Science.gov

Sample records for a549 cell viability

  1. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells.

    PubMed

    Zhao, Xinyuan; Xing, Fengjun; Cong, Yewen; Zhuang, Yin; Han, Muxi; Wu, Zhiqiang; Yu, Shali; Wei, Haiyan; Wang, Xiaoke; Chen, Gang

    2017-12-01

    Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF‑1α/VEGF and NF‑κB/COX‑2 signaling pathways.

    PubMed

    Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng

    2017-04-01

    Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.

  3. [Study on thaspine in inducing apoptosis of A549 cell].

    PubMed

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  4. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549

    PubMed Central

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-01-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin. PMID:28928819

  5. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549.

    PubMed

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-09-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.

  6. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  7. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells.

    PubMed

    Crespo, Rosana; Villaverde, M Luciana; Girotti, Juan R; Güerci, Alba; Juárez, M Patricia; de Bravo, Margarita G

    2011-06-14

    Ulomoides dermestoides (Fairmaire, 1893) is a cosmopolitan tenebrionid beetle reared by Argentine people who consume them alive as an alternative medicine in the treatment of different illnesses such as asthma, Parkinson's, diabetes, arthritis, HIV and specially cancer. To evaluate the cytotoxicity and DNA damage of the major volatile components released by Ulomoides dermestoides on human lung carcinoma epithelial cell line A549. The defence compounds of Ulomoides dermestoides were extracted with dichloromethane and analyzed and quantified by capillary gas chromatography. The toxicity effects of the beetle's extract against A549 cell line were evaluated. Cytotoxicity was evaluated by MTT test and Trypan blue assay and genotoxicity was evaluated by the comet assay. The synthetic compounds, individually or combined, were also tested in A549 cells and normal mononuclear human cells. The defence compounds of Ulomoides dermestoides extracted with dichloromethane (methyl-1,4-benzoquinones, ethyl-1,4-benzoquinones and 1-pentadecene as major components) showed cytotoxic activity on A549 cells demonstrated by MTT test and Trypan blue assay, with IC(50) values of 0.26equivalent/ml and 0.34equivalent/ml, respectively (1equivalent=amount of components extracted per beetle). The inhibition of A549 cell proliferation with the synthetic blend (1,4-benzoquinone and 1-pentadecene) or 1,4-benzoquinone alone was similar to that obtained with the insect extract. 1-Pentadecene showed no inhibitory effect. Low doses of insect extract or synthetic blend (0.15equivalent/ml) inhibited mononuclear cell proliferation by 72.2±2.7% and induced significant DNA damage both in tumor and mononuclear cells. Results of this study demonstrated that defence compounds of Ulomoides dermestoides reduced cell viability and induced DNA damage. We also concluded that the insect benzoquinones are primarily responsible for inducing cytotoxicity and genotoxicity in culture cells. Copyright © 2011 Elsevier

  8. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line.

    PubMed

    Izdebska, Magdalena; Klimaszewska-Wiśniewska, Anna; Hałas, Marta; Gagat, Maciej; Grzanka, Alina

    2015-12-31

    For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope. The obtained data suggested that GTE, even at the highest dose employed (150 μM), was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment. Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  9. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    SciTech Connect

    Huang, Chunrong; Zheng, Haichong; He, Wanmei

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activatedmore » the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.« less

  10. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    PubMed

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.

  11. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis

    PubMed Central

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-01-01

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1–5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1–5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention. PMID:29565268

  12. Hinokitiol Inhibits Migration of A549 Lung Cancer Cells via Suppression of MMPs and Induction of Antioxidant Enzymes and Apoptosis.

    PubMed

    Jayakumar, Thanasekaran; Liu, Chao-Hong; Wu, Guan-Yi; Lee, Tzu-Yin; Manubolu, Manjunath; Hsieh, Cheng-Ying; Yang, Chih-Hao; Sheu, Joen-Rong

    2018-03-22

    Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana , has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1-5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1-5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.

  13. [Combined effects of interferon γ and γ ray irradiation on A549 cells in vitro].

    PubMed

    Xia, Hui; Zhang, Yi-ming; Yu, Chang-hai; Zhang, Wen; Zhang, Bao-shi; Fang, Fang

    2012-02-07

    To define the role of interferon-γ on radiotherapy of lung cancer and explore a new way to clinical treatment. A549 cells were exposed to γ ray with or without IFN-γ co-treatment. MTT assay was performed to evaluate cell viability. Western blot was used to observe the expression of P53 protein. The results showed that co-treatment of IFN-γ decreased the cell viability significantly compared with the γ ray irradiation group (71.4% ± 2.1% vs 44.1% ± 3.1%, n = 7, P < 0.01). In addition, the expression of P53 protein also increased significantly after co-treatment (P < 0.01); Furthermore, the cell cycle was changed obviously in co-treatment group compared with γ ray irradiation group, S phase increased (12.9% vs 20.9%, n = 5, P < 0.05) and also blocked the G2/M phase (28.8% vs 38.9%, n = 5, P < 0.05). The results suggested that γ ray irradiation combined with IFN-γ can increase the efficiency of radiotherapy on A549 cells and there is much broad prospect in the clinical treatment of lung cancer.

  14. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment.

    PubMed

    Jin, Xuefang; Wu, Nana; Dai, Juji; Li, Qiuxia; Xiao, XiaoQiang

    2017-02-01

    Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells.

    PubMed

    Jung, Ha-Na; Zerin, Tamanna; Podder, Biswajit; Song, Ho-Yeon; Kim, Yong-Sik

    2014-06-01

    In Korea, lung disease of children and pregnant women associated with humidifier disinfectant use has become a major concern. A common sterilizer is polyhexamethylene guanidine (PHMG), a member of the guanidine family of antiseptics. This study was done to elucidate the putative cytotoxic effect of PHMG and the PHMG-mediated altered gene expression in human alveolar epithelial A549 cells in vitro. Cell viability analyses revealed the potent cytotoxicity of PHMG, with cell death evident at as low as 5 μg/mL. Death was dose- and time-dependent, and was associated with formation of intracellular reactive oxygen species, and apoptosis significantly, at even 2 μg/mL concentration. The gene expression profile in A549 cells following 24 h exposure to 5 μg/mL of PHMG was investigated using DNA microarray analysis. Changes in gene expression relevant to the progression of cell death included induction of genes related to apoptosis, autophagy, fibrosis, and cell cycle. However, the expressions of genes encoding antioxidant and detoxifying enzymes were down-regulated or not affected. The altered expression of selected genes was confirmed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The collective data suggest that PHMG confers cellular toxicity through the generation of intracellular reactive oxygen species and alteration of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A549 Cells: Lung Carcinoma Cell Line for Adenovirus | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at the National Cancer Institute have developed a cell line designated A549 that was derived from explanted cultures of human lung cancer tissue. The A549 cell line has been tested under the guidance of the United States Food and Drug Administration (FDA) so, under current Good Manufacturing Practices (GMP), these cells may be suitable for use in manufacturing constructs for use in clinical trials. The National Cancer Institute seeks parties to non-exclusively license this research material.

  17. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway.

    PubMed

    Zhao, Yana; Zhang, Shaojing; Wang, Pengfei; Fu, Shengnan; Wu, Di; Liu, Anjun

    2017-12-01

    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

  18. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    PubMed

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  19. [Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].

    PubMed

    Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min

    2015-05-01

    To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (P<0. 05). A549 cell lines stably transduced with a lentivirus expressing the BAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.

  20. Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells.

    PubMed

    Miyayama, Takamitsu; Matsuoka, Masato

    2016-01-01

    While silver nanoparticles (AgNPs) are widely used in consumer and medical products, the mechanism by which AgNPs cause pulmonary cytotoxicity is not clear. AgNP agglomerates are found in endo-lysosomal structures within the cytoplasm of treated cells. In this study, the functional role of lysosomes in AgNP-induced cellular damage was examined in A549 human lung alveolar epithelial cells. We evaluated the intracellular distribution of AgNPs, lysosomal pH, cellular viability, Ag dissolution, and metallothionein (MT) mRNA levels in AgNP-exposed A549 cells that were treated with bafilomycin A1, the lysosomal acidification inhibitor. Exposure of A549 cells to citrate-coated AgNPs (20 nm diameter) for 24 h induced cellular damage and cell death at 100 and 200 μg Ag/ml, respectively. Confocal laser microscopic examination of LysoTracker-stained cells showed that AgNPs colocalized with lysosomes and their agglomeration increased in a dose-dependent manner (50-200 μg Ag/ml). In addition, the fluorescence signals of LysoTracker were reduced following exposure to AgNPs, suggesting the elevation of lysosomal pH. Treatment of A549 cells with 200 nM bafilomycin A1 and AgNPs (50 μg Ag/ml) further reduced the fluorescence signals of LysoTracker. AgNP-induced cell death was also increased by bafilomycin A1 treatment. Finally, treatment with bafilomycin A1 suppressed the dissolution of Ag and decreased the mRNA expression levels of MT-I and MT-II following exposure to AgNPs. The perturbation of lysosomal pH by AgNP exposure may play a role in AgNP agglomeration and subsequent cellular damage in A549 cells.

  1. Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells

    PubMed Central

    2013-01-01

    Background Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells. Results In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment. Conclusions The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells PMID:23506616

  2. Induction of cell death by pyropheophorbide-α methyl ester-mediated photodynamic therapy in lung cancer A549 cells.

    PubMed

    Tu, Ping-Hua; Huang, Wen-Jun; Wu, Zhan-Ling; Peng, Qing-Zhen; Xie, Zhi-Bin; Bao, Ji; Zhong, Ming-Hua

    2017-03-01

    Pyropheophorbide-α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa-mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit-8 was employed for cell viability assessment. Reactive oxygen species levels were determined by fluorescence microscopy and flow cytometry. Cell morphology was evaluated by Hoechst staining and transmission electron microscopy. Mitochondrial membrane potential, cellular apoptosis and cell cycle distribution were evaluated flow-cytometrically. The protein levels of apoptotic effectors were examined by Western blot. We found that the photocytotoxicity of MPPa showed both drug- and light- dose dependent characteristics in A549 cells. Additionally, MPPa-PDT caused cell apoptosis by reducing mitochondrial membrane potential, increasing reactive oxygen species (ROS) production, inducing caspase-9/caspase-3 signaling activation as well as cell cycle arrest at G 0 /G 1 phase. These results suggested that MPPa-PDT mainly kills cells by apoptotic mechanisms, with overt curative effects, indicating that MPPa should be considered a potent photosensitizer for lung carcinoma treatment. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo.

    PubMed

    Liu, Ge; Kuang, Shan; Wu, Shimei; Jin, Weihua; Sun, Chaomin

    2016-05-24

    Many polysaccharides isolated from plants have exhibited promising antitumor activities. The aim of this study is to investigate the antitumor activity of the novel polysaccharide named SPS from Sargassum integerrimum, elucidate the underlying anticancer mechanism in a human lung cancer cell line A549, and evaluate its anti-angiogenic activity both in vitro and in vivo. The results show that SPS significantly reduces A549 cells viability in a dose- and time-dependent manner via MTT method. Flow cytometry analysis indicates that SPS could induce cell apoptosis, the loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) and G2/M phase cell cycle arrest of A549 cells. Up-regulation of the expressions of P53 and Bax, down-regulation of the expression of Bcl-2, and activation of cleaved caspase-3, caspase-9 and PARP are also detected by western blotting after the treatment of SPS. In addition, SPS inhibits the proliferation, migration and cord formation of human umbilical vein endothelial cells (HUVECs) in vitro, and prevents the vascular development of zebrafish embryos in vivo. Altogether, our data prove the anticancer and anti-angiogenesis properties of SPS, and provide further insights into the potential pharmacological application of SPS as antitumor and anti-angiogenic agent against lung cancer.

  4. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  5. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.

    PubMed

    Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi

    2018-01-01

    The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines

    PubMed Central

    Lee, Sau Har; Jaganath, Indu Bala; Wang, Seok Mui; Sekaran, Shamala Devi

    2011-01-01

    Background Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. Methodology/Principal Findings Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. Conclusions/Significance The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence

  7. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  8. [Apoptosis inducing effect of Hechanpian on human lung adenocarcinoma A549 cells].

    PubMed

    Xiong, Shao-Quan; Zhou, Dai-Han; Lin, Li-Zhu

    2010-06-01

    To study the apoptosis inducing effects of Hechanpian (HCP) on human lung adenocarcinoma A549 cells. HCP containing rat serum was prepared and applied on A549 cells. The cell growth inhibition rate was tested by MTT assay; the effect of HCP on cell apoptosis was observed with Propidium iodide (PI) staining and flow cytometry analysis; the mRNA expression of epidermal growth factor receptor (EGFR) was detected through RT-PCR. The growth of A549 cells was obviously inhibited after being treated by HCP containing serum, and the cells presented an apoptotic change. The cell apoptosis rate after treated by serum containing 10% and 20% HCP was 20.5% and 33.2%, respectively, significantly higher than that in the control (6.1% in cells didn't treated with HCP, P < 0.05). Compared with control, EGFR mRNA expression in HCP treated cells was significantly lower (P < 0.05). HCP has apoptosis inducing effect on A549 cell, and its molecular mechanism is probably correlated with the inhibition of EGFR gene transcription.

  9. Ac-SDKP suppresses epithelial-mesenchymal transition in A549 cells via HSP27 signaling.

    PubMed

    Deng, Haijing; Yang, Fang; Xu, Hong; Sun, Yue; Xue, Xinxin; Du, Shipu; Wang, Xiaojun; Li, Shifeng; Liu, Yan; Wang, Ruimin

    2014-08-01

    The synthetic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has been shown to be a modulator of molecular aspects of the fibrosis pathway. This study reveals that Ac-SDKP exerts an anti-fibrotic effect on human type II alveolar epithelial cells (A549), which are a source of myofibroblasts once exposed to TGF-β1, by decreasing the expression of heat shock protein 27 (HSP27). We used A549 cells in vitro to detect morphological evidence of epithelial-mesenchymal transition (EMT) by phase-contrast microscopy. Immunocytochemical and western blot analysis determined the distributions of cytokeratin 8 (CK8), α-smooth muscle actin (α-SMA), and SNAI1. Confocal laser scanning microscopy revealed a colocalization of HSP27 and SNAI1 on TGF-β1-induced A549 cells. These results also demonstrated that A549 cells became spindle-like when exposed to TGF-β1. Coincident with these morphological changes, expression levels of CK8 and E-cad decreased, while those of vimentin and α-SMA increased. This process was accompanied by increases in levels of HSP27, SNAI1, and type I and type III collagen. In vitro transfection experiments demonstrated that the inhibition of HSP27 in cultured A549 cells could decrease the expression of SNAI1 and α-SMA while increasing the expression of E-cad. A noticeable reduction in collagen types I and III was also evident. Our results found that Ac-SDKP inhibited the transition of cultured A549 cells to myofibroblasts and attenuated collagen synthesis through modulating the expression of HSP27. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. In vitro effects of nicotine on the non-small-cell lung cancer line A549.

    PubMed

    Gao, Tao; Zhou, Xue-Liang; Liu, Sheng; Rao, Chang-Xiu; Shi, Wen; Liu, Ji-Chun

    2016-04-01

    To investigate in vitro effects of nicotine on the non-small-cell lung cancer line A549. The case-control study was conducted at the First Affiliated Hospital of Nanchang University from 1st January to 30th June, 2014 and comprised A549 cells which were treated with a series of concentrations of nicotine (0.01 µM, 0.1 µM, 1 µM and 10 µM) for 24 hours. Control cells were incubated under the same conditions without the addition of nicotine. Cell growth was detected by monotetrazolium salt [3-(4, 5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Cell apoptosis was detected by Haematoxylin and Eosin staining, immunofluorescence analysis of Filamentous actin and electron microscope observation. Nicotine had no significant effect on A549 cell growth at the dose of 0.01µM (p>0.05), but had significant growth inhibitory effects at the doses of 0.1µM, 1µM and 10µM (p< 0.05 each). A significant decrease in cell numbers was observed on staining (p< 0.05). Significant changes in the size and shape of cells and concomitant changes in cytoskeletons and organelles were observed by immunofluorescence and electron microscope observation (p< 0.05). The growth inhibitory effects of nicotine on A549 cells were found to be dose-dependent.

  11. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    PubMed Central

    Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin

    2015-01-01

    Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737

  12. PARTICULATE MATTER (PM) INHIBITS NEUROTROPHIN RELEASE FROM A549 CELLS

    EPA Science Inventory

    Several investigations have linked PM exposure to the exacerbation of allergic lung diseases. Many PM effects are mediated by cells within the lung including the airway epithelium, eosinophils, and lymphocytes. These cells also produce neurotophins such as NGF and/or express neur...

  13. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    PubMed

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  14. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  15. Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells.

    PubMed

    Rajavel, Tamilselvam; Mohankumar, Ramar; Archunan, Govindaraju; Ruckmani, Kandasamy; Devi, Kasi Pandima

    2017-06-13

    Lung cancer is the leading cause of cancer related deaths both in developed and developing countries. Since majority of the existing therapeutic methods harms both normal and malignant cells, a viable alternative is to switch into safe and beneficial traditional medicinal plants. Hence the present study was framed to identify selective anti-lung cancer agents from the medicinal plant Grewia tiliaefolia (GT). Cell viability experiments showed that benzene extract of GT (BGT) leaf effectively inhibited the growth of A549 cells, while being non-toxic to normal human lung L132 and PBMC cells. Ames and comet assays demonstrated that BGT is of non-mutagenic and non-genotoxic nature in untransformed cells. The hematological and histopathological profiles of the in vivo acute and sub-acute toxicity studies demonstrated that BGT is safe and tolerable. Importantly, western blot analysis and Annexin V-FITC staining confirmed that BGT promotes mitochondrial dependent apoptotic cell death in A549 cells by arresting cell cycle at G2/M phase. Bio-assay guided fractionation revealed the presence of phytosteols (β-sitosterol and daucosterol) which significantly inhibited the growth of A549 cells both alone and in combination. This study warrants that these phytosterols in alone or in combination can be considered as safe and potential drug candidates for lung cancer treatment.

  16. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO2 nanoparticles in A549 cells.

    PubMed

    Ahmad, J; Siddiqui, M A; Akhtar, M J; Alhadlaq, H A; Alshamsan, A; Khan, S T; Wahab, R; Al-Khedhairy, A A; Al-Salim, A; Musarrat, J; Saquib, Q; Fareed, M; Ahamed, M

    2018-05-01

    Physicochemical properties of titanium dioxide nanoparticles (TiO 2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO 2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO 2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO 2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO 2 and Cu in Cu-doped TiO 2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO 2 NPs (24 nm) was lower than pure TiO 2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO 2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO 2 NPs was higher than pure TiO 2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO 2 NPs. This is the first report showing that Cu-doped TiO 2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO 2 NPs.

  17. Ionizing Radiation Potentiates Dihydroartemisinin-Induced Apoptosis of A549 Cells via a Caspase-8-Dependent Pathway

    PubMed Central

    Chen, Tongsheng; Chen, Min; Chen, Jingqin

    2013-01-01

    This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway. PMID:23536891

  18. Middle Infrared Radiation Induces G2/M Cell Cycle Arrest in A549 Lung Cancer Cells

    PubMed Central

    Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3–5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G2/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G2/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression. PMID:23335992

  19. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines

    PubMed Central

    Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar

    2016-01-01

    Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773

  20. [HDAC1 expression and effect of TSA on proliferation and apoptosis of A549 cells].

    PubMed

    Huang, Hong; Zhang, Zhen-Xiang; Xu, Yong-Jian; Shao, Jing-Fang

    2003-09-01

    Histone deacetylase (HDAC) shows a high expression in many cancer cells and the inhibitor of HDAC1, trichostatin A (TSA), can inhibit the growth of cancer cells. Hypoxia is a common feature of malignant tumors. This paper was designed to investigate the expression of HDAC1 of A549 cell strains in hypoxia condition and the effect of TSA on their proliferation and apoptosis. The authors designed 1 normoxia group (control group) and 5 hypoxia groups (test groups): hypoxia 6h group (A), TSA + hypoxia 6h (B), hypoxia 12h group (C), hypoxia 24h group (D), TSA + hypoxia 24h (E), hypoxia 48h group (F). The expression of HDAC1 in A549 cells was examined using Western blot analysis. Proliferation, the apoptotic rates of A549 cells and the effect of TSA on them were determined using MTT method, immunohistochemistry, TUNEL method, and flow cytometry. The expression of mRNA of HDAC1 and the effect of TSA on it were determined using reverse transcription-polymerase chain reaction (RT-PCR). The A values expressed by HDAC1 in A549 cell strains were 138+/-11 in the control group, 78+/-4, 86+/-5, 124+/-3, and 120+/-9 in test groups A, C, D, and F, respectively. The A values of HDAC1mRNA versus the A values of beta-Atin mRNA were 0.68+/-0.03 in the control group, 0.46+/-0.03, 0.45+/-0.02, 0.70+/-0.03, and 0.33+/-0.02 in test groups A, C, D, and F, respectively. The A values of the expression of PCNA in A549 cell strains were 0.13+/-0.03 in the control group, 0.10+/-0.02, 0.11+/-0.02, 0.16+/-0.02, and 0.11+/-0.03 in test groups A, B, D, and E, respectively. The A values of MTT in A549 cell strains were 0.50+/-0.06 in the control group, 0.41+/-0.04, 0.45+/-0.03, 0.59+/-0.02, and 0.45+/-0.03 in test groups A, B, D, and E, respectively. The A values of positive cells of apoptosis in A549 cell strains were 0.16+/-0.04 in the control group, 0.18+/-0.02, 0.18+/-0.05, 0.20+/-0.05, and 0.23+/-0.05 in test groups A, B, D, and E, respectively. The apoptotic rates in A549 cells were 1.11% in the

  1. Synergistic Antitumor Effect of Oligogalacturonides and Cisplatin on Human Lung Cancer A549 Cells.

    PubMed

    Huang, Cian-Song; Huang, Ai-Chun; Huang, Ping-Hsiu; Lo, Diana; Wang, Yuh-Tai; Wu, Ming-Chang

    2018-06-14

    Cisplatin (DPP), a clinically potent antineoplastic agent, is limited by its severe adverse effects. The aim of this study was to investigate the effect of oligogalacturonides (OGA) and DDP on human lung cancer A549 cells. The combined use of OGA and DDP had a synergistic effect on the growth inhibition of A549 cells, changed the cell cycle distribution, and enhanced apoptotic response, especially in sequential combination treatment group of DDP 12 h + OGA 12 h. Western blot analyses showed that the combination treatment of OGA and DDP upregulated Bax, p53, and Caspase-3 and downregulated Bcl-2 proteins. More importantly, DDP-induced toxicity was attenuated by OGA and DDP combination treatment in normal HEK293 cells. Our data suggests that the combined use of OGA from natural sources and DDP could be an important new adjuvant therapy for lung cancer as well as offer important insights for reducing kidney toxicity of DDP and delaying the development of DDP resistance.

  2. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

    PubMed Central

    2014-01-01

    Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633 PMID:24650056

  3. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study

    PubMed Central

    Kathiravan, Govindarajan; Sureban, Sripathi M.

    2009-01-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene chloride extraction of Pestalotiopsis mangiferae blocked cell cycle progression in G0/G1 phase. In addition fungal taxol induced A549 cell apoptosis as determined by propidium iodide staining. Further the percentage of LDH release was increased at increasing concentrations which is a measure of cell death. The levels of sialic acid levels and DNA, RNA and protein levels were decreased after treatment with methylene chloride extraction of Pestalotiopsis mangiferae. We suggests that methylene chloride extraction of Pestalotiopsis mangiferae might be considered for future therapeutic application with further studies against lung cancer. PMID:25206246

  4. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study.

    PubMed

    Kathiravan, Govindarajan; Sureban, Sripathi M

    2009-12-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene chloride extraction of Pestalotiopsis mangiferae blocked cell cycle progression in G0/G1 phase. In addition fungal taxol induced A549 cell apoptosis as determined by propidium iodide staining. Further the percentage of LDH release was increased at increasing concentrations which is a measure of cell death. The levels of sialic acid levels and DNA, RNA and protein levels were decreased after treatment with methylene chloride extraction of Pestalotiopsis mangiferae. We suggests that methylene chloride extraction of Pestalotiopsis mangiferae might be considered for future therapeutic application with further studies against lung cancer.

  5. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells.

    PubMed

    Könczöl, Mathias; Goldenberg, Ella; Ebeling, Sandra; Schäfer, Bianca; Garcia-Käufer, Manuel; Gminski, Richard; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Gieré, Reto; Mersch-Sundermann, Volker

    2012-12-17

    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be

  6. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Ferrous glycinate regulates cell energy metabolism by restrictinghypoxia-induced factor-1α expression in human A549 cells.

    PubMed

    Kuo, Yung-Ting; Jheng, Jhong-Huei; Lo, Mei-Chen; Chen, Wei-Lu; Wang, Shyang-Guang; Lee, Horng-Mo

    2018-06-04

    Iron or oxygen regulates the stability of hypoxia inducible factor-1α (HIF-1α). We investigated whether ferrous glycinate would affect HIF-1α accumulation, aerobic glycolysis and mitochondrial energy metabolism in human A549 lung cancer cells. Incubation of A549 cells with ferrous glycinate decreased the protein levels of HIF-1α, which was abrogated by proteosome inhibitor, or prolyl hydroxylase inhibitor. The addition of ferrous glycinate decreased protein levels of glucose transporter-1, hexokinase-2, and lactate dehydrogenase A, and decreased pyruvate dehydrogenase kinase-1 (PDK-1) and pyruvate dehydrogenase (PDH) phosphorylation in A549 cells. Ferrous glycinate also increased the expression of the mitochondrial transcription factor A (TFAM), and the mitochondrial protein, cytochrome c oxidase (COX-IV). Silencing of HIF-1α expression mimicked the effects of ferrous glycinate on PDK-1, PDH, TFAM and COX-IV in A549 cells. Ferrous glycinate increased mitochondrial membrane potential and ATP production in A549 cells. These results suggest that ferrous glycinate may reverse Warburg effect through down regulating HIF-1α in A549 cells.

  8. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    PubMed

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  9. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    PubMed

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  10. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    PubMed

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  11. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  12. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  13. Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells.

    PubMed

    Yoshino, Hironori; Murakami, Kanna; Nawamaki, Mikoto; Kashiwakura, Ikuo

    2018-05-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in cellular defense against oxidative stress. Recent studies have demonstrated that Nrf2 is a useful target for cancer treatment, including radiation therapy. Ionizing radiation affects, not only the irradiated cells, but also the non-irradiated neighboring cells, and this effect is known as radiation-induced bystander effect. Upon exposure to radiation, the irradiated cells transmit signals to the non-irradiated cells via gap junctions or soluble factors. These signals in turn cause biological effects, such as a decrease in the clonogenic potential and cell death, in the non-irradiated neighboring cells. Nrf2 inhibition enhances cellular radiosensitivity. However, whether this modification of radiosensitivity by Nrf2 inhibition affects the radiation-induced bystander effects is unknown. In this study, we prepared an Nrf2 knockdown human lung cancer cell A549 and investigated whether the effects of irradiated cell conditioned medium (ICCM) on cell growth and cell death induction of non-irradiated cells vary depending on the Nrf2 knockdown. We found that Nrf2 knockdown resulted in a decrease in the cell growth and an increase in the radiosensitivity of A549 cells. When non-irradiated A549 cells were transfected with control siRNA and treated with ICCM, no significant difference was observed in the cell growth and proportion of Annexin V + dead cells between ICCM from non-irradiated cells and that from 2 or 8 Gy-irradiated cells. Similarly, no significant difference was observed in the cell growth and cell death induction upon treatment with ICCM in the Nrf2 knockdown A549 cells. Taken together, these results suggest that Nrf2 knockdown decreases cell growth and enhances the radiosensitivity of A549 cells; however, it does not alter the effect of ICCM on cell growth.

  14. Effects of karanjin on cell cycle arrest and apoptosis in human A549, HepG2 and HL-60 cancer cells.

    PubMed

    Guo, Jian-Ru; Chen, Qian-Qian; Lam, Christopher Wai-Kei; Zhang, Wei

    2015-07-26

    We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells). MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells. Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy.

  15. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    PubMed Central

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  16. Evaluation of whole cigarette smoke induced oxidative stress in A549 and BEAS-2B cells.

    PubMed

    Zhang, Shimin; Li, Xiang; Xie, Fuwei; Liu, Kejian; Liu, Huimin; Xie, Jianping

    2017-09-01

    Cigarette smoke is a complex and oxidative aerosol. Previous researches on the hazards of cigarette smoke mainly focused on the adverse bioeffects induced by its condensates or gas vapor phase, which ignored the dynamic processes of smoking and the cigarette smoke aging. To overcome these disadvantages, we performed air-liquid interface exposure of whole smoke, which used native and unmodified smoke and ensured the exposure similar to physiological inhalation. Our results indicated that whole cigarette smoke induced lung epithelial cells (A549) and bronchial epithelial cells (BEAS-2B) damages in cytotoxicity assays (methyl thiazoly tetrazolium and neutral red uptake assays). In addition, A549 and BEAS-2B cells showed oxidative damages in whole smoke exposure, with concentration change of several biomarkers (reduced and oxidized glutathione, malondialdehyde, 4-hydroxyhydroxy-2-nonenal, extracellular superoxide dismutase, and 8-hydroxyl deoxyguanosine). These results indicate that whole smoke-induced oxidative stress occurs in two different kinds of cells at air-liquid interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preprocessing with Photoshop Software on Microscopic Images of A549 Cells in Epithelial-Mesenchymal Transition.

    PubMed

    Ren, Zhou-Xin; Yu, Hai-Bin; Shen, Jun-Ling; Li, Ya; Li, Jian-Sheng

    2015-06-01

    To establish a preprocessing method for cell morphometry in microscopic images of A549 cells in epithelial-mesenchymal transition (EMT). Adobe Photoshop CS2 (Adobe Systems, Inc.) was used for preprocessing the images. First, all images were processed for size uniformity and high distinguishability between the cell and background area. Then, a blank image with the same size and grids was established and cross points of the grids were added into a distinct color. The blank image was merged into a processed image. In the merged images, the cells with 1 or more cross points were chosen, and then the cell areas were enclosed and were replaced in a distinct color. Except for chosen cellular areas, all areas were changed into a unique hue. Three observers quantified roundness of cells in images with the image preprocess (IPP) or without the method (Controls), respectively. Furthermore, 1 observer measured the roundness 3 times with the 2 methods, respectively. The results between IPPs and Controls were compared for repeatability and reproducibility. As compared with the Control method, among 3 observers, use of the IPP method resulted in a higher number and a higher percentage of same-chosen cells in an image. The relative average deviation values of roundness, either for 3 observers or 1 observer, were significantly higher in Controls than in IPPs (p < 0.01 or 0.001). The values of intraclass correlation coefficient, both in Single Type or Average, were higher in IPPs than in Controls both for 3 observers and 1 observer. Processed with Adobe Photoshop, a chosen cell from an image was more objective, regular, and accurate, creating an increase of reproducibility and repeatability on morphometry of A549 cells in epithelial to mesenchymal transition.

  18. Group B Streptococcus serotypes III and V induce apoptosis and necrosis of human epithelial A549 cells.

    PubMed

    Da Costa, Andréia Ferreira Eduardo; Pereira, Camila Serva; Santos, Gabriela Da Silva; Carvalho, Técia Maria Ulisses; Hirata, Raphael; De Mattos-Guaraldi, Ana Luiza; Rosa, Ana Cláudia De Paula; Nagao, Prescilla Emy

    2011-05-01

    Although group B Streptococcus (GBS) has been classically described as an exclusively extracellular pathogen, growing evidence suggests that it may be internalized by epithelial cells. However, the fates of intracellular GBS and of infected respiratory epithelial cells remain unclear. Little is known about the bacterial components involved in these processes. The present study investigated the bacterial internalization by A549 cells and the apoptosis/necrosis of the infected human epithelial cells. The morphological changes in A549 cells observed from 2 h post-infection with GBS included vacuolization and the formation of apoptotic bodies. Flow cytometry revealed that 81.2% of apoptotic A549 cells were infected with GBS serotype III 90356-liquor. Moreover, a double-staining assay using propidium iodide (PI)/Annexin V (AV) gave information about the numbers of viable (PI-/AV-) (18.27%) vs. early apoptotic (PI-/AV+) (73.83%) and late apoptotic cells (PI+/AV+) (7.37%) during infection of A549 cells with GBS III 90356-liquor. In addition, 37% necrotic cells were observed in A549 cells infected with GBS serotype V 90186-blood. In conclusion, GBS serotypes III and V induce apoptosis of epithelial cells in the early stages of GBS infection, resulting in tissue destruction, bacterial spreading and, in consequence, invasive disease or systemic infection.

  19. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  20. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells

    PubMed Central

    SHI, WEI; DENG, JIAGANG; TONG, RONGSHENG; YANG, YONG; HE, XIA; LV, JIANZHEN; WANG, HAILIAN; DENG, SHAOPING; QI, PING; ZHANG, DINGDING; WANG, YI

    2016-01-01

    Mangiferin, which is a C-glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth-inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via down-regulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer. PMID:26935347

  1. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells.

    PubMed

    Shi, Wei; Deng, Jiagang; Tong, Rongsheng; Yang, Yong; He, Xia; Lv, Jianzhen; Wang, Hailian; Deng, Shaoping; Qi, Ping; Zhang, Dingding; Wang, Yi

    2016-04-01

    Mangiferin, which is a C‑glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth‑inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via downregulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer.

  2. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis.

    PubMed

    Carterson, A J; Höner zu Bentrup, K; Ott, C M; Clarke, M S; Pierson, D L; Vanderburg, C R; Buchanan, K L; Nickerson, C A; Schurr, M J

    2005-02-01

    A three-dimensional (3-D) lung aggregate model was developed from A549 human lung epithelial cells by using a rotating-wall vessel bioreactor to study the interactions between Pseudomonas aeruginosa and lung epithelial cells. The suitability of the 3-D aggregates as an infection model was examined by immunohistochemistry, adherence and invasion assays, scanning electron microscopy, and cytokine and mucoglycoprotein production. Immunohistochemical characterization of the 3-D A549 aggregates showed increased expression of epithelial cell-specific markers and decreased expression of cancer-specific markers compared to their monolayer counterparts. Immunohistochemistry of junctional markers on A549 3-D cells revealed that these cells formed tight junctions and polarity, in contrast to the cells grown as monolayers. Additionally, the 3-D aggregates stained positively for the production of mucoglycoprotein while the monolayers showed no indication of staining. Moreover, mucin-specific antibodies to MUC1 and MUC5A bound with greater affinity to 3-D aggregates than to the monolayers. P. aeruginosa attached to and penetrated A549 monolayers significantly more than the same cells grown as 3-D aggregates. Scanning electron microscopy of A549 cells grown as monolayers and 3-D aggregates infected with P. aeruginosa showed that monolayers detached from the surface of the culture plate postinfection, in contrast to the 3-D aggregates, which remained attached to the microcarrier beads. In response to infection, proinflammatory cytokine levels were elevated for the 3-D A549 aggregates compared to monolayer controls. These findings suggest that A549 lung cells grown as 3-D aggregates may represent a more physiologically relevant model to examine the interactions between P. aeruginosa and the lung epithelium during infection.

  3. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

    PubMed

    Lipsa, Dorelia; Leva, Paolo; Barrero-Moreno, Josefa; Coelhan, Mehmet

    2016-11-16

    Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC 50 =1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC 50 =3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC 50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP.

    PubMed

    Wei, Yunyan; Wu, Shuangshuang; Xu, Wei; Liang, Yan; Li, Yue; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Cisplatin is the standard first-line chemotherapeutic agent for the treatment of non-small cell lung cancer (NSCLC). However, resistance to chemotherapy has been a major obstacle in the management of NSCLC. Aldehyde dehydrogenase 1A1 (ALDH1A1) overexpression has been observed in a variety of cancers, including lung cancer. The purpose of this study was to investigate the effect of ALDH1A1 expression on cisplatin resistance and explore the mechanism responsible. Reverse transcriptase-PCR was applied to measure the messenger RNA expression of ALDH1A1, while Western blot assay was employed to evaluate the protein expression of ALDH1A1, B-cell lymphoma 2, Bcl-2-like protein 4, phospho-protein kinase B (p-AKT) and AKT. A short hairpin RNA was used to knockdown ALDH1A1 expression. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effect of ALDH1A1 decrease on cell viability. The cell apoptotic rate was tested using flow cytometry assay. ALDH1A1 is overexpressed in cisplatin resistant cell line A549/DDP, compared with A549. ALDH1A1 depletion significantly decreased A549/DDP proliferation, increased apoptosis, and reduced cisplatin resistance. In addition, the phosphoinositide 3-kinase (PI3K) / AKT pathway is activated in A549/DDP, and ALDH1A1 knockdown reduced the phosphorylation level of AKT. Moreover, the combination of ALDH1A1-short hairpin RNA and PI3K/AKT pathway inhibitor LY294002 markedly inhibited cell viability, enhanced apoptotic cell death, and increased cisplatin sensitivity. These results suggest that ALDH1A1 depletion could reverse cisplatin resistance in human lung cancer cell line A549/DDP, and may act as a potential target for the treatment of lung cancers resistant to cisplatin. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    SciTech Connect

    Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com; Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences; Ma, Qunfeng

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level ofmore » MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.« less

  6. Plasmodium circumsporozoite protein suppresses the growth of A549 cells via inhibiting nuclear transcription factor κB.

