed Central

    Huang, Shihshieh; Raman, Anuradha S.; Ream, Joel E.; Fujiwara, Hideji; Cerny, R. Eric; Brown, Sherri M.

    1998-01-01

    In the gibberellin (GA) biosynthesis pathway, 20-oxidase catalyzes the oxidation and elimination of carbon-20 to give rise to C19-GAs. All bioactive GAs are C19-GAs. We have overexpressed a cDNA encoding 20-oxidase isolated from Arabidopsis seedlings in transgenic Arabidopsis plants. These transgenic plants display a phenotype that may be attributed to the overproduction of GA. The phenotype includes a longer hypocotyl, lighter-green leaves, increased stem elongation, earlier flowering, and decreased seed dormancy. However, the fertility of the transgenic plants is not affected. Increased levels of endogenous GA1, GA9, and GA20 were detected in seedlings of the transgenic line examined. GA4, which is thought to be the predominantly active GA in Arabidopsis, was not present at increased levels in this line. These results suggest that the overexpression of this 20-oxidase increases the levels of some endogenous GAs in transgenic seedlings, which causes the GA-overproduction phenotype. PMID:9808721

  17. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1.

    PubMed

    Thurston, G; Suri, C; Smith, K; McClain, J; Sato, T N; Yancopoulos, G D; McDonald, D M

    1999-12-24

    Angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF) are endothelial cell-specific growth factors. Direct comparison of transgenic mice overexpressing these factors in the skin revealed that the VEGF-induced blood vessels were leaky, whereas those induced by Ang1 were nonleaky. Moreover, vessels in Ang1-overexpressing mice were resistant to leaks caused by inflammatory agents. Coexpression of Ang1 and VEGF had an additive effect on angiogenesis but resulted in leakage-resistant vessels typical of Ang1. Ang1 therefore may be useful for reducing microvascular leakage in diseases in which the leakage results from chronic inflammation or elevated VEGF and, in combination with VEGF, for promoting growth of nonleaky vessels.

  18. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: cellular localization, spatial expression and overexpression.

    PubMed

    Swer, Pynskhem Bok; Bhadoriya, Pooja; Saran, Shweta

    2014-03-01

    Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52 percent identity and 100 percent similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the beta-galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway.

  19. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats

    PubMed Central

    2011-01-01

    Background Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration. PMID:21649894

  20. Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy.

    PubMed

    Ling, Youguo; Zhang, Xiaojuan; Bai, Yuanyuan; Li, Ping; Wei, Congwen; Song, Ting; Zheng, Zirui; Guan, Kai; Zhang, Yanhong; Zhang, Buchang; Liu, Xuedong; Ma, Runlin Z; Cao, Cheng; Zhong, Hui; Xu, Quanbin

    2014-08-08

    The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. CENPI is overexpressed in colorectal cancer and regulates cell migration and invasion.

    PubMed

    Ding, Na; Li, Rongxin; Shi, Wenhao; He, Cui

    2018-06-21

    Centromere protein I (CENPI),an important member of centromere protein family, has been suggest to serve as a oncogene in breast cancer, but the clinical significance and biological function of CENPI in colorectal cancer (CRC) is still unclear. In our results, we found CENPI was overexpressed in CRC tissues and cells, and associated with clinical stage, tumor depth, lymph node metastasis, distant metastasis and differentiation in CRC patients. However, there was no significant association between CENPI protein expression and overall survival time in colon cancer patients and rectal cancer patients through analyzing TCGA survival data. Moreover, CENPI mRNA and protein were increased in metastatic lymph nodes compared with primary CRC tissues. Down-regulation of CENPI expression suppresses CRC cell migration, invasion and epithelial mesenchymal transition process. In conclusion, CENPI is overexpressed in CRC and functions as oncogene in modulating CRC cell migration, invasion and EMT process. Copyright © 2018. Published by Elsevier B.V.