    PubMed

    Deng, Xu-Feng; Zhou, Dong; Liu, Quan-Xing; Zheng, Hong; Ding, Yan; Xu, Wen-Yue; Min, Jia-Xin; Dai, Ji-Gang

    2018-05-01

    Blocking the activation of nuclear factor κB (NF-κB) is a promising strategy for the treatment of non-small cell lung cancer. The circumsporozoite protein (CSP), a key component of the sporozoite stage of the malaria parasite, was previously reported to block NF-κB activation in hepatocytes. Therefore, in the present study, the effect of CSP on the growth of the human lung cancer cell line, A549, was investigated. It was demonstrated that transfection with a recombinant plasmid expressing CSP was able to inhibit the proliferation of A549 cells in a dose-dependent manner and induce the apoptosis of A549 cells. A NF-κB gene reporter assay indicated that CSP and its nuclear localization signal (NLS) motif were able to equally suppress the activation of NF-κB following stimulation with human recombinant tumor necrosis factor (TNF)-α in A549 cells. Furthermore, western blot analysis indicated that NLS did not affect the phosphorylation and degradation of IκB, but was able to markedly inhibit the nuclear translocation of NF-κB in TNF-α stimulated A549 cells. Therefore, the data suggest that CSP may be investigated as a potential novel NF-κB inhibitor for the treatment of lung cancer.

  7. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    PubMed Central

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expression level was downregulated by siRNA. The POLD4 protein levels in the A549 cells decreased following treatment with 4NQO; however, MG132 could reverse this phenotype. Downregulation of the POLD4 expression by siRNA enhanced A549 cell sensitivity to 4NQO, but not to Taxol. In conclusion, 4NQO affects human lung adenocarcinoma A549 cells by regulating the expression of POLD4. PMID:26998273

  8. [Overexpression of Keap1 inhibits the cell proliferation and metastasis and overcomes the drug resistance in human lung cancer A549 cells].

    PubMed

    Weng, X; Yan, Y Y; Tong, Y H; Fan, Y; Zeng, J M; Wang, L L; Lin, N M

    2016-06-23

    To investigate the effect of Keap1-Nrf2 pathway on cell proliferation, metastasis and drug resistance of human lung cancer A549 cell line. A549-Keap1 cell line, constantly expressing wild type Keap1, was established by lentiviral transfection. Real-time RT-PCR and western blot were used to determine the expression of Nrf2 and its target gene in A549 cells. Sulforhodamine B (SRB) assay, flow cytometry, colony formation assay, transwell assay, and cell wound-healing assay were performed to explore the effect of wild type Keap1 expression on the proliferation, invasion, migration and drug resistance of A549 cells. Over-expressed Keap1 decreased the expression of Nrf2 protein and the mRNA level of its downstream target genes and inhibited the ability of cell proliferation and clone formation of A549 cells. Keap1 overexpression induced G0/G1 phase arrest. The percentage of A549-Keap1 cells in G0/G1 phase was significantly higher than that of A549-GFP cells (80.2±5.9)% vs. (67.1±0.9%)(P<0.05). Compared with the invasive A549-Keap1 cells (156.33±17.37), the number of invasive A549-GFP cells was significantly higher (306.67±22.19) in a high power field. Keap1 overexpression significantly enhanced the sensitivity of A549 cells to carboplatin and gemcitabine (P<0.01). The IC50s of carboplatin in A549-Keap1 and A549-GFP cells were (52.1±3.3) μmol/L and (107.8±12.9) μmol/L, respectively. The IC50s of gemcitabine in A549-Keap1 and A549-GFP cells were (6.8±1.2) μmol/L and (9.9±0.5) μmol/L, respectively. Keap1 overexpression significantly inhibits the expression of Nrf2 and its downstream target genes, suppresses tumor cell proliferation and metastasis, and enhances the sensitivity of A549 cells to anticancer drugs.

  9. Ultrafine particles (UFPs) from domestic wood stoves: genotoxicity in human lung carcinoma A549 cells.

    PubMed

    Marabini, Laura; Ozgen, Senem; Turacchi, Silvia; Aminti, Stefania; Arnaboldi, Francesca; Lonati, Giovanni; Fermo, Paola; Corbella, Lorenza; Valli, Gianluigi; Bernardoni, Vera; Dell'Acqua, Manuela; Vecchi, Roberta; Becagli, Silvia; Caruso, Donatella; Corrado, Galli L; Marinovich, Marina

    2017-08-01

    In this paper, results on the potential toxicity of ultrafine particles (UFPs d<100nm) emitted by the combustion of logwood and pellet (hardwood and softwood) are reported. The data were collected during the TOBICUP (TOxicity of BIomass COmbustion generated Ultrafine Particles) project, carried out by a team composed of interdisciplinary research groups. The genotoxic evaluation was performed on A549 cells (human lung carcinomacells) using UFPs whose chemical composition was assessed by a suite of analytical techniques. Comet assay and γ-H2AX evaluation show a significant DNA damage after 24h treatment. The interpretation of the results is based on the correlation among toxicological results, chemical-physical properties of UFPs, and the type and efficiency conditions in residential pellet or logwood stoves. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation.

    PubMed

    Wang, Yiqiang; Hedblom, Andreas; Koerner, Steffi K; Li, Mailin; Jernigan, Finith E; Wegiel, Barbara; Sun, Lijun

    2016-12-01

    A series of novel chalcones were synthesized by the Claisen-Schmidt condensation reaction of tetralones and 5-/6-indolecarboxaldehydes. Treatment of human lung cancer cell line harboring KRAS mutation (A549) with the chalcones induced dose-dependent apoptosis. Cell cycle analyses and Western blotting suggested the critical role of the chalcones in interrupting G2/M transition of cell cycle. SAR study demonstrated that substituent on the indole N atom significantly affects the anticancer activity of the chalcones, with methyl and ethyl providing the more active compounds (EC 50 : 110-200nM), Compound 1g was found to be >4-fold more active in the A549 cells (EC 50 : 110nM) than in prostate (PC3) or pancreatic cancer (CLR2119, PAN02) cells. Furthermore, compound 1l selectively induced apoptosis of lung cancer cells A549 (EC 50 : 0.55μM) but did not show measurable toxicity in the normal lung bronchial epithelial cells (hBEC) at doses as high as 10μM, indicating specificity towards cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Suppression of A549 cell proliferation and metastasis by calycosin via inhibition of the PKC‑α/ERK1/2 pathway: An in vitro investigation.

    PubMed

    Cheng, Xu-Dong; Gu, Jun-Fei; Yuan, Jia-Rui; Feng, Liang; Jia, Xiao-Bin

    2015-12-01

    The migration and invasion of lung cancer cells into the extracellular matrix contributes to the high mortality rates of lung cancer. The protein kinase C (PKC) and downstream signaling pathways are important in the invasion and migration of lung cancer cells. Calycosin (Cal), an effector chemical from Astragalus has been reported to affect the recurrence and metastasis of cancer cells via the regulation of the protein expression of matrix metalloproteinases (MMPs). The inhibition of Cal on the migration and invasion of A549 cells was investigated in the present study. Cell viability and apoptosis assays were performed using MTT and flow cytometric analyses. A wound healing assay and Transwell invasion assay were performed to evaluate the effect of Cal on A549 cell migration and invasion. Invasion‑associated proteins, including MMP‑2, MMP‑9, E‑cadherin (E‑cad), integrin β1, PKC‑α and extracellular signal‑regulated kinase 1/2 (ERK1/2) were detected using western blotting. In addition, PKC‑α inhibitor, AEB071, and ERK1/2 inhibitor, PD98059, were used to determine the association between the suppression of PKC‑α /ERK1/2 and invasion, MMP‑2, MMP‑9, E‑cad and integrin β1. Cal was observed to suppress cell proliferation and induce apoptosis. There were significant differences between the phorbol‑12‑myristate‑13‑acetate (TPA)‑induced A549 cells treated with Cal and the untreated cells in the rates of migration and invasion. The levels of MMP‑2, MMP‑9, E‑cad and integrin β1 in the TPA‑induced A549 cells changed markedly, compared with the untreated cells. In addition, the suppression of Cal was affected by the PKC inhibitor, AEB071, an ERK1/2 inhibitor, PD98059. The results of the present study indicated that Cal inhibited the proliferation, adhesion, migration and invasion of the TPA‑induced A549 cells. The Cal‑induced repression of PKC‑α/ERK1/2, increased the expression of E‑Cad and inhibited the expression

  12. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  13. mTOR inhibition of cardamonin on antiproliferation of A549 cells is involved in a FKBP12 independent fashion.

    PubMed

    Tang, Ying; Fang, Qi; Shi, Daohua; Niu, Peiguang; Chen, Yaoyao; Deng, Jie

    2014-03-18

    Cardamonin has previously demonstrated that it had an antiproliferative effect on vascular smooth muscle cells by inhibiting the activity of mammalian target of rapamycin (mTOR). The antiproliferative effect and the possible mechanism of combining with mTOR of cardamonin were investigated on A549 cells. Cell proliferation, cell cycle and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. mTOR and 12 kDa FK506 binding protein (FKBP12) were transfected into A549 cells by Lipofectamine. Western blots were used to examine the mTOR expressions and its activities, and the expressions of 70 kDa ribosomal S6 kinase (p70S6K), FKBP12 and Interleukin-2 (IL-2), respectively. Treated with cardamonin, the proliferation of A549 cells was inhibited. Meanwhile, cell cycle was blocked and DNA synthesis was decreased whereas cell apoptosis was promoted, and the activation of mTOR and p70S6K was decreased by cardamonin. Transfected with mTOR or FKBP12, proliferation of A549 cells was increased. Rapamycin had a similar degree of effect on antiproliferation of both transfected cells. However, the antiproliferative effect of cardamonin on mTOR transfected cells was stronger than that on FKBP12 transfected cells. Both rapamycin and cardamonin decreased the phosphorylation of mTOR and p70S6K in two kinds of transfected cells. Cardamonin had no effect on the expression of FKBP12 and IL-2, whereas the expressions were decreased by rapamycin. Cardamonin inhibited proliferation and induced apoptosis of A549 cells via mTOR. It might directly interact with mTOR independently of binding with FKBP12. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Apoptosis of human lung adenocarcinoma A549 cells induced by prodigiosin analogue obtained from an entomopathogenic bacterium Serratia marcescens.

    PubMed

    Zhou, Wei; Jin, Zhi-Xiong; Wan, Yong-Ji

    2010-12-01

    An entomopathogenic bacterial strain SCQ1 was isolated from silkworm (Bombyx mori) and identified as Serratia marcescens via 16S rRNA gene analysis. This strain produces a red pigment that causes acute septicemia of silkworm. The red pigment of strain SCQ1 was identified as prodigiosin analogue (PGA) with various reported biological activities. In this study, we found that low concentration of PGA showed significant anticancer activity in human lung adenocarcinoma A549 cells, but has little effect in human bone marrow stem cells, in vitro. By exposure to different concentrations of PGA for 24 h, morphological changes and the MTT assay showed that A549 cell line was very sensitive to PGA, with IC(50) value about 2.2 mg/L. Early stage of apoptosis was detected by flow cytometry while A549 cells were treated with PGA for 4 and 12 h, respectively. The proportion of dead cells was increased with treatment time or the concentrations of PGA, but it was inversely proportional to that of apoptotic cells. These results indicate that PGA obtained from strain SCQ1 induces apoptosis in A549 cells, but the molecular mechanisms of cell death are complicated, and the S. marcescens strain SCQ1 may serve as a source of the anticancer compound, PGA.

  15. Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer.

    PubMed

    Cai, Yong; Sheng, Zhao-Ying; Chen, Yun; Bai, Chong

    2014-01-01

    To explore the effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer (NSCLC). NSCNC cell line A549 was selected to explore the effect of Withaferin A on A549 cellular proliferation, apoptosis and the PI3K/Akt signal pathway capable of regulating tumor biological behavior by assessment of cellular proliferation, cellular apoptotic rates and cellular cycling as well as by immuno-blotting. Withaferin A could inhibit A549 cellular proliferation and the control rate was dosage-dependent (P<0.05), which also increased time-dependently with the same dosage of Withaferin A (P<0.05). The apoptotic indexes in A549 cells treated with 0, 2.5, 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A for 48 h were significantly different (P<0.05). In addition, the apoptotic rates of each group in both early and advanced stages were higher than those in 0 μmol·L-1 (P<0.05), which were evidently higher after 48 h than those after 24 h (P<0.05). A549 cells treated by Withaferin A for 48 h were markedly lower in Bcl-2 level and obviously higher in Bax and cleaved caspase-3 levels than those treated by 0 μmol·L-1 Withaferin A (P<0.05), and there were significant differences among 5, 10 and 20 μmol·L-1 Withaferin A (P<0.05). The ratios of A549 cells treated by Withaferin A for 48 h in G0/G1 stage were higher than those in 0 μmol·L-1 , while those in S and G2/M stages were obviously lower than those in G2/M stage, and there were significant differences in 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A (P<0.05). Additionally, p-Akt/Akt values were in reverse association with dosage, and the differences were significant (P<0.05). Withaferin A can inhibit the proliferation and apoptosis of A549 cells by suppressing activation of the PI3K/Akt pathways.

  16. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  17. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  18. The influence of incubation time on adenovirus quantitation in A549 cells by most probable number.

    PubMed

    Cashdollar, Jennifer L; Huff, Emma; Ryu, Hodon; Grimm, Ann C

    2016-11-01

    Cell culture based assays used to detect waterborne viruses typically call for incubating the sample for at least two weeks in order to ensure that all the culturable virus present is detected. Historically, this estimate was based, at least in part, on the length of time used for detecting poliovirus. In this study, we have examined A549 cells infected with human adenovirus type 2, and have found that a three week incubation of virus infected cells results in a higher number of detected viruses by quantal assay than what is seen after two weeks of incubation, with an average 955% increase in Most Probable Number (MPN) from 2 weeks to 3 weeks. This increase suggests that the extended incubation time is essential for accurately estimating viral titer, particularly for slow-growing viruses, UV treated samples, or samples with low titers of virus. In addition, we found that for some UV-treated samples, there was no detectable MPN at 2 weeks, but after 3 weeks, MPN values were obtained. For UV-treated samples, the average increase in MPN from 2 weeks to 3 weeks was 1401%, while untreated samples averaged a change in MPN of 674%, leading us to believe that the UV-damaged viral DNA may be able to be repaired such that viral replication then occurs. Published by Elsevier B.V.

  19. Induction of ER Stress-Mediated Apoptosis by α-Lipoic Acid in A549 Cell Lines

    PubMed Central

    Kim, Jong In; Lee, Chang Min; Park, Eok-Sung; Kim, Ki Nyun; Kim, Hyung Chul; Lee, Hae Young

    2012-01-01

    Background α-Lipoic acid (α-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of α-LA in a lung cancer cell line, A549. Materials and Methods α-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription-polymerase chain reaction analyses. Results α-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. α-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by α-LA, and the antioxidant N-acetyl-L-cysteine decreased the α-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion α-LA induced ER stress-mediated apoptosis in A549 cells via ROS. α-LA may therefore be clinically useful for treating lung cancer. PMID:22363901

  20. Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.

    PubMed

    Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo

    2018-01-01

    P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. β-elemene reverses the drug resistance of lung cancer A549/DDP cells via the mitochondrial apoptosis pathway.

    PubMed

    Yao, Cheng-Cai; Tu, Yuan-Rong; Jiang, Jie; Ye, Sheng-Fang; Du, Hao-Xin; Zhang, Yi

    2014-05-01

    β-elemene (β-ELE) is a new anticancer drug extracted from Curcuma zedoaria Roscoe and has been widely used to treat malignant tumors. Recent studies have demonstrated that β-ELE reverses the drug resistance of tumor cells. To explore the possible mechanisms of action of β-ELE, we investigated its effects on cisplatin-resistant human lung adenocarcinoma A549/DDP cells. The effects of β-ELE on the growth of A549/DDP cells in vitro were determined by MTT assay. Apoptosis was assessed by fluorescence microscopy with Hoechst 33258 staining and flow cytometry with Annexin V-FITC/PI double staining. Mitochondrial membrane potential was assessed using JC-1 fluorescence probe and laser confocal scanning microscopy, and intracellular reactive oxygen species levels were measured by 2',7'-dichlorofluorescein-diacetate staining and flow cytometry. Cytosolic glutathione content was determined using GSH kits. The expression of cytochrome c, caspase-3, procaspase-3 and the Bcl-2 family proteins was assessed by western blotting. The results demonstrated that β-ELE inhibited the proliferation of A549/DDP cells in a time- and dose-dependent manner. Furthermore, β-ELE enhanced the sensitivity of A549/DDP cells to cisplatin and reversed the drug resistance of A549/DDP cells. Consistent with a role in activating apoptosis, β-ELE decreased mitochondrial membrane potential, increased intracellular reactive oxygen species concentration and decreased the cytoplasmic glutathione levels in a time- and dose-dependent manner. The combination of β-ELE and cisplatin enhanced the protein expression of cytochrome c, caspase-3 and Bad, and reduced protein levels of Bcl-2 and procaspase-3 in the A549/DDP lung cancer cells. These results define a pathway of procaspase‑3-β-ELE function that involves decreased mitochondrial membrane potential, leading to apoptosis triggered by the release of cytochrome c into the cytoplasm and the modulation of apoptosis-related genes. The reversal of drug

  2. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog

    PubMed Central

    Warmka, Janel K.; Solberg, Eric L.; Zeliadt, Nicholette A.; Srinivasan, Balasubramanian; Charlson, Aaron T.; Xing, Chengguo; Wattenberg, Elizabeth V.

    2012-01-01

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. PMID:22771807

  3. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog.

    PubMed

    Warmka, Janel K; Solberg, Eric L; Zeliadt, Nicholette A; Srinivasan, Balasubramanian; Charlson, Aaron T; Xing, Chengguo; Wattenberg, Elizabeth V

    2012-08-03

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD₂ metabolite, 15d-PGJ₂.

    PubMed

    Wang, Jun-Jie; Mak, Oi-Tong

    2011-11-01

    PGD2 (prostaglandin D2) is a mediator in various pathophysiological processes, including inflammation and tumorigenesis. PGD2 can be converted into active metabolites and is known to activate two distinct receptors, DP (PGD2 receptor) and CRTH2/DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells). In the past, PGD2 was thought to be involved principally in the process of inflammation. However, in recent years, several studies have shown that PGD2 has anti-proliferative ability against tumorigenesis and can induce cellular apoptosis via activation of the caspase-dependent pathway in human colorectal cancer cells, leukaemia cells and eosinophils. In the lung, where PGD2 is highly released when sensitized mast cells are challenged with allergen, the mechanism of PGD2-induced apoptosis is unclear. In the present study, A549 cells, a type of NSCLC (non-small cell lung carcinoma), were treated with PGD2 under various conditions, including while blocking DP and CRTH2/DP2 with the selective antagonists BWA868C and ramatroban respectively. We report here that PGD2 induces A549 cell death through the intrinsic apoptotic pathway, although the process does not appear to involve either DP or CRTH2/DP2. Similar results were also found with H2199 cells, another type of NSCLC. We found that PGD2 metabolites induce apoptosis effectively and that 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2) is a likely candidate for the principal apoptotic inducer in PGD2-induced apoptosis in NSCLC A549 cells.

  5. MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level.

    PubMed

    Han, Yong Hwan; Park, Woo Hyun

    2010-07-01

    Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC(50) of approximately 20 microM at 24 hours. DNA flow cytometric analysis indicated that 0.5 approximately 30 microM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 microM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Delta psi m). The intracellular ROS levels including O(2) (*-) were strongly increased in 10 or 30 microM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 microM MG132-treated cells. Furthermore, 10 or 30 microM MG132 increased mitochondrial O(2) (*- ) level but 0.1, 0.5 or 1 microM MG132 decreased that. In addition, 10 or 30 microM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.

  6. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line.

    PubMed

    Zhou, Zhongping; Tang, Miaomiao; Liu, Yi; Zhang, Zhuyi; Lu, Rongzhu; Lu, Jian

    2017-04-01

    Apigenin (APG), a widely distributed flavonoid in vegetables and fruits, with low toxicity, and a nonmutagenic characteristic, has been reported to have many targets. Evidence indicates that APG can inhibit the proliferation, migration, invasion, and metastasis of some tumor cells, but the mechanism, specifically in lung cancer, is unclear. The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway regulates a diverse set of cellular functions relevant to the growth and progression of lung cancer, including proliferation, survival, migration, and invasion. Our results showed that APG exerted anti-proliferation, anti-migration, and anti-invasion effects in A549 human lung cancer cells by targeting the PI3K/Akt signaling pathway. 3-(4, 5-dimethylthiszol-2-yl)-2, 5-diphenytetrazolium bromide assay and colony formation assay showed that APG suppressed cell proliferation in a dose-dependent and time-dependent manner. Cell motility and invasiveness were assayed using a wound healing and Transwell assay, suggesting that APG inhibited the migration and invasion of A549 cells. Western blot analyses were carried out to examine the Akt signaling pathways. The results confirmed that APG decreased Akt expression and its activation. Then, cells were transfected with Akt-active and Akt-DN plasmids separately. The migration and invasion of A549 cells were significantly changed, constitutively activating Akt or knocking down Akt, indicating that APG can suppress the migration and invasion of lung cancer cells by modulating the PI3K/Akt signaling pathway. Furthermore, the results indicated that APG not only suppressed phosphorylation of Akt, thereby preventing its activation, but also inhibited its downstream gene expression of matrix metalloproteinases-9, glycogen synthase kinase-3β, and HEF1. Together, APG is a new inhibitor of Akt in lung cancer and a potential natural compound for cancer chemoprevention.

  7. Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    PubMed Central

    Srivastava, Ritesh Kumar; Rahman, Qamar; Kashyap, Mahendra Pratap; Lohani, Mohtashim; Pant, Aditya Bhushan

    2011-01-01

    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages. PMID:21980536

  8. Differential modulation of glucocorticoid action by FK506 in A549 cells.

    PubMed Central

    Croxtall, Jamie D; Paul-Clark, Mark; Van Hal, Peter Th W

    2003-01-01

    Glucocorticoids inhibit the release of eicosanoid pro-inflammatory mediators. The immunosuppressant FK506 is known to enhance many aspects of glucocorticoid action. In the present study we show that FK506 (1 microM or 10 microM) inhibits the release of arachidonic acid and prostaglandin E2 from A549 cells and also inhibits their proliferation. Simultaneous treatment of FK506 together with the glucocorticoids dexamethasone, methyl-prednisolone, fluticasone or mometasone (10 nM) enhances the growth inhibitory effect of these steroids. Furthermore, the simultaneous use of FK506 and these glucocorticoids similarly results in enhanced inhibition of arachidonic acid release. When pretreated for 2 h, FK506 enhances glucocorticoid inhibition of COX2 (cyclo-oxygenase 2) expression. However, when administered simultaneously, FK506 blocks glucocorticoid inhibition of COX2 expression. Nuclear uptake of glucocorticoid receptors mediated by glucocorticoids is also blocked by the simultaneous administration of FK506. These results suggest that the effect of simultaneous treatment of FK506 with glucocorticoids differs significantly from that where pre-treatment of the immunosuppressant is used. Recently, immunophilin interchange has been identified as a first step in glucocorticoid receptor activation following ligand activation. We show here that the FKB51 (FK506-binding protein 51)-FKB52 switch is differentially regulated by glucocorticoid and FK506 treatment strategy. PMID:12948397

  9. Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells.

    PubMed

    Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Grzanka, Alina; Grzanka, Dariusz

    2018-02-27

    The identification and development of new agents with a therapeutic potential as well as novel drug combinations are gaining the attention of scientists and clinicians as a plausible approach to improve therapeutic regimens for chemoresistant tumors. We have recently reported that the flavonoid fisetin (FIS), at physiologically attainable concentrations, acts synergistically with clinically achievable doses of paclitaxel (PTX) to produce growth inhibitory and pro-death effects on A549 human non-small cell lung cancer (NSCLC) cells. To further investigate a potential therapeutic efficacy of the combination of fisetin with paclitaxel, we decided to assess its impact on metastatic capability of A549 cells as well as its toxicity toward normal human lung fibroblast. Cell viability, cell migration, and invasion were measured by thiazolyl blue tetrazolium bromide (MTT) assay, wound healing assay, and Transwell chamber assay, respectively. The expression of metastasis-related genes was assessed with quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR). Actin and vimentin filaments were examined under the fluorescence microscope. The combination of FIS and PTX significantly reduced cancer cell migration and invasion, at least partially, through a marked rearrangement of actin and vimentin cytoskeleton and the modulation of metastasis-related genes. Most of these effects of the combination treatment were significantly greater than those of individual agents. Paclitaxel alone was even more toxic to normal cells than the combination of this drug with the flavonoid, suggesting that FIS may provide some protection against PTX-mediated cytotoxicity. The combination of FIS and PTX is expected to have a synergistic anticancer efficacy and a significant potential for the treatment of NSCLC, however, further in vitro and in vivo studies are required to confirm this preliminary evidence.

  10. Global secretome characterization of A549 human alveolar epithelial carcinoma cells during Mycoplasma pneumoniae infection

    PubMed Central

    2014-01-01

    Background Mycoplasma pneumoniae (M. pneumoniae) is one of the major etiological agents for community-acquired pneumonia (CAP) in all age groups. The early host response to M. pneumoniae infection relies on the concerted release of proteins with various biological activities. However, no comprehensive analysis of the secretory proteins has been conducted to date regarding the host response upon M. pneumoniae infection. Results We employed the liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based label-free quantitative proteomic technology to identify and characterize the members of the human alveolar epithelial carcinoma A549 cell secretome during M. pneumoniae infection. A total of 256 proteins were identified, with 113 being differentially expressed (>1.5-fold change), among which 9 were only expressed in control cells, 10 only in M. pneumoniae-treated cells, while 55 were up-regulated and 39 down-regulated by M. pneumoniae. The changed expression of some of the identified proteins was validated by RT-PCR and immunoblot analysis. Cellular localization analysis of the secretome data revealed 59.38% of the proteins were considered as “putative secretory proteins”. Functional analysis revealed that the proteins affected upon M. pneumoniae infection were mainly related to metabolic process, stress response, and immune response. We further examined the level of one up-regulated protein, IL-33, in clinical samples. The result showed that IL-33 levels were significantly higher in the plasma and bronchoalveolar lavage fluid (BALF) of M. pneumoniae pneumonia (MPP) patients. Conclusions The present study provided systematic information about the changes in the expression of secretory proteins during M. pneumoniae infection, which is useful for the discovery of specific biomarkers and targets for pharmacological intervention. PMID:24507763

  11. MLKL-PITPα signaling-mediated necroptosis contributes to cisplatin-triggered cell death in lung cancer A549 cells.

    PubMed

    Jing, Lin; Song, Fei; Liu, Zhenyu; Li, Jianghua; Wu, Bo; Fu, Zhiguang; Jiang, Jianli; Chen, Zhinan

    2018-02-01

    Necroptosis has been reported to be involved in cisplatin-induced cell death, but the mechanisms underlying the occurrence of necroptosis are not fully elucidated. In this study, we show that apart from apoptosis, cisplatin induces necroptosis in A549 cells. The alleviation of cell death by two necroptosis inhibitors-necrostatin-1 (Nec-1) and necrosulfonamide (NSA), and the phosphorylation of mixed lineage kinase domain-like protein (MLKL) at serine 358, suggest the involvement of receptor-interacting protein kinase 1 (RIPK1)-RIPK3-MLKL signaling in cisplatin-treated A549 cells. Additionally, the initiation of cisplatin-induced necroptosis relies on autocrine tumor necrosis factor alpha (TNF-α). Furthermore, we present the first evidence that phosphatidylinositol transfer protein alpha (PITPα) is involved in MLKL-mediated necroptosis by interacting with the N terminal MLKL on its sixth helix and the preceding loop, which facilitates MLKL oligomerization and plasma membrane translocation in necroptosis. Silencing of PITPα expression interferes with MLKL function and reduces cell death. Our data elucidate that cisplatin-treated lung cancer cells undergo a new type of programmed cell death called necroptosis and shed new light on how MLKL translocates to the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    SciTech Connect

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less

  13. Apatinib resensitizes cisplatin-resistant non-small cell lung carcinoma A549 cell through reversing multidrug resistance and suppressing ERK signaling pathway.

    PubMed

    Liu, Z-L; Jin, B-J; Cheng, C-G; Zhang, F-X; Wang, S-W; Wang, Y; Wu, B

    2017-12-01

    To observe the reversal effect of apatinib on the resistance to cisplatin (DDP) of A549/cisplatin (A549/DDP) cells and its relevant mechanism. A549/DDP cells were treated with the control method, apatinib alone, DDP alone and DDP combined with apatinib. The cell proliferation was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the cell clone formation assay. The cell apoptosis was detected by Hoechst 33258 staining and annexin V and propidium iodide (PI) double labeling. The changes in apoptotic proteins, multidrug resistance protein 1 (MDR1) and extracellular signal-regulated kinase (ERK) signaling pathway proteins in each group after treatment were detected by Western blotting. MTT assay results showed that compared with A549 cells, A549/DDP cells had obvious resistance to DDP. MTT assay and cell clone formation assay revealed that the tumor inhibition rate of the sub-lethal dose of apatinib (10 μM) combined with DDP was higher than that of DDP alone. The apoptosis detection results indicated that the proportion of apoptotic cells in the apatinib (10 μM) combined with DDP group was significantly increased. Western blotting results revealed that compared with that in parental A549 cells, the expression level of MDR1 in A549/DDP cells was significantly increased, and the ERK signaling pathway was activated. In the apatinib combined with DDP group, the levels of cleaved caspase-3, cleaved caspase-9 and B-cell lymphoma-2 (Bcl-2)-associated X (BAX) proteins were significantly upregulated, while the level of Bcl-2 proteins was downregulated. Apatinib could inhibit the expression of MDR1 and the activity of the ERK signaling pathway in a dose-dependent manner. Apatinib can restore the sensitivity of A549/DDP cells to DDP by down-regulating the expression level of MDR1 and inhibiting the activity of the ERK signaling pathway.

  14. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential.

    PubMed

    Sakthivel, Ravi; Malar, Dicson Sheeja; Devi, Kasi Pandima

    2018-06-13

    In the present study, the antiproliferative activity of phytol and its mechanism of action against human lung adenocarcinoma cell line A549 were studied in detail. Results showed that phytol exhibited potent antiproliferative activity against A549 cells in a dose and time-dependent manner with an IC 50 value of 70.81 ± 0.32 μM and 60.7 ± 0.47 μM at 24 and 48 h, respectively. Phytol showed no adverse toxic effect in normal human lung cells (L-132), but mild toxic effect was observed when treated with maximum dose (67 and 84 μM). No membrane-damaging effect was evidenced by PI staining and SEM analysis. The results of mitochondrial membrane potential analysis, cell cycle analysis, FT-IR and Western blotting analysis clearly demonstrated the molecular mechanism of phytol as induction of apoptosis in A549 cells, as evidenced by formation of shrinked cell morphology with membrane blebbing, depolarization of mitochondrial membrane potential, increased cell population in the sub-G0 phase, band variation in the DNA and lipid region, downregulation of Bcl-2, upregulation of Bax and the activation of caspase-9 and -3. In addition, phytol inhibited the CAM vascular growth as evidenced by CAM assay, which positively suggests that phytol has anti-angiogenic potential. Taken together, these findings clearly demonstrate the mode of action by which phytol induces cell death in A549 lung adenocarcinoma cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    PubMed

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  16. SiRNA/DOX lodeded chitosan based nanoparticles: Development, Characterization and in vitro evaluation on A549 lung cancer cell line.

    PubMed

    Seifi-Najmi, M; Hajivalili, M; Safaralizadeh, R; Sadreddini, S; Esmaeili, S; Razavi, R; Ahmadi, M; Mikaeili, H; Baradaran, B; Shams-Asenjan, K; Yousefi, M

    2016-09-30

    High-mobility group AT-hook2 (HMGA2), involved in epithelial mesenchymal transition (EMT) process, has a pivotal role in lung cancer metastasis. Lung cancer therapy with HMGA2 suppressing small interfering RNA (siRNA) has been introduced recently while doxorubicin (DOX) has been used as a frequent cancer chemotherapy agent. Both reagents have been faced with obstacles in clinic which make them ineffective. NanoParticles (NPs) provided a platform for efficient co delivery of the anticancer drugs. The aim of this study was production and in vitro characterization of different pharmacological groups (siRNA, DOX or siRNA-DOX) of carboxymethyl dextran thrimethyl chitosan nanoparticles (CMDTMChiNPs) on cytotoxicity, gene expression, apoptosis and migration of metastatic lung cancer cell line (A-549). CMDTMChiNPs were synthesized and encapsulated with siRNA, DOX or siRNA-DOX. Then the effects of HMGA2 siRNA and DOX co delivery was assessed in A549 viability and target genes (HMGA2, Ecadherin, vimentin and MMP9) by MTT and real time PCR, respectively. In addition capability of apoptosis induction and anti-migratory features of formulated NPs were analyzed by flowcytometry and wound healing assays. SiRNA-DOX-CMDTM ChiNPs approximate size were 207±5 with poly dispersity index (PDI) and zeta potential of 0.4 and 16.3±0.3, respectively. NPs loaded with DOX and siRNA were the most efficient drug formulations in A549 cell cytotoxicity, altering of EMT markers, apoptosis induction and migration inhibition. Generally our results showed that co delivery of HMGA2 siRNA and DOX by novel designed CMDTMChiNPs is a new therapeutic approach with great potential efficiency for lung cancer treatment.

  17. Oleiferoside W from the roots of Camellia oleifera C. Abel, inducing cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Jiang-Ping; Kang, Nai-Xin; Zhang, Mi-Ya; Gao, Hong-Wei; Li, Xiao-Ran; Liu, Yan-Li; Xu, Qiong-Ming; Yang, Shi-Lin

    2017-07-06

    Camellia oleifera C. Abel has been widely cultivated in China, and a group of bioactive constituents such as triterpeniod saponin have been isolated from C. oleifera C. Abel. In the current study, a new triterpeniod saponin was isolated from the EtOH extract of the roots of C. oleifera C. Abel, named as oleiferoside W, and the cytotoxic properties of oleiferoside W were evaluated in non-small cell lung cancer A549 cells. At the same time the inducing apoptosis, the depolarization of mitochondrial membrane potential (Δψ), the up-regulation of related pro-apoptotic proteins, such as cleaved-PARP, cleaved-caspase-3, and the down-regulation of anti-apoptotic marker Bcl-2/Bax were measured on oleiferoside W. Furthermore, the function, inducing the generation of reactive oxygen species (ROS) and apoptosis, of oleiferoside W could be reversed by N-acetylcysteine (NAC). In conclusion, our findings showed that oleiferoside W induced apoptosis involving mitochondrial pathway and increasing intracellular ROS production in the A549 cells, suggesting that oleiferoside W may have the possibility to be a useful anticancer agent for therapy in lung cancer.

  18. TU-H-CAMPUS-TeP3-01: Gold Nanoparticle-Enhanced Radiation Therapy in In Vitro A549 Lung Carcinoma: Studies in Both Traditional Monolayer and Three Dimensional Cell Culture Models

    SciTech Connect

    Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W

    Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less

  19. Crocidolite asbestos causes an induction of p53 and apoptosis in cultured A-549 lung carcinoma cells.

    PubMed

    Pääkkö, P; Rämet, M; Vähäkangas, K; Korpela, N; Soini, Y; Turunen, S; Jaworska, M; Gillissen, A

    1998-01-01

    A number of genotoxic chemicals and agents, such as benzo(a)pyrene and ultraviolet light, are able to induce nuclear accumulation of p53 protein. Usually, this response is transient and a consequence of stabilization of the wild-type p53 protein. After withdrawal of the exposure, the amount of p53 protein returns to a normal level within hours or a few days. We have studied the p53 response to the exposure of crocidolite asbestos in A-549 lung carcinoma cells using three different methods, i.e., p53 immunohistochemistry, Western blotting and metabolic labelling followed by p53 immunoprecipitation. With these techniques we demonstrate a dose-dependent p53 nuclear response to crocidolite exposure. The half-life of p53 protein in A-549 lung carcinoma cells cultured in serum-free media increased from 30 up to 80 min, and the protein reacted with a wild-type specific antibody suggesting that it was in a wild-type conformation. In situ 3'-end labelling of A-549 cells demonstrated a dose-dependent increase in apoptotic activity. Our data support the idea that increased apoptotic activity, induced by crocidolite, is mediated by p53.