  2. A canine model of Alzheimer's disease generated by overexpressing a mutated human amyloid precursor protein.

    PubMed

    Lee, Geun-Shik; Jeong, Yeon Woo; Kim, Joung Joo; Park, Sun Woo; Ko, Kyeong Hee; Kang, Mina; Kim, Yu Kyung; Jung, Eui-Man; Moon, Changjong; Hyun, Sang Hwan; Hwang, Kyu-Chan; Kim, Nam-Hyung; Shin, Taeyoung; Jeung, Eui-Bae; Hwang, Woo Suk

    2014-04-01

    Canines are considered the most authentic model for studying multifactorial human diseases, as these animals typically share a common environment with man. Somatic cell nuclear transfer (SCNT) technology along with genetic engineering of nuclear donor cells provides a unique opportunity for examining human diseases using transgenic canines. In the present study, we generated transgenic canines that overexpressed the human amyloid precursor protein (APP) gene containing well-characterized familial Alzheimer's disease (AD) mutations. We successfully obtained five out of six live puppies by SCNT. This was confirmed by observing the expression of green fluorescence protein in the body as a visual transgenic marker and the overexpression of the mutated APP gene in the brain. The transgenic canines developed AD-like symptoms, such as enlarged ventricles, an atrophied hippocampus, and β-amyloid plaques in the brain. Thus, the transgenic canines we created can serve as a novel animal model for studying human AD.

  3. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  5. Overexpression of the A-FABP gene facilitates intermuscular fat deposition in transgenic mice.

    PubMed

    Liu, Z W; Fan, H L; Liu, X F; Ding, X B; Wang, T; Sui, G N; Li, G P; Guo, H

    2015-03-31

    Adipocyte fatty acid-binding protein (A-FABP), the most abundant FABP in adipocytes, controls fatty acid uptake, transport, and metabolism in fat cells. We constructed a transgenic mice model that overexpressed the cattle A-FABP gene to investigate the relationship between A-FABP expression and intermuscular fat deposition. There was no significant difference in body weight and serum biochemical indexes between transgenic and wild-type mice. Further, there were no significant differences in intermuscular triglyceride content and A-FABP expression levels over three generations of transgenic mice. However, abdominal adipose rate, A-FABP protein content, and intermuscular triglyceride levels of transgenic mice were significantly higher than those of wild-type mice. In addition, triglycerides were remarkably higher in the skeletal muscle but lower in the myocardium of transgenic mice. Thus, overexpression of cattle A-FABP gene promoted fat deposition in the skeletal muscle of transgenic mice.

  6. Hearing Impairment, Mild Cognitive Impairment, and Dementia: A Meta-Analysis of Cohort Studies.

    PubMed

    Wei, Jingkai; Hu, Yirui; Zhang, Li; Hao, Qiang; Yang, Ruowei; Lu, Haidong; Zhang, Xuan; Chandrasekar, Eeshwar K

    2017-01-01

    To estimate a pooled association between hearing impairment and risk of mild cognitive impairment and dementia. PubMed, Embase, and Web of Science were searched for prospective cohort studies that examined the association between hearing impairment and risk of mild cognitive impairment and/or dementia. Random-effects models were fitted to estimate the summary risk ratios (RRs) and 95% confidence interval (CIs), which represents the pooled association between hearing impairment with risk of mild cognitive impairment and dementia, compared to subjects free of hearing impairment. Four studies on hearing impairment with mild cognitive impairment and 7 studies on hearing impairment with dementia were included in the meta-analysis. A total of 15,521 subjects were studied with follow-up periods between 2 and 16.8 years. Hearing impairment was associated with a greater risk of mild cognitive impairment (RR = 1.30, 95% CI: 1.12, 1.51) and dementia (RR = 2.39, 95% CI: 1.58, 3.61). The meta-analysis showed that hearing impairment is associated with a higher risk of mild cognitive impairment and dementia among older adults.

  7. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.

    PubMed Central

    el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.

    1997-01-01

    We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405

  8. CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells.

    PubMed

    Zhang, Danfeng; Wang, Chunhui; Li, Zhenxing; Li, Yiming; Dai, Dawei; Han, Kaiwei; Lv, Liquan; Lu, Yicheng; Hou, Lijun; Wang, Junyu

    2018-01-01

    The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue ( N  = 31), whereas the lowest expression was in high-grade glioma tissue ( N  = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.

  9. Targeted Overexpression of Mitochondrial Catalase Prevents Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Tran, Katherine K.; Chmielewski, Nicole N.; Craver, Brianna M.; Martirosian, Vahan; Morganti, Josh M.; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M.; Nelson, Gregory A.; Allen, Antiño R.

    2015-01-01

    Abstract Aims: Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Results: Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Innovation: Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Conclusion: Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain. Antioxid. Redox Signal. 22, 78–91. PMID:24949841

  10. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Tran, Katherine K; Chmielewski, Nicole N; Craver, Brianna M; Martirosian, Vahan; Morganti, Josh M; Rosi, Susanna; Vlkolinsky, Roman; Acharya, Munjal M; Nelson, Gregory A; Allen, Antiño R; Limoli, Charles L

    2015-01-01

    Radiation-induced disruption of mitochondrial function can elevate oxidative stress and contribute to the metabolic perturbations believed to compromise the functionality of the central nervous system. To clarify the role of mitochondrial oxidative stress in mediating the adverse effects of radiation in the brain, we analyzed transgenic (mitochondrial catalase [MCAT]) mice that overexpress human catalase localized to the mitochondria. Compared with wild-type (WT) controls, overexpression of the MCAT transgene significantly decreased cognitive dysfunction after proton irradiation. Significant improvements in behavioral performance found on novel object recognition and object recognition in place tasks were associated with a preservation of neuronal morphology. While the architecture of hippocampal CA1 neurons was significantly compromised in irradiated WT mice, the same neurons in MCAT mice did not exhibit extensive and significant radiation-induced reductions in dendritic complexity. Irradiated neurons from MCAT mice maintained dendritic branching and length compared with WT mice. Protected neuronal morphology in irradiated MCAT mice was also associated with a stabilization of radiation-induced variations in long-term potentiation. Stabilized synaptic activity in MCAT mice coincided with an altered composition of the synaptic AMPA receptor subunits GluR1/2. Our findings provide the first evidence that neurocognitive sequelae associated with radiation exposure can be reduced by overexpression of MCAT, operating through a mechanism involving the preservation of neuronal morphology. Our article documents the neuroprotective properties of reducing mitochondrial reactive oxygen species through the targeted overexpression of catalase and how this ameliorates the adverse effects of proton irradiation in the brain.

  11. Overexpression of bone sialoprotein leads to an uncoupling of bone formation and bone resorption in mice.

    PubMed

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-11-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.

  12. Overexpression of Bone Sialoprotein Leads to an Uncoupling of Bone Formation and Bone Resorption in Mice

    PubMed Central

    Valverde, Paloma; Zhang, Jin; Fix, Amanda; Zhu, Ji; Ma, Wenli; Tu, Qisheng; Chen, Jake

    2008-01-01

    The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV-BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT-PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP. PMID:18597627

  13. RIG-I overexpression decreases mortality of cigarette smoke exposed mice during influenza A virus infection.

    PubMed

    Wang, Xiaoqiu; Wu, Wenxin; Zhang, Wei; Leland Booth, J; Duggan, Elizabeth S; Tian, Lili; More, Sunil; Zhao, Yan D; Sawh, Ravindranauth N; Liu, Lin; Zou, Ming-Hui; Metcalf, Jordan P

    2017-09-02

    Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines which participate in clearing viral infections. Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. We generated a RIG-I transgenic (TG) mouse strain that expresses the RIG-I gene product under the control of the human lung specific surfactant protein C promoter. We compared the mortality and host immune responses of RIG-I TG mice and their litter-matched wild type (WT) mice following challenge with influenza A virus (IAV). RIG-I overexpression increased survival of IAV-infected mice. CS exposure increased mortality in WT mice infected with IAV. Remarkably, the effect of RIG-I overexpression on survival during IAV infection was enhanced in CS-exposed animals. CS-exposed IAV-infected WT mice had a suppressed innate response profile in the lung compared to sham-exposed IAV-infected WT mice in terms of the protein concentration, total cell count and inflammatory cell composition in the bronchoalveolar lavage fluid. RIG-I overexpression restored the innate immune response in CS-exposed mice to that seen in sham-exposed WT mice during IAV infection, and is likely responsible for enhanced survival in RIG-I TG mice as restoration preceded death of the animals. Our results demonstrate that RIG-I overexpression in mice is protective for CS enhanced susceptibility of smokers to influenza infection, and that CS mediated RIG-I suppression may be partially responsible for the increased morbidity and mortality of the mice exposed to IAV. Thus, optimizing the RIG-I response may be an important treatment strategy for CS-enhanced lung infections, particularly those due to IAV.

  14. Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma.