  20. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells.

    PubMed

    Zhang, W; Bai, W; Zhang, W

    2014-08-01

    Curcumin, a natural phytochemical, exhibits potent anticancer activities. Here, we sought to determine the molecular mechanisms underlying the cytotoxic effects of curcumin against human non-small cell lung cancer (NSCLC) cells. MTT assay and annexin-V/PI staining were used to analyze the effects of curcumin on the proliferation and apoptosis of A549 cells. The expression of microRNA-21 in curcumin-treated A549 cells was measured by quantitative real-time polymerase chain reaction assay. The protein level of phosphatase and tensin homolog (PTEN), a putative target of microRNA-21, was determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA was performed to modulate the expression of microRNA-21 and PTEN under the treatment of curcumin. Curcumin at 20-40 μM inhibited cell proliferation and induced apoptosis in A549 cells. Curcumin treatment produced a dose-dependent and significant (P < 0.05) suppression of microRNA-21 expression, compared to untreated A549 cells. Moreover, the protein level of PTEN, a putative target of microRNA-21, was significantly elevated in curcumin-treated A549 cells, as determined by Western blot analysis. Transfection of A549 cells with microRNA-21 mimic or PTEN small interfering RNA significantly (P < 0.05) reversed the growth suppression and apoptosis induction by curcumin, compared to corresponding controls. Our data suggest a novel molecular mechanism in which inhibition of microRNA-21 and upregulation of PTEN mediate the anticancer activities of curcumin in NSCLC cells. Suppression of microRNA-21 may thus have therapeutic benefits against this malignancy.

  1. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells.

    PubMed

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  2. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  3. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    SciTech Connect

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com; Zhang, Tao; Ti, Xinyu

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities ofmore » curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.« less

  4. Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Boonnak, Nawong; Kaowinn, Sirichat; Chung, Young-Hwa

    2018-02-15

    Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4. Copyright © 2017. Published by Elsevier Ltd.

  5. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells.

    PubMed

    Byrd, Matthew S; Pang, Bing; Mishra, Meenu; Swords, W Edward; Wozniak, Daniel J

    2010-06-29

    In order for the opportunistic Gram-negative pathogen Pseudomonas aeruginosa to cause an airway infection, the pathogen interacts with epithelial cells and the overlying mucous layer. We examined the contribution of the biofilm polysaccharide Psl to epithelial cell adherence and the impact of Psl on proinflammatory signaling by flagellin. Psl has been implicated in the initial attachment of P. aeruginosa to biotic and abiotic surfaces, but its direct role in pathogenesis has not been evaluated (L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak, J. Bacteriol. 188:8213-8221, 2006). Using an NF-kappaB luciferase reporter system in the human epithelial cell line A549, we show that both Psl and flagellin are necessary for full activation of NF-kappaB and production of the interleukin 8 (IL-8) chemokine. We demonstrate that Psl does not directly stimulate NF-kappaB activity, but indirectly as a result of increasing contact between bacterial cells and epithelial cells, it facilitates flagellin-mediated proinflammatory signaling. We confirm differential adherence of Psl and/or flagellin mutants by scanning electron microscopy and identify Psl-dependent membrane structures that may participate in adherence. Although we hypothesized that Psl would protect P. aeruginosa from recognition by the epithelial cell line A549, we instead observed a positive role for Psl in flagellin-mediated NF-kappaB activation, likely as a result of increasing contact between bacterial cells and epithelial cells.

  6. Exposure to diethylhexyl phthalate (DEHP) and monoethylhexyl phthalate (MEHP) promotes the loss of alveolar epithelial phenotype of A549 cells.

    PubMed

    Rafael-Vázquez, L; García-Trejo, Semiramis; Aztatzi-Aguilar, O G; Bazán-Perkins, B; Quintanilla-Vega, B

    2018-05-17

    Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that is metabolized to mono(2-ethylhexyl) phthalate (MEHP). Inhalation is an important exposure route for both phthalates, and their effects on lungs include inflammation, alteration of postnatal maturation (alveolarization), enlarged airspaces and cell differentiation changes, suggesting that alveolar epithelial cells-2 (AEC) are targets of phthalates. This study evaluated the cell progression, epithelial and mesenchymal markers, including surfactant secretion in A549 cells (AEC) that were exposed to DEHP (1-100 μM) or MEHP (1-50 μM) for 24-72 h. The results showed an increased cell proliferation at all concentrations of each phthalate at 24 and 48 h. Cell migration showed a concentration-dependent increase at 24 and 48 h of exposure to either phthalate and enlarged structures were seen. Decreased levels of both surfactants (SP-B/SP-C) were observed after the exposure to either phthalate at 48 h, and of SP-C positive cells exposed to MEHP, suggesting a loss of the epithelial phenotype. While a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker fibronectin were observed following exposure to either phthalate. Our results showed that DEHP and MEHP altered the structure and migration of A549 cells and promoted the loss of the epithelial phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway.

    PubMed

    Jiang, Ying; Shan, Shigang; Chi, Linfeng; Zhang, Guanglin; Gao, Xiangjing; Li, Hongjuan; Zhu, Xinqiang; Yang, Jun

    2016-03-01

    Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.

  8. Predictive role of computer simulation in assessing signaling pathways of crizotinib-treated A549 lung cancer cells.

    PubMed

    Xia, Pu; Mou, Fei-Fei; Wang, Li-Wei

    2012-01-01

    Non-small-cell lung cancer (NSCLC) is a leading cause of cancer deaths worldwide. Crizotinib has been approved by the U.S. Food and Drug Administration for the treatment of patients with advanced NSCLC. However, understanding of mechanisms of action is still limited. In our studies, we confirmed crizotinib-induced apoptosis in A549 lung cancer cells. In order to assess mechanisms, small molecular docking technology was used as a preliminary simulation of signaling pathways. Interesting, our results of experiments were consistent with the results of computer simulation. This indicates that small molecular docking technology should find wide use for its reliability and convenience.

  9. Increased levels of the long noncoding RNA, HOXA-AS3, promote proliferation of A549 cells.

    PubMed

    Zhang, Hongyue; Liu, Ying; Yan, Lixin; Zhang, Min; Yu, Xiufeng; Du, Wei; Wang, Siqi; Li, Qiaozhi; Chen, He; Zhang, Yafeng; Sun, Hanliang; Tang, Zhidong; Zhu, Daling

    2018-06-13

    Many long noncoding RNAs (lncRNAs) have been identified as powerful regulators of lung adenocarcinoma (LAD). However, the role of HOXA-AS3, a novel lncRNA, in LAD is largely unknown. In this study, we showed that HOXA-AS3 was significantly upregulated in LAD tissues and A549 cells. After knockdown of HOXA-AS3, cell proliferation, migration, and invasion were inhibited. Xenografts derived from A549 cells transfected with shRNA/HOXA-AS3 had significantly lower tumor weights and smaller tumor volumes. We also demonstrated that HOXA-AS3 increased HOXA6 mRNA stability by forming an RNA duplex. In addition, HOXA6 promoted cell proliferation, migration, and invasion in vitro. Using a RNA pull-down assay, we found that HOXA-AS3 bonded with NF110, which regulated the cell localization of HOXA-AS3. Moreover, histone acetylation was involved in upregulation of HOXA-AS3. These results demonstrate that HOXA-AS3 was activated in LAD and supported cancer cell progression. Therefore, inhibition of HOXA-AS3 could be an effective targeted therapy for patients with LAD.

  10. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    PubMed

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  11. Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: Involvement of ATM pathway

    SciTech Connect

    Suzuki, Katsura; Inageda, Kiyoshi; Nishitai, Gen

    2007-04-01

    When A549 cells were exposed to sodium metavanadate (NaVO{sub 3}), the pentavalent species of vanadium (vanadate), phosphorylation of p53 protein at Ser15 was found in a time (8-48 h)- and dose (10-200 {mu}M)-dependent manner. After the incubation with 50 or 100 {mu}M NaVO{sub 3} for 48 h, accumulation of p53 protein was accompanied with Ser15 phosphorylation. Among serines in p53 protein immunoprecipitated from A549 cells treated with 100 {mu}M NaVO{sub 3} for 48 h, only Ser15 was markedly phosphorylated. Treatment with other vanadate compounds, sodium orthovanadate (Na{sub 3}VO{sub 4}) and ammonium metavanadate (NH{sub 4}VO{sub 3}), also induced Ser15 phosphorylation andmore » accumulation of p53 protein. While phosphorylation of extracellular signal-regulated protein kinase (ERK) was found in cells treated with NaVO{sub 3}, treatment with U0126 did not suppress Ser15 phosphorylation. On the other hand, treatment with wortmannin or caffeine, the inhibitors to phosphatidylinositol 3-kinase related kinases (PIKKs), suppressed both NaVO{sub 3}-induced Ser15 phosphorylation and accumulation of p53 protein. The silencing of ataxia telangiectasia mutated (ATM) expression using short-interference RNA resulted in the marked suppression of Ser15 phosphorylation in A549 cells exposed to NaVO{sub 3}. However, treatment with antioxidants such as catalase and N-acetylcysteine did not suppress NaVO{sub 3}-induced Ser15 phosphorylation. Transcriptional activation of p53 and DNA fragmentation in A549 cells treated with NaVO{sub 3} were suppressed only slightly by S15A mutation, suggesting that Ser15 phosphorylation is not essential for these responses. The present results showed that vanadate induces the phosphorylation of p53 at Ser15 depending on ATM, one of the members of PIKK family, in this human pulmonary epithelial cell line.« less

  12. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells.

    PubMed

    Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki

    2018-04-01

    Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

  13. Comparative physicochemical and biological characterization of NIST Interim Reference Material PM2.5 and SRM 1648 in human A549 and mouse RAW264.7 cells.

    PubMed

    Mitkus, Robert J; Powell, Jan L; Zeisler, Rolf; Squibb, Katherine S

    2013-12-01

    The epidemiological association between exposure to fine particulate matter (PM2.5) and adverse health effects is well-known. Here we report the size distribution, metals content, endotoxin content, and biological activity of National Institute of Standards and Technology (NIST) Interim Reference Material (RM) PM2.5. Biological activity was measured in vitro by effects on cell viability and the release of four inflammatory immune mediators, from human A549 alveolar epithelial cells or murine RAW264.7 monocytes. A dose range covering three orders of magnitude (1-1000μg/mL) was tested, and biological activity was compared to an existing Standard Reference Material (SRM) for urban PM (NIST SRM 1648). Robust release of IL-8 and MCP-1 from A549 cells was observed in response to IRM PM2.5 exposures. Significant TNF-α, but not IL-6, secretion from RAW264.7 cells was observed in response to both IRM PM2.5 and SRM 1648 particle types. Cytokine or chemokine release at high doses often occurred in the presence of cytotoxicity, likely as a result of externalization of preformed mediator. Our results are consistent with a local cytotoxic and pro-inflammatory mechanism of response to exposure to inhaled ambient PM2.5 and reinforce the continued relevance of in vitro assays for mechanistic research in PM toxicology. Our study furthers the goal of developing reference samples of environmentally relevant particulate matter of various sizes that can be used for hypothesis testing by multiple investigators. Published by Elsevier Ltd.

  14. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way.

    PubMed

    Xie, Jun; Liu, Jia-Hui; Liu, Heng; Liao, Xiao-Zhong; Chen, Yuling; Lin, Mei-Gui; Gu, Yue-Yu; Liu, Tao-Li; Wang, Dong-Mei; Ge, Hui; Mo, Sui-Lin

    2016-11-18

    The study was designed to develop a platform to verify whether the extract of herbs combined with chemotherapy drugs play a synergistic role in anti-tumor effects, and to provide experimental evidence and theoretical reference for finding new effective sensitizers. Inhibition of tanshinone IIA and adriamycin on the proliferation of A549, PC9 and HLF cells were assessed by CCK8 assays. The combination index (CI) was calculated with the Chou-Talalay method, based on the median-effect principle. Migration and invasion ability of A549 cells were determined by wound healing assay and transwell assay. Flow cytometry was used to detect the cell apoptosis and the distribution of cell cycles. TUNEL staining was used to detect the apoptotic cells. Immunofluorescence staining was used to detect the expression of Cleaved Caspase-3. Western blotting was used to detect the proteins expression of relative apoptotic signal pathways. CDOCKER module in DS 2.5 was used to detect the binding modes of the drugs and the proteins. Both tanshinone IIA and adriamycin could inhibit the growth of A549, PC9, and HLF cells in a dose- and time-dependent manner, while the proliferative inhibition effect of tanshinone IIA on cells was much weaker than that of adriamycin. Different from the cancer cells, HLF cells displayed a stronger sensitivity to adriamycin, and a weaker sensitivity to tanshinone IIA. When tanshinone IIA combined with adriamycin at a ratio of 20:1, they exhibited a synergistic anti-proliferation effect on A549 and PC9 cells, but not in HLF cells. Tanshinone IIA combined with adriamycin could synergistically inhibit migration, induce apoptosis and arrest cell cycle at the S and G2 phases in A549 cells. Both groups of the single drug treatment and the drug combination up-regulated the expressions of Cleaved Caspase-3 and Bax, but down-regulated the expressions of VEGF, VEGFR2, p-PI3K, p-Akt, Bcl-2, and Caspase-3 protein. Compared with the single drug treatment groups, the drug

  15. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    PubMed

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Protein alkylation, transcriptional responses and cytochrome c release during acrolein toxicity in A549 cells: influence of nucleophilic culture media constituents.

    PubMed

    Thompson, Colin A; Burcham, Philip C

    2008-06-01

    Acrolein is a toxic combustion product that elicits apoptotic and/or necrotic cell death depending on the conditions under which exposure occurs. As a strong electrophile, side-reactions with nucleophilic media constituents seem likely to accompany study of its toxicity in vitro, but these reactions are poorly characterized. We have thus examined the effect of media composition on the toxicity of acrolein in A549 cells. Cells were exposed to acrolein in either Dulbecco's buffered saline (DBS) or F12 supplemented with various concentrations of fetal bovine serum. Cell viability was assessed using the MTT assay, while heme oxygenase-1 (HO-1) and cytoplasmic cytochrome c were measured as respective markers of transcriptional response and apoptosis. Protein damage was evaluated using the protein carbonyl assay. Compared to F12 media (with or without serum), maximal cell death as evaluated using the MTT assay, as well as adduction of intracellular proteins, occurred when cells were exposed to acrolein in DBS. In contrast, cytochrome c release was maximal in cells exposed to acrolein in serum-containing F12, conditions which inhibited protein modification and overt cell death. These findings highlight the need for careful attention to experimental conditions when conducting in vitro toxicological studies of reactive substances.

  17. Cytotoxicity and genotoxicity of nanosilver in stable GADD45α promoter-driven luciferase reporter HepG2 and A549 cells.

    PubMed

    Che, Bizhong; Luo, Qiulin; Zhai, Bingzhong; Fan, Guoqiang; Liu, Zhiyong; Cheng, Kaiming; Xin, Lili

    2017-09-01

    The intense commercial application of silver nanoparticles (AgNPs) has been raising concerns about their potential adverse health effects to human. This study aimed to explore the potency of AgNPs to induce GADD45α gene, an important stress sensor, and its relationships with the cytotoxicity and genotoxicity elicited by AgNPs. Two established HepG2 and A549 cell lines containing the GADD45α promoter-driven luciferase reporter were treated with increasing concentrations of AgNPs for 48 hours. After the treatment, transcriptional activation of GADD45α indicated by luciferase activity, cell viability, cell cycle arrest, and levels of genotoxicity were determined. The uptake and intracellular localization of AgNPs, cellular Ag doses as well as Ag + release were also detected. AgNPs could activate GADD45α gene at the transcriptional level as demonstrated by the dose-dependent increases in luciferase activity in both the reporter cells. The relative luciferase activity was greater than 12× the control level in HepG2-luciferase cells at the highest concentration tested where the cell viability decreased to 17.0% of the control. These results was generally in accordance with the positive responses in cytotoxicity, cell cycle arrest of Sub G1 and G2/M phase, Olive tail moment, micronuclei frequency, and the cellular Ag content. The cytotoxicity and genotoxicity of AgNPs seems to occur mainly via particles uptake and the subsequent liberation of ions inside the cells. And furthermore, the GADD45α promoter-driven luciferase reporter cells, especially the HepG2-luciferase cells, could provide a new and valuable tool for predicting nanomaterials genotoxicity in humans. © 2017 Wiley Periodicals, Inc.

  18. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    PubMed

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  19. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells

    PubMed Central

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  20. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    PubMed

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  1. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    PubMed

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL -1 . Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL -1 . The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL -1 . This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chrysophanol-induced cell death (necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential.

    PubMed

    Ni, Chien-Hang; Yu, Chun-Shu; Lu, Hsu-Feng; Yang, Jai-Sing; Huang, Hui-Ying; Chen, Po-Yuan; Wu, Shin-Hwar; Ip, Siu-Wan; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-05-01

    Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨm ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 740-749, 2014. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  3. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  4. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  5. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    PubMed

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  6. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    PubMed Central

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189

  7. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    PubMed

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  8. Aqueous extract of Taxus chinensis (Pilger) Rehd inhibits lung carcinoma A549 cells through the epidermal growth factor receptor/mitogen-activated protein kinase pathway in vitro and in vivo.

    PubMed

    Shu, Qijin; Shen, Minhe; Wang, Binbin; Cui, Qingli; Zhou, Xiaoying; Zhu, Luming

    2014-06-01

    To explore the anticancer mechanism of aqueous extract of Taxus Chinensis (Pilger) Rehd (AETC). The serum pharmacological method was used to avoid interference from administration of the crude medicinal herbs. Eight purebred New Zealand rabbits were used for preparation of serum containing various concentrations of AETC. Forty-eight Balb/c-nu mice were used for in vivo experiments. The effects of serum containing AETC on the proliferation of A549 cells and expression levels of the epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway-related proteins in vitro were investigated. Additionally, the effects on the growth of A549 xenografts in nude mice, and expression levels of the EGFR/MAPK pathway-related proteins in the xenografts, were investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the serum containing AETC significantly decreased the viability of A549 cells in a dose-dependent manner. Western blot showed that the serum containing various concentrations of AETC strongly reduced the levels of phospho-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinasel/2 (ERK1/2) while it increased the level of p-p38. However, no significant effects on the expression levels of JNK, ERK1/2, and p38 MAPK were found. In addition, an anticancer effect from AETC was observed in vivo in the Balb/c-nu mice bearing A549 xenografts. AETC has significant effects on the growth of A549 xenografts and on the activity of the EGFR/MAPK pathway. Therefore, AETC may be beneficial in lung carcinoma treatment.

  9. The Pseudomonas aeruginosa Exopolysaccharide Psl Facilitates Surface Adherence and NF-κB Activation in A549 Cells

    PubMed Central

    Byrd, Matthew S.; Pang, Bing; Mishra, Meenu; Swords, W. Edward; Wozniak, Daniel J.

    2010-01-01

    In order for the opportunistic Gram-negative pathogen Pseudomonas aeruginosa to cause an airway infection, the pathogen interacts with epithelial cells and the overlying mucous layer. We examined the contribution of the biofilm polysaccharide Psl to epithelial cell adherence and the impact of Psl on proinflammatory signaling by flagellin. Psl has been implicated in the initial attachment of P. aeruginosa to biotic and abiotic surfaces, but its direct role in pathogenesis has not been evaluated (L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak, J. Bacteriol. 188:8213–8221, 2006). Using an NF-κB luciferase reporter system in the human epithelial cell line A549, we show that both Psl and flagellin are necessary for full activation of NF-κB and production of the interleukin 8 (IL-8) chemokine. We demonstrate that Psl does not directly stimulate NF-κB activity, but indirectly as a result of increasing contact between bacterial cells and epithelial cells, it facilitates flagellin-mediated proinflammatory signaling. We confirm differential adherence of Psl and/or flagellin mutants by scanning electron microscopy and identify Psl-dependent membrane structures that may participate in adherence. Although we hypothesized that Psl would protect P. aeruginosa from recognition by the epithelial cell line A549, we instead observed a positive role for Psl in flagellin-mediated NF-κB activation, likely as a result of increasing contact between bacterial cells and epithelial cells. PMID:20802825

  10. Perfluorocarbon reduces cell damage from blast injury by inhibiting signal paths of NF-κB, MAPK and Bcl-2/Bax signaling pathway in A549 cells

    PubMed Central

    Li, Huaidong; Li, Chunsun; Yang, Zhen; Li, Yanqin; She, Danyang; Cao, Lu; Wang, Wenjie; Liu, Changlin; Chen, Liangan

    2017-01-01

    Background and objective Blast lung injury is a common type of blast injury and has very high mortality. Therefore, research to identify medical therapies for blast injury is important. Perfluorocarbon (PFC) is used to improve gas exchange in diseased lungs and has anti-inflammatory functions in vitro and in vivo. The aim of this study was to determine whether PFC reduces damage to A549 cells caused by blast injury and to elucidate its possible mechanisms of action. Study design and methods A549 alveolar epithelial cells exposed to blast waves were treated with and without PFC. Morphological changes and apoptosis of A549 cells were recorded. PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure the mRNA or protein levels of IL-1β, IL-6 and TNF-α. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity levels were detected. Western blot was used to quantify the expression of NF-κB, Bax, Bcl-2, cleaved caspase-3 and MAPK cell signaling proteins. Results A549 cells exposed to blast wave shrank, with less cell-cell contact. The morphological change of A549 cells exposed to blast waves were alleviated by PFC. PFC significantly inhibited the apoptosis of A549 cells exposed to blast waves. IL-1β, IL-6 and TNF-α cytokine and mRNA expression levels were significantly inhibited by PFC. PFC significantly increased MDA levels and decreased SOD activity levels. Further studies indicated that NF-κB, Bax, caspase-3, phospho-p38, phosphor-ERK and phosphor-JNK proteins were also suppressed by PFC. The quantity of Bcl-2 protein was increased by PFC. Conclusion Our research showed that PFC reduced A549 cell damage caused by blast injury. The potential mechanism may be associated with the following signaling pathways: 1) the signaling pathways of NF-κB and MAPK, which inhibit inflammation and reactive oxygen species (ROS); and 2) the signaling pathways of Bcl-2/Bax and caspase-3, which inhibit apoptosis. PMID:28323898

  11. Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway

    PubMed Central

    2011-01-01

    Background To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. Methods Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluorescent microscopy. The expressions of Cyclin B1, p-Cdc2, Bcl-2, Bax, t-Akt and p-Akt were evaluated by Western blotting. Results Osthole inhibited the growth of human lung cancer A549 cells by inducing G2/M arrest and apoptosis. Western blotting demonstrated that Osthole down-regulated the expressions of Cyclin B1, p-Cdc2 and Bcl-2 and up-regulated the expressions of Bax in A549 cells. Inhibition of PI3K/Akt signaling pathway was also observed after treating A549 cells with Osthole. Conclusions Our findings suggest that Osthole may have a therapeutic application in the treatment of human lung cancer. PMID:21447176

  12. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    PubMed

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  13. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    PubMed

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    PubMed

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-04-30

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.

  15. TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ.

    PubMed

    Qin, Xia; Qiu, Feng; Zou, Zhen

    2017-11-04

    Lung cancer, in particular, non-small cell lung cancer (NSCLC), is the leading cause of cancer-related mortality. Cis-Diamminedichloroplatinum (cisplatin, CDDP) as first-line chemotherapy for NSCLC, but resistance occurs frequently. We previously reported that Tripartite motif protein 25 (TRIM25) was highly expressed in cisplatin-resistant human lung adenocarcinoma A549 cells (A549/CDDP) in comparison with its parental A549 cells. Herein, we take a further step to demonstrate the association of TRIM25 and cisplatin resistance and also the underlying mechanisms. Knockdown of TRIM25 by RNA interference in A549/CDDP cells decreased half maximal inhibitory concentration (IC 50 ) values and promoted apoptosis in response to cisplatin, whereas overexpression of TRIM25 had opposite effects. More importantly, we found that concomitant knockdown of 14-3-3σ and TRIM25 absolutely reversed the decreased MDM2, increased p53, increased cleaved-Capsese3 and decreased IC 50 value induced by knockdown of TRIM25 individually, suggesting that TRIM25 mediated cisplatin resistance primarily through downregulation of 14-3-3σ. Our results indicate that TRIM25 is associated with cisplatin resistance and 14-3-3σ-MDM2-p53 signaling pathway is involved in this process, suggesting targeting TRIM25 may be a potential strategy for the reversal of cisplatin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-03-01

    Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

  17. 4-Methoxychalcone Enhances Cisplatin-Induced Oxidative Stress and Cytotoxicity by Inhibiting the Nrf2/ARE-Mediated Defense Mechanism in A549 Lung Cancer Cells

    PubMed Central

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling. PMID:24046186

  18. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    PubMed

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  19. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    PubMed Central

    2012-01-01

    Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548

  20. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    SciTech Connect

    Yun, Hong Shik; Hong, Eun-Hee; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotypemore » of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.« less

  1. Ultra-sensitive assay for paclitaxel in intracellular compartments of A549 cells using liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Tingting; Ma, Wenxiao; Sun, Yantong; Yang, Yan; Zhang, Weiping; Fawcett, J Paul; Du, Hongwei; Gu, Jingkai

    2013-01-01

    A high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the determination of paclitaxel in intracellular compartments using docetaxel as internal standard (IS) has been developed and validated. A549 cancer cells (10(6)) were incubated with paclitaxel (2ng/mL) for up to 4h and then subjected to sequential extraction of cytosolic, membrane/organelle, nuclear and cytoskeleton soluble protein. Fractions were ultrasonicated to release protein bound paclitaxel after which drug was extracted using liquid-liquid extraction with diethyl ether:dichloromethane (2:1, v/v). Chromatographic separation was then carried out on an Ascentis Express C18 column (50mm×4.6mm, 2.7μm) with a mobile phase of acetonitrile:0.1% formic acid in water (50:50, v/v). Detection involved electrospray positive ionization followed by multiple reactions monitoring of the precursor-to-product ion transitions of paclitaxel at m/z 854.4→286.3 and docetaxel at m/z 808.6→226.1. Assay validation based on samples of total cell extract in the same buffer as protein fractions showed the assay was linear over the range 2-600pg/mL with intra- and inter-day precision (as relative standard deviation) and accuracy (as relative error) of <7% and <±12%, respectively. Recovery was approximately 70% and matrix effects were minimal. The distribution of paclitaxel in subcellular components of A549 cancer cells was mainly into the cytoskeletal compartment. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    PubMed Central

    Boost, Kim A; Sadik, Christian D; Bachmann, Malte; Zwissler, Bernhard; Pfeilschifter, Josef; Mühl, Heiko

    2008-01-01

    Background Production of interferon (IFN)-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL)-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8. PMID:18801189

  3. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  4. The Chromone Alkaloid, Rohitukine, Affords Anti-Cancer Activity via Modulating Apoptosis Pathways in A549 Cell Line and Yeast Mitogen Activated Protein Kinase (MAPK) Pathway

    PubMed Central

    Safia; Kamil, Mohd; Jadiya, Pooja; Sheikh, Saba; Haque, Ejazul; Nazir, Aamir; Lakshmi, Vijai; Mir, Snober S.

    2015-01-01

    The field of cancer research and treatment has made significant progress, yet we are far from having completely safe, efficient and specific therapies that target cancer cells and spare the healthy tissues. Natural compounds may reduce the problems related to cancer treatment. Currently, many plant products are being used to treat cancer. In this study, Rohitukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum, was investigated for cytotoxic properties against budding yeast as well as against lung cancer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK pathways as yeast probably represents the experimental model where the organization and regulation of MAPK pathways are best understood. MAPK are evolutionarily conserved protein kinases that transfer extracellular signals to the machinery controlling essential cellular processes like growth, migration, differentiation, cell division and apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the important network of cellular communication, a critical process that gets awry in cancer. Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae encodes five MAPKs involved in control of distinct cellular responses such as growth, differentiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1 which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively. We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and also determined the effects of drug on generation of reactive oxygen species, induction of apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug. The results of this study show a differential effect in the activity of drug between the WT, Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we investigated Rohitukine induced cytotoxic

  5. Mechanisms underlying regulation of cell cycle and apoptosis by hnRNP B1 in human lung adenocarcinoma A549 cells.

    PubMed

    Han, Juan; Tang, Feng-ming; Pu, Dan; Xu, Dan; Wang, Tao; Li, Weimin

    2014-01-01

    Overexpression of heterogeneous nuclear ribonucleoprotein B1 (hnRNP B1), a nuclear RNA binding protein, has been reported to occur in early-stage lung cancer and in premalignant lesions. DNA-dependent protein kinase (DNA-PK) is known to be involved in the repair of double-strand DNA breaks. Reduced capacity to repair DNA has been associated with the risk of lung cancer. We investigated a link between hnRNP B1 and DNA-PK and their effects on proliferation, cell cycle, and apoptosis in the human lung adenocarcinoma cell line A549. We found that hnRNP B1 and DNA-PK interact with each other in a complex fashion. Reducing hnRNP B1 expression in A549 cells with the use of RNAi led to upregulation of p53 activity through upregulation of DNA-PK activity but without inducing p53 expression. Further, suppression of hnRNP B1 in A549 cells slowed cell proliferation, promoted apoptosis, and induced cell cycle arrest at the G1 stage. The presence of NU7026 reduced the arrest of cells at the G1 stage and reduced the apoptosis rate while promoting cell growth. Taken together, our results demonstrate that by regulating DNA-PK activity, hnRNP B1 can affect p53-mediated cell cycle progression and apoptosis, resulting in greater cell survival and subsequent proliferation.

  6. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    PubMed Central

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  7. Effects of quercetin on CDK4 mRNA and protein expression in A549 cells infected by H1N1

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; LIN, YUAN; GU, LIGANG; HAN, MEI; YANG, ZHIWEI; ZHANG, YANLI; MA, RUI; WANG, LI; WANG, ZHISHENG

    2013-01-01

    This study was conducted to investigate the effects of quercetin on the expression of cyclin-dependent kinase (CDK4) mRNA and protein in A549 lung epithelial tumor cells infected by H1N1. First, the Thiazolyl Blue Tetrazolium Bromide (MTT) method was used to determine H1N1 virulence, quercetin cytotoxicity and inhibition of the cytopathic effect of H1N1 on A549 cells by quercetin. Subsequently, 100 TCID50 H1N1 was used to infect A549 cells for 2 h prior to culture in maintenance media containing 10 mg/l quercetin. After 4, 12, 24 and 48 h of culture, the cells were collected and total RNA and protein were extracted. Fluorescent quantitative polymerase chain reaction and western blot analysis were then performed to assess the expression of CDK4 mRNA and protein. The experiment demonstrated that the TCID50 of H1N1 in A549 cells was 10−4.75, the maximum non-toxic concentration of quercetin in A549 cells was 30–60 mg/l and the minimum effective concentration of quercetin for the inhibition of the H1N1 cytopathic effect on A549 cells was 10 mg/l. The results indicated that quercetin may significantly inhibit CDK4 mRNA and protein overexpression caused by H1N1 within 4–48 h. In conclusion, quercetin may protect against H1N1 infection by effectively reducing the mRNA and protein expression of CDK4 caused by H1N1 infection. PMID:24649026

  8. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    PubMed

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-05

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    SciTech Connect

    Liu, Juntao; Mao, Zhangfan; Huang, Jie

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatmentsmore » that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells

  10. Effects of exogenous IL-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T cells.

    PubMed

    Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan

    2018-02-14

    This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.

  11. An imaging flow cytometry method to assess ricin trafficking in A549 human lung epithelial cells.

    PubMed

    Jenner, Dominic; Chong, Damien; Walker, Nicola; Green, A Christopher

    2018-02-01

    The endocytosis and trafficking of ricin in mammalian cells is an important area of research for those producing ricin anti-toxins and other ricin therapeutics. Ricin trafficking is usually observed by fluorescence microscopy techniques. This gives good resolution and leads to a detailed understanding of the internal movement of ricin within cells. However, microscopy techniques are often hampered by complex analysis and quantification techniques, and the inability to look at ricin trafficking in large populations of cells. In these studies we have directly labelled ricin and assessed if its trafficking can be observed using Imaging Flow Cytometry (IFC) both to the cytoplasmic region of cells and specifically to the Golgi apparatus. Using IDEAS® data analysis software the specific fluorescence location of the ricin within the cells was analysed. Then, using cytoplasmic masking techniques to quantify the number of cells with endocytosed cytoplasmic ricin or cells with Golgi-associated ricin, kinetic endocytosis curves were generated. Here we present, to the authors' knowledge, the first example of using imaging flow cytometry for evaluating the subcellular transport of protein cargo, using the trafficking of ricin toxin in lung cells as a model. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  12. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells.

    PubMed

    Huang, Zhuqing; Yang, Guotao; Shen, Tao; Wang, Xiaoning; Li, Haizhen; Ren, Dongmei

    2017-05-01

    Dehydrobruceine B (DHB) is a quassinoid isolated from Brucea javanica. We have shown previously that DHB induced apoptosis on two kinds of lung cancer cell lines, A549 and NCI-H292. In the present study, we investigated the interactions of DHB and cisplatin (CDDP) on apoptotic-related cancer cell death. Synergistic effects on cell proliferation and apoptosis were observed when A549 cells were treated with DHB plus CDDP. DHB combined CDDP exposure increased depolarization of mitochondrial membrane potential (MMP) and release of cytochrome c from mitochondria into the cytoplasm. The combination treatment also enhanced protein expression of Bax, reduced the protein levels of Bcl-xL and Bcl-2, and increased the cleavage of caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP). These results indicated that DHB sensitized A549 cells to cisplatin by regulating the mitochondrial apoptotic pathway. High constitutive expression of Nrf2 was found in A549 cells, which enhance the resistance of cancer cells to chemotherapeutic agents including cisplatin. DHB reduced the protein levels of Nrf2 and its target genes, which may contribute to the increase of intracellular ROS level, consequently, induced mitochondria apoptosis. These results generated a rationale for further investigation of DHB combined with CDDP as a potential therapeutic strategy in lung cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. [The effect and mechanism of vinorelbine on cisplatin resistance of human lung cancer cell line A549/DDP].

    PubMed

    Qi, Chunsheng; Gao, Sen; Li, Huiqiang; Gao, Weizhen

    2014-02-01

    Drug resistance is a major obstacle on lung cancer treatment and Vinorelbine is an effective drug to inhibition of tumor proliferation and metastasis. In this study, we investigated the effect and mechanism of Vinorelbine on reversing the cisplatin resistance of human lung cancer A549/DDP cell line. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, MTS assay was employed to determine the effect of the cisplatin sensitivity of tumor cells, flow cytometry to determine the apoptosis rate and change of Rh-123 content; Western blot to determine the expression of MDR1, Bcl-2, surviving, PTEN, caspase-3/8 and phosphorylation level of Akt (p-Akt); Real-time PCR was to determine the mRNA expression of MDR1, Bcl-2, survivin and PTEN. Finally the transcriptional activities of NF-κB, Twist and Snail were determined by reporter gene system. With 1 μmol/L and 5 μmol/L Vinorelbine treatment, the sensitivity of cancer cells to cisplatin was increased by 1.91- and 2.54- folds respectively, flow cytometry showed that the content of Rh-123 was elevated 1.93- and 2.95- folds and apoptosis rate was increased 2.25- and 3.82- folds, Western blot showed that the expression of multidrug resistance related proteins MDR, Bcl-2 and survivin were downregulated, caspase-3/8 and PTEN was upregulated, phosphorylation of Akt was downregulated as well, real-time assay showed that the mRNA expression of MDR1 was downregulated 43.5% and 25.8%, Bcl-2 was downregulated 57.3% and 34.1%, survivin was downregulated 37.6% and 12.4%, PTEN was upregulated 183.4% and 154.2%, the transcriptional activities of NF-κB was downregulated 53.2% and 34.5%, Twist was downregulated 61.4% and 33.5%, and Snail was downregulated 57.8% and 18.7%. Vinorelbine treatment led to increase of cisplatin sensitivity of A549/DDP cells and the mechanisms included the regulation of PTEN/AKT/NF-κB signal pathway to decreased drug resistance gene expression and increased pro-apoptosis gene expression.

  14. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  15. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  16. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT.

    PubMed

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-16

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  17. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549).