    PubMed

    Ogata, M; Naito, Z; Tanaka, S; Moriyama, Y; Asano, G

    2000-06-01

    In the present study we examined the localization and overexpression of heat shock proteins (hsps), mainly hsp90, in pancreatic carcinoma tissue compared with control tissue (including chronic pancreatitis and normal pancreas tissue), with the aid of immunohistochemical staining, in situ hybridization and reverse transcriptase polymerase chain reaction. Hsp90 alpha mRNA was overexpressed more highly in pancreatic carcinoma than in the control tissue. The proliferating-cell-nuclear-antigen labeling index was also high in pancreatic carcinoma tissue compared with the other tissue. These findings suggest that the overexpression of hsp90 alpha mRNA in carcinomas may be correlated with cell proliferation. However, hsp90 beta was constitutively overexpressed almost equally in all groups of pancreatic tissue including pancreatic carcinoma, chronic pancreatitis and normal pancreas tissue. Immunohistochemical staining demonstrated a differentiation in the expression of hsp90 between histological types of pancreatic carcinoma. These findings suggest that hsp90 alpha is involved in carcinogenesis and that hsp90 beta is correlated to structural conformation. Hsp90 alpha and hsp90 beta seem to perform different functions in tissue containing malignant cells. P53, MDM2 and WAF1, that were cell-cycle-related oncogene product were more strongly expressed in the nuclei of the cancer cells of the cancer tissue. Especially, MDM2 was more strongly expressed in mucinous carcinoma and the mucin secreting tissues surrounding pancreatic carcinoma tissue. The expression of MDM2 protein might also be correlated to secretion systems during structural conformation and be correlated to hsp90 beta.

  15. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.

    PubMed

    Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C

    2016-12-01

    Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.

  16. Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A

    2009-01-01

    In previous studies, we have shown that overexpression of growth hormone (GH) in cells of the immune system upregulates proteins involved in cell growth and protects from apoptosis. Here, we report that overexpression of GH in EL4 T lymphoma cells (GHo) also significantly increased levels of the inhibitor of differentiation-2 (Id2). The increase in Id2 was suggested in both Id2 promoter luciferase assays and by Western analysis for Id2 protein. To identify the regulatory elements that mediate transcriptional activation by GH in the Id2 promoter, promoter deletion analysis was performed. Deletion analysis revealed that transactivation involved a 301-132bp region upstream to the Id2 transcriptional start site. The pattern in the human GHo Jurkat T lymphoma cell line paralleled that found in the mouse GHo EL4 T lymphoma cell line. Significantly less Id2 was detected in the nucleus of GHo EL4 T lymphoma cells compared to vector alone controls. Although serum increased the levels of Id2 in control vector alone cells, no difference was found in the total levels of Id2 in GHo EL4 T lymphoma cells treated with or without serum. The increase in Id2 expression in GHo EL4 T lymphoma cells measured by Id2 promoter luciferase expression and Western blot analysis was blocked by the overexpression of a dominant-negative mutant of STAT5. The results suggest that in EL4 T lymphoma cells overexpressing GH, there is an upregulation of Id2 protein that appears to involve STAT protein activity.

  17. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    SciTech Connect

    Wu, Qipeng; Yao, Bei; Li, Ning

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosismore » of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.« less

  18. Overexpression of Tobacco GCN2 Stimulates Multiple Physiological Changes Associated With Stress Tolerance

    PubMed Central

    Li, Ning; Zhang, Song-jie; Zhao, Qi; Long, Yue; Guo, Hao; Jia, Hong-fang; Yang, Yong-xia; Zhang, Hong-ying; Ye, Xie-feng; Zhang, Song-tao