    PubMed

    Ullah, Sadeeq; Ahmad, Aftab; Wang, Aoke; Raza, Muslim; Jan, Amin Ullah; Tahir, Kamran; Rahman, Aziz Ur; Qipeng, Yuan

    2017-08-01

    Platinum based drugs are considered as effective agents against various types of carcinoma; however, the severe toxicity associated with the chemically prepared platinum complexes limit their practical applications. Similarly, water pollution caused by various organic moieties is another serious health problem worldwide. Hence, an intense need exists to develop new, effective and biocompatible materials with catalytic and biomedical applications. In the present contribution, we prepared platinum nanoparticles (PtNPs) by a green route using phytochemicals as a source of reducing and stabilizing agents. Well dispersed and crystalline PtNPs of spherical shapes were prepared and characterized. The bio-fabricated PtNPs were used as catalyst and anticancer agents. Catalytic performance of the PtNPs showed that 84% of the methylene blue can be reduced in 32min under visible light irradiation (K=0.078min -1 ). Similarly the catalytic conversion of 4-nitrophenol to 4-aminophenol was achieved in <20min (K=0.124min -1 ). The in vitro anticancer study revealed that biogenic PtNPs are the efficient nano-agents possessing strong anticancer activity against the lungs cancer cells line (A549). Interestingly, the as prepared PtNPs were well tolerated by normal human cells, and therefore, could be effective and biocompatible agents in the treatment of different cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line

    NASA Astrophysics Data System (ADS)

    Majeed, Shahnaz; Danish, Mohammed; Muhadi, Nur Farisyah Bahriah Binti

    2018-06-01

    The study focussed on the synthesis of magnesium oxide (MgO) nanoparticles from an aqueous extract of Penicillium species isolated from soil. A suitable amount of magnesium nitrate (MgNO3) was mixed with the aqueous extract of Penicillium. Then the colour of the solution changed due to the formation of MgO nanoparticles. These nascent formed MgO nanoparticles were further confirmed by using UV spectrophotometry which showed the maximum absorption at 215 nm indicating the formation of MgO nanoparticles. Fourier transform infrared spectroscopy (FTIR) was used to find the possible functional groups and proteins involving the stabilization of MgO nanoparticles. Transmission electron microscopy (TEM) study revealed the size, the shape as well as the dispersity of the prepared MgO nanoparticles and showed that they were well dispersed around 12–24 nm (scale 200 nm). The anticancer activity against A-549 cell line of these green synthesized MgO nanoparticles was evaluated. The result showed good anticancer effect after 24 h of incubation. Nevertheless these MgO nanoparticles showed less effect on normal Vero cells. Further apoptotic study clearly displayed the effect of MgO nanoparticles on cancer cells. The effect was observed through chromatin condensation by forming apoptotic bodies using propidium iodide, acridine orange and ethidium bromide (AO/EB) staining technique. The DNA was isolated to confirm the DNA damage; the observation clearly showed DNA damage when compared with DNA ladder.

  19. The influence of incubation time on adenovirus quantitation in A549 cells by most probable number

    EPA Science Inventory

    Cell culture based assays used to detect waterborne viruses typically call for incubating the sample for at least two weeks in order to ensure that all the culturable virus present is detected. Historically, this estimate was based, at least in part, on the length of time used fo...

  20. Effective deactivation of A549 tumor cells in vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel.

    PubMed

    Li, Bin; Zhang, Xiao-Xue; Huang, Hao-Yan; Chen, Li-Qing; Cui, Jing-Hao; Liu, Yanli; Jin, Hehua; Lee, Beom-Jin; Cao, Qing-Ri

    2018-05-30

    This study aims to construct and evaluate RGD-decorated chitosan (CS)-functionalized pH-responsive single-walled carbon nanotube (SWCNT) carriers using docetaxel (DTX) as a model anticancer drug. DTX was loaded onto SWCNT via π-π stacking interaction (SWCNT-DTX), followed by the non-covalent conjugation of RGD-decorated CS to SWCNT-DTX to prepare RGD-CS-SWCNT-DTX. The RGD-CS-SWCNT-DTX showed significantly higher drug release than the pure drug, giving higher release rate at pH 5.0 (68%) than pH 7.4 (49%). The RGD-CS-SWCNT-DTX could significantly inhibit the growth of A549 tumor cells in vitro, and the uptake amount of A549 cells was obviously higher than that of MCF-7 cells. Meanwhile, the cellular uptake of RGD-CS-SWCNT-DTX was higher than that of CS-SWCNT-DTX in A549 cells, mainly through clathrin and caveolae-mediated endocytosis. The RGD-CS-SWCNT-DTX significantly inhibited tumor growth of A549 cell-bearing nude mice through active tumor-targeting ability. Furthermore, no pathological changes were found in tissues and organs. The result demonstrated that RGD-CS-SWCNT-DTX displayed high drug loading, pH-responsive drug release, remarkable antitumor effect in vitro and in vivo, and also good safety to animal body. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  2. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

    PubMed

    Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi

    2014-01-22

    The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  4. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    PubMed

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.

  5. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549

    PubMed Central

    Takizawa, Hajime

    2013-01-01

    Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs), which promote acetylation, and histone deacetylases (HDACs), which promote deacetylation. We studied the effects of lipopolysaccharide (LPS) on histone acetylation and its role in the regulation of interleukin (IL)-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP) assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA), and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition. PMID:24627774

  6. Taspine derivative 12k suppressed A549 cell migration through the Wnt/β-catenin and EphrinB2 signaling pathway.

    PubMed

    Dai, Bingling; Ma, Yujiao; Yang, Tianfeng; Wang, Wenjie; Zhang, Yanmin

    2017-03-01

    12k, a taspine derivative, has been demonstrated to have the potent anti-tumor activity in lung cancer and colorectal cancer. The study aims to further explore the underlying mechanisms of 12k on A549 cell migration in vitro. Our data demonstrated that 12k negatively regulated Wnt signaling pathway by suppressing the phosphorylation of LRP5/6, and inhibiting the expression and nuclear translocation of β-catenin. 12k was shown to downregulate MMP3 and MMP7 expression which regulated by β-catenin interacts with TCF/LEF in the nucleus, and effectively impaired the related migration protein expression of MMP2 and MMP9 in A549 cells. In addition, 12k repressed the EphrinB2 and its PDZ protein, impairing the VEGFR2 and VEGFR3 expression in A549 cells, as well as inhibited the downstream of VEGFR2 included PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Taken together, our findings revealed that 12k suppressed migration of A549 cells through the Wnt/β-catenin signaling pathway and EphrinB2 related signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    PubMed

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  8. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model.

    PubMed

    Jiang, Yujie; Zeng, Yi; Huang, Xia; Qin, Yueqiu; Luo, Weigui; Xiang, Shulin; Sooranna, Suren R; Pinhu, Liao

    2016-12-01

    Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats. Copyright © 2016 the American Physiological Society.

  9. Inhibition of Raf-MEK-ERK and hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line.

    PubMed

    Lee, Sau Har; Jaganath, Indu Bala; Manikam, Rishya; Sekaran, Shamala Devi

    2013-10-20

    Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.

  10. Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line

    PubMed Central

    2013-01-01

    Background Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities. Methods Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus. Results Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity. Conclusions Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549

  11. SU-F-T-677: Synergistic Effect(s) of Clotrimazole On Radiation Cell Survival of A549 Lung Cancer Cells in Glucose Vs. Galactose Media

    SciTech Connect

    Boss, G; Tambasco, M; Garakani, M

    Purpose: In order to determine the synergistic effect of clotrimazole on radiosensitivity of A549 lung cancer cells, and the effect of oxidative pathways on modulating radiosensitivity, we studied how these cells survived under varying amounts of radiation and clotrimazole as well ass when glucose was switched for galactose media. Methods: The glucose media was used to determine the presence of any synergistic effect of clotrimazole on radiation using values of radiation and clotrimazole concentrations, varying from 0 – 8 Gy and 0 – 20 µM, respectively. As a galactose diet is known to activate oxidative pathways, which do not relymore » on hexokinase II (HK2), all trials were repeated using galactose media to determine the extent that HK2 unbinding from the mitochondrial membrane plays a role in modulating the observed radiosensitivity. An apoptosis vs. necrosis assay was implemented to find out the modality by which cell death occurred. An intracellular lactate assay was performed to exhibit the extent of anaerobic glycolysis. Results: After running the primary experiments, it was found that in glucose media, the cancer cells showed higher cell kill when clotrimazole was added to the media, followed by the cells being irradiated. Conclusion: Given the preliminary results it is validated that under higher concentrations of clotrimazole, in glucose media, A549 lung cancer cells exhibit a lower amount of survival. While all results have not yet been gathered. We anticipate that in galactose media the A549 cells will exhibit this effect to a much smaller degree, if at all.« less

  12. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.

    PubMed

    Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan

    2014-12-05

    The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of

  13. Different glucocorticoids vary in their genomic and non-genomic mechanism of action in A549 cells

    PubMed Central

    Croxtall, Jamie D; van Hal, Peter Th W; Choudhury, Qam; Gilroy, Derek W; Flower, Rod J

    2002-01-01

    We have examined the effects of 12 glucocorticoids as inhibitors of A549 cell growth. Other than cortisone and prednisone, all the glucocorticoids inhibited cell growth and this was strongly correlated (r=0.91) with inhibition of prostaglandin (PG)E2 formation. The molecular mechanism by which the active steroids prevented PGE2 synthesis was examined and three groups were identified. Group A drugs did not inhibit arachidonic acid release but inhibited the induction of COX2. Group B drugs were not able to inhibit the induction of COX2 but inhibited arachidonic acid release through suppression of cPLA2 activation. Group C drugs were apparently able to bring about both effects. The inhibitory actions of all steroids was dependent upon glucocorticoid receptor occupation since RU486 reversed their effects. However, group A acted through the NF-κB pathway to inhibit COX2 as the response was blocked by the inhibitor geldanamycin which prevents dissociation of GR and the effect was blocked by APDC, the NF-κB inhibitor. On the other hand, the group B drugs were not inhibited by NF-κB inhibitors or geldanamycin but their effect was abolished by the src inhibitor PP2. Group C drugs depended on both pathways. In terms of PGE2 generation, there is clear evidence of two entirely separate mechanisms of glucocorticoid action, one of which correlates with NF-κB mediated genomic actions whilst the other, depends upon rapid effects on a cell signalling system which does not require dissociation of GR. The implications for these findings are discussed. PMID:11815387

  14. Genotoxic and oxidative effects induced on A549 cells by extract of PM10 collected in an electric steel plant.

    PubMed

    Cavallo, Delia; Ursini, Cinzia L; Maiello, Raffaele; Apostoli, Pietro; Catalani, Simona; Ciervo, Aureliano; Iavicoli, Sergio

    2008-01-01

    The present study was aimed at assessing the carcinogenic risk of occupational exposure to PM10 in electric steel plants. PM10 was collected on cellulose filter respectively outside (site 1) and inside (site 2) the furnace area, was measured, extracted and its metal content was analysed by ICP-MS. Cells were exposed for 30 min, 2 and 4 hours to extract of filter from each site diluted at 0.004, 0.008 and 0.02%. The direct/oxidative DNA damage caused by PM10 was evaluated on A549 cells by Fpg-modified comet assay, analysing Tail moment (TM) and comet percentage. Air samples contained 1.08 mg/m3 of PM10 in site 1 and 5.54 mg/m3in site 2 and different amounts of metals with higher levels of Zn, Al, Ni, Pb, Cd, Cr, Ba in site 2 and of Fe, Mn, Sb in site 1. In cells exposed for 2h to PM10 from both sites, an oxidative DNA damage was found concentrations of 0.008% and 0.02%. For site 2, a direct DNA damage at 0.02% was also found. After 4h a direct/oxidative DNA damage was detected at 0.02% for site 2 and an oxidative DNA damage for site 1. The results indicate a moderate DNA damage induction by used diluitions of PM10 extracts with higher extent for more polluted site 2. These findings show the suitability of this experimental model to evaluate early DNA damage induced by complex mixtures containing metals on target organ, suggesting its use to study biological effects of occupational exposure to such substances.

  15. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    SciTech Connect

    Lu, Xiangyi; Liu, Wei; Wu, Junhua

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated asmore » CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.« less

  16. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.

    PubMed

    Rajavel, Tamilselvam; Packiyaraj, Pandian; Suryanarayanan, Venkatesan; Singh, Sanjeev Kumar; Ruckmani, Kandasamy; Pandima Devi, Kasi

    2018-02-01

    β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.

  17. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression.more » In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.« less

  18. MicroRNA regulatory networks reflective of polyhexamethylene guanidine phosphate-induced fibrosis in A549 human alveolar adenocarcinoma cells.

    PubMed

    Shin, Da Young; Jeong, Mi Ho; Bang, In Jae; Kim, Ha Ryong; Chung, Kyu Hyuck

    2018-05-01

    Polyhexamethylene guanidine phosphate (PHMG-phosphate), an active component of humidifier disinfectant, is suspected to be a major cause of pulmonary fibrosis. Fibrosis, induced by recurrent epithelial damage, is significantly affected by epigenetic regulation, including microRNAs (miRNAs). The aim of this study was to investigate the fibrogenic mechanisms of PHMG-phosphate through the profiling of miRNAs and their target genes. A549 cells were treated with 0.75 μg/mL PHMG-phosphate for 24 and 48 h and miRNA microarray expression analysis was conducted. The putative mRNA targets of the miRNAs were identified and subjected to Gene Ontology analysis. After exposure to PHMG-phosphate for 24 and 48 h, 46 and 33 miRNAs, respectively, showed a significant change in expression over 1.5-fold compared with the control. The integrated analysis of miRNA and mRNA microarray results revealed the putative targets that were prominently enriched were associated with the epithelial-mesenchymal transition (EMT), cell cycle changes, and apoptosis. The dose-dependent induction of EMT by PHMG-phosphate exposure was confirmed by western blot. We identified 13 putative EMT-related targets that may play a role in PHMG-phosphate-induced fibrosis according to the Comparative Toxicogenomic Database. Our findings contribute to the comprehension of the fibrogenic mechanism of PHMG-phosphate and will aid further study on PHMG-phosphate-induced toxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc.

    PubMed

    Dilger, Marco; Orasche, Jürgen; Zimmermann, Ralf; Paur, Hanns-Rudolf; Diabaté, Silvia; Weiss, Carsten

    2016-12-01

    Indoor air pollution is associated with increased morbidity and mortality. Specifically, the health impact of emissions from domestic burning of biomass and coal is most relevant and is estimated to contribute to over 4 million premature deaths per year worldwide. Wood is the main fuel source for biomass combustion and the shift towards renewable energy sources will further increase emissions from wood combustion even in developed countries. However, little is known about the constituents of wood smoke and biological mechanisms that are responsible for adverse health effects. We exposed A549 lung epithelial cells to collected wood smoke particles and found an increase in cellular reactive oxygen species as well as a response to bioavailable polycyclic aromatic hydrocarbons. In contrast, cell vitality and regulation of the pro-inflammatory cytokine interleukin-8 were not affected. Using a candidate approach, we could recapitulate WSP toxicity by the combined actions of its constituents soot, metals and PAHs. The soot fraction and metals were found to be the most important factors for ROS formation, whereas the PAH response can be mimicked by the model PAH benzo[a]pyrene. Strikingly, PAHs adsorbed to WSPs were even more potent in activating target gene expression than B[a]P individually applied in suspension. As PAHs initiate multiple adverse outcome pathways and are prominent carcinogens, their role as key pollutants in wood smoke and its health effects warrants further investigation. The presented results suggest that each of the investigated constituents soot, metals and PAHs are major contributors to WSP toxicity. Mitigation strategies to prevent adverse health effects of wood combustion should therefore not only aim at reducing the emitted soot and PAHs but also the metal content, through the use of more efficient combustion appliances, and particle precipitation techniques, respectively.

  20. Cytotoxic, Antiproliferative and Apoptotic Effects of Perillyl Alcohol and Its Biotransformation Metabolite on A549 and HepG2 Cancer Cell Lines.

    PubMed

    Oturanel, Ceren E; Kıran, İsmail; Özşen, Özge; Çiftçi, Gülşen A; Atlı, Özlem

    2017-01-01

    A monoterpene, perillyl alcohol, has attracted attention in medicinal chemistry since it exhibited chemo-preventive and therapeutic properties against a variety of cancers. In the present work, it was aimed to obtain derivatives of perillyl alcohol through microbial biotransformation and investigate their anticancer activities against A549 and HepG2 cancer cell lines. Biotransformation studies were carried out in a α-medium for 7 days at 25oC. XTT assay was performed to investigate the anticancer activities of perillyl alcohol and its biotransformation metabolite, dehydroperillic acid, against A549 and HepG2 cell lines and their selectivity using healthy cell line, NIH/3T3. Cell proliferation ELISA, BRDU (colorimetric) assay was used for measurement of proliferation in replicative cells in which DNA synthesis occurs. Flow cytometric analyses were also carried out for measuring apoptotic cell percentages, caspase 3 activation and mitochondrial membrane potential. Biotransformation of perillyl alcohol with Fusarium culmorum yielded dehydroperillic acid in a yield of 20.4 %. In in vitro anticancer studies, perillyl alcohol was found to exert cytotoxicity against HepG2 cell line with an IC50 value of 409.2 μg/mL. However, this effect was not found to be selective because of its higher IC50 (250 μg/mL) value against NIH/3T3 cell line. On the other hand, dehydroperillic acid was found to be effective and also selective against A549 cell line with an IC50 value of 125 μg/mL and a selectivity index (SI) value of 400. Apoptosis inducing effects of dehydroperillic acid was better in A549 cell line. Dehydroperillic acid may be a good candidate for therapy of lung adenocarcinoma and may show this anticancer activity by inducing apoptosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Mineral fiber-mediated activation of phosphoinositide-specific phospholipase c in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells.

    PubMed

    Loreto, Carla; Carnazza, Maria Luisa; Cardile, Venera; Libra, Massimo; Lombardo, Laura; Malaponte, Grazia; Martinez, Giuseppina; Musumeci, Giuseppe; Papa, Veronica; Cocco, Lucio

    2009-02-01

    Given the role of phosphoinositide-specific phospholipase C (PLC) isozymes in the control of cell growth and differentiation we were prompted to analyze the expression of some of these PLC in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells. The effects of several fluoro-edenite fibers were compared with those of tremolite, a member of the calcic amphibole group of asbestos that originates from Calabria (Italy), and crocidolite, that, due to its high toxicity, is one of the most studied asbestos amphiboles. Our data show an increased expression of both PLC beta1 and PLC gamma1 in A549 cells treated with asbestos-like fibers, hinting at a role of PLC signalling in those cancerous cells.

  2. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    PubMed

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    PubMed

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h

  4. Cytotoxic Effects of 24-Methylenecyloartanyl Ferulate on A549 Nonsmall Cell Lung Cancer Cells through MYBBP1A Up-Regulation and AKT and Aurora B Kinase Inhibition.

    PubMed

    Doello, Sofia; Liang, Zhibin; Cho, Il Kyu; Kim, Jung Bong; Li, Qing X

    2018-04-11

    Lung cancer is the second most prevalent cancer. Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer. The low efficacy in current chemotherapies impels us to find new alternatives to prevent or treat NSCLC. Rice bran oil is cytotoxic to A549 cells, a NSCLC cell line. Here, we identified 24-methylenecyloartanyl ferulate (24-mCAF) as the main component responsible for the cytotoxicity in A549 cells. An iTRAQ-based quantitative proteomics analysis revealed that 24-mCAF inhibits cell proliferation and activates cell death and apoptosis. 24-mCAF induces up-regulation of Myb binding protein 1A (MYBBP1A), a tumor suppressor that halts cancer progression. 24-mCAF inhibits the activity of AKT and Aurora B kinase, two Ser/Thr kinases involved in MYBBP1A regulation and that represent important targets in NSCLC. This study provides the first insight of the effect of 24-mCAF, the main component of rice bran oil, on A459 cells at the cellular and molecular levels.

  5. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation

    NASA Astrophysics Data System (ADS)

    Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.

    2016-02-01

    Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.

  6. Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132.

    PubMed

    Fiedler, M A; Wernke-Dollries, K; Stark, J M

    1998-08-01

    The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.

  7. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    PubMed Central

    2012-01-01

    Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition. PMID:22694981

  8. Isolation and Characterization of Cancer Stem Cells of the Non-Small-Cell Lung Cancer (A549) Cell Line.

    PubMed

    Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham

    2016-01-01

    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.

  9. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells).

    PubMed

    Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha

    2017-05-01

    Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. HMGA2 upregulation mediates Cd-induced migration and invasion in A549 cells and in lung tissues of mice.

    PubMed

    Luo, Huiyuan; Li, Zhiguo; Ge, Hong; Mei, Dan; Zhao, Lian; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Cao, Jun

    2017-11-01

    Cadmium (Cd) is a toxic metal widely found in a number of environmental matrices, and it induces serious adverse effects in various organs and tissues. In this study, the role of high mobility group A2 (HMGA2) in promoting migration and invasion in Cd-treated A549 cells and lung tissues of mice was investigated. Our findings showed that exposure to Cd (2 μM) for 48 h or subcutaneous injection of Cd daily for 6 weeks significantly enhanced the expression of matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), phosphorylated focal adhesion kinase (p-FAK), and HMGA2 in A549 cells or lung tissues of mice. In A549 cells, HMGA2 knockdown significantly decreased expression of MMP-9, MMP-2 and p-FAK and inhibited the migration and invasion compared to that of only Cd-treated cultures. Overexpression of HMGA2 in HEK-293T cells increased expression of MMP-9, MMP-2 and p-FAK and enhanced the migration and invasion compared with the empty vector transfection group. In conclusion, upregulation of HMGA2 plays an important role in Cd-enhanced migration and invasion. Suppressing HMGA2 expression might have potential values in prevention of Cd-resulted toxicities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  12. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    PubMed

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  13. Effects of Human Parvovirus B19 and Bocavirus VP1 Unique Region on Tight Junction of Human Airway Epithelial A549 Cells

    PubMed Central

    Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching

    2014-01-01

    As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969

  14. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression.

    PubMed

    Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2017-08-01

    Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    SciTech Connect

    Wang, Chunmao; Ding, Chao; Kong, Minjian

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lungmore » cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  16. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    SciTech Connect

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53{sup −/−} cancer cells, in which PLK1 protein wasmore » suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.« less

  17. ROS-dependent Atg4 upregulation mediated autophagy plays an important role in Cd-induced proliferation and invasion in A549 cells.

    PubMed

    Lv, Wei; Sui, Linlin; Yan, Xiaona; Xie, Huaying; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Kong, Ying; Cao, Jun

    2018-01-05

    Cadmium (Cd) is a toxic heavy metal that is widely used in industry and agriculture. In this study the role of autophagy in Cd-induced proliferation, migration and invasion was investigated in A549 cells. Exposure to Cd (2 μM) significantly increased reactive oxygen species (ROS) production, induced autophagy and enhanced cell growth, migration and invasion in A549 cells. Western blot analysis showed that the expression of autophagy-related proteins, LC3-II, Beclin-1 and Atg4 and invasion-related protein MMP-9 were upregulated in Cd-treated cells. N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of A549 cells and the increasing protein level of LC3-II and Atg4. Blocking Atg4 expression by siRNA strongly reduced Beclin-1 and LC3-II protein expression and the number of autophagosome positive cells induced by Cd. Furthermore, Atg4 siRNA increased the number of cells at G0/G1 phase, reduced the number of S and G2/M phase cells, and inhibited Cd-induced cell growth significantly compared with that of Cd-treated Control siRNA cells. 3-MA pretreatment increased the percentage of G0/G1 phase cells, decreased S phase and G2/M phase percentage, and inhibited Cd-induced cell growth remarkably compared with that of only Cd-treated cells. Knocking down Atg4 reduced the number of cells that migrated and invaded through the Matrigel matrix significantly and led to a significant decrease of MMP-9 expression. In addition, in lung tissues of Cd-treated BALB/c mice, the increased expression of LC3-II, Beclin-1 and Atg4 were observed. Taken together, our results demonstrated that ROS-dependent Atg4-mediated autophagy plays an important role in Cd-induced cell growth, migration and invasion in A549 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells.

    PubMed

    Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin

    2012-02-05

    Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf extracts on MCF7 and A549 cell lines.

    PubMed

    Naik Bukke, Arunkumar; Nazneen Hadi, Fathima; Babu, K Suresh; Shankar, P Chandramati

    2018-08-01

    This article contains data on in vitro cytotoxicity activity of chloroform, methanolic and water extracts of leaf and heartwood of Caesalpinia sappan L. a medicinal plant against Breast cancer (MCF-7) and Lung cancer (A-549) cells. This data shows that Brazilin A, a natural bioactive compound in heartwood of Caesalpinia sappan L. induced cell death in breast cancer (MCF-7) cells. The therapeutic property was further proved by docking the Brazilin A molecule against BCL-2 protein (an apoptotic inhibitor) using auto dock tools.

  20. Revelation of Different Nanoparticle-Uptake Behavior in Two Standard Cell Lines NIH/3T3 and A549 by Flow Cytometry and Time-Lapse Imaging

    PubMed Central

    Jochums, André; Friehs, Elsa; Sambale, Franziska; Lavrentieva, Antonina; Bahnemann, Detlef; Scheper, Thomas

    2017-01-01

    The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs). Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549) and mouse fibroblast (NIH/3T3) cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC) and propidium iodide (PI). We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies. PMID:29051447

  1. Titanium dioxide nanoparticles-mediated in vitro cytotoxicity does not induce Hsp70 and Grp78 expression in human bronchial epithelial A549 cells.

    PubMed

    Aueviriyavit, Sasitorn; Phummiratch, Duangkamol; Kulthong, Kornphimol; Maniratanachote, Rawiwan

    2012-10-01

    Titanium dioxide nanoparticles (TiO(2)NPs) are increasingly being used in various industrial applications including the production of paper, plastics, cosmetics and paints. With the increasing number of nano-related products, the concern of governments and the general public about the health and environmental risks, especially with regard to occupational and other environmental exposure, are gradually increasing. However, there is insufficient knowledge about the actual affects upon human health and the environment, as well as a lack of suitable biomarkers for assessing TiO(2)NP-induced cytotoxicity. Since the respiratory tract is likely to be the main exposure route of industrial workers to TiO(2)NPs, we investigated the cytotoxicity of the anatase and rutile crystalline forms of TiO(2)NPs in A549 cells, a human alveolar type II-like epithelial cell line. In addition, we evaluated the transcript and protein expression levels of two heat shock protein (HSP) members, Grp78 and Hsp70, to ascertain their suitability as biomarkers of TiO(2)NP-induced toxicity in the respiratory system. Ultrastructural observations confirmed the presence of TiO(2)NPs inside cells. In vitro exposure of A549 cells to the anatase or rutile forms of TiO(2)NPs led to cell death and induced intracellular ROS generation in a dose-dependent manner, as determined by the MTS and dichlorofluorescein (DCF) assays, respectively. In contrast, the transcript and protein expression levels of Hsp70 and Grp78 did not change within the same TiO(2)NPs dose range (25-500 μg/ml). Thus, whilst TiO(2)NPs can cause cytotoxicity in A549 cells, and thus potentially in respiratory cells, Hsp70 and Grp78 are not suitable biomarkers for evaluating the acute toxicological effects of TiO(2)NPs in the respiratory system.

  2. Selective Cytotoxicity and Combined Effects of Camptothecin or Paclitaxel with Sodium-R-Alpha Lipoate on A549 Human Non-Small Cell Lung Cancer Cells

    PubMed Central

    Ibrahim, Sherif; Gao, Dayuan; Sinko, Patrick J.

    2013-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the deadliest form of cancer in the US and worldwide. New therapies are highly sought after to improve outcome. The effect of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity was evaluated on A549 NSCLC and BEAS-2B ‘normal’ lung epithelial cells. Combination indices (CI) and dose reduction indices (DRI) were investigated by studying the cytotoxicity of sodium-R-alpha lipoate (0–16 mM), camptothecin (0–25 nM) and paclitaxel (0–0.06 nM) alone and in combination. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium-bromide (MTT) was used to assess cytotoxicity. The combinational cytotoxic effects of sodium-R-alpha lipoate with camptothecin or paclitaxel were analyzed using a simulation of dose effects (CompuSyn®3.01). The effects of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity varied based on concentrations and treatment times. It was found that sodium-R-alpha lipoate wasn’t cytotoxic towards BEAS-2B cells at any of the concentrations tested. For A549 cells, CIs [(additive (CI=1); synergistic (CI<1); antagonistic (CI>1)] were lower and DRIs were higher for the camptothecin/sodium-R-alpha-lipoate combination (CI=~0.17–1.5; DRI=~2.2–22.6) than the paclitaxel/sodium-R-alpha-lipoate combination (CI=~0.8–9.9; DRI=~0.10–5.8) suggesting that the camptothecin regimen was synergistic and that the addition of sodium-R-alpha lipoate was important for reducing the camptothecin dose and potential for adverse effects. PMID:24063429

  3. The influence of Hurricanes Katrina and Rita on the inflammatory cytokine response and protein expression in A549 cells exposed to PM2.5 collected in the Baton Rouge-Port Allen industrial corridor of Southeastern Louisiana in 2005.

    PubMed

    Bourgeois, Brian; Owens, John Wesley

    2014-03-01

    Hurricanes Katrina and Rita hit the coast of Louisiana in 2005 and killed more than 2000 people. The two storms resulted in a significant spike in particulate matter (PM2.5) levels across the state of Louisiana. This report focuses on PM2.5 samples collected in 2005 from two monitoring sites in the neighboring cities of Baton Rouge and Port Allen, Louisiana. Inductively coupled plasma (ICP) revealed the presence of PM2.5-adsorbed representative and Fenton-active transition metals. Gas chromatography/mass spectrometry (GC-MS) analyses revealed the presence of 23 PAH compounds. Endotoxins were also detected. Metals and endotoxins were extracted with water. PAH were extracted with dichloromethane. In order to assess cytotoxicity, aqueous PM2.5 extracts were introduced to A549 Human Epithelial Lung Carcinoma Cells. Results indicated decreased cell viability in a dose-dependent manner, with an LC50 of 235 µg/ml and 250 µg/ml, respectively, for the two sites featured here. Endotoxins alone were not cytotoxic. The concentration of reactive oxygen species (ROS) and released LDH activity increased following exposure of A549 cells to aqueous PM2.5 extracts. Fluorescence microscopy revealed apoptotic and necrotic cell death mechanisms. ELISA revealed increased secretion of primary pro-inflammatory cytokines, IL-6, IL-8, and TNF-α. Global PCR gene expression revealed up-regulation of proteins associated with the cytokine storm; e.g. interleukins, chemokines, and TNF-α. Global antibody microarray was consistent with an inflammatory response, with up-regulation of cytokines involved in the down-field activation of the caspase cascade and kinase pathways. The up-regulation of metal-redox sensitive transcription factors, NF-κβ and AP-1, is consistent with a cell death mechanism initiated by Fenton-active transition metal redox catalysis.

  4. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  5. MicroRNA-9 functions as a tumor suppressor and enhances radio-sensitivity in radio-resistant A549 cells by targeting neuropilin 1.

    PubMed

    Xiong, Kai; Shao, Li Hong; Zhang, Hai Qin; Jin, Linlin; Wei, Wei; Dong, Zhuo; Zhu, Yue Quan; Wu, Ning; Jin, Shun Zi; Xue, Li Xiang

    2018-03-01

    Radiotherapy is commonly used to treat lung cancer but may not kill all cancer cells, which may be attributed to the radiotherapy resistance that often occurs in non-small cell lung cancer (NSCLC). At present, the molecular mechanism of radio-resistance remains unclear. Neuropilin 1 (NRP1), a co-receptor for vascular endothelial growth factor (VEGF), was demonstrated to be associated with radio-resistance of NSCLC cells via the VEGF-phosphoinositide 3-kinase-nuclear factor-κB pathway in our previous study. It was hypothesized that certain microRNAs (miRs) may serve crucial functions in radio-sensitivity by regulating NRP1. Bioinformatics predicted that NRP1 was a potential target of miR-9, and this was validated by luciferase reporter assays. Functionally, miR-9-transfected A549 cells exhibited a decreased proliferation rate, increased apoptosis rate and attenuated migratory and invasive abilities. Additionally, a high expression of miR-9 also significantly enhanced the radio-sensitivity of A549 cells in vitro and in vivo . These data improve understanding of the mechanisms of cell radio-resistance, and suggest that miR-9 may be a molecular target for the prediction of radio-sensitivity in NSCLC.

  6. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.

    PubMed

    Zhu, Jianhua; Yao, Jianfeng; Huang, Rongfu; Wang, Yueqin; Jia, Min; Huang, Yan

    2018-04-06

    Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    SciTech Connect

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for amore » new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.« less

  8. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The production of reactive oxygen species and the mitochondrial membrane potential are modulated during onion oil-induced cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Xin-jiang; Stahl, Thorsten; Hu, Ying; Kassie, Fekadu; Mersch-Sundermann, Volker

    2006-03-01

    Protective effects of Allium vegetables against cancers have been shown extensively in experimental animals and epidemiologic studies. We investigated cell proliferation and the induction of apoptosis by onion oil extracted from Allium cepa, a widely consumed Allium vegetable, in human lung cancer A549 cells. GC/MS analysis suggested that propyl sulfides but not allyl sulfides are major sulfur-containing constituents of onion oil. Onion oil at 12.5 mg/L significantly induced apoptosis (13% increase of apoptotic cells) as indicated by sub-G1 DNA content. It also caused cell cycle arrest at the G2/M phase; 25 mg/L onion oil increased the percentage of G2/M cells almost 6-fold compared with the dimethyl sulfoxide control. The action of onion oil may occur via a reactive oxygen species-dependent pathway because cell cycle arrest and apoptosis were blocked by the antioxidants N-acetylcysteine and exogenous glutathione. Marked collapse of the mitochondrial membrane potential suggested that dysfunction of the mitochondria may be involved in the oxidative burst and apoptosis induced by onion oil. Expression of phospho-cdc2 and phospho-cyclin B1 were downregulated by onion oil, perhaps accounting for the G2/M arrest. Overall, these results suggest that onion oil may exert chemopreventive action by inducing cell cycle arrest and apoptosis in tumor cells.

  10. Analysis of A549 cell proteome alteration in response to recombinant influenza A virus nucleoprotein and its interaction with cellular proteins, a preliminary study.

    PubMed

    Kumar, D; Tiwari, K; Rajala, M S

    Influenza A virus undergoes frequent changes of antigenicity and contributes to seasonal epidemics or unpredictable pandemics. Nucleoprotein, encoded by gene segment 5, is an internal protein of the virus and is conserved among strains of different host origins. In the current study, we analyzed the differentially expressed proteins in A549 cells transiently transfected with the recombinant nucleoprotein of influenza A virus by 2D gel electrophoresis. The resolved protein spots on gel were identified by MALDI-TOF/Mass spectrometry analysis. The majority of the host proteins detected to be differentially abundant in recombinant nucleoprotein-expressing cells as compared to vector-transfected cells are the proteins of metabolic pathways, glycolytic enzymes, molecular chaperones and cytoskeletal proteins. We further demonstrated the interaction of virus nucleoprotein with some of the identified host cellular proteins. In vitro binding assay carried out using the purified recombinant nucleoprotein (pET29a+NP-His) and A549 cell lysate confirmed the interaction between nucleoprotein and host proteins, such as alpha enolase 1, pyruvate kinase and β-actin. The preliminary data of our study provides the information on virus nucleoprotein interaction with proteins involved in glycolysis. However, studies are ongoing to understand the significance of these interactions in modulating the host factors during virus replication.

  11. TRAIL overexpression co-regulated by Egr1 and HRE enhances radiosensitivity of hypoxic A549 cells depending on its apoptosis inducing role.

    PubMed

    Yang, Yan-Ming; Fang, Fang; Li, Xin; Yu, Lei; Wang, Zhi-Cheng

    2017-01-01

    Ionizing radiation can upregulate the expression levels of TRAIL and enhance tumor cell apoptosis. While Early growth response 1 (Egr1) gene promoter has radiation inducible characteristics, the expression for exogenous gene controlled by Egr1 promoter could be enhanced by ionizing radiation, but its efficiency is limited by tissue hypoxia. Hypoxia response elements (HREs) are important hypoxic response regulatory sequences and sensitivity enhancers. Therefore, we chose TRAIL as the gene radiotherapy to observe whether it is regulated by Egr1 and HER and its effects on A549 cells and its mechanism. The pcDNA3.1-Egr1-TRAIL (pc-E-hsT) and pcDNA3.1-HRE/Egr1-TRAIL (pc-H/E-hsT) plasmids containing Egr1-hsTRAIL and HRE/Egr1-hsTRAIL were transfected into A549 cells, the cells were treated by hypoxia and radiation. The TRAIL mRNA in the cells and protein concentration in the culture supernatants were measured by RT-PCR and ELISA, respectively. Mean lethal dose D0 value was evaluated with colony forming assay. The cell apoptotic rates were analyzed by FCM and TUNEL assay. Expression of DR4, DR5 and cleaved caspase-3 proteins were analyzed by western blotting. It showed that TRAIL mRNA expression and TRAIL concentration all significantly increased under hypoxia and/or radiation. D0 value of pc-H/E‑hsT transfected cells under hypoxia was lowest, indicating more high radiosensitivity. Hypoxia could not cause the pc-E-hsT transfected cell apoptotic rate increase, but there were promoting effects in pc-H/E-hsT transfected cells. DR4 had not obvious change in pc-E-hsT and pc-H/E-hsT transfected cells under normoxic and hypoxic condition, otherwise, DR5 and cleaved caspase-3 increased mostly in pc-H/E-hsT transfected cells under hypoxic condition. TRAIL overexpression was co-regulated by Egr1 and HRE. TRAIL might promote hypoxic A549 cell radiosensitivity and induce apoptosis depending on DR5 to caspase-3 pathways.

  12. KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, Mule-dependent pathway in A549 non-small cell lung cancer cells.

    PubMed

    Kang, Min-Jung; Yun, Hye Hyeon; Lee, Jeong-Hwa

    2017-10-21

    The Bcl-2 family protein, Mcl-1 is known to have anti-apoptotic functions, and depletion of Mcl-1 by cellular stresses favors the apoptotic process. Moreover, Mcl-1 levels are frequently increased in various cancer cells, including non-small cell lung cancer (NSCLC), and is implicated in resistance to conventional chemotherapy and in cancer metastasis. In this study, we demonstrated that KRIBB11 accelerates the proteasomal degradation of Mcl-1 in the NSCLC cell line, A549. While KRIBB11 is an inhibitor of HSF1, we found that KRIBB11 induced Mcl-1 degradation in an HSF1-independent manner. Furthermore, this process was triggered via increase ubiquitination by the E3 ligase, Mule, rather than via de-ubiquitination by USP9X. Additionally, we found that Mcl-1 levels were only transiently reduced by KRIBB11: Mcl-1 levels were gradually restored as KRIBB11 activity diminished. However, we found that this effect was blocked in BIS (Bcl-2 interacting cell death suppressor, also called BAG3)-depleted cells, and that BIS prevents Mcl-1 from undergoing HSP70-driven proteasomal degradation, through an interaction with HSP70. Taken together, our results suggest that targeting Mcl-1 with KRIBB11 treatment, while simultaneously downregulating BIS, could be a therapeutic strategy in NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells.

    PubMed

    Lin, Hui-Ping; Kuo, Li-Kuo; Chuu, Chih-Pin

    2012-01-01

    Curcumin (diferuloylmethane) is a phenolic compound present in turmeric and is ingested daily in many parts of the world. Curcumin has been reported to cause inhibition on proliferation and induction of apoptosis in many human cancer cell lines, including non-small cell lung cancer cells (NSCLC). However, the clinical application of curcumin is restricted by its low bioavailability. In this report, it was observed that combined treatment of a low dosage of curcumin (5-10 µM) with a low concentration (0.1-2.5 µM) of small molecule inhibitors, including AG1478, AG1024, PD173074, LY294002 and caffeic acid phenethyl ester (CAPE) increased the growth inhibition in two human NSCLC cell lines: A549 and H1299 cells. The observation suggested that combined treatment of a low dosage of curcumin with inhibitors against epidermal growth factor receptor (EGFR), insulin-like growth factor 1 (IGF-1R), fibroblast growth factors receptor (FGFR), phosphatidylinositol 3-kinases (PI3K) or NF-κB signaling pathway may be a potential adjuvant therapy beneficial to NSCLC patients. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells

    PubMed Central

    Liu, Betty R.; Huang, Yue-Wern; Aronstam, Robert S.; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy. PMID:26942714

  15. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    PubMed

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  16. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells.

    PubMed

    Xiong, Fei; Jiang, Miao; Huang, Zhenzhou; Chen, Meijuan; Chen, Kejun; Zhou, Jing; Yin, Lian; Tang, Yuping; Wang, Mingyan; Ye, Lihong; Zhan, Zhen; Duan, Jinao; Fu, Haian; Zhang, Xu

    2014-03-01

    In recent years, the incidence of lung cancer, as well as the mortality rate from this disease, has increased. Moreover, because of acquired drug resistance and adverse side effects, the effectiveness of current therapeutics used for the treatment of lung cancer has decreased significantly. Chinese medicine has been shown to have significant antitumor effects and is increasingly being used for the treatment of cancer. However, as the mechanisms of action for many Chinese medicines are undefined, the application of Chinese medicine for the treatment of cancer is limited. The formula tested has been used clinically by the China National Traditional Chinese Medicine Master, Professor Zhonging Zhou for treatment of cancer. In this article, we examine the efficacy of Ke formula in the treatment of non-small cell lung cancer and elucidate its mechanism of action. A Balb/c nude mouse xenograft model using A549 cells was previously established. The mice were randomly divided into normal, mock, Ke, cisplatin (DDP), and co-formulated (Ke + DDP) groups. After 15 days of drug administration, the animals were sacrificed, body weight and tumor volume were recorded, and the tumor-inhibiting rate was calculated. A cancer pathway finder polymerase chain reaction array was used to monitor the expression of 88 genes in tumor tissue samples. The potential antiproliferation mechanism was also investigated by Western blot analysis. Ke formula minimized chemotherapy-related weight loss in tumor-bearing mice without exhibiting distinct toxicity. Ke formula also inhibited tumor growth, which was associated with the downregulation of genes in the PI3K/AKT, MAPK, and WNT/β-catenin pathways. The results from Western blot analyses further indicated that Ke blocked the cell cycle progression at the G1/S phase and induced apoptosis mainly via the PI3K/AKT pathway. Ke formula inhibits tumor growth in an A549 xenograft mouse model with no obvious side effects. Moreover, Ke exhibits synergistic

  17. Genotoxicity of fine and coarse fraction ambient particulate matter in immortalised normal (TT1) and cancer‐derived (A549) alveolar epithelial cells

    PubMed Central

    Enlo‐Scott, Zachary; Nagy, Eszter; Mudway, Ian S.; Tetley, Teresa D.; Arlt, Volker M.; Phillips, David H.; Gollapudi, B.

    2018-01-01

    Human exposure to airborne particulate matter (PM) is associated with adverse cardiopulmonary health effects, including lung cancer. Ambient PM represents a heterogeneous mixture of chemical classes including transition metals, polycyclic aromatic hydrocarbons (PAHs) and their derivatives such as nitro‐PAHs, many of which are classified as putative carcinogens. As the primary site of human exposure to PM is the lungs, we investigated the response of two alveolar epithelial cell lines, the tumour‐derived A549 and newly described TT1 cells, to fine and coarse PM collected from background and roadside locations. We show that coarse PM elicits a genotoxic response in the TT1 cells, with the strongest signal associated with the background sample. This response could be recapitulated using the organic extract derived from this sample. No responses were observed in PM‐challenged A549 cells. Fine PM failed to elicit a genotoxic response in either cell line despite the higher PAH concentrations within this fraction. Consistent with the lack of a simplistic association between PM PAH content and the observed genotoxic response, TT1 cells treated with benzo[a]pyrene (BaP) demonstrated no increase in the selected markers. In contrast, a pattern of response was observed in TT1 cells challenged with 3‐nitrobenzanthrone (3‐NBA) similar to that with coarse PM. Together, these data illustrated the suitability of the TT1 cell line for assessing PM‐induced genotoxicity and challenge the contention that fine roadside PM poses the higher cancer risk. Furthermore, the response to 3‐NBA and not BaP suggests a major contribution of nitro‐PAHs to the overall toxicity of PM. Environ. Mol. Mutagen. 59:290–301, 2018. © 2018 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society PMID:29368350

  18. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach

    PubMed Central

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  19. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  20. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-03-31

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.

  1. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line

    PubMed Central

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-01-01

    Background: Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. Materials and Methods: The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. Results: The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. Conclusion: This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer. PMID:25298673

  2. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line.

    PubMed

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-08-01

    Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.

  3. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    SciTech Connect

    Yu, Zhenhai, E-mail: tomsyu@163.com; Huang, Liangqian; Qiao, Pengyun

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. Thesemore » findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.« less

  4. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A novel synthetic compound exerts effective anti-tumour activity in vivo via the inhibition of tubulin polymerisation in A549 cells.

    PubMed

    Yan, Jun; Pang, Yanqing; Sheng, Jianfeng; Wang, Yali; Chen, Jie; Hu, Jinhui; Huang, Ling; Li, Xingshu

    2015-09-01

    Microtubules are critical elements that are involved in a wide range of cellular processes, and thus, they have become an attractive target for many anticancer drugs. A novel synthesised compound, 12P, was identified as new microtubule inhibitor. This compound inhibits tubulin polymerisation through binding to the colchicine-binding site of tubulin. 12P exhibits excellent anti-proliferative activities against a panel of human cancer cell lines, with IC₅₀ values range from 9 to 55nM. Interestingly, compound 12P also displayed equally potent cytotoxicity against several drug-resistant cell lines, and it showed high selectivity for active human umbilical vein endothelial cells (HUVECs). Further flow cytometric analysis showed that 12P induces G₂/M phase arrest and apoptosis in A549 cells. Cellular studies have revealed that the induction of apoptosis by 12P was associated with a collapse of mitochondrial membrane potential (MMP), accumulation of reactive oxygen species (ROS), alterations in the expression of some cell cycle-related proteins (e.g. Cyclin B1, Cdc25c, Cdc2) and some apoptosis-related proteins (e.g. Bax, Bad, Bcl-2, Bcl-xl). Importantly, 12P significantly reduced the growth of xenograft tumours of A549 cells in vivo (tumour inhibitory rate of 12P: 84.2%), without any loss of body weight. Taken together, these in vitro and in vivo results suggested that 12P may become a promising lead compound for the development of new anticancer drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands.

    PubMed

    Procházková, Jiřina; Strapáčová, Simona; Svržková, Lucie; Andrysík, Zdeněk; Hýžďalová, Martina; Hrubá, Eva; Pěnčíková, Kateřina; Líbalová, Helena; Topinka, Jan; Kléma, Jiří; Espinosa, Joaquín M; Vondráček, Jan; Machala, Miroslav

    2018-08-01

    Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

    PubMed

    Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    Different sized tetragonal tin oxide nanoparticles (SnO 2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO 2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO 2 NPs were toxic against cancer cell lines depending on their size and dose. IC 50 values of SnO 2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL -1 against HCT116, while these values are 135, 157 and 187μgL -1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO 2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup; Sharma, Anoop Kumar; Wallin, Håkan; Bossi, Rossana; Autrup, Herman; Mølhave, Lars; Ravanat, Jean-Luc; Briedé, Jacob Jan; de Kok, Theo Martinus; Loft, Steffen

    2011-02-18

    Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.

  9. Tumor necrosis factor-{alpha} induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-{kappa}B in A549 cells

    SciTech Connect

    Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung

    2008-06-15

    Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-{alpha} (TNF-{alpha}) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-{alpha} in human A549 cells remain unclear. Here, we showed that TNF-{alpha} induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-{kappa}B (helenalin), and transfection with dominant negative mutants of ERK2 ({delta}ERK) and JNK ({delta}JNK), and siRNAs for MEK1, p42 and JNK2. TNF-{alpha}-stimulated phosphorylation of p42/p44 MAPK and JNKmore » were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of {delta}ERK and {delta}JNK. Furthermore, the involvement of NF-{kappa}B in TNF-{alpha}-induced MMP-9 production was consistent with that TNF-{alpha}-stimulated degradation of I{kappa}B-{alpha} and translocation of NF-{kappa}B into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-{kappa}B was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-{alpha} in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-{alpha}-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-{kappa}B MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-{alpha}-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-{kappa}B are essential for TNF-{alpha}-induced MMP-9 gene expression.« less

  10. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance.

    PubMed

    Zheng, Wenjing; Cao, Chengwen; Liu, Yanan; Yu, Qianqian; Zheng, Chuping; Sun, Dongdong; Ren, Xiaofan; Liu, Jie

    2015-01-01

    Multidrug resistance (MDR) is a major barrier against effective cancer treatment. Dual-delivering a therapeutic small interfering RNA (siRNA) and chemotherapeutic agents has been developed to reverse drug resistance in tumor cells. In this study, amine-terminated generation 5 polyamidoamine (PAMAM) dendrimers (G5.NH2)-modified selenium nanoparticles (G5@Se NP) were synthesized for the systemic dual-delivery of mdr1 siRNA and cisplatin (cis-diamminedichloroplatinum-(II), DDP), which was demonstrated to enhance siRNA loading, releasing efficiency and gene-silencing efficacy. When the mdr1 siRNA was conjugated with G5@Se NP via electrostatic interaction, a significant down-regulation of P-glycoprotein and multidrug resistance-associated protein expression was observed; G5@Se-DDP-siRNA arrested A549/DDP cells at G1 phase and led to enhanced cytotoxicity in A549/DDP cells through induction of apoptosis involving the AKT and ERK signaling pathways. Interestingly, G5@Se-DDP NP were much less reactive than DDP in the reactions with both MT and GSH, indicating that loading of DDP in a nano-delivery system could effectively prevent cell detoxification. Furthermore, animal studies demonstrated that the new delivery system of G5@Se-DDP-siRNA significantly enhanced the anti-tumor effect on tumor-bearing nude mice, with no appreciable abnormality in the major organs. These results suggest that G5@Se NP could be a potential platform to combine chemotherapy and gene therapy technology in the treatment of human disease. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.

    PubMed

    Deng, Xiaobei; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2013-06-01

    It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf

  12. Cell viability test after laser guidance

    NASA Astrophysics Data System (ADS)

    Rosenbalm, Tabitha N.; Owens, Sarah; Bakken, Daniel; Gao, Bruce Z.

    2006-02-01

    To precisely control the position of multiple types of cells in a coculture for the study of cell-cell interactions, we have developed a laser micropatterning technique. The technique employs the optical forces generated by a weakly focused laser beam. In the beam's focal region, the optical force draws microparticles, such as cells, into the center of the beam, propels them along the beam axis, and guides them onto a target surface. Specific patterns are created through computercontrolled micromanipulation of the substrate relative to the laser beam. Preliminary data have demonstrated cell viability after laser guidance. This project was designed to systematically vary the controllable laser parameters, namely, intensity and exposure time of the laser on single cells, and thus determine the laser parameters that allow negligible cell damage with functional cellular position control. To accomplish this goal, embryonic day 7 (E7) chick forebrain neurons were cultured in 35 mm petri dishes. Control and test cells were selected one hour after cell placement to allow cell attachment. Test cells were subjected to the laser at the focal region. The experimental parameters were chosen as: wavelength - 800 nm, intensities - 100 mW, 200 mW, and 300 mW, and exposure times - 10 s and 60 s. Results were analyzed based on neurite outgrowth and the Live/Dead assay (Viability/Cytoxicity kit from Molecular Probes). No statistical difference (p >> 0.1, student t-test) in viability or function was found between the control neurons and those exposed to the laser. This confirms that laser guidance seems to be a promising method for cellular manipulation.

  13. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    PubMed

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. BID is a critical factor controlling cell viability regulated by IFN-α.

    PubMed

    Tsuno, Takaya; Mejido, Josef; Zhao, Tongmao; Phillips, Terry; Myers, Timothy G; Bekisz, Joseph; Zoon, Kathryn C

    2012-01-01

    Clinical applications of human interferon (IFN)-α have met with varying degrees of success. Nevertheless, key molecules in cell viability regulated by IFN-α have not been clearly identified. Our previous study indicated that IFN (α, β, and ω) receptor (IFNAR) 1/2- and IFN regulatory factor 9-RNA interference (RNAi) completely restored cell viability after IFN-α treatment in human ovarian adenocarcinoma OVCAR3 cells sensitive to IFN-α. In this study, IFNAR1/2- and IFN regulatory factor 9-RNAi inhibited the gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not of Fas ligand, after IFN-α treatment. In fact, TRAIL but not Fas ligand inhibited the viability of OVCAR3 cells. IFN-α notably upregulated the levels of TRAIL protein in the supernatant and on the membrane of OVCAR3 cells. After TRAIL signaling, caspase 8 inhibitor and BH3 interacting domain death agonist (BID)-RNAi significantly restored cell viability in response to IFN-α and TRAIL in OVCAR3 cells. Furthermore, BID-RNAi prevented both IFN-α and TRAIL from collapsing the mitochondrial membrane potential (ΔΨm). Finally, we provided important evidence that BID overexpression led to significant inhibition of cell viability after IFN-α or TRAIL treatments in human lung carcinoma A549 cells resistant to IFN-α. Thus, this study suggests that BID is crucial for cell viability regulated by IFN-α which can induce mitochondria-mediated apoptosis, indicating a notable potential to be a targeted therapy for IFN-α resistant tumors.

  15. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar

    2013-12-01

    For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.

  16. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  17. Metabolic pathway catalyzed by Vanin-1 pantetheinase plays a suppressive role in influenza virus replication in human alveolar epithelial A549 cells.

    PubMed

    Yamashita, Nobuko; Yashiro, Masato; Ogawa, Hirohito; Namba, Hikaru; Nosaka, Nobuyuki; Fujii, Yousuke; Morishima, Tsuneo; Tsukahara, Hirokazu; Yamada, Masao

    2017-08-05

    Our previous analysis of gene expression profiles in the peripheral blood from patients with influenza A (H1N1) pdm09 pneumonia revealed elevated transcription levels of the vanin-1 (vascular non-inflammatory molecule 1, VNN1) gene, which encodes an epithelial ectoenzyme with pantetheinase activity involved in recycling coenzyme A. Here, to elucidate the role of VNN1 in influenza A virus (IAV) H1N1 infection, we investigated the change of VNN1 expression in the context of IAV infection and the effects of its related substances, i.e., its direct substrate pantetheine and its two metabolites pantothenic acid and cysteamine on the replication of IAV in the human alveolar epithelial carcinoma cell line A549. The messenger RNA expression of VNN1 in A549 cells was significantly increased (by 4.9-fold) after IAV infection under an elevated concentration of pantetheine. Moreover, VNN1 mRNA levels were elevated by > 100-fold in response to pro-inflammatory cytokines, especially TNF-α and IL-1β. Pantetheine significantly reduced the IAV replication and IAV Matrix 1 (M1) mRNA levels when it was administered prior to and during infection. In addition, cysteamine treatment during IAV infection significantly reduced the viral replication and IAV M1 mRNA levels, whereas pantothenic acid did not. These findings suggest that the metabolic pathway catalyzed by VNN1 pantetheinase plays a suppressive role in IAV infection in the respiratory tract, especially in severe conditions under hypercytokinemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cytotoxicity and genotoxicity in human lung epithelial A549 cells caused by airborne volatile organic compounds emitted from pine wood and oriented strand boards.

    PubMed

    Gminski, Richard; Tang, Tao; Mersch-Sundermann, Volker

    2010-06-16

    Due to the massive reduction of air-change rates in modern, energy-saving houses and dwellings, the contribution of volatile organic compound (VOCs) emissions from wood-based materials to indoor air quality has become increasingly important. To evaluate toxicity of VOC mixtures typically emitted from pine wood and oriented strand boards (OSB) and their main constituents (selected terpenes and aldehydes), cytotoxicity and genotoxicity were investigated in human A549 lung cells. To facilitate exposure directly via gas phase, a 250 L emission chamber was combined with a Vitrocell exposure system. VOC exposure concentrations were measured by GC/MSD. Biological effects were determined after an exposure time of 1h by measuring cytotoxicity (erythrosine B staining) and genotoxicity (comet assay). Neither cytotoxic nor genotoxic effects were observed for VOC mixtures emitted from pine wood or OSB at loading factors of approximately 13 m(2)/m(3) (worst case conditions) of the panels (with maximum VOC levels of about 80 mg/m(3)) in comparison to clean air. While alpha-pinene and Delta(3)-carene did not induce toxic effects even at exposure concentrations of up to 1800 mg/m(3) and 600 mg/m(3), respectively, hexanal showed a cytotoxic effect at 2000 mg/m(3). The alpha,beta-unsaturated aldehydes 2-heptenal and 2-octenal caused genotoxic effects in concentrations exceeding 100mg/m(3) and 40 mg/m(3), respectively. In conclusion, high concentrations of VOCs and VOC mixtures emitted from pine wood and OSB did not lead to adverse effects in A549 human lung cells even at concentrations 10(2) to 10(5)-fold higher than those found in normal indoor air. Attention must be paid to mutagenic and possibly carcinogenic alpha,beta-unsaturated aldehydes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    PubMed

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  20. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    PubMed

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Role of {alpha}{sub v}{beta}{sub 5} integrin receptor in endocytosis of crocidolite and its effect on intracellular glutathione levels in human lung epithelial (A549) cells

    SciTech Connect

    Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E.

    Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changesmore » in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.« less

  2. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    PubMed

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  3. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia.

    PubMed

    Li, Chang-Feng; Chen, Li-Bo; Li, Dan-Dan; Yang, Lei; Zhang, Bao-Gang; Jin, Jing-Peng; Zhang, Ying; Zhang, Bin

    2014-08-01

    The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.

  4. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway.

    PubMed

    Wang, Junjian; Huang, Shaoxiang

    2018-03-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro . MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro , which may provide a novel approach for clinical treatment.

  5. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway

    PubMed Central

    Wang, Junjian; Huang, Shaoxiang

    2018-01-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment. PMID:29467859

  6. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line.

    PubMed

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-Lin

    2015-11-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5-80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π-π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  7. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    PubMed Central

    Xie, Jun; Liu, Jiahui; Liu, Heng; Liang, Shihui; Lin, Meigui; Gu, Yueyu; Liu, Taoli; Wang, Dongmei; Ge, Hui; Mo, Sui-lin

    2015-01-01

    The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L) for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2. PMID:26713270

  8. MicroRNA Profiling of Sendai Virus-Infected A549 Cells Identifies miR-203 as an Interferon-Inducible Regulator of IFIT1/ISG56

    PubMed Central

    Buggele, William A.

    2013-01-01

    The mammalian type I interferon (IFN) response is a primary barrier for virus infection and is essential for complete innate and adaptive immunity. Both IFN production and IFN-mediated antiviral signaling are the result of differential cellular gene expression, a process that is tightly controlled at transcriptional and translational levels. To determine the potential for microRNA (miRNA)-mediated regulation of the antiviral response, small-RNA profiling was used to analyze the miRNA content of human A549 cells at steady state and following infection with the Cantell strain of Sendai virus, a potent inducer of IFN and cellular antiviral responses. While the miRNA content of the cells was largely unaltered by infection, specific changes in miRNA abundance were identified during Sendai virus infection. One miRNA, miR-203, was found to accumulate in infected cells and in response to IFN treatment. Results indicate that miR-203 is an IFN-inducible miRNA that can negatively regulate a number of cellular mRNAs, including an IFN-stimulated gene target, IFIT1/ISG56, by destabilizing its mRNA transcript. PMID:23785202

  9. Nanoparticle abraxane possesses impaired proliferation in A549 cells due to the underexpression of glucosamine 6-phosphate N-acetyltransferase 1 (GNPNAT1/GNA1).

    PubMed

    Zhao, Minzhi; Li, Haiyun; Ma, Yan; Gong, He; Yang, Shu; Fang, Qiaojun; Hu, Zhiyuan

    2017-01-01

    Abraxane (Abr), a US Food and Drug Administration-approved albumin-bound nanoparticle applied for the treatment of non-small-cell lung cancer, has been reported to be more effective than paclitaxel (PTX). To further understand the molecular mechanisms that produce this superior drug efficacy of Abr, a quantitative proteomic approach has been applied to investigate the global protein expression profiles of lung cancer cell A549 treated with Abr and PTX. Only one protein, namely, glucosamine 6-phosphate N-acetyltransferase 1 (GNA1), showed significant differential expression ( P <0.05) in the cutoff of 2.0 fold, suggesting that Abr can be used safely as a substitute for PTX. GNA1 is a key enzyme in the biosynthesis of uridine diphosphate-N-acetylglucosamine, which is an important donor substrate for N-linked glycosylation and has several important functions such as embryonic development and growth. Albumin plays a major role in the regulation of this protein. In summary, this study first shows that the superior drug effect of Abr is mainly due to the downregulation of GNA1, which causes proliferative delay and cell adhesion defect. It is also noteworthy that the deficiency of GNA1 might reduce insulin secretion which correlates with type 2 diabetes.

  10. Bu-Zhong-Yi-Qi Decoction, the Water Extract of Chinese Traditional Herbal Medicine, Enhances Cisplatin Cytotoxicity in A549/DDP Cells through Induction of Apoptosis and Autophagy

    PubMed Central

    Xiong, Ying

    2017-01-01

    Cisplatin is one of the most active cytotoxic agents for non-small cell lung cancer (NSCLC) treatment. However, the development of cisplatin resistance is common. Bu-Zhong-Yi-Qi decoction (BZYQD), a Chinese traditional herbal medicine, is widely used for the enhancement of antitumor effect in other medications. In this study, we evaluated the effect and drug-resistance reversal mechanism of BZYQD combined with cisplatin on cisplatin-resistant A549/DDP cells. Our results showed that BZYQD exhibited direct cytotoxic and chemosensitizing effects. Cotreatment with BZYQD and cisplatin induced intrinsic apoptotic pathways which were measured by condensed nuclear chromatin, Annexin V/PI apoptosis assay, and apoptosis related proteins expression. In addition, cotreatment with BZYQD and cisplatin also activated autophagy, as indicated by an increase in LC3 puncta, classical autophagosomes and/or autolysosomes, and an accumulation of LC3-II and ATG7 protein. Finally, cotreatment with BZYQD and cisplatin resulted in the generation of ROS and scavenging ROS by NAC almost completely suppressing cell death. These results suggest that cotreatment with BZYQD and cisplatin might reverse cisplatin resistance by inducing ROS accumulation, which activates apoptosis and autophagy by oxidative stress. The combination of BZYQD and cisplatin may represent a novel approach in treatment for NSCLC and thus offer a new target for chemotherapy. PMID:28154825

  11. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line.

    PubMed

    Castro-Aceituno, Verónica; Abbai, Ragavendran; Moon, Seong Soo; Ahn, Sungeun; Mathiyalagan, Ramya; Kim, Yu-Jin; Kim, Yeon-Ju; Yang, Deok Chun

    2017-09-01

    Pleuropterus multiflorus (Hasuo) is a widely used medicinal plant in Korea and China for treating amnesia, isnomia, heart throbbing etc. With the constructive idea of promoting the wide-spread usage of P. multiflorus, we propose its indirect usage in the form of biologically active silver (Pm-AgNPs) and gold nanoparticles (Pm-AuNPs). The synthesized nanoparticles were predominantly spherical, crystalline with the Z-average hydrodynamic diameter of 274.8nm and 104.8nm respectively. Also, proteins and phenols were identified as the major players involved in their synthesis and stability. Further, Pm-AgNPs at 25μg/mL were significantly cytotoxic to lung cancer cells, whereas, Pm-AuNPs were not cytotoxic to both normal keratinocyte and lung cancer cells even at 100μg/mL. In addition, further evaluation of the anti-cancer activity of these new nanoparticles, such as migration and apoptosis, shown that Pm-AgNPs have a potential therapeutic effect on A549 lung cancer cell treatment. To the best of our knowledge, this is the first report dissecting out the ability of the endemic P. multiflorus for the synthesis of bioactive silver and gold nanoparticle which would open up doors for its extensive usage in medicinal field. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. The effect of automobile exhaust particulates on cell viability, plating efficiency and cell division of mammalian tissue culture cells.

    PubMed

    Seemayer, N H; Hadnagy, W; Tomingas, R

    1987-03-01

    Extract of particulate matter (EPM) of gasoline engine exhaust induced only a slight loss of cell viability of mouse macrophages (line IC-21) in vitro, while a strong dose-dependent reduction of plating efficiency of human cell line A-549 and of Syrian hamster line 14-1b occurred. Cytological investigations of exposed macrophages of line IC-21 revealed an increase in the mitotic index from 1.5% of control values up to 14.6% at the highest tested concentration of EPM. Mitotic arrest is based almost exclusively on C-type mitoses occurring dose-dependently in the presence of EPM. Results indicate disturbances of the spindle apparatus in the presence of EPM.

  13. Terbutaline causes immobilization of single β2-adrenergic receptor-ligand complexes in the plasma membrane of living A549 cells as revealed by single-molecule microscopy

    NASA Astrophysics Data System (ADS)

    Sieben, Anne; Kaminski, Tim; Kubitscheck, Ulrich; Häberlein, Hanns

    2011-02-01

    G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of β2-adrenergic receptors (β2AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all β2ARs are constitutively immobile. About 2/3 of the β2ARs moved with a diffusion constant of D2 = 0.03+/-0.001 μm2/s and about 17% were diffusing five-fold faster (D3 = 0.15+/-0.02 μm2/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ1 = 77+/-1 ms and τ2 = 388+/-11 ms. Agonistic stimulation of the β2AR-Alexa-NA complexes with 1 μM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in β2AR mobility suggesting that different receptor dynamics characterize different receptor states.

  14. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells.

    PubMed

    Kasurinen, Stefanie; Jalava, Pasi I; Happo, Mikko S; Sippula, Olli; Uski, Oskari; Koponen, Hanna; Orasche, Jürgen; Zimmermann, Ralf; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2017-05-01

    According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1487-1499, 2017. © 2016 Wiley Periodicals, Inc.

  16. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line

    NASA Astrophysics Data System (ADS)

    Palaniappan, P.; Sathishkumar, G.; Sankar, R.

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60 °C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag+ ions were confirmed through color change which produces an absorbance spectra at 420 nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag+) into (Ag0) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100 μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  17. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures.

    PubMed

    Malacrida, Leonel; Astrada, Soledad; Briva, Arturo; Bollati-Fogolín, Mariela; Gratton, Enrico; Bagatolli, Luis A

    2016-11-01

    Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Anti-invasive effect of Cyclamen pseudibericum extract on A549 non-small cell lung carcinoma cells via inhibition of ZEB1 mediated by miR-200c.

    PubMed

    Karagur, Ege Riza; Ozay, Cennet; Mammadov, Ramazan; Akca, Hakan

    2018-06-01

    Scientists are increasingly focusing attention on natural products of plant origin for use as agents in cancer protection and treatment. Cyclamen L. tuber extracts contain saponin glycosides that have been shown to have anti-cancer and other biological activities. The epithelial-to-mesenchymal transition (EMT) is thought to enhance malignant tumour progress. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is an important inducer of EMT in different human tumours and has recently been shown to boost invasion by tumour cells. In this study, we investigated the effects of endemic Cyclamen pseudibericum (CP) saponin-rich tuber extract on the capacity of non-small cell lung cancer line A549 cells to proliferate, invade and migrate and also examined the expression levels of several invasion-migration-related microRNAs (miRNAs) to identify those which directly targeted ZEB1. The cytotoxicity effect of the CP extract on the A549 cancer cells was determined by the luminometric method. The half-minimal (50%) inhibitory concentration dose in the A549 cells was determined to be 41.64 ± 2.35 µg/mL. Using the Matrigel invasion chamber system and the wound healing assay we observed that the CP extract suppressed the invasion and migration capacity of A549 cells, respectively. The expression of miRNAs in A549 cells was evaluated by real-time PCR. Our data showed that overexpression of miRNA miR-200c hindered the EMT by increasing the expression of E-cadherin and decreasing the expression of both N-cadherin and vimentin through the direct targeting of ZEB1. These findings suggest that the saponin-rich tuber extract of CP may have considerable anti-cancer properties in lung cancer. Further studies are required to examine in detail the molecular-based mechanism involved in the EMT process of the extract along with isolation and identification of active saponin components.

  19. Revealing the effect of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and β-catenin pathway in A549 cell line.

    PubMed

    Eren, Demirpolat; Betul, Yerer Mukerrem

    2016-10-25

    In our study, anticancer effects of 6-gingerol, 6-shogaol from ginger and curcumin from turmeric were investigated and the results were compared with each other. We aimed to reveal their effects on microsomal prostaglandine E2 synthase 1 (mPGES-1) which is related with cancer progression and inflammation as well as β-catenin and glycogen synthase kinase 3β (GSK-3β) that are the main components of Wnt/GSK3 pathway. As it is known activation of GSK-3β and high levels of mPGES-1 pathway leads to cell proliferation and aggravates cancer progression. Therefore both of them are potential targets for cancer therapy. 6-shogaol and 6-gingerol' s effect on this pathway is not known very well up to now while curcumin that is known as an mPGES-1 inhibitor has anticancer properties via this pathway and many other pathways. Besides being in Zingiberaceae family, ginger's 6-gingerol and 6-shogaol have a molecular similarity with turmeric's curcumin. In our study we investigated their effects using a popular non small lung cancer cell line named A549 which expresses mPGES-1 and has active GSK3β pathway. IL-1β was used for inducing mPGES-1 and enabling the cancer characteristics such as cell proliferation. So compounds that inactivates or decreases the level of these components might be potential anticancer agents. A549 cells were incubated with interleukin 1β (IL-1β) for 24 h in order to maintain mPGES-1 enzyme induction. Experiments were performed both on IL-1β and non-IL-1β group. Real time cell analysis was performed to determine the cytotoxicity. Samples for western blotting and RT-PCR were collected after 24 h incubation with compounds to determine the amount of mPGES-1, GSK-3β, p-GSK-3β, β-catenin protein and mRNA. PGE2 which is the end product of mPGES-1 was measured by using ELISA kit. As a result of cell profile assay, cells exposed to IL-1β proliferate faster than non-IL-1β ones. This shows that induced mPGES-1 might play a role through GSK3β pathway

  20. Heteroleptic monometallic and trimetallic ruthenium(II) complexes incorporating a π-extended dipyrrin ligand: Light-activated reactions with the A549 lung cancer cell line.

    PubMed

    Swavey, Shawn; Morford, Krista; Tsao, Max; Comfort, Kristen; Kilroy, Mary Kate

    2017-10-01

    A heteroleptic monometallic ruthenium(II) and a heteroleptic trimetallic ruthenium(II) complex have been synthesized and characterized. Both complexes have an overall 3+ charge, with the charge density greater for the monometallic complex. The electronic spectra of the monometallic ruthenium(II) complex exhibits intense π-π* transitions associated with the bipyridyl groups along with overlapping metal to ligand charge transfer (MLCT) and ligand centered π-π* transitions ranging from 520nm to approximately 600nm. The trimetallic ruthenium(II) complex, on the other hand, displays more well defined transitions with the expected π-π* transition of the bipyridyl groups at 294nm and Ru(dπ) to bpy(π*) MLCT transitions at 355nm and 502nm. In addition to these absorption bands an intense transition, 578nm, resulting from overlapping dipyrrin (π-π*) and Ru(dπ) to dipyrrin(π*) transitions is observed. Electrochemical and spectroelectrochemical experiments were used to help in assigning these transitions. Irradiation of the complexes in the presence of plasmid DNA within the photodynamic therapy window (600nm to 850nm) reveal, using electrophoresis, that both complexes are capable of causing photo-damage to the DNA backbone. The trimetallic ruthenium(II) complex; however, also shows the ability to generate photoinduced DNA damage in the absence of oxygen, suggesting a photo-oxidative process. Studies of the complexes toward lung cancer cells (A549 cell line) in the absence of light indicate little cytotoxicity up to 50μM. Upon irradiation of the cells with a low power 420nm light source the trimetallic complex showed considerably greater photo-cytotoxicity compared to the monometallic analog. A dose-dependent response curve gives an IC50 of 92μM for complex B. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cytotoxicity of the Roots of Trillium govanianum Against Breast (MCF7), Liver (HepG2), Lung (A549) and Urinary Bladder (EJ138) Carcinoma Cells.

    PubMed

    Khan, Kashif M; Nahar, Lutfun; Al-Groshi, Afaf; Zavoianu, Alexandra G; Evans, Andrew; Dempster, Nicola M; Wansi, Jean D; Ismail, Fyaz M D; Mannan, Abdul; Sarker, Satyajit D

    2016-10-01

    Trillium govanianum Wall. (Melanthiaceae alt. Trilliaceae), commonly known as 'nag chhatri' or 'teen patra', is a native species of the Himalayas. It is used in various traditional medicines containing both steroids and sex hormones. In folk medicine, the rhizomes of T. govanianum are used to treat boils, dysentery, inflammation, menstrual and sexual disorders, as an antiseptic and in wound healing. With the only exception of the recent report on the isolation of a new steroidal saponin, govanoside A, together with three known steroidal compounds with antifungal property from this plant, there has been no systematic pharmacological and phytochemical work performed on T. govanianum. This paper reports, for the first time, on the cytotoxicity of the methanol extract of the roots of T. govanianum and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549) and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cytotoxicity assay and liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry analysis of the SPE fractions. The methanol extract and all SPE fractions exhibited considerable levels of cytotoxicity against all cell lines, with the IC 50 values ranging between 5 and 16 µg/mL. Like other Trillium species, presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography mass spectrometry data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line.

    PubMed

    Akbarzadeh, Abolfazl; Samiei, Mohammad; Joo, Sang Woo; Anzaby, Maryam; Hanifehpour, Younes; Nasrabadi, Hamid Tayefi; Davaran, Soodabeh

    2012-12-18

    The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. At first approach silane-grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX-loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox-loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm-MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx-loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. IC50 of DOx-loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.

  3. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses.