    2018-01-01

    General control non-derepressible-2 (GCN2) is a ubiquitous protein kinase that phosphorylates the α subunit of the eukaryotic initiation factor, eIF2, preventing the initiation of a new cycle of protein synthesis, subsequently reducing the global protein biosynthesis. GCN2 can also regulate the response of plants to biotic and abiotic stresses. In this study, two GCN2 homologs, NtGCN2-1 and NtGCN2-2, were cloned from Nicotiana tabacum, and were predicted to have been derived from their progenitors in N. tomentosiformis and N. sylvestris, respectively. The phosphorylation of NteIF2α could be activated by promoting the expression of NtGCN2 with plant hormones, including salicylic acid (SA), azelaic acid (AZA), methyl jasmonate (MeJA), and by imposition of different stresses (Bemisia tabaci infection, drought, and cold), indicating that NtGCN2 is involved in the response of plants to multiple biotic and abiotic stresses. We also observed that the overexpression of NtGCN2-1 significantly influenced different physiological processes. It promoted seed germination and root elongation. The content of total soluble sugars and reducing sugars were decreased, whereas those of chlorophyll a and b were increased in the GCN2 overexpressing plants. In addition, the overexpressing plants had lower content of reactive oxygen species and exhibited higher antioxidant activities. These physiological alterations could be attributed to the changes in the endogenous phytohormones, decrease in the SA and abscisic acid content, and accumulation of MeJA and AZA. It indicated that the overexpression of NtGCN2 in tobacco, stimulated the plant defense responses via phosphorylation of NteIF2α and regulation of plant hormones, and changes in the antioxidant ability and plant nutrient status. PMID:29910821

  19. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. Copyright © 2015 the

  20. COX-2 overexpression in resected pancreatic head adenocarcinomas correlates with favourable prognosis

    PubMed Central

    2014-01-01

    Background Overexpression of cyclooxygenase-2 (COX-2) has been implicated in oncogenesis and progression of adenocarcinomas of the pancreatic head. The data on the prognostic importance of COX expression in these tumours is inconsistent and conflicting. We evaluated how COX-2 overexpression affected overall postoperative survival in pancreatic head adenocarcinomas. Methods The study included 230 consecutive pancreatoduodenectomies for pancreatic cancer (PC, n = 92), ampullary cancer (AC, n = 62) and distal bile duct cancer (DBC, n = 76). COX-2 expression was assessed by immunohistochemistry. Associations between COX-2 expression and histopathologic variables including degree of differentiation, histopathologic type of differentiation (pancreatobiliary vs. intestinal) and lymph node ratio (LNR) were evaluated. Unadjusted and adjusted survival analysis was performed. Results COX-2 staining was positive in 71% of PC, 77% in AC and 72% in DBC. Irrespective of tumour origin, overall patient survival was more favourable in patients with COX-2 positive tumours than COX-2 negative (p = 0.043 in PC, p = 0.011 in AC, p = 0.06 in DBC). In tumours of pancreatobiliary type of histopathological differentiation, COX-2 expression did not significantly affect overall patient survival. In AC with intestinal differentiation COX-2 expression significantly predicted favourable survival (p = 0.003). In PC, COX-2 expression was significantly associated with high degree of differentiation (p = 0.002). COX-2 and LNR independently predicted good prognosis in a multivariate model. Conclusions COX-2 is overexpressed in pancreatic cancer, ampullary cancer and distal bile duct cancer and confers a survival benefit in all three cancer types. In pancreatic cancer, COX-2 overexpression is significantly associated with the degree of differentiation and independently predicts a favourable prognosis. PMID:24950702

  1. Impact of pr-10a overexpression on the cryopreservation success of Solanum tuberosum suspension cultures.

    PubMed

    Vaas, Lea A I; Marheine, Maja; Seufert, Stephanie; Schumacher, Heinz Martin; Kiesecker, Heiko; Heine-Dobbernack, Elke

    2012-06-01

    Although many genes are supposed to be a part of plant cell tolerance mechanisms against osmotic or salt stress, their influence on tolerance towards stress during cryopreservation procedures has rarely been investigated. For instance, the overexpression of the pathogenesis-related gene 10a (pr-10a) leads to improved osmotic tolerance in a transgenic cell culture of Solanum tuberosum cv. Désirée. In this study, a cryopreservation method, consisting of osmotic pretreatment, cryoprotection with DMSO and controlled-rate freezing, was used to characterize the relation between cryopreservation success and pr-10a expression in suspension cultures of S. tuberosum wild-type cells and cells overexpressing pathogenesis-related protein 10a (Pr-10a). By varying the sorbitol concentration, thus modifying the strength of the osmotic stress during the pretreatment phase, it can be shown that the wild type can successfully be cryopreserved only in a relatively narrow range of sorbitol concentrations, while the pr-10a overexpression leads to an enhanced cryopreservation success over the whole range of applied sorbitol concentrations. Together with transcription data we show that the pr-10a overexpression causes an enhanced osmotic tolerance, which in turn leads to enhanced cryopreservability, but also indicates a role of pr-10a in signal transduction. An increased cryopreservability of the transgenic cell line occurs for pretreatments longer than 24 h. Since both genotypes, characterized by distinct baseline levels of expression, exhibited similar patterns of expression induction, the induction of pr-10a appears to be a key step in the stress signal transduction of plant cells under osmotic stress.