    PubMed

    Pan, Chih-Hong; Liu, Wen-Te; Bien, Mauo-Ying; Lin, I-Chan; Hsiao, Ta-Chih; Ma, Chih-Ming; Lai, Ching-Huang; Chen, Mei-Chieh; Chuang, Kai-Jen; Chuang, Hsiao-Chi

    2014-01-01

    Although the health effects of zinc oxide nanoparticles (ZnONPs) on the respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to ZnONPs for 2 and 4 hours was used to determine the biological mechanisms of ZnONP toxicity. p53-pathway activation was the core mechanism regulating cell viability in response to particle size. Activation of the Wnt and TGFβ signaling pathways was also important in the cellular response to ZnONPs of different sizes. The cadherin and Wnt signaling pathways were important cellular mechanisms triggered by surface differences. These results suggested that the size and surface characteristics of ZnONPs might play an important role in their observed cytotoxicity. This approach facilitates the design of more comprehensive systems for the evaluation of nanoparticles.

  4. Cell viability monitoring using Fano resonance in gold nanoslit array

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Han; Hsieh, Shu-Yi; Lee, Kuang-Li; Weng, Ruei-Hung; Chiou, Arthur; Wei, Pei-Kuen

    2013-09-01

    Cell viability is a crucial issue in biological research. We present label-free monitoring of adhesion cells viability by gold nanoslits-based Fano resonance biosensors. Plastic multiple wells with gold nanoslits substrate were made using a thermal nanoimprint method. Adhesion cells in the wells were treated with doxorubicin for inducing cell death and compared with conventional colorimetric assay. The nanoslits method shows better respones of viability tests under low concentration and short interaction time due to its high surface sensitivies. The vinculin labelling indicates that the measured signals are in good agreement with the adhesion abilities of cells.

  5. Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro.

    PubMed

    Tilgase, Andra; Patetko, Liene; Blāķe, Ilze; Ramata-Stunda, Anna; Borodušķis, Mārtiņš; Alberts, Pēteris

    2018-01-01

    Background: The role of oncolytic viruses in cancer treatment is increasingly studied. The first oncolytic virus (Rigvir®, ECHO-7) was registered in Latvia over a decade ago. In a recent retrospective study Rigvir® decreased mortality 4.39-6.57-fold in stage IB-IIC melanoma patients. The aims of the present study are to test the effect of Rigvir® on cell line viability in vitro and to visualize the cellular presence of Rigvir® by immunocytochemistry. Methods: The cytolytic effect of Rigvir® on the viability of FM-9, RD, AGS, A549, HDFa, HPAF‑II, MSC, MCF7, HaCaT, and Sk-Mel-28 cell lines was measured using live cell imaging. PBMC viability was measured using flow cytometry. The presence of ECHO-7 virus was visualized using immunocytochemistry. Statistical difference between treatment groups was calculated using two-way ANOVA. Results: Rigvir® (10%, volume/volume) reduced cell viability in FM-9, RD, AGS, A549, HDFa, HPAF‑II and MSC cell lines by 67-100%. HaCaT cell viability was partly affected while Rigvir® had no effect on MCF7, Sk-Mel-28 and PBMC viability. Detection of ECHO-7 by immunocytochemistry in FM-9, RD, AGS, A549, HDFa, HPAF-II and Sk-Mel-28 cell lines suggests that the presence of Rigvir® in the cells preceded or coincided with the time of reduction of cell viability. Rigvir® (10%) had no effect on live PBMC count. Conclusions: The results suggest that Rigvir® in vitro reduces the viability of cells of human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma, pancreas adenocarcinoma but not in PBMC. The presence of Rigvir® in the sensitive cells was confirmed using anti-ECHO-7 antibodies. The present results suggest that a mechanism of action for the clinical benefit of Rigvir® is its cytolytic properties. The present results suggest that the effect of Rigvir® could be tested in other cancers besides melanoma. Further studies of possible Rigvir® entry receptors are needed.

  6. Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice.

    PubMed

    Kang, Chi Gu; Im, Eunji; Lee, Hyo-Jeong; Lee, Eun-Ok

    2017-05-01

    Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths in both men and women in the United States. It has been recently demonstrated that osteopontin (OPN) effectively inhibits cofilin activity through the focal adhesion kinase (FAK)/AKT/Rho-associated kinase (ROCK) pathway to induce the invasion of human non-small cell lung cancer (NSCLC) cells. Plumbagin was isolated from the roots of the medicinal plant Plumbago zeylanica L. and has been reported to possess anticancer activities. However, the molecular mechanisms by which plumbagin inhibits the invasion of cancer cells is still unclear. In this study, the anti-invasive and anti-metastatic mechanisms of plumbagin were investigated in OPN-treated NSCLC A549 cells. OPN effectively induced the motility and invasion of NSCLC A549 cells and H1299 cells, which was strongly suppressed by plumbagin with no evidence of cytotoxicity. In addition, lamellipodia formation at the leading edge of cells by OPN was dramatically decreased in plumbagin-treated cells. Plumbagin caused an effective inhibition in OPN-induced the expression of ROCK1 as well as the phosphorylation of LIM kinase 1 and 2 (LIMK1/2), and cofilin. OPN-induced the phosphorylation of FAK and AKT was impaired without affecting their total forms by plumbagin treatment. OPN facilitated metastatic lung colonization, which was effectively suppressed in plumbagin-treated mice. Taken together, these results suggest that plumbagin reduces OPN-induced the invasion of NSCLC A549 cells, which resulted from inhibiting the ROCK pathway mediated by the FAK/AKT pathway and suppresses lung metastasis in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A platycoside-rich fraction from the root of Platycodon grandiflorum enhances cell death in A549 human lung carcinoma cells via mainly AMPK/mTOR/AKT signal-mediated autophagy induction.

    PubMed

    Yim, Nam-Hui; Hwang, Youn-Hwan; Liang, Chun; Ma, Jin Yeul

    2016-12-24

    The root of Platycodon grandiflorum (PG), commonly known as Kilkyong in Korea, Jiegeng in China, and Kikyo in Japan, has been extensively used as a traditional anti-inflammatory medicine in Asia for the treatment of respiratory conditions, such as bronchitis, asthma, and tonsillitis. Platycosides isolated from PG are especially well-known for their anti-cancer effects. We investigated the involvement of autophagic cell death and other potential molecular mechanisms induced by the platycoside-containing butanol fraction of PG (PGB) in human lung carcinoma cells. PGB-induced growth inhibition and cell death were measured using a 5-diphenyl-tetrazolium bromide (MTT) assay. The effects of PGB on autophagy were determined by observing microtubule-associated protein 1 light chain 3 (LC3) redistribution with confocal microscopy. The PGB-mediated regulation of autophagy-associated proteins was investigated using Western blotting analysis. Furthermore, the anti-cancer mechanism of PGB was confirmed using chemical inhibitors. A high-performance liquid chromatography (HPLC)-DAD system was used to analyze the platycosides in PGB. In A549 cells, PGB induced significant autophagic cell death. Specifically, PGB upregulated LC3-II in a time- and dose-dependent manner, and it redistributed LC3 via autophagosome formation in the cytoplasm. PGB treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and subsequently suppressed the AKT/mammalian target of the rapamycin (mTOR) pathway. Furthermore, PGB inhibited cell proliferation by regulating the mitogen-activated protein kinase (MAPK) pathways. In this study, six types of platycosides were identified in the PGB using HPLC. PGB efficiently induced cancer cell death via autophagy and the modulation of the AMPK/mTOR/AKT and MAPK signaling pathways in A549 cells. Therefore, PGB may be an efficacious herbal anti-cancer therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. In vitro and in vivo inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism

    PubMed Central

    Tai, Xiang; Cai, Xiao-Bei; Zhang, Zhang; Wei, Rui

    2016-01-01

    The natural extract artemisinin and its derivatives have good anticancer activity. The present study aimed to investigate the in vitro inhibitory effects of combined dihydroartemisinin (DHA) and doxorubicin (DOX) treatment on a variety of tumor cell lines (HeLa, OVCAR-3, MCF-7, PC-3 and A549), as well as the underlying mechanisms. In addition, the in vivo effects of DHA and DOX were evaluated using a mouse HeLa tumor model. The HeLa, OVCAR-3, MCF-7, PC-3 and A549 cells were treated with a combination of DHA and DOX, and the effect on cell viability was detected by Cell Counting kit-8. The cells were observed under a fluorescence microscope after staining with Hoechst 33258 dye to observe morphological changes in the nuclei in order to determine whether the cells in the treatment group exhibited apoptosis. Apoptosis of the cells was further detected by flow cytometry, and statistical analysis was performed. The specific inhibitors of caspase-3, −8 and −9 were used to determine the intrinsic and extrinsic pathways of cell apoptosis. The cervical cancer HeLa cells treated with the combination of DHA and DOX showed up to a 91.5% decrease in viability, which was higher than that of the same cells treated with DHA or DOX alone at the same concentration, respectively (P<0.01). The optimal concentrations of the drugs used in combination were DHA at 10 µg/ml and DOX at 10 µg/ml. DHA + DOX also had a significant inhibitory effect on the ovarian cancer (OVCAR-3), breast cancer (MCF-7), lung cancer (A549) and prostate cancer (PC-3) cells. The images observed under fluorescence microscope after Hoechst 33258 staining showed marked pyknosis in the cells treated with DHA + DOX, similar to that when treated with DHA or DOX alone, which is typical in apoptosis. As determined by flow cytometry, the apoptotic rate of the cells treated with DHA + DOX at optimal concentrations was up to 90%, which was significantly higher than that of the cells treated with DHA or DOX alone at

  9. In vitro and in vivo inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism.

    PubMed

    Tai, Xiang; Cai, Xiao-Bei; Zhang, Zhang; Wei, Rui

    2016-11-01

    The natural extract artemisinin and its derivatives have good anticancer activity. The present study aimed to investigate the in vitro inhibitory effects of combined dihydroartemisinin (DHA) and doxorubicin (DOX) treatment on a variety of tumor cell lines (HeLa, OVCAR-3, MCF-7, PC-3 and A549), as well as the underlying mechanisms. In addition, the in vivo effects of DHA and DOX were evaluated using a mouse HeLa tumor model. The HeLa, OVCAR-3, MCF-7, PC-3 and A549 cells were treated with a combination of DHA and DOX, and the effect on cell viability was detected by Cell Counting kit-8. The cells were observed under a fluorescence microscope after staining with Hoechst 33258 dye to observe morphological changes in the nuclei in order to determine whether the cells in the treatment group exhibited apoptosis. Apoptosis of the cells was further detected by flow cytometry, and statistical analysis was performed. The specific inhibitors of caspase-3, -8 and -9 were used to determine the intrinsic and extrinsic pathways of cell apoptosis. The cervical cancer HeLa cells treated with the combination of DHA and DOX showed up to a 91.5% decrease in viability, which was higher than that of the same cells treated with DHA or DOX alone at the same concentration, respectively (P<0.01). The optimal concentrations of the drugs used in combination were DHA at 10 µg/ml and DOX at 10 µg/ml. DHA + DOX also had a significant inhibitory effect on the ovarian cancer (OVCAR-3), breast cancer (MCF-7), lung cancer (A549) and prostate cancer (PC-3) cells. The images observed under fluorescence microscope after Hoechst 33258 staining showed marked pyknosis in the cells treated with DHA + DOX, similar to that when treated with DHA or DOX alone, which is typical in apoptosis. As determined by flow cytometry, the apoptotic rate of the cells treated with DHA + DOX at optimal concentrations was up to 90%, which was significantly higher than that of the cells treated with DHA or DOX alone at the

  10. Anti-proliferative and anti-angiogenic effects of CB2R agonist (JWH-133) in non-small lung cancer cells (A549) and human umbilical vein endothelial cells: an in vitro investigation.

    PubMed

    Vidinský, B; Gál, P; Pilátová, M; Vidová, Z; Solár, P; Varinská, L; Ivanová, L; Mojžíš, J

    2012-01-01

    Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment. Therefore, the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay and DNA fragmentation assay were employed to evaluate the influence of JWH-133 (3-(1,1-dimethylbutyl)- 1-deoxy-Δ8-tetrahydrocannabinol) on investigated cancer cells. In addition, migration assay and gelatinase zymography were performed in HUVECs to asses JWH-133 anti-angiogenic activity. Our study showed that JWH-133 exerted cytotoxic effect only at the highest concentration used (10(-4) mol/l), while inhibition of colony formation was also detected at the non-toxic concentrations (10(-5)-10(-8) mol/l). JWH-133 was also found to be able to induce weak DNA fragmentation in A549 cells. Furthermore, JWH-133 at non-toxic concentrations inhibited some steps in the process of angiogenesis. It significantly inhibited endothelial cell migration after 17 h of incubation at concentrations of 10(-4)-10(-6) mol/l. In addition, JWH-133 inhibited MMP-2 secretion as assessed by gelatinase zymography. The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs. Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models.

  11. Activation of interferon regulatory factor-3 via toll-like receptor 3 and immunomodulatory functions detected in A549 lung epithelial cells exposed to misplaced U1-snRNA.

    PubMed

    Sadik, Christian D; Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko

    2009-08-01

    U1-snRNA is an integral part of the U1 ribonucleoprotein pivotal for pre-mRNA splicing. Toll-like receptor (TLR) signaling has recently been associated with immunoregulatory capacities of U1-snRNA. Using lung A549 epithelial/carcinoma cells, we report for the first time on interferon regulatory factor (IRF)-3 activation initiated by endosomally delivered U1-snRNA. This was associated with expression of the IRF3-inducible genes interferon-beta (IFN-beta), CXCL10/IP-10 and indoleamine 2,3-dioxygenase. Mutational analysis of the U1-snRNA-activated IFN-beta promoter confirmed the crucial role of the PRDIII element, previously proven pivotal for promoter activation by IRF3. Notably, expression of these parameters was suppressed by bafilomycin A(1), an inhibitor of endosomal acidification, implicating endosomal TLR activation. Since resiquimod, an agonist of TLR7/8, failed to stimulate A549 cells, data suggest TLR3 to be of prime relevance for cellular activation. To assess the overall regulatory potential of U1-snRNA-activated epithelial cells on cytokine production, co-cultivation with peripheral blood mononuclear cells (PBMC) was performed. Interestingly, A549 cells activated by U1-snRNA reinforced phytohemagglutinin-induced interleukin-10 release by PBMC but suppressed that of tumor necrosis factor-alpha, indicating an anti-inflammatory potential of U1-snRNA. Since U1-snRNA is enriched in apoptotic bodies and epithelial cells are capable of performing efferocytosis, the present data in particular connect to immunobiological aspects of apoptosis at host/environment interfaces.

  12. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Li, Chien-Te; Ko, Ying-Chin; Ni, Wen-Chiu; Huang, Ming-Shyan; Kuo, Po-Lin

    2009-10-28

    This study is the first study to investigate the anticancer effect of 6-shogaol in human non-small cell lung cancer A549 cells. 6-Shogaol inhibited cell proliferation by inducing autophagic cell death, but not, predominantly, apoptosis. Pretreatment of cells with 3-methyladenine (3-MA), an autophagy inhibitor, suppressed 6-shogaol mediated antiproliferation activity, suggesting that induction of autophagy by 6-shogaol is conducive to cell death. We also found that 6-shogaol inhibited survival signaling through the AKT/mTOR signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin (mTOR), forkhead transcription factors (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). Phosphorylation of both of mTOR's downstream targets, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased 6-shogaol mediated autophagic cell death, supporting inhibition of AKT beneficial to autophagy. Moreover, reduction of AKT expression by siRNA potentiated 6-shogaol's effect, also supporting inhibition of AKT beneficial to autophagy. Taken together, these findings suggest that 6-shogaol may be a promising chemopreventive agent against human non-small cell lung cancer.

  13. Sustainability of CD24 expression, cell proliferation and migration, cisplatin-resistance, and caspase-3 expression during mesenchymal-epithelial transition induced by the removal of TGF-β1 in A549 lung cancer cells.

    PubMed

    Kim, Seong-Kwan; Park, Jin-A; Zhang, Dan; Cho, Sang-Hyun; Yi, Hee; Cho, Soo-Min; Chang, Byung-Joon; Kim, Jin-Suk; Shim, Jae-Han; Abd El-Aty, A M; Shin, Ho-Chul

    2017-08-01

    Epithelial-mesenchymal transition (EMT) is a notable mechanism underlying cancer cell metastasis. Transforming growth factor β1 (TGF-β1) has been used to induce EMT; however, there is a lack of information regarding the role of TGF-β1 in mesenchymal-epithelial transition (MET). In the present study, EMT was induced in A549 lung cancer cells using TGF-β1 (TGF-β1-treated group) and MET was induced sequentially from the TGF-β1-treated group by removing the TGF-β1 (MET/return group). Untreated A549 lung cancer cells were used as a control. Characteristic features, including cancer stem cell markers [cluster of differentiation (CD)24, CD44 and CD133], cell proliferation and migration and diverse intracellular mechanisms, were observed in all groups. Using western blot analysis, the TGF-β1-treated group demonstrated increased vimentin and reduced E-cadherin expression, whereas the MET/return group demonstrated the opposite trend. Among cancer stem cell markers, the population of CD24 low cells was reduced in the TGF-β1-treated group. Furthermore, the G2/M phase cell cycle population, cisplatin-sensitivity, and cell proliferation and migration ability were increased in the TGF-β1-treated group. These features were unaltered in the MET/return group when compared to the TGF-β1-treated group. Immunoblotting revealed an increase in the levels of SMAD3, phosphorylated SMAD3, phosphorylated extracellular signal-regulated kinase and caspase-3, and a decrease in active caspase-3 levels in the TGF-β1-treated group. Increased caspase-3 and reduced active caspase-3 levels were observed in the MET/return group, similar to those in the TGF-β1-treated group; however, levels of other signalling proteins were unchanged compared with the control group. EMT induced by TGF-β1 was not preserved; however, stemness-associated properties (CD24 expression, caspase-3 expression, cell proliferation and cisplatin-resistance) were sustained following removal of TGF-β1.

  14. Improvement in the Viability of Cryopreserved Cells by Microencapsulation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshifumi; Morinaga, Yukihiro; Ujihira, Masanobu; Oka, Kotaro; Tanishita, Kazuo

    The advantages of microencapsulated cells over those of suspended cells were evaluated for improving viability in cryopreservation. Rat pheochromocytoma (PC12) cells were selected as the test biological cells and then microencapsulated in alginate-polylysine-alginate membranes. These microencapsulated PC12 cells were frozen by differential scanning calorimetry (DSC) at various cooling rates, from 0.5 to 10°C/min. Their latent heat was measured during freezing from 4 to -80°C. The post-thaw viability was evaluated by dopamine-concentration measurement and by trypan blue exclusion assay. Results showed that at cooling rates of 0.5 and 1°C/min, the latent heat of microencapsulated PC12 cells was lower than that of suspended cells. This lower latent heat is caused by the fact that the extra-microcapsule froze and the intra-capsule remained unfrozen due to the formation of ice crystals in the extra-capsule space. The post-thaw viability of microencapsulated PC12 cells was improved when the cooling rate was 0.5 or 1°C/min, compared with that of suspended cells. Therefore, in microencapsulated PC12 cells, maintaining the intra-microcapsules in an unfrozen state during freezing reduces the solution effect and thus improves the post-thaw viability.

  15. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells.

    PubMed

    Zhao, Lianzhong; Zhu, Jiping; Zhou, Hongbo; Zhao, Zongzheng; Zou, Zhong; Liu, Xiaokun; Lin, Xian; Zhang, Xue; Deng, Xuexia; Wang, Ruifang; Chen, Huanchun; Jin, Meilin

    2015-10-09

    H5N1 influenza A virus (IAV) causes severe respiratory diseases and high mortality rates in animals and humans. MicroRNAs are being increasingly studied to evaluate their potential as therapeutic entities to combat viral infection. However, mechanistic studies delineating the roles of microRNAs in regulating host-H5N1 virus interactions remain scarce. Here, we performed microRNA microarray analysis using A549 human lung epithelial cells infected with a highly pathogenic avian influenza virus. The microRNA expression profile of infected cells identified a small number of microRNAs being dysregulated upon H5N1 influenza A virus infection. Of the differentially expressed microRNAs, miR-136 was up-regulated 5-fold and exhibited potent antiviral activity in vitro against H5N1 influenza A virus, as well as vesicular stomatitis virus. On the one hand, 3'-untranslated region (UTR) reporter analysis revealed a miR-136 binding site in the 3' UTR of IL-6. However, on the other hand, we subsequently determined that miR-136 meanwhile acts as an immune agonist of retinoic acid-inducible gene 1 (RIG-I), thereby causing IL-6 and IFN-β accumulation in A549 cells. Overall, this study implicates the dual role of miRNA-136 in the regulation of host antiviral innate immunity and suggests an important role for the microRNA-activated pathway in viral infection via pattern recognition receptors.

  16. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method.

    PubMed

    Kaviyarasu, K; Geetha, N; Kanimozhi, K; Maria Magdalane, C; Sivaranjani, S; Ayeshamariam, A; Kennedy, J; Maaza, M

    2017-05-01

    We report the synthesis of high quality ZnO doped TiO 2 nanocrystals by chemical method at room temperature (RT), it can cause serious oxidative stress and DNA damage to human lung epithelial cells (A549) lines. Our aim in this study, to reduce the cytotoxicity effect of ZnO doped TiO 2 nanocrystals are widely in biological fields. Several studies have been performed to understand the influence of ZnO doped titanium dioxide (TiO 2 -NPs) on cell function; however the effects of nanoparticle against to exposure on the cell membrane have been duly addressed fascinatingly so far. However, In this interaction, which may alter cell metabolism and integrity, it is one of the importance to understand the modifications of the cell membrane, mechanisms of pulmonary A549 cell lines nanoparticles were uptake and the molecular pathway during the initial cell responses are still unclear and much more investigative efforts are need to properly characterize the ZnO doped titanium dioxide nanoparticles were reported successfully. In particular of the epithelial cells, upon particles are exposed human pulmonary epithelial cells (A549) to various concentrations of composition, structure and morphology of the nanocrystals were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanocrystals which identified peaks associated with (002), (100) and (101) planes of hexagonal wurtzite-type ZnO with lattice constants of a=b=3.249Å and c=5.219Å. The IR results showed high purity of products and indicated that the nanocrystals are made up of TiO and ZnO bonds. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of ZnO/TiO 2 nanocrystals which exhibits antibacterial activity over a broad range of bacterial species and in particular against Stre. Mut where it out competes four other

  17. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  18. Measurement of cell viability in in vitro cultures.

    PubMed

    Castro-Concha, Lizbeth A; Escobedo, Rosa María; Miranda-Ham, María de Lourdes

    2006-01-01

    An overview of the methods for assessing cell viability in in vitro cultures is presented. The protocols of four of the most commonly used assays are described in detail, so the readers may be able to determine which assay is suitable for their own projects using plant cell cultures.

  19. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  20. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    NASA Astrophysics Data System (ADS)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  1. Influence of Waveform on Cell Viability during Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Saliev, Timur; Feril, Loreto B.; McLean, Donald A.; Tachibana, Katsuro; Campbell, Paul A.

    2011-09-01

    We examined the role of ultrasound standing waves, and their travelling wave counterparts, on cell viability in an in-vitro insonation apparatus. Furthermore, the effect of distinct waveforms (sine and top-hat) was also explored, together with the role of microbubble presence. Measurements of cell viability in standing wave scenarios demonstrated a relatively higher rate of lysis (63.13±10.89% remaining viable) compared with the travelling wave data, where 96.22±4.0% remained viable. Significant differences were also seen as a function of waveform, where insonations employing top-hat wave shapes resulted in an average end stage viability of 30.31±5.71% compared with 61.94±14.28% in the sinusoidal counterparts.

  2. Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells.

    PubMed

    Wang, Feng-Yang; Tang, Xiao-Ming; Wang, Xia; Huang, Ke-Bin; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, You-Nian; Liang, Hong

    2018-06-09

    Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands, [PtL 1 Cl]Cl [L 1  = (Z)-1-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) methanamine] (Mon-Pt-1) and [PtL 2 Cl]Cl [L 2  = (Z)-2-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) ethanamine] (Mon-Pt-2). In comparison to cisplatin, Mon-Pt-2 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that Mon-Pt-2 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition ROS release and an ER stress response, mediated by mitochondrial dysfunction, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, Mon-Pt-2 exhibits lower acute toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Mon-Pt-2 is the first mono-functional platinum complex inducing pro-death autophagy and apoptosis of cancer cells. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  3. Discovery of a Novel Anti-Cancer Agent Targeting Both Topoisomerase I & II as Well as Telomerase Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo: Cinnamomum verum Component Cuminaldehyde.

    PubMed

    Chen, Ta-Wei; Tsai, Kuen-Daw; Yang, Shu-Mei; Wong, Ho-Yiu; Liu, Yi-Heng; Cherng, Jonathan; Chou, Kuo-Shen; Wang, Yang-Tz; Cuizon, Janise; Cherng, Jaw-Ming

    2016-01-01

    Cinnamomum verum is used to make the spice cinnamon and has been used for more than 5000 years by both of the two most ancient forms of medicine in the words: Ayurveda and traditional Chinese herbal medicines for various applications such as adenopathy, rheumatism, dermatosis, dyspepsia, stroke, tumors, elephantiasis, trichomonas, yeast, and virus infections. We evaluated the anticancer effect of cuminaldehyde (CuA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that cuminaldehyde suppressed proliferation and induced apoptosis as indicated by mitochondrial membrane potential loss, activation of caspase 3 and 9, increase in annexin V+PI+ cells, and morphological characteristics of apoptosis, including blebbing of plasma membrane, nuclear condensation, fragmentation, apoptotic body formation, and comet with elevated tail intensity and moment. In addition, cuminaldehyde also induced lysosomal vacuolation with increased volume of acidic compartments (VAC), suppressions of both topoisomerase I & II as well as telomerase activities in a dose-dependent manner. Further study reveals the growth-inhibitory effect of cuminaldehyde was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of cuminaldehyde against A549 cells is accompanied by downregulations of proliferative control involving apoptosis, both topoisomerase I & II as well as telomerase activities, together with an upregulation of lysosomal vacuolation and VAC. Similar effects (including all of the above-mentioned effects) were found in other cell lines, including human lung squamous cell carcinoma NCI-H520 and colorectal adenocarcinoma COLO 205 (results not shown). Our data suggest that cuminaldehyde could be a potential agent for anticancer therapy.

  4. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.

    PubMed

    Chaytor, Jennifer L; Tokarew, Jacqueline M; Wu, Luke K; Leclère, Mathieu; Tam, Roger Y; Capicciotti, Chantelle J; Guolla, Louise; von Moos, Elisabeth; Findlay, C Scott; Allan, David S; Ben, Robert N

    2012-01-01

    The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220 mM solutions of disaccharides; however, the best cell viability was obtained when a 200 mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.

  5. 8-Prenylkaempferol Suppresses Influenza A Virus-Induced RANTES Production in A549 Cells via Blocking PI3K-Mediated Transcriptional Activation of NF-κB and IRF3

    PubMed Central

    Chiou, Wen-Fei; Chen, Chen-Chih; Wei, Bai-Luh

    2011-01-01

    8-Prenylkaempferol (8-PK) is a prenylflavonoid isolated from Sophora flavescens, a Chinese herb with antiviral and anti-inflammatory properties. In this study, we investigated its effect on regulated activation, normal T cell expressed and secreted (RANTES) secretion by influenza A virus (H1N1)-infected A549 alveolar epithelial cells. Cell inoculation with H1N1 evoked a significant induction in RANTES accumulation accompanied with time-related increase in nuclear translocation of nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF-3), but showed no effect on c-Jun phosphorylation. 8-PK could significantly inhibit not only RANTES production but also NF-κB and IRF-3 nuclear translocation. We had proved that both NF-κB and IRF-3 participated in H1N1-induced RANTES production since NF-κB inhibitor pyrrolidinedithio carbamate (PDTC) and IRF-3 siRNA attenuated significantly RANTES accumulation. H1N1 inoculation also increased PI3K activity as well as Akt phosphorylation and such responsiveness were attenuated by 8-PK. In the presence of wortmannin, nuclear translocation of NF-κB and IRF3 as well as RANTES production by H1N1 infection were all reversed, demonstrating that PI3K-Akt pathway is essential for NF-κB- and IRF-3-mediated RANTES production in A549 cells. Furthermore, 8-PK but not wortmannin, prevented effectively H1N1-evoked IκB degradation. In conclusion, 8-PK might be an anti-inflammatory agent for suppressing influenza A virus-induced RANTES production acts by blocking PI3K-mediated transcriptional activation of NF-κB and IRF-3 and in part by interfering with IκB degradation which subsequently decreases NF-κB translocation. PMID:19592477

  6. Human periodontal ligament cell viability in milk and milk substitutes.

    PubMed

    Pearson, Robert M; Liewehr, Frederick R; West, Leslie A; Patton, William R; McPherson, James C; Runner, Royce R

    2003-03-01

    The purpose of this study was to determine the efficacy of several milk substitutes compared to whole milk in maintaining the viability of human periodontal ligament (PDL) cells on avulsed teeth. PDL cells were obtained from freshly extracted, healthy third molars and cultured in Eagle's minimal essential media (EMEM). The cells were plated onto 24-well culture plates and allowed to attach for 24 h. EMEM was replaced with refrigerated whole milk (positive control), reconstituted powdered milk, evaporated milk, or one of two baby formulas (Similac or Enfamil). Tap water served as the negative control. Tissue culture plates were incubated with the experimental media at 37 degrees C for 1, 2, 4, or 8 h. Cell viability was determined by a cell proliferation assay (CellTiter 96 AQ Assay), with absorbance read at 450 nM. A two-way ANOVA (p < 0.001) indicated that at 1 h there was no difference in the effect on PDL cell viability between any of the materials and whole milk. At 2 h, Enfamil and Similac performed significantly better than whole milk, whereas evaporated milk performed worse. At 4 h, Enfamil performed better than whole milk, whereas all other milk substitutes performed worse. At 8 h, all substitutes performed worse than whole milk. These results suggest that Enfamil, which is supplied in powder form that does not require special storage and has a shelf life of 18 months, is a more effective storage medium for avulsed teeth than pasteurized milk for at least 4 h.

  7. Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells.

    PubMed

    Phung, Thuy Thi Bich; Sugamata, Ryuichi; Uno, Kazuko; Aratani, Yasuaki; Ozato, Keiko; Kawachi, Shoji; Thanh Nguyen, Liem; Nakayama, Toshinori; Suzuki, Kazuo

    2011-12-01

    Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro. Because tumor necrosis factor-α (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) are predominantly produced from cells infected with PR-8 virus, the effects of mRNA knockdown of these cytokines were investigated. Small interfering (si)TNF-α down-regulated RANTES expression and secretion of RANTES, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1). In addition, siRANTES suppressed interferon (IFN)-γ expression and secretion of RANTES, IL-8, and MCP-1, suggesting that TNF-α stimulates production of RANTES, IL-8, MCP-1, and IFN-γ, and RANTES also increased IL-8, MCP-1, and IFN-γ. Furthermore, administration of TNF-α promoted increased secretion of RANTES, IL-8, and MCP-1. Administration of RANTES enhanced IL-6, IL-8, and MCP-1 production without PR-8 infection. These results strongly suggest that, as an initial step, TNF-α regulates RANTES production, followed by increase of IL-6, IL-8, and MCP-1 and IFNs concentrations. At a later stage, cells transfected with viral NS1 plasmid showed production of a large amount of IL-8 and MCP-1 in the presence of the H(2)O(2)-myeloperoxidse (MPO) system, suggesting that NS1 of PR-8 may induce a "cytokine storm" from epithelial cells in the presence of an H(2)O(2)-MPO system. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  8. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    SciTech Connect

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of differentmore » concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.« less

  9. The in vitro impact of toothpaste extracts on cell viability.

    PubMed

    Cvikl, Barbara; Lussi, Adrian; Gruber, Reinhard

    2015-06-01

    Toothpastes contain three main components: detergents, abrasives, and fluoride. Detergents, particularly sodium lauryl sulfate, have been proposed as components that enable toothpastes to produce cytotoxic effects in vitro. However, not all toothpastes contain sodium lauryl sulfate, and almost no studies have found an association between detergents and the in vitro cytotoxicity of toothpastes. The present study examined the in vitro cytotoxicity of nine commercially available toothpastes containing four different detergents. Toothpastes were diluted in serum-free medium, centrifuged, and filter sterilized. The half-lethal concentration of the toothpaste-conditioned medium (TCM) was calculated based on the formation of formazan by gingival fibroblasts, oral squamous cell carcinoma HSC-2 cells, and L929 cells. Cell proliferation was analyzed, and live-dead staining was performed, after exposure of cells to conditioned medium prepared with 1% toothpaste (1% TCM). It was found that toothpastes containing sodium lauryl sulfate and amine fluoride strongly inhibited cell viability with the half-lethal concentration being obtained with conditioned medium prepared with approximately 1% toothpaste (1% TCM). Toothpastes containing cocamidopropyl betaine and Steareth-20 showed higher half-lethal concentration values, with the half-lethal concentration being obtained with conditioned medium prepared with 10% (10% TCM) and 70% (70% TCM) toothpaste, respectively. Proliferation and live-dead data were consistent with the cell-viability analyses. These results demonstrate that the type of detergent in toothpastes can be associated with changes in in vitro cell toxicity. © 2015 Eur J Oral Sci.

  10. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines.

    PubMed

    Venugopal, K; Ahmad, H; Manikandan, E; Thanigai Arul, K; Kavitha, K; Moodley, M K; Rajagopal, K; Balabhaskar, R; Bhaskar, M

    2017-08-01

    The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  11. New Small Molecules Targeting Apoptosis and Cell Viability in Osteosarcoma

    PubMed Central

    Maugg, Doris; Rothenaigner, Ina; Schorpp, Kenji; Potukuchi, Harish Kumar; Korsching, Eberhard; Baumhoer, Daniel; Hadian, Kamyar

    2015-01-01

    Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS), the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2) nor primary human osteoblasts (hOB). In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS. PMID:26039064

  12. Effects of drinking desalinated seawater on cell viability and proliferation.

    PubMed

    Macarrão, Camila Longhi; Bachi, André Luis Lacerda; Mariano, Mario; Abel, Lucia Jamli

    2017-06-01

    Desalination of seawater is becoming an important means to address the increasing scarcity of freshwater resources in the world. Seawater has been used as drinking water in the health, food, and medical fields and various beneficial effects have been suggested, although not confirmed. Given the presence of 63 minerals and trace elements in drinking desalinated seawater (63 DSW), we evaluated their effects on the behavior of tumorigenic and nontumorigenic cells through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and annexin-V-fluorescein isothiocyanate/propidium iodide staining. Our results showed that cell viability and proliferation in the presence of 63 DSW were significantly greater than in mineral water and in the presence of fetal bovine serum in a dose-dependent manner. Furthermore, 63 DSW showed no toxic effect on murine embryonic fibroblast (NIH-3T3) and murine melanoma (B16-F10) cells. In another assay, we also showed that pre-treatment of non-adherent THP-1 cells with 63 DSW reduces apoptosis incidence, suggesting a protective effect against cell death. We conclude that cell viability and proliferation were improved by the mineral components of 63 DSW and this effect can guide further studies on health effects associated with DSW consumption.

  13. Fluorescein Diacetate Microplate Assay in Cell Viability Detection.

    PubMed

    Chen, Xi; Yang, Xiu-Ying; Fang, Lian-Hua; DU, Guan-Hua

    2016-12-20

    Objective To investigate the application of the fluorescein diacetate (FDA) microplate assay in cell viability detection. Methods Cells were seeded in a 96-well culture plate until detection. After incubated with FDA,the plate was detected by fluorescence microplate analyzer. The effects of FDA incubation duration,concentration,and other factors on the assay's accuracy and stability were assessed. We also compared the results of FDA with methyl thiazolyl(MTT) in terms of cell numbers and H 2 O 2 injury. Results Within 0-30 minutes,the fluorescence-cell number coefficient of FDA assay increased with duration and reached 0.99 in 27-30 minutes. The optimum concentration of final FDA in this study was 10-30 μg/ml. On cell viability detection,the result of FDA method was equivalent to MTT method. As to H 2 O 2 injury assay,the sensitivity of FDA method was superior to MTT on the higher concentration H 2 O 2 treatment due to a relative shorter duration for detection. Conclusion As a stable and reliable method,FDA is feasible for cell variability detection under varied conditions.

  14. Cell Viability and Functionality of Probiotic Bacteria in Dairy Products

    PubMed Central

    Vinderola, Gabriel; Binetti, Ana; Burns, Patricia; Reinheimer, Jorge

    2011-01-01

    Probiotic bacteria, according to the definition adopted by the World Health Organization in 2002, are live microorganisms, which when administered in adequate amounts confer a health benefit to the host. Recent studies show that the same probiotic strain produced and/or preserved under different storage conditions, may present different responses regarding their susceptibility to the adverse conditions of the gastrointestinal tract, its capacity to adhere to the intestinal epithelium, or its immunomodulating capacity, the functionality being affected without changes in cell viability. This could imply that the control of cell viability is not always enough to guarantee the functionality (probiotic capacity) of a strain. Therefore, a new challenge arises for food technologists and microbiologists when it comes to designing and monitoring probiotic food: to be able to monitor the functionality of a probiotic microorganism throughout all the stages the strain goes through from the moment it is produced and included in the food vehicle, until the moment of consumption. Conventional methodological tools or others still to be developed must be used. The application of cell membrane functionality markers, the use of tests of resistance to intestinal barriers, the study of surface properties and the application of in vivo models come together as complementary tools to assess the actual capacity of a probiotic organism in a specific food, to exert functional effects regardless of the number of viable cells present at the moment of consumption. PMID:21833320

  15. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    PubMed Central

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  17. Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice.

    PubMed

    Gui, Boxiang; Chen, Qin; Hu, Chuanxia; Zhu, Caihui; He, Guimei

    2017-01-23

    H9N2 influenza viruses circulate globally and are considered to have pandemic potential. The hyper-inflammatory response elicited by these viruses is thought to contribute to disease severity. Calcitriol plays an important role in modulating the immune response to viral infections. However, its unknown whether calcitriol can attenuate the inflammatory response elicited by H9N2 influenza virus infection. Human lung A549 epithelial cells were treated with calcitriol (100 nM) and then infected with an H9N2 influenza virus, or infected and then treated with calcitriol (30 nM). Culture supernatants were collected every 24 h post infection and the viral growth kinetics and inflammatory response were evaluated. Calcitriol (5 mg/kg) was administered daily by intraperitoneal injection to BABL/c mice for 15 days following H9N2 influenza virus infection. Mice were monitored for clinical signs of disease, lung pathology and inflammatory responses. Calcitriol treatment prior to and post infection with H9N2 influenza significantly decreased expression of the influenza M gene, IL-6, and IFN-β in A549 cells, but did not affect virus replication. In vivo, we found that calcitriol treatment significantly downregulated pulmonary inflammation in mice 2 days post-infection, but increased the inflammatory response 4 to 6 days post-infection. In contrast, the antiviral cytokine IFN-β was significantly higher in calcitriol-treated mice than in the untreated infected mice at 2 days post-infection, but lower than in untreated infected mice on days 4 and 8 post-infection. The elevated levels of pro-inflammatory cytokines and the decreased levels of antiviral cytokine are consistent with the period of maximum body weight loss and the lung damage in calcitriol-treated mice. These results suggest that calcitriol treatment might have a negative impact on the innate immune response elicited by H9N2 infection in mice, especially at the later stage of influenza virus infection. This study

  18. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum.

    PubMed

    Venugopal, K; Rather, H A; Rajagopal, K; Shanthi, M P; Sheriff, K; Illiyas, M; Rather, R A; Manikandan, E; Uvarajan, S; Bhaskar, M; Maaza, M

    2017-02-01

    In the present report, silver nanoparticles were synthesized using Piper nigrum extract for in vitro cytotoxicity efficacy against MCF-7 and HEP-2 cells. The silver nanoparticles (AgNPs) were formed within 20min and after preliminarily confirmation by UV-Visible spectroscopy (strong peak observed at ~441nm), they were characterized by using FT-IR and HR-TEM. The TEM images show spherical shape of biosynthesized AgNPs with particle size in the range 5-40nm while as compositional analysis were observed by EDAX. MTT assays were carried out for cytotoxicity of various concentrations of biosynthesized silver nanoparticles and Piper nigrum extract ranging from 10 to 100μg. The biosynthesized silver nanoparticles showed a significant anticancer activity against both MCF-7 and Hep-2 cells compared to Piper nigrum extract which was dose dependent. Our study thus revealed an excellent application of greenly synthesized silver nanoparticles using Piper nigrum. The study further suggested the potential therapeutic use of these nanoparticles in cancer study. Copyright © 2016. Published by Elsevier B.V.

  19. Cell function and viability in glucose polymer peritoneal dialysis fluids.

    PubMed

    Liberek, T; Topley, N; Mistry, C D; Coles, G A; Morgan, T; Quirk, R A; Williams, J D

    1993-01-01

    To investigate the biocompatibility profile of a new peritoneal dialysis fluid containing glucose polymer (GPF). Viability and function of peripheral neutrophils (PMN) from healthy donors and cultured human peritoneal mesothelial cells were assessed in vitro after exposure to dialysis fluids. Phagocytosis, leukotriene B4 synthesis, and respiratory burst activation were measured following stimulation with serum-treated zymosan (STZ) or opsonized Staphylococcus epidermidis (S. epidermidis). Bacterial growth in the fluids was also investigated. In vivo pH equilibration of GPF and subsequent respiratory burst activation following incubation in spent dialysate were studied. For all the host defense parameters measured, commercial dialysis fluids (Dianeal; 1.36% and 3.86% glucose) and GPF (pH 5.2) were significantly more inhibitory than the control buffer (pH 7.3). Mesothelial cell viability was reduced by all the fluids tested irrespective of pH. Glucose polymer fluid was significantly more inhibitory than Dianeal 1.36% for STZ phagocytosis and respiratory burst activation. In contrast, it was less suppressive than Dianeal 3.86% for LTB4 synthesis. For all parameters tested, except LTB4 generation, there was a marked effect of pH, with GPF being significantly more inhibitory at pH 5.2 than at pH 7.3. None of the fluids tested supported the growth of S. epidermidis, although the viable counts in GFP were significantly higher than in Dianeal. Fluid inhibition of PMN respiratory burst activation and cytotoxicity were reduced in a time-dependent manner following increasing dwell time in vivo. GPF does not appear to be significantly different from Dianeal as far as host defense parameters are concerned. However, the cell viability and bacterial survival data suggest some possibly negative aspects of this fluid formation.

  20. Effect of microemulsions on cell viability of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  1. Caffeic acid phenethyl ester down-regulates claudin-2 expression at the transcriptional and post-translational levels and enhances chemosensitivity to doxorubicin in lung adenocarcinoma A549 cells.

    PubMed

    Sonoki, Hiroyuki; Tanimae, Asami; Furuta, Takumi; Endo, Satoshi; Matsunaga, Toshiyuki; Ichihara, Kenji; Ikari, Akira

    2018-06-01

    Claudin-2 is highly expressed in human lung adenocarcinoma cells and involved in the promotion of proliferation. Here, we searched for a compound, which can decrease claudin-2 expression using lung adenocarcinoma A549 cells. In the screening using compounds included in royal jelly and propolis, the protein level of claudin-2 was dose-dependently decreased by caffeic acid phenethyl ester (CAPE), whereas the mRNA level and promoter activity were only decreased by 50 μM CAPE. These results suggest that CAPE down-regulates claudin-2 expression mediated by two different mechanisms. CAPE (50 μM) decreased the level of p-NF-κB, whereas it increased that of IκB. The CAPE-induced decrease in promoter activity of claudin-2 was blocked by the mutation in an NF-κB-binding site. The inhibition of NF-κB may be involved in the decrease in mRNA level of claudin-2. The CAPE (10 μM)-induced decrease in claudin-2 expression was inhibited by chloroquine, a lysosomal inhibitor. CAPE increased the expression and activity of protein phosphatase (PP) 1 and 2A. The CAPE-induced decrease in claudin-2 expression was blocked by cantharidin, a potent PPs inhibitor. The cell proliferation was suppressed by CAPE, which was partially rescued by ectopic expression of claudin-2. In addition, the toxicity and accumulation of doxorubicin in 3D spheroid cells were enhanced by CAPE, which was inhibited by ectopic expression of claudin-2. Taken together, CAPE down-regulates claudin-2 expression at the transcriptional and post-translational levels, and enhances sensitivity of cells to doxorubicin in 3D culture conditions. CAPE may be a useful adjunctive compound in the treatment of lung adenocarcinoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An approach for cell viability online detection based on the characteristics of lensfree cell diffraction fingerprint.

    PubMed

    Li, Guoxiao; Zhang, Rongbiao; Yang, Ning; Yin, Changsheng; Wei, Mingji; Zhang, Yecheng; Sun, Jian

    2018-06-01

    To overcome the drawbacks such as low automation and high cost, an approach for cell viability online detection is proposed, based on the extracted lensfree cell diffraction fingerprint characteristics. The cell fingerprints are acquired by a constructed large field-of-view (FOV) diffraction imaging platform without any lenses. The approach realizes distinguishing live and dead cells online and calculating cell viability index based on the number of live cells. With theoretical analysis and simulation, diffraction fingerprints of cells with different morphology are simulated and two characteristics are discovered to be able to reflect cell viability status effectively. Two parameters, fringe intensity contrast (FIC) and fringe dispersion (FD), are defined to quantify these two characteristics. They are verified to be reliable to identify live cells. In a cytotoxicity assay of different methyl mercury concentration on BRL cells, the proposed approach is used to detect cell viability. MTT method is also employed and the results of correlational analysis and Bland-Altman analysis prove the validity of the proposed approach. By comparison, it can be revealed that the proposed approach has some advantages over other present techniques. Therefore it may be widely used as a cell viability measurement method in drug screening, nutritional investigation and cell toxicology studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Polymeric Nano-Encapsulation of Curcumin Enhances its Anti-Cancer Activity in Breast (MDA-MB231) and Lung (A549) Cancer Cells Through Reduction in Expression of HIF-1α and Nuclear p65 (Rel A).

    PubMed

    Khan, Mohammed N; Haggag, Yusuf A; Lane, Majella E; McCarron, Paul A; Tambuwala, Murtaza M

    2018-02-14

    The anti-cancer potential of curcumin, a natural NFκβ inhibitor, has been reported extensively in breast, lung and other cancers. In vitro and in vivo studies indicate that the therapeutic efficacy of curcumin is enhanced when formulated in a nanoparticulate carrier. However, the mechanism of action of curcumin at the molecular level in the hypoxic tumour micro-environment is not fully understood. Hence, the aim of our study was to investigate the mechanism of action of curcumin formulated as nanoparticles in in vitro models of breast and lung cancer under an hypoxic microenvironment. Biodegradable poly(lactic-co-glycolic acid) PLGA nanoparticles (NP), loaded with curcumin (cur-PLGA-NP), were fabricated using a solvent evaporation technique to overcome solubility issues and to facilitate intracellular curcumin delivery. Cytotoxicity of free curcumin and cur-PLGA-NP was evaluated in MDA-MB-231 and A549 cell lines using migration, invasion and colony formation assays. All treatments were performed under an hypoxic micro-environment and whole cell lysates from controls and test groups were used to determine the expression of HIF-1α and p65 levels using ELISA assays. A ten-fold increase in solubility, three-fold increase in anti-cancer activity and a significant reduction in the levels of cellular HIF-1α and nuclear p65 (Rel A) were observed for cur-PLGA-NP, when compared to free curcumin. Our findings indicate that curcumin can effectively lower the elevated levels of HIF-1α and nuclear p65 (Rel A) in breast and lung cancer cells under an hypoxic tumour micro-environment when delivered in nanoparticulate form. This applied means of colloidal delivery could explain the improved anti-cancer efficacy of curcumin and has further potential applications in enhancing the activity of anti-cancer agents of low solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2015-09-01

    Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis

    PubMed Central

    Bedrosian, Andrea S.; Nguyen, Andrew H.; Hackman, Michael; Connolly, Michael K.; Malhotra, Ashim; Ibrahim, Junaid; Cieza-Rubio, Napoleon E.; Henning, Justin R.; Barilla, Rocky; Rehman, Adeel; Pachter, H. Leon; Medina-Zea, Marco V.; Cohen, Steven M.; Frey, Alan B.; Acehan, Devrim; Miller, George

    2011-01-01

    Background & Aims Acute pancreatitis increases morbidity and mortality from organ necrosis by mechanisms that are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. Methods Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier analysis. Results Numbers of MHC II+CD11c+DC increased 100-fold in pancreas of mice with acute pancreatitis, to account for nearly 15% of intra-pancreatic leukocytes. Intra-pancreatic DC acquired an immune phenotype in mice with acute pancreatitis; they expressed higher levels of MHC II and CD86 and increased production of interleukin-6, membrane cofactor protein (MCP)-1, and tumor necrosis factor (TNF)-α. However, rather than inducing an organ-destructive inflammatory process, DC were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DC and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DC died from acinar cell death within 4 days. Depletion of DC from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DC did not require infiltrating neutrophils, activation of NF-κB, or signaling by mitogen-activated protein kinase or TNF-α. Conclusions DC are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress. PMID:21801698

  6. Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells.

    PubMed

    Shang, Yu; Zhou, Qian; Wang, Tiantian; Jiang, Yuting; Zhong, Yufang; Qian, Guangren; Zhu, Tong; Qiu, Xinghua; An, Jing

    2017-10-01

    Ambient particulate matter (PM) is a worldwide health issue of concern. However, limited information is available regarding the toxic contributions of the nitro-derivatives of polycyclic aromatic hydrocarbons (nitro-PAHs). This study intend to examine whether 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) could activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) antioxidant defense system, and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway participates in regulating pro-inflammatory responses in A549 cells. Firstly, 1-NP and 3-NF concentration-dependently induced cellular apoptosis, reactive oxygen species (ROS) generation, DNA damage, S phase cell cycle arrest and differential expression of related cytokine genes. Secondly, 1-NP and 3-NF activated the Nrf2/ARE defense system, as evidenced by increased protein expression levels and nuclear translocation of transcription factor Nrf2, elevated Nrf2/ARE binding activity, up-regulated expression of the target gene heme oxygenase-1 (HO-1). Significantly increased protein expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylation level of Akt indicated that the PI3K/Akt pathway was activated during pro-inflammatory process. Further, both PI3K inhibitor (LY294002) and Akt inhibitor (MK-2206) reversed the elevated TNF-α expression to control level. Our results suggested that Nrf2/ARE pathway activation might cause an initiation step in cellular protection against oxidative stress caused by nitro-PAHs, and the PI3K/Akt pathway participated in regulating inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Insulin and insulin-like growth factor-1 (lGF-1) inhibit repair of potentially lethal radiation damage and chromosome aberrations and later DNA repair kinetics in plateau-phase A549 cells

    SciTech Connect

    Jayanth, V.R.; Belfi, C.A.; Swick, A.R.

    1995-08-01

    Plateau-phase A549 cells exhibit a high capacity for repair of potentially lethal radiation damage (PLD) when allowed to recover in their own spent medium. Addition of either insulin or insulin-like growth factor-1 (IGF-1) to the spent medium 60 to 120 min before irradiation significantly inhibits PLD repair. The 9-h recovery factor (survival with holding/survival without holding)is reduced from 10.8 {plus_minus} 0.7 to 3.4 {plus_minus}0.3 by insulin and to 3.0 {plus_minus} 0.4 by IGF-1. Neither growth factor alters the cell age distribution of the plateau-phase cells, increases the rate of incorporation of 5-bromo-2{prime}-deoxyuridine into DNA, or alters the extent of radiation-inducedmore » mitotic delay in cells subcultured immediately after irradiation. Both insulin and IGF-1 alter the kinetics for rejoining of DNA double-strand breaks (DSBs), slowing the fast component of rejoining significantly. However, these growth factors have no effect on the initial level of DSBs or on the percentage of residual unrejoined breaks at 120 min postirradiation. Both growth factors affect repair of lesions leading to dicentric, but not to acentric, chromosome aberrations significantly. In control cells (treated with phosphate-buffered saline, 90 min prior to irradiation), the half-time for disappearance of dicentrics was 4.1 h (3.4 to 5.1 h), and 47.1 {plus_minus} 3.7% of the residual damage remained at 24 h postirradiation. Insulin and IGF-1 increased the half-time for disappearance of dicentrics to 5.2 h (3.9 to 7.7 h) and 5.7 h (5.5 to 5.9 h), respectively, and increased residual damage to 56.1 {plus_minus}5.9% and 60.8 {plus_minus} 6.0%, respectively. Overall, these data show that insulin and IGF-1 inhibit PLD repair in A54j9 cells by mechanisms which are independent of changes in cell cycle parameters. The data suggest that the growth factors act by inducing changes in chromatin conformation which promote misrepair of radiation-damaged DNA. 49 refs., 5 figs., 4 tabs.« less

  8. Evaluation of permeability alteration and epithelial-mesenchymal transition induced by transforming growth factor-β1 in A549, NCI-H441, and Calu-3 cells: Development of an in vitro model of respiratory epithelial cells in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Yamaguchi, Kotaro; Chono, Sumio; Tada, Hitoshi

    2017-07-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease, which is accompanied by changes in lung structure. With regard to treatment, aerosolized drugs administered intrapulmonarily are rapidly distributed into the plasma and do not remain in the lungs due to damage to the alveolar epithelium that occurs from pulmonary fibrosis. In this study, we sought to develop an in vitro model of respiratory epithelial cells in IPF for the evaluation of the intrapulmonary distribution of aerosolized drugs. We investigated transforming growth factor (TGF)-β 1 -induced epithelial-mesenchymal transition (EMT) and permeability alteration in A549, NCI-H441, and Calu-3 cell monolayers. After TGF-β 1 treatment of A549, NCI-H441, and Calu-3 cells, EMT markers including E-cadherin and vimentin and tight junction proteins including claudins-1, -3, and -5 were stained using immunofluorescence methods and detected using immunoblotting methods. Transport experiments were performed using TGF-β 1 -treated cell monolayers and fluorescein isothiocyanate dextrans (FD; 4.4, 10, and 70kDa). In addition, TGF-β 1 -induced apoptosis and necrosis were evaluated by flow cytometry using Annexin V and ethidium homodimer III, respectively. In NCI-H441 cells, incomplete EMT, destruction of claudins-1 and -3, and enhancement of FD permeability were caused by TGF-β 1 treatment. In A549 cells, complete EMT occurred but was not adequate for transport experiments because of low transepithelial electrical resistance. Whereas in Calu-3 cells, no changes were observed. TGF-β 1 -induced apoptosis and necrosis were not observed in any of the cell lines. Incomplete EMT and permeability enhancement were observed in the alveolar epithelium of IPF. Therefore, our results indicate that TGF-β 1 -treated NCI-H441 cell monolayers may serve as a useful in vitro model of respiratory epithelial cells for IPF. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Combined treatment with apatinib and docetaxel in A549 xenograft mice and its cellular pharmacokinetic basis.

    PubMed

    Feng, Si-Qi; Wang, Guang-Ji; Zhang, Jing-Wei; Xie, Yuan; Sun, Run-Bin; Fei, Fei; Huang, Jing-Qiu; Wang, Ying; Aa, Ji-Ye; Zhou, Fang

    2018-05-17

    Apatinib, a small-molecule inhibitor of VEGFR-2, has attracted much attention due to its encouraging anticancer activity in third-line clinical treatment for many malignancies, including non-small cell lung cancer (NSCLC). Its usage in second-line therapy with chemotherapeutic drugs is still under exploration. In this study we investigated the antitumor effect of apatinib combined with docetaxel against NSCLC and its cellular pharmacokinetic basis. A549 xenograft nude mice were treated with apatinib (100 mg/kg every day for 20 days) combined with docetaxel (8 mg/kg, ip, every four days for 5 times). Apatinib significantly enhanced the antitumor effect of docetaxel and alleviated docetaxel-induced liver damage as well as decreased serum transaminases (ALT and AST). LC-MS/MS analysis revealed that apatinib treatment significantly increased the docetaxel concentration in tumors (up to 1.77 times) without enhancing the docetaxel concentration in the serum, heart, liver, lung and kidney. Furthermore, apatinib decreased docetaxel-induced upregulation of P-glycoprotein in tumors. The effects of apatinib on the uptake, efflux and subcellular distribution of docetaxel were investigated in A549 and A549/DTX (docetaxel-resistant) cells in vitro. A cellular pharmacokinetic study revealed that apatinib significantly increased cellular/subcellular accumulation (especially in the cytosol) and decreased the efflux of docetaxel in A549/DTX cells through P-gp, while apatinib exerted no significant effect on the cellular pharmacokinetics of docetaxel in A549 cells. Consequently, the IC 50 value of docetaxel in A549/DTX cells was more significantly decreased by apatinib than that in A549 cells. These results demonstrate that apatinib has potential for application in second-line therapy combined with docetaxel for NSCLC patients, especially for docetaxel-resistant or multidrug-resistant patients.

  10. Open Reading Frame 3 of Genotype 1 Hepatitis E Virus Inhibits Nuclear Factor-κappa B Signaling Induced by Tumor Necrosis Factor-α in Human A549 Lung Epithelial Cells

    PubMed Central

    Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment. PMID:24959724

  11. Nuclear Heat Shock Response and Novel Nuclear Domain 10 Reorganization in Respiratory Syncytial Virus-Infected A549 Cells Identified by High-Resolution Two-Dimensional Gel Electrophoresis

    PubMed Central

    Brasier, Allan R.; Spratt, Heidi; Wu, Zheng; Boldogh, Istvan; Zhang, Yuhong; Garofalo, Roberto P.; Casola, Antonella; Pashmi, Jawad; Haag, Anthony; Luxon, Bruce; Kurosky, Alexander

    2004-01-01

    The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by ±2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high

  12. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    PubMed

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  13. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory †

    PubMed Central

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K.; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V. McNeil; Segarra, Verónica A.

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented—one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research. PMID:28861134

  14. Diosmin reduces cell viability of A431 skin cancer cells through apoptotic induction.

    PubMed

    Buddhan, Rajamanickam; Manoharan, Shanmugam

    2017-01-01

    Aim of the present study was to evaluate the in vitro cytotoxic potential of the diosmin in A431 skin cancer cells. The cytotoxic (anti-cell proliferative) potential of diosmin in A431 cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (cell viability), dual staining (apoptotic induction), dichloro-dihydro-fluorescein diacetate assay (reactive oxygen species [ROS] generation), DNA fragmentation study, Western blotting analysis (apoptotic markers expression) and flow cytometry (cell cycle arrest). Diosmin reduced the cell viability of A431 cells in a dose-dependent fashion and the inhibitory concentration 50% value was attained at 45 μg/ml using MTT assay. Diosmin at a concentration of 45 μg/ml generated excessive ROS in A431 cells, as compared to untreated cells. Diosmin treated A431 cells also revealed multiple DNA fragments than the untreated cells. Diosmin upregulated the expression of p53, caspases 3 and 9 and downregulated the expression of Bcl-2, matrix metalloproteinases-2 and 9 in A431 cells. The cytotoxic or anti-cell proliferative potential of diosmin is due to its ROS-mediated apoptotic induction potential, as well as due to its role in the inhibition of invasion in the A431 cells.

  15. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    PubMed

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  16. The effect of ultrasound-related stimuli on cell viability in microfluidic channels

    PubMed Central

    2013-01-01

    Background In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Results Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0–29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. Conclusion The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that

  17. The effect of ultrasound-related stimuli on cell viability in microfluidic channels.

    PubMed

    Ankrett, Dyan N; Carugo, Dario; Lei, Junjun; Glynne-Jones, Peter; Townsend, Paul A; Zhang, Xunli; Hill, Martyn

    2013-06-28

    In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0-29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability

  18. Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells

    PubMed Central

    Johnson, M. Brittany; Criss, Alison K.

    2013-01-01

    Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524

  19. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria

    PubMed Central

    Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z

    2016-01-01

    Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells. PMID:27383047

  20. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria.

    PubMed

    Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z

    2016-07-07

    Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells.

  1. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    PubMed Central

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  2. [Effect of ginseng rare ginsenoside components combined with paclitaxel on A549 lung cancer].

    PubMed

    Yang, Lei; Zhang, Zhen-Hai; Jia, Xiao-Bin

    2018-04-01

    Traditional Chinese medicine combined with anticancer drugs is a new direction of clinical cancer therapy in recent years. In this study, the optimal ratio of ginseng rare ginsenoside components and paclitaxel was optimized by MTT method, and the proliferative, apoptotic and anti-tumor effects of lung cancer A549 cells were investigated. It was found that the inhibitory effect on the proliferation of lung cancer A549 cells was the same as that on paclitaxel when the ratio of rare ginseng rare ginsenoside components to paclitaxel was 4∶6. Further studies showed that the combined therapy significantly increased the inductive effect of apoptosis in A549 cells, and up-regulated the expression of caspase-3 protein and down-regulated the ratio of Bcl-2/Bax. The tumor-bearing mice model showed that the combination therapy of ginseng rare ginsenoside components and paclitaxel could significantly inhibit the growth of tumor and alleviate the toxic and side effects of paclitaxel on liver. A multi-component system of ginseng rare ginsenoside components-paclitaxel was established in this paper. The proliferation and growth of lung cancer A549 cells were inhibited by paclitaxel-induced apoptosis, the dosage of paclitaxel and the toxicity of paclitaxel were reduced, and the effect of anti-lung cancer was enhanced, which provided a theoretical basis for later studies and clinical application. Copyright© by the Chinese Pharmaceutical Association.

  3. In vitro Cell Viability by CellProfiler® Software as Equivalent to MTT Assay.

    PubMed

    Gasparini, Luciana S; Macedo, Nayana D; Pimentel, Elisângela F; Fronza, Marcio; Junior, Valdemar L; Borges, Warley S; Cole, Eduardo R; Andrade, Tadeu U; Endringer, Denise C; Lenz, Dominik

    2017-07-01

    This study evaluated in vitro cell viability by the colorimetric MTT stands for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay compared to image analysis by CellProfiler ® software. Hepatoma (Hepa-1c1c7) and fibroblast (L929) cells were exposed to isolated substances, camptothecin, lycorine, tazettine, albomaculine, 3-epimacronine, trispheridine, galanthine and Padina gymnospora , Sargassum sp. methanolic extract, and Habranthus itaobinus Ravenna ethyl acetate in different concentrations. After MTT assay, cells were stained with Panotic dye kit. Cell images were obtained with an inverted microscope equipped with a digital camera. The images were analyzed by CellProfiler ® . No cytotoxicity at the highest concentration analyzed for 3-epimacronine, albomaculine, galanthine, trispheridine, P. gymnospora extract and Sargassum sp. extract where detected. Tazettine offered cytotoxicity only against the Hepa1c1c7 cell line. Lycorine, camptothecin, and H. itaobinus extract exhibited cytotoxic effects in both cell lines. The viability methods tested were correlated demonstrated by Bland-Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The error was within the limits of the confidence intervals and these values had a narrow difference. The correlation between the two methods was demonstrated by the linear regression plotted as R 2 . CellProfiler ® image analysis presented similar results to the MTT assay in the identification of viable cells, and image analysis may assist part of biological analysis procedures. The presented methodology is inexpensive and reproducible. In vitro cell viability assessment with MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay may be replaced by image analysis by CellProfiler ® . The viability methods

  4. Novel taspine derivative 12k inhibits cell growth and induces apoptosis in lung cell carcinoma.

    PubMed

    Dai, Bingling; Wang, Wenjie; Liu, Rui; Wang, Hongying; Zhang, Yanmin

    2015-03-01

    Taspine is an active compound in anticancer agent development. 12k was synthesized with taspine as lead compound bearing biphenyl scaffold and showed potent anticancer activity. Here, we investigated the effect of taspine derivative 12k on A549 lung cells. We showed that 12k not only decreased significantly A549 cell viability, A549 cell colony formation but also impaired A549 cell migration. Moreover, 12k treatment blocked cell cycle progression by increasing cell number in S phase to 42.80% for 6 μmol/L vs. 28.86% for control while decreasing cell number in G1 phase. Accordingly, this was associated with an increase protein expression of cyclin E and a decrease protein expression of cyclin D1, cyclin B1 and its associated CDK1 (cdc2). Meanwhile, we found that 12k induced A549 cell apoptosis, which was closely associated with the effect of the Bcl-2 family. Increase of Bad, Bak and Bax expression levels, decrease of Bcl-2 and Mcl-1 expression levels were observed. SiRNA knockdown of c-myc in A549 cells significantly attenuated tumor inhibition effects of 12k. In conclusion, our results demonstrate that 12k has an inhibitory effect on growth of A549 cell by inducing cell cycle arrest and apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.

    PubMed

    Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim

    2018-05-30

    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.

  6. Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.

    PubMed

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José

    2012-01-01

    Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.

  7. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  8. The role of adrenergic activation on murine luteal cell viability and progesterone production.

    PubMed

    Wang, Jing; Tang, Min; Jiang, Huaide; Wu, Bing; Cai, Wei; Hu, Chuan; Bao, Riqiang; Dong, Qiming; Xiao, Li; Li, Gang; Zhang, Chunping

    2016-09-15

    Sympathetic innervations exist in mammalian CL. The action of catecholaminergic system on luteal cells has been the focus of a variety of studies. Norepinephrine (NE) increased progesterone secretion of cattle luteal cells by activating β-adrenoceptors. In this study, murine luteal cells were treated with NE and isoprenaline (ISO). We found that NE increased the viability of murine luteal cells and ISO decreased the viability of luteal cells. Both NE and ISO promoted the progesterone production. Nonselective β-adrenergic antagonist, propranolol reversed the effect of ISO on cell viability but did not reverse the effect of NE on cell viability. Propranolol blocked the influence of NE and ISO on progesterone production. These results reveal that the increase of luteal cell viability induced by NE is not dependent on β-adrenergic activation. α-Adrenergic activation possibly contributes to it. Both NE and ISO increased progesterone production through activating β-adrenergic receptor. Further study showed that CyclinD2 is involved in the increase of luteal cell induced by NE. 3β-Hydroxysteroid dehydrogenase, LHR, steroidogenic acute regulatory protein (StAR), and PGF2α contribute to the progesterone production induced by NE and ISO. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants.

    PubMed

    Berninger, Teresa; González López, Óscar; Bejarano, Ana; Preininger, Claudia; Sessitsch, Angela

    2018-03-01

    The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.

  11. Assessment of cell concentration and viability of isolated hepatocytes using flow cytometry.

    PubMed

    Wigg, Alan J; Phillips, John W; Wheatland, Loretta; Berry, Michael N

    2003-06-01

    The assessment of cell concentration and viability of freshly isolated hepatocyte preparations has been traditionally performed using manual counting with a Neubauer counting chamber and staining for trypan blue exclusion. Despite the simple and rapid nature of this assessment, concerns about the accuracy of these methods exist. Simple flow cytometry techniques which determine cell concentration and viability are available yet surprisingly have not been extensively used or validated with isolated hepatocyte preparations. We therefore investigated the use of flow cytometry using TRUCOUNT Tubes and propidium iodide staining to measure cell concentration and viability of isolated rat hepatocytes in suspension. Analysis using TRUCOUNT Tubes provided more accurate and reproducible measurement of cell concentration than manual cell counting. Hepatocyte viability, assessed using propidium iodide, correlated more closely than did trypan blue exclusion with all indicators of hepatocyte integrity and function measured (lactate dehydrogenase leakage, cytochrome p450 content, cellular ATP concentration, ammonia and lactate removal, urea and albumin synthesis). We conclude that flow cytometry techniques can be used to measure cell concentration and viability of isolated hepatocyte preparations. The techniques are simple, rapid, and more accurate than manual cell counting and trypan blue staining and the results are not affected by protein-containing media.

  12. Respiratory status determines the effect of emodin on cell viability.

    PubMed

    Dumit, Verónica I; Zerbes, Ralf M; Kaeser-Pebernard, Stephanie; Rackiewicz, Michal; Wall, Mona T; Gretzmeier, Christine; Küttner, Victoria; van der Laan, Martin; Braun, Ralf J; Dengjel, Jörn

    2017-06-06

    The anthraquinone emodin has been shown to have antineoplastic properties and a wealth of unconnected effects have been linked to its use, most of which are likely secondary outcomes of the drug treatment. The primary activity of emodin on cells has remained unknown. In the present study we demonstrate dramatic and extensive effects of emodin on the redox state of cells and on mitochondrial homeostasis, irrespectively of the cell type and organism, ranging from the yeast Saccharomyces cerevisiae to human cell lines and primary cells. Emodin binds to redox-active enzymes and its effectiveness depends on the oxidative and respiratory status of cells. We show that cells with efficient respiratory metabolism are less susceptible to emodin, whereas cells under glycolytic metabolism are more vulnerable to the compound. Our findings indicate that emodin acts in a similar way as known uncouplers of the mitochondrial electron transport chain and causes oxidative stress that particularly disturbs cancer cells.

  13. Respiratory status determines the effect of emodin on cell viability

    PubMed Central

    Dumit, Verónica I; Zerbes, Ralf M; Kaeser-Pebernard, Stephanie; Rackiewicz, Michal; Wall, Mona T; Gretzmeier, Christine; Küttner, Victoria; van der Laan, Martin; Braun, Ralf J; Dengjel, Jörn

    2017-01-01

    The anthraquinone emodin has been shown to have antineoplastic properties and a wealth of unconnected effects have been linked to its use, most of which are likely secondary outcomes of the drug treatment. The primary activity of emodin on cells has remained unknown. In the present study we demonstrate dramatic and extensive effects of emodin on the redox state of cells and on mitochondrial homeostasis, irrespectively of the cell type and organism, ranging from the yeast Saccharomyces cerevisiae to human cell lines and primary cells. Emodin binds to redox-active enzymes and its effectiveness depends on the oxidative and respiratory status of cells. We show that cells with efficient respiratory metabolism are less susceptible to emodin, whereas cells under glycolytic metabolism are more vulnerable to the compound. Our findings indicate that emodin acts in a similar way as known uncouplers of the mitochondrial electron transport chain and causes oxidative stress that particularly disturbs cancer cells. PMID:28415582

  14. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  15. Morphology based scoring of chromosomal instability and its correlation with cell viability.

    PubMed

    Yadav, Shubhlata; Bhatia, Alka

    2017-09-01

    The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function.

    PubMed

    Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen

    2013-10-01

    The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  18. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    SciTech Connect

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwovenmore » scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.« less

  19. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  20. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  1. Ammonium affects cell viability to inhibit root growth in Arabidopsis * #

    PubMed Central

    Qin, Cheng; Yi, Ke-ke; Wu, Ping

    2011-01-01

    Ammonium (NH4 +) is an important form of nitrogen nutrient for most plants, yet is also a stressor for many of them. However, the primary events of NH4 + toxicity at the cellular level are still unclear. Here, we showed that NH4 + toxicity can induce the root cell death in a temporal pattern which primarily occurs in the cells of root maturation and elongation zones, and then spreads to the cells in the meristem and root cap. The results from the NH4 +-hypersensitive mutant hsn1 further confirmed our findings. Taken together, NH4 + toxicity inhibits primary root growth by inhibiting cell elongation and division and inducing root cell death. PMID:21634041

  2. Effects of demethoxycurcumin on the viability and apoptosis of skin cancer cells.

    PubMed

    Wu, Yaoqun; Zhang, Pei; Yang, Hongyun; Ge, Yong; Xin, Yong

    2017-07-01

    The present study investigated the effects and mechanisms of demethoxycurcumin (DMC) on a human skin squamous cell carcinoma cell line, A431, and a human keratinocyte cell line, HaCaT. A431 and HaCaT cells were cultured in vitro. The effects of DMC treatment on cell viability were analyzed using the Cell Counting kit‑8 (CCK‑8) assay; cell cycle distribution was analyzed by flow cytometry; apoptosis was assessed by flow cytometry and Hoechst 33258 staining; and the protein expression levels of cytochrome c, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (BAX), caspase‑9 and caspase‑3 were evaluated by western blotting. CCK‑8 assay results demonstrated that DMC treatment significantly inhibited viability of A431 and HaCaT cells in a dose‑dependent manner. Flow cytometric analysis confirmed that DMC treatment induced apoptosis in a dose‑dependent manner, and significantly increased the proportion of cells in G2/M phase. Western blot analysis indicated that the protein expression levels of Bcl‑2 were decreased, whereas the expression levels of BAX, caspase‑9, caspase‑3 and cytochrome c were increased following DMC treatment compared with in untreated cells. In conclusion, DMC treatment significantly inhibited viability of A431 and HaCaT cells, and induced cell cycle arrest in G2/M phase. The present study indicated that DMC may induce apoptosis of skin cancer cells through a caspase‑dependent pathway.

  3. Fluorescein diacetate for determination of cell viability in 3D fibroblast-collagen-GAG constructs.

    PubMed

    Powell, Heather M; Armour, Alexis D; Boyce, Steven T

    2011-01-01

    Quantification of cell viability and distribution within engineered tissues currently relies on representative histology, phenotypic assays, and destructive assays of viability. To evaluate uniformity of cell density throughout 3D collagen scaffolds prior to in vivo use, a nondestructive, field assessment of cell viability is advantageous. Here, we describe a field measure of cell viability in lyophilized collagen-glycosaminoglycan (C-GAG) scaffolds in vitro using fluorescein diacetate (FdA). Fibroblast-C-GAG constructs are stained 1 day after cellular inoculation using 0.04 mg/ml FdA followed by exposure to 366 nm UV light. Construct fluorescence quantified using Metamorph image analysis is correlated with inoculation density, MTT values, and histology of corresponding biopsies. Construct fluorescence correlates significantly with inoculation density (p  <  0.001) and MTT values (p  <  0.001) of biopsies collected immediately after FdA staining. No toxicity is detected in the constructs, as measured by MTT assay before and after the FdA assay at different time points; normal in vitro histology is demonstrated for the FdA-exposed constructs. In conclusion, measurement of intracellular fluorescence with FdA allows for the early, comprehensive measurement of cellular distributions and viability in engineered tissue.