  2. Disruption of Inhibitory Function in the Ts65Dn Mouse Hippocampus Through Overexpression of GIRK2

    DTIC Science & Technology

    2007-10-24

    are prominent (Galdzicki and Siarey, 2003). We found that GIRK2 mRNA and protein subunits are highly overexpressed in multiple CNS structures ... STRUCTURE GIRK channels are members of the large family of potassium inward rectifiers (Kir). The seven subfamilies of Kir channels (Kir1-7) differ as...This ability to discriminate against the smaller Na+ (atomic radius: 0.95 Å) was elucidated by examining the pore structure of the bacterial KcsA

  3. 64Cu-DOTA-trastuzumab PET Imaging in Women with HER2 Overexpressing Breast Cancer

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-1-0824 TITLE: 64Cu- DOTA -trastuzumab PET imaging in...September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 64Cu- DOTA -trastuzumab PET imaging in women with HER2 overexpressing breast cancer 5b...synthesized 64Cu- DOTA -trastuzumab and tested it in model systems. Relative to the 111In-labeled antibody, positron emission tomography (PET) with 64Cu

  4. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    SciTech Connect

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu; Department of Cell Biology, Harvard Medical School, Boston, MA 02115; Mahoney, Sarah Jane

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophicmore » inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.« less

  5. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    PubMed

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  6. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms

    PubMed Central

    Parastatidis, Ioannis; Weiss, Daiana; Joseph, Giji; Taylor, W Robert

    2013-01-01

    Objective Elevated levels of oxidative stress have been reported in abdominal aortic aneurysms (AAA), but which reactive oxygen species (ROS) promotes the development of AAA remains unclear. Here we investigate the effect of the hydrogen peroxide (H2O2) degrading enzyme catalase on the formation of AAA. Approach and Results AAA were induced with the application of calcium chloride (CaCl2) on mouse infrarenal aortas. The administration of PEG-catalase, but not saline, attenuated the loss of tunica media and protected against AAA formation (0.91±0.1 mm vs. 0.76±0.09 mm). Similarly, in a transgenic mouse model, catalase over-expression in the vascular smooth muscle cells (VSMC) preserved the thickness of tunica media and inhibited aortic dilatation by 50% (0.85±0.14 mm vs. 0.57±0.08 mm). Further studies showed that injury with CaCl2 decreased catalase expression and activity in the aortic wall. Pharmacologic administration or genetic over-expression of catalase restored catalase activity and subsequently decreased matrix metalloproteinase activity. In addition, a profound reduction in inflammatory markers and VSMC apoptosis was evident in aortas of catalase over-expressing mice. Interestingly, as opposed to infusion of PEG-catalase, chronic over-expression of catalase in VSMC did not alter the total aortic H2O2 levels. Conclusions The data suggest that a reduction in aortic wall catalase activity can predispose to AAA formation. Restoration of catalase activity in the vascular wall enhances aortic VSMC survival and prevents AAA formation primarily through modulation of matrix metalloproteinase activity. PMID:23950141

  8. L-Endoglin Overexpression Increases Renal Fibrosis after Unilateral Ureteral Obstruction

    PubMed Central

    Arévalo, Miguel; Núñez-Gómez, Elena; Pérez-Roque, Lucía; Pericacho, Miguel; González-Núñez, María; Langa, Carmen; Martínez-Salgado, Carlos; Perez-Barriocanal, Fernando; Bernabeu, Carmelo; Lopez-Novoa, José M.