  4. Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Hendinger, Anita; Sailer, Reinhard; Gschwend, Michael H.; Strauss, Wolfgang S.; Bauer, Manfred; Schuetze, Karin

    2000-01-01

    Viability of cultivated Chinese hamster ovary cells in optical tweezers was measured after exposure to various light doses of red high power laser diodes ((lambda) equals 670 - 680 nm) and a Nd:yttrium-aluminum-garnet laser ((lambda) equals 1064 nm). When using a radiant exposure of 2.4 GJ/cm2, a reduction of colony formation up to a factor 2 (670 - 680 nm) or 1.6 (1064 nm) as well as a delay of cell growth were detected in comparison with nonirradiated controls. In contrast, no cell damage was found at an exposure of 340 MJ/cm2 applied at 1064 nm. Cell viabilities were correlated with fluorescence excitation spectra and with literature data of wavelength dependent cloning efficiencies. Fluorescence excitation maxima of the coenzymes NAD(P)H and flavins were detected at 365 and 450 nm, respectively. This is half of the wavelengths of the maxima of cell inactivation, suggesting that two-photon absorption by these coenzymes may contribute to cellular damage. Two-photon excitation of NAD(P)H and flavins may also affect cell viability after exposure to 670 - 680 nm, whereas one-photon excitation of water molecules seems to limit cell viability at 1064 nm.

  5. Comparative viability of unirradiated and gamma irradiated bacterial cells

    SciTech Connect

    Maxcy, R.B.

    1977-01-01

    Gamma radiation injured Escherichia coli, Salmonella typhimurium, and Moraxella sp. were studied under various environmental stresses to determine their fate relative to the parent population. Irradiated cultures formed smaller colonies on surface plates with fewer cells per colony. Unirradiated cultures had a shorter lag phase than irradiated cultures in broth and duration of lag increased as a result of increasing the radiation dose. Repeated irradiation and subculture progressively retarded growth rate. Multiple radiation of highly resistant Moraxella sp. showed radiation injured cells to be more sensitive than uninjured cells. With the three species studied, irradiation raised the lower limits ofmore » growth temperature, increased the sensitivity to freezing and thawing, and increased the susceptibility to lowered water activity. This work indicated that the production of a bizarre, resistant strain of bacteria through recycling in a food processing operation is highly unlikely.« less

  6. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro.

    PubMed

    Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Zhou, Ping; Zhang, Xiaolei; Zhang, Wei; Chen, Qingyu; Kou, Dongquan; Ying, Xiaozhou; Shen, Yue; Cheng, Xiaojie; Yu, Ziming; Peng, Lei; Lu, Chuanzhu

    2013-09-01

    Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca(2+) on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca(2+) on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca(2+) (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca(2+) stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca(2+) significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.

  7. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes.

    PubMed

    Simon-Deckers, A; Gouget, B; Mayne-L'hermite, M; Herlin-Boime, N; Reynaud, C; Carrière, M

    2008-11-20

    If released in the environment, nanomaterials might be inhaled by populations and cause damage to the deepest regions of the respiratory tract, i.e., the alveolar compartment. To model this situation, we studied the response of A549 human pneumocytes after exposure to aluminium oxide or titanium oxide nanoparticles, and to multi-walled carbon nanotubes. The influence of size, crystalline structure and chemical composition was investigated. After a detailed identification of nanomaterial physico-chemical characteristics, cells were exposed in vitro and viability and intracellular accumulation were assessed. In our conditions, carbon nanotubes were more toxic than metal oxide nanoparticles. Our results confirmed that both nanotubes and nanoparticles are able to rapidly enter into cells, and distribute in the cytoplasm and intracellular vesicles. Among nanoparticles, we demonstrate significant difference in biological response as a function of size, crystalline phase and chemical composition. Their toxicity was globally lower than nanotubes toxicity. Among nanotubes, the length did not influence cytotoxicity, neither the presence of metal catalyst impurities.

  8. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells.

    PubMed

    Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio; Párraga, Mario; Villena, Joan

    2018-01-01

    Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions . These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.

  9. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells

    PubMed Central

    Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio

    2018-01-01

    Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells. PMID:29552079

  10. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells.

    PubMed

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-05-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow. Consequently, hydrocarbons can be extracted while keeping the algae viable. In this study, the effects of pressure on the viability of B. braunii cells were tested hydrostatically and under supercritical CO 2 conditions. Viability was determined by light microscopy, methylene blue uptake and by re-cultivation of the algae after treatments to follow the growth. It was concluded that supercritical CO 2 was lethal to the algae, whereas hydrostatic pressure treatments up to 150 bar have not affected cell viability and recultivation was successful. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels.

    PubMed

    Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T

    2013-09-01

    Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

  12. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    PubMed

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Is cell viability always directly related to corrosion resistance of stainless steels?

    PubMed

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison of impact of two decontamination solutions on the viability of the cells in human amnion.

    PubMed

    Smeringaiova, Ingrida; Trosan, Peter; Mrstinova, Miluse Berka; Matecha, Jan; Burkert, Jan; Bednar, Jan; Jirsova, Katerina

    2017-09-01

    Human amniotic membrane (HAM) is used as an allograft in regenerative medicine or as a source of pluripotent cells for stem cell research. Various decontamination protocols and solutions are used to sterilize HAM before its application, but little is known about the toxicity of disinfectants on HAM cells. In this study, we tested two decontamination solutions, commercial (BASE·128) and laboratory decontamination solution (LDS), with an analogous content of antimycotic/antibiotics for their cytotoxic effect on HAM epithelial (EC) and mesenchymal stromal cells (MSC). HAM was processed in a standard way, placed on nitrocellulose scaffold, and decontaminated, following three protocols: (1) 6 h, 37 °C; (2) 24 h, room temperature; (3) 24 h, 4 °C. The viability of EC was assessed via trypan blue staining. The apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The mean % (±SD) of dead EC (%DEC) from six fresh placentas was 12.9 ± 18.1. Decontamination increased %DEC compared to culture medium. Decontamination with BASE·128 for 6 h, 37 °C led to the highest EC viability (81.7%). Treatment with LDS at 24 h, 4 °C resulted in the lowest EC viability (55.9%) in the set. MSC were more affected by apoptosis than EC. Although the BASE·128 expresses lower toxicity compared to LDS, we present LDS as an alternative decontamination solution with a satisfactory preservation of cell viability. The basic formula of LDS will be optimised by enrichment with nutrient components, such as glucose or vitamins, to improve cell viability.

  15. Canine adipose-derived stromal cell viability following exposure to synovial fluid from osteoarthritic joints.

    PubMed

    Kiefer, Kristina M; O'Brien, Timothy D; Pluhar, Elizabeth G; Conzemius, Michael

    2015-01-01

    Stem cell therapy used in clinical application of osteoarthritis in veterinary medicine typically involves intra-articular injection of the cells, however the effect of an osteoarthritic environment on the fate of the cells has not been investigated. Assess the viability of adipose derived stromal cells following exposure to osteoarthritic joint fluid. Adipose derived stromal cells (ASCs) were derived from falciform adipose tissue of five adult dogs, and osteoarthritic synovial fluid (SF) was obtained from ten patients undergoing surgical intervention on orthopedic diseases with secondary osteoarthritis. Normal synovial fluid was obtained from seven adult dogs from an unrelated study. ASCs were exposed to the following treatment conditions: culture medium, normal SF, osteoarthritic SF, or serial dilutions of 1:1 to 1:10 of osteoarthritic SF with media. Cells were then harvested and assessed for viability using trypan blue dye exclusion. There was no significant difference in the viability of cells in culture medium or normal SF. Significant differences were found between cells exposed to any concentration of osteoarthritic SF and normal SF and between cells exposed to undiluted osteoarthritic SF and all serial dilutions. Subsequent dilutions reduced cytotoxicity. Osteoarthritic synovial fluid in this ex vivo experiment is cytotoxic to ASCs, when compared with normal synovial fluid. Current practice of direct injection of ASCs into osteoarthritic joints should be re-evaluated to determine if alternative means of administration may be more effective.

  16. Effect of different wound dressings on cell viability and proliferation.

    PubMed

    Paddle-Ledinek, Joanne E; Nasa, Zeyad; Cleland, Heather J

    2006-06-01

    Many new dressings have been developed since the early 1980s. Wound healing comprises cleansing, granulation/vascularization, and epithelialization phases. An optimum microenvironment and the absence of cytotoxic factors are essential for epithelialization. This study examines the effect of extracts of different wound dressings on keratinocyte survival and proliferation. Keratinocyte cultures were exposed for 40 hours to at least three extracts of each of the following wound dressings, which were tested in octuplicate: Acticoat, Aquacel-Ag, Aquacel, Algisite M, Avance, Comfeel Plus transparent, Contreet-H, Hydrasorb, and SeaSorb. Silicone extract provided the reference material. Controls were included of cells cultured in medium that had been incubated under conditions identical to those used with the extracts. Cell survival (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction) and proliferation (5-bromo-2':-deoxyuridine incorporation) were measured. Extracts of silver-containing dressings (Acticoat, Aquacel-Ag, Contreet-H, and Avance) were most cytotoxic. Extracts of Hydrasorb were less cytotoxic but markedly affected keratinocyte proliferation and morphology. Extracts of alginate-containing dressings (Algisite M, SeaSorb, and Contreet-H) demonstrated high calcium concentrations, markedly reduced keratinocyte proliferation, and affected keratinocyte morphology. Extracts of Aquacel and Comfeel Plus transparent induced small but significant inhibition of keratinocyte proliferation. The principle of minimizing harm should be applied to the choice of wound dressing. Silver-based dressings are cytotoxic and should not be used in the absence of infection. Alginate dressings with high calcium content affect keratinocyte proliferation probably by triggering terminal differentiation of keratinocytes. Such dressings should be used with caution in cases in which keratinocyte proliferation is essential. All dressings should be tested in vitro before

  17. An In vitro Comparison of Coconut Water, Milk, and Saline in Maintaining Periodontal Ligament Cell Viability

    PubMed Central

    D’Costa, Vivian Flourish; Bangera, Madhu Keshava; Kini, Shravan; Kutty, Shakkira Moosa; Ragher, Mallikarjuna

    2017-01-01

    Background and Objectives: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extraoral dry time and the storage media in which the tooth is placed before treatment is rendered. The present study is undertaken to evaluate the periodontal ligament (PDL) cell viability after storage of teeth in different storage media, namely, coconut water, milk, and saline. Materials and Methods: Forty sound human premolars undergoing extraction for orthodontic purpose were selected. The teeth were allowed to lie dry on sand/mud for 30 min followed by which they were randomly divided and stored in three different media, i.e., coconut water, milk, and saline. After 45-min storage in their respective media, the root surface was then scraped for PDL tissue. Results: The ANOVA and Newman–Keuls post hoc procedure for statistical analysis of viable cell count under a light microscope using hemocytometer demonstrated that coconut water preserved significantly more PDL cells viable (P < 0.05) compared with milk and saline. Conclusion: Storage media help in preserving the viability of PDL cells when immediate replantation is not possible. This study evaluated the posttraumatic PDL cells’ viability following storage in three different storage media. Within the parameters of this study, it was found that coconut water is the most effective media for maintaining the viability of PDL. PMID:29284947

  18. Comparison of the effect of three autogenous bone harvesting methods on cell viability in rabbits

    PubMed Central

    Moradi Haghgoo, Janet; Arabi, Seyed Reza; Hosseinipanah, Seyyed Mohammad; Solgi, Ghasem; Rastegarfard, Neda; Farhadian, Maryam

    2017-01-01

    Background. This study was designed to compare the viability of autogenous bone grafts, harvested using different methods, in order to determine the best harvesting technique with respect to more viable cells. Methods. In this animal experimental study, three harvesting methods, including manual instrument (chisel), rotary device and piezosurgery, were used for harvesting bone grafts from the lateral body of the mandible on the left and right sides of 10 rabbits. In each group, 20 bone samples were collected and their viability was assessed using MTS kit. Statistical analyses, including ANOVA and post hoc Tukey tests, were used for evaluating significant differences between the groups. Results. One-way ANOVA showed significant differences between all the groups (P=0.000). Data analysis using post hoc Tukey tests indicated that manual instrument and piezosurgery had no significant differences with regard to cell viability (P=0.749) and the cell viability in both groups was higher than that with the use of a rotary instrument (P=0.000). Conclusion. Autogenous bone grafts harvested with a manual instrument and piezosurgery had more viable cells in comparison to the bone chips harvested with a rotary device. PMID:28748046

  19. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    PubMed

    Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel

    2012-01-01

    Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  20. Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.

    PubMed

    Falah, Mizied; Rayan, Anwar; Srouji, Samer

    2015-09-01

    In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. Inhibition of NFkappaB reduces cellular viability in GH3 pituitary adenoma cells.

    PubMed

    Vender, John R; Laird, Melissa D; Dhandapani, Krishnan M

    2008-05-01

    Adenomas of the pituitary gland are among the most common types of tumors of the adult brain. Although adenomas are histologically benign, they may be associated with significant morbidity and mortality, mostly because of their invasive growth pattern and hormone hypersecretion. Current medical therapies are suppressive, acting at a receptor level. Thus, there is a need to identify novel cellular and molecular targets for pituitary tumors. We investigated the possible role of the NFkappaB transcription factor in pituitary tumor cell growth. The effect of NFkappaB pathway inhibition on cellular viability was studied in the GH3 pituitary adenoma cell line, a well-characterized rat cell line that secretes growth hormone and prolactin. Cells were treated with mechanistically diverse pharmacological NFkappaB pathway inhibitors or with molecular inhibitors that were overexpressed in tumor cells before the assessment of cellular viability. NFkappaB activity was also assessed in GH3 cells using deoxyribonucleic acid binding assays. GH3 cells exhibited constitutive NFkappaB activity, which contributed to increased cellular proliferation. Treatment with wedelolactone, an IkappaB kinase inhibitor, or overexpression of an IkappaB super-repressor reduced cell viability, further implicating NFkappaB in pituitary tumor cell growth. Pharmacological or molecular inhibition of Akt similarly reduced GH3 viability and NFkappaB binding, suggesting that constitutive activation of NFkappaB may be, at least in part, mediated by Akt. Directed targeting of the Akt and NFkappaB signaling pathways may be a useful adjunct in the clinical management of pituitary tumors. Further elucidation of this pathway may yield novel information regarding the behavior of pituitary tumors in humans.

  2. The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment.

    PubMed

    Wang, Juan; Wei, Yun; Zhao, Shasha; Zhou, Ying; He, Wei; Zhang, Yang; Deng, Wensheng

    2017-01-01

    Mammalian cells are very important experimental materials and widely used in biological and medical research fields. It is often required that mammalian cells are transported from one laboratory to another to meet with various researches. Conventional methods for cell shipment are laborious and costive despite of maintaining high viability. In this study we aimed to develop a simple and low-cost method for cell shipment by investigating the viabilities of different cell lines treated at different temperatures. We show that the viability of mammalian cells incubated at 1°C or 5°C significantly reduced when compared with that at 16°C or 22°C. Colony formation assays revealed that preservation of mammalian cells at 1°C or 5°C led to a poorer recovery than that at 16°C or 22°C. The data from proliferation and apoptotic assays confirmed that M2 cells could continue to proliferate at 16°C or 22°C, but massive death was caused by apoptosis at 1°C or 5°C. The morphology of mammalian cells treated under hypothermia showed little difference from that of the untreated cells. Quantitative RT-PCR and alkaline phosphatase staining confirmed that hypothermic treatment did not change the identity of mouse embryonic stem cells. A case study showed that mammalian cells directly suspended in culture medium were able to be shipped for long distance and maintained a high level of viability and recovery. Our findings not only broaden the understanding to the effect of hypothermia on the viability of mammalian cells, but also provide an alternative approach for cell shipment.

  3. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability.

    PubMed

    López-García, Jorge; Kuceková, Zdenka; Humpolíček, Petr; Mlček, Jiři; Sáha, Petr

    2013-10-30

    The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.

  4. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.

    PubMed

    Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N

    2007-05-01

    The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.

  5. Comparative Evaluation of Cell Viability Immediately After Osteotomy for Implants With Drills and Piezosurgery: Immunohistochemistry Analysis.

    PubMed

    Pereira, Cassiano Costa Silva; Batista, Fábio Roberto de Souza; Jacob, Ricardo Garcia Mureb; Nogueira, Lamis Meorin; Carvalho, Abrahão Cavalcante Gomes de Souza; Gealh, Walter Cristiano; Garcia-Júnior, Idelmo Rangel; Okamoto, Roberta

    2018-05-08

    To evaluate the effect of reusing drills and piezosurgery tips during implant osteotomy on immediate bone cell viability through immunohistochemical analysis. Six male rabbits were divided into 2 groups and then divided into 5 subgroups-correspond to drills and tips used 10, 20, 30, 40, and 50 times, respectively. All animals received 10 osteotomies in each tibia, by use of the classic drilling procedure in one group (G1) and the piezosurgery device in the other group (G2). For immunohistochemical technique were utilized the osteoprotegerin, RANKL, osteocalcin, and caspase 3. Control procedures were performed by omitting the primary antibodies (negative control). Bone formation and resorption responses presented in more intense way during the piezosurgery. The expression of osteocalcin had become quite intense in piezosurgery groups, but with reduced immunostaining from the 30th osteotomy. The caspase 3 showed the viability of the osteoblast from the 20th osteotomy with piezosurgery and remained constant until the 50th. Piezosurgery provides greater osteoblastic cell viability than the system of conventional drilling. This study will provide data so that the authors can recycle the drills and tips for implant placement, thus enabling a better cell viability for osseointegration.

  6. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism.

    PubMed

    Miyazaki, Tsuyoshi; Kobayashi, Shigeru; Takeno, Kenichi; Yayama, Takafumi; Meir, Adam; Baba, Hisatoshi

    2011-07-01

    A lot of studies on the effect of intra-articular injections are clinical, but many questions on the effect of lidocaine to articular chondrocytes remain unanswered. This study was performed to determine the effects of varying concentrations and exposure times of lidocaine on the viability and proteoglycan metabolism of chondrocytes in vitro. Cartilage was obtained from metatarsal joints of adult bovines. Chondrocytes in alginate beads were cultured in medium containing 6% fetal calf serum at 370 mOsmol at cell densities of 4 million cells/ml. They were then cultured for 24 h under 21% oxygen with 0.125, 0.25, 0.5, and 1% lidocaine and without lidocaine as control. The cell viability profile across intact beads was determined by manual counting using fluorescent probes and transmission electron microscopy. Lactate production was measured enzymatically as a marker of energy metabolism. Glycosaminoglycan (GAG) accumulation was measured using a modified dimethylmethylene blue assay. Cell viability decreased in a time- and dose-dependent manner in the concentration range of 0.125-1.0% lidocaine under the confocal microscope. Under the electron microscope, apoptosis increased as the concentration of lidocaine increased. GAG accumulation/tissue volume decreases as the concentration of lidocaine increased. However, GAG produced per million cells and the rate of lactate production per live cell were significantly higher for cells cultured at 0.5 and 1% lidocaine than the control group. Bovine chondrocytes cultured in alginate beads under high oxygen pressure are negatively influenced by increasing concentrations of lidocaine. Cell viability and proteoglycan production (GAG accumulation/tissue volume) decreased as the concentration of lidocaine increased. These data suggest caution in prolonged exposure of cartilage to high concentration lidocaine. Repeated joint injection of lidocaine potentially worsens osteoarthrosis by accelerating cartilage degradation.

  7. Effects of Pseudomonas aeruginosa virulence factor pyocyanin on human urothelial cell function and viability.

    PubMed

    McDermott, Catherine; Chess-Williams, Russ; Grant, Gary D; Perkins, Anthony V; McFarland, Amelia J; Davey, Andrew K; Anoopkumar-Dukie, Shailendra

    2012-03-01

    We determined the effects of Pseudomonas aeruginosa virulence factor pyocyanin on human urothelial cell viability and function in vitro. RT4 urothelial cells were treated with pyocyanin (1 to 100 μM) for 24 hours. After exposure the treatment effects were measured according to certain end points, including changes in urothelial cell viability, reactive oxygen species formation, caspase-3 activity, basal and stimulated adenosine triphosphate release, SA-β-gal activity and detection of acidic vesicular organelles. The 24-hour pyocyanin treatment resulted in a concentration dependent decrease in cell viability at concentrations of 25 μM or greater, and increases in reactive oxygen species formation and caspase-3 activity at 25 μM or greater. Basal adenosine triphosphate release was significantly decreased at all tested pyocyanin concentrations while stimulated adenosine triphosphate release was significantly inhibited at pyocyanin concentrations of 12.5 μM or greater with no significant stimulated release at 100 μM. Pyocyanin treated RT4 cells showed morphological characteristics associated with cellular senescence, including SA-β-gal expression. This effect was not evident at 100 μM pyocyanin and may have been due to apoptotic cell death, as indicated by increased caspase-3 activity. An increase in acridine orange stained vesicular-like organelles was observed in RT4 urothelial cells after pyocyanin treatment. Exposure to pyocyanin alters urothelial cell viability, reactive oxygen species production and caspase-3 activity. Treatment also results in cellular senescence, which may affect the ability of urothelium to repair during infection. The virulence factor depressed stimulated adenosine triphosphate release, which to our knowledge is a novel finding with implications for awareness of bladder filling in patients with P. aeruginosa urinary tract infection. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier

  8. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    NASA Astrophysics Data System (ADS)

    Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel

    2016-11-01

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  9. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability.

    PubMed

    Jacobsson, S O; Rongård, E; Stridh, M; Tiger, G; Fowler, C J

    2000-12-15

    In the present study, the effects of the combination of tamoxifen ((Z)-2[p-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethylamine citrate) and three cannabinoids (Delta(9)-tetrahydrocannabinol [Delta(9)-THC], cannabidiol, and anandamide [AEA]) upon the viability of C6 rat glioma cells was assessed at different incubation times and using different culturing concentrations of foetal bovine serum (FBS). Consistent with previous data for human glioblastoma cells, the tamoxifen sensitivity of the cells was increased as the FBS content of the culture medium was reduced from 10 to 0.4 and 0%. The cells expressed protein kinase C alpha and calmodulin (the concentration of which did not change significantly as the FBS concentration was reduced), but did not express estrogen receptors. Delta(9)-THC and cannabidiol, but not AEA, produced a modest reduction in cell viability after 6 days of incubation in serum-free medium, whereas no effects were seen in 10% FBS-containing medium. There was no observed synergy between the effects of tamoxifen and the cannabinoids upon cell viability.

  10. The reducibility of heLa cell viability by Sargassum polycystum extracts

    NASA Astrophysics Data System (ADS)

    Firdaus, M.; Setijawati, D.; Islam, I.; Nursyam, H.; Kartikaningsih, H.; Yufidasari, H. S.; Prihanto, A. A.; Nurdiani, R.; Jaziri, A. A.

    2018-04-01

    Cervical cancer is the second largest cause of death-related cancer in women. The efficacy of cancer drugs is still low. Bioactive of brown seaweed has been studied by in vitro and in vivo as anticancer. The aim of this study was to evaluate the cytotoxicity of Sargassum polycystum extracts on HeLa cell, to recognize bioactive on extract and estimate the interaction between the bioactive and target protein. S. polycystum was found from Talango Island waters and HeLa cell was obtained from Indonesian Science Institute. Sample was extracted by ethanol, ethyl acetate and hexane, concentrated and finally, extracts were assayed on HeLa cell. The viability of this cell was quantified on ELISA-Reader. The bioactive compounds of the extract were elucidated by GC-MS. The interaction between bioactive and target protein was evaluated by using in silico method. The result showed that the lowest viability of HeLa cell on n-hexane extracts treatment. The n-hexane extract of this seaweed contained benzenepropanoic acid. This compound reduced HeLa cell viability by reducing of thrombin concentration. In conclusion, the benzene propanoic acid of S. polycystum was the cytotoxic agent and it is potential agent for anti-cervical cancer.

  11. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.

    PubMed

    Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei

    2016-09-16

    3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and

  12. Effect of fluoride on the cell viability, cell organelle potential, and photosynthetic capacity of freshwater and soil algae.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2016-12-01

    Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨ m ) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨ m ) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F - ) with magnesium ions (Mg 2+ ) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells.

    PubMed

    Wu, Chao-Yan; Ke, Yuan; Zeng, Yi-Fei; Zhang, Ying-Wen; Yu, Hai-Jun

    2017-01-01

    We have reported that Chinese herbs Astragalus polysaccharide (APS) can inhibit nuclear factor kappaB (NF-κB) activity during the development of diabetic nephropathy in mice. NF-κB plays important roles in genesis, growth, development and metastasis of cancer. NF-κB is also involved in the development of treatment resistance in tumors. Here we investigated the antitumor activity of APS in human non-small cell lung cells (A549 and NCI-H358) and the related mechanisms of action. The dose-effect and time-effect of antitumor of APS were determined in human lung cancer cell line A549 and NCI-H358. The inhibition effect of APS on the P65 mRNA and protein was detected by reverse transcriptase-PCR (RT-PCR) and Western blot in A549 cells respectively. The inhibition effect of APS on the p50, CyclinD1 and Bcl-xL protein was detected by Western blot in A549 cells respectively. The effect of APS on NF-κB transcription activity was measured with NF-κB luciferase detection. Finally, the nude mice A549 xenograft was introduced to confirm the antitumor activity of APS in vivo. Cell viability detection results indicated that APS can inhibit the proliferation of human lung cancer cell line A549 and NCI-H358 in the concentration of 20 and 40 mg/mL. NF-κB activator Phorbol 12-myristate13-acetate (PMA) can attenuate the antitumor activity of APS in both cell lines, but NF-κB inhibitor BAY 11-7082 (Bay) can enhance the effect of APS in both cell lines. In vivo APS can delay the growth of A549 xenograft in BALB/C nude mice. APS can down-regulate the expression of P65 mRNA and protein of A549 cells and decrease the expression of p50, CyclinD1 and Bcl-xL protein. The luciferase detection showed that the APS could reduce the P65 transcription activity in A549 cells. PMA can partially alleviate the inhibition activity of P65 transcription activity of APS in A549 cells, and Bay can enhance the down-regulation of the P65 transcription activity induced by APS in A549 cells. APS has a

  14. Osteochondral Tissue Cell Viability Is Affected by Total Impulse during Impaction Grafting

    PubMed Central

    Balash, Paul; Kang, Richard W.; Schwenke, Thorsten; Cole, Brian J.; Wimmer, Markus A.

    2010-01-01

    Objective: Osteochondral graft transplantation has garnered significant attention because of its ability to replace the lesion with true hyaline cartilage. However, surgical impaction of the graft to anchor it into the defect site can be traumatic and lead to cell death and cartilage degeneration. This study aimed to test the hypothesis that increasing impulse magnitude during impaction of osteochondral plugs has a direct effect on loss of cell viability. Design: In this controlled laboratory study, the impaction force was kept constant while the impulse was varied. Ninety-six osteochondral plugs were extracted from the trochlea of bovine stifle joints and were randomly assigned into 3 experimental and 1 (nonimpacted) control group. The transferred impulse of the experimental groups reflected the median and the lower and upper quartiles of preceding clinical measurements. Data were obtained at day 0, day 4, and day 8; at each point, cell viability was assessed using the Live/Dead staining kit and histological assessments were performed to visualize matrix structural changes. Results: After impaction, cartilage samples stayed intact and did not show any histological signs of matrix disruption. As expected, higher impulse magnitudes introduced more cell death; however, this relationship was lost at day 8 after impaction. Conclusion: Impulse magnitude has a direct effect on cell viability of the graft. Because impulse magnitude is mostly governed by the press-fit characteristics of the recipient site, this study aids in the definition of optimal insertion conditions for osteochondral grafts. PMID:26069558

  15. Effect of Irrigation Time of Antiseptic Solutions on Bone Cell Viability and Growth Factor Release.

    PubMed

    Sawada, Kosaku; Nakahara, Ken; Haga-Tsujimura, Maiko; Fujioka-Kobayashi, Masako; Iizuka, Tateyuki; Miron, Richard J

    2018-03-01

    Antiseptic solutions are commonly utilized to treat local infection in the oral and maxillofacial region. However, surrounding vital bone is also exposed to antiseptic agents during irrigation and may have a potential negative impact on bone survival. The aim of the present study was therefore to investigate the effect of rinsing time with various antiseptic solutions on bone cell viability, as well as their subsequent release of growth factors important for bone regeneration. The bone samples collected from porcine mandible were rinsed in the following commonly utilized antiseptic solutions; povidone-iodine (0.5%), chlorhexidine digluconate (CHX, 0.2%), hydrogen peroxide (1%), and sodium hypochlorite (0.25%) for 1, 5, 10, 20, 30, or 60 minutes and assessed for cell viability and release of growth factors including vascular endothelial growth factor, transforming growth factor beta 1, bone morphogenetic protein 2, receptor activator of nuclear factor kappa-B ligand, and interleukin-1 beta by enzyme-linked immunosorbent assay. It was found in all the tested groups that the long exposure of any of the tested antiseptic solutions drastically promoted higher cell death. Sodium hypochlorite demonstrated the significantly highest cell death and at all time points. Interestingly, bone cell viability was highest in the CHX group post short-term rinsing of 1, 5, or 10 minutes when compared with the other 4 tested groups. A similar trend was also observed in subsequent growth factor release. The present study demonstrated that of the 4 tested antiseptic solutions, short-term CHX rinsing (ideally within 1 minute) favored bone cell viability and growth factor release. Clinical protocols should be adapted accordingly.

  16. Viability and Functionality of Cryopreserved Peripheral Blood Mononuclear Cells in Pediatric Dengue

    PubMed Central

    Perdomo-Celis, Federico; Salgado, Doris M.; Castañeda, Diana M.

    2016-01-01

    Cryopreserved peripheral blood mononuclear cells (PBMCs) are widely used in studies of dengue. In this disease, elevated frequency of apoptotic PBMCs has been described, and molecules such as soluble tumor necrosis factor (TNF)-related apoptosis-inducing ligands (sTRAIL) are involved. This effect of dengue may affect the efficiency of PBMC cryopreservation. Here, we evaluate the viability (trypan blue dye exclusion and amine-reactive dye staining) and functionality (frequency of gamma interferon [IFN-γ]-producing T cells after polyclonal stimulation) of fresh and cryopreserved PBMCs from children with dengue (in acute and convalescence phases), children with other febrile illnesses, and healthy children as controls. Plasma sTRAIL levels were also evaluated. The frequencies of nonviable PBMCs detected by the two viability assays were positively correlated (r = 0.74; P < 0.0001). Cryopreservation particularly affected the PBMCs of children with dengue, who had a higher frequency of nonviable cells than healthy children and children with other febrile illnesses (P ≤ 0.02), and PBMC viability levels were restored in the convalescent phase. In the acute phase, an increased frequency of CD3+ CD8+ amine-positive cells was found before cryopreservation (P = 0.01). Except for B cells in the acute phase, cryopreservation usually did not affect the relative frequencies of viable PBMC subpopulations. Dengue infection reduced the frequency of IFN-γ-producing CD3+ cells after stimulation compared with healthy controls and convalescent-phase patients (P ≤ 0.003), and plasma sTRAIL correlated with this decreased frequency in dengue (rho = −0.56; P = 0.01). Natural dengue infection in children can affect the viability and functionality of cryopreserved PBMCs. PMID:26961858

  17. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    PubMed

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  18. Impact of thermal effects induced by ultrasound on viability of rat C6 glioma cells.

    PubMed

    Kujawska, T; Secomski, W; Bilmin, K; Nowicki, A; Grieb, P

    2014-07-01

    In order to have consistent and repeatable effects of sonodynamic therapy (SDT) on various cancer cells or tissue lesions we should be able to control a delivered ultrasound energy and thermal effects induced. The objective of this study was to investigate viability of rat C6 glioma cells in vitro depending on the intensity of ultrasound in the region of cells and to determine the exposure time inducing temperature rise above 43 °C, which is known to be toxic for cells. For measurements a planar piezoelectric transducer with a diameter of 20 mm and a resonance frequency of 1.06 MHz was used. The transducer generated tone bursts with 94 μs duration, 0.4 duty-cycle and initial intensity ISATA (spatial averaged, temporal averaged) varied from 0.33 W/cm(2) to 8 W/cm(2) (average acoustic power varied from 1 W to 24 W). The rat C6 glioma cells were cultured on a bottom of wells in 12-well plates, incubated for 24h and then exposed to ultrasound with measured acoustic properties, inducing or causing no thermal effects leading to cell death. Cell viability rate was determined by MTT assay (a standard colorimetric assay for assessing cell viability) as the ratio of the optical densities of the group treated by ultrasound to the control group. Structural cellular changes and apoptosis estimation were observed under a microscope. Quantitative analysis of the obtained results allowed to determine the maximal exposure time that does not lead to the thermal effects above 43 °C in the region of cells for each initial intensity of the tone bursts used as well as the threshold intensity causing cell death after 3 min exposure to ultrasound due to thermal effects. The averaged threshold intensity was found to be about 5.7 W/cm(2). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The preservative effect of Thai propolis extract on the viability of human periodontal ligament cells.

    PubMed

    Prueksakorn, Attaporn; Puasiri, Subin; Ruangsri, Supanigar; Makeudom, Anupong; Sastraruji, Thanapat; Krisanaprakornkit, Suttichai; Chailertvanitkul, Pattama

    2016-12-01

    Tooth avulsion causes an injury to the periodontal ligament (PDL). The success of tooth replantation depends on the quantity and quality of PDL cells. The aim of this study was to examine the preservative and proliferative effects of Thai propolis extract, previously shown to exert anti-inflammatory and antioxidant activities, on human PDL cells. Ninety-six premolars were left to air dry for 30 min and stored in Hank's balanced salt solution (HBSS), milk, or various concentrations of propolis extract from 0.25 to 10 mg ml -1 for 3 h. PDL cells were isolated by collagenase and trypsin digestion, and their viability was determined by a trypan blue dye exclusion assay. PDL tissues were also scraped off the root surface and cultured to determine cell growth and morphology. The alamarBlue ® and BrdU assays were performed to determine the cytotoxic and proliferative effects of the extract on cultured PDL cells, respectively. A non-toxic dose of 2.5 mg ml -1 of propolis extract yielded the greatest percentage of cell viability (78.84 ± 3.34%), which was significantly higher than those of the other concentrations (P < 0.001). Nevertheless, this percentage was not significantly different from that of HBSS (80.14 ± 2.44%; P = 1.00), but was significantly higher than that of milk (71.27 ± 2.79%; P < 0.001). The cells grown from PDL explants looked like fibroblasts. However, 2.5 mg ml -1 of the extract did not induce PDL cell proliferation. Thai propolis extract at 2.5 mg ml -1 appears to be the most effective dose for preserving the viability of PDL cells, and this was comparable to HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    NASA Astrophysics Data System (ADS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  1. The influence of micronutrients in cell culture: a reflection on viability and genomic stability.

    PubMed

    Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Machado, Miriana; Bordin, Diana Lilian; Bergter, Lothar; Prá, Daniel; Henriques, João Antonio Pêgas

    2013-01-01

    Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5-10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed.

  2. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  3. The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability

    PubMed Central

    Arigony, Ana Lúcia Vargas; de Oliveira, Iuri Marques; Bordin, Diana Lilian; Prá, Daniel; Pêgas Henriques, João Antonio

    2013-01-01

    Micronutrients, including minerals and vitamins, are indispensable to DNA metabolic pathways and thus are as important for life as macronutrients. Without the proper nutrients, genomic instability compromises homeostasis, leading to chronic diseases and certain types of cancer. Cell-culture media try to mimic the in vivo environment, providing in vitro models used to infer cells' responses to different stimuli. This review summarizes and discusses studies of cell-culture supplementation with micronutrients that can increase cell viability and genomic stability, with a particular focus on previous in vitro experiments. In these studies, the cell-culture media include certain vitamins and minerals at concentrations not equal to the physiological levels. In many common culture media, the sole source of micronutrients is fetal bovine serum (FBS), which contributes to only 5–10% of the media composition. Minimal attention has been dedicated to FBS composition, micronutrients in cell cultures as a whole, or the influence of micronutrients on the viability and genetics of cultured cells. Further studies better evaluating micronutrients' roles at a molecular level and influence on the genomic stability of cells are still needed. PMID:23781504

  4. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel.

    PubMed

    Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J

    2012-05-01

    Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.

  5. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements.

    PubMed

    Bhatia, Sujata K; Yetter, Ann B

    2008-08-01

    Medical devices and implanted biomaterials are often assessed for biological reactivity using visual scores of cell-material interactions. In such testing, biomaterials are assigned cytotoxicity ratings based on visual evidence of morphological cellular changes, including cell lysis, rounding, spreading, and proliferation. For example, ISO 10993 cytotoxicity testing of medical devices allows the use of a visual grading scale. The present study compared visual in vitro cytotoxicity ratings to quantitative in vitro cytotoxicity measu