    2014-01-01

    Transforming growth factor-β (TGF-β) plays a pivotal role in renal fibrosis. Endoglin, a 180 KDa membrane glycoprotein, is a TGF-β co-receptor overexpressed in several models of chronic kidney disease, but its function in renal fibrosis remains uncertain. Two membrane isoforms generated by alternative splicing have been described, L-Endoglin (long) and S-Endoglin (short) that differ from each other in their cytoplasmic tails, being L-Endoglin the most abundant isoform. The aim of this study was to assess the effect of L-Endoglin overexpression in renal tubulo-interstitial fibrosis. For this purpose, a transgenic mouse which ubiquitously overexpresses human L-Endoglin (L-ENG+) was generated and unilateral ureteral obstruction (UUO) was performed in L-ENG+ mice and their wild type (WT) littermates. Obstructed kidneys from L-ENG+ mice showed higher amounts of type I collagen and fibronectin but similar levels of α-smooth muscle actin (α-SMA) than obstructed kidneys from WT mice. Smad1 and Smad3 phosphorylation were significantly higher in obstructed kidneys from L-ENG+ than in WT mice. Our results suggest that the higher increase of renal fibrosis observed in L-ENG+ mice is not due to a major abundance of myofibroblasts, as similar levels of α-SMA were observed in both L-ENG+ and WT mice, but to the higher collagen and fibronectin synthesis by these fibroblasts. Furthermore, in vivo L-Endoglin overexpression potentiates Smad1 and Smad3 pathways and this effect is associated with higher renal fibrosis development. PMID:25313562

  9. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury

    PubMed Central

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-01-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2′-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury. PMID:29434805

  10. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury.

    PubMed

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-02-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury.

  11. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene.

    PubMed

    Elhiti, Mohamed; Yang, Cunchun; Chan, Ainsley; Durnin, Douglas C; Belmonte, Mark F; Ayele, Belay T; Tahir, Muhammad; Stasolla, Claudio

    2012-07-01

    SHOOTMERISTEMLESS (STM) is a homeobox gene conserved among plant species which is required for the formation and maintenance of the shoot meristem by suppressing differentiation and maintaining an undetermined cell fate within the apical pole. To assess further the role of this gene during seed storage accumulation, transgenic Brassica napus (Bn) plants overexpressing or down-regulating BnSTM under the control of the 35S promoter were generated. Overexpression of BnSTM increased seed oil content without affecting the protein and sucrose level. These changes were accompanied by the induction of genes encoding several transcription factors promoting fatty acid (FA) synthesis: LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and WRINKLE1 (BnWRI1). In addition, expression of key representative enzymes involved in sucrose metabolism, glycolysis, and FA biosynthesis was up-regulated in developing seeds ectopically expressing BnSTM. These distinctive expression patterns support the view of an increased carbon flux to the FA biosynthetic pathway in developing transformed seeds. The overexpression of BnSTM also resulted in a desirable reduction of seed glucosinolate (GLS) levels ascribed to a transcriptional repression of key enzymes participating in the GLS biosynthetic pathway, and possibly to the differential utilization of common precursors for GLS and indole-3-acetic acid synthesis. No changes in oil and GLS levels were observed in lines down-regulating BnSTM. Taken together, these findings provide evidence for a novel function for BnSTM in promoting desirable changes in seed oil and GLS levels when overexpressed in B. napus plants, and demonstrate that this gene can be used as a target for genetic improvement of oilseed species.

  12. Cooperatively transcriptional and epigenetic regulation of sonic hedgehog overexpression drives malignant potential of breast cancer

    PubMed Central

    Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei

    2015-01-01

    Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients’ prognosis. PMID:25990213

  13. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel.

    PubMed

    Zhao, Weihong; Song, Yongmei; Xu, Binghe; Zhan, Qimin

    2012-02-01

    Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be

  14. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma.

    PubMed

    Lee, Yi-Ying; Chao, Tung-Bo; Sheu, Ming-Jen; Tian, Yu-Feng; Chen, Tzu-Ju; Lee, Sung-Wei; He, Hong-Lin; Chang, I-Wei; Hsing, Chung-Hsi; Lin, Ching-Yih; Li, Chien-Feng

    2016-01-01

    Background : Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods : We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results : GAD1 overexpression was significantly associated with an increase in the primary tumor status ( p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV ( p = 0.002) and was a univariate predictor of adverse outcomes of DSS ( p = 0.002), DMeFS ( p < 0.0001), and LRFS ( p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS ( p = 0.004, hazard ratio = 2.234), DMeFS ( p < 0.001, hazard ratio = 4.218), and LRFS ( p = 0.013, hazard ratio = 2.441) rates. Conclusions : Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities.

  15. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.

    PubMed

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Xiao, Dong-Guang

    2015-06-01

    Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker's yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21% increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively.

  16. Overexpressed long noncoding RNA CRNDE with distinct alternatively spliced isoforms in multiple cancers.

    PubMed

    Ma, Xuefei; Zhang, Wei; Zhang, Rong; Li, Jingming; Li, Shufen; Ma, Yunlin; Jin, Wen; Wang, Kankan

    2018-05-26

    Alternative splicing is a tightly regulated process that contributes to cancer development. CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers. However, whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain unclear. In this study, we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic malignancies. The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a tissue- and cell-specific manner. Further comparison of CRNDE expression in 2938 patient samples from 15 solid and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies, including 3 reported and 8 unreported, and also implicated that the overexpressed isoforms differed in various cancer types. Furthermore, anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary samples, and even had different impacts on the expression of CRNDE isoforms. Finally, experimental profiles of 12 alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed isoform in multiple cancer types. Collectively, our results emphasize the cancer-associated feature of CRNDE and its spliced isoforms, and may provide promising targets for cancer diagnosis and therapy.

  17. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan, E-mail: zoulijuantg@126.com

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9more » expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.« less

  19. CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1.

    PubMed

    Rona, Germana; Herdeiro, Ricardo; Mathias, Cristiane Juliano; Torres, Fernando Araripe; Pereira, Marcos Dias; Eleutherio, Elis

    2015-06-01

    Studies using different organisms revealed that reducing calorie intake, without malnutrition, known as calorie restriction (CR), increases life span, but its mechanism is still unkown. Using the yeast Saccharomyces cerevisiae as eukaryotic model, we observed that Cu, Zn-superoxide dismutase (Sod1p) is required to increase longevity, as well as to confer protection against lipid and protein oxidation under CR. Old cells of sod1 strain also presented a premature induction of apoptosis. However, when CTT1 (which codes for cytosolic catalase) was overexpressed, sod1 and WT strains showed similar survival rates. Furthermore, CTT1 overexpression decreased lipid peroxidation and delayed the induction of apoptotic process. Superoxide is rapidly converted to hydrogen peroxide by superoxide dismutase, but it also undergoes spontaneous dismutation albeit at a slower rate. However, the quantity of peroxide produced from superoxide in this way is two-fold higher. Peroxide degradation, catalyzed by catalase, is of vital importance, because in the presence of a reducer transition metal peroxide is reduced to the highly reactive hydroxyl radical, which reacts indiscriminately with most cellular constituents. These findings might explain why overexpression of catalase was able to overcome the deficiency of Sod1p, increasing life span in response to CR.

  20. Overexpression of adenylate cyclase-associated protein 2 is a novel prognostic marker in malignant melanoma.

    PubMed

    Masugi, Yohei; Tanese, Keiji; Emoto, Katsura; Yamazaki, Ken; Effendi, Kathryn; Funakoshi, Takeru; Mori, Mariko; Sakamoto, Michiie

    2015-12-01

    Malignant melanoma is one of the lethal malignant tumors worldwide. Previously we reported that adenylate cyclase-associated protein 2 (CAP2), which is a well-conserved actin regulator, was overexpressed in hepatocellular carcinoma; however, CAP2 expression in other clinical cancers remains unclear. The aim of the current study was to clarify the clinicopathological significance of CAP2 overexpression in malignant melanoma. Immunohistochemical analyses revealed that many melanoma cells exhibited diffuse cytoplasmic expression of CAP2, whereas no normal melanocytes showed detectable immunostaining for CAP2. A high level of CAP2 expression was seen in 14 of 50 melanomas and was significantly correlated with greater tumor thickness and nodular melanoma subtypes. In addition, a high level of CAP2 expression was associated with poor overall survival in univariate and multivariate analyses. For 13 patients, samples of primary and metastatic melanoma tissue were available: four patients exhibited higher levels of CAP2 expression in metastatic tumor compared to the primary site, whereas no patient showed lower levels of CAP2 expression in metastatic melanomas. Our findings show that CAP2 overexpression is a novel prognostic marker in malignant melanoma and that CAP2 expression seems to increase stepwise during tumor progression, suggesting the involvement of CAP2 in the aggressive behavior of malignant melanoma. © 2015 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